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On the complexity of codes and pre-codes
assigned to finite Moore automata

. By A. Apim

§1.

The concepts of code (a table describing a Moore automaton such that each
isomorphy family of automata contains precisely one automaton describable by
a code), pre-code (an initial part of a code) and complexity (maximum of the
distinguishability numbers for the state pairs of an automaton) were introduced
in the earlier article [3]. In the present paper, the study of these notions and some
related ones is continued.

In § 6 of [3] the following question was raised (Problem 4) Is the set of complexl-
ties of all pre-codes Sfulfilling s=0 equal to the set of non-negative integers? The main
results of the present paper yield an affirmative answer to this question.

On one hand, we show that each pre-code with s=0 is of finite complexity.
The proof of this theorem occupies Sections 3—5 of the paper.

The difficulties that arise in this proof follow from two motives. First, the continuation of a
pre-code D with s=0 (till when we get a code) is permitted only in such a way that a certain dis-
tinguished role of D should be preserved in the whole code, too. Secondly, our basic idea gives a
fundamental role to the rows of the code which satisfy y(i)=n (where n is the largest possible value
of y); since y(¥)=nr can be fulfilled already by some rows of the pre-code D, these rows must be
handled very carefully during the procedure.

"On the other hand, we obtain in § 6 (by a simple construction) that each non-
negative integer is the complexity of an appropriate pre-code satisfying s=0. This
construction enables us to derive in §7 an interrelation between the complexity
and the number of states of a Moore automaton.

The last section of the paper presents an example illustrating the constructions
used in the proof of Theorem 1.

§ 2. B
Most of the notions, to be defined in this section, were treated also in,[3j.

We denote by Nj the set e

- {i,i+1,i42,..,j—1,j} .
of integers. : v : e

1 Acta Cybernetica



118 A. Adam

The (ordered) set X={xV, x®, ..., x™} (the set of input signs) is thought
to be fixed for the whole paper (n=1). F(X) is the free monoid generated by X,
the elements of F(X) are often called words. The length L(p) of a word p=x;x,..
is the number k (where x,€X, x,€X, ..., x,€X). We denote by p{? the word con-
sisting of k copies of x) (1=i=n) (thxs notation will be used with i=n).

By a pre-code a sextuple D=(r,s, 8,7, i, ¢) is meant such that the following
eight postulates are satisfied:

(1) r, s are non-negative integers; f, v, u, ¢ are functions.
(II) The domains of 8, y, u, @ are Np+s+1 NE+s+1 NI+l Nrts+l regp,
(111) The target of each of B, u, ¢ is N’+1
(IV) The target of y is Ni.
V) B()=1. If ieNjt, then (a)&((b)V(c)) where

@ BG-D=p@)<i,
(b) BG-1)<B@,
© (- =<y@).

(VD If ieNj*2, then p(i)—1€{0, u(1), #(), ..., p(i—1D}
VI If ;GN:ig“ then (B(:), (7)) is the lex1cographlcally smallest pair ful-

filling
. JENIT = (BG) # B(HIVYE) = ¥()).
(VIID) If i€N;15*?, then either ¢(i)=1 or (d)&((e)V(f)) where
| @ Blo®) = BQ), .
(© Ble®) < pG),
/ O e <y

The number r+s+1 is called the size of the pre-code D=(r, s, ﬂ, ¥s Uy (p)
The quintuple (i, (), y(i), p(9), ¢ (i) is called the i™ row of the pre-code D
(icNj+s+1), 'We use the notation D,;<D, if the pre-code D, can be obtained from
D, by adding new rows (as last ones). We write D, <D, when D1<D2 holds and
D; has one more row than D;. It can be shown that s=rm+n—r is valid for
each pre-code

If D, is a pre-code and there exists no pre-code D, satisfying D1<D2 (or, equi-
valently, if s takes its maximal possible value rn4+n—r in D), then D, is called
a code.

The first block of a pre-code D consists of the first row only. The second block
of D consists of the second, third, ..., (r+1)' rows. The third block consists of the
r+2)", (r+3), ..., (r+s-}-1)‘ll rOws.

A pre-code D is called to be of first type if r=0. D is of second type if s=0.
D is of third type if r=0 and' s>0. It is clear that each pre-code with at least
two rows belongs to precisely one type, moreover, no code is of second type.

1 These notions may be defined in terms of the emptiness of the second or third bIOCk', 100, —
We write out all the six components of a precode D=(r,s, 8, 7, u, @) even if some of the four
functions does not exist really.
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The iteration of the function B is deﬁned by the recursion ﬂ"(z)—/ Bl =
=B(B*(").

By an automaton we mean always an initially connected finite Moore auto-
maton A=(A4, X, Y, 4,2, a;). To each code C we assign an automaton i (C) con-
structed in the following manner:

A={ay, a5, ... ap 41},
a; if i=r4+1,
. (DN —
3 (apa, ¥7) {aq,(,-, if i=r42,
AMa) = Y-

It is known that to each standard automaton A there is exactly one code C such
that A and Y (C) are isomorphic (see §§ 3-—4 of [3]).
© We use extensively the well-known visualization of automata (or their parts)
by directed graphs. This method can be transferred (by virtue of the assignment )
also for codes and pre-codes. If C is a code and D is the pre-code consisting of the
first and second blocks of C, then the graph of D is a spanning subtree of the graph
of C (and any edge of D is directed outwards from g;).

If a, b are states of an automaton A, then we define w(a, b) as the length L( p)

of a shortest word p such that

A(8(a, p)) = A(5(b, p))- @.1)

If (2.1) holds, then we say that p distinguishes a and b (for the automaton A or for
the code ~ 1(A))

The complexity Q,4(A) of A is the maximum of the values w(a, b) where ab.
The complexity ©2¢(C) of a code C is defined by Q:(Cy=9,(¥(C)). Finally, the
complexity Q-(D) of a pre-code D means the minimum of all complexities Q.(C)
where D=C. )

The following two statements (exposed in [3} as Propositions 13, 19) will be
used often in our further considerations (with or without an explicit reference):

Proposition A. If i¢N;+5+2 /'EN;““,ﬁ(i)zﬁ(j),y(i)=y(j) are valid for a
pre-code, then i=j.

Proposition B. If the pre-codes D, and D, satisfy D;<D,, then Q.(D)=
=0:(Dy).

§3.
In §§ 3—35 we prove the following result:
Theorem 1. If D is a pre-code of second type, then its complexity Qc(D) is finite.

In the proof of the theorem two constructions will have essential roles (each
of them transforms a pre-code to another pre-code and augments the size by one).

CoNSTRUCTION 1. Let. D=(r, 0, 8,7, u, ¢) be an arbitrary pre-code of second
- type. Introduce the pre-code I'y(D)=(ry, sy, B1, ¥1, M1, 1) by the following rules -
(@), (i):

1*
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() I'y(D) is of second type and D<I;(D). (Hence s5,=0 and r,=r+1))
(ii) The function values at the place r+2 are:

Bi(r+2) =r+1,
n(r+2)=n,

pa(r+2) = max (u(1), u(2), ..., u(r+1)+1.
Proposition 1. The pre-code I'y(D) exists.

Proof. The proposition asserts that I'; (D), as it is determined by Construction
1, satisfies all the postulates (I)>—(VIII). Most postulates are obviously fulfilled,
except (V) in the particular case i=r+2(=r,+1).

(V) is completely satisfied since

B(r+1) = Bi(r+1),
r+2.

. Before exposing Construction 2, we define some notions? for a pre-code D,
The set of numbers :

{r+1, p(r+1), p2(r+1), B2(r+1),...,1}
is denoted by® H.

The set of all numbers j(¢N;*Y) fulfilling at least one of the subsequent con-
ditions (&), (8) is denoted by G:

(@) y())=n, '

(B) there is a number h(€N;*') such that B(h)=j and y(h)=n.

The set of numbers j which satisfy (x) but do not satisfy (8) are denoted by G,.
The set of numbers j which fulfil (8) but do not fulfil («) are denoted by G,. (Hence
G,NG,=0 and G,UG,£G.)

Consider the subgraph induced by the vertex set G in the tree assigned to the
pre-code consisting of the first and second blocks of D,. Each connected compo-
nent of the induced subgraph is a path having at least two vertices. G, consists of
the starting vertices of the connected components, G; consists of their end vertices.

We denote by G, the set of numbers i(€G) such that the connected component
(of G) containing i intersects H. Let G, be the complementary set G—G,,. The in-
tersection of H and a connected component C of G, is a starting subpath of C.
We define G, ,, G, by G,,=G,NG, and G, ,=G,NG,.

If jeG,, then we denote by 1( _]) the element of G, lying in the same connected
component (of G) as j. Evidently, 7 is a bijection of G, to G,, and the containments
t(j)€H, jEG, , are equivalent. If j€G, ,— H, then we denote by 1’(j) the number -
pre(j) where w, is the smallest among the numbers w fulfilling g* ()€ H. '

Bi(r+2) =r+1 {

CONSTRUCTION 2. Let D,=(r,s, B,7, 1, ®) be a pre-code of second or third
type. We denote by D the pre-code consisting of the first and second blocks of
D,. Let ¢t mean the size r+s+1 of D,.

2 We do not specify the type of D,. The notions to be defined are independent of the third
block of D, (even if D, belongs to the third type). )
3 The elements of H were enumerated here in decreasing order.
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We introduce a pre-code I',(Dg)=(7s, S35 Ba, 72, ls, ¢3) by the subsequent two
rules (iii), (iv):

(iii) Iy(Dy) is of third type and Dy<TI'y(Dg). (Thus ry=r, sp=s+1 and the
size ry+5y+1 of I'y(Do) equals t+1.)

(iv) The value @,(¢+1) is prescribed* according to six cases (a)—(f) as follows:

() If p,(¢+1)<n, then @,(t+1)=1.
(b) If y,(¢+1)=n and B,(tr+1)=r+1, then @,(t+1)=r+1.
©) If p(¢+D=n, B,(t+1)=r and 'B,(t+1)€H, then @,(¢t+1) is the smallest
element of the set
Npti+n 1 NH.

(@) If y,(t+1)=n and B,(t+1)€G, ,—H, then ¢,(r+1) is the smallest ele-
ment of the set
N?{}z(rﬂ))nnH-

(¢) If vp,(t+1)=n and ,82(I+1)€Gl g» then @,(¢+1) is the largest element
of the set
(Ng(ﬂz(t+l))—1_((G_Gz)UH))U (1}

@) If y,+D=n and B,(t+1)§ GUH, then goz(t+1) is the largest element
of the set
(N§2e+0-1—((G- Gy UH))U{1}.

The description of Construction 2 is completed.

ReMARK. The reader may convince himself that ¢,(z+ 1) has been defined cor-
rectly. On one hand, the conditions in (a)—(f) exclude each other.® On the other
hand, we have defined ¢,(z+1) in every possible case since the situation when
y.(t+1)=n and B,(t+1)¢G—G, cannot occur.®

Next we assert two simple facts on the procedure of Construction 2.
Lemma 1. If @,(¢t+1) is determined by (c), then B,(@s(t+1))=p,(t+1).
Proof. The statement follows from (c) and the definition of H. O

Lemma 2. If @,(¢t+1) is determined by (d) ,then ,Bz(go;(t+1))=ﬁ§’ (t+1) where
w is the smallest number such that By (t+1)€H.

Proof. This is a consequence of (d) and the definition of 7. [
Proposition 2. The pre-code I',(D,) exists.

Proof. Analogously to the proof of Proposition 1, it is clear that I',(D,) satisfies
the postulates (I)—(VIII) almost completely. Only the fulfilment of (VII) if ¢+41
plays the role of i is questionable. We show this dependingly on the cases (a)—(f).

¢ By Postulate (VIN), the values B3(¢+1), o(¢+1) are uniquely determined.

® This is mostly obvious. It holds for the pairs (©), (¢)) and ((d), () since G,,, is disjoint
to H and to G,,.

¢ Tndeed, combine Proposition A with the fact that JE€G— G, is equivalent to the validity of (8).
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(We can omit the subscripts in B, 7., 9. without the possibility of misunder-
~ standing.)
(a) Trivially, @(t+1)=1 guarantees (VIII).
(b) We have
Blot+1) =pr+1) <r+1=p@z+1).
(¢) By Lemma 1, B(e(r+1))=p(t+1), consequently,
e+ 1) =y@+1) =n

(by (VID), hence y(@(t+1))<y(t+1) since n is the maximal possible value of y.
(d) Lemma 2 and B*(t+1)=r+1<t+1 imply

Ble(t+1)) = B+ 1)=p(t+1).

Strict inequality must hold since g¥(r+1)¢H and f(¢t+1)¢ H.
(e) Either ¢(t+1)=1 or the deduction

Blo(+1) = B(x(Bt+1)) < t(BG+1D) < ﬁ§t+1)

holds (by (V) and @ (t+1)=t(B(r+1))-1).
(f) Either (t+1)=1 or

Blo(t+1) = B(t+1) < pt+1). O
Lemma 3. Let D be a pre-code of second type. The sequence
breaks up after a finite number of steps. The last element of this sequence is a code.

Proof. On one hand, the first and second blocks are common for all the pre-
codes in (3.1). Thus r is the same for them, and rn+n—r is an upper bound for
the lengths of the third blocks.

On the other hand, the sequence (3.1) can always be contmued unless we
reached a code. [J

DeriNITION. Let D be a pre-code of second type. The last element of the se-
quence (3.1) is denoted by r+*@D).

In § 8 it will be shown by anAexample how I'*(D) is formed.

§ 4.
Let the recursive definition
- I'P(D) =D, I'’(D) =TI, >(D))
be introduced for a pre-code D of type 2.
Lemma 4. Let D=(r,0, B, y, 1, ¢) be a pre-code of second type. Suppose that
the pre-code I'(D)=(r,s, B, ¥, u, ®) exists’ and y(t)=n holds where s=1 and

7 We can write the functions without subscripts.
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tis the size r+s+1 of I (D). The following statements (A), (B) are true:

A) If y(e®)=n, then B()=p@)=r+1.

(B) If a number i (€NL3Y) satisfies the equalities y(i)=n and @()=0¢(1),
then the formulae B()=B(r+1) and [()=¢@(t)=r+1 hold. ‘

Before proving the exposed lemma, we note another statement which will be
useful in the proof of Lemma 4.

Lemma 5. If the premissa of the assertion (B) of Lemma 4 are valid, then
B(i)<p ().

Proof. The formula B()=p(+) follows from r+2=i<t by Postulate (VII).
The equality B(i)=p(¢t) leads to a contradiction to Proposition A because we
have supposed y(i)=n=y(). O

Proof of Lemma 4. Since y(t)=n was assumed, the value ¢(¢) has been de-
termined by one of the cases (b)-——(f) in Construction 2 (with ¢ instead of 7z+1).
An analogous statement holds for ¢ (i) (in (B)). The proper proof splits to the veri-
fications of (A) and (B).

(A) The assumption y(@(t))=n implies 1< (1)€G—G,. We distinguish five
cases according to (b)—(f). In each case, we either show the conclusion of (A) or
get a contradiction (indicating that the case cannot occur really).

{b) The conclusion of (A) is trivial. : : .

(c) On one hand, y(t)=n=y(p(t)) and ¢(t)=r+1<t; on the other hand,
B(t)=PB(¢(t)) by Lemma 1. Contradiction to Proposition A.

(d) Let w be as in Lemma 2. On one hand, y(8*~(t))=n=y(p(t)) and
B*1(t)=p(t) (since f*~1(¢)¢ H and @(¢)€H); on the other hand, B(¢(1)=
=ﬁ‘“(t):ﬁ(ﬂ“"1(t)) by Lemma 2. Again a contradiction to Proposition A.

(e), (f). These cases are contradictory because ¢(f)€ G—G, cannot be true
and false simultaneusly. '

(B) We can again distinguish five cases according to how ¢(z) has been de-
fined, and an analogous distinction is made with respect to ¢ (7). Combining these
distinctions, twenty-five cases can be separated. We are going to show that the
conclusion of (B) holds in one case-and all the remaining twenty-four cases are
contradictory. .

We begin the discussion with the single consistent case. Suppose that ¢(i)
has been determined by (c), and ¢(z) has been defined by (b). (This is called case
(c)—(b,) briefly.) Then B(#)=¢(t)=r+1 by (b) (applied for ). Furthermore,

B(i) = B(o @) = B(e(®)) = BUr+1) ' .

(where Lemma 1 was used for i).

\

Now we turn to the other 24 cases that are imaginable. We do not discuss them
separately but divide them into seven groups as indicated in Table 1. (E.g., the
case (e)—(c,) belongs to the second group.)

First group. In case (b)—(e,) we have

r+1=0() = o(1) < t(B()) < B1),



124 A. Addm

Table 1.

\.\{ ® © @ © O
(b) 4 S 6 1 i
©) — 4 7 2 2
@le 7 4 2 2
@1 2 2 4 3

1 2 2 3 4

this is impossible since the value of § cannot exceed r+1 (by Postulate (11I)). In
the other three cases (belonging to this group) a similar inference holds, possibly
with interchanging / and ¢, or with dropping =(B8(z)).

Second group. We get that exactly one of ¢(i) and ¢(7) belongs to H—{1},
this contradicts the assumption ¢ (i)=¢(1).

Third group. Denote the set
Ne*'—((G-GpUH)

by J. We partition J to the classes J; and J, in the following manner: j(cJ) be-
longs to J; or to J, according as the smallest element of NjiiNJ is contained in
J—G; or in G,, respectively. (If NjIiNJ=0, then jcJ,.) It is clear that ¢(t)cJ;
if (1) is defined by (e), and @(¢)cJ, if ¢(2) is defined by (f).

One of ¢(i), ¢(¢r) belongs to J; and the other of them belongs to J,. This
excludes @ (i)=¢ ().

~ Fourth group. We try to deduce the equality f(i)=p(2) in each case belonging
to the present group; this equality is impossible by Lemma 5.
In the case (b)}—(b,), B(i)=p(t) follows clearly. In the further considered
cases, we have to keep in mind the situation of H, G, G, (in the tree assigned to D).
¢({)=¢(t) implies B@E)=pB(¢t) in the cases (c;)—(c,) and (f)—(f) immediately.
@(i)=¢(t) implies P()=p(z) through the equalities '(f(i))=r ‘(B(t)) and
T(ﬂ(l)) 7(B(r)) in the cases (d;)—(d,) and (e)—(e,), respectively.

Fifth group. We can obtain the deduction
B() = Ble(®) = Ble()) = B(r+1) < r+1 = B(i)
(the first step follows from Lemma 1), this contradicts Lemma 5.

Sixth group. We discuss the case (b)—(d,) only (the other case belonging to
this group can be treated analogously, by interchanging 7/ and ¢). The deduction

B(B*1(®) = B* (1) = B(p (1) = Ble (@) = B(r+1) 4.1)

is valid (in the second step we used Lemima 2). The structure of G, H and the con-
tainment B(#)€G, ,—H imply

p(B~1(1)) = n. 4.2)
y(r+1) = n. E 4.3)

Clearly,
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The formulae (4.1), (4.2), (4.3) are consistent with Pcsiutate (V) only if
r+1= 2. 4.9

The obvious formula *- 1(1)¢H and (4.4) imply B*=1(t)=r+1, contradicting
Postulate (1II).

Seventh group. It suffices to deal with the case (c;))—(d,) (by a similar reason
as in the sixth group). Lemmas 1 and 2 imply

B() = Bl () = (o) = B*(1) = B(B*~* (1)), (4.5)

and (4.2) holds also in the considered case. Comparing (4.5), (4.2) and y(i)=n,
we get i=p*~1(¢). This is impossible since ¥~ '()=r+1<i.
The proof of Lemma 4 is completed. [ A

§ 5.

Recall how the automaton y(C) (assigned to a code C) and the word p{” have
been defined in § 2.

In the-following considerations — yielding the completlon of the ploof of
Theorem 1 — we shall deal chiefly with automata given in form y(Ir*(D)) from
such a point of view that only the eﬁect of the input sign x* (with largest possible
superscript) is taken into account.® .

Lemma 6. Ler D=(r,0, §,y, 1, ¢) be a pre-code of second type. Consider
the automaton

Y(r*(D) = A = (4, X,Y,58,2, a)).

If ieN;—(HUG),), then there are two numbers j, k such that 1=j<i and a;=
=8(a;, pi™) (where a;€ A, a;€A).

Proof. Case 1: i¢ G—G,. Define the number i’ by the condmons B =i,
y(i")=n. Then (p(z ’) is defined by the rule (f) (in Construction 2) and the conclusion
of the lemma is obviously fulfilled with k=1.

Case 2: i€G,—G,. There is a k’(=0) and a j(€G,) such that f¥(j)=i and i,
J are in the same connected component of G. It is clear that

n = y(j) = y(B()) = r(B*())) =-..=»(*()).

Consider the number j satisfying f(j’)=j and y( J)=n. Obviously, j=r+2
and ¢(j’) is defined by the rule (e).

" We are going to show that the conclusion of the lemma holds if £"+1 is chosen
for k. The definition of y(I'*(D)) implies the equalities

_5(‘11’9 pg)) = aj

8 Automata having a single input sign are often called autonomous. The possible structures
of finite autonomous automata follow from a graph-theoretical result of Ore ([5], § 4.4; see also
[2], Chapter I). Although we do not use Ore’s theorem explicitly, its knowledge makes perhaps
easier to understand the considerations of the present §.
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and ’
¢
o(a;, pl(c"l?l-l) = 5(‘1;, x™) = Ao(iy-

Since @(j’) was defined by the rule (e), o(Jj)<t(B()))=i. O

Lemma 7. Let D, A be as in Lemma 6. Suppose i€ G,. There are two numbers
J, k such that jeH, a;=5(a;, pi) are true and one of the formulae i¢ H, j=>i holds.

Proof.® Let us consider the numbers k’(=0), j and j’ with the same properties
as in the preceding proof. j’=r+2 is again true and ¢(j’) is defined by one of
the rules (c), (d). By use of Lemmas 1, 2 we obtain that

) § =j =i if (c) is 2ppiied,
o(7) = B = {£ (/321’))]~r () if @ is appled

i€ H implies i=1'(j), hence the lemma is valid with k’+1 (as k) in both cases. O

Lemma 8. Let D and A be as in Lemma 6. If ic H— {r+1}, then there are two
numbers j, k such that i<j=r+1 and a; —6(a,,p,“")) (where a;€ A, a;€ A).

Proof. If i¢ G—G,, then the conclusion of the lemma is evidently fulfilled such
that k=1 and j is the smallest element of Nf}INH. If icG—G,, then Lemma 7
implies the present assertion. [

Lemma 9. Let D and A be as in Lemma 6. For each number i(€¢ H) there is a
number k(=0) such that 6(a;, p™)=a,,,.

Probf. Apply Lemma 8 repeatedly till it is possible. [

Lemma 10. Let D and A be as in Lemma 6. For each number I(ENSTY) there
is a number k(z=0) such that 6(a;, p{™)=a, .,

Proof. Case 1: ic H. Then Lemma 9 guarantees the statement.

Case 2: i€G,—H. Lemma 7 assures the existence of a k" such that 6 (q;, p{)€ He
By Lemma 8, also the equality

(5(‘1 Dy ")) P ")) =d,;1

is valid with a suitable k”. The left-hand side of this equality is clearly &(a;, p{™ ;).

Case 3: i¢ G,UH. By a successive application of Lemma 6, there exists a k’
such that &(a;, p{”)=a;. Since a, belongs to H, the further inference is the same
asinCase 2: O -

Lemma 11. Let D and A be as in Lemma 6. Suppose that i and j are distinct
numbers in N{ 1, If
o(a;, x) = 6(a;, x™) =a,,
then :
max(i,j)=m=r+1.

? In the proof we consider an i chosen arbitrarily. It is easy to see that the lemma is satisfied
with- k=1, too, if, particularly, i¢ H and i/ does not belong to the range of 7’.
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Proof. Case 1: one of i and j equals f(m). We can assume (without loss of
the generality) that B(m)=i. Then, by the connection of D and A, we have y(m)=n
and there exists a number w(¢N;$5*Y) such that B(w)=j, y(W)=n and @w)=m
hold in I'*(D). By applying the assertion (A) of Lemma 4 (for w) we get that
j=BwW)=r+1=i and m=¢w)=r+1.

Case 2: B(m) coincides neither with i nor with j. There exist two numbers
v, win NrZstt such that f(v)=i, B(w)=j, y(@)=y(W)=n and @@)=eW)=m. We
can suppose v<w. Apply the statement (B) of Lemma 4 for v, w (instead of i, ¢,
resp.). We obtain i=g(®)=p(r+1) and j=B(W)=r+l=pW)=m. O

Lemma 12. Let D and A be as in Lemma 6. Consider two different states a;, a;
of A. Denote by k; the smallest number fulfilling 6(a;, p{P)=a,,; let k; be defined
analogously. Then k;#k;.

Proof. The existence of k; and k; follows from Lemma 10. Let z; be the smallest
number such that §(a;, p{) belongs to the set

(@i, 8(ai, x), 6(as, p§?), 5(a; PE), .., 0(ar, PV))
let z; be the smallest number such that (a;, p™)=68(a;, p). Evidently, 0=z;=k;
and O0=z;=k;. (The situation is illustrated in Fig. 1.) We can distinguish four
cases (two of them will be contradictory). ' '

Fig. 1

If z;=z;=0, then we get a;=a;. Contradiction.
If zz=0<z;, then k;=k;+z;>k;.
If Zj:0<zi, then ki:kj+zi>kj~

If z;>0 and z;>0, then
8(8(a;, pi2y), x) = 6(a;, pi) = 8(a;, pLP) = 8(d(a;, piLy), x™).
Apply Lemma 11 for &(a;, p&,) and 8(a;, p,). The conclusion of Lemma 11

J
implies that one of this states equals a,,,, this is impossible by the definition of

kiand k;. O

Proof of Theorem 1. Consider a pre-code D=(r, 0, §, v, u, ¢) of second type.
Let A be the automaton Y (I*(I'(D))=(4, X,7Y,d, A, a). Clearly, |4|=r+2.
1t is obvious by Construction 1 that A(g)>2A(a,,p) if i€Nj+L ‘

Consider two different states a;, a; of A. Introduce k;, k; as the smallest num-
bers fulfilling &(a;, pi”) =4, .4, 8(a;, p{)=a, .., respectively. Lemma 12 (applied

-
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for I',(D) instead of D) assures k; #k;. We can suppose (without loss of generahty)
ki<k;. We obtain

6((1,, pl?; ) =0qry2 # 5((11-, pk, )

from the previous considerations, hence

l(&(a,, ("))) - )*(ar+2) # l(a(aj9 pl(l ));

thus w(a;, a;)=k;< .
Since the above inference holds for each pair (a;, a;) of states of the finite
automaton A, the complexity €,(A) is finite. Consequently,

Qc(D) = Q(I* (D)) = 24(A) < =
by D<I*(I,(D)) and Proposition B. O
The next result follows from Lemmas 10 and 11 immediately:

Corollary 1. Let D and A be as in Lemma 6. There exists a permutation © of
the set {1,2, ..., r} such that

5.(an(i)a xM) = {

an(i+1) l_f‘ 1= l< r,
a, 41 lf i= r,

and moreover, 5(a, ., X =a,;,. O

@ X(") x(") -\.(") x(n)D

Fig. 2

Corollary 2. If D=(r, 0, B, y, u, ©) is a pre-code of second type, then Qc(D)=r.

Proof. Analyze the proof of Theorem 1, let = have the same sense (for I',(D))
as m Corollary 1. 1t is clear that a,; and a, can be distinguished by the word

pr+2 (Jj) if 7[(1)<7T(]), hence
@ (Ar(iy, Arp) =7 +2-n(j) =r

(the second inequality holds because m(i)+1=n(j)=2 is the worst choice). Thus -
QA)=r. O .

§ 6.

The assertion (iii) of the next result is a conversion of Theorem 1.

Theorem 2. Let k be an arbitrary non-negative integer. Then
(i) there is a code C; such that Q:(C,)=k,
(ii) there is an automaton A, such that ,(A,)=k,
(iii) there is a pre-code D, such that Qc(Dy)=k and D, is of second type.
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Proof. We define C.=(, 5, 8,7, 1, ») in the following manner: -
r=k+1 (hence s(=rn+n—r)=kn+2n—k+1),
Bl =i—1 if ieN;+,
y(i) =n if ieNg*L
u@=1 if ieNj,
ur+1) =2,
o) =1 if ieNris+i,

B(i) and y(i) are defined, of course, by virtue of Postulate (VII) if [ENTESHT,
Fig. 3 shows a part of A,=y(C,). (In the full graph of A, every edge which
is not indicated in this figure goes into a,.)

It can be seen easily that C, satisfies all the postulates (I)—(VIII). Thus C,
is a pre-code; it is a code since s equals the maximal possible value rn+n—r (see
the remark in §4.3 of [3]). .

We can verify easily that w(a;, a;))=r—j+1 is valid in A, if i<j. (Indeed,
on one hand,

o(a;, Pﬂ)jn) = Aeien-(i-i) & Op41 = 5(41', P.(-")j+1)'

on the other hand, the relations (a;, p)€ {a;, as, ..., a,} and 6(a ,p)E{al, Qyy ..or 4}
are true if i<j and L(p)=r—j.) The value of co(a,, a; reaches its maximum when
i=1and j=2, namely,

w(ay,a) =r—1=k.

Hence Qc(C)=92,(A)=k. The proof of (i) and (ii) is completed.
Denote by D, the pre-code satisfying D,<C, and having the size r+1. (In
other words, D, consists of the first and second blocks of C,.) The estimate

Qc(Dy) = 2c(Cy) = o 6.1

is obvious. Before verifying the converse inequality, we interrupt the proof by
stating a lemma.

Lemma 13. Consider an arbitrary code C such that D,<C. Let the automaton
V(Q)=A=(4,X,7,0, 4, a) be studied. If aicA, i=r (where r is understood in D,)
and a state a;(€ A) is representable in form a;=06(a;; x®) (where x™® is an arbitrary
element ofX) then j=i+1.

. Proof. Case 1: h=n. The transition d(a;, x™) is determined by a row of the
pre-code D,, hence d;=a;.,.
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Case 2: h#n. Since n=|X|, we have h<n. The transition 6(g;, x*") is de-
termined by a row being in the third block!® of C; say, by the m™ row. Then
pm)=i,y(m)=h and @{m)=j j We have ﬁ((p(m))<ﬂ(m) by Postulate (VIII),
this implies

j=em)=pm+1 =i+l

by p(m)=i=r and the construction of D,. 0O
Proof of Theorem 2 (final part). If C is an arbitrary code fulﬁllmg D, <C,
then the equality
A(é(alﬁ p)) - yl = /'(5(‘12’ P))

holds in ¥ (C) for every word p whose length does not exceed r—2 (by an iterated
application of Lemma 13). Hence w(a,;,a5)=r—1 holds in ¥ (C), consequently

QW EC)=r-1=k
Q:(C) = k, - - (6.2)

and

thus . .
Qc(Dy) = k, . 6.3)

since (6.2) holds for each C satisfying D,<C.
The inequalities (6.1) and (6.3) give together the assertion (iii) of the theorem. [

§7.

By use of Corollary 2 and slight modifications of the idea of the proof of Theo-
rem 2, we can infer the following assertions -concerning the complexity and the
first component r of codes and pre-codes: :

Proposition 3. Let two non-negative integers k, r be given. The inequality k=r
is a necessary and sufficient condition of the existence of a pre-code D=(r, 0, B, y, u, @)
such that D is of second type and Qc(D)=k.

Proposntlon 4. If the non-negative integers k and r satisfy k<r, then there
exists a code C=(r,s, B, v, 1, @) such that Q-(C)=k. .

Proof of Propositions 3 and 4. The proof will consist of three parts In (A)
we verify Proposition 4 and we show that k<r is sufficient in Proposition 3. In
(B) we make some preparations for proving the sufficiency of k=r. In (C) we
verify the necessity part of Proposition 3 and we complete the proof of the suffi-
ciency of the equality k=r.

(A) Consider k and r (k<r). ‘Recall the procedure proving Theorem 2, let
us start with the code C, 1 (i.e., with C; such that r—1 is taken for k). Alter C,_
by putting

] {l if ieNk+L,
HO=Nick i e,

10 This row cannot be in the second block of C (by Postulate (V) even if the second block
has =r rows.
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denote the originating code by C; , (of course, C;_;,=C,_;) and the pre-code
consisting of the first and second blocks of C; , by Dy ,. The first component of
C:.. and of D, , is clearly r.

The whole proof of Theorem 2 remains valid for C;,, D;, with certain nu-
merical changes. In fact, w(g;, a;)=max (0, k—j+2) (where i<j), especially,

= w(ay, ap) = Q,(V (CL, ) = Qc(C,,)-

Thus Proposition 4 is proved.

No word whose length is smaller than k& can distinguish g, and g, for an ar-
bitrary code C(=Dy,), consequently, Qc(D; )=k.

(B) We -start again with the code C, occurring in the proof of Theorem 2.
We modify it by putting p(r+1)=1; we denote the resulting code by C; and the
pre-code of its first r+1 rows by Di. Although the considerations of the proof
of Theorem 2 do not remain valid in general,-Lemma 13 holds in the present case,
too, hence no word whose length is <r can distinguish @; and a, for an arbitrary
code C(=D}), thus Q.(D;)=r.

(C) Corollary 2 states that Q. (D)=r holds for each pre-code D=(r, 0, §, 7, i, ¢)
of second type. The necessity of the condition in Proposition 3 is proved.

Especially, Q;(D})=r. This inequality and the conclusion of (B) mean that
k=r is sufficient in Proposition 3. OO

Since the automaton ¥ (C) has r+1 states, Proposition 4 can be formulated
in the following (equivalent) form:

Corollary 3. If the non-negative integers k and v satisfy k=v—2, then there
exists a Moore automaton A such that Q,(A)=k and the number of states of A
isv. O

I conjecture that the conversion of Corollary 3 is also true, see [4].

§8.

In the last section of the paper, an example will be studied how I'y(D) and
r*(r,(D)) are built up if a pre-code D of second type is given concretely.
Suppose X={x™, x»}. Let D be the pre-code given by Table 2/a. (r equals
24. The tree assigned to D can be seen in Fig. 4. For the sake of simplicity, the
vertices are labelled by 7 and the edges are by j instead of a; and x'?, resp.)
We get I'/(D) if we supplement D by a 26'® row given by Table 2/b. The sets
H, G, Gy, Gy, Gy, Gy, Gy, G, are (for I'y(D)) the following:
H ={1,2,4,7,11,15,17, 20, 22, 25, 26},
G =1{2,3,4,56,7,9,10,11,13,14,15,16, 17, 19, 21, 22, 24, 25, 26},
G, =1{7,13,14,19, 24,26}, .
G, =1{2,3,5,11,16,22},
G, ={2,4,7,11,15,17,21, 22, 24, 25, 26},
G, =1{3,5,6,9,10,13, 14,16, 19},

Gy.n = {7,24,26},
G, = {13,14,19).
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Table 2. Table 3.

i B Y@ w@ o) i B@ vy u@) e
1 — — 1 — 27 1 2 —_ 2
2 1 1 1 — 28 4 1 — 1
3 2 1 1 — 29 6 1 — 1
4 2 2 1 — 30 7 2 —_ 11
5 3 1 1 — 31 8 1 —_— 1
6 3 2 1 — 32 8 2 — 5
7 4 2 1 —_— 33 10 1 — 1
8 5 1 1 — 34 11 1 — 1
9 5 2 1 — 35 12 1 — 1
10 6 2 1 — 36 12 2 — 8
11 7 1 1 — 37 13 1 — 1
12 9 1 1 — 38 13 2 — 3
13 9 2 1 — 39 14 2 — 1
14 10 2 1 — 40 15 1 — 1
15 11 2 1 — 41 18 1 — 1
16 14 1 1 — 42 18 2 — 16
17 15 2 1 — 43 19 1 — 1
18 16 1 1 — 44 19 2 — 12
19 16 2 1 — 45 20 2 — 22
20 17 1 1 — 46 22 1 — 1
21 17 2 1 — 47 23 1 — 1
22 20 1 1 — 48 23 2 — 18
23 21 1 1 —_ 49 24 1 — 1
24 21 2 1 —_ 50 24 2 — 20
25 22 2 1 — © 51 25 1 — 1
(@) 52 26 1 — 1
53 26 2 — 26

26 | 25 2 2 —
(b)

The functions t and t’ are- indicated in Table 4.

Table 4. -
i) T
7] 2 —

13 5 —
14 -
19 | 16 —
24 | 11 17
2% | 2 —

Now we are able to obtain I'*(I';(D)) by applying Construction 2 as many
times as possible (beginning with I',(D)). We get that the 26 rows (seen in Table 2)
are supplemented by 27 rows (as a third block) which are given in Table 3.

In course of forming Table 3, the values ¢(27), ¢(30), ¢(45) are determined
in sense of case (c) of rule (iv) of Construction 2. The values ¢(32), ¢ (36), ¢(42),
¢ (48) are determined by case (f). The values ¢ (38), ¢ (39), ¢(44) are determined
by case (¢). ¢(50) and ¢ (53) are determined by cases (d) and (b), respectively. (The
remaining 15 values are by case (a).) :
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Fig. 4 . Fig. 5

Fig. 5 shows the (autonomous) automaton that is obtained from I'*(I',(D))
if -solely the input sign x® is considered. It is evident that Corollary 1 (in §5) is
fulfilled by a suitable permutation = (for which =(1)=23, n(2)=18, n(3)=16,
and so on). : , v
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On the isomorphism-complete problems
and polynomial time isomorphism

~ By GH. GRIGORAS

Introduction

. One of the important open problems in computer science today is the com-
putational complexity of deciding when two graphs are isomorphic. No polynomial
time algorithm is known, nor is the problem known to be NP-complete. Many
restrictions and generalizations of the problem have been the focus of much re-
search during last years and many of these problems have turned out to be pol-
ynomial time equivalent to graph isomorphism (3], [4], [6], {7], [9], {10]).

In this paper, starting from the results of Berman and Hartmanis paper on
p-isomorphism [2] we give some analogous necesary and sufficient conditions for
a language to be isomorphic under polynomial time mappings to graph isomorph-
ism problem. Next we give the proof of the existence of p-isomorphism for some
problems which are known to be polynomial time equivalent to graph isomorph-
ism. We conjecture that all problems polynomial time equivalent to graph iso-
morphism problem are p-isomorphic.

Preliminaries

In our paper we suppose the reader is familiar with the terminology of com-
plexity theory. In this section, we make precise some of the objects; for more details
see [1], [5], [6], [8]. '

A language ACZX* is said to be reducible to a language BS I'* if there exists
some function f: 2*—~TI* such that f(x)€B iff x€A, VxcZ*. A is said to be re-
ducible to B in polynomial time (p-reducible) if the function f is computed by
a deterministic Turing machine M which runs in polynomial time.

A language L, is said to be #-hard for some class of languages ¥ if for every
L in %, L is p-reducible to L,.

A language L, is complete for € if it is in € and is ¥-hard.

By P (NP) we denote the class of languages accepted by deterministic (non-
deterministic) Turing machines which run in polynomial time.

A language ACS Z* is said to be p-isomorphic to a language BCSTI* ([2]) iff
there exists a bijection f: Z*—~I'* such that f is a p-reduction of 4 to B and f~!
is a p-reduction of B to A4.

2+
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Let ACSZX*; the function Z,: Z*—~3* is a padding function for the set A if
it satisfies the following two properties

l. Z,(x)eA iff xcd, VxeZ*;

2. Z, is invertible (i.e. one-one).

The following theorem due to Berman and Hartmanis [2], is useful in the proof
of the fact that the problems computationally equivalent with the graph 1somorph-
ism are p-isomorphic.

Theorem 1. Let ASX2* and BSTI™* be two languages such that A is p-re-
ducible to B and B is p-reducible to A (in other words, A and B are polynomially
equivalent); furthermore let the language 4 have a padding function Z, satisfying

1. Z, has polynomial time complexity;
2a. (YWUZ.O) > [¥1E+10;
and polynomial-time computable functions S,(—, —) and D, () satisfying
3a (V3 )[S4(x )eA il xEA]; |
4y. (Vx,9) [DA(SA(x: )’)) =yl

Then B is p-isomorphic to A4 iff B has the polynomial-time computable func-
tions Sy and Dy satisfying 35 and 4.

Berman and Hartmanis show that all NP-complete languages known in the
literature are p- 1somorph1c If all NP-complete problems are p-isomorphic, then

- P#=NP.

Now, let us con51der the Graph Isomorphism Problem: are given two graphs
G,=(;, Ey) and Gy,=(V,, E,) isomorphic? In other words, is there any bijection A
from V', to ¥V, for which (v, w) is an edge in E, if and only if (h(v), h (w)) is an edge
in E,?

The complexity of Graph, Isomorphism Problem is unknown yet and this
problem has been the focus of much research in recent years ([3], [4], [7], [9], [10]).
Many of the restrictions and generalizations of the problem turn out to be polynomi-
al time equivalent to graph isomorphism [3].

Caracterization of problems p-isomorphic to graph isomorphism

In this section we apply the' theorem of Berman—Hartmanis to the Graph
Isomorphism Problem.

First, let us consider an enconding scheme in which a graph G= (V E) can
be described as a word over an alphabet X (see [6] p. 10). Let'us denote by G the
-enconding of G, and let % be a symbol not belonging to X. Then, the graph iso-
morphism problem can be formulated as the problem of recognizing the language

= {xxe(ZU{%D* x = G,4G,, G, is isomorphic to G,}.
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Let us note that we consider &€ X and by the word G, & G,, where G, and
G, are the encondings of two graphs G, and G,, we mean the encondmg of graph
w1th components G, and G,.

Lemma 1. The language GI has a function denoted by SGI(— —) with the
properties

1) S has polynomial time complexity;
iy (Vx, P [Sai(x, »)€GI iff x€GlI).. .
Proof. Let us consider the language A& {0, 1}* defined by y€ 4 iff

1) 3n€N, y =»ys...Vnm, Vi€{0, 1}, i=12,....n°
VL] 1=hj=n Yji-yynti=Vi-nmsje

Note that the language 4 is decidable in polynomial time.
Now we define the function :

Sei: QU {#D* x4 ~ (ZU{, 0, 0,1))%,
where 0 ¢ 2 is a new symbol by

_[G,&G#G&G, if x=G,#G,,
Sai(%, ) = {x 20y in other cases.

The graph G which appear in the definition of Sg; is constructed as follows
Let Gl—(I/l’ l) G2—(V2, E2)a I/1 {vla Vg, - ,U,,} I/2 {w19 Wa, «oey wm} and
x=G, %G, Then G=(Z, E) where Z={Z,,Z,, ..., Z}}, 1=V}, and the edge
(Z,, Z)€EE iff yis_1y4,=1. In other words G is the graph with the adjacency matrix

TOWS Yy 41 Virte: - Y+ nis Osk=I-1.10
It is clear that G, and G, are isomorphic if and only if so are the graphs with

encondings G, & G and G & G,. Hence SG,(x, y)EGI iff x€ GL
Furthermore it is easy to see that Sg; is computable in polynom1al time which
completes the proof of the lemma.

Lemma 2. The language GI has a function denoted by Dg;(~) w1th the prop:
erties

i). Dg; has polynomial time complexity;
ii)v (V)(, »)s DGI(SGI (x, J’)) =JY;
where Sg; is the function defined in Lemma 1.

Proof. Let us concider the function

Dg: (U {3, 0,0, 1)* -~ 4UEU{%, 0,0, 1})%,

1 For short, we say G has the adjacency matrix y.
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where A is the language from Lemma 1, defined by '

yif u=u, & u,3u, & ug, u, (in which & does not occur) is the enconding
of a graph the rows of adjacency matrix of which are y=y,...y,,

z if u=u,0z,

u in other cases.

From the definition of Dg it follows that, given u€(ZU{3#, 0,0, 1,})* the
computation of Dg(4) can be made in polynomial time depending on |u].

Now, let x€(ZU{#}* and yed. If x=G,#G, then Sg(x,y)=G, & G#
#G &G, and D (G, & G#G & G)=y (the adjacency matrix of G). If x is not
of the form G, 3 G,, then Sg(x, y)=x20y and Dg(x20y) =y.

Hence, Vx,y, Dg (SG,(x, y)) =y and the lemma is proved.

Dg) =

Lemma 3. The language GI has a padding function Zg, such that
i) Zg; has polynomial time complexity;
i) VxeQU{#D* 1 ZaG)|=Ix+1.
Proof: Let us define the function
Zo: GU{# N - (ZU =, b,

Za(x) = Sgi(x, 19°0=D)  for all xe(ZU{#})*

where ¢@:N-—N is a function depending on enconding scheme. We will show that
there exists this function such that condition ii) of lemma is satisfied. Let us note
that Zg; is a padding function. Indeed, from Lemma 1, we have.Sg(x, y) €GI iff
x€GI, hence Zg(x)€GI iff x€GI, Vxe(ZU{#}))*. From the definition of Sg,,
it follows that Zg, is an injective function, hence Zg, is invertible. It is clear that
Zg has polynomial time complexity. It remains to prove that for all x,

1Zei ()| = Ix[*+1.

by

If x#G, % G,, then
[Za1(x)] = [Sgi(x, 19°=D)f = [x2 O 1M0D] > x|+ 1.
If x=G, % G,, then
1Z1 ()| = 1S61(Gy # Gy, 1°09M)] = |G, &G 4 G& Gyl =
= |G, # G,y +2(|G| +1) = |x|+2|G|+2.

-~ Of coufse, |G| depends on |x| because y=1¢0xD. Let e(n) be the length of
G where G has n vertex, and let e(n) be of order O(n*), k=1. Then |G|=e(n)=
=e(p(Ix))=0(e(Ix])}). If we consider ¢ (n)=0(n**) then
IGl = O((O(IxI*)*) = O(|xI?),
- hence
[Za(X)| = |x|+20(|x|)+2.
It follows that we can find a function ¢(n) such. that

1Zai ()] = |x]*+ 1.
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Theorem 2. Let A be a language polynomial time equivalent to GI (4 is p-
reducible to GI and GI is p-reducible to A4). Then A is p-isomorphic to GI if and
only if 4 has two polynomial time computable functions SA(— —) and DA( )
such that

1) (Vx, ) [Sa(x, y)€A iff x€A];
2) (Vx, VID,(S.(x, ) = ¥

Proof. From Lemmas 1—3 it follows that GI satisfies the conditions of
Berman—Harmanis theorem. '

Problems p-isomorphic to graph isomorphism

Booth and Colbourn [3] present a comprehensive list of problems which are
known to be polynomial time equivalent to graph isomorphism. Such problems
are called isomorphism complete.

Now, we consider some of these problems and prove that they are p-lsomorphlc
to graph isomorphism.

1. Directed Graph Isomorphzsm Given two directed graphs, are they isomorph-
ic? Miller [10] shows this problem is isomorphism complete.

2. Oriented Graph Isomorphism. An oriented graph [3] is a digraph in which
the presence of the arc (x, y) precludes the presence of (y, x). Oriented graph iso-
morphism problem is isomorphism complete [3].

‘3. Bipartite Graph Isomorphism. Given two bipartite graphs, are they iso-
morphic? This problem is isomorphism complete [3}.

4. Semiautomata Isomorphism. A semiautomaton is a 3-tuple A=(Z, S, 5
where I and S are finite sets of inputs and states respectively and f: SXI—+S is
the transition function. Two semiautomata A,=(fy, S}, f) and A,=(l,, S,, f3)
are isomorphic if there exist two bijections g: 7,1, and h: S,—~S, such that the
following diagram commute:

S, xI, L. s,
l(h,a) Jh :

Sy X I,-L2 8,

Semiautomata isomorphism problem is isomorphism compfete (31, [7D.
Lemma 4. Directed graph isomorphism is- pjisomorphic to graph isomorphism.
Proof. Let us define the function Spg and Dyg, satisfying Theorem 2, where

DGI = {xlx# G,4G,, G, and G, are encondings of two

directed isomorphic graphs}g EU{E D™

Let us consider A={y|y€{0, 1}*, [y|=n2 n€N}. Then, for all xc(ZU {3 }))*, yc4
Spai(x, ) = {gllj&yG #G&G, gth;v:sgl G

where G is the enconding of the directed graph which has the adjacent matrix y.
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Like in Lemma 2 we define Dpg, by "VueCU{O, #,0, 1)*

y if u=u;&u,3#u,&uy, u, is the enconding of the
directed graph, the adjacent matrix of which is y;

z if u=u 0z

u in other cases.

DS@-I =

It is obvious that Spg; and Dy, are polynomial time computable and

D (Vx,3) Spalx,y)eDGI iff x€DGI; -

2) (Vx, y‘) DDGI(SDGl(x: )’)) =‘ y-

Lemma 5. Oriented graph isomorphism is p-isomorphic to graph isomorphism.

Proof. Like in Lemma 4, we construct the functions Sog; and Dgg, satisfying
Theorem 2. In this case we take

4 = {y/ye{0, 1}*, Iyl =n®% yg-nnsi =12 Yi-1yus; = O}

It is clear that 4 can be recognized in polynomial time and the graph with

" adjacent matrix y€4 is an oriented graph.
The functions are defined in the manner of Lemma 4.

Lemma 6. Bipartite graph isomorphism is p-isomorphic to graph isomorphism.
Proof. Let us consider the language 4S {0, 1}* defined by
= {yly = @ 19*(1*0Y, ke N}

It is easy to see that 4 can be recognized in polynomial time and, the graphs
with 2k vertices and adjacent matrix y€4 are bipartite graphs. Like in Lemma 4,
there exist the functions Sgg; and Dgg satisfying Theorem 2. :

ReMARrk. The bipartite graph constructed in Lemma 6 is also a regular graph:
-all the vertices have the degree k. Hence the regular graph isomorphism (which is
isomorphism complete [3], [10]) is p-isomorphic to graph isomorphism.

Lemma 7. Semiautomata isomorphism is p-isomorphic to graph isomorphism.
Proof. Let A=(1, S, [) be a semiautomaton, I={i, iy, ..., i}, S={sy, ..., 5,}

“and  f(s, i)=/j€S 1=k=m, 1=j=n. We consider an enconding scheme in
which A4 is represented by the word '

A= i[ll---i[n]*s[I]'--s[m]/fnle-“fml/fmﬁz-“fm2/---/flnf2n"‘~fmm

where

Sy =sl[l] if _f(sksij)=st-

Now, if 4, and 4, are two semiautomata with the same input sets and disjoint
sets of states, the semiautomaton encoded by A4; & A, is the semiautomaton with
the same inputs, the set of states is the union of states of 4, and A, and the transi-
tion function is defined in natural way.
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Set SI={A,# A4,|4, is isomorphic to A,}cI'*. We define Sg: I'*XA4-.
-(TU{O,0,1})* and Dg: FU{ON*—~4UT'U{O, 0, 1})* where 4ES{0, 1},
in the following way: R ’ . :

Let x=A,#A4,6SI and y€d,y=y,y,...y;. Consider the semiautomata

1=, 2, g) and A;=(l,, Z, g,) where I, and I, are the input sets of 4, and 4,
respectively, X={oy, ..., 0,6} such that XZN§;=P, i=1,2 and g; (j=1,2)
are defined by 1=k=I—1, :

( i.) _.{ak-i-l =1
.gj e = 9 Ve =0,
. 0y = 1’
gi(ﬁa y) =0,

forall i;el; (j=1,2). Then we define
A& A A& A, if x= A4 A4,,
Smlx, y) = {xD y _ otherwise -

-and .
yif u=A,&4,4#A,& A4, and A,, A, have
the same states and transition functions,

z if u=xdz, '

u in other cases,

Dg(u) =

where y€ {0, 1}* is determined in the following way: .
If Ay=(1,, 2, 1), As=(Ls, 2, f3), Z={0y, 62, ..., 0,} then y=y,, ..., y,_; where
V=1 if filorsi) = fs(Ous is) = Opras Vis€hy, i€y, 1=n=n—2;

V-1 =1 if fo(Op-1500) = fs(On-1,03) = 01, Vis€ly, is€ls;
¥x=0 in other cases 0 =k=n—1.

It is not hard to verify that S,; and Dg satisfy the conditions of Theorem 2.

Conclusions

We have given a caracterisation of p-isomorphic problems to graph isomorph-

ism showing that graph isomorphism satisfy the conditions of Berman—Hartmanis

. Theorem. Next we have proved that some of the problems which are polynomial

time equivalent to graph isomorphism are p-isomorphic. Are all the isomorphism

complete problems p-isomorphic? Perhaps the answer of this question is useful in
determining the complexity of graph isomorphism problem.
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Remarks on finite commutative automata

By Z. Esik and B. IMREH

A. C. Fleck has proved in [1] that a strongly connected commutative quasi-
automaton — called. perfect quasi-automaton in [2] — is directly irreducible if
and only if its characteristic semigroup, which is actually an. Abelian group, is -
directly irreducible. I. Pedk generalized this result for commutative cyclic automata
(cf. [4]). In this paper we point out that this connection between automata and
their characteristic semigroups is based on the fact that the congruence lattice of
a commutative cyclic automaton is isomorphic to the congruence lattice of its
characteristic semigroup. Furthermore, we give a characterization of strongly con-
nected commutative automata through their corresponding algebraic structures.
Finally, we employ these results to obtain isomorphically complete systems for
the class of all strongly connected commutative automata with respect to the direct
product and quasi-direct product.

By an automaton A=(4, X, 6) we always mean a finite automaton. Isomorph-
isms of automata are A-isomorphisms. For arbitrary automaton A we denote by
- C(A) and C(S(A)) the congruence lattices of A and its characteristic semigroup,*
respectively. Otherwise we use the terminology and notations in accordance with [2].

Theorem 1. The following three conditions are satisfied for arbitrary commuta-
tive cyclic automaton' A=(4, X, §):

() S(A) = E(A),
(i) 4] =|EA)),
(i) C(A) = C(S(A)).

Proof. The validity of (i) and (ii) was already proved by 1. Peak in [4]. The
proof of this fact is based on the observation that every commutative cyclic auto-
maton A is a free commutative automaton generated by one of its states. In other
words, A is a free commutative unoid in the equational class generated by A and
each generator of A is a free generator of A. This means that if a,€ 4 generates
the automaton A then every correspondence a,—~a(€A4) has a unique A4-homo-
morphic extension of A into itself. By Corollary to Theorem 24.2 in [3] this implies
that A’=A where A’=(S(A), X, ') and &’ is defined by &'(C,(p), x)=C,(px).

* By the characteristic semigroup S(A) of an automaton A we always mean a monoid with
identity C, (1), where A denotes the empty word.
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Indeed, if g, denotes an arbitrary generator of A then a natural isomorphism can
be given by the correspondence C,(p)—-6(ay, p) (Co(p)€ S(A)). Therefore C(A)=:
>~C(A’). On the other hand C(A")==C(A”) where the automaton A” is the semi-
group-automaton corresponding to A’ with transition 6”7(C,(p), Ca(q))zce(pq).
It is evident that each congruence relation of the semigroup S(A) is a congruence
relation of the semigroup-automaton A” as well. The converse follows by the
commutativity of S(A). Thus C(A”)=C(S(A)). Putting together these isomorph-
isms we get C(A)==C(S(A)). This ends the proof of Theorem 1.

It is interesting to note that I. Pedk gave an example in [4] for a commutative
automaton which is not cyclic but satisfies conditions (1) and (ii) of Theorem 1.
It is not difficult to see that this example does not satisfy (iii). We now give another
automaton which contents each of the conditions (i}—(iii) of Theorem 1 and which
is not cyclic. This automaton is the following A=({1,2, 3, 4}, {x, ¥}, §), where
¢ is defined by the table below:

X 1 2 3 2
y 2 3 3 3

Thus the converse of Theorem 1 is not true in general. However, in spite of
the previous example, in case of strongly connected commutative automata, we
have succeeded in proving a certain converse of Theorem 1.

Theorem 2. An automaton A=(4, X, d) is strongly connected and commuta-
tive if and only if each of the following conditions is satisfied by A:

‘ (i) S(A) is an Abelian group,
(i) S(A) = E(A),

(i) |4] = |E(A)],

(v) C(A) = C(S(A)).

Proof. Necessity follows by Theorem 1. Conversely, the commutativity of A
_is immediate by (i). In order to prove that A is strongly connected first observe
that since (ii) is also satisfied by A there is a natural isomorphism v of S(A) onto
E(A). This isomorphism is defined in the following manner: v(C,(p)) is the mapping
induced by the word p. on the set of states of A. In other words, v(C,(p)) is simply
the polynomial induced by p in the automaton A being considered as a unoid.

Assume to the contrary A is not strongly connected. As S(A) is a group we
can decompose A into the direct sum of its strongly connected subautomata A,=
=(4,, X,6) (¢=1,...,n,n=>1). According to the previously established natural
isomorphism v, the inclusion @(A4)E 4, (t=1, ..., n) is satisfied for any € E(A).

Consequently, |4,|>1 (t=1,...,n) and J] E(A)=E(A) under the mapping
t=1 n
@ >(Plays --+> P|a,)- Thus, by Theorem 1 and our assumption (iii), [] |4,|=
n n =1
= I IE@A)I=|E@)=l4]= 3 |4.
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It is not difficult to see by |4,|=1 (t; 1,...,n) that the above equality is
possible only if n=2 and [4,|=]4,]=2. In this case C(A) contams the chain
induced by the compatlble partltlons

{{an} {a1e}, {aa}, {022}},
C1 = {Als {ax) {azz}},
C = {Al’ Az},
G = {A},

where A= {a,l, ap} (t=1,2). On the other hand S(A) can contain only shorter
chains. ThlS is a simple consequence of the well-known fact that the congruence
lattice of an Abelian group is isomorphic to the lattice of its subgroups.

CoroLLARY. The following conditions are equivalent for every strongly con-
nected commutative automaton A=(4, X, 6):
(i) A is subdirectly irreducible,
(i) A is directly irreducible,
(iii) S(A) is a cyclic group of pnme—power order, ;
(iv). The cardinality of 4 is a prime-power and there is an input- SIgn xeX
inducing a cycllc permutation of A. :

Proof. The equivalence of (i), (ii) and (iii) is a consequence of Theorem 2 and
the Fundamental Theorem of Finite Abelian Groups. The implication (iv)=>(iii)
is trivial. It remains to prove that (iii)=(iv).

In the proof of Theorem 1 we have shown that A= A’ therefore, |4| is a prime-
power, say |A4|=r". Assume that none of the signs x¢ X induces a cyclic permuta-
tion of A4. Then, for each xc X, the order of C,(x) in S(A) is less than r". But this
yields a contradiction since for arbitrary word p=x;...x, the order of C,(p) can
not exceed the maximum of the orders of the signs x,, ..., X, which completes
the proof of the Corollary.

It is evident that the automata given in (iv) form' a minimal isomorphically
complete system of strongly connected commutative automata with respect to the
direct product for any fixed set of input signs X. We proceed by stating a similar
result with respect to the quasi-direct product.

Let n(=1) be an arbitrary natural number and let M,=({0, ..., n—1},
{Xg, --vs X4-1}» 6,) denote the automaton with transition ¢&,(J, x,)=j+s (mod n)
(je{o, ..., n—1}, x,€{x,, ---, X,—1}). Let & consist of all automata M, where n=>1
and n is a prime-power. '

Theorem 3. A system X of automata is isomorphically complete for the class
of all strongly connected commutative automata with respect to the quasi-direct
product if and only if each M,€R can be embedded isomorphically into a quasi-
direct product of an automaton AcX with a single factor.

Proof. Sufficiency is obv1ous. In order to prove necessity let M, €K be arbitrary.
M, can be embedded isomorphically into a quasi-direct product of automata from
2, and hence it can be embedded isomorphically into a direct product whose each
component is a quasi-direct product of an automaton from X with a single factor.
But, by Corollary to Theorem 2, M, is subdirectly irreducible. Therefore M, can
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be embedded isomorphically into a qua51 direct product of an automaton from
X with a single factor.

CoRrOLLARY. There exists no system of automata which is isomorphically com-
plete for the class of all strongly connected commutative automata with respect to
the quasi-direct product and minimal.

Proof. 1t is easy to show that the class S\ {M,|t=s} constitutes a complete
system for any fixed prime r and integer s.
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Functor state machines

By G. HORVATH

In the present paper we introduce a notion of a machine in an arbitrary category.
A machine in a category is a computational device computing a morphism from
a free algebra to another one. The computation is defined by means of homomorphic
extension. We are dealing with two types of machines each of them having a functor
as its state. These two families of machines are related to bottom-up and top-down
tree transformations, respectively. The state functor of a machine working in top-
down way is required to have a right adjoint. We show that every top-down com-
putation can be carried out in bottom-up way.

A special type of machines, namely the generalized sequentlal machines in
categories having binary products are investigated. A generalized sequential machine
is a machine whose state funtor is a product functor and whose final state trans-
formation is the corresponding projection. Morphisms can be computed by general-
ized sequential machines in a category are characterized. We show that the process
transformations of Arbib and Manes, and the generalized sequential machines in
a category have the same processing capacity. Results of the present paper have "
been announced in [6].

1. Preliminaries

We assume the reader to be familiar with the elements of category theory such
as the notion of category, functor and natural transformation. Now we will list
some basw notions, deﬁmtlons and results to be used in the sequel.

DEHNITIONI 1. Let 9[’ be any category and let X: A~ be an-endofunctor.
An X-algebra is a pair (4, d) where A is an object and d: X4A-—~A is a morphism
in X, Given two X-algebras (A4, d), (4’,d’), a morphism A: A—~A" is an X-homo-
morphism if the diagram :

a2 xa

| (.1
nt o TXI: | )
1 -— x4

is commutative.
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DEerINITION 1.2 (Arbib—Manes [3]). Let 4 be an object in 4. A free X-algebra
over A is an X-algebra (X ¥ A4, gy 4) coupled with a morphism nd: A-X¥% A with
the universal property that for every other X-algebra (B, d) and morphism f: A—~B
there exists a unique X-homomorphism f¥*: (X¥ A4, uy4)—~(B,d) such that
f¥.nA=f Thatis, given d and f there is a unique f¥ such that (1.2) commutes.

d
B. «—— YB

/ T roo e (1.2

A nA x*4 Lo A Fod yyr gy

The morphism f¥ in (1.2) iscalled the X-homomorphic extension of f from the
free X-algebra (X¥ A4, uyA4) into the X-algebra (B, d).

Following Adamek and Trnkova (see [1]) we say that a functor X: H#—X"
is a varietor if there exists a free X-.algebra over each object in 2. Arbib and Manes
use the terms input process or recursion process [3, 4] dependmg on context. Let
X: A=A be a varietor. If we fix a choice of nA4: A~X* 4, pgd: XX¥ A~X*A4
in (1.2) for each object 4 in A, and for every morphism f: 4-~B the morphism
X*f: X*A—~X*B is defined to be the X-homomorphic extension of nB-f, i.e.

) 1B Y*B <07 oB XX#
J,T | TX#f .’[XX#f (1.3)
A II()A

A —>X¥ 4 e——XX¥A

then we get a functor X*: J—~#. Moreover, we obtain a pair of.natural trans-
formations : :
N Le—=X¥%, up: XX¥F 2 X¥,

the insertion of generators and the free operation of X, respectively. We omit the
subscript in the identity functor I,: o/~ whenever 2 is understood. Note that
each varietor X yields a family of morphisms u4: X*¥*X#¥A4~X*A4 defined by
the diagram

U, A -
X¥ge————XX*A4
i ,
x¥*4
1A Xud (1.9
# # )
x24T ey g S X A yye xe g
where Lyg o0 X¥FA-X *4 is the 1dent1ty morphism. One can show by an easy

computation that uA is natural in A, i.e. we have a natural transformation
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p: X*X*_2.X* the extended free operation of X, rendering the diagram (1.5)
commutative. . '

Y* <t yx#
s .
y M TXu 1.5)
x* ”X DX x* yrdod X" XX*X*

1

The basic algebraic structure in string processing is X;', the free monoid -over
a set X, of generators. Monads, rather than monoids are fundamental in our de-
velopment. Now we recall the definition of a monad.

DerInITION 1.3. A monad (T, n, 1) in a category A consists of a functor T
A—~A and two natural transformations

n: I=-T, p: IT =T

" which make the following diagrams commute.

T ~ (T '
T._'E‘_...TTQJ_T TTT"'L‘* IT

: Tyl M 1.
T TT —>T.

The diagrams in (1.6) are called unitary and associativity axioms, respectively.
We state, without proof, the following well-known fact: for every varietor X the
triple (X¥, 1, 1) is a monad in %, where 5 is the insertion of the generators.and
u is the extended free operation of X.

DEerNITION 1.4. Let (7, n, w) be a monad in #. A T-monad algebra is a pair
(A, d) consisting of an object A of 4" and a ~morphism d: TA-A such that

v _ A e—d——-TA ’
1 .
./Td TTd | 1.7
nA o ! .
A—> 1A ««—— TTA )

It is easy to prove that the pair (X ¥ 4, u4) is an X ¥-monad algebra for every varietor
X and object A.

ConNveNTION 1.5. In the remaining of this paper if a varietor is referred to by
the letter X, then the insertion of the generators, the free operation and the ex-
tended free operation of X are denoted by #, i, and u, respectively

n: I==X* pyr XX¥ 2o X* p0 X¥X¥ 2 X*,

3 Acta Cybernetica
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If we use the letter Y to denote another varietor then the items above are denoted
by the same letters but with bar, ie. #, i, and .

ProposiTION 1.6. Let X: A~ be a varietor. Given functors F, G: X' —~X"

and natural transformations é: XG-~G, ¢: F=-G there is a unique natural trans-
formation ¢¥: X¥ F=.G such that the following diagram is commutative. '

é

: G =——— XG
| / T(,,# qu,* )
nF HoF S

X#F «——XX*F

Proof is immediate.

DEeFINITION 1.7. An adjunction (F, U, v, ¢): A~ consists of a pair of functors
F: A-%, U: $~A and natural transformations v: I,=-UF, ¢: FU=-1, (called
unit and counit, respectively) subject to the so called “triangular identities’ :

UlgﬂWU . rur<ef

xgm | ‘Fl/ a9

F is said to be a left adjoint to U and U a right adjoint to F. We say that a functor
F has right adjoint, if there is a functor U right adjoint to F.

2. Machines

In this section we introduce a notion of a machine in an arbitrary category.
This is based on the notion of the free algebra. A machine is a computational device
which computes a morphism of a free algebra into another one. The basic idea of
our development — due to Alagi¢ [2] — is to take a functor to be the state of a
machine. Alagi¢ offered in his paper [2] the general concept of a direct state trans-
formation which took the form XQ-=-QY¥, where X and Y are varietors and
QO now is a functor. Arbib and Manes remarked in [4] that the Alagi¢ approach
has one flaw: because Q is a functor rather than an object, thus running the direct
state transformation yields a natural transformation X¥Q-=-QY* instead of a
morphism X#¥A4--Y *B between free algebras. But, in spite of this note there is
a general way in which we can extract from X*Q - QY* a “state-free” input-
output response of the form X¥*A-~Y*#*B. Thus, the benifits of the Alagi¢ ap-
proach can be obtained in any category, not only those having binary products.
Appart from the fact that we actually do not use the notion of the direct state trans-
formation of Alagié in the definition of a machine and its response, there is a close
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relatlonshlp between them. We will show this relatlonshlp Thére are several ad-
ventages of taking a functor to be the state of a machine. First of all this provides
a uniform treatment of top-down and bottom-up computations which are well-
known in the theory of tree transformations (see Engelfriet [5]).

DErINITION 2.1. Let A, B be objects of a category 4, and let X, Y be varietors
in A A machine M: 4, X)~(B,Y) inA is M=(Q, 1,0, p), where

o: A —»9{ is'a functor the state functor,

i: A~QY *Bis a morphism, the initial state-output morphlsm

o:- XQ-==QY* is a natural transformation, the transition,

B: Q—'»I is a natural transformation, the final state transformation.

DEFINITION 22 Let M= Q,i,0,8): (4, X)~(B,Y) be a machine in . The
response of M i 1s the morphism f3,: X*¥4—~Y*B defined by the composite

S X* 42 gy# pEYEB yup @)

where i* is the run map of M, i.e. the X-homomorphic extension

| oy*p2HB QiB or*y Y BXQY B
X Ti# » tXi# ‘ 2.2)
A—"——-+X Ae— O Xx*a

of the initial state- -output i.
By Proposmon 1.6 the transition ¢: XQ--QY* has a unique extension
o¥: X*¥*Q QY * defined by .

. 01+ oyryr e yoye _
ny Ta* 1,\/0# : 2.3)
0 nQ x* QO # o

> Q= XX Q

o¥ is called the extended transition of the machine M. Natural transformations like
o* in (2 3) were studled by Alagi¢ in [2] under the name “direct state transfor-
mation”. -

We show that the response of a machine M can be expressed in terms of the
extended transition of M.

STATEMENT 2.3. Let M=(Q, i, o', B): A4, X )—»(B Y) be a machine in . Then
the response of M is

fu= BY‘*B-’QﬁB-a#Y*B-'X*i. e (2.4)

3‘
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Proof. Consider the following diagram.

o¥*B

or*p <28 oyty*p XQY*B
)\ ) :
) |QiB d) or*ig  © XQjiB
—Y# . # ¥
or*y* 3L oyryryep TY X B vy yep
b) oYE £ ety
Y*B
X" QY*Be HoQ XX*QY*B
|
TX*;’ &) XX¥i
> X ¥4 - to X*4

The parts a), ) and g) are naturality squares for #, ¢, and y,, respectively. Commuta-
tivity of b) and f) directly follow from the definition of ¢* (2.3). The monad iden-
tities (1.6) for the monad (Y ¥, 7, i) imply ¢) and d), thus, (2.5) is completely com-
mutative. Since the homomorphic extension is unique, putting thogether (2.2) and
(2.5) we have = QyB ¥ Y*B.X*i. Hence by (2.1) fy=BY*B-i*=BY*B
-QiB-c*Y*B-X*i. O

Now we introduce a deﬁmtlon of a machine working in such a way that ele-

mentary input produces an elementary output.

DEFINITION 2.4. Let X and Y be varietors in 2" and let A, B be objects of .
A simple machine in A is a system' M=(Q, iy, 04, f): (4, X)—~(B, Y), where

Q: A —~A is a functor, the state functor,

ip: A—~QB is a A -morphism, the initial state-output,

Go: XQ-=-QY.is a natural transformation, the transition,

B: Q—=-1 is a natural transformation, the final state transformation.

The response of a simple machine M=(Q, iy, 6,, f) is the composite morphism

i¥ .
fit X¥A . or+pEYEE yep

2.6)
where if is the run map of M defined by the homomorphic extension.
fi Y*B
OB~ o > Qv*B <—- PULL QYY* = _Zxor*B
ioT Ti;* 1 xit (2.7
A
A s n X¥A - H ‘?A xXx¥4
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DEFINITION 2.5. Let M=(Q, i, 0, 8): (4, X)~(B,Y) be a machine in . We
say that the initial state-output morphism i is simple if it can be factored thorough
QfB: QB—~QY ¥ B, i.e. there is a morphism i;: A—~QB such that

At ov*p |
N, Jois @8
AW

Similarly, the transition o is called simple if there exists a natural transformation
6, XQ =+ QY such that :

X0 2 5 or*
)4

is commutative, where 7, is the embedding of Y into Y*, ie. 7,;: Y L Yy ¥ Zo, y ¥ .

LemMA 2.6. Let -M=(Q, i, 0, f): (4, X)—~(B, Y) be a machine in /, and let
i and o be simple. Then the simple machine M’=(Q, iy, 64, B): (4, X)—~(B, ).
where i, and g, are as in (2.8) and (2.9), respectively, has the same response as M,

Proof. Since the final state transformation of M and that of M’ is B, it is enough
to prove that the corresponding run maps i* and i coincide.
Consider the following diagram.

¢

QYY*B

Ofio B o, Y*B
O Y*B

nB iiB # »
o8-8 oY*B <28 ovrytn <8 xoyts  (210)

ioT / T i* TX;* .
Ho A L

A
A—"" S x4 - XX*A4

By the defining diagram (1.5) of an extended free operation, the equalities
Aiil,Y¥=j,-Yi and j-7fY*=1y+ hold, thus we have

Bl ¥* =i (B Y)Y* = f-ioY* - YAY* = i, YVA-YiY =
=jo Y(@-fiY*) = g-Y1ly# = fg;.

Hence Qp-0m, Y*=Qi, Now, from the factorizations (2.8), (2.9) and the de-
finition (2.2) of the run map i ¥, we obtain that the diagram (2.10) is completely
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commutative, ThlS means that /¥ satisfies the commutatmty of dlagram (27)
which defines i& uniquely. Thus z*:t&*. O : _

The diagram (2.3) defines for every natural transformation o XQ—‘oQY#',
i.e. without ¢ being a transition of any machine, the extension ¢¥%: X #Q =+ QY ¥,
Alagi¢ studied this extension in his paper [2] and proved the followmg theorem
replaced the monad (Y *, 7, i) by an arbitrary one.

- THEOREM 2.7 (Alagi¢ [2], Theorem 2.30, p. 287). Let X, Y: X'~ be varietors,
and Q:A —2 be a functor. Then for every natural transformation ¢: XQ—=--QY #
the extension o*: X*Q -~ QY* defined by (2.3) satisfies the commutativity of
the following diagram:

OY* ear- Qn OY*y* &2 YX QY#
0 Ta#_ o TX#(,# @.11)
Q—lQ»-X O~ i X¥x*Q

THEOREM 2.8. Let f;: X* A—~Y*B, f;: Y*B-~Z*C be responses of machines
M,: (4, X)—~(B,Y) and M,: (B, Y)—(C, Z), respectively. Then the composite
‘morphism f,+f,: X*A-~Z*C is again the response of a machine M: (4, X)—~(C, Z).

Proof. Assume that machines M, and M, are specified by M,=(0,, 7, 6, ﬂl);
M,=(Q,, i5, 65, B;). Consider the machine M=(Q, i, o, ﬂ): (4, X)—~(C, Z), where

0 =0,0., .0'=Q1¢72 01Q2,

0,if 810y
2.0,0,2*C, f=0.0, 280,201

Let us denote by 77 and % the insertion of generators and the extended free operation
of Z respectlvcly By the definition of the responses of M, and M,, f,-fi=B.Z*C-
cif B Y*B.if. Usmg the naturality of B, we have

forh = ﬂZZ#C ﬂ1Q2Z#C Q1lz ”1 = (B,- ﬂ1Q2)Z#C Q1’2 ’1 =ﬁZ#C Q112

The response of M is fo,=BZ*C-i*, where i* is the run map ofM Thus, in order
to prove that the machine M computes the compos1te JoofiL we need only to show

that (2.13) holds )
Q112 . ? i* } . ] (2.13)

Takmg into account that the run map i ¥ is the unique morphism satisfying (2 14), .
it is enough to prove that the left side of (2.13) also satlsﬁes (2 14) :

, (2.12)
i=AL0Q,Y*B

YA

-eg‘gz”—c— 0:0.2%z%C <——XQ1Q2

0:0.2%C

A ’ oA - : ’ !

A o XA - - xx¥4
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Consider the diagram (2.15) below.
. oZ *Cc

QIQZEC J Q10'2 Z# (Vl) 01 Q Z#C I .
010,72 Ce—010:Z* Z* C—Q,Y* 0,Z% C X0, 0, Z* C

® IQu‘f' SR ]QIY*@" (i TXQJ? (2.15)
i X _B Y#
i QlY#Bz Ql/l Qly#Y#BuXQly#B
/(l.) T’l# @ TX"#
A A !
A7 g fo xx¥4

The subdiagrams (i) and (ii) commute by the definition of the run map-if. (iii)
is a naturality square for the natural transformation a,. (v) and (vi) aré commutative
by (2.12). Thus the commutativity of (iv) is remained to prove. By Proposition 2.3
the run map i can be expressed by the extended transition af of M2 as follows

i* = 0,AC-0¥Z*C-Y*i,. T @216)

The diagrams (i) and (iv) in (2.17) commute, being naturality squares for 7 and of,
‘respectlvely (ii) is commutative by Theorem 2.7, finally, the commutatmty of
(iii) in (2.17) foliows from the associativity axiom of the monad (Z*,%, n). Hence,

. 17) is completely commutative. :

. #* ¥ : .
QzZ#C Q&Ii— QzZ#Z#'Cv 012 C Y#Q::Z#C
- " (i) T .= (@iv) T -
i zZ¥ic Y¥Q.uC -
QzuCJ ezre (YA b b v Q24
(VA AT P iy WA AT AT Diklliadiin y*p,z*z*%C @17
a;*z*‘cf (i) cogte T TY*a;‘*Z*_c_ ‘
v*0,2*C o2 - Y'Y 0.2%C
y*fzf RO . T'Y.*Y*fz
Y*B - i ' Y*Y*B

Puttmg together (2.16) and (2.17) we have
01 - 0478 = 04(iF - 7B) = 0,(Q4TEC- 0} Z°C - Y* iy iB) =
—Ql(QzuC oFZ*C. Y#Qz/,LC Y*a ZEC.Y*Y*i,) =
= 010;1C- Q163 Z*C-Q,Y* (Q,iC - of Z*C-Y *iy) =
=010,iC-0,0# Z*C -0, Y *i}f
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Hence the diagram (iii) in (2.15) is commutative which completes the proof
of the theorem. [J

DEFINITION 2.9. Let M=(Q, i, 0, B): (4, X)—=(B,Y) and M,=(Qy, iy, 04, f0):
(4, X)—~(B, Y) be machines in . A simulation ¢: M,—~M is a natural transforma-
tion ¢: Q,—=+ Q rendering the diagrams (2.18) commutative,
Y¥p #

Y
o, r* B————> QY*B QlY*—g—-> QY*

VANV

2) b) )

THEOREM 2.10. Let M: (4, X)—~(B,Y) and M,: (4, X)—~(B, Y) be machines
in of. Whenever a simulation ¢: M,—~M exists then fy=fy,.

&

Proof. Assume that the machines M and M, are given by M=(Q, i, o, B),
M,=(Q,, 11, 61, B). Then the response of M is f,,=BY* B.i* and the response
of M is fy,=pY*B-if. Consider the diagram (2.19).

_—
QY*B*—QL—QY#Y#BQMXQY

. IQY*B (v) |oy*y*B (iii) [ng*B

iB- o Y*B
0,v*B< 288 y¥yrp d <+ ——Xx0,Y*B @219
i _
/ () fi:* (i) TX;',*
p :
A L e Lo  XX*4

The diagrams (i) and (ii) in (2.19) are commutative just they define the run map
i¥ of M,. Since ¢: Q,—=-Q is a simulation (iii) and (v) commute by (2.18b) and
(2.18a), respectively. (iv) is a naturality square for ¢ thus (2.19) is completely com-
mutative. Hence, we have that the morpisms i¥ and gY*B.if both are defined
by homomorphic extensions on the same specification. The uniquenes of the homo-
morphic extension implies ¥ =Y * B.if. Finally, we have

fu=BY*B-i* =pY*B-oY*B-if =(B-Q)Y*B-if =pY*B-if =fy,. O

3. Inverse-state machines

In this section we shall develop a categorial model of Thatcher’s generalized®
sequential machine maps (see [8]), and Engelfriet’s top-down tree transformations
(see [5]). The term “inverse-state machine” is used here because these machines
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are very closely related to the inverse state transformations of Alagi¢ [2]. We shall
show that every top-down, i.e. inverse-state computation can be carried out by
a machine with sutable state functor.

First, we need a theorem whose analogous one was proved in [2] and what
we state as a consequence of our theorem.

THEOREM 3.1. Let (T, 7", 1) be a monad and let (B, d) be a T-monad algebra
in 2. Furthermore, let X: # —~X be varietor and Q: X~ be a functor with
right adjoint. Then for every morphism j: Q4A—B and natural transformation
1: QX—~TQ there exists a unique morphism jy: QX * A~ B satisfying (3.1).

_ d Tjs .
o B+ TBe—TQX*4
J ) ' 3.1
/A( f]# s er*A 3-1)
0A4="s o OX* da— " OXX* 4

Moreover, there is a bijective correspondence between_triples (J, 7, j4) satisfying
(3.1) and triples (i: A~0B, 6: XQ~QT,i*: X¥ 4~QB) satisfying (3.2), where
(0, 0,v, ¢) is an adjunction due to Q. :

0d
0B 2 orpE X0B

A X et xx*4

Mutually inverse passages are given by (3.3) and (3.4 below.
i: A~QB : 0420082
L]

o:‘XQ -QTr S 1 QXﬂ:QXQQ—QﬁZ»QQTQﬂ-TQ (3.3)
i*: X¥4 0B ju: QX*A425.00B B

j: QA ~ B i: 422004 %. 0B
1 QX=-TQ 4 o: X022 QQXQQQ 0700 2. 0T - (3.4)
vX Ql#

je: OX*A4~B it X*4q »QQX# 0B

Proof. First we show that @ and ¥ are inverses of each other. It is a well know
property of the adjunction (Q, 0, v, &) that ¥ .®()=i, &-¥(j)=j. By the same
argument we get Y. @(¥)=i*, &-¥(js)=j.. We prove that ¥.d(o)=0 and
b-Y(r)=1. ' . .

¥.P(0) = Y’(sTQ-QaQ-QXv) =‘ QTs-Q(sTQ-QaQ-QXv)Q-vXQ =

= QTe-0eTQQ- 00000 - 0QXvQ - vXQ.
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Consider the diagram (3.5) whose triangular parts are commutative according
to the triangular identities of the adjunction (Q, @, v, &). The other two parts of
(3.5) commute since they are naturality squares for v and o, respectively. Thus
. we have ¥.®(0)=0. ' : ’

_ The following diagram also commutes by the adjunction identity Q- Ov=1,,
and the naturality of v, v and e. '

ox = TQ
10X

ovx "'TEQX Q0r . QQTI TsTQ .
QX ————> 000X —=—» 0010 ——2»00T0  (3:6) -

ox| - Jesoxs lQQTQ/
~ X0 o 0t00 OT:
%20 2722, hoovpe 28RL, Y - 0ar0

Hence, o
D-P(1) = Q(QT&fQTQ'VXQ) =eTQ-0(QTe-Q:Q-vX0)Q-0QXv =
= eTQ-Q0TsQ- 00100 QvX0Q-QXv =t 1pX = 1+ 1gg = .

Let us prove that the passages @ and ¥ preserve satisfyability of the appro-
priate diagrams., Assume that a triple (i, o, i ¥) satisfies (3.2), Then,

®(i*)-QnA = eB-Qi* -Qnd =£B-Q(i* -nd) = £B- Qi = 9 (i).
Thus the triangular part of (3.1) holds. . " A
O(i*) - Qo = £B+Qi* - QuyA = 6B-Q(i* - uyA) = ¢B-Q(0d - 0B - Xi*) =
- = ¢B-QQ0d-QoB-0Xi*.
One of the adjunction identities says 1;=0c-vQ and hence loxgs=0X1;B=

=QX(Qe-vQ)B=0XQcB-QXvQB, which yields &(i*)-Qu,A=eB-Q0d-QoB-
-(QXQeB-QXvQB)-QXi*. Application of commutations for the natural trans-
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formations ¢, ¢T- Qo, ®(c) and ®(6)=e7Q-QaQ-QXv produces
&(i*)-QuoA =d-eTB-QoB-0XQeB-QXvQB- QXt* =
=d-TeB-eTQQB-QsQ0B-QXvQB-0Xi*=d. TeB-(eTQ-Q6Q-QXv)QB-QXi* =
' =d-TeB-&(0)0B-QXi* = d-TeB-TQi* - ®(a) X*A4 =
=d-T(eB-Qi*) - P(0)X* A = d-To(i*)- P(o) X * 4.

" Thus, the triple (J, 7, j4)=(@(i), (o), ®(i*)) satisfies (3.1).
Conversely, let us suppose that the left side (J, 1, J#) of (3.4) makes (3.1)
commutatrve Then, for the right side of (3.4), we have N

Y(s)- ’1A Qjs- VX#A 'IA OQjs-00nA-vA =
= Qs -OnA)-vA = Qj-vA = ¥(j). ’

This means that the triangular part of (3.2) is satisfied. Let us see the other
part of (3.2). By the definition (3.4) of ¥ and the naturahty of v we have

Y(ju) oA =Qju - vX*A- oA = Qjy - Q0poA- vXX*A—
-—Q(]# Qu,A) - VXX A = 0 Tjy -1 X¥A) - vXX*A4 =
=Qd-QTj, -QtX*¥4-vXXx* A
From the adjunction identity 1,=¢Q-Qv follows 1qux’h QTl X*¥A=
=0T (EQ-ONX*¥A=0TeQX* 4. QTQvX#A thus we get
y/(]#)-qu—Qd'QT]#'QTtIQX#A QTQvX*A-QrX*"A-vXX*A
Using the naturality of QT and’ Qr -vX we conclude

F()- -1oA =Qd+QTeB - QTQD j - OTOVX * 4" QTX#A VXX¥A4 =
= 0d-QTeB-QTQ(Qjy -vX* A)-(Qr-vX)X* 4 =
= Qd-QTsB-QTQY (j4)-(Qt-vX)X* 4 = Qd-QTeB-(Qr-vX)0B- X¥(jy) =
= 0d-(QTz-0rQ-vXQ)B-X¥(j4) = Qd - ¥ (1) B- X¥ (j)-

Thus the triple (i, o, i¥)=(¥(j); ¥ (x), ¥ (js)) satisfies (3.2). The existential state-
ment of the Theorem can be obtained as follows. For given morphism j: 04—~ B
and natural transformation z: QX =+TQ consider i:=¢( D, a:=d>(r) and take
the unique i * satisfying (3.2). This i * exists because (X* A4, u,A) is a free X-algebra.
Then, as we have shown, (¥ (i), ¥(0), Y(i*)) satisfies (3 1). But ¥(@)=j and
" ¥(6)=t, hence (j, 1, Y *)) satisfies (3.1). The umqueness of j, in (3.1) follows

from the facts that ¥'is bijective and z* is unique in (3. 2) ThlS completes the proof
of Theorem 3.1. 1 - . SIS

The following statement was proved in another way in Alagi¢ [2] (see Theorem
3.10 pp. 297) replaced (Y *,7, 1) by an arbitrary monad. _
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STATEMENT 3.2. Let X, Y be varietors in 4" and let Q: "= be a functor having
right adjoint. Then for every natural transformation t: QX-=-Y¥Q there is a
unique 14: QX* .Y #¥Q defined by

- #
70 Y*QJ—Q—Y*Y*QLEY*QX%
. for 0D
Q Q” QX#w QPO QXX#

"Proof. Let A be an object of . As (Y*, 7, i) is a monad it is evident that
(Y* 04, iQA4) is an Y*-monad algebra. Take j:=7QA4: Q4A—~Y* (04 and apply
Theorem 3.1 for this j and 't above. We have that there exists a unique j,:
OX*A-Y*QA denoted by t4 4 which renders (3.8) commutative.

Y*QA.&Y*Y#QAQY_EL Y*ox*4

% fa o fara 09

0121, o x* 4= QXX* 4

Thus we need only to show that 74 A4 in (3.8) is natural in 4. The proof is
straightforward. O

DEfINITION 3.3. Let A4, B be Ob_jCCtS of o and let X, Y be varietors in 4. An

inverse-state machine
=(Q, % 1,)): (4, X)—»(B Y)
in A" consists of the following data:

Q: A —~A" a functor, the state functor, having right adjoint,

o: I-+~Q a natural transformation, the initial state transformation,
7: QX=Y*Q a natural transformation, the transition,

Jj: QA—Y* B a morphism, the final state-output morphism.

DerFinNITION 3.4. Let M=(Q, o, 17, j): (4, X)—(B, Y) be an inverse-state ma-
chine in . The morphism f,; computed by M or the response of M is defined by

fu: It y+p (3.9)

where j, is the (inverse-state) run map defined to be the unique morphism

- # .
‘ y*B_.”_B.;Y#Y*Bl_j_*Y*QX*A
J 4 # Oy A , fTX#A (.10
0A- 21, 0x* g ZHT OXX* 4 '

according to Thebrem 3.1
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By Statement 3.2 we define the extended transition of the inverse-state machine
- M by the diagram (3.11).

3Y Y*1
Y QLY Yt 0Tt yrox
70 @311
4}7' f:f Oty fT;Y# )
Q — QX * e oxXX

We shall show that the response of an inverse-state machine can be expressed
in terms of the extended transition.

LEMMA 3.5. Let M=(Q, «, 1, j): (4, X)—(B, Y) be an inverse-state machine
in &, The response of M is

fM=ﬁB-Y*j-r#A-‘aX 4, : (3.12)
- where 14 is the extended transition of M. '

Proof. Because of the fact that the run map j. of M is unique in (3.10) it is
sufficient to prove that substituting the morphism pEB-Y ¥ j.-t. A4 for ju, (3.10)
remaines commutative. Consider the diagram

. iB
YEB 12 _ y*y*p

(vi)TﬁB (:i) TY*ﬁB

Y#Y#B*_"—Y—_B Y#Y#Y#B (V)

%; 1Y*j l(i;') TY#Y#J'Y#T-A ‘

Y* B (m) Y* QA YFy* Q4 ——Ey*Ox* 4
QnA

QA ————Q0X* fam

Y*(AB-Y*j-14 A)

(3.13)

(i) and (ii) are commutative by the diagram (3.11) of the extended transition 7.
(iii) and (iv) are naturality squares for 7 and fi, respectively, hence they commute.
The commutativity of (vi) and (vii) follows directly from the monad identities of
(Y'*, 7, D). (V) just expresses the value of the functor ¥ * on a composite morphism.
Thus the whole diagram is commutative which ends the proof of the Lemma. O

THEOREM 3.6. Given inverse-state machine M-=(Q,.oz, 7, j): (4, X)~>(B,Y)
there is a machine M: (4, X)—(B, Y) computing the response of M.

Proof. Let Q be a right adjoint of Q, and denote the corresponding adjunctlon
by (@, 0, v, ¢). Define a machine M=(Q,i,0,p) by

i: 424004 2. Qr* B,
o: X0 2 0ox0 Z2. gy+ g 2= gy+, - G.14)
p: 02001 |
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We are-going to prove that f,=fy. By the notations above
Su=Jjs aX*A, fg=pY*B.i¥, o B.15)

where j, and i¥ are the run maps of M and .M, respectively. Thus the triple
(j, 7, j&) satisfies (3.10) and hence, by Theorem 3.1 the triple (i, o, Qjg -vX* A)
satisfies the. commutativity of the diagram which defines the run map i¥* of M.
The umqueness of the homomorphlc extension implies

=0js vX* A, (3.16)
Thus we have

=€ oaQ)Y*B-Qjs - vX*A=eY*B.aQY*B-Qj, -vX* A. 3.17) -
Consider the diagram below. . '

aQY*B  _ eY*B
—

oY*B QQr*B ——-—-ﬁ B

Qj# T TQQJ# 0x * 4 1 Je _
00x*4 QQQX#A — > 0X*4 (3.18)

X#AI 1‘ vX*A
A axra ¢ 1oX*4

X*¥4 ———> Ox*4

The triangular part of (3.18) is commutative by reason of the adjunction identity -
eQ-Qv=1,, and the other two parts of (3.18) commute being naturality squares
for « and e, respectively. Putting together (3.17) and (3.18) we have -

fm=js-l X*A aX*A=ju-aX*A=f,. O
Now we state the dual of Theorem 3.6.

TuaeorREM 3.7. Let M 0,i,0,B): (4, X )—»(B Y) be a machme in X such
that its state functor Q has a left adjoint. Then the response of M can be computed
by an inverse-state machine.

Proof. Let (Q, 0,v,¢) be an adjunction. Define an _inverse-state machine
M=(Q, a1, j): (4, X)~(B,Y) by

I+-gg 2
T QX Xy QXQQ Qa0 QQY#Q eY#Q Y#Q, (319)
j: 04 2. 0Dy * B TE T¥5 yup

In consequence of Theorem 3.6 it is sufficient to prove that applying the con-
struction (3.14) for the data in (3.19) we get back the specification of the machine
M, ie.

=0j-vd, oc=¢Y*Q-0rQ-vXQ, B =¢-a0. (3.20)
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The first two equalities of (3.19) have already been proized 1.n Theorem 3.1 in con-
text that @ and ¥ are inverses of each other. The remaining f=¢-af is obvious
from the adjunction identity

l1g=0evQ; ¢-a0 =¢-(BQ-v)Q =¢-pQ0-vQ = p-Qe-vQ =f-1g=p. O

THEOREM 3.8. Let M,: (4, X)—~(B,Y) and M,: (B, Y)—(C, Z) be inverse-
state machines in 2. Then the composite morphism fu,«fy,: X¥A~Z*C can
be again computed by an inverse state machine.

Proof. Assume that M, has a_state functor Q, and M, has a state functor Q,.
Denote a right adjoint of O, and Q, by @, and @,, respectively. By Theorem 3.6
the responses fy, and fy, can be computed by machines whose state functors are
0, and Q,, respectlvely Now apply Theorem 2.8 which says that the composite
morphism fyy, * f, is the response of-a machine with state functor @;0,. According
to Theorem-3.7 if the composite functor Q, 0, has left adjomt then the morphism
Ju, *fu, can be computed by an inverse-state machine. But, it is a well known result
in category theory that the composite functors yield an adjunction, i.e. Q,0Q, is
left adjoint to 0,0, (see [7], Theorem 8.1, pp. 101). O

4. Generalized sequential machines in categories

The concept of generalized sequential machines in categories having binary
products is developed in this section. A generalized sequential machine is a ma-
chine whose state functor is a product-functor and its final state transformation
is a projection.

We also investigate sequentlal machines, i.e. machines working sequentially,
moreover, elementary input produces an elementary output. Morphisms ‘com-
puted by generalized sequential as well as sequentlal machines in a category are
characterized.

Throughout this section we assume that a category X with binary products
is given. 4

DEeriNITION 4.1. Fix a choice of a product diagram 4= AXB-%-B fOr every
given pair (4, B) of objects of £, and given morphisms f: A’—~ A4, g: B'~B define
the morphlsm SXg: AXB'~AXB by

q
A -01— AXB-~——>»B
A ke, e @
At XL ’

It is well known that in this case each object S of X induces a functor
SX—: A ->H by

(SX—)A:=SXA, (SX —)f:= Isxf. | 4.2)

These functors.are called product functors. It is obvious from (4.1) that the family
of projections m4: SXA—~A constitute a natural transformation n:(SX —)=+1,
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called projection transformation. For orbitrary morphisms h,: C—~A4, h,: C—~B
we use the notation (/,, &) for the unique morphism satisfying (4.3) below.

Aet—uaxp—1 .8

| S ®
h, sy
. C

According to (4.1) and (4.3) we have the following identities:

(fXg) +(hy, hy)) = (f-hy, g+ hy) 4.9
(FXg)-(hXgd =(ff)x(g-g) - 4.5)
(hy, ho) -1 = (hy-h, hy-h) (4.6)

DEerFINITION 4.2. A generalized sequential machine in # is a machine
M=(Q,i,o0,p): (4, X)~(B, Y) whose state functor @ is a product-functor induced
by an object S of Jf, and the final state transformation is the projection SX ~-=+1.
Thus, a generalized sequential machine can be specified by

M=(S,i,0): (4, X)—»(B, Y), where S is an object of X, the state object,
i: A=~SXY¥* B is a #-morphism, the initial state-output morphism,
g: X(S§X —)=+(SX—)Y*¥ is a natural transformation, the transition.

The response of a generalized sequential machine M=(S, i, 0): (4, X)~(B, Y)
is defined to be the response of the machine M’ =(SX —, i, 0,7): (4, X)—~(B, Y),
where 7 is the projection SX ——=-1.

Now we give a definition of sequential machines in a category. A sequential
machine is a simple machine whose state functor is a product functor and whose
final state transformation is the projection.

DerNITION 4.3. Let A, B be objects of ¢ and let X, Y be varietors in . A
sequential machine
M = (S: iO) 0'0)1 (A’ X) - (B’ Y)

in X consists of the following data: '

an object S of 7, the state object,

a A-morphism i,: A—~SXB, the initial state- output

a natural transformation ¢4: X(SX —)—=~(SX —)Y, the transition.
The response of a sequential machine M=(S, iy, 0,) is the composite morphism
fu=nY*B.i¥, where n: SX~=-1 is the projection and i§ is the run map of
M defined by .

_ : lox @i #p
SXBLS_X_"B_;.5><Y#B<S—X&’£ SXYY*B,‘?.P_Y_BX(S)(Y#B)
?io | I i A T xid @.7
: nA BoA

Xx*4

A > XFA -
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DEFINITION 4.4. Let 4, B be objects of " and let X, ¥ be varietors in- . A
morphism f: X* A~Y* B is called initial-segment preserving if there is a natural
transformation

A X(X¥FAX—)=-YH*, (4.8)
such that
X#A f e Y#f B
Uo A . TﬁB “4.9)
" X(lx# A? ﬂ . )Y# ’ .
xXx*4 X(X*AxY*B) 2L B sy yep

THEOREM 4.5. A morphism f: X¥ A—~Y* B can be computed by a generalnzed
sequential machine in X" if and only 1f f is initial-segment preservmg

~Proof. Assume that a morphlsm f: X*A~Y*B is computed by a generaliZed
sequential machine M=(S, i, 0): (4, X)—~(B, Y). Thus, f=fy=nY*B-i¥, where
7 is the projection transformation SX—-+I and i* is the run map of M defined
by (4.10) below.

Sx1* B FB SXY*Y*B ﬂX(SxY*B)
/ T"# : in# (4.10)
A xv 4 < #od Xx* 4
Denote by p the projection S«— SXY*B, and let
r: X* 42 sxy*BL.§. (4.11)

It can be seen by the identity (4.5) that the morphism r:- X * A~ S induces a natural
transformation (rX —): X*AX —=-8§X — by :

(rx=)C: rXle: X¥AXC - SXC .41
for each object C of . Consider thé natural transformation A
2t X(X*AX =) XD, x(§¢ ) 2 (Sx - )Y+ X y#, (4.13)

We shall prove that this 2 satisfies (4.9) with the response morphism f. First, we

show that i*=(r, ). Because S-ZSxY*¥BZ . nt¥B Y*B is a product diagram
(p, 1Y * B)=lsxy#5. Thus we have
T = Lgyaptit = (0 7Y ¥ B)- =it Y BN = (nf). (414)

By (4.4) we obtain from (4.14) 4
#=(r.1X#Aa IY#B'f):(rXIY#B)'(lx#As f)- (4.15)

4 Acta Cybernetica
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Taking into account (4.10) and (4.15) we have
SopoA =nYEB i¥ .y 4 = nY*B.(IgXjiB)-oY* B- Xi* =
=jiB-n1Y*Y*B-oY*B.Xi* = iB-(a¥*.0)Y* B- Xi* =
=AB-(nY*-0)Y¥B-X((rX1,4,)-(,4,, ) =
= fiB-(xY* -0)Y* B- X(rX —)Y*B-X(lyay f) =
=[AB-(nY¥* -0 - X(rX =))Y¥B-X(l,4,, /).
Applying the definition (4.13) of the natural transformation A we conclude that
oA = FB-JY*B-X(lys ., /),

whiich proves the commutativity of (4.9). .

Conversely, assume that a morphism f: X*¥4—~Y* B is initial-segment pre-
serving, i.e. there is a natural transformation A: X(X* AX—)=-Y¥* rendering
the diagram (4.9) commutative. For each object C of £ let us denote by oC the pro-
jeetion X* 4 X¥* 4XC. We show that the composite morphism

6C: X(X* AX —)C = X(X* AXC)LAXECID) yo 4y y+C —

. 4.
= X*¥4AX-)Y*C (4.16)
is natural in C, thus we get a natural transformation
' Lol X(XFAX =)~ (X¥AXS)Y*, 4.17)

‘Let h: C—D be an arbitrary morphism. We have to prove that

X(X*4 xC)—-gg—*X*AxY*C
Xt ax ) - laraxort @.18)
X(X"AX D=2 X * A Y* D
By (4.4) and the definition of the product-functor X* AX — we have
oD X(X* AX —)h = (uoA-XoD, AD) - X (14 , X h) = .
= (oA - X(eD - (1,4 ,Xh)), AD - X (1 ;4 , X h)).

From (4.1) follows oD :(1x#,Xh)=1x%,-0C=0C, hence using the naturality
of . we obtain

oD - X(X¥AX —)h = (oA -XC,Y*h.:2C) =
= (Iya, XY *h)- (oA - XoC, AC) = (X* AX =)Y * o C.

Thus the diagram (4.18) is commutative.
Let us define the generalized sequential machine

M=(X*4,i,6): (4,X) ~(B,Y)
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by ¢ in (4.16) and put .
: Aty g x4 e yep (4.19)
We show that f is the response of M, i.e.

‘ | f=nY*B.i¥, ’ (4.20)
v?hére 7 is the projection transformation X * 4X ——=-7 and i ¥ is the run map of M:

_ _ lys,XB . or*sm
X*AXY* BTl x*AxY*Y* B " X(X*AXY*B) ‘

T

A—-—)XA* XX*4

In order to prove (4.20) it is enough to vérify that i¥*=(ly+,, f). We do this by
observing from the following that (1y#,, /) is an X-homomorphic extension by
the same specification as i¥, which means (4.21).

a) (1,44, f)-nA=i, by definition (4.19) of i.
b) (lx#Aaf)'l‘oA = (IX#A,ﬁB)'O'Y*B'X(Ix#A,f)-
Applying (4.6), (4.9) and (4.4) in this order we have
(g0 ) oA = (o A, [+ poA) = (oA, iB-2Y*¥B-X(1,4 ., /) =
= (Lyw XEB)- (oA, Y * B-X(1u . /).
By (4.3) oY*B-(1x#%,, f)=1x%, holds, thus
Ly g 1) Hod = (Lyw X 7iB) - (KA X L 4, MY * B+ X(Lpa o, ) =
- = (Iya XAB) (oA - X(@Y* B-(Lys 4, /), AY*B-X(lys . 1)) =
= (Iya, XAB)- (oA - XoY* B, AY*B)- X (1,4 ,, f).
Taking the definition (4.16) of the natural transformation o we conclude that
(o ar ) oA = (lys X 7B)-0Y * B- XLy, f)
which completes the proof of the theorem.

CoOROLLARY 4.6. Let 4 be an object of # and let X be a varietor in . The
object X* A is universal in the sense that for every generalized sequential machine
M: (A, X)—~(B, Y) there is a generalized sequential machine M’: (4, X)—~(B, Y)
whose state object is X*4, and M’ computes the response of M.

Now we give a characterlzatlon of morphisms computed by sequentlal ma-
chines in #. =

4*
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THEOREM 4.7. Let X, Y be varietors in X" and let 4, B be objects of . A morph-
ism f: X¥ A~Y* B can be computed by a sequential machine in  iff the following
two conditions are satisfied: ’

1) there is a morphism f,: A—~B such that

S
X*4 —"Y*B
nAT 1’73
A58

(4.22)

i) there is a natural transformation 2,: X(X* AX —)<- X making (4.23) com-
mutative.

, S .
X*4 7 - » Y* B

ol N v* TﬁoB @)
X(lye o JY*B
Xx*4 Uxe s X(X*4xY*B) LY 5 vy

Proof. Assume that a sequential machine M=(S, iy, oy): (4, X)~(B, Y) com-
putes f: X¥A4-~Y*B. Let us take the generalized sequential machine M’'=
=(S, 1, 06): (4, X)—~(B, Y), where ‘

= Al SxBLXE g y* B

4.24
0= X(SX —) 2 (SX ~)Y - EXD_(SX —)Y*. @29

Remember that #,=f,-Y7. Then, by Lemma 2.6, the machine M’ computes
the response of M, i.e. the morphism f. Therefore f=nY * B.i*, where n: SX—=~I
is the projection and i ¥ is the run map of M’. Thus we have from (2.2)

fnA=nY¥*B-i* . nA=nY*B-i=nY*B.-(IgXiB)-iy=%B-nB-i,.

Hence, taking f; to be nB-i, the condition i) of Theorem 4.7 will be satisfied. Accord- .
ing to. Theorem 4.5 there is a natural transformation 1: X(X*¥ AX =)—Y* such
that for this 1 and f the diagram (4.9) is commutative. Moreover, by (4. 13) 2 has
the form

)= X(XF AxX =) XX, (s —) 2 (Sx —)YF 2 y# (4.25)
Now let us define the natural transformation 2, by '
Jo = X(X* AX —) XX x(§x —) 2. (Sx —)Y 2Ly, (4.26)
Since (4.9) holds for A in (4.25) it is enough to prove
HAY* = [y 2,7 ¥
By (4.24), (4.25), (4.26) and the naturality of = we have
B2Y* =a(nY* 0. X(rX =))Y* =j-(a¥ * - (SX —)ﬁl-aon(rX—))Y* =
= (Y 0 XX )Y F = (i A) Y F = G Y F QYR
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But we have already proved in Lemma 2.6 that -7, Y ¥=f,, thus we obtain
B AYF=j,- 2,7 *.

Conversely, assume that the conditions i) and ii) are satisfied for a morphism
fi X*A-Y*B. If we take Ai=f4, we have [-AY¥=j-(f,-4)Y¥ =
=g Y* -4 Y¥=j,- A, Y*. Thus (4.23) implies that the 1 above and f satis-
fies (4.9), and hence by Theorem 4.5 there is generalized sequential machine
M=(X*A4,i, 6) computing the morphism f. In the sense of Lemma 2.6 it is
sufficient to prove that the initial state-output morphism i/ and the transition o
of M are simple. Since the initial state-output i of M is defined in Theorem 4.5 by

2 x* 4 ("#‘ XFA T X* AXY *B,

thﬁs, if we take i, to be (n4, f;) for the f; in condition i), then
(X*AX)B-ig= (Iys ,X0B) - (Iys . fo) = (M4, 71B-f) =
=4, f-nd) = (ys,» ) nd =i
This means that i is-simple.in the sense of Definition 2.5. The transition o of M

has the form (a, 1) for some « by Theorem 4.5. From A=ij,+4, we conclude
that o is simple. This completes the proof of the theorem. O

THEOREM 4.8. The family of the generalized sequential machine morphisms in
A is closed under composition.

Proof. Let M;=(S,,i,0.): (4, X)~(B,Y) and M,=(S,,i,,06,): (B, Y)~
—~(C, Z) be generalized sequential machines in # computing the morphisms f;:
X*A~Y*B, f,: Y¥B-~Z¥%C, respectively. By Theorem 2.8 the composite
morphism f5-f;: X*A—~Z*C can be computed by a machine

=(Q,1,0, ﬂ) (AaX) g (C> Z)
where @ =(8;X —)(S;X ),

. S o
i=AlSl><Y*BM

B = (SiX =)(Syx —) EX, (5, x —) o .

Here m,: S{X—=»1,7,: S3X—-—+I are the projection transformations. The object
map of the composite functor (S;X—)(S;X—) is (SyX-)(S;X—-)D=
=(S; X =)(Sy X D)= 8, X (S, X D) for any object D of 2. Since the category ¢
has binary products we may recall the well known result (see Mac Lane [7], PP
73. Proposition 1) which asserts that there is an isomorphism

Us,,500 S1X(S2XD) = (S:X Sp) XD

N S, X —)Z#C = S, X(S, XZ*
(S1X—)(S: X —) X(5:XZ C)(427)

natural in S, S; and D, moreover, ts, s, p cOmmutes with the projections to
S,, S;and D, respectlvely Thus there is a natural transformation -

. (SIX -)(Sz )-—*(SIXSZ) X_
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with inverse i (i.e., both ¢ -y and ¥ -¢ are the identity natural transformations
on the corresponding functors),

Y (S XS X —=+(Sp X —)(Se X —)

such that n-¢=mn,:(S;X —)n,, where 7: (S, X SI)X— —1 is the projection. Con-
sider the generalized sequential machine

M’ =(($;XS)X —, ¥, 0’,7): (4, X) ~(C, Z)
where i” and ¢’ are defined by / and ¢ in (4.27) as follows

i = A (S;X —)(SaX —)Z*C2ZEE ((5,X ) —)Z*C, (4.28)
o = YARY 2D (/8

By Theorem 2.10 it is sufficient to prove that ¢ -is a simulation ¢: M—~M’'. We
have to show the equalities

i"=@Z*C-|, a’-X(p=(pZ*'-0', - =4 (4.29) .

The first equality of (4.29) holds by (4.28). As f=mr,-(S;X —)n,, thus n-p=4.
Using the definition (4.28) of ¢’ and the equality Y -@ =1« _ys,x-) we have

o Xo=0Z*¥ 06- XY - Xo=0Z¥ .6-X(Y-9) = 9Z* - 6- X1(5,5_y5,x—) = 9Z* -0
This proves that ¢ is a simulation and completes the proof of the theorem. 3

Finally, we show that the computational capacity of the generalized sequential -
machines in a category and that of the process transformations of Arbib and
Manes are equal. :

DerFiniTION 4.9 (Arbib and Manes [4]). Let 4, B be objects of /" and let X, Y
be varietors in . A process transformation -T:(4,X)—-(B,Y) in X is
T=(S, d, t, k, B), where

(S, d) is an X-algebra, the state algebra

t: A—S is the initial state,

k: A—~Y* B is the initial throughput,

B: X(S§X —)=-Y ¥ is a natural transformation, the output.

The response of T is the morphism g: X*A-Y¥*B defined by
iB Y* B
Y*B <= y*y*p <LX(S X Y* B)
k 4.30
g X(r g) (4.30)
' xx*4
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where r: X¥ A—S is the reachability map of (¢, d), i.e. the homomorphic extensioﬁ

S <—d—XS

/ 1r ) tXr . (431
A
A % g LD xy¥ 4
THEOREM 4.10. A morphism g: X¥A4—~Y*B is the response of a process
transformation iff g can be computed by a generalized sequential machine in .

Proof. Assume that a morphism g: X*4—~Y*B is the response of a process
transformation T=(S, d, 1, k, B): (4, X)~(B,Y). For each object C of A" let

L sxc.c (4.32)

be the product diagram, and déﬁne the ‘morphism o¢C: X(SXC)~(S§X -)Y*C
by the composite
6C: X(SxC) LIS, gy +C, (4.33)

One can check by an easy coputation that ¢C in (4.32) is natural in C, i.e. we get
a natural transformation _
g: X(SX =)=+ (SX —)Y*.

Consider the generalized sequential machine M=(S, i, ¢): (4, X)—~(B,Y), where
i=(t, k) and o is defined in (4.32). We prove that this machine computes the morph-
ism g, i.e. fyy=g. The response of M is fy,=nY*B-i*, where i* is the run map
of M, i.e. the unique morphism satisfying both (4.34) and (4.35) below

fopd =i (4.34)
i* . uyA = (g X iB) - Y * B Xi*. ‘ (4.35)

Since nY*’B-(r, g)=g, it is enough to prove that i*=(r,g). We do this by
observing that the' morphism (r, g) satisfies (4.34) and (4.35) in place of i¥, i.e.
(4.36) and (4.37) hold

(rg)-nd =1, ' (4.36)
(r, 8) - oA = (Is X iB) - 6Y * B- X(r, 8- 437
By the triangular part of (4.30) and (4.31) we have '
(r,8)-nd =(r-nd,g-nd) = (1, k),
thus (4.36) holds. Again by (4.30) and (4.31) | '
(8 oA = (reod, g pgd) = (d- Xr, EB-BY*B-X(r, g)).  (439)

From the definition (4.33) of & it follows that nY*Y*B.ocY*B=BY*B, and
hence, using the naturality of = we obtain

(r, 8)-1od = (d- X7, iB-nY*Y*B-0Y* B-X(r, g)) =

4.39
= (d-Xr,nY*B-(1sXiB)-cY*B- X(r, g)). *3
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Because (4.32) is a product diagram we have
d-Xr=d-X(eY*B-(r, g)) = oY *B-(d- XY ¥ BX(r, g), iB-BY*B . X(r, g)) =
=oY*B-(d-XoY*B,iB-BY*B)-X(r, g) =
= oY*B-(lgX@iB)-(d-XoY*B, BY*B) - X(r, g).
And by the definition (4.33) of ¢ '
d-Xr = ¥*B-(15XiB) 0¥ * B-X(r, g). (4.40)

Putting toghether (4.39), (4.40) and the equality 1g.y,#5=(Y*B,nY*B) we
conclude '

(r,8)-nod = (Y* B, nY * B)-(1sXpZ) oY * B- X(r, g) = (15X iB) - oY * B- X(r, 8).

Thus (4.37) holds, which ends the proof of the “only if”’ part.

Conversely, assume that a morphism f: X¥A—Y*B can be computed by
a generalized sequential machine in 2. Then, by Theorem 4.5, the morphism f
is initial-segment preserving, i.e. there is a natural transformation

A X(X¥AX—) > Y#,

such that the diagram (4.9) is commutative. Now consider the process transforma-
tion T=(X*A4, uoA, f-nd,n4,): (4, X)~(B, Y). It is obvious that 1%, is the
reacability map of (54, us4). Hence, taking into account the defining diagram
(4.30) of a process transformation we obtain that (4.9) defines the response of T,
which is f.
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A 5 state solution of the early bird problem
in a one dimensional cellular space

By T. LEGenDI and E. KATONA

There exists a class of interesting problems for cellular automata characterized
by their common property of decomposing some global behaviour into homo-
geneous parallel local transitions (VOLLMAR [6]). Well known representatives of
this class are the firing squad synchronization problem (MOORE [2], VOLLMAR [4])
and the French flag problem (HErMAN [1]).

Another problem of this class was defined by ROSENSTIEHL et al. in I3] and
named as the “early bird” problem.

1. The original definition of the early bird problem

To each of the n vertices of an elementary cyclic graph there is assigned an
automaton. These automata may be “excited” (birds may come from the outside
world) at different moments. The task is to distinguish between the first (early)
and the later birds. More exactly the transition function must ensure the automaton
excited first to be assumed a distinguished state while all the others a different
state after some time interval. ROSENSTIEHL et al. [3] gave a 2n step solution on con-
dition that at each moment maximally one exci*ation occurs.

2. The modified early bird problem

VOLLMAR in [5] defined the problem for a one-dimensional cellular space allow-
ing more than one cell to be excited at a given time step. Only quiescent cells may
be excited; before the first time step at least one cell should be excited. After a
certain period the first bird(s) should be in a distinguished state while all the
others in a different state. )

The solution (VOLLMAR [5]) uses the “age of waves™ concept: each bird sends
out age signals that are compared (numerically). As a consequence elder- bird(s)
survive, while waves of the same age or waves reaching the border are reflected
and mark the sender' automata. After a certain number of time steps there remain(s)
only early bird(s) marked from both directions.
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3. A 5 state solution to the problem

The proposed solution uses the “‘age of waves” concept of VOLLMAR [5] but
" in a simplified manner. The age of a wave (i.e. of a bird) is modelled directly by
the length of the waves, rather than by a counter which is hard to handle, especially,
for the number of needed bits of a counter is dependent on the number of cells.
Therefore ‘the counter cannot be incorporated in cells’ states, it is rather simulated
by a group of cells.

The basic idea is to send L (left) and R (right) waves in the left and the right
directions. At each time step the wave is growing by one cell thus modelling the
age of the sender. When two waves are colliding, pairs of R and L states annihilate
each other, and N (neutral) states will replace them.

An L or R wave reaching a bird (in state B) will cause the anmhllatlon of it
(state N will be generated instead of the state B).

Consequently, the needed cell-states are:

Q = quiescent (initial) state,
= bird state*(arises from state Q, spontaneously),
L = left wave, expanding to left,
R = right wave, expanding to rlght
N = neutral state.

4. Construction of the transition function

In the folléwing we construct the transition function on the basis of the above- _
described principle. The transmon function will be described with “left, own, right - .
—~new-state” terms.

First we assume only two birds with different ages (they were born in different
time-steps). Each bird sends waves in both directions, this is ensured by terms

1. BOQQ — R,

2. Q0B ~ L.

The waves are growing in each step:
i/a. ROQ ~ R,

2/a. QQL —~ L.

It is clear, that the length of the waves is equal to the age of the sender, in each
step. After a certain time the waves are colliding between the birds, then an anni-
hilation process begins:

3. RQL—N, A
4. RRL—~N)] These terms imply the transition RRLL—~RNNL (that is, each
5. RLL—N | section of cells with states RRLL goes into RNNL).
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- From annihilation a neutral area arises, in which the R states step to the right,
the L states to the left (the points mean arbltrary state):

6. RN (not L)—»R} R steps right by the transition

7. «RN -N « RN (not L)— - NR-
8. (not R) NL—»L} L steps left by the transition

9. NL- ~N (not Ry NL+ —~-LN-
10. RNL —~N  annihilation. '

If the left bird is the earlier one, then after a certain time all the L states are
annihilated between the birds, and the remained R states can go to the right and
“kill”’ the right bird:

6/a. RBR—~R,
7/a. - RB—~N.
For the state L similarly:

8/a. LBL—~L,
9/a. BL-—~N.

The described process is presented on Listing 1 generated by computer-simulation.
The cell-states are displayed with the conversion Q=“.”, B=“B” L=%“<’
R=“=>" and N=‘“%". On the edges of the cellular space dummy cells are used
with the state N. '

Listing 1

STEP O0: % . .. .B .. ... . ... .... *
STEP 1: % . . .<B=>=. .. ... ... ... *
STEP 2: %. .<=<B=>. ... ....... *
STEP 2: % . .<<B=>> .. ... ... B *
STEP 3: % . <<<B>>=> ... ... <B=>. %
STEP 4 $<<<<B>>>> ..., , <<B>>%
STEP 5 % k¥<<<B>>>>> ., . <<<B> %%
STEP 6: x<¥%<<B>>>>>><c<<<B %> %
STEP 7: ¥ x< x%<B>>>>>%x<<<B % %x %
STEP 8: %< %< %B>>>>%>< x<<B % % %
STEP 9: %< % *¥B=>>>%>%x%x<%<B % % %

STEP 10: <% % %B>> %> %>< %< % B % % %
STEP 11: %k % % ¥ B>%>%> % k<% % B % % %
STEP 12: x % % % % B %> k> %>< % % % B % % %
STEP 13: % % % % % B % k> %> % % % % % B % % %
STEP 14: x % o % % B % % %> %> % % % % B % % %
STEP 15: s % % % % B % % % %> %> % % % B % % %
STEP 16: % % % % % B % % % % %> %> % % B % % %
STEP 17: sk % % % % B % % % % % %> %> % B % % %
STEP 18: % %k k % % B % % % % % % %> ¥>B % % %
STEP 19: s % % % % B % % % % % % % %> %> % % %
STEP 20: s % % % % B % % % % % % % % %> %> % %
STEP 21: s % % % % B % % % % % % % % % %> %> %
STEP 22: s % % % % B % 3% 3% % o % % % % % %> % %
STEP 23: s % % % % B o % ok % % % % % % % % %> %
STEP 24: % % % % % B o o % % % % % % % % % % ¥ %
STEP 25: % % % % % B % % % % % % % % % % % % % %
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The terms described above represent only the typical situations in the case
of two birds. If more then two birds are allowed and all special cases are respected
(e.g. two neighbouring birds, a bird killed from both direction at the same time,
etc.), then the following extended transition function called as ‘““early bird function”
is needed (in the following terms an expression (B, R) means ‘‘state B or state R”):

1. (B,R ,N)—~R .

2. EQ, ]v)) g((%’ L)) L } wave-growing

3. (B,R) Q(B,L) =N wave-growing with annihilation

4. - RL } annihilation by the transition

S.RL - .RL.—~-NN-

6. R (B, N) (not L)—»R} R steps right by the transition

7. - R(B,N) <R (B, N) (not L)~ - NR-
8. (notR)(B,N)L —»L L steps left by the transition

9. B N)L - (not R) (B, N)L-~-LN-

ot
e

R(B,N) L —»N annihilation by the transition
‘R(B,N)L--—+-NNN-
. In all other cases the new state must be equal to the old own state.

—
[

5. Exact proof of the algorithm

It is easy to prove that for two birds the “early bird function’ works right.
For the general case, where in each step any quiescent cell can change into the
bird- state, an exact proof is given in the following.

Theorem. A one dimensional 5-state cellular space consisting of m cells is
considered, where

— in the initial configuration (at t=0) each cell is in state Q, and the dummy
cells on the edges are in state N,

— between any two steps (so to say, at t+1/2) any quiescent cell can alter
into state B.

Statement. Using the “early bird function” in this cellular space, after a finite
time (it seems that maximum 3m steps) only the “early birds” (the birds arisen
at first) are existing, all other cells have the state N.

The proof is based on the notion “route of the wave-states”. To define this
notion some investigations are needed for the behaviour of wave-states. The follow-
ing properties can be found:

— A wave-state (i.e. L or R) may arise only from state Q, by terms 1 and 2.

— L states move to the left, R states to the right. More exactly, if in front
of a wave-state there is a state N or B, then the wave-state steps forward (see terms
6—9). If in front of a wave-state there is the same wave-state or state Q, then the
wave-state remains on its place (by ‘“‘term 11).

— If an R and an L are colliding, then they annihilate each other (see terms
4, 5, 10). A wave-state reaching the border of the cellular space is annihilated by
the dummy cell (see terms 7, 9).

— The behaviour of a wave-state is always independent from the state occur-
ing behind it.
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These properties show, that a wave-state arises on a certain point of the cellular
space, it goes left or right depending on its type, and it is annihilated on another -
point of the cellular space. The section of cells, determined by the point of origin
and the point of annihilation of a wave-state, will be called as the route of the
wave-state.

If a cell contained in a route of a wave-state has been excited, then obviously
this bird cannot survive. This fact gives special importance for the routes of the
states R and L, which can be characterized in the following lemma.

Lemma. (i) If a state L and a state R arose at the same time on the both ends
of a quiescent section Q... Q, then after a finite time they will meet and annihilate
one another.

(ii) If a wave-state arose on the end of an outsnde quiescent section (bounded
by a dummy cell on its other end), then the wave-state will go to the left or to the
right until it reaches the border, and will be annihilated by the dummy cell.

Proof. First the statement (i) will be proved, using induction for the length
n of the quiescent section Q... Q.

For n=2 the statement (i) is obvious, because we have the transition QQ -~
—~RL-—~NN in this case. )

Now the statement (i) is assumed for any section with length less then n, and
a quiescent section of length n is considered, on the both ends of which an R—L
pair was arisen at time 7 (hereby the length of the section was reduced to »n-—2).
Between ¢ and ¢+1 (so to say, at r41/2) a number of birds may be excited in this
section, hereby the section may be divided into more subsections, each having a
length less then n. At time #+1 all quiescent sections of length 1 have disappeared
(see term 3), and on the both ends of all other sections states R and L are arising.
By the induction assumption these R— L pairs must annihilate each other. So the
original R and L — arisen -on the ends of the section of length » — cannot meet
with any other wave-state, therefore they will annihilate each other.

The statement (ii) can be proved in a similar way. O

Applying these results it is easy to prove the original theorem.

Assume, that the early birds are excited at time £,+1/2, the configuration at
this time-point consists from bird sections and quiescent sections alternating one
another. At time z,+1 on the ends of each quiescent section an R—L pair arises.
These pairs — according to the lemma — will annihilate each other, so their routes
cover all the space between the early birds. Similarly, the routes of the wave-states,
arisen on the ends of the outside quiescent sections, cover the space between the
outside early birds and the dummy cells. This fact implies, that all later birds will
be killed. On the other hand, the early birds must survive, because the route of any
wave-state (arising after ¢,) is contained by one of the quiescent sections at 7,+1.

With these notes the proof of the theorem is complete.

6. Simulation examples

The presented solution of the early bird problem is demonstrated below using
computer -simulation. The cell-states are d1splayed with the conversion Q=*."

=“B”,L="<”,R=“>" and N=‘“%". On the edges of the cellular space the
dummy cells are displayed, too.
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In the case of Listing 2 four birds come from the outside world (at t=4,5
- two birds at the same time). After r=15 only the early bird lives, in the further
(not displayed) steps the remained wave-states will be annihilated by the dummy
cells. ‘ ’

Listing 2
STEP O: * . . . . . . . . ... ... B . . . i e e e e *
STEP 1: % . .. . . .. . .. ... <B=> e e e e e e e e e e e e e *
STEP 2: % . . . .. . . . . ... <<B==............... *
STEP 2: % ... .. ... B.. <<B=>=..... e e e e e e e e e *
STEP 3: . ... ... <B> . <<<B=>>>.........¢..... *
STEP 4: % . .. . .. <<Bm%<<<B>>=>., ... .. ........ *
STEP 4: * . .. . .. <<B>%<<<B>>>>....B.8B....... *
STEP 5: %. .. .. <<<B¥%%<<B>>>>>..<B%xB>...... *
STEP 6: * <<<<Bx¥<k<B>>>>>><<BxB>>.. ... *
STEP 7: * <ww<<B¥<¥<%B>>>>>%x<BxB>>>. . . . %
STEP 8: % . . <<<<w<<B<%<%%¥B>>>>%><%B%¥B>>>=> . . . %
STEP 9: % . <<<<<<<<}< ¥%%¥B>>>%>%%%¥B%xB>>>>> . , %
STEP 10: (<< <<<<<<<< %% % *¥B>>%>%>%%B *xB>>>>>> . %

STEP 11! s k<<<<<<<<< ¥ Xk %¥%¥B>%>%>%>%B %¥B>>>>>>> %
STEP 12: k< ¥<<<<<<<< ¥k ¥k ¥ *¥B k> %> %> ¥%¥>B ¥B>>>>>> % %
STEP 13 ¥ k< k<< <<<<< ¥k %X ¥B k*¥k> %> %> %> %B>>>>> %> %
STEP 14: %< k< St S % % % ¥ B % % ¥> %> %> k> B>>>> > % %
STEP 15: s k<)< <<<<< Kk ¥k %kBhkx**>%>%k>%k>>>> %> k> %
STEP 16: %< d<s<k<<<<**kk*¥B kA kX k>%>%>>>> %> %> %%

In the case of Listing 3 six birds come from the outside world (three birds at
t =0,5 and three birds at -#=2,5). During 22 steps all late birds are killed. -

Listing 3
STEP 0: % . . . . . v v v o i e e e e e e e e e e e e e e *
STEP 1: % . . . . . o v i v v e e < >0 ... *
STEP 2: % . . . . . . . ¢ v v i e e << >>, .. . .. *
STEP 2: %. . . .B. ... ... .BB. . ... << >=> . . ... *
STEP 3: % <=B=>...... <BB=> <-B >>> L%
STEP 4: . .<<B>> ... .<<BB>>.<<<< T
STEP 5: ¥ . <<<B>>>. .<<<BB>>%x<<<< > *
STEP 6 ¥<<<<B>>>o>cc<<<BB> %%%x<<< >> >, ¥
STEP 7: *¥<<<B>>> ¥¥%<<<BB %> %< << >>>>$>>9k-
STEP 8: *<%<<B>>%><%<<BB % %% %< %< >>>>>> kK
STEP 9: % k< ¥<B> k> ¥k k< %< BB % % k< %< % > > %

STEP 10: %< %< %B %> k>< <% BB % %< %< % %
STEP 11: sk k< % % B % %> % %< % % BB %< %< % % %
STEP 12: %< * * B x ¥ ¥>< % ¥ *BB< %< % % % %
STEP 13: -3 % % % % B % * % % % % % % B< %< % % % % %
STEP 14: s 5k % % % B % % 3% % % % % k< k< % ¥ % % % %
STEP 15: s % % % % B % # % % % % %< %< % % * %k % ¥ %
STEP 16: % % % % % B % % % % % %< %< ¥ % ¥ % ¥ % % %
STEP 17: 3 3 % % % B % % % % %< k<< % % % % % % % % %
STEP 18: x % % % % B % % % de < %< % % % % % % ¥ % % %
-STEP 19: s s % % % Bk % d < k< % % % % % % % % % * %
STEP 20:- s % % % % B % %< de< % 3% % % % % % % % % % %
STEP 21: s % % % %k Bk k=< % % % % % % % % % ¥ ¥ % ¥
STEP 22: s s % % % B << % % 3% % % 3 % % % % % % % %
STEP 23: ¢ % % % < ~< % % % % ¥ % % ¥ % % % %k % % %
STEP 24: 3 % % %<k < % %% % % % % % ¥ % ¥ % 3k ¥ % %

= k> KoK
> > ¥ > #
> k> k> kK
> > K> k> ¥
*> k> K> KK
¥ K> K> k> ¥
* ¥k k> K> %k K
* ¥ K k> k> %
Ak F ok K> K ¥
¥ ¥ ¥k Kk k> ¥
* ¥ Kk Kk kK % ¥k
L K 2 2 O O
R EE R R R X 3
¥ K Kk Kk K Kk K
EE 2 o

POEPEOIRPOIIITITETOOIEOTEEEREPEoR
PEFTEPITOPEEEOEEPEEITPEOIPEORFPE®
dok K K K K o de K ok ok K K K K K K K d ok ok Kk K ok -
PREERIRPIRIRPIPRIIIPRIIRITEPEOEE®
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On the completeness of proving partial correctness

By L. CsiRMAZ

We give here a proof for the completeness of the Floyd—Hoare program veri-
fication method in a case which has remained open in [1]. The method used here
is basically the same as in [5]. For the motivation behind our concepts see [1, 3, 10}].
Applications of our results in dynamic logic can be found in [10].

1. Introd uction

Structures will be denoted by bold-faced type letters, their underlying sets
by the corresponding capital letters. If 4 is a set and n€w then A" denotes the set
of n-tuples of the elements of 4. Throughout the paper d denotes an arbitrary,
but fixed similarity type, and T denotes an arbitrary but fixed consistent theory of
that type. For ncw, F} denotes the set of first order formulas of type d with free
variables among {y;: i<n}, and we let F;=lJ {F}: n€w}. In particular, T is
a proper subset of FJ. For the sake of simplicity we make no typographical distinc-
tion between single symbols and sequences of symbols.

A program (or rather a program scheme) can be regarded as a prescription
which defines uniquely the next moment contents of the registers from their present
moment contents. Therefore we adapt

Definition 1. Let T7c F? be arbitrary. A d-type program (in T) is a formula
@€ F} such that
THVYx3alye(x,y). O

Let D be a d-type structure, and D= T. Then, by this definition, the program ¢
defines a function from D to D which we denote by p, p. More precisely, for every
g€ D there is exactly one element of D, denoted by p,, n(g) for which D = ¢(q, p,, n(q)).
To avoid long and unreadable formulas we omit the indices ¢, D everywhere and
use the letter p as a new function symbol denoting p,; p in every model D of the
theory 7. For example, if & F} then the formula.

Vy(e(x, y) ~y())EF}

is abbreviated as ¥ (p(x)).
To define semantics of programs we need the notion of the .time-model
i1, 3, 10].

5 Acta Cybernetica
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Definition 2. The triplet M =(1, D, f) is a time-model if 1 is a structure of
similarity type t, D is a structure of similarity type 4, and f: I—D is a function,
where the type ¢ consists of the constant symbol 0, the one placed function symbol
“41”, and the two placed relation symbol “=". O

We say that I is the time structure, and D is the data structure of M =X, D, /).
Time-models can be regarded as a special 2-sorted models with sorts t and d (called
time and data), and with operation symbols of 7 and d and the extra operation
symbol f, see [9, 10]. Let TF denote the set of 2-sorted formulas of this type. By
a little abuse of notation, we assume that F; and F, are disjoint, and F,UF,CTF.

Now we can give the strict. definition of the program run. Note that by our
agreement on the type ¢, we may write i+1 (icl).

Definition 3. Let M=(I, D, /) be a time-model and let p: D—~D be a pro-
gram. The function f constitutes a trace of the program p in M if for every i€/,
S+1D)=p(f(i)). We say that the (trace of the) program halts at the timepoint
el if fG+D)=fG). O ‘

Definition 4. Let ¢;, and ¢, € F} be two formulas. The program p is partially
correct with respect to ¢;, and ¢,,, in the time-model 9 if whenever f is a trace
of p, and DE=g;,(f(0)) (i.e. the input satisfies ¢;,) then for every i€l such that
S(@+1)=f(@) (i.e. the program halts at the timepoint i), D= @, (f (). This asser-
tion is denoted by ME=(@in, 2r Poud)-

Let ScTF be arbitrary. If for every time-model M, ME=S implies
ME(@in,> P> Pour) then this fact is denoted by SE=E(@in, P, Cou) O

So far we have completed the definition of the partial correctness. The following
definition is a reformulation of the well-known Floyd—Hoare partial correctness
proof rule [7, 8, 10].

Definition 5. The program p is Floyd—Hoare derivable from the theory T F§
with respect to ¢;, and @€ F}, in symbols - T (¢;,, P, @our), if there is a formula
&€ F} such that '

T Din (X) g Q(x)
T+ &(x) - &(p(x))
T OX)APX) =x ~ @ou(x). O

Let 77 denote the set of axioms of the discrete linear ordering with initial
element for the type . That is, T7 states that the relation “=" is a linear ordering,
0 is the least element, every element i has an immediate successor denoted by i+1,
and every element except for the 0 has an immediate predecessor. We remark that
TT is finite and its theory is complete, see [4] pp. 159—162.

If in the time-model M=(I, D, f) the time structure I is isomorphic to the
ordering of the natural numbers (the time-model is standard) then DT and
TH(@in> P> Pou) implies ME=(@ia, P, Pou)- By the upward Lovenheim—Skolem
theorem, there is no Sc TF for which MM=S would force M to be standard.
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But we may require M to satisfy the most important feature of standard time-
models, namely that they admit induction on the time. Let ¢(x)€ TF be such that
x is a variable of sort t (i.e. x is a time-variable). Then ¢* denotes the following

formula of TF:

[eMAYx(@(x) > (x+1))] —~ Vxo(x).
The set of induction axioms are

I4 = {p*: @(x)€TF and x is of sort t}.

‘Moreover we introduce a proper subset of /4, the induction axioms of restricted
form:

R = {p*: ¢(x)€TF and there is no quantifier for any variable of sort t in ¢(x)}.

It is important to remark here that ¢ (x) may contain other free variables. All these
free variables are also free in @* except for x, they are the parameters of the in-
duction. _

Of course IRCIAC TF, and one can easily prove the following theorem.

Theorem 1. Suppose TC F) and p is a d-type program. Then T+ (@in, P> Pout)
implics (TIUIRU T)t=(§0in,p, (pout)' a

The aim of this paper is to prove the inverse of this theorem.

Theorem 2. With the notation of Theorem 1, (T/UIRUT)E=(@in, Ps Pour) im-
pllCS T}— (¢in >-Ps (pout)' | .

These theorems state the completeness of the Floyd—Hoare program veri-
" fication method in the case when the time-models satisfy the axioms TTU/R. In

Theorem 2 the fact that induction axioms of restricted form are required only is
essential as it is shown by the following theorem [1].

Theorem 3. There is a type d, a theory TC F{ and a d-type program p such
that (TIUIA UT)’: ((pin’ D (Pout) Wh]]e Tl*-((Din, P goout)- O

2. Strongly continuous traces

We start to prove Theorem 2. From now on we fix the similarity type d, the
theory T F?, the d-type program p and the formulas ¢;,, ¢,,€F}. In this sec-
tion for every time-model M=(L, D, f) we assume M|=TI. The explicit declara-
tion of this fact will be omitted everywhere.

First we need a definition.

Definition 6. Let - Mi=(I, D, /) be a time-model, Di=T. The function f con-
stitutes a strongly continuous trace of p if ‘

() fG+D=p(f () for every icI;

(i) let i, jel,i=j,ucD" and PEF}*" be arbitrary. If D @(f (), u)A
A®(f (), u) then there is a kE], i=k=j such that D= &(f(k), u)A
ATe(fk+1,u). O

.5
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Strongly continuous traces (sct in the sequel) are traces, cf. Definition 3. In
other words, an sct satisfies the induction principle in every time interval. Obviously,
if M=IR and 1 is a trace then f is an sct, too. Properties of continuous traces
are discussed in [2, 6, 10].

Lemma 1. Let f be a trace of the program p in 9. Then imt:IR iff f is strongly
continuous.

Proof. We prove the “if”” part only. Let ¢@(x,)€ TF be such that ¢(x,) does
not contain quantifiers on variables of sort t. Let x,, xq, ..., X, be the free vari-
ables of ¢ of sort t, and y,, ..., y,_, be that of sort d. Because there are finitely
many applications of the function “+1” only in @, we may assume that there is
none, simply replace these applications by a new parameter of sort t or use the
identity f(x+1)=p(f(x)). We may assume also that every f(x;) is denoted by
some of the parameters among y,, ..., V.1, i.€. the function f is applied to x,
only. Thereafter for every ¢(xo)€ TF with fixed parameters from 7/ and D, there
are elements 7,=i,=...=i, from I, elements u,, uy, ..., u,_, from D, and formulas
&y, &y, ..., D€ F}*" such that ’

M= o) —~{[ x=<i— S(f(x), u)]A
ANip=x<i;— djl(f(x)’ u)]A

lIA

/\[im—l
Allim

< i, - ¢m—1(f(x)’ u)]/\
X — B,(f(x), u)]}

1)

which can be got, for example, by induction on the complexity of ?. Now if

M= O)AVx(p(x)~¢@(x+1)) then, applying the strongly continuity in the in-
tervals [0, i,], [y, iz], etc. we get Mi=Vxo(x) which was to be proved. O

By this lemma it is enough to show that either the triplet (¢;,, p, o) is Floyd—
Hoare derivable, or there is a strongly continuous trace which shows that p is not
partially correct.

Let us make a step forward.

Definition 7. Let H<C F}! consist of the formulas &€ F} for which
T }_' q)iu(x) - 45(,\‘)
TH 0@~ o(p(). O

Note that H is closed under conjunction, ie. if ¢, and &, are in H then
@, \ b, H. Now let ¢, and ¢, denote two new constant symbols not occuring pre-
viously. We distinguish two cases. :

-and

Case 1. In every model of the theory

{T3 Din (CO)’ H (cw)’ p (cw) = cm}
the formula ¢, (c,) is valid. Here H(c,)={®(c,): #€ H}. Then by the compact-
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ness theorem and by the fact that H is closed under conjunction, there isa Y€H
such that ' ' :
T F [@in (CQ)AT(Cm)Ap(Cm) = Cp) ~ (pout(cm)'

The constants vco and ¢, do not occur in T, so introducing @ (x)=(3y@;.(»))A ¥ (%),
we get .
T 9(x)Ap(x) = X > Pon(x).

This and the obvious ®¢ H shows the Floyd—Hoare derivability of (¢;,, ps ®ou0)-
Case II. Not the case above, i.e. '

Con {T’ (P;n(co), H(C,,,), [)(Ca,) = Cos —] @out(cw)}‘

By Theorem 4 of the following section, in this case we have a time-model .
M=(L, D, f)=T such that f is an sct of p, Di=¢;,(f(0)) -and for some i€J,

Di=f()=p(f () 1@ (f()). This means M (;,, p, Pour), i-€. p is not partial-
ly correct. This proves Theorem 2, because M= TIUIRUT by Lemma 1.

3. The proof of the crucial theorem

In the remaining part of this paper we prove the following theorem.

Theorem 4. With the notation of the previous section, suppose

Con {Ta Pin (CO)’ H(C(o)’ p(ca)) = Cyp> 7 Pout (cm)}'

Then there is a time-model M=(1, D, f) such that I=T7, Di=T, f is a strongly
continuous trace of p, DE (pin(f(O)), and for some i€l, f(i+1)=f(i) and
D'= —l(Poul(f(i))‘ ’ v

Proof. We need some more definitions. If d; and d, are similarity types then
d,<d, means that d; and d, have the same function and relation symbols with
the same arities and every constant symbol of d, is a constant symbol of d,.

Definition 8 .Let d be a similarity type, TC F be a theory. The pair R=(Ig, fr)
is a (d, T)-pretrace if I is a time structure, ¥zi=77, and fr is a function which
- assigns to every i€l a constant symbol of d in such a way that (i) and (ii) below
are satisfied. A bit loosely but not ambiguously, we write R(i) or simply Ri instead
of fr().

(i) THR(@GE+1D)=p(Ri) for every icly _
(i) Con(TU{P(R)): j€Ig, PEB} and there exists i€lg, i<j such that
T+ D(Ri)}),

- where . '
Bd = {PcF}: T+ &(x) -~ ®(px)}. O

Note that the set BZ is closed under conjunction, this fact will be used many times.

Lemma 2. Let R be a (d, T)-pretrace. Then there exists a complete theory
Tc ScFQ such that R is a (d, S)-pretrace.
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Proof. Tt suffices to show that for any B€Fp, R is either (d, TU{B}) or
(d, TU{71B})-pretrace. If neither of them hold then in both cases (ii) of Definition 8

is violated. It means that there are finitely many /g, j€lg, is=js;, and &€ B#U iy
qj:EB:‘unp} such that.

TU{B} -1 A y(Rj) and TU{B} - A ,(Riy) 3.1)
TU{B} - 1 A @XRj) and TU{IB} + A &%(R). 3.2)

Now let ¥ (x)=(B~ D, (x))A(1B—~i(x)). Obviously, ¥,€B} and T+ A ¥ (Riy).
s
Elementary considerations show that (3.1) and (3.2) imply
T = A Y(Rjy)

which contradicts the éssu’mption Con (T, {¥,(Rj)}). O

Lemma‘3. Let R be a (d, T)-pretrace, and let T be complete. Then there exist
a similarity type e>d and a complete theory T ScF? such that

() Ris an (e, S)-pretrace,
(ii) for every Y€ F}, if 3xy(x)€T then for some constant ¢ from the type
€, '//(C)E S: ’ .
(iii) the cardinality of the new constants in e does not exceed the cardinality
of F3, i.e.
' I = lel = |F) = ld]- .

Proof. What we have to prove is the following. Suppose that the type e con-
tains the extra constant symbol ¢ only, B¢ F} and Con {T, f(c)}, then R is an
(e; TU{B(c)})-pretrace. From this (i}—(iii) can be got by a standard argument,
see, e.g. [4] pp. 62—66. Now suppose that this is not the case, i.e. there are finitely
- many Dy(x, )€EBTpcyy and i, ji€lr, is<j; such that

TU{BE} - TA &5(R)s, ©) ' (3.3)
TU{B(c)} - A D,(Ri, ©). . (3.9

The condition &.(x, c)€ B, (-ﬂ(c)) implies

Ws(x) = Vy(ﬁ(y) g dss(x’ y))EB‘},

and by (3.4), T+ Vy(B(»)—~ D5(Ri;, ¥)), ie. ¥, (Ri)ET. Now T is complete, there-
fore j,=i; implies T+ ¥ (Rj,), from which

T I—/;\ (ﬂ(C) - ¢s(sta C)) - ﬁ(C) g /s\ ¢s(sts C).

This and (3.3) gives T+ 15(c), a contradiction. [

Lemma 4. Let R be a (d, T)-pretrace, and let T be complete. Suppose iy, jo€ 1z,
ip<j, and y€ F} such that
T - x(Rigg A 1 (Rjo)-
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Then there exist a type e>d, a theory Tc SCF? and an (e, S)-pretrace Q such
that
(i) I, is an elementary extension of I, and O>5R, ie.

Q@) = R(@) for iel
- (ii) there is an i€l,, ip=i<j, such that
S+ x(QW)AN1(2(E+ D).

Proof. Let a-{zEIR for every iy=i"=i, T+ y(Ri")}. Obviously, « is an initial
segment of Iz, we write i<« and 7>« instead of i€x and i¢ a, respectively. The
element j,>a, and we may assume that there is no largest element in o otherwise
there is nothing to prove. It means that for every j>a, there exists a<j’<j such
that T+ TTx(Rj") .We shall insert a thread isomorphic to the set of integer numbers,
denoted by Z, into the cut indicated by o.

Let {a,: I€Z} be countably many new symbols and let {c,: /¢Z} be new con-
stant symbols. Let IQ—IRU{a, lcZ} and define the ordering on I, by a<a4q,
i<a, if icly, i<a and a<i if i€lg,i>a for every I€Z. Evidently, I, is an
elementary extension of Ig.

Define the function Q by Q(i)=R() if i€l and Q(a)=c, - otherwise. Let
the type e be the enlargement of d by the constant symbols {c;: I€Z}, and finally
let the theory SC F? be

S =TU{p(e) = iz 1€Z}U{x(c0), "IX(Cl)}U
HD(c)): 1€Z, B and T - P(Ri) for some i < a}U
U{1®(c): 1€Z, PcB% and T 1P(R)) for some j > a}.

We claim that S is consistent. It suffices to show that T is consistent with any finite
part of S\T. Using the facts that T is complete, B¢ is closed under conjunction,
and the formulas &¢ B¢ are hereditary in I, this reduces to

Con (TU{®(c_,), x(co), Tx(c), 1D*(c)})

where J€w is a natural number, ®, #*€ B4, and T+ ®(Rip)) A 1 P*(Rj;) for some
iy=i,<a<j,=j,. Now if this consistency does not hold then, T being complete,

T = $)Ax(p' M)A 19*(p* (%) ~ 2(p'** ().

Now let ¥P(x)= di(x)/\[x(p (x))V 9*(p¥-(x))]. By the previous statement,
T ¥ (x)~¥(px), ie. ¥YEBf. Now, by the assumptions, T+ ®(R(P))-and
T+x(R(@+1)) for iy=i<a, therefore T+ ¥ (Ri). But R is a pretrace so for every
a<j<j,—2l, T—¥Y(Rj), although for some a<j'<j—2l T+ x(Rj") and
T+ 1®*(R(j’+1-1)). This contradiction shows that S'is consistent indeed. .

We prove that Q is an (e, S)-pretrace, (i) and (ii) of the lemma are clear from
the construction. First assume that i€l, Y€Bg and S+ ¥ (Ri). We are going to
show that in this case S+ ¥(Qj) for every jcl,, j>i. Indeed, we may suppose
that ¥ contains the new constant symbol c¢=c_; only and that

TU{a(C)} ¥ (x, ¢) -~ ¥(px,c) i R
TU{3(c)} + ¥ (Ri, ) .
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- where §(c)=2()N1(P' (@)A1 (P' 1 ())ATS*(p¥(c)). By the first derivability,
OX)=Vy[6(»)>¥(x,»))€B%, and by the second one, TI- @(Ri). R is a prelrace,
and by the definition of S, S—0(Qj) for every jcl,, j>i. But Si-d(c_)), ie.
S+ ¥(Qj, c_,) as was stated.

Now if* Q is not an (e, S)-pretrace then (i) of Definition 8 is violated, which
means that there are finitely many i ,€Ip\Jg, js€Ig, js>« and @£B§ such that
SE A &,(Rj,) while S+ A &,(Qi;). The set B§ is closed under conjunction,

s S
therefore we may assume that all the i, and &, coincide, that this ¢,=¥ contains
the new constant symbol c=c_,=Qi; only, and that with (c) as above,

TU{B©} - ¥Y(x,c) - P(px,c)

TU{)} + ¥(c,0)

TU{o()} - ‘l/s\ ¥ (Rj,, ©).
By the first derivability, O(x): 3y(6(WA¥(x, y))€B%, and by the third one,
TV 1O(R :is). T is complete, which means T+ 1@ (Rj;) for some j,>a, i.e. by
the iieﬁnition of S, S+ 160(c), which contradicts the second derivability. O

Returning to the proof of Theorem 4, we shall define three incredsing sequences
of similarity types, theories and pretraces. Recall that the type d, the theory Tc F§
and the formulas ¢, ¢.,.€F} are such that

Con {T,, @in(co); H(Cw): P(Ca) = Co> TPout(Ca)}- (35

Let ¢, te new constant symbols for /€w—{0}, and let the similarity type e=>d
te the smallest one containing them. Let the time structure I consist of a thread
isomorphic to w and another one isomorphic to Z. The definition of the function
R goes as follows:
oy ¢; if icw
R0 1 e
) @) ¢, otherwise.
Finally let '
S = TU{P(C,) = c_l+1: IECD}U{(Di,,(Co), P(Cm) = Cp» —Iqaout(cw)}'
Lemma 5. R is an (e, S)-pretrace.

Proof. For the sake of simplicity, let
- 7(x) = (p(x) = XA VP (x)).
It is enough to prove that if &¢ F},

S+ D(x, ¢y, €0) = P(px, 4, C)) (3.6)
and
S+ D(cy, o5 €o) 3.7

then Con {S, @(c,, g, ¢,)}- Suppose the contrary, i.e.
. S +1P(c,, g, Cu)- (3.8)
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We may change S to TU{¢;,(c), y(c,)} everywhere, so introducing
Y(x) =Vz3y[y(2) - @inWMAP(x, y, 2)IEF],

(3.6) says that T+ Y’(x)-»'f’(px) From (3.7) we get T+ @;,(x)—¥(x), therefore
Y¢H. Choosing x=z=c¢, in ¥?, the condltlon (3.5) gives

COII {T, (pin(co): '))(Cw), 3)’ [)’(Cm) g q’in (y)/\d)(cma ya cw)]}'

But by (3.8),

T+ VY[ (co)A@in(¥) — TP (ca, ¥, )]
a contradiction. [J

Let do—e, Ry=R. By Lemma 2 there is a complete theory SCT,CF?=F;
such that R, is a (d,, T,)-pretrace. Let the cardinality of Fj be , and let x* denote
. the smallest cardinal exceeding ». Let C={c;: E<ux*} be different constant sym-
bols such that the constants of the type d, are among them, and let J={a,: {<x*}
be symbols of time points such that IROCJ (Note that Iy, is countable.)

Arrange the triplets of JXJXFjyc in a sequence {(ig, js, Pg): =<t} of
length x* in such a way that every triplet occurs »* times in this sequence. Now
we define three increasing sequences d;, T¢, and R, for {<x* such that

(i) dgis a 31mllar1ty type,
(i) Te,c F} is a complete theory, and ]F,,g,—x,
(iii) R is a (d;, Ty)-pretrace, and Iz, CJ, |Ig|=x.

Suppose we have defined d;, Ty, R, for {<n<x*, they have properties
(i>—(iii) and we want to define d,, T,, R,.

If 5 is a limit ordinal, 51mply put d Ulds: E=<n}, T,=U{Ty E<n}, R,=
=U {R;: E<n}: This definition is sound because I, is the union of the i 1ncrea.smg
elementary chain (Ig,: {<n), therefore it is also a model of the axiom system

TI. T, is the union of an increasing sequence of complete theorles therefore itself
is complete Similarly for the other properties.

If n is a successor ordinal, say #=&+41, then work as follows. If either
ie§Ig,, je§ Ix,, Ped Fj, ot iy, je€lg,, D€ F} but ig>j; or Tyl De(Ryi) AT LR, jp)
then let d§+1—- &y T§+1~—-T§, R J_R

If not, ie. i,=j, and Tél— Q){(R,;z,:)/\’l D.(Rj:) then, by Lemma 4, there
is a type dy>d;, a theory T;DOT, and a (d;, T;)-pretrace R;;;DR; such that
d;\d; and IRHI\IRg are countable so we may put Iy, ,CJ, |Ig,,,|=|lg, |+wSV
and for some k€lg,,,, s=k=j; and

T{ + D(Rery (A TPL(Reyy (k+1)).
By Lemma 2, there is a complete theory T 4 T ” CF), 0, such that Ry, isa ( T”)

pretrace, finally, by Lemma 3, R, is a (d¢+1, TH,)-pretrace where d; +1>a’§,
Te1 DTy, Tpyy is complete, the cardinality of dy,,\d; is at most x, and every
existential formula of 7y (and therefore of T7) is satisfied by some constant of d; .
In this case the inductive assertions are trivially satisfied.

Now let d*=U{d;: E<ut}, T*=U{T,: E<x*}, and R*=U{R;: A<x*}.
The theory T* is complete and R* is a (d*, T*)-pretrace. The constants of the
type d* form a model for the theory T* because every existential formula of T'*
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is satisfied by some constant, this was ensured by the applications of Lemma 3.
(Strictly speaking, certain equivalence classes of these constants form this model,
see [4], pp. 63—66). Let this model be D, we claim that the time-model
M=(1z+, D, fz+) satisfies the requirements of Theorem 4.

Indeed, Ip=TI, and TcT,cT* therefore Di=T. By the definition of
the pretrace Ry, fr+(0)=/r,(0)=c,, Tyt @;n(c;). For some i€ Iy C g+, fre(i)=fr, (i) =
=c,, and Top(Cco)=CcoN T@oulc,). Because Di=T,, these formulas are valid
in D. What have remained is to check that fz« is a strongly continuous trace of p.

Let i€ Ip. be arbitrary. Then i€ Iy, for some &<x*, and because R;is a (d;, Ty)-
pretrace, TyHfg (i+1)=p(fz,(i)), from which

Dk fueli+ ) = p(faeD)
proving (i) of Definition 6. Finally, let i, j€Ig+, i=j, u¢ D" and Y€ F}*" be such that
D I——' T(fR*(i), ll)/\ _I T(fR*(j), u).

Every element of D is named by some constant of the type d*, so there is a formula
PC Fj such that D= ¥ (x, u)®(x). Now @€ F},c therefore the triplet (i, j, ®)
occurs x* times in the sequence {(/;, _]5, (Dg) ¢<x"}. Consequently there exists
an index &<x* such that i, J€lg,, PEF;,, and i=i;, j=j,, =®;. Then, by
the construction, there is a kEIRgHCIR*, ISkf] such that

Terr b ®(frp (A T0(fr,,, (k+1),

D = &(fre(k))A 1D(fre(k+1))
which completes the proof of Theorem 4.

that is,
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Axiomatic systems in fuzzy algebra

By J. DREWNIAK*

1. Introduction

One of the most interesting problems in fuzzy set theory is that of the axiomat-
ization of fuzzy algebra. At the beginning, it is necessary to note that there is not
any agreement between authors of papers what a “fuzzy algebra” really is (cf. [1],
[8], [12}, [15]). So we have different fuzzy algebras and they are useful in different
applications of fuzzy set theory (cf. [9], [14]). '

We are going to consider different systems of axioms on the set of fuzzy sets
and on the one hand — to find all common properties of different fuzzy algebras,
and on the other hand — to distinguish the characteristic properties of considered
algebras. We start with the recollection of definition of fuzzy sets in the following
form:

Definition 1.1. A fuzzy set f in a nonempty universe X is an arbitrary function

(cf. [3], 17D
£ X0, 1].

Similarly (cf. [7)), an L-fuzzy set in X is a function
i X~L, \

where L or (L, =) is a poset (partiaily ordered set), e.g. lattice or the interval of .
real axis. o

The collection of all fuzzy sets (L-sets) in X is denoted by F(X) (FL(X)) or
shortly by F.

In applications of fuzzy sets (cf. [13], [18]), another definition of fuzzy object
is needed, not in the meaning of fuzzy subset. :

Definition 1.2 ([12]). Let X and L be as in definition 1.1. Elements of the non-
empty set Z are called fuzzy objects if there exists a mapping

M: Z — F,(X). W

Function f,=M(A4) for A€Z is then named the membership function of fuzzy
object A and f,(x) for x€X is called the membership grade of point x.

* On leave from Silesian Technical University, Gliwice, Poland; Technical University of
Budapest, Department of Communication Electronics.
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We shall say that two fuzzy objects 4, B€Z are equal if
M) = M(B) (fa=1o), O
Ja(x) = fp(x) for x€X. 3

The last sentence in definition 1.2 is equivalent to the assumption that mapping
(1) is one to one (injection) and we can consider the inverse mapping

M-t M(Z)~Z. : @)

Remark 1.3. The particular case of membership function is that of characteristic
function for a subset in X. The set of all characteristic functions

Ch = Ch(X) = Fp,1y(X)
is contained in F whenever {0, 1}c L, where
0=infL, | =suplL.
Then we can obtain different relations between Cir and M(Z). For examplé
ChNM(Z)=9, Chc M(Z) or M(Z)c Ch.

In this last case we see that definition 1.2 admits not entirely fuzzy objects.

Usually in theoretic papers it is assumed that Z=F and then M is omitted
as identity function. But if we want to write for example about fuzzy statements
(cf. [1], [14], [18]), we must consider fuzzy objects different than fuzzy subsets of
the universe, and the universe can be settled different in particular cases as suitable
for applications (e.g. consider statements about age, height or weight of people).

In general we have three base sets: L, X and Z, and assumptions about one
of these sets would have consequences in two other sets. So for L=][0, 1], where
there are different algebraic structures, we have greater possibilities in construction -
of fuzzy algebra than in the case of abstract poset L. In every case we can make
use of its order by considering induced orders between fuzzy sets and between
fuzzy objects. '

Definition 1.4. We say that the fuzzy set f€F is contained in the fuzzy set
gEF if

()= g(x) for xcX _ (5)
and we write . ,
=g : (6)
Similarly we say that the fuzzy object A€Z is dominated by the fuzzy object B¢ Z if
M(A)=MB) (f4=fp) (M
and we write .
A=B. ®)

(The sign “=""in (5), (6) and (8) is used as symbol.for three different relations but
its meaning will be understood because of the context).
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Remark 1.5. Defined order is a generalization of inclusion relation for subsets

in X because in the case
Chc F and A,Bc X

inequality (6) can be written as

ey = ey
which is equivalent to 4B, where
1 if x€d, -
eA(x)_{o if x¢A. ©)

Proposition 1.6, Relation (6) introduces a partial order in F and relation (8)
introduces a partial order in Z, i.e. for every 4, B, C€Z -we have .

A=A (reflexivity), (10)
A=B and B=A4 imply A=B (antisymmetry), (11)
A=B and B=C imply A=C (transitivity). 12y

We omit the simple proof of this proposition and we consider only the case
of antisymmetry (11) of relation 8). If 4, B, C¢ Z and

A=B and B= 4,
then by definition 1.4 from (7) we get
fa=fs and fp=f,,

fD=H) and =L for xeX. (3

For every x we have f,(x), fpg(x)€L and in virtue of antisymmetry in L, (13) imply
(3), i.e. (2). Now by definition 1.2 we get 4=B which proves (11).

This property cannot be proved if the mapping (1) is not injective which makes
this part of proof more interesting.

After proposition 1.6 we can say that F and Z are posets when L is a poset.
Obviously beside the case of singleton X there are incomparable functions (elements)
in F even then, when L is linearly ordered. So we do not have a generalization of
proposition 1.6 to the case of linear order. We can look forward to properties typical
in lattices under suitable assumptions about L.

In the structure of fuzzy objects we have greater variety of possibilities, because
card Z can be small in comparison with card F. So it is possible that all considered
fuzzy objects are comparable and M(Z) forms a chain in poset F. It seems that
in applications of fuzzy sets we obtain the situation described in proposition 1.6
in more natural way than definition 1.4 (cf. [16]). First we have certain dominance
relation in the set Z and then we need a function M in (1) such that (8) implies (7)
for-every A, BEZ. But the result is the same.

Now let consider an algebraic operation in the set of fuzzy sets or in the set
of fuzzy objects, i.e. ) -

‘ u: F"~F or v:Z2"~2 (14)

i.e.

for fixed n=1. Such operations in an ordered set can have the following properties:
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Definition 1.7 ([5), Chapter 1): We shall say that an operation u is isotone (anti-
tone) if the inequalities
fi=g for i=1,2,...,n (15)

u(frs oo f) Sulg ng) (u(rs o0 8) = ulh, 0 1) (16)

fOl' CVCl'y (.fls ’.f;l) (gla -~->gn)EF" N
Operation u is monotonic if it is isotone or antitone.

imply

We are interested in transferring of operations from one base set to the other.

Definition 1.8. Let one of the operations (14) be given. We say that the opera-
tion v: Z"—~Z is induced by the operation w: F"—F to the domain of M 1f
u: M(Zy'—~M(Z) and v is defined by (see (4))

U(Ala ceto n) = B (u(M(Al), crs M(An))) (17)
for 4,, ..., A,€Z.

We say that the operation u: M(Z)'—~M(Z) is induced by v: Z">Z to the
codomain of M if u is defined by

' U(frs s o) = MEM (D, - ML) (18)
for f,, ..., f,LeEM(Z).
The algebraic fact described in definition 1.8 can be repeated as (cf. {4]).
Corollary 1.9. If the operations u: M(Z)"~M(Z), v: Z"~Z satisfy (17) then
M is an isomorphism between the algebraic structures (Z, v) and (M (Z), u). o
Now from the known property of isomorphism we get (cf. [4]).

Proposition 1.10. The operation induced in the domain or in the codomain of
an injection has such algebraic properties as the initial one. '

We prove also’

Proposition 1.11. The operation induced in the ordered domain or codomain
of a monotonic injection by monotonic operation is also monotonic.

Proof. We prove only the first part of the proposition because the codomain
of M is the domain of M~ (see (1)) and we can omit the case of the codomain.
Let u be isotone, i.e. (15) imply (16). Assume that

A;=B; for A;,BeZ, i=1,..5n, (19)
and put
: fi= M(A,) &=MB), i=1,..,n (20)

Now if M is also isotone as in definition 1.4, then from (8) we get (7) and from (19)
and (20) we get (15). Therefore from (16) and (20) it follows

w(M(Ay), ..., M(4,)) = u(M(B), ..., M(B,)

and both parts of this inequality belong to M (Z) under the conditions of definition
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1.8. But the inverse M ! of the isotone mapping M is also isotone and we obtain
M (u(M(4), ..., M(4,) = M (u(M(B), ..., M(B,),
v(4dy, ..., A) =v(By, ..., B)

in virtue of (17). Thus the operation v is also isotone and monotonic.

If u or M is antitone then very similar argumentation finishes the proof.

Now we can see that the algebraic structure can be transformed only between
Z and M(Z) if M(Z)=F. We cannot use definition 1.8 if the operation u does
not introduce any substructure into M(Z) (if the set M(Z) is not closed under

operation u) Also if v is given we obtain a new structure only in M(Z) but not
in F. Thus the general assumption M(Z)=F and even Z=F can be very useful
" (and it is often used).

Another situation is between F and L. Every algebralc operation in L induces
a similar operation in F (cf. [7]) but inverse transferring is impossible. None of
the operations defined in F can be transformed to the set L independently of x€X
(obviously if we omit all operations just induced from L to .F).

So if we do not assume any algebraic operation in L we cannot induce a unique
algebraic structure there similar to the considered one in F (different possibilities
can be considered if we restrict all f€F to a fixed point x,€X).

At that stage we can give the most general statement about the meaning of
the phrase “fuzzy algebra™. !

Definition 1.12, By a fuzzy algebra (algebra of fuzzy sets, algebra of fuzzy ob-
jects) we mean every algebraic structure in F or in Z such that

: (%) every its operation is monotonic (deﬁnmon 17) in the ordered structure
induced from L (definition 1.4).

A fuzzy algebra is named “ordinary’”’ one if the following assumptions are
fulfilled (cf. remark 1.3):

(% %) O0=inf L€L, 1=sup LEL, ChCM(Z)

(% % %) every its algebraic operatlon restricted to Ch is identical to one of
the set-theoretical operations as union, intersection, difference, complementation
or symmetric difference. :

In the contrary we speak about ‘“‘special” fuzzy algebra.

Condition (%) can be written in a weak form under the assumption that the
operations are monotonic in each variable separatively, but if we consider only
unary operations or binary associative operations then it is equivalent to () (cf. [5],
Chapter 1). Assumption about L in (% %) is equivalent to boundedness of poset

. L. At last assumption (* % %) guarantes that the considered algebra is a generaliza-
tion of certain part of the set algebra.

Now we can overlook different papers regardmg the fuzzy set theory and con-
sider different further assumptions accepted in the fuzzy algebra. We select only
a few papers which are principally concerning about operations and axioms of
fuzzy algebras.
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2, The first definition of Zadeh
I think it is forgotten now that Zadeh [17] has given a very simple argumenta-
tion for introducting his “max’ and “min” operations. He writes that intuitively

'Z1 the union of two fuzzy sets is the smallest fuzzy set containing both these
sets; N

Z2 the intersection of two fuzzy sets is the largest fuzzy set which is contained
in both these sets.

It is a definition as natural as possible, because in the order structure it is
equivalent to the definition of union and intersection in the set theory. For the case
L=[0,1] Zadeh [17] proved that Z1 and Z2 are equivalent to “max” and “min”
operations in F. It is usually proved in the lattice theory (cf. [2]) that operations
of supremum and infimum for subsets containing only two elements are equivalent
to the lattice operations V and A. So Zadeh’s definition and proof can be used in
every lattice and we have

Theorem 2.1, If L=(L,V, A) is a lattice, then Z1 and Z2 are equivalent to
fVg=sup{f,g} and fAg=inf{f g} for f gcF, 2n

' (f Vg)(x) = sup {f(x), g(x)} = f(x)V g(x),
(fAg)(x) = inf {f(x), g(x)} =f(x)\g(x)
for x€X.

The following result is from Brown [3].

where

(22)

Theorem 2.2. If L is a lattice, then F with operations (21) is a lattice, too.

As we remarked above, the operations (21) can be reduced to the set-theoretical
operations whenever 0, 1€L (see (* %)), they are also monotonic and we have

Corollary 2.3. If L is a lattice with 0 and 1 then the operations (21) introduce
in F an ordinary fuzzy algebra which is a lattice algebra.

If the lattice L is nonbounded (which is possible only for infinite lattices —
cf. [2)) then the operations (21) introduce in F a special fuzzy algebra which is a
lattice algebra, too.

This corollary stressed the importance of assumptions about the poset L in
definition 1.12. Under additional assumptions it is possible to consider further
lattice properties (distributivity, completeness) or even continuity of operations (21)
in the interval topology (cf. [7]), but we have not any further problems why the
union and the intersection of fuzzy sets has form (21). (I think that none in the world
has examined why the set-theoretical sum is the “sum” but it is not a “‘composition”
of sets, because it was so named and that is all.) Obviously we can introduce many
other operations which will have other names and will compose other fuzzy algebras.
For example Zadeh [17] proposed other operations as the complement 1—f, the
arithmetic product fg, the arithmetic sum f+g—fg, and the absolute difference
1/—g|, which can be considered for arbitrary f, g€ F in the case L=[0, 1]. All these

- operations will be reduced in L={0, 1} to the ordinary set-theoretical operations
and thus form in F different ordinary fuzzy algebras. There were also defined the
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sum f+g and the convex combination if+(l —h)g, which cannot be reduced to
ordinary set-theoretical operations and so they form special fuzzy algebras. We
do not consider more precisely all these algebras because of the great literature
on the case L=]0, 1] (e.g. almoust the entire book of Kaufmann [10] treates the
case L=[0, 1)).

Now remains the problem, what we can say about an ordinary fuzzy algebra
if L is not a lattice.-In this case we cannot use the natural definitions Z1 and Z2,
because it is possible that the needed elements do not exist in F.

If we want to preserve as much as possible from.the definition (22) in a bounded
poset L, we can use the following extension of the lattice operations:

sup {f(x), g(x)} if supremum exists,

(Vo = P16 86 o)
(FAE) = {i)nf f){l(l);)r’w%s(z)} if infimum exists, 2

These operations are idempotent and commutative and also can be reduced to the
set-theoretical operations in the case - L={0, 1}. Unfortunately operations (23)
and (24) are not associative what is illustrated by

Example 2.4. Let
= {(0,0), (0,1/3), (1/3,0), (1/3,2/3), (2/3,1/3), (2/3,1), (1,2/3), (1, )}
be the poset with partial order induced in Cartesian product. It is bounded and
0=(0,0), 1=(1,1) but it is not a lattice, because e.g. sup {a, b} and inf {q, b} do
‘not exist for
a = (13, 2/3) b=(2/3,1/3), ¢=(1,2/3), d=(0,1/3).

By (23) we compute :
aVb=1 and bVc=c
so '
(aVb)Vec =1 and aV(bVc)=aVc=c#1.

Similarly by (24) we get
(aAbD)Ad =0 and aA(bAd)=d #0,

thus none of these operations is associative and in consequence they are not very
interesting as algebraic operations. Moreover operations (23) and (24) are not
monotonic in the poset L because we have

. b<c¢ and d<a
and simultaneously

aVb=1=aVc=c¢ and bVd=b<bVa=1,
aAb=0<aAc=a and bAd=d=bAa=0.

Therefore operations ‘(23) and (24) do not form any fuzzy algebra in F and it is
not a simple way to introduce a fuzzy algebra in F if L is not a lattice.

6 Acta Cybernetica
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Another problem related paper [17] brings the definition of the complement
of the fuzzy set. Namely, the natural meaning of the word “complement” in the
set theory is “the smallest set in the universe which in the union with the given
set makes the universe”, or it means “the greatest set in universe disjoint with the
given one”. So independently of Zadeh’s definition .

Z3 the (arithmetic) complement of a fuzzy set is the arithmetic complementa-
tion of its values to 1 in L=[0, 1].

We can consider two other definitions

Z3’ the (umon) complement of a fuzzy set is the smallest fuzzy set which in
union with the given set makes ey (see (9));

Z3” the (1ntersect10n) complement of a fuzzy set is the greatest fuzzy set dlS-
joint with the given set.

We propose to name these three complements by arithmetic, union and inter-
section complement, respectively. It is evident that definitions Z3" and Z3” can be
used in the case of complete lattice L while the definition Z3 can be extended to
the case of complemented lattice L. However, the use of definitions Z3” and Z3”
is a little confounding because as complements we always obtaln the elements of
Ch (see remark 1.3).

3. The axiom system of Bellman and Giertz

Many authors find the paper [1] very useful (cf. [6], [8], [16]), so we too are
going to use it. The paper treates the naturality of Zadeh’s “max” and ‘“min”
operations. We have already remarked above that it is a hard work to add something
interesting to Zadeh’s own argumentation in Z1 and Z2. We give here a short
review of this new argumentation from paper [1].

Let Z denote the set of fuzzy objects named “fuzzy statements”. Then the
existence of two binary operations “and” and “or” is required, but we have not
exact information about mapping (1). Thus it is impossible to consider the induced
operations (18) in the set of membership functions. Authors in [1] could not use
a definition like definition 1.8 and introduced operations in F by system of axioms.
They assumed that P, S: F2—F are such that (we use different notation)

Saanas =P f8)s [aorn =S(fus /) (25)
for every A, B€Z and its dependence on the membership functions can be described
by 4

P(f, 8)(x) = p(f(x), g(x), S(f,8)(x) = s(f(x), g(x)), (26)

where functions
pss: [0,17 ~[0, 1]

fulfil the following system of axioms:

BG1 p and s are nondecreasing and continuous in both variables;

BG2 p and s are symmetric (p(x, »=p(y,x),s(x, p)= s(y, x));

BG3 p(x, x) and s(x, x) are strictly increasing in x;

BG4 p(x, y)=min (x, y), s(x, y) =max (x, y);

BGS p(1, D=1, 5(0,0)=0;

BG6 logically equlvalent statements have equal fnembership functions (grades).



Axiomatic systems in fuzzy algebra ' 199

Further they deduced from this axioms the system of functional equations for
functions p and s, and they proved that this system of functional equations and
inequalities (see BG4) has a unique solution

P(x9 y) = min (X, ,V), S(X, y) = max (xs .V) for x, yé[O: 1] (27)

The mentioned system of equations and inequalities was discussed in details
in Hamacher’s paper [8] and in Kéczy’s dissertation [11] and we do not want to
say any more about it. However, we devote a little time to the consideration of
the above BG1-—BG6 axioms.

1 think that for the consequences of the prescribed axiom system almost all
depends on the meaning of BG6. We show that it is difficult to find a correct meaning
of BG6.

First, let us suppose that operations “and” and “or” fulfil in Z the propositional
calculus of conjunction and disjunction. Then we have e.g.

“A and B” is equivalent to “B and A”,
“A or B is equivalent to “Bor 47,
“A and A4 is equivalent to “A4”,

“A or A” is equivalent to “A4”

for arbitrary 4, B€Z, and we can omit axioms BG2 and BGS5 as implied from BG6.
Moreover we can write .
plx, x)=x, sx,x)=x for x€[0, i] (28)
and it is more interesting because of
Theorem 3.1. If the functions p, s: {0, 1]2—[0, 1] fulfil BG4, (28) and
p and s are nondecreasing in both variables, (29)
then we obtain (27). '
Proof. Let x,y€[0,1], x=y. Thus from (29) and (28) we get

x=pxx)=pxy)=p(».y =1y

x=506x)=s(x,y)=s(y,y)=y
and therefore '

p(x,y) = min(x,y), s(x,y) = max(x,y).
This together with BG4 proves (27). '

This short theorem contains more informations about “max” and “min”
operations than all information contained in paper [1] because we use exactly only
axiom BG4 and our assumption (29) is weaker than BGI, and assumption (28)
is a very special case of BG6. It seems, we must be very satisfied because of this
great reduction of the axiom system BG1—BG6. However, we are not satisfactory
because of the unnatural assumption BG4. Namely, assumption (29) is equivalent
to condition (%) from the definition of fuzzy algebra (see definition 1.12) and if
we omit (29) we can obtain an algebraic structure different from the fuzzy algebra
(cf. example 2.4). Assumption (28) can be admitted as a natural extension of this
law from the algebra of sets and we cannot say anything similar about BG4.

6.
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1t was only the first part of our consideration of axiom BG6. If we admit a part
of propositional calculus in Z we can ask why not admit the whole propositional
calculus in Z with all operations used in logic. Thus axiom BG6 can be understood
as the assumption that Z is a Boolean algebra of fuzzy objects and then it can be
supposed that paper [1] is devoted to transferring of this algebra on the set of
fuzzy sets.

We have remarked after proposition 1.11 that the structure induced in M (Z)
can be different from that in F (obviously in the case M(Z)s<F). However, there
is assumed here the transferring of the Boolean algebra on the whole F, what is
impossible in the case L=[0, 1] (it is possible if L is a Boolean algebra, cf. [3]).

The last remark about axiom BG6 has moral meaning. It is not right to sup-
pose that “fuzzy statements™ are “logically equivalent” in the same manner as
logical sentences are in the propositional calculus. If there are “fuzzy statements”
they can be totally unlogical and it is the main reason of the different “fuzzy” in-
vestigations.

4. Hamacher’s axiom system

Paper [8] contains a very interesting method of the generalization of the set-
theoretical operations but two things make reading difficult:

a) many proofs are omitted without a hint, how or where they were obtained;

b) lack of the list of references (in my copy).

The author creates the following system of axioms for two operations
D, s: [0, 1*~[0, 1] (we change notations):

H1 p and s are associative,

H2 p and s are continuous,

H3 pin (0, 1] and s in [0, 1) are injections in both variables, .
H4 p(x, x)=xox=1 for x€(0, 1] and s(x, x)=x«<x=0 for x€[0, 1).

These axioms are considered independently for p and s and both operations
form certain semigroups in the intervals from H3, respectively. Axiom H3 with
continuity H2 gives strict monotonicity of p and s in both variables and these to-
gether with H1 imply that (cf. [5]) p and s are strictly increasing in (0, 1] and [0, 1),
respectively. 1t is a stronger property than (%) in definition 1.12 and stronger than
in natural models of those operations for L=1{0, 1}. Thus the author must ex-
clude certain boundary points in H3 and H4. It is noted in [8] that H3 admits only
one idempotent case

p(x,x)=x in (0,1 and s(x,x)=x in [0,1).
In this situation axiom H4 is equivalent to the assumptic;n that for functions
P.(x) =p(a,x) in (0,1] (30)
sp(x) = s(b,x) in [0, 1) 3D

and

there exist such a=1 and b=0 that suitable functions p, and s, are surjections.
Indeed we have
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Lemma 4.1. Under assumptions H1—H3 if there exists u<1 such that

p(u, ) = u, (32)

then none of the operations (30) is a surjection.
Similarly if there exists v=0 such that

s(v,v) = v, (33)
then none of the operations (31) is a surjection.
Proof. Because of the unicity of the idempotents for both operations we have-

p(1, ) =1 and s5(0,0) =0
and therefore

p(l,) <1 and s(0,0)=0.
Thus by monotonity

px,y) =p, 1) <1 for x,y€(0,]1]

s(x,y) = 5(0,0) =0 for x,y€(0,1).

and

Therefore none of the functions (30) or (31) obtain the value p(x, y)=1 or s(x, y) =0,
respectively, and none of them is a surjection.

It is a strange situation, because in paper [8] one theorem tells that every idem- -
potent for operations p or s is an identity element and this implies the mentioned
unicity of idempotents. But every identity element forms the identity bijection
and we get

p(x)=x for x€(0,1]

from (30) and (32), and also
' s,(x) =x for x€[0,1)

from (31) and (33). This contradicts the thesis of lemma. Thus the assumptions
u<1 and v=0 are not fulfilled for any «€(0, 1] and v€[0, t). Therefore we have
proved

Lemma 4.2. Under assumptions Hi-—H3 if « fulfils (32) then u=1, and 1f
v fulfils (33) then v=0.

This result is not else than the first implication in axiom H4. Thus we can assume
only the second implication from H4, i.e. '

p(,)=1 and s5(0,0)=0
and it is exactly axiom BGS from paper [1]. Now we have

Theorem 4.3, The system of axioms H1—H4 is equivalent to the system of
axioms H1-—H3 and BGS.

Our consideration about lemma 4.1 brings one more result, because of the
mentioned equivalence between idempotents and identity elements and thus axiom
BGS (under assumption H1—H3) is equivalent to

H4 p(l,x)=px, 1) =x and s(x,0) =s5(0,x)=x for x¢|0,1].
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We have

Theorem 4.4. The system of axioms H1—H4 is equivalent to the system of
axioms H1—H3 and H4".

A great part of paper [8] contains considerations about the class of functions
fulfilling axioms H1—H4. We remark here only three results:

a) every function

p: [0, 1 —~[0,1] (34)
fulfilling axioms H1—H3 has the form
p(x, ») = f(f(0) +£(»)) (35)

with the continuous, monotonic real function f defined in [0, 1];

b) every rational function (34) fulfilling axioms H1—H4 has the form

dxy
a+({d—a)(x+y—xy)

p(x,y) = (36)
with suitable constants a and d.
¢) if function (34), fulfilling H1—H4 is a polynomial then
p(x, y) = xy. €y
At first we use formula (35). Let a=0 and

f(x) =x* for x€[0,1].
We get

p(x, y) = (x* 4y
and it indeed fulfils axioms H1—H3 but the function
p: [0, 1]2 - [0, 2/

is different from (34) and it does not fulfil H4. Thus formula (35) admits operations
over our interest. So we put a question:

I Is there any assumption about function f, under which every function (35)
is of the type (34)? ‘
~ We put

Xy
(2 _ xa__ya + xaya)l/a

p(x,y) = for x.y€[0,1], a=0. (38)
and now it is a good example of irrational functions fulfilling the system of axioms
H1-—H4. We also ask:

II. Does exist a finite-parametric formula for the class of all functions (34)
fulfilling axioms H1—H4?
At last put a=1 in (38). We get

o
p(x,y) =

2—x—y+xy (39)



Axiomatic systems in fuzzy algebra 203

and it is example of rational function which fulfils axiom system H1—H4. We
could find it between rational solutions in (36).

At the finish of this part, we remark that using formulas (25), (26) we obtain |

Corollary 4.5. Functions (34) from class (36) introduce in F an ordinary fuzzy
algebra which is a commutative semigroup with identity.

It is also interesting, that under assumptions H1—H4 Hamacher proved the
inequalities similar to BG4 with strict inequality.

5. The axiomatic system of Kéczy

The papers [12] and [13] contain the reachest system of axioms of fuzzy algebra.
We have used these papers in many places in our introduction, and our definition
1.2 is exactly the first axiom of paper [12]. Thus all our considerations are made
in terminology of paper {12]. Now we rewrite the other axioms from this paper.

K2 card Z=2 and (Z,V,A,’) is algebraic structure with operations
V:Z2~Z,N: 22~Z and ": Z—~Z;

. K3 there exist an element 0¢Z called zero and the operations in Z fulfil

AV B =BV 4, , (40)
(AVB)VC = AV(BVC), : (41)
- A" = A, : : (42)
AVO=4d, AANO =0, ‘ (43)
(AVBY = A’AB’ _ (44)

for every A, B, C€Z;

K4 under order induced in F from L (see definition 1.4) mapping (1) fulfils
(here fy=M(A4)): A

fe=fy for P=(AAB)V(AAC)#0, Q=AANBVC) =0, (45)
fe<fy for P=(AVB)A(AVC) # 0, Q= AV(BAC)#0, (46)
favs=>fa for A#0, B#0, ' 47
fang<fa for A0, B=0, (48)°
Ja—Te=fa— 1o (49)

-for arbitrary A4, B, C€Z;

K4’ under order in F it is assumed that

fava=f4 for A0, 40, (50)
fapa<fa for A#0, 420, (51)
Java = fove it fa=>f3, (52)
Jara=forp Wt fui=fp (53)

for arbitrary A, B€Z;
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K5 there is admitted at most one solution U for every of the equations
AVU=B (A4,BeZ, A =0), (54)
ANU =B (4,B€Z, A #0); (55)

K5’ there is assumed exactly one solution U for every of the equations (54), (55);

K6 L is a interval of real axis and (cf. notation (25), (26)) ,
Sans = p(fa, f8), fave = s(fu, f8): fur = c(f)), (56)

where functions p,s: L?—~L and ¢: L—~L are continuously differentiable.

It is possible that this is not the final form of Kdczy’s work upon axiomatization
of fuzzy algebra. The form presented in papers [12] and [13] has some reticences.
For example in fact it is not precised what kind of order is considered in F (we
wrote in K4 our supposition only) and it is also not precised, what kind of con-
tinuous differentiation is possible in L (and we suppose that L is in the real axis).

Now we precise some consequences of the above axioms.

Proposition 5.1. Under assumptions K2 and K3 the operatlon A has the following -
“dual” properties:

AANB = BAA, _ (57)
(AAB)AC = AN(BAC), (58)
ANI = A, AVI=1, 59
(AABY = A’V B’ (60)
for arbitrary A4, B, C€¢Z, where
1=0. ©61
Proof. Let A, B,C¢Z. From (42) and (44) we get _

AV B = (AVBY = (A/\BY. (62)

First we prove the “dual” formula

AAB = (4'VBYY (63)
Indeed, it follows from (42) and (44) that ' '
» AAB = A"AB” = (4YANB’Y = (A’VB’Y.
Now using (42) in (63) we get (60):
(AANBY = (A'NB')’ = A’V B".
(63) and (40) gives now (57):
AAB = (A’VB'Y = (B'VAY = BAA.

In a similar way from (63), (60) and (41) we get

(AAB)AC = ((AABYNC'Y = ((A'VB)NC'Y =

= (A'V(B'VC')Y = (4'V(BAC)Y = AN(BAC),
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which gives (58). Now from (42) and (61) we have

I'=0. (64)
By (61)—(64) and (43) we obtain '

AN = (AN TY = (A'VOY = 4" = 4,
AVI= (LAY = (4'NOY =0 = I,

which completes the proof.
Immediately from (43) and (59) we get

Proposition 5.2 (ldempotent and absorption cases). Under assumptxons K2 and
K3 we have
0vVo =0, 0A0 = 0,

v INI=1, IN =1,
AV(ANO) = 4, AA(AVO) = AAA,
ANAVT) = A, AV(ANT) = AV A,
OV(OA4) =0, O0A(VA) =0,

. INIVA) =1, INUNA) =1
for every AcZ.

Proposition 5.3. Under assumption K2 and K4 or K4’

a) Z contains only two idempotents 0 and 7,
b) if card L=2 then card Z=2.

Proof. Case a) is a consequence of strict inequalities from (47), (48), (50)
and (51).

If card L=2 then L can be considered as Boolean algebra and then F is a
Boolean algebra, too (cf. [3]). Then every element of F is a idempotent of both
binary operations and (by homomorphism M) every element of Z is an idempotent.
This together with a) ends the proof
Our considerations of axiom system K2—K6 will be continued in further
papers. :

6. Conclusion

The axiomatic method of the introduction of fuzzy algebra has great meaning
in the development of fuzzy set theory, obviously if the axiom system admits a
broader class of operations as it was done e.g. in papers [8] and [12]. In the contrary,
if the axiom system is constructed for the purpose of characterizing one given opera-
tion as in paper [1], it would have greater meaning in the theory of functional equa-
tions then in fuzzy set theory.
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The interesting direction in considerations of different fuzzy algebras brings
papers [9] and [16] where it is proved that different fuzzy algebras can be useful
for different applications.

I am very indebted to Dr. L. T. Kéczy for his advices and help in my con-
siderations on fuzzy algebras and in preparation of this work.
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Priority schedules of a steady job-flow pair*
‘ By J. TANKG

The priority schedules are discussed for a steady job-flow pair defined in [5]
as a non-finite deterministic model of servicing invariably renewing demand series.
Though these schedules are not dominating with respect to the utilization of the
servicing processor, they are very important in practice. A method is defined for
reducing the problem of evaluation of the schedules to the evaluation of simpler
ones. The method is based on the reduction of the configuration constituted by
the demands of job-flows. The reduction is a generalization of the Euclidean algo-
rithm of the regular continued fraction expansion. For some configurations the
reduction procedure does not prove to be finite or the evaluation procedure of
the schedule of the reduced configuration is not known to be finite. For some of
these configurations direct ’evaluation methods are given.

1. Introduction

In an earlier work [5] the problem of scheduling steady job-flow pairs was
defined as scheduling the processor triple #={P, Py, Pp,} to service two series
on={C;, j=1,2,...}, i=1,2, of task pairs C;;=(4,;, B;;) demanding service
of time 7;=0 and $;=0 from the processor P, and Pp;, respectively. The -series
0 is a steady job-flow with parameters n;, ; as renewing demands for processors
P, and Pg;. The steady job-flow pair is characterized by the values of the four
parameters Q=(1,; 9,; 1,; 32) called configuration. The space 2 of configurations
is the non-negative sixteenth of the four-dimensional Cartesian space.

We use below the following notations:

G=mS, =12 =, 9= 9,49, 90 =T, i=1,2
A schedule is a unique determination for 7=0 of which tasks are serviced
at the moment ¢ by which processors. The demands for the processor P, can be
conflicting. The schedule can be considered a decision process by which the con-
flicting situations are resolved and the normal continuation of service can be broken.
An important class of schedules is the set of non-preemptive schedules in which

* This article reports on some results of a study of the author supported by the Computer and
Automation Institute of the Hungarian Academy of Sciences.
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the service of any task cannot be preempted after starting until it finishes automat-
ically. These schedules were discussed in the article [5]. A relatively simple algo-
rithm was given to determine the optimal schedule.

The efficiency measure of schedules is the utilization of the processor P,.
Formally, the efficiency of a schedule R is defined by the limit

)(t)

YR = ]lm M

where A(t)=4(0, ?) is the P -usage in the interval (0, ¢). The algorithm for choosing
an optimal non-preemptive schedule is based on the method of reducing the con-
figuration which is a generalization of the well-known Euclidean algorithm of the
regular continued fraction expansion. The determination of the optimal schedule
takes place by the full evaluation of the elements of the dominant set of the con-
sistent natural schedules with maximum number six. Only one reduction has to
be executed. The amount of the necessary computation is well bounded and es-
timated.

For the preemptive schedulmg in which preempt-resume is permltted another
set, the consistent economical schedules, is a dominant set but it is not so nicely
bounded as the set of consistent natural schedules [6). The criteria of finiteness and
bounds for the cardinal of the set are not known. Neither optimal strategy nor
a smaller dominant set of schedules is known. It is shown [6] that the priority sched-
ules are not optimal either. Since the only general method for determining an op-
timal schedule is the full evaluation of this dominant set the optimization pro-
cedure is uncontrolled.

Though the priority schedules are neither dominant, nor actually of better
efficiency than the non-preemptive schedules in general, they are of great practical
importance because of their simple scheduling rule. In a priority schedule one of
the job-flows has priority versus other(s) which means that it is serviced in the
moment it needs the processor. If the processor is busy by servicing another job-
flow, the service will be preempted during the service of the priority job-flow-task
and resumed after that. For job-flow pairs there are only two priority schedules
according to job-flows Q™ and Q® as priority ones. In [6] the priority schedules
were denoted by R, . and R, ;, accordingly. In the schedule R;;_; (i=1,2) the
job-flow QW is scheduled without preemptlon and delay as when the _]Ob -flow
Q®-" were not present at all. The service of Q-9 on P, takes place only in the
intervals the P, is free from servicing Q). The priority schedules R; , and R, ,
of the configuration Q=(1; 3; 5; 7.5) are illustrated by Gantt-charts in Fig. L.

The priority scheduling of the stochastic version of job-flow pairs was studied
by ArRATO [1] with diffusion approximation and by Tomko6 [7].

For the schedules R, , and R21 are symmetric in the role of the job-flows
QM and Q®, every fact concerning R, ,(Q) becomes a fact concerning R, ,(Q)
if Q is the conjugate configuration of Q defined as

0= (T 3 a3 3) = (23 325 115 90)-

This is why we need not word definitions and theorems depending on .the order
of the job-flows for both orders, only for the order Q, O?,
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The Gantt-charts of the priority schedules

R,

In section 2 below we define first a method for reducing configurations Q€2
into simpler, reduced configurations Q*¢€ 2. The reduction takes place by the itera-
tion of an operator 4 to the configurations Q,=4"Q until a fixpoint Q*=4"Q
called reduction of Q is reached. We show the relationships between the parameters
of 9, and Q,,n,m=0,1,2, ...,nsm. These remind one of the relationships
known in the theory of continued fractions [4].

~ In paragraph 3 we show the connections between the characteristics of the
schedules R,,(0Q,) and R, .(Q,), n=m. This provides means to determine the
characteristics of R, ,(Q) from the characteristics of R; ,(Q*).

Section 4 surveys the configuration space 2, the reduced configurations in-
cluded, and give answer to the Question whether R, »(Q) is periodic and what are
its characteristics in different domains of 2. The domain .0<tj <t} remains un-
answered in this section.

Section 5 is dealing with the above domam The perlodlcnty of Ry, 2(Q ) is
not cleared for the whole domain only for some parts of it. An algorlthm is given
for evaluating R, ,(Q*) if it is periodic.

In section 6 we shall briefly deal with the connection between the 4;-reductions
defined in section 2 and %;-reductions given in the article [5]. Also some reference
is made to the analogy between the A-reduction and the continued fraction ex-
pansion algorithm.

Section 7 reviews the configuration space 2 from the point of view whether
the “Question” of periodicity and evaluation is answered or not, and by which
theorem, if it is.

2. The method of A-reduction

The transformation of configurations defined below as A4-reduction enables
us to reduce the investigation of priority scheduling of some configurations to
one of other configurations. This method is analogous to the reduction method
applied for non-preemptive schedules by means of an operator 2 [5].

The operator A4 defined below is the 4, from the two operators 4;, i=1, 2,
in the application of which the roles of Q" and Q® are symmetrical. We shall -
see later that the operator 4; is connected to the priority schedule R;;_;, i=1, 2.
The index 1 of 4, is omltted in the notation 4.
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Let the operator A be defined for any configuration Q€2 by the relationships
between its parameters and the parameters of the configuration Q0=40=
=(; 81; #.; 9,)€2. The parameters of ( are defined by the relations

(@ fHh=m

(b) 9, = I, 7,+ 8, where
I, =0 is an integer and 0= §, <1, if 7, >0,
L=08=9if1,=0,

(©) 1 = k.8, +7, where 2
k, = 0 is an integer and 0 < 7, = J, if 7,3, > 0,
k2:0 fla = Ny if 7,8, =0,

(d 9, = lz‘tl+9 where
I, = 0is an integer and 0 = §, < 7, if 7, = 0,
l,=0,8,=9,if # = 0.

This definition shows that the operation AQ determines also an integer triple
(4, k2, 1) out of the configuration Q. This triple is characteristic of the configuration
O from the point of view of the effect of the operator 4 on Q.

If L, +k,+1,=0 then the operator A4 is ineffective for Q and 4Q=0. We
say Q that is reduced in this case. If /;+k,+1,>0 then 4 is effective for Q, AQ#Q
and at least one of the parameters of ( is less than that of Q. Therefore the operator
4 is calléd a reduction operator. The triple (/y, k,, 1) is the quotient generated by A4
applied to Q. 4 is defined for all points Q of 2, and QE.@ Therefore 4 is applicable
repeatedly to the transformed configurations and the series of configurations

QO Q’ Qn=AQn-1, n = 1’2:--'3

can be defined for any point Q of 2. Using the powers 4", n=0,1, 2, ..., of the
operator 4, we can write
0,=4"0, n=0,1,2,.... 3)

Let the series of triples generated by the series 4, 4%, ..., 4", ... be

(L) (1103 205120) (lllak219ll) (ln 1:k2n =1 2n ].)’---
and let
(A) (ll,Oa k2,0+12,0)’ (ll,l, k2,1+12,1)9 rev o (ll,n~1’ k2,n—1+lz,n—l)’ erae

These are the series of quotients. Let us define the length of (L) and (A) the index

v of the first triple for which
ll,v+k2,v+l2,v = 0

if such an index exists and v=< otherwise. Let us use the notation |[(L)|=
=|(A)j=v. If v<eo, the Q, is the first member in the sequence @y, 0,, ... which
is reduced. v is called the degree of compositeness (dc) of Q. If v<o then Q is
reducible, otherwise, it is non-reducible. If the dc of Q is O0<v-<o then

(a) ll,i+k2,i+l2,i>0’ i=0, 1,...,V—l,

(b) Il,v+k2,v+12,v :0 (4)
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and the series (L) and (A) contain exactly v non-zero members. The configuration
0*=Q, is a reduced configuration and it is the reduction of Q.

From the definition (2) of 4 we can deduce the conditions of Q* to be reduced.
By (2), (4b) will hold if

@ 0=9<1 or 7;=0 and
(b) O<ny=97 or ;9 =0 and ©)
€ 0=8 <1f.or iF=0

Conditions (5a)—(5c¢) are not independent of but include each other. The set
2*c 2 of the reduced configurations is illustrated by planes (n}, n3) fixed in Fig.
2a—d.

4o 95 Ay 49;
|

() L (@

_ m ‘(ﬁ) Ar] ﬂ m

« ( * ] 7 ‘lgs'), 9* (
m L(a)_'l L(a)_.‘zl ml 1
ns "3 1y
m=n=0 n; =0 =0
(a) (b) © @
_ Fig. 2

Illustration of the set 2* of reduced configurations

On the graphs we show the disjunct domains of configurations by the follow-
ing lemma. :

Lemma 1. The operator A defined by (2) is ineffective for Q* i.e. Q" is reduced,
iff one of the following conditions holds

(@) i1z =0

B) 111 =0, 95 =0, 0= 95 <

) 91 =>0,n3=00<9 <9 <1
©) 9fns =0, if=9F <1}, 0= 95 <1f.

Proof. In either domain of (60) —(66) every of the conditions (5a)—(5c) holds.
Conditions (60)—(63) are, therefore, sufficient for Q* to be reduced. To see the
necessity it is easy to verify that one of (6a)—(64) holds if (5a)—(5¢) are true [4]. O

(©6)

Let the number series (1) defined as Ay=1h i, Ayp1=ks i +5;, i=0,1,
The following lemma shows that no zero value in the series (1) between / o and
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ko y_1+1y,_, exists. This means that the parameters of both job-flows are reduced
in the transformation Q;—Q;;,, i=1,2,...,v—2. They are the transformations
Q,—0, and Q,_;—0Q, only in which it is possible that only one of the job-flows
be reduced: O in Q,—~Q, and QW in Q._,—Q,. This fact is expressed by the
relations concerning (4)

LozZ0, ky i +1,,;,>0,0=i<v-11,>0, 1=i=v-1, ky ,_, 4+, =0. (7)
In any circumstances, the following relations hold for i=0,1, ...:

(@) 91,i'91,i+1 = Il,iTZ,i’ T~ Tl = ll,iT2,i

(b) Ha, i = No,i+1 = k2,i'91,i+1’ Ta,i— To,i41 = (kz,i+l2,i)91,i+1+12,i'l1 3
© ‘92,i_‘92,i+1 = lz,ifl,i+1-
Lemma 2. Let

ke g+l =0, I1=0, ot I, =0, I=1,

be the first zero value after 1y o in the series (1) if such one exists. Then all members
in () following it are zeros and the degree of compositeness of Q is as follows:

incase ky o+l g =0: v=0 if L ,=0
v=1 if L ,=0,
in cases I =0: v=1 if ;=0
V:I+1 lf‘ k2’1+12,I=O, Il,I>O'
Proof. If 1} y=k, 4+15,,=0 (I=0) then Q, is reduced by definition and v=0.
If I, ;=0 but k, ;+1, ;=0, I=0, then v=1 and 9, ;,,<Ts, Ty 141="Ts ; from (2),
and, therefore, 9, ;,,<7p 14, and so I ;4;=0 and 7, ;,.=7, ;. If, however,

L r+1=0, I=1, then 1, ;,,=1; 14;. But in this case 7y ;. o=1z ;4 and 9, ;o=
=8 14+, from (2) and so Q;,,=0Q/,,. This means v=7+1. O

The following lemma shows the part of 2 in which non-reducibility is possible.

Lemma 3. To any Q€2 there exists a finite integer v'=0 for which the con-
figuration :
Qv’ = AV’Q

L 92, v =0.

is either reduced or defective with

Proof. If n,=0, there is nothing to prove. Let n,>0. If ;>0 then from
(2d) we get

B,i— e is1 = bt is1 E T i1 ZEMm >0

and, therefore, the value of 3, ; decreases at least by #,. This means that only a
finite number of positive /, ; members in the series /, o, /5 3, ... can exist and there
exists an 7,=0 so that

12,i=01 92,,':192,,'0 if l%lo
If 92,io=0 then V’:io. Let 92,io>0' if ll,i>0 then from (2b) we get

,i= 9,1 =1t =T, = 95> 0
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and, therefore, the value of 3, ; decreases at least by 9, ;. This means that only"
a finite number of posmve l,; member can exist in (4). If /;, ;. is the last positive
h,,; member then v'=i"+1 and 0O, 1s reduced. [

By Lemma 3 only the cases
md, =0 _ &)

remain questionable in regard to reducibility. The following lemma concerns these
cases.

Lemma 4. Any Q€2 w'i'th (9) is either reducible or

0, (13 0;0;0) as n— .
In the latter case .
- ‘91,”12," = O (10)

after any finite step n. This case comes true if _
7,17, > 0, 1,9, =0, 3, and 3, are rationally independent. a1

Proof. Q is reduced if 1;=0. Let now 7,>0.
If 3,=0,7%,>0, the reduction procedure will be-equivalent to the regular
continued fraction expansion of the number

3 : . .

&= T 12)
with the restriction that the number n+1 of the partial quotients [b,, b,, ..., b,]
must bé chosen odd in finite cases because n; cannot be zero by definition (2). This
choice is always possible [3]. The number of the partial quotients and the steps
of reduction will be ﬁnlte exactly when & is a rational number [3]. The reduction
results in Q*=(n,; 0; n%; 0). If (11) holds neither 9, ; nor 5, ; becomes zero in
finite steps and (10) is true. ‘

Let now 3,=>0. Then #,=0 from (9) If 3,=0 then Q is reduced Let, there-
fore, 9,=>0 as well. »

If 112—0 the reduction procedure becomes equlvalent to the contmued frac-
tion expansion of ¢ and it is finite exactly when & is a rational number. The reduc-
tion results in @*=(0; 91, 0; 0) or Q*—(O 0; 0; 83). If 9, and 7, are rationally
independent, the expansron procedure is mﬁnlte and nelther of 8,; and 9, will
be zero for finite i and (10) holds.

Let 5,=0 as well. Suppose Q is not-reducible, i.e., the degree of compositeness
v=oo, By Lemma 2 all members of (A) are positive after l; o. From (8) we can write
for any i=0:

'91,i_'91,i+1 = lr,i'fz,i = Il,i[(k2,i+,12,i)‘91,i+1+7:2,i+1] =
= max (84,1015 M2, 141> 92 14 0)-

.. If either of the parameters 9,, 15,, 9, remained bounded from below by a pos-
itive number a=0, then &; would be decreased by at least « in every step of re-
duction. After 3,/ steps 3, ; would surely become negative which is a contradic-
tion. Thus none of 9;;,7;;, 9,; could be bounded by an «>0, and Q;—~
-+(0; 0; 0; 0) if i~os. This proves (10). "

7 Acta Cybernetica
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In cases (11) we have shown that v=+ and (10) holds. But from (2) we get
91,i= %41 = b, il(ke,i 1o ) 91 i1 H 70,01t im] =

max (94 ;41,M2,i+1> V2,i41)

v

also in these cases and the parameters cannot remain bounded from below and
s0 Q;—~(m; 0; 0; O)asi—~. O

From Lemma 3 and Lemma 4 we can assert that v=< can hold only for
defective configurations for which #,=0 and for configurations for which 9,.,-=0
for some v'=0. We cannot exactly show the domains or points of 2 in which Q
is non-reducible. We know such subsets of 2 but not all such points.

The relationships below are true independently of the finiteness of v and the
relation of v and »n. These relationships concern the parameters of Q and @, and

Q,and Q,,,.
As the definition (2) of Q;,,=40Q;, we get

i =M1 i =k i9 ivrt - i
m, M,i+1 Mo, 2,iv1,i+1 T N2 i+1 i=0,1, .. (13)
91,i = ll,ifz,i+91,i+1a '92,.'= I2,iTl,i+1+92,i+1'

From the same definition we can obtain the relationship between the parameters
of 90, and Q,,, in the following form:

Hi,n = M1,0+1 :

‘91,,. = 11,n12,nn1,n+1+[11,n(k2,n+l2,n)+ 1]91,n+1+11,:1"2,n+1+11,n82,u+1

14
Noyw = k2,n‘91,n+1+n2,n+1 (14)
'92,n = Iz,n'h,n+1+Iz,nsl,n+1+92,n+1
T1,n = [l],n(k2,n+l2,n)+I]Tl,n+1+l],nT2,n+l—l],nk2,n'71 (15)

To,n = (kZ,n+l2,n)Il,n+1+T2,n+1_k2,n']1

N,n+1 = N1,n )

9ins1 = 91,n— 11, nM2,0— 11,002, (14)
Mo nt1 = _k2,n‘91,n+(ll,nk2,u+1)’72,n+11,nk2,n‘92,n

L T [Ty PR N o P P P S (T PO 3 DT P

T+l — Tl,n_ll,nf2,n

12,n+1 = _(kZ,n+I2,n)Tl,n+[11,n(k2,n+IZ,n)'+ l]TZ,n+k2,‘n '71‘

As the parameter n, is not concerned during reduction, n, ,=n,, n=0,1, ...,
and it can be separated from the other parameters.

From the relationships (14) the connection betweeén the parameters of any
two Q, and Q,. nn’, especially between the parameters of Q=0Q, and Q, can
be obtained. To make the further relationships more compact we have to introduce
some series of integers, vectors and matrices as follow.

Let (X) be the formal notation of the infinite sequence:

(X) XO, XlsX‘.!s'--’X

ny +-e

(159
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and let [(X)| be the index of the first member of (X) from which all members are
the same, if such a member exists. This is called the length of (X).

We have already defined the two series (L) and (A). The members of (Q) are
the configurations Q,=(y; 94,45 Ma,n; J2,)- The lengths of (L) (A), (Q) are the
same v, the dc of the configuration Q,=0. Let (0) be the series of the identically
Zero members with the length 0. We have referred to the series (1) the members
of which are

A Ay=hi lea=ke i+l i=0,1,...
Define also the series
k): k,=ky,, n=01,..
and
W b=k, n=01,...

We define now a set of new series necessary to writing down the relationships .
among the parameters of (Q). The definitions are recursive for 7, n=0,1, ....

(A): A =) A _+A,_, with A_,=0, A_ =1
(B): B,=AB _.+B,_, with B,=1, B_, =0
(C): Coy=Ay, Cyiy=ky;iCy+Cy_y with C_; =0
(D): Dy = By, Dyyy= ko Dy+Dy_y with D_,=0
(B): By = 2iBai_ 1+ Byi_s, Byiy1= i1 Bu+By_1tke; with
) B ,=0,B_,=0

(‘B”) Bgt - ;2|Bgl 1+B21 2> B;’l 1 )"2|+IB +B2l 1 k2,i WIth .

) B’y =1,B”, =
(D): Dy = By, Dyyy = k2,iD;i+D;i—l+k2 i with D_, =0
(D”)3 D;’, = an D;’,-H = kz,i ;,i 2; -1 k2 i with D,i1 =0

Define the following sequences of vectors and matrices for n=0, 1, ... as well.

§ = 91, + (Ba_ot1)m
o =N, nt+Din_1m . :
== »+(Bou-1—Dia_1)M (16)
=T, ntBon_am

2,n = g, ntBan_1m

eu dx Q:l Qz

7
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1 2 1 I
D . D — [ ) 21 ] — [ 1,n
s Bonsr = ddana 4 ) ™ Uit lan TonChnnt lo)+1

l . Il,n Il,n
(é+): gn,n-f-l = k2,n Il.nk2,n'*_l Il,nk2,n
I2,n Il,nl2,n ll.n12.n+l

B. A
D): D, =( 2n— 2 2n—2]
(z) = By,1 Agy_q
B?n—‘.’. A2n—2 A2n—2
(4)3 4,. = Dy, 4 Coprt1 Copx

an—1_D2n-1 A2n—1_C2n—1'“] A2n—l_C2n—l
We remark at once that

T1,0
~ ’ ~ . T30
Qo=|—Mo|=0, L= ( ] =
9 - —Tg,0
— a0 ]

and that the D-matrices can be obtained from the corresponding 4-matrices by
summing up the two last rows and omitting one of the last two equal columns.

The foregoing entities simplify the relationships between the parameters of
the members of (Q). The proof of the relationships will be automatic by means
of the relationships of the following lemma. The relationships are interesting on
their own right as well. To simplify writing we use the following determinant no-
tation: ‘

len2

a7

H,,(X, y) = o yn = xnyn—l_xn—'lyn’ h= 1’ 27 AR ] (18)

. Xn-1 Vn-1
for any two series (x) and (y). From this. definition the relation :
H,(y,x) =—H,(x, y) (19)

is trivial. (18)—(19) can be interpreted for n=—1,0 as well if the values x_,, y_,,
X_q, y_, are also given.

Lemma 5. Among the entities defined beforehand, the following relationships hold.
For i,n=-—1,0,1, ... '

H,(4,B) = (=11 (20)
(Ana Bn)’ '(An’ An—].)s (Bn, Bn—l): (An—b Bn—l) (21)
are relatively prime integer pairs*
i—1 i—1
Agisq = _Z(; (k2,j+12,j)A2j+ 1, Byyy = % (kz,j+lz.j)sz
i= ] j=

i—1 i-1 22
C2i+1 = _2; k?,jA2j’ Dy;yy = _Z(; k2.jB2j '
j= Jj=

* 0 and 1 are considered relatively prime ihtegers_.
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—~1 :
(with the definition 2 x; = 0)
j=0
B,+B, =B, Dy+D;=D,.
For i,n=0,1, ...
Hy(B,A) = Hy_,(4,B) =1
Hz:(B', A) = H2i—l(Aa B,) = 1_C2i—1
Hzi(B”s A) = HZi—l(A’ B”) = 1+C2i—1
H2i(B,’ B) = Hzi—l(Bs B,) =—Dy
H2i(B”> B) = H2i—1(B’ B = Dy,
Hy,(B", B') = H,;_,(B’, B") = Dy;_y;
A2iD2i—B2i Cy = 0, A2i—1D2i—1_B2i—1 C2i—1 = B;i—l .
Agi11D9;— Baiyq Coi = Ap;_1Dp;—By; 1 Cy; =1
Api Dy —By; Coipq = A Dy — By Co—y = By:;

if (k)=(0) then
Coiv1 =Dyir1=0, (B)=(0), (B")=(B)
(D) =(0), D3 = By;, D3y =0;
if (1)=(0) then
By = By—1, Byy1 =By, Bii=1, By, =0
Dy = Byi—1s  Diis1 = By, Dgi‘= I, Dgyy =0;

QII+1 = Q_n,n+12n; 4n+1 - 4n,n+14n Wlth DO = :Ia 40 = :I,

D—l — (A2n)"2:1+1+1 _)'2u}= (Il,n(k2,n+12,n)+1 _Il,n)
=meit — Zan+1 1 =(ks,nt+15,4) 1
Il,n(kZ,n+12,n)+l —ll,n _ll,n
=l:£+l = _k2,n 1 0
_lzyn ’ 0 1
A —A
Dn_l — ( 2n—1 2n—2]
= — By B;y—»
A2n—1 '—A2n—2 _Azn—Z
g,.'l =1—B-1 By_otl Bon-2

_B2n—1 B2n—2_1 B2n—2

(1 %F kq
Qwﬂ'l@m+a;1 0 1

Dl = (1 —ll'")( : 0)1
S (I T | G R
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(23)

24

25

(26)

(26)

27

(28)

(29
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1 00)(1 o o)1 L, L,

dpnsr=|0 1 0|}k, 1 O[]0 1 ©

B L, 0 1)lo o 1jlo o 1
1 L, —h,( 1 001 00
A42a=10 1 0 ||~k 1 0[]0 10
B 0 0 1 0 0 1J{~1, 01

The determinant det (X) for every matrix encounters above is
det(X) =1. (30)

Proof. Taking into account definition (18), we easily see (20) and (24) for n=—1
and i, n=0. The other relations (21)—(26’) can be checked for the least index
by the definitions of the entities. Using the recursive definitions of the series, we
can verify (20), (22)—(26") by induction. (21) follows from (20) because every com-
mon divisor of the pairs must divide (—1)"-! and is, therefore, 1. (27) can be
verified by executing the multiplications. The inverse matrices (28) can be verified
most simply by multiplying them with the corresponding original matrices and
using (20)—(25). The factorizations (29) can simply be checked by executing the
assigned multiplications. (30) is trivial for every matrix encountering. [J

After Lemma 5 we can now easily prove

Theorem 1. For any configuration Q€2 the followmg relationships between the
parameters of (Q) hold:

2n+1=£=1n,n+12m Qn_An n+1 xntls gn ég Q én Q (31)
Tot1= Dppians In=.__D_n,n+1In+1s 5 =D,% i=D7'%,.

Proof. The relationships in the second and fourth columns follow from those
of the first and third columns. The relationships in the third column follow from
the ones of the first column tecause of (17) and the recursions (27). The rela-
tionships of the first column are to be verified. This can be done by (14)—(15")
and definitions (16) and (D,), (4.). By (16)

gl.nﬂ = 81, p+1+(Ban+ Dy
fle,n+1 = —Ma,ns1+Dinsrm
‘gz,n+1 =—3,n41+(Bors1—Dins D
Tont1 = Tne1tBoam '
“E2,n+1~= —Ty,n+1t Bons1t-

From (14)—(15") and (B"), (D"), (16)

LA =310 lntle,n— 11,092,011, 0 Bon1F Bon_g+ 110, =
= 91,n+(B§u-2+1)']1+11.n[_'12,n+D;n-1’11]+ll,n[—92,n+(3§n—1'Dén—1)'h] =
= gl.n+ll,nﬁ2,n+ll,n‘§2,m
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) flo,nt1 = k2,n‘91,n—(ll,nk2,n+1)’72,11—'ll,nk2,n'92,n+[k2,nB;n+D;n—1+k2,n]’ll =
= Ko, u[91,n— 11,0 (e, 32, 0) + (I, n Bon—1+ Bon_a+ D)) =12, +Dpp_y 1y =
= k2,n[‘91,n+(Bén—2+1)’71]+(ll,nk2‘,n+1)[—"2,n+D;n—lr’l]+ )

+ll,nkz,n[_‘92,n+(B;n—-1_D;n-l)nl] =
= k2,n§1,n+(ll,nk2,n+1)ﬁ2,n+ll,nk2,ng2,;;,

Sa.ns1 = Lontlatlo,n 80—, nlo,ntle,n =l 1) 85,y [, BouF Bin s — Dy sy =
= Iy plm+94,n— b, n (2,0 +82,0) + (I, n Bon_ 1+ Bou_ )11l —
. _‘92,n+(B;n—1_Dén—l)r_]1 =
= lZ,n[‘gl,n+(Bé;l~2+1)'11]+11,n12,n[_’72,n+D;n——1’11]+
+(ll,n12,n+1)[—92,n+(Bén—1_D;n—1)n1] =
= lZ,ngl,n-l_ll,nlz,nﬁ2,n+(ll,nl2,n+l)‘§2,n'

These are exactly the relationship Q,,H—é,, ,,+1Q Taken into account that
T, ,,—91 . and T, ,=f, ,,+92 » and summing up the last two equatlons we get
the relatlonshlp _,,H——D nirlee O

This theorem is applicable to relate the parameters of a configuration Q and
its reduction Q% if the latter does exist.

3. The priority schedule and the reduction

In our previous article [6] we discussed the so-called consistent economical
schedules (CESs) which represent a dominant set. There also the priority schedules
were defined and shown as specific CESs. This means that the priority schedules
R, , and R, ; possess all the characteristics every CES possesses. There we illustrated
the CESs by graphs which showed the basic characteristics of the CESs such as
periodicity, the succession of the so-called typical and critical situations etc. The
specific characteristics of R; 5_; (z—l 2) is that no task type 4; can be preempted

" and, therefore, the job-flow Q®-? is always delayed whenever a cycle Cy_y; of
it finishes in such a moment when a task type 4; is under service or is ready for
service. These are the critical situations type o;_;, and o,, respectively, defined
in [6]. The delay can be 0=d,_;=#;, and after finishing the service of 4; the situa-
tion will be the same as the situation after finishing the first task 4;,. Since R;;_;
is consistent, the continuation of the servicing process after the two task-finishing
points passes off similarly. This means that R; ;_, is periodic with a period represented
by the schedule section between the two task-finishing points. If 9,>0 then the
task Az_;, begins immediately after the finishing point #/=#; of the task A4,
in Ry 3_;. This situation is called B;-situation [5, 6]. This situation returns next to
the first delay of Q®-? after #{. The B;-situation returns, however, whenever a
cycle C;_; ; finishes during the service of a task type 4; if 9i>0. If ‘9,-=0 then the
initial situation o, returns at the point ¢; immediately and, because of the-consist-
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ency, the scheduling of the job-flow Q% is repeated. The period consists then of
a cycle C; of Q1 and the job-flow Q®-? fails to be scheduled. The efficiency of
R;5_; will be y=1, the possible maximum, if 7;>0. But this schedule is by no
means acceptable in practice. R;_;; has efficiency y=1 as well if 5,>0,9,=0
unless 73_;=0. If 7;,=0 and 9;_;>0, the schedules R, , and R, , are degenerated
with a finite length and some modification of the scheduling strategy is needed to
produce practically acceptable schedules. This problem and generally the scheduling
specialities of degenerate job-flow pairs (for which 7,7,=0) were discussed in [4].
In spite of this fact we cannot keep degenerate and defective configurations (with
zero value parameters) away from further discussion because the reduction of a
nondefective configuration Q can lead to defective reduced configuration Q*.
Confining ourselves to the priority schedules R, ,(Q), @€2, which always
start with the service of the task A;;, we know that R, ,(Q) is periodic if 9,=0
or the fB,-situation returns. A period is the section of the schedule between the point
t{=n; and the first recurrence point Ty >#; of B, if 9,>0. R, , is not periodic
if 9,>0 and the recurrence point of f, does not exist. In this case Q® cannot be
delayed out of the starting delay of value 5, and the preemptions. This means that
the finishing times f(i) of the cycles C,;, i=1,2, ..., of Q®® can be written as

S = m+itg+x(Dm - (3

where x(/) is an integer depending on i, the number of preemptions of the first {
C,-cycles. (32) is valid only until the first recurrence of the f,-situation. Suppose
the f8,-situation recurs first after the g,th cycle-finishing point. The length of period
p is then the distance between ¢/, the start-point of C, ., and TY, the start-point
of C,,,,41, which consists of u, demand cycles of Q®; »,=y(u,) services of pre-
empting A,-tasks and the last delay d, of Q®, if any, ie.

p=T7—1]= laTo+2s0 + 1 (33)
where p,>0, %,=0 are integers and
0=¢=1. (34

In both points #{ and 77 a task type A, finishes and, as a result of priority,
the service of the job-flow Q) goes on continually without break and ‘delay and
an integer number of C,-cycles are serviced in the period between ¢{ and T;. Let
‘this number be denoted by y,. Thus

P=iT, (33)

where u,>0. Let us call y; and u, the cycle numbers, », the preemption number
and &, the relative delay. These are the characteristics of R, , and they are denoted
by the quaternary

I, = (115 o %25 &) (395

If 8,=0 then R, , will be periodic with p=t1,=#; which accords with (33) and
(33") if we define the characteristics as

I, =(1;0;0;1). ) (35)

Another degenerate case must be discussed yet. This is when 93>0 and t,=0.
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Scheduling this configuration with the priority' of QW the cycles C,, ; with length
0 will be scheduled infinite times after the first, 4,,, task and the further section
of the schedule R; ,(Q) is undefined. Without modification of the strategy the
obtained section of R, ,(Q) can be considered as periodic with length p=0 and
the period consists of a C,-cycle. In this exceptional case let the characteristics
of R, ,(Q) be defined as

m,,, = (0; 1;0; 0). (357

From definition (1) of the efficiency y(R) of a schedule R the efficiency of a periodic
schedule can be obtained as

®=22 (g=0y), )

where pr=0 is the length of the period of R and ax=0 is the P -usage time in
a period of R and the quotient is defined as zero if both of az and pg are zeros.

By the characteristics (35) of a priority schedule R, ,(Q) the P,-usage is com-
posed exactly from the service times of A,-tasks of number y; and from the service
times of A,-tasks of number p, and, therefore,

ay,2 = My +iaNs. ' (36)
We have proved . :

Theorem 2. If for any configuration Q€2 the priority schedule R=R, ,(Q) is
periodic then the length of the period p and the P ,-usage a can be written in the forms

P =T = faTa+(%at+E) N, 37
.G = I+ pe e, . (38)

where integers =0, p,=0, %,=0 and real 0=¢e,=1 are the characteristics

- IT = (py; o #a; &)
of R with the specialities

Qo I S &
\91 = 0, Tg = 0 0 1 0 0 (39)

Proof. After the preliminary discussion there is nothing to prove. [

Let us inspect now the influence of the reduction step defined by (2) on the
periodicity and the characteristics of a priority schedule R, ,(Q). Denote by

(R) Rn = R1,2(Qn)’ h = 01 1’ 21 [

the sequence of priority schedules of the sequence of configurations (Q).

Fig. 3 illustrates the influence of the reduction step Q,—~Q,,: on the corre-
sponding priority schedules. The transformation R,—~R,,, defined implicitly is
shown in three substeps R,—R;, R,—~R;, R, —~R,., corresponding to the sub-
steps (2b)—(2d) as transformations Q,—~Q., O.—~0s, Qi —Q,,,. This decom-
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position of the transformation Q,—Q,,, corresponds to the factorization (29)
of the matrix 4, ,;, of the transformation. The series of configurations in

Fig. 3 is Q,=(1; 15.5; 5; 7.5), Q,=(1; 3; 5; 1.5), Q,=(1; 3; 2; 7.5), Qps1=
=(1; 3; 2; 3.9). .

VA /i R W) "”///////////’4-///0// Wier N,
A—-/ - S 7 =<
iy R AR /v Iy . /. ’/’,’,’///////m/

21

._‘///////////////

TR —2 T Y~ VI I R
I- -// -_P = T .

R / <- ‘
’///////I'AV_/// m‘l/////ﬂ

ﬂ-//I////Elﬂﬂ//////yg.l

A

RAATH N1
VA 2 K778 2 V22

Fig. 3

The influence of the substeps of the reduction Q,,,=4Q,, on the priority schedule R, .

The sequence of R,, R;, R, R,., shows that these schedules are periodic
at once and the transformation Q,—0Q,.; does not influence the existence of
periodicity of priority schedules. This means that the members of the sequen’cc
(R) are simultaneously periodic or not periodic at all.

Let us introduce the following symbolics. Denote the characteristics of R, by

(n) H,, = (ﬂl,n; /-‘2.::; k2,n; 82,::)" n= 0’ 1: 2: ore
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and let the vectors y, and =, be defined as

m: u,= (Zl’"}, n=0,1,..

2,n

and let the matrices M, and M, ,,, be defined as

N Ban—s Asw-z Biu_s
(M) .A_/[n= B2n—1 A2n—1 Bén—l , h=0, 17

0 0 I
- 1 . ll,n 0
(g+): gn,n-*—l = k2,n+l2,n ll,n(k2,n+12,n)+1 k2,n ’ n= 0’ 1’ .-
: 0 0 1

Lemma 6. For the matrices %) and (M) the following relationships hold for
n=0,1, ... .

_M_n+1 = gn,n+1gn’ with %_o =£ (40)
A2n—1 _A2n—2 CZn—l
_A_ﬂ_l =|—By-1 By -2 “_Dzn—l
0 0 1
41)
ll, n(kz, n + 12, n) + I — ll, n ll,n k2, n
Moo= —(kyntls) 1 —ks,n
0 -0 1
1 0Of1 O Ojf1 4,0
A__ln,n+1 - lZn 1 0 k2.n 1 k2,n 0 1 0
0 01JLo 0 1)10 0 1
(42)
1 -4, 0 1 0 O 1 00
g_u_,iu— 0 1 Off—ken 1 —kyy L., 1 0].
0 0 1 0 0 1 0 01
The determinant det (é’ ) for every matrix encountered above is
' det(X) = 1. . (43)

Proof. (40) can be verified by executing the matrix production and using the
definitions of (4), (B), (B"). The verification of (41) is easy by multiplying the
matrices with their inverses and using (20)—(25). The factorizations (42) are ob-
vious by executing the multiplications. (43) is trivial. O

Now we prove our main result.
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Theorem 3. For any configuration Q€9 -the whole sequence (R) of priority
schedules of the sequence of configurations (Q) is periodic at once and the following
relationships hold among the members of the sequence (I1) of characteristics:

E2,n = & (44)
and
Hni1 = Q_n-}«nﬁm Ha = 2}:"+1En+1, by = Qn_TE, p= Qnﬁ (43)
Tpt1 = Azln_,rTHEm T, = gnT,nHEan n, = %Tﬁv = _AfTEn _

or n=0,1,2,..., where X~7 denotes the transpose of the inverse of matrix X°
£ P i

Proof. The second and fourth columns of (45) follow from the first and third.
The first line follows from the second because the D-matrices are the 2X2 sub-
matrices of the M-matrices as their definitions show. The relationships of the third
column follow from the ones of the first in consequence of .(27) and (40). The first
relationship of the first line of (45) remains to be proved with (44). To go on with
the proof we need the following triads.

Define

o) = [LT(I—)] and o() =f()—e(ht,, i=1,2,.. . (46)
as moduli and residua of the cycle-finishing times f (i) of Q'®.
0() =f() (modt,) and 0= () <r1,. 47)

"For the cycle-finishing times the decomposition (32) is.true until the first recurrence
of the B,-situation. Substituting this into ¢(i) in (46) we get

(i) = m+ite+x(D)m—oe@)1,. (48)

H(G) = (o), i, 1(D), i=1,2, ..

for Q are determined by the priority schedule R=R, ,(Q). We saw earlier that
the periodicity of R is true if for a finite i there exists a triad H(i) for which

0 = Q(’) = M,

because the f,-situation recurs exactly in this case. The length p of the period is
determined by the first such i and H(i) because the first recurrence point 7; of
the B,-situation is the A,-task-finishing point next f(i) which is by time n;—o(i)

later than £ (¥), that is
= f(i)+m—o().

_ p=Ti—1=[()—e@) = m+itz+x(Hn—e().
On the other hand

The triads

From this

o)1y =ity +(}((‘) +52) M
from which

e =(>-e)n and & =1—0()/n.
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We have got that R is periodic if and only if there exists a triad H(i) for which
0 = g1y = @)1, —ity— (D = 1y . (49)

Since the member of triads determined by R are monotonic with each other, there
€Xists a unique minimum i satisfying (49). Let

=00, pp=1i x=y00), &=1-0@/n (49)
with this i. Then the so defined 11, are the characteristics of R,, Mz, » is the minimum
value of i for which (49) holds for R,, ie. _

. ] 0= /‘l,n’[l,n_ﬂz,nTZ,n—%2,11’11 = 82,nn1'§ - (50)
Let us see the first substep Q,—~Q;,. Substitute from (2b) 7y ,=/ ,Ta ,+ 71 41
into (50) and we get _
0= l11,n71,n+1"(.Uz,n“ll,nﬂl,n)fz,n“%z,n’h =& 4t = M. (509
This means that .
Hr: = (lll,na #Z,n_ll,nﬂl,u’ x2,n)

is a triad for R}=R, ,(Q;) for which (49) holds. Because the correspondence
between parameters of Q, and @, is unique, H, must also be the minimum triad
for which (49) holds. This means that the characteristics of R; are

7 — ’ —_— "’ — / —
Hi,n = ul,n’ Ho n = ﬂ2,n_ll,n.ul,n, Ho,n = %2,11, Ean = 82 n-

The matrix of this transformation is the transpose of the first factor of M, 7, in (42).
Substitute now the expression #, ,=ky ,91 nt14+¥z041 from (2¢) into (50)

”

correspondingly to the transformation Q,—~Q,. We obtain unambiguously the
inequality

0= (ﬂi,u_kz,n#é,n)T1,n+1__ﬂ§,n(’12,n+1_+92,n)_(";,n_kz,nﬂé,n)'h =& M =M. (507
This means that '

HY = (uy,n—ko,nlz,ns Ho,n> X2,n— Ko, n iz, n)

is the unique minimum triad for Q; for which (49) holds and, therefore

’

“;’nzﬂin kenﬂé ns #é'n :,u;na ”;/n = %;,, anﬂé ns 8;/,, =&,
The matrix of this transformation is the transpose of the second factor of
Mo in (42).

At last we substitute the expression 9, ,,—l2 #Tint1+ 3041 from (2d) into
(50”) correspondingly to the transformation Q) -»Q,,+1 We obtain the inequality
0= (uf,n—1lz,nl3,n) Ta,nt1—Ho,nTo, ni1— Ho,nlly = &2t = 11
In consequence of the uniqueness of the transformation Q) ~Q,., and the mini-

mum triads for their R, ,-schedules we get
Hine1 = Hin—loallsns Monsr = Hans Xomt1 = Xo,ns 2,41 = Eo,n

as the characteristics of R,.,. The matrix of this transformation is the transpose
of the third factor of M, 1,, in (42). This proves the theorem. [
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Fig. 3 illustrates the course of the proof.

Theorem 3 makes it possible to determine the characteristics IT of R=R, ,(Q)
from the characteristics IT* of R*=R, ,(0*) if Q is reducible, R* is periodic and
IT* is known. The question of reducibility was discussed in the previous. section.
The characteristics of reduced configurations will be inspected in the next two
sections. :

4. Priority schedules of specific configurations

We saw in the proof of Theorem 3 that the periodicity of a priority schedule
R=R, (Q) depends on the fact whether there exists a triad H(J) satisfying (49).
This is not equivalent to the existence of an integer solution of the inequality
0=y —tete—dm =1 (5D

4

" because not every triple (u,, us, %,) satisfying this inequality is a triad defined by
(32), (46)—(49) on a schedule R, .(Q). Unfortunately, we do not know analytic
conditions for the triads instead of the fact that its elements represent the number
of C,-cycles, C,-cycles and preemptions, respectively, until the C,-cycle finishing
points of R, ,(Q). The triads and (51) cannot be used, therefore, to decide the
periodicity and determine the characteristics of a priority schedule R; ,(Q). This
circumstance raises the significance of results on characteristics for some specific
configurations Q€2 including reduced ones.

The characteristics of R, »(Q) were made clear for configurations for which
9,7,=0 in Theorem 2. We suppose that '

It =0. (52)

We can make clear the special cases in which (9), the condition #,3,=0 for
O is true. Let first 7,=0. Since Q™ do not delay the service of Q® in this case,
we can determine the condition of periodicity of R, ,(Q) as 9, and 1, are rationally
dependent. This is illustrated in Fig. 4a.

Independently of the value of 5,, we can easily determine the condition of
R, »(0Q) to be periodic for Q¢ 2 with §,=0 (but 3,7,>0"!). This condition is that

11 11 1 1
@ 212W
A 2 V774 t DA 2 YA 2

2 21h] 2 2 1
[OY/ i w—) T W] 9, =0
2 2 2 2 2

Fig.4 . :
R,,:(Q) schedules for specific configurations with 3,7,>0, 7,9, =0

-~
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9, and 7, are rationally dependent, which is the same condition as in case n;=0.
The values of the characteristics of the periodic schedule R, .(Q) are, obv10usly,
determined by the relation of 9, and 7, according to

Theorem 4. For the configurations Q€2 with
9,7,>0, Mm% =0 (53)
the priority sehedule R=R, ;(Q) is periodic iff 8, and 1, are rationally dependent. If
3 A

Sl 54
-z | (54)
with relatively prime integers A, B > 0, then the characteristics of R are
n=[B;A;f< (22 5); 1], (55)
2

where f.(x) is the greatest integer less than x..

Proof. Fig. 4 shows that p,=B, u,=A if (54) holds because (B, A4) is the least
integer solution of the equation x39,—y71,=0. Since ¢(A4)=0, therefore, ¢,=1
from the relationship (49") if #,>0 and & =1 can be considered as a convention
if n,=0. If 9,=0 then every A,-task but the first in the period is a preempting

one and, therefore xy=B—1= [ B|—1. In case n,=0 the A;; task is pre-

empting if i1,<j9;,<it,+1, for some integer i=0 (see Fig. 4a). This means that
i<j/1y<i+ny/t, and using (54) we get i<jA/B<i+n,/ty, i.e.

0<{j%}<%2-, ‘ (%)

where {x} denotes the fractional part of x. It is well known [4] that the numbers
{j4/B}, j=0,1, ..., B—1, go through the points k/B, k=0,1, ..., B—1, of the
interval [0, 1) in some order. This means that for j=1, 2, ..., B, the inequality
takes place as many times as many of the pomts k/B are in the interval (0, n,/7,).

This number is [(1y/7,)/(1/B)] if (nz/tz)/(l/B) is not an integer and is (n,/t,)/(1/B)—1

if this is an integer. This number is exactly f.((1,/1)B). O

Lemma 3 establishes that every configuration Q becomes reduced or defective
with (53) after a finite number v'=0 of application of the operator 4 to it. Theorem
4 means that after finite v'=0 times application of 4 we can reduce Q or decide
whether its schedule R, .(Q) is periodic. We show that Q with (53) is reducible
when R, ,(Q) is periodic, i.e. 3, and 7, are rationally dependent.

Lemma 7. The configurations Q€2 with (53) are reducible iff (54) is true except
eventually the case n,=0 in which Q can be reducible with rationally independent
3, and 1, as well.

Proof. If 8,=0 then the reduction procedure is equivalent to the regular
continued fraction expansion of the number £=9,/n, and is finite exactly when
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¢ is rational and so (54) holds (see also the proof of the Lemma 4). Let now 3,>0
and n,=0. If Q is not reducible then neither 9, , nor n,,+9,, of 0,=4"Q,
nz0, is zero by Lemma 4. If n, , 9, ,=0 for some finite #=0 then the reducibility
is equivalent to the validity of (54) by the same lemma.

Let, therefore, 9, .73 ,92,>0, n=0,1,.... Suppose Q is not reducible. This
means that the series (%) has infinite length and has no zero element after 2,=/; ;.
This means that / ,>0,n=1. From (2b) we conclude then that 0<9, ,,,<
<Ty <8 5, n=1,2, ..., which means that

. N . . Ty ; e
Ey=—2L>1 if i>0, g2i+1=92" =1 if i=0,
To,i 1,i+1

and (2) is equivalent to the definition of series

én = j'n'}"__l_

, n=0,1,..,
5n+1

where 0<1/£,.,<1 and, consequently, 2,=[£,]. This is, however, exactly the
definition of the Euclidean algorithm of the regular continued fraction expansion
of the number £,=09, ¢/7; 9=9:1/7.. This algorithm is infinite exactly when &, is
an irrational number, i.e. (54) does not hold [3]. If (54) is true, Q must be reducible.
If (54) does not hold but #,=0 then Q can be reducible as for instance
Q=(0; 1; n/2; n/2) shows for which &, is irrational but v=1 and Q%=
=(0; 1; n/2—1; =/2-1). O

From Lemma 7 we can conclude that the question of periodicity -of Ry ,(Q)
remained unanswered in cases in which Q is reducible and for its reduction Q*

15 =0, % =0 (56)

In all other cases reducibility and periodicity are equivalent except the case #,=0;
9% and 1; are rationally independent, in which case the periodicity is not true.
We now show that in case (56) the schedule R, ,(Q) is periodic if 7} =1}

Theorem 5. If the configuration Q€2 is reducible and Sor its reduction Q*=Q,
the relations :
F==9>0 , (57)

hold then the priority schedule R, ,(Q) of Q is periodic with characteristics

ri‘—ré‘)

1

= (#1; Uz Ko (58)

with
= By, s+ By,

Mo = Agy_ot+ Az (59)
%y = By, s+ Bj,_

1]
where v.is the degree of compositeness of Q. py and u, are relatively prime integers.
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. Proof. First of all 5,=0 follows from (57) because the reducedness of Q*
implies 95 <t} if 77 >0 by (5c). From 97=>0 and (5b) it follows that 0=p}=9%
and, therefore, the characteristics of R*=R; ,(Q*) cannot be else than

. *_ *
= (110 “n’z) 58

1

which is the special case of (58) with v=0 in (59). This fact can be verified most
simply on the Gantt-chart of R* as in Fig. 5. (59) follows then from Theorem 3

|—° f’ e
RO
////mn///// |

Fig. 5
- The Ry :(Q*) schedule for a reduced configuration with f =1} >9f >0

applied for n=v and entities x*=x,. By the last relationship of (45), n=MTr*
and in detailed form ‘ -

1 By By,—y O] 1

M| = |Aoy-2 Asy-1 Of] 1

2 B, > Bj,_4

which is (59)' ez—sz follows from (44). .
Applying 4 *=D; T;l obtained from (45) for n=v, we get from (28) the

relationships 1= sz 11— Bay_1p; and 1= —A,,_op;+B,,_,n, and from (21) that
i, and p, cannot have common divisors other than .+£1. O

After this theorem the only questionable case remamed is the set of configura-
tions reducible to Q* with

0<n <1f <18 (60)

The domain (60) of 2 is the part of the domain (6) in Fig. 2d and is illustrated in
Fig. 6. We will further mvestlgate this case in the next sectlon

49 [ ]J]v §o:

Ut
M yalg
3 97
1z "z
(@) (b)
Fig. 6

The domain of reduced configurations with O<m,<t¥<t¥

8 Acta Cybernetica
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Supposing that R* is periodic, some relations among its characteristics can
be stated. These follow from the following more general Lemma 8. We need some
simple definitions. Let s(X) and f(X) denote the start and finishing point of the
service of a task or cycle X, respectively. We say that task A starts during task B
if s(B)=s(A)=f(B) and task A runs during task B if s(B)=s(4) and f(4A)=f(B).
Let u denote the numter of task type 4, in a period of R, ,(Q) which do not preempt
task type 4,.

Lemma 8. For the characteristics I and u of a periodic priority schedule
R=R, ,(Q) the following assertions are true:

= u+3,; (61)
) U=y, W = tatxy - (62)
iff exactly one A,-task starts during every B,-task; '

(@ =gy, m=ptx if $<1, 2
(b) u= Koy = ot if 1=, - (63)
(© u=py, m=pptr, if =9 <14

@ m=ptl if 11<1,,
(b) p=2y+1 if =%, %9 =0, (64)
©. m=m=%=0 if p=9=1<1, $>0;

o= 1 if Fp<1<1, 9>0; (65)
mE3 w=2 =l if =289, >0, <1 <r1. (66)

Proof. (61) follows from the definition of u and x,. u=u, in (62) is clearly
true if exactly one A,-task starts during every B,-task because these A,-tasks are
those which do not cause preemption. The number of B,-tasks in a period is y,.
‘Suppose u=p, and there exists a B,-task during which more than one A4,-tasks
start. This is possible only if 17;=3,, and so 9;=8,. But at least one A,-task
must start during every B,-task if 3,=9, and, therefore, we get uz=u,+1, which
proves (63b) but contradicts u=p,. If we suppose that no 4,-task starts during
some B,-task in the period of R, it follows that 3,<38,; must hold. But if 9,<r7,
then no Bz-task during which more than one A,-tasks start exists and, therefore,
u=p,~1, proving (63a) but contradicting u=p,.. This proves (62), and (63a)
and (63b) involve (63c).

To prove (64a) we use Theorem 2. From (37) (u;— ;12)11— Ho(ty—T) + (st 82) 1y
and p,>p, follow if 1,>1, and u,>0. But p,>0 follows from 3,=0 by (39).
If 8,=0 then u;=1=u,=0 by (39). If ,=9, then no A,-task can exist which
is preempted more than once and, therefore, »x,=p,. If 9, >0 then the first A4, ;
task is serviced without preemption as soon as #,=9,;. Therefore, Ao =pp—1,
as (64b) asserts. (64a) and (64b) imply (64c). )

To prove (65) we consider the last B,-task in the first period of R which pre- -
cedes the recurrence point 77" of the fB;-situation. This task finishes in the interval
[Ty —ny, T{] as Fig. 7 shows. The period ends with the service of an A4,-task. The
last B,-task cannot start before the preceding A, -task because 9,=t; would follow
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(21 1 12 V77224 ), J2)
7741 |

KW 7/ R
g 2 | Yz //
¢——— s(B —-AT
() 7B
Fig. 7
Hicit intervals for the last B,-task starting point s(By) if 9,<7,<7s, 9,>0

in this case. This B,-task cannot start, however, 7, later than the preceding A,-task
finishing because 9,=1,—#, and 1,=7; would follow. This means that 3,<71,<7,
implies that the last B,-task starts after the preceding A4,-task but the previous
A,-task cannot be serviced w1thout preemption and so x,=1. (66) follows from
(64c) and (65). O A

Before we turn to the case (60), we prove two theorems which give the charac-
-teristics of R, o(Q) for configurations not necessarily reduced but representing (58”)
as their special case.

Theorem 6. If for the configuration Q€2

8,=>0 and 9,<mn (67)
hold then R, ,(Q) is periodic. Its characteristics are
= (4sBa—151- 4] (68)
M
 where w=(B, A) is the least solution of the coincidence problem ’
' 0=Bi—A=0o o=(1,0) (69)
and : .
: - A=Bt—A (70)
is its error, where
R R
6—91’ a_gl‘ . ) (71)

The cycle numbers p, and p, are relatively prime integers.

Proof. An A,-task causing no preemption starts during a B,-task. Since #7,>3,,
.this A;-task must finish later than the B,-task and cause a recurrence of the f,-
sitnation. Only one such A,-task can exist in every period. Therefore, »,=u,—1
if Ry »(Q) is periodic. The condition of the periodicity is the recurrence of the f;~
situation and the existence of p; and pu,=>0 fulfilling the inequality

0= Mttt —Dm—mtn =9,

The cycle numbers represent the least solution of this inequality which is equivalent
to the inequality 0=gu,1,—1,9,=9, and this to (69) with u,=B, y;=A4 and (71). .
The coincidence problem (69) always has a unique least solution (B, 4) because
a=>0 and this solution represents a pair of relatively prime integers [4]. O

8¢
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In the special case 0<nz=97<1; of (67) {>a but 0=¢—1=a and, there-
fore, the solution of (69) lis w=(1,1) with A=¢(—-1=1/9{—1 and

* %
= [1; 1; 0, 1%

) from (68), correspondingly to (58°).

1

Theorem 7. If for the configuration Q€2
199 >0, n,=0 72)

holds then R, ,(Q) is periodic. Its characteristics are

n= [B; 4;0; AS“‘] (73)
M

where w=(B, A) is the least solution of the coincidence problem (69) with error

(70) where now

5=;—12, a=‘—g—:—. (74).

The cycle numbers u, and u, are relatively prime integers.

Proof. Because of 7,=0, preemption cannot exist in R; ,(Q) and R, ,(Q)
is periodic if and only if B,-tasks finishing during A,-tasks exist. This is the con-
dition of the recurrence of the f,-situation. Such a B,-task exists iff integers B=0,
A=0-exist such that

Bty =1+ A3, = Bry+min (1, §,)

holds. The least w=(B, A) supplies p, and pu,, respectively. This inequality is
equivalent to :
ny—min (7, 3) = Bry;— A9, = ;.

The left side is positive if 5,>3,. In this case the least w=(B, 4) satisfying the
inequality is w=(1, f=(9,/9,)) where f.(x) is the least integer not less than x.
Namely, from x=f.(x)<x+1 the inequality n—%%<7,—f=(3/9,)3,=
=1,—9,=n, follows. This w is the least solution of (69) with (74) as well. (69)
always has a solution because of a=>0, and the least solution is a relatively prime
integer pair [4]. The values of p;, u, and s, in (73) are proved. Obviously, &n,=
=49, from which the value of & in (73) follows. O

If (57) holds, i.e. 0<9F<89F=1{ is true then the least solution of (69) with
(74) is w=(1,1) and 4% =15—-95=11—15. (73) gives (58") as a special case.

5. The case 0 <1} <1;

We did not find conditions for a reduced configuration Q* with (60) to have
a periodic schedule R*=R, ,(Q*). This case requires further investigation. By
{60) and condition (5) we can write

O<ni<t<t, =9, 9% <1 (75)
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This is equivalent to the two series of inequalities

O<ni=9 < <o <ni+e |
" (76
O<nf <95 <1y <15 =97+95 < 9+ (76)
These relations do not determine the relations between nf and 9}, n*-and #f, or
8% and 95 if n3=>n{ (Fig. 6b). These latter relations are, however, not independent
of each other. E.g. the following series of implications is right:

H=mom=nio <=9 =9 (77

From Lemma 8 we can obtain relations among the characteristics of R* if it
is periodic. From (63a) we get - ‘
WB=mten (78)

but from (63c) we get pf=p+x3 if any member of the.series of implications an
is true. From (64c) and (65)

pEmtl=aa+2=3. (79)

Before we further investigate some special cases of (75) we introduce an algo
rithm to generate some entities and the characteristics IT* of R* if R* is periodic.

In the schedule R* the sequence Cs;, Cas, ... of C,-cycles can be grouped into
subsequences in which all cycles are either preempted or not preempted. Denote:
by M;, i=1,2, ..., the sequence of the subsequences of the preempted and N;,
i=1,2,..., the sequence of the subsequences of the non-preempted C,-cycles.
The first subsequence will be the NV; with at least one C,-cycle since 4, ; is a non-
preempted task because of na=9y. We call an M-section or an N-section of R*
the section from the last cycle-finishing point of the previous subsequence until
the last cycle-finishing point of the current subsequence M; or N;, respectively.
This definition will be modified slightly below by dividing some M-sections defined
now into more M-sections and inserting empty N-sections in between them.

Define ' - - ]
fO) =ni, () =m+itg+x@)n (80)

as Cy-cycle finishing points, A

v®=0 cO =1 o0 =22, c0=s0-00x, @
i=1,2,..., as moduli and residua of the cycle-finishing points and
| HG) = (0(), i, (D), i=0,1,... 82)

" as triads according to (32) and proof of Theorem 3. (80);(82) are ohly valid. until
the first recurrence point 737 of ithe B, -situation which occurs exactly when the
residuum ¢ (i) is not greater than 3, i.e.

0=o() =i - (83)

After ¢(0)=n7 the next such residuum and the corresponding 'triéd determine
the characteristics of R* which is ‘periodic if such a residuum exists: Otherwise
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R* is not periodic. The value of the residuum g(i) determines whether the next -
A,-task A, ;., is preempted or not. If

m=e()=tu-n (83)
then A, ;,, will be serviced without preemption and if
- <o) <1 . (837

then A, ;4, will be preempted.
Without preemption f(i+1)=/(@)+1; and

oi+1) = o()+75—1f > (i) (84)
because from (83") we obtain nf <13 — 37 =o(i+1)=9; <1}.
With preemption f(i+1)=f(@)+1;+1}. In this case we get

(i+1) = {9(")“;-9’{ >o() if 95 <97 and 1[—nf <o) <17+ -1}
Y e+ -1 <e@) if d-—min( - <el@ <1 (85)

where the symbol < denotes a relation sign by

<(__{< if 9*§9§ 86
1= if 9 <9 (86)
(85) holds because 93 +nf<o()+13 -9 <ty if FT—ni<t¥+97—13, ie. 95<9f,
and 7} 13 <o) <71 +0 1t and 0=i— 97 ~min (r, f — 99) < o) + 13 — 57 -
—tf <13 — 9 <1} if ¥ —min (3, 3 — 97) < e () <13.

Since @(0)=nt=1f—n; by (75), R* starts with a non-preempted 4,-task
and ¢(i) is monoton increasing until (83”) results and preempted A,-task follows.
o(i) can -increase further until a decrease because of 7§ —~min (13, 75 —97) < o(i)
follows. If the g(i+1) obtained by (85) satisfies (83”), a non-preempted C,-cycle
follows, otherwise the following C,-cycle is preempted as well. In both cases we
regard the situation as the end of an M-section and beginning of an N-section.
In the second case in which the following C,-cycle is preempted as well, the N-
section is empty and begins a new M-section simultaneously.

The schedule R* consists of a sequence (Ny, M,), (N, M,), ... of (N, M)-
section pairs in which N; cannot but N, i=>1, can be empty, too. Let the numbers
of C,-cycles in the sections N; and M; be n; and m;{, respectively. These are called
the lengths of the sections. _

The bounds obtained for ¢(i+ 1) show that

0=o(+l)=n} (87)

can only come to pass if g(i+1)<g(i) i.e. at the end of an M-section. With the
purpose of finding the first o(i+1), i=0, for which (87) comes true, the residua
at the end of M-sections are enough to consider. These residua are the local minima
in the series @(0), ¢(1), .... The next minimum comes after the ith local minimum
0i_1, when in the series @y, @1+ —TF, .0, Qo HH(TE—TY), Qi1+
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+nj(tg =)+ -9, ..., i1 HH (s =D +i(TE—97), ... the first j=m! occurs
for which ‘

. Qi1 Fni(ty — )+ mi(xs — 99 =}
and, therefore,
0i = 0i—1+ni(t3 — 1)+ mi(z3 —97) — 1.

This COIIdlthIl determines m; and g; by ¢;_, and n{. n is determined by g;_; as
the first j=n;=0 for which

24 %k X ¥ *
Qi—1+ni(tg—17) = 1) — 5.

This means that n{, mj, g; are uniquely determined by ¢;_, as

Ty Mg —0i—3 _ 9§"Qi-—1]
P [ ‘tz—‘tl ]+1 I RS : (88)
, & — i —ni(eE = 1) '

m; =f=»=[ 2 Z0) () sgn (1) (59)

2 V1 v :
e = Qi—1+"x{(T;_T;)+m§(T;_9r)_7f, (50)

where : .

¥ (K ¥

C = Tl .Qs—l nxf'-'z 71) (91)
-3 v

and f. (x) is the least integer not less than x.
Let us use the notations

n0‘==m0=k0=0,l n; jZ’an, m; = Zm,, tp,—n+m,, i=1,2,.... (92

The integers n;, m; and y; give the number of C,-cycles serviced without preemp-
tion, with preemptlon and totally until the end of the (&;, M) section pair, re-
spectively.

Denote by

Ht=(q’ia l/’iaXi)s i= 1’23"'3

the triads at the ends of the (%, M)-section pairs. We call H;, i=1,2, ..., Ry,-triples.
Clearly H;=H(n;+m;) and

o, =nm+m+i, Y=m+my, p=m, i=12,. 93)

The residuum at the end of the (N;, M) section palr can be wrltten from the re-
cursion (90) and g,=0(0)=#f as

0; = 1y +n,(13 — )+ m; (x5 — 87) — ity %4
0 = N +Yits + xint — @it 95

The end of the first period of R*, if such one exists, is determined by the entities
at the end of the first (N, M)-section pair with g; satisfying (83). If such a section-

or with (93) as
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pair exists, it can be determined recursively by the formulae (88)—(91). If for
i=I=0 the relation (83) comes to pass first, the characteristics of R* will be

=(or; ¥i; 13 1—ai/ny)
by (49), i.e. \
W= =n+m+l x5 =y =my (96)
#;:¢I:nl+mh 3;= l—ol/nf-

From (93) we can express i, n;, m; by the elements of the Ry,-triple H; as
P=@—Y, m=y—n, m=xn _ o7
and from (96) we can express I, n;, my, ¢; by the characteristics IT* of R* as

I=uf—u3, ny=p5—, mp=x35, o =n(l—g). 7)

These quantities are the number of (N, M)-section pairs, the number of C,-cycles
serviced without and with preemption and the last residuum, respectively, in a
period of R*.

We phrase our main results in

Theorem 8. The priority schedule R*=R; 2(Q*) of a reduced conﬁguratzon o*

satisfying
O<m<1 <13 (98)

_is periodic exactly when such a residuum ¢(i), i=0, does exist which fulfils (83).
This condition is equivalent to the fact that R* has an M-section M;, I=0, the last
residuum oy of which fulfils the inequality

max (0, 7 - 91) < oy = 7. %99
The characteristics are determined then by the Ri,-triple Hy and the residuum g¢; as

IT* = (@5 Y15 25 1—ed/nt) , (100)

Proof. The only assertion to be proved is that (83) is equivalent to (99) with
regard to g;. This follows, however, from the fact that if o(¥) 1s the last residuum
of an M-section then ¢(i)=p(i—1)+13—9f—1F and, since 7} —nf<eo(i—1) by
(83”) because of the preemption of the last Cy-cycle, ¢(i)>%;—97 and ¥ —-97<
<g(i)=n7 must stand instead of (83) in the case 95 —97=0. Usmg the definition
(86) of < we obtam the inequality (99) for ¢(i) and consequently for o;. [

We now deﬁne the formal algorithm to determine the characteristics IT* of R*
if R* is periodic. As we do not have finite method to decide whether R* is periodic,
we have to choose an integer L as the tolerable number of (N, M)-section pairs for
which the criterium (99) is allowed to be tested. If R* is not periodic or the number
I of the (N M)-section pairs in a period is greater than L the algor1thm finishes
without giving the characteristics IT*. Nevertheless, the algoritm gives the values
of the Rm-trlple H,, and residuum g,, also in this case. The- output for IT* is as its
input (0; 0; 0;.0) in this case. .
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Algorithm R},. Input data: Q* = (n{; 97;n3; 93), L;
OQutput data: I = (a5 123 %55 &), Ho = (on, Yo 10); ec3
Step 0:717:=n7 +9;; 7-'2 = ’12+'92,
If 0<n§591 <17y <T;<n;+7; does not hold then ERROR and go to End;
g:=nF; n=m=i=0;
’ ‘92 ’ (7o * Q
Step 1: n":= ———-—], ni=n+n"; :=¢+n'(tz —11); C— —-—
-1 -9
- = [+sen L} mi=m+4m’; o= o+m'(e; -8~ rl, i=it+1;
Step 2:If o=n7 then uT:=n+m+i, g3 :=n+m, 33 :=m, &5 :=1—g/n{ and go to End,
If i=L then @ :=n+m+i, 1//L—n+m yL:=m, ¢,.'=¢ and go to End;
Go to Step 1;
End.

We say that the Algorithm R}, finishes normally if it gives IT* and abnormally
if it does not give IT* but gives H; and ¢, . The algorithm does not put out the data
of all (N, M)-section pairs but only those of the last. After minimal modification
it would furnish these data as well. Independently of the algorithm it is worth to
analyse the data the algorithm is dealing with because we can obtain further in-
ferences from this analysis.

First we show bounds on the lengths n;, m; of the N- and M-sections. Let us
.use the quantities

*

=9 1= 1, m=TFM +1. 101
1 T;—T: ’ T;—Tr s ‘C;—lg;‘ T;—Sf ( )

Let 7 be the numberof the (N, M )-section pairs in a period of R* if R* is periodic
and I=e otherwise. The formulae (88)—(91) define #{, m;, o; for i=1,2, ...
(, if I is finite).

Lemma 9. For the lengths ni, m{, i=1,2, ...(I) the following bounds are valid:

n,=[h), n<nl<n, l<iz=], ' (102)
m<m <@, l=i<l, m<m)<m, (103)
where the symbol <C is defined by (86).
i - * . ’ '9;_’1]*.( = ’
Proof. From -(88) with g,=#n7 we get n1>—1;7—1 =fi—1 and ni=
2 T t1L
9* *

= P L -7 andso nj=[f]. Using the inequalities gi—1>ny and g, <t5i—9%7,

obtamable from (89) and (90), we get from (88) for i=1 that n] >9T—Q'*i 1=>n
—0i-1 = 27 %

and n; <H. .

Ty — 1T}
If ¢ would be integer by (91) for i<l then we would get m;={ and ¢,=0
which contradicts the definition of 1. For i=I, ¢,=0 is only possnble by (99) if
9;<9%. This means that (<m{<{+1 if 1=i<[ and if i=] and 95 291
By this fact and 1§ —ns5<g;_,+n{(tF 1) =95 obtainable from (88) we get m;>
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* *
N

>{=a— L
and we get my={=m and m,<(+1<m for i=I and 9*<.9* 0

793

=m and mi<{+1< +1=m for i<l and i=1I, 979},

This lemma shows that the series n{, i=1,2,..., and mj,i=1,2, ..., of
lengths have only small fluctuations, if any. The bandwidth of the variations are

*

—n=2 and l=<m—-m=2——2— <2 if gf=0. - (104)

12 _"91 . g
These show that both the n{ and m; values can always vary at most on two adjacent
integers.
" From the conditions (78), definitions (101) and estimations (102) and (103)
we easily get
n=l, niz0, l<i=] (105)

m=1 l=isl (106)

Simple regularity conditions can be given for the series of lengths by the para-
meters of Q* which further limit their fluctuations. To simplify writing we use the
quantities

x; =9 —ni_;, j=1,2 (107)

Lemma 10. For the lengths n{ and m; of the (N, M)-section pairs the following
assertions hold.

@) If
nWe—22_ 4l (108a)

.xz'—xl

_for some integer n’ =0, then
np=n'+1 and n’ =nj=n"+l (109a)
for 1l <i=1 Esj;ecially

nij=1 and Osn{j=1,1<i=s1 if 0<8F—n <ti—1}

. (109'a)
nj=2 and l=nj=2, l<i=1 if 14— <¥—nt <2(wi—-1) _
() If
X1 —_ L
= (108b)
for some integer n’ = 0, then
ni=n'+1 and n;=n’ ' (109b)
for 1 <i =1 Especially
ni=1 n =0, l<i=1I if 9 =n
m i if 91 =ny (109'b)

* .

n=2 n=1, l<i=sl if 9 —ni=1f—f
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ON/

== T (108¢)
2

Jor ;s‘Ome integer m’ = 1, then }

) : _ my=m’ - , : - (109¢)

forall | =i= 1. Especially ' . |

m=1 Isi=1I if 95=9%

_ (109°¢c)
mi=2 l=i=l if 1<% -%=1-9. :
(/4 ’ o
n = m’ | 108d)
—xtm d
" for some integer m’ > 1, then
mi=m’ for 1=si<I and m'—1=my=m'. (109d)

Especially .
mi=2 for 1=i<I and 1=mp=2, if t5—1f=9¥-9% (109'd)

CoMMENT. (108d) cannot be true for m’=1 because 9;=1; would follow
which contradicts (75). (108d) is equivalent to (m’—1)(z5 —97)+9; — 91 =n1 from
which 95 —85=(m" — D) (=9 —ni=ti—11=>0 if m'>1 and, therefore, 9; <97
follows. In case of 95=9F the condition (108d) is impossible.

Proof. The method of proof is to relate the bounds-(101) to the parameter 7’
or m’ of the condition (108). (101) is .equivalent to n=x;/(x,—x)—1,
i=x/(xg—x)+1, m=n*(xg—x,4+n7) =1, m=n3/(x;—x,+n})+1. From (108a) we
get n'—l<n<n" and n’+1<h<n'+2 and, therefore, the interval (n, i) contains
the integers n’ and n'+1 and (102) is equivalent to (109a). We get (109'a) from
(109a) for n'=0 and »'=1. From (108b) we get n=n"—1 and A=n"+1 and
the relations (102) make possible only (109b). (109°b) follows from (109b) for
n’=0 and »'=1. From (108c) we obtain m'—1<m and m=m’+1 and, there-
fore, the interval [m, m) contains the only integer m” and (109¢) follows from (103).
(109°c) follows from (109¢c) for m’=1 and m’=2. From (108d) we get m=m"—1
as an integer. The interval [m, m) contains now the integers m’—1 and m’ and
(109d) follows from (103) and (86) because (108d) is possible only if 95 <3} (see
Comment) and <« == by (86) in this case. (109’d) follows from (109d) for
m=2. 0O '

The conditions (108) are only sufficient but not necessary for (109) to be valid. -
One of the conditions (108a) and (108b) is always true and (109a) is valid because
(109b) implies (109a). Lemma 10 is valid also for 7= (R* is not periodic) if the
assertions with i=1I are neglected. _

From Lemma 10 we can deduce some relationships among the R;,-triples
which can reduce the problem of existence and determination of the least Ry,-
triple satisfying (99) to the problem of solution of a coincidence problem [4].- This.
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problem is generally solved and leads to the regular continued fraction expansion
of a number depending on the parameters of Q* [4]. The coincidence problems
encountering have the form of the determination of the least solution w*=(B*, 4*)
of an inequality pair

0=BE—-A<a, ©=aw, . -(110)

for the unknown integers w=(B, A) where reals &, a=0, sign < and integers
w,=(B,y, Ay) are given. @* exists and is unique if a>0 or «==, a=0 and ¢
is rational. w* does not exist otherwise. B* and A* are relatively prime [4].

The following lemma is necessary to prove the periodicity of R* if 0<97=9;
in addition to (75).

Lemma 11. For the schedule R*=R, ,(Q%) of any configuration Q*€2 ful-
filling (75) the following assertions hold.

' U] ‘The following three facts are equivalent:
@ =¥ty l=i=]
®) mo=1, l=i=I, B (i
(c) R* is periodic and uf = ,uf+x’{; ‘

(D) If any of (111a—c) holds, the characteristics IT* of R* are determined by
the least solution w*=(B*, A*) and its error A*=B*&*—A* of a coincidence
problem '

0= B —A<a, w=(l,0) (112)

where E*, «* >0 are determined by Q* and < is deﬁned by (86), ui, 13, %2 are pair-
wise relatively prime integers;

(111) &* and o in (112) and the characteristics II* have the.alternative values
by the three rows of the following table:

& «f 4 s % g
« 9 ny—r A —1F)
a A¥4+B* - 4* B* =21
® g o T FooT

(b) T;—”]T r,])lk_r A* A* _B* B* » A*(T;_TD (]13)

oo g-a T
(C) ‘9: ”;(—r B* A* B*_A* A*(T;*—ﬂr)

—-ni Tnen n
r = max (0, 95 —97).

Proof. We begin with the assertions (I). From m{=1 we get ¢,=n;+2i,
Y;=n;+i, y;=i from (93), and (111a) is true. From (I111a) and (97) we get
i=@;—y;=x;=m;, and (106) and definition (92) prove m}=1. If R* is periodic,
exactly one A,-task starts during every B,-task by (l1lc) and (62). This means
that the number ¢; —y; of 4,-tasks causing no preemption is equal to y;, the number

where
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of C,-cycles. This proves-(111a). From the assertion (I} only the periodicity of
R* if (111a) is true, remainded to be proved. This will be done together with (IT)
and (III).

Consider the Gantt-chart of R* until the first recurrence point 7 of the fy-
situation (not supposed finite). Carve out the A,-tasks from it and denote the re-
sulting chart by R”. Since exactly one A,-task starts during every B,-task and the
B,-situation occurs if the A;-task does not finish during the B,-task, it follows
that exactly one A4;-task runs during every B,-task except the last before the f,-
situation, where the A,-task can finish after the B,-task as well. Therefore, chart
R” will agree ‘with the schedule R’=R, ,(Q") of the configuration Q'=
=(0; 3 n;‘, 1) except eventually the last B,-task which has the length

=95 —ni+ef mstead of 9;=95—ny. As =0, the preempting A,-tasks in
R’ do not cause delays and, therefore, the cycle-finishing points are ‘

CfACopy=i(rs—nD), i=1,2, ...

The periodicity of ‘R* is equivalent to the finiteness of T3 and this to the fact that
the last B,-task in the first period (if such one exists) of R” would run during a B, -
task and finish not more than #y earlier than the B, -task (see Fig. 8). This corre-

01 By
(AT VA 2 |\ 12b7z724 1 |
\ 1\ VA 1 V7 V24

w, 2 1 |
A2 A 2 1
S (Cuut)

R*

.R ”

Pt

Fig. 8
The transformation R* - R” and the schedule R’

sponds to the first situation.in R’ in which the inequalities 85 —nf<i(t3—ni)—
—~(j—1D9F =97 and 0=j97—i(tf —n)=n7 for some positive integers 7, j, result:
The values of i and j correspond to the characteristics IT* of R* as i=yj, j=pu}.
The two inequalities are equivalent to the inequality

0 = py 97 — 3 (t3 —n7y) << ny —max (0, 93 —97)

in which the sign < is defined by (86). This shows that the periodicity of R* 1s
equivalent to the existence of positive integers w=(B, 4) for which the inequalities
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(112) with é* and o* of (113c) hold. The least such pair determines yy and uj by
(113c). xi=B* - A* follows from (111a) and the expression of &; from the rela-
‘tionships & =(n} —e)/ni and or=n3 +pus1; +x5nT —pity =ni + A3 +(B*— A" nf —
—B*tf=n}—A* (13 —1 *) The existence of w* is garanteed by o*=>0 and this
by (75).

We have to prove that (113a)—(113c) are equivalent. The inequality
0=B*3—A*(F—nD)<nf—r is equrvalent to the inequality 0=B'(tf—n)—
—-A’(r’;—tf)<i1‘1*_—r if B¥=A’ and A*= The least solutions of the two-
inequalities with the condition (B, 4)=(1, 0) correspond to each other by this
transformation. This proves (113b). By the transformation B*=A"+B’, A*=A4’
we can similarly prove the equivalence of (113c) and (113a). If B* and A* are
relatively prime, such are the transformed values as well. This completes our
‘proof. 0O

Lemma 10 and 11 enable us to solve the evaluation problem of R* for con-
figurations Q* satisfying (75) and any of the relations (77).

Theorem 9. If the configuration Q*¢ 2 is reduced,
<t and 0<9F =9 . (114)

then R R1 2(Q) is periodic and its characterzstzcs IT* are obtainable by (113)
and u}, uf, %} are pairwise relatively prime integers.

Proof. In R* we obtain m{=1 from (109°c) and R* is periodic with uf=
=us+x; by (111c). The assertions (II)—(III) of the Lemma 11 corresponds to
the statement of the theorem. [

With this theorem the only case not solved is the configuration Q€2 which is
reducible and its reduction Q* satisfies the relations .

<1t 9= 9L, (115)

_ If we know that R*=R, ,(Q*) is periodic, the Algorithm R}, can be used to de-
termine the characteristics IT*. This method does not answer the question whether
ul, u and "y are relatively prime integers wich fact was shown in all other cases.
In fact, uf and pf are relatively prime in every known periodicity case. Some further
specific cases of (115) can be solved by using Lemma 10. For example, it can be _
proved that my=m’—1 if (108d) hold and, under the conditions (115), R* is periodic
if and only if 87 —#3 and 1} —1} are rationally dependent. If

91 _4
T3 —‘El B’

{=

A, B>0 are relatively prime integers then the characteristics of R* are
I* = ((m +1)B+A; m’B+4; mB—1; 1)

with relatively prime yi and pj [4]. This assertion will not be proved here. This
result is interesting because it shows that R* can be non-periodic for non-defective
Q* as well. By another assertion [4], R* is always periodic and its characteristics
IT* is determined by a given coincidence problem type (110) if (108c) holds. u}
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and ui are relatlvely prime again. Similar assertions hold for non-defectlve con-
figurations Q€2 (not necessarily reduced) with n,=9, [4]. The proofs of these
assertions are lengthy and, therefore, we do not show them here.

For any Q¢ 2, independently of its periodicity, the efficiency y, , of the priority
~ schedule R, ;(Q) can be approximated by the P, -utility y; 5(n1, t) of its section
m=s=t defined by

At)—2A
T1,2(m, 1) = —(3_71("1) (116)
as t grows (see (1)). It can be proved [4] that
1,20, 1) ~ ¥V +yP = #28 Yy P12 an

if ¢ is big enough, where p,(¢) is the number of the completed and %,(z) the number
of preempting A,-tasks until ¢ in the schedule R, ,(Q). If R, .(Q) is periodic with
characteristics IT=(u;; Us; #5; &) then

Xyt &
e = v‘l_’+v‘2’——2-#1—2 y®y® (118)

' (Theorem 5.10 in [4]). The proof of these facts we omit as well.

)

6. Some c(;mments on the reduction methods

Theorem 3 in section 3 establishes relationships between the characteristics
of the priority schedule of Q and of any transform Q,=4"Q of it. The reduction -
operator A defined in section 2 is actually the A, from the two operators 4, and
4, defined for Q symmetrically in the job-flows 0®W and Q®. The operator 4,
is only usable in the investigation of the priority schedules R; ,(Q) and we know
nothing about the connections between the characteristics of R2 1(Q) and R, 1(2w),
for instance. In the investigation of R ,(Q) we can use the operator 4,. The §=4,0
can be defined as the 4,0 by (2) but the role of @ and Q® (the indices 1 and 2)
must be changed. The operation 4,Q is, therefore, equivalent to the operation
4,0=A40 with the conjugate conﬁguration Q of O defined in section 1. '

In a previous article [5] we defined other operators 2, and 2, for Q asreduc-
tions utilized in the investigations of non-preemptive schedulings. In the operation
20=92,0 only the parameters 3, and 3, are reduced versus operation AQ in
which also 7, is reduced. The 2-reduction is much simpler than the A-reduction
and is defined by (2b) and (2d) replaced (20) by the instruction fj,=n,. Q* is reduced
by 2 if [5] .

-9 <15 or 13=0 and 9F <1f or =0

which are exactly the conditions (5a) and (5¢) as part of conditions Q* to be reduced
by 4. This means Q* reduced by 4 is always reduced by 92 as well. The opposite -
is not true, of course. The conditions (5a) and (5¢) show that a configuration Q*
is reduced simultaneously by both 2, and £,. This is not true in respect to 4, and
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A,. Fig. 9 shows the domains of reduced configurations Q by the operatofs 9;
and 4;, i=1, 2 (refer also to Fig. 2). We distinguish the following domains:

(¢) 7,7,=0; Q is reduced by all operators

B mn,=0, 9,=9,=0; Q is reduced by all operators

) n=0, 0=m=%h=<17, 0=n=9, <1,; Q is reduced by all
operators '

(a) rjz >0, 0=np=% <1 <1n; Q is not reduced by 4, but it is
reduced by the other operators

®) =0, 0=n=39, <1,<n; Q@ is not reduced by 4, but it is
reduced by the other operators

) mn.=0, =0, 0=9;<mnz.;, i=1,2; Q@ is not reduced by 4,,
i=1,2, butitis reduced by &;, i=1,2.
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Domains of reduced configurations

_Let us introduce two simple operators 8, and 8, defined by 0 =6,0 as of para-
meters

Hs—i =

mo-—f ()8 i 8= 0

(119)
Ns-; otherwise

where f. (x) is the greatest integer less than x. Let 6=4,. Itis clear that f_(5,/%,)=
=k, in (2c) if 9,>0. The operator §; is effective for Q if n,_;>9,;>=0 and in-
eﬁ'ectwe for Q if §; ifla- ;=0 or ns_;=9;. Since the order of steps (2c) and (2d)
in the operation 4Q is indifferent, the operator 4 can be represented as the oper-
ators & and ¢ in succession:

= 092.

As 3,=7, implies n,= =9,, the operat'or o will be ineffective until Q is not reduced
by 2 and 2 is effective on Q. This means that the manifestation of 4 for Q is &
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until 20 will not be Z-reduced, i.e. 40=2Q. If 20Q is P-reduced, but not A-
reduced, then AQ=620=2Q. This means that the manifestation of 4"Q, n>0,
is the alternate series of operator-powers 2* and the operator o.

The manifestation is determined by the series (L) of q‘uotients or rather, by
the subseries (k) of (L), defined in section 2. The operator § in 4=69 is 1neffect1ve
whenever k, ,=0.

Define. vp=—1 and for i=0,vi=r if k,,>0 is the ith positive member
in the series (k), if such one exists, and v; is undefined if less than i positive members
in (k) exist. It can easily be seen that

—l=vy<vi=<.. and v;z=i—1

and for any integer. r=0 there exists a greatest v{ for which v/<r. Let this be

Vh(,.),le
h(r) = max: r=0,l,....

h(r) is the number of positive members in the series Ky o, ko1 -ovs Koy and vi,,
is the index of the last positive member if such one exists, and v;,,=—1, otherwise.
This means that . :

Vioy =—1, —1=v,y=r—1, r=0.

By means of the series (v) and function /i (r) the manifestation of 4" on Q can be
written as.

1
490 = @’ - vh(r)( Il _AV'J--V'J'-I)Q, r=0, o (120)
J=h(r)
and if the degree of compositeness v of Q is finite,
AQ =91~ vh(v)[ Il 69vi—i- l]Q r=v. (120"
J=h(v)

Here ]] )x _x,,(,)x,,(,) _1---Xx; and ]] x;=0 is the identity operator. The factor-.
J=h(r

izations (120) and (120%) depend of course on Q and, directly, on the series (L).

If" v<eoo, the series (v) is finite and, with J=|(v")|, the last positive member of

it is vj_,. Let us supplement (+") with the last member v;=v—1. Define the series

of integers _

Vi=Vi—=Vio, j=1,2,..,J

The @-reduction of Q is then
QW =240 =9""10 =0y,
and the 4-reduction of Q is

0" = 470 = 2 i som)e=0, (121)

j=J-1

The factorization (121) shows that the A-reduction of any configuration Q¢2
is equivalent to some alternate series of 2-reductions and J-operations. This fact
clearly shows the connection between the two kinds of reduction.

9 Acta Cybernetica
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The reduction operators 4y and 4, differ in both of their factors, 2; and §;:
4,=6,9,, 4= 6292 ’ (122)

but the manifestations (121) of the 4,- and 4,-reductions, if finite, are of similar
factorizations in structure. In the analogous to (121) of the 4 z-reductlon of O
the same operator 9 can be applied because a configuration Q™ is reduced by
both of 2, and 9, at once and the degrees of compositeness by 2, and 9, have
a known connection [4]. Nevertheless, the series (L) by ‘4, and 4, are different and,
consequently, the series (v) playing the central role in (121) are also different.
Though the data of 4,- and 4,-reduction are not independent of each other, the
interrelationships are likewise complicated and hardly provide a useful basis in
practice to avoid evaluation of one of the two schedules R, »(Q) and R, ,(Q). To
inspect the relationships between both schedules_the two reductions 4, and 4,
seem to be a usable basis. The results given here can provide a grounding to this
inspection by revealing the nature of the priority schedules in themselves. The method
of A-reduction is a useful tool to this.

We mention the connection of the A-reduction with the regular continued
fraction expansion. The Euclidean algorithm of .the expansion of the number
E=r1,/r, can be defined as the iteration [2):

Ty,0 =T, Too0=7Ty and for n=12, ..
Ty,n-1 = boy-sTo no1+1y,,, Where
bos—2 =0 is an integer and 0=1/, <75,y if 7,-1>0,

bs,—» and 7, , are not defined otherwise

Ton-1 = bon_1T1,nt7e,, Where
b1 =0 is an integer and O0=1,, <1, if 7,,>0,
b,,-, and 7, , are not defined otherwise.

Both components of the pair (t;,,-1,7»,.-1) are reduced by the step. This iteration
ends with a 1, ,=0, i=1 or 2, n=0 if £ is a rational number and is infinite if &
is irrational.

The definition (2) of the A-reduction differs from this iteration by 7, and t,
being decomposed into two parts: 7;=n;+9;, i=1, 2, and this parts are reduced
separately except 5, which is not reduced at all. The iteration can end not only
with a zero component but with conditions (5) of the reducedness. We have seen
that the A-reduction becomes continued fraction expansion if one of the parts
n, and 8, is zero. If, however, 8,=0, the reduction becomes the expansion of
3,/n, and not of 7,/3,.

The entities defined in section 2 in connection with A-reduction remind us
of those in connection with the regular continued fraction expansion [3]. The special
case of #=0 corresponds to the expansion of &=1,/t,.
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7. Summary

We review below the points Q of the configuration space 2 by our theorems
proved from the point of view of whether the Question of periodicity and evaluation
of the priority schedules R, , and R, , of Q is answered. See Fig. 10 as an illustra-
tion. Tx refers to the Theorem x in the Fig. 10. '
£
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By Lemma 3 any configuration Q is reducible to a 4,-reduced configuration
Q" or a defective configuration Q’ with y79;=0. This means that the questionable
part of 2 is reduced to the three-dimensional subspaces #7,=0, 7,=0, 9,=0, 9,=0
and to the four-dimensional domain of 2 the two-dimensional cuts by fixing
(11, np) of which are the domains (a), (b), and (y) in Fig. 9d. Lemma 3 (L3) is used
in Fig. 10 only when no other theorem answering the Question directly exists. In
the three-dimensional subspaces 7,9, =0 the Question of R, , is solved by Theorem 2
if 8,7,=0 and by Theorem 4 if 9,7,>0. These solve the Question of R, in
the subspaces 7,9,=0. The Question of R, ; in the space 3;=0 and of R, in
9,=0 is solved by Theorem 2 independently of n; and 7,_;.

If 7,=0 but #,9,3,=>0 the Question of R, , is answered by Theorem 7 and
this answers the Question of R,; if 1,=0 but 7,3,3,>0, too.

The Question is answered so for every defective configuration and, by Theorem
3, for every configuration reducible to a defective -one by any of the operators 4,
and 4,. By Lemma 3 all other configurations are reducible by both of 4, and 4,
to configurations Q* and Q**, respectively, which are in the. domains (b) and (y)
and domains (a) and (y), respectively, in Fig. 9d. Theorem 6 answers the Question
of R, . in the domain 9,<n, and of R, , in the domain 9,<n, without reduction.

As far as the configurations -Q reduced by both of 4, and 4, the Question of
R, , is answered by Theorem 5 in the domain 7,=1, and the Question of R, in
the domain 1,=1,. Theorem 9 answers the Question of R, , in the domain %, =9,
and the Question of R;, in the domain §,=39,.

In Fig. 10d the only questionable domain remained for R, ; -is

e = To—1y < 9y < 9.

This contains “absolutely” (by both of 4, and 4,) reduced configurations for which
m=9% <1, and n,=9,<7,. In general, the unanswered domain of 2, remaining
only if #,51,, is

O<=m=t—n_; <% ;<9 for R,,.; if y < Ha-i- (123)

Further parts from the domain (123) are answered by results based upon the Lemma
10 and mentioned after (115) but not proved here. These are found in [4]. A direct
answer is given by Theorem 6 for R, , in the domain 8,<n, and for R, , in the
domain 9,<n, which is the answer for both schedules in the domain 0<9;<
<’13—i’ l=1’ 2

The flow of evaluation of the priority schedules R, , and R, ; for a configura-
tion @ is illustrated on the flow-chart in Fig. 11. Tx refers to the Theorem x and in
| x1; 15 Xo3 2| Xi, yi refer to the schedule R; ;.;. x;=p means periodicity, x;=?
refers to unanswered Question and x;=other refers to the rationality of x; as the
condition of periodicity. y;=number gives the efficiency value of R, ;_;, y;=?
‘refers to the undefinedness of the efficiency or unanswered Question and y;=Tx
refers to the Theorem x as means of determination of the efficiency. (x;, y;)=4;
" refers to the application of the operator 4; iteratively until a configuration results
which is in a domain where the schedule R; ;_; is directly evaluable by one of the
Theorems 2,4, 5, 6,7, 9.

KEYwoRrDS: steady job-flow pairs, priority schedules, reduction method
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