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On the complexity of codes and pre-codes 
assigned to finite Moore automata 

B y A . Á D Á M 

§1. 

The concepts of code (a table describing a Moore automaton such that each 
isomorphy family of automata contains precisely one automaton describable by 
a code), pre-code (an initial part of a code) and complexity (maximum of the 
distinguishability numbers for the state pairs of an automaton) were introduced 
in the earlier article [3]. In the present paper, the study of these notions and some 
related ones is continued. 

In § 6 of [3] the following question was raised (Problem 4): Is the set of complexi-
ties of all pre-codes fulfilling s=0 equal to the set of non-negative integers? The main 
results of the present paper yield an affirmative answer to this question. 

On one hand, we show that each pre-code with j = 0 is of finite complexity. 
- The proof of this theorem occupies Sections 3—5 of the paper. 

The difficulties that arise in this proof follow from two motives. First, the continuation of a 
pre-code D with s = 0 (till when we get a code) is permitted only in such a way that a certain dis-
tinguished role of D should be preserved in the whole code, too. Secondly, our basic idea gives a 
fundamental role to the rows of the code which satisfy y(i)=n (where n is the largest possible value 
of y)\ since y(i)=n can be fulfilled already by some rows of the pre-code D, these rows must be 
handled very carefully during the procedure. 

On the other hand, we obtain in § 6 (by a simple construction) that each non-
negative integer is the complexity of an appropriate pre-code satisfying s=0. This 
construction enables us to derive in § 7 an interrelation between the complexity 
and the number of states of a Moore automaton. 

The last section of the paper presents an example illustrating the constructions 
used in the proof of Theorem 1. 

§2. 

Most of the notions, to be defined in this section, were treated also in .[3]. 
We denote by N/ the set 

{i,i + l,i+2, ...,j-l,j} 
of integers. 

1 Acta Cybernetica 
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The (ordered) set X={xn\ x(2), . . . , .x(n)} (the set of input signs) is thought 
to be fixed for the whole paper ( « S i ) . F(X) is the free monoid generated by X, 
the elements of F(X) are often called words. The length L (p) of a word p—x1xz...xk 
is the number k (where x^X, x^X, ..., xk£X). We denote by p[l) the word con-
sisting of k copies of x(i) ( l s / ^ n ) (this notation will be used with i=n). 

By a pre-code a sextuple D = ( r , s, /?, y, n, cp) is meant such that the following 
eight postulates are satisfied: 

(I) r, s are non-negative integers; fi, y, n, cp are functions. 
(II) The domains of y, n, cp are N£+ s + 1 , N£+ 5 + 1 , NJ+1, resp. 

(III) The target of each of J?, n, <p is NJ+1. 
(IV) The target of y is NJ. 
(V) p(2)=1. If /'6N$+1, then (a)&((b)V(c)) where 

(a) 

(b) / ? ( i - l ) </?(»)> 

(c) y ( / - l ) < y ( 0 . 

(VI) If / € N ; + \ then Ai(0-16{0, /i(l), n(2), ...,n(i-1)}. 
(VII) If then (P(i),y(/)) is the lexicographically smallest pair ful-

filling 
j C N i - 1 ( / 1 ( 0 ^ j 9 ( j ) V y C 0 ^ y ( j ) ) . 

(VIII) .If then either <p(i)=1 or (d)&((e)V(f)) where 

(d) p ( < p ( i ) ) ^ m 

(e) / ? M 0 ) < /?(0> 
(f) y(<p(i)) -= 7(i). 

The number R + J + 1 is called the size of the pre-code D — ( R , s, y, ¡i, <•/>). 
The quintuple (/', /?(/), y(i), fi(i), <p(/)) is called the / , h row of the pre-code D 
(I'GN;+s+1). We use the notation DJ<D 2 if the pre-code D2 can be obtained from 
D X by adding new rows (as last ones). We write D X - C D 2 when D 1 < D 2 holds and 
DZ has one more row than D ^ It can be shown that s^rn+n—r is valid for 
each pre-code. 

If DX is a pre-code and there exists no pre-code D2 satisfying D ^ D J (or, equi-
valently, if s takes its maximal possible value rn+n — r in D^ , then Dx is called 
a code. 

The first block of a pre-code D consists of the first row only. The second block 
of D consists of the second, third, . . . , ( r + l ) ' h rows. The third block consists of the 
(r+2) t h , (r+3) t h , . . . , ( r + i + l ) , h rows. 

A pre-code D is called to be of first type if r—Q. D is of second type if s=0. 
D is of third type if r > 0 and1 s > 0 . It is clear that each pre-code with at least 
two rows belongs to precisely one type, moreover, no code is of second type. 

1 These notions may be defined in terms of the emptiness of the second or third block, too. — 
We write out all the six components of a' pre-code D = ( r , s , f ) , y,n, <p) even if some of the four 
functions does not exist really. 
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The iteration of the function /? is defined by the recursion ft°(i) = i, [ik+1(i) = 

By an automaton we mean always an initially connected finite Moore auto-
maton A = ( A , X, Y, 8, A, flj). To each code C we assign an automaton i/>(C) con-
structed in the following manner: 

^ = {«1» «2> •••> 0 r + i } , 

{,a: if i ^ r +1, 

if l . r + 2 , -(a,) = yKi). 

It is known that to each standard automaton A there is exactly one code C such 
that A and \j/(C) are isomorphic (see §§3—4 of [3]). 

We use extensively the well-known visualization of automata (or their parts) 
by directed graphs. This method can be transferred (by virtue of the assignment ¡¡/) 
also for codes and pre-codes. If C is a code and D is the pre-code consisting of the 
first and second blocks of C, then the graph of D is a spanning subtree of the graph 
of C (and any edge of D is directed outwards from 

If a, b are states of an automaton A, then we define co(a, b) as the length L(p) 
of a shortest word p such that 

X(8(a,p))^X(S(ib,p)). (2.1) 

If (2.1) holds, then we say that p distinguishes a and b (for the automaton A or for 
the code i>_1(A))-

The complexity QA (A) of A is the maximum of the values a>(a, b) where a^b. 
The complexity i2c(C) of a code C is defined by Qc(C) = QA(ip(C)). Finally, the 
complexity i2c(D) of a pre-code D means the minimum of all complexities i2c(C) 
where D ^ C . 

The following two statements (exposed in [3] as Propositions 13, 19) will be 
used often in our further considerations (with or without an explicit reference): 

Proposition A . / / N J + s + 1 , .K~Nr
2+s+1, P(i)=P(j),y(i) = y(j) are valid for a 

pre-code, then i=j. 

Proposition B. If the pre-codes Dx and D2 satisfy D 1 < D 2 , then i2c(D1)^ 
^i2 c(D2) . 

§ 3 . 

In §§ 3—5 we prove the following result: 

Theorem l . I f Y ) is a pre-code of second type, then its complexity Qc (D) is finite. 

In the proof of the theorem two constructions will have essential roles (each 
of them transforms a pre-code to another pre-code and augments the size by one). 

CONSTRUCTION 1. Let D = ( r , 0 , p, y, ¡i, q>) be an arbitrary pre-code of second 
type. Introduce the pre-code r1(J)) — ( r 1 , s i , p 1 , y l , n l , ( p d by the following rules 
(0, (ii): 
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(i) / \ ( D ) is of second type and D-<r i (D) . (Hence and r 1 = r + l . ) 

(ii) The function values at the place r+2 are: 

ß1(r+2) = r+l, 

y 1(r+2) = n, 

2) = max(/i(l),//(2), . . . , / i ( r+1)) + 1. 

Proposition 1. 77ie pre-code / \ ( D ) exists. 
Proof. The proposition asserts that / \ (D) , as it is determined by Construction 

1, satisfies all the postulates (I)^(VIII). Most postulates are obviously fulfilled, 
except (V) in the particular case i=r+2(=r1 + X). 

(V) is completely satisfied since 

^ 1 <>ß(r+l) = ß1(r+l), . 
ß 1 ( r + 2 ) = r + l [ ^ r + 2 • 

Before exposing Construction 2, we define some notions2 for a pre-code D0. 
The set of numbers 

{r+\,ß(r+l),ß\r+l),ß*(r + l),..., 1} 
is denoted by3 H. 

The set of all numbers y'(€N!;+1) fulfilling at least one of the subsequent con-
ditions (a), (ß) is denoted by G: 

(a) y{j)=n, 
(ß) there is a number /z(€N£+1) such that ß(h)=j and y(h)=n. 
The set of numbers j which satisfy (a) but do not satisfy (ß) are denoted by GL. 

The set of numbers j which fulfil (ß) but do not fulfil (a) are denoted by G2. (Hence 
G^G^Q and G ^ G ^ C . ) 

Consider the subgraph induced by the vertex set G in the tree assigned to the 
pre-code consisting of the first and second blocks of D0. Each connected compo-
nent of the induced subgraph is a path having at least two vertices. G2 consists of 
the starting vertices of the connected components, Gx consists of their end vertices. 

We denote by Gh the set of numbers /(€G) such that the connected component 
(of G) containing i intersects H. Let Gg be the complementary set G—Gh. The in-
tersection of H and a connected component C of Gh is a starting subpath of C. 
We define G1>h, Gl g by G1>»=G1nG» and G 1 ) 9 =G 1 f lG g . 

If jd G1, then we denote by r ( j ) the element of G2 lying in the same connected 
component (of G) as j. Evidently, x is a bijection of G1 to G2, and the containments 
i(j)£H, G]_h are equivalent. If j£Gl h — H, then we denote by i'(y') the number 
ßK°(j) where vv0 is the smallest among the numbers w fulfilling ßw(j)£H. 

C O N S T R U C T I O N 2 . Let D 0 = ( R , s, ß, y, p, (p) be a pre-code of second or third 
type. We denote by D the pre-code consisting of the first and second blocks of 
D0. Let t mean the size r + j + 1 of D„. 

2 We do not specify the type of D0 . The notions to be defined are independent of the third 
block of D0 (even if D0 belongs to the third type). 

3 The elements of H were enumerated here in decreasing order. 
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We introduce a pre-code r2(T)0)=(r2> s2, fi2, Hz, <Pi) by the subsequent t.wo 
rules (iii), (iv): 

(iii) r 2 (D 0 ) is of third type and D 0 < r 2 ( D 0 ) . (Thus r2=r, s 2 = , y + l and the 
size r2-\-s2+1 of r 2 (D 0 ) equals /+1 . ) 

(iv) The value <p2(/+1) is prescribed4 according to six cases (a)—(f) as follows: 

(a) If y2(t+l)<n, then <p2(i+l) = l . 
(b) If y2(t+i)=n and jS2(/+l) = r + l , then ( p 2 ( i + l ) = / - + l . 
(c) If y2(t+l)=n, 02(t+l)^r and 'P2(t+1)£H, then (p2(t+1) is the smallest 

element of the set 
N^O+d+I1"!^-

(d) If y 2 ( / + l ) = n and p2(t+i)£Glih-H, then <p2(t+1) is the smallest ele-
ment of the set 

^ " ( ^ ( i + D J + i n / ^ -

(e) If y2(t+i)=n and /¡2(/ + 1)6<J1i9, then <p2(t +1) is the largest element 
of the set 

(Nt<*<»+»> •-i _ ((G _ G2) U H)) U {1}. 

(f) If y2(t+i)=n and p2{t+l)iG\JH, then cp2(t+V) is the largest element 
of the set 

(N| 2 ( , + 1 ) ~1—((G - G2) U H)) U {1}. 

The description of Construction 2 is completed. 

REMARK. The reader may convince himself that <P2(I + l ) has been defined cor-
rectly. On one hand, the conditions in (a)—(f) exclude each other.5 On the other 
hand, we have defined (p2(t+1) in every possible case since the situation when 
y 2 ( i+ l )=M and P2(t + i)£G — G1 cannot occur.® 

Next we assert two simple facts on the procedure of Construction 2. 

L e m m a 1. If (p2(t +1) is determined by (c), then p2(<p2(t + i j ) = p2(t + l). 

Proof. The statement follows from (c) and the definition of H. • 

L e m m a 2. If (p2(t +1) is determined by (d) J hen p2{cp2(t + \)) = p2{t + \) where 
w is the smallest number such that P2(t + l)£H. 

Proof. This is a consequence of (d) and the definition of T'. • 

Proposition 2. The pre-code r2 (D0) exists. 

Proof. Analogously to the proof of Proposition 1, it is clear that r 2 (D 0 ) satisfies 
the postulates (I)—(VIII) almost completely. Only the fulfilment of (VIII) if i + 1 
plays the role of i is questionable. We show this dependingly on the cases (a)—(f). 

4 By Postulate (VII), the values fti(t +1), y2(r+1) are uniquely determined. 
5 This is mostly obvious. It holds for the pairs ((c), (e)) and ((d), (e)) since G,ia is disjoint 

to H and to Glt h. 
' Indeed, combine Proposition A with the fact that j^G—Gt is equivalent to the validity of (ft). 
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(We can omit the subscripts in P2,y2,<p2 without the possibility of misunder-
standing.) 

(a) Trivially, <p(t +1) = 1 guarantees (VIII). 
(b) We have 

/*(?(*+l))=/?(r+l)<r+l =P(t+l). 
(c) By Lemma 1, ¡i((p{t + \)) = (i(t + \), consequently, 

y M ' + O ) *V(t+0 = » 
(by (VII)), hence y ( ^ ( / + l ) ) < y ( i + l) since n is the maximal possible value of y. 

(d) Lemma 2 and pw(t + l ) ^ r + l < f + l imply 

p(<p(t+\)) = p»(r+№(t+l). 

Strict inequality must hold since fiw(t + l)£H and P(t + 1)$H. 

(e) Either ^ ( i + l ) = l or the deduction 

p{<p{t+1)) ^ < r{p(t+\)) < p{t+1) 

holds (by (V) and p(F+L)^T(j!(/ + l ) ) - l } . (f) Either (p(t+1) = 1 or 

L e m m a 3. Let D be a pre-code of second type. The sequence 

D, r s (D) , r 2 ( r 2 (D)) , T 2 ( r 2 ( r 2 (D))) , ... (3.1) 

breaks up after a finite number of steps. The last element of this sequence is a code. 

Proof. On one hand, the first and second blocks are common for all the pre-
codes in (3.1). Thus r is the same for them, and rn+n—r is an upper bound for 
the lengths of the third blocks. 

On the other hand, the sequence (3.1) can always be continued unless we 
reached a code. • 

DEFINITION. Let D be a pre-code of second type. The last element of the se-
quence (3.1) is denoted by T*(D). 

In § 8 it will be shown by an example how f*(D) is formed. 

§ 4. 

Let the recursive definition 

n°>(D) = D, r | s ) (D) = r 2 ( r | s _ 1 ) ( D ) ) 

be introduced for a pre-code D of type 2. 

L e m m a 4. Let D = (r, 0, /?, y, ¡.t, q>) be a pre-code of second type. Suppose that 
the pre-code r£s)(D) = (/-, i, /?, y, n, <p) exists7 and y{t) = n holds where i ^ l and 

' We can write the functions without subscripts. 
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t is the size r+s+l of _T2
U'(D). The following statements (A), (B) are true: 

(A) If y{<p{t))=n, then 0(t) = <p(t) = r +1. . 
(B) If a number i (€N'r+1

2) satisfies the equalities y(i)=n and q>{i) = (p{t), 
then the formulae P(i) = P(r + l) and P(t) = (p{t) = r-(-1 hold. 

Before proving the exposed lemma, we note another statement which will be 
useful in the proof of Lemma 4. 

L e m m a 5. If the premissa of the assertion (B) of Lemma 4 are valid, then 
m ^ m . 

Proof. The formula (i(i)^P(t) follows from r+2^i<t by Postulate (VII). 
The equality P(i)=P(0 leads to a contradiction to Proposition A because we 
have supposed y(i) = n=y(t). • 

Proof of Lemma 4. Since y(t) = n was assumed, the value (p(t) has been de-
termined by one of the cases (b)—(f) in Construction 2 (with t instead of /+1) . 
An analogous statement holds for <p (i) (in (B)). The proper proof splits to the veri-
fications of (A) and (B). 

(A) The assumption y(cp(t)) = n implies \<cp(t)£G — We distinguish five 
cases according to (b)—(f). In each case, we either show the conclusion of (A) or 
get a contradiction (indicating that the case cannot occur really). 

(b) The conclusion of (A) is trivial. 
(c) On one hand, y(t)=n=y(cp(t)) and (p(t)^r+l<f, on the other hand, 

¡i{t) — p{(p(t)) by Lemma 1. Contradiction to Proposition A. 
(d) Let w be as in Lemma 2. On one hand, y(Pw~1(t))=n=y((p(t)) and 

fiv-^tj^cpit) (since pw~1(t)iH and (p(t)iH); on the other hand, P((p(t)) = 
=// , v(/)=/?(/?w_1(/)) by Lemma 2. Again a contradiction to Proposition A. 

(e), (f). These cases are contradictory because (p(t)£G — <J2 cannot be true 
and false simultaneusly. 

(B) We can again distinguish five cases according to how <p(t) has been de-
fined, and an analogous distinction is made with respect to (p(i). Combining these 
distinctions, twenty-five cases can be separated. We are going to show that the 
conclusion of (B) holds in one case and all the remaining twenty-four cases are 
contradictory. N 

We begin the discussion with the single consistent case. Suppose that <p(i) 
has been determined by (c), and q>(t) has been defined by (b). (This is called case 
(c,)—(b,) briefly.) Then P(t) = <p(t)=r+l by (b) (applied for t). Furthermore, 

is(i) = p(<p(0) = H<p(t)) = P(r+i) 

(where Lemma 1 was used for i). 

Now we turn to the other 24 cases that are imaginable. We do not discuss them 
separately but divide them into seven groups as indicated in Table 1. (E.g., the 
case (e,)—(c,) belongs to the second group.) 

First group. In case (b,)—(e,) we have 

r + 1 = <p(i) = (pit) ^ r(P(t)) ^ Pit), 
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Table 1. 

(b) (c) (d) (e) (f) 

(b) 4 
(0 

5 6 1 1 
4 7 2 2 
7 4 2 2 
2 2 4 3 
2 2 3 4 

(d) 6 
(e) 1 
(f) 1 

this is impossible since the value of p cannot exceed r + 1 (by Postulate (111)). In 
the other three cases (belonging to this group) a similar inference holds, possibly 
with interchanging i and t, or with dropping T (p ( t ) ) . 

Second group. We get that exactly one of <p(i) and <p(t) belongs to H—{1}, 
this contradicts the assumption <p{i) = q>{t). 

Third group. Denote the set 

by J. We partition J to the classes Jx and J2 in the following manner : j(£J) be-
longs to Ji or to J2 according as the smallest element of N ' - | j n / is contained in 
J-G2 or in G2, respectively. (If N } i j n j = 0 , then jUi-) It is clear that <p(t)eJl 
if <p(i) is defined by (e), and <p(t)ij2 if <p(t) is defined by (f). 

One of (p(i), <p(t) belongs to 7, and the other of them belongs to J2. This 
excludes <p(i)=(p(t). 

Fourth group. We try to deduce the equality P(i)=P{t) in each case belonging 
to the present group; this equality is impossible by Lemma 5. 

In the case (bf)—(b,), p(i)=p(t) follows clearly. In the further considered 
cases, we have to keep in mind the situation of H, G, G2 (in the tree assigned to D). 
(p(i) = <p(t) implies P(i)=P(t) in the cases (c,)—(ct) and (Q—(f,) immediately. 
(pii)-cp(t) implies P(i)~P(t) through the equalities T / ( ^ ( / ) ) = T/(/?(/)) and 
T(/?(/))=T(/?(0) in the cases (d,)—(d,) and (e,)—(e,), respectively. 

Fifth group. We can obtain the deduction 

(the first step follows from Lemma 1), this contradicts Lemma 5. 

Sixth group. We discuss the case (b,)—(d,) only (the other case belonging to 
this group can be treated analogously, by interchanging i and t). The deduction 

is valid (in the second step we used Lemma 2). The structure of G, H and the con-
tainment P(t)£Gl h—H imply 

N 5 + 1 - ( ( G - G 2 ) U / / ) 

Pit) - P{cp{t)) = p(<p(i)) = P(r+1) <= r + 1 = P(i) 

PiP^it)) = p»(t) = p{cp{t)) = P(V( 0) = P(r +1) (4.1) 

Clearly, 
v(p-Ht)) - n. 

y ( r + l ) ^ n. 

(4.2) 

(4.3) 
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The formulae (4.1), (4.2), (4.3) are consistent with Peculate (V) only if 

r + l ^ F ' H t ) . (4-4) 

The obvious formula Pw-l(t)iH and (4.4) imply Pw~1(t)>r+i, contradicting 
Postulate (III). 

Seventh group. It suffices to deal with the case (c,)—(d,) (by a similar reason 
as in the sixth group). Lemmas 1 and 2 imply 

0 (0 - Pirt0) = P(cp«)) = r « = / K r - 1 « ) , (4.5) 
and (4.2) holds also in the considered case. Comparing (4.5), (4.2) and y(i)=n, 
we get i=fiw~1(t). This is impossible since /?w_1(i) = r + l < / . 

The proof of Lemma 4 is completed. • 

§ 5 . 

Recall how the automaton ij/(C) (assigned to a code C) and the word have 
been defined in § 2. 

In the following considerations — yielding the completion of the proof of 
Theorem 1 — we shall deal chiefly with automata given in form i/r(r*(D)) from 
such a point of view that only the effect of the input sign x w (with largest possible 
superscript) is taken into account.8 

L e m m a 6. Let D = (r, 0, /?, y, ft, <p) be a pre-code of second type. Consider 
the automaton 

ilt(r*(D)) = A = (A,X,Y,8,X, fli). 

If z€NJ—(H{JGh), then there are two numbers j,k such that and aj = 
=8(ahp^')) (where a£A, a^A). 

Proof. Case 1: i^G — Gy. Define the number i' by the conditions /?(/') = /, 
y(i')=n. Then <p(i') is defined by the rule (f) (in Construction 2) and the conclusion 
of the lemma is obviously fulfilled with k = 1. 

Case 2: i^Gg—G^. There is a /c'(=-0) and a ji^G^ such that [ik'(j) = i and /", 
j are in the same connected component of G. It is clear that 

n = y(j) = y(PU)) - y(p2(j)) =...= y(pk'(j)). 
Consider the number j' satisfying P(j')=j and y{J')=n. Obviously, j^ir+2 
and cp(j') is defined by the rule (e). 

We are going to show that the conclusion of the lemma holds if k'+l is chosen 
for k. The definition of (r* (D)) implies the equalities 

<5^,., = aj 

8 Automata having a single input sign are often called autonomous. The possible structures 
of finite autonomous automata follow from a graph-theoretical result of Ore ([5], § 4.4; see also 
[2], Chapter I). Although we do not use Ore's theorem explicitly, its knowledge makes perhaps 
easier to understand the considerations of the present §. 
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and 

Since (p(j') was defined by the rule (e), <p(j')<x(fi(jj)^i. • 

L e m m a 7. Let D, A be as in Lemma 6. Suppose i£Gh. There are two numbers 
j, k such that j(LH, aJ=S(ai, p[n)) are true and one of the formulae i$Ht j>i holds. 

Proof.9 Let us consider the numbers 0), j and j' with the same properties 
as in the preceding proof. j'Sr+2 is again true and <p(j') is defined by one of 
the rules (c), (d). By use of Lemmas 1, 2 we obtain that 

, _ R ( , ,.,Y> _ ¡P(j') = j > ' if (c) is applied, 
<PV ) > PVPiJ )) - \T'0S(./'))=:T'<J) if (d) is applied. 

i£H implies i^x'(j), hence the lemma is valid with k'+1 (as k) in both cases. • 

L e m m a 8. Let D and A be as in Lemma 6. If i£H—{r +1}, then there are two 
numbers j, k such that 1 and aj = 5(ai, p^) (where a^A, a^A). 

Proof. If G—Gx, then the conclusion of the lemma is evidently fulfilled such 
that k = l and j is the smallest element of Nf+,1 f ) H. If ;£G—Gx , then Lemma 7 
implies the present assertion. • 

L e m m a 9. Let D and A be as in Lemma 6. For each number i(£H) there is a 
number k(^0) such that 5{aiyp[n>) = ar+1. 

Proof. Apply Lemma 8 repeatedly till it is possible. • 

L e m m a 10. Let D and A be as in Lemma 6. For each number / (£NJ+ 1) there 
is a number 0) such that 8(ai,p[n)) = ar+1. 

Proof. Case 1: idH. Then Lemma 9 guarantees the statement. 

Case 2: i£ Gh — H. Lemma 7 assures the existence of a k' such that ¿(a;, p(
k"y)^H, 

By Lemma 8, also the equality 

H5(fl„pp),pp) = ar+1 

is valid with a suitable k". The left-hand side of this equality is clearly 8 (at, p["\k«). 
Case 3: /(£ GhUH. By a successive application of Lemma 6, there exists a k' 

such that 8(ai,pfi))=a1. Since ax belongs to H, the further inference is the same 
as in Case 2: • 

L e m m a 11. Let D and A be as in Lemma 6. Suppose that i and j are distinct 
numbers in NJ+1. If 

8(al,x^) = 8(aJ,x^) = am, 
then 

max (/,_/) = m = r + 1 . 

s In the proof we consider an i chosen arbitrarily. It is easy to see that the lemma is satisfied 
with k— 1, too, if, particularly, and i does not belong to the range of r'. 
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Proof. Case 1: one of i and j equals p(m). We can assume (without loss of 
the generality) that P(m)—i. Then, by the connection of D and A, we have y(m)=n 
and there exists a number w(€N; i | + 1 ) such that P(w)=j, y(w)=n and <p(w)—m 
hold in r*(D). By applying the assertion (A) of Lemma 4 (for w) we get that 
j=f}(w) = r-\-\ > i and m=(p(w)=r-1-1. 

Case 2: p(m) coincides neither with i nor with j. There exist two numbers 
v, w in such that P(v)=i, p(w)=j, y(v)=y(w)=n and (p(v)~cp(w)=m. We 
can suppose v<w. Apply the statement (B) of Lemma 4 for v, w (instead of i, t, 
resp.). We obtain i—P(v)=P(r-1-1) and j=P(w)=r+l = cp(w)=m. • 

L e m m a 12. Let D and A be as in Lemma 6. Consider two different states ait aj 
of A. Denote by kt the smallest number fulfilling 8(ah pj("))=ar+1; let kj be defined 
analogously. Then k ^ k j . 

Proof The existence of kt and kj follows from Lemma 10. Let zi be the smallest 
number such that 8 ( a j , p i f ) belongs to the set 

{a„ 8{at, xW), 5{a„ p[% 8(a;, p<">), ..., <5(a,, ptf)}, 

let z,• be the smallest number such that 8(at, = 5(aj, p^'). Evidently, 
and 0 S z j ^ k j . (The situation is illustrated in Fig. 1.) We can distinguish four 
cases (two of them will be contradictory). 

Fig. l 

If z,='zy=0, then we get a i = a j . Contradiction. 
If Z; = 0 < Z j , t h e n kJ = ki+Zj>ki. 
If z J = 0 < z j , then k — k j + Z i ^ k j . 
If z ,>0 and Zy>0, then 

8(8(ah p'llj, *<">) = 8(ah p ' f ) = ¿(a,, p™) = 8(8(aj, pMj, x<">). 

Apply Lemma 11 for 8{ai,p<ftlj) and The conclusion of Lemma 11 
implies that one of this states equals ar+1, this is impossible by the definition of 
kt and kj. • 

Proof of Theorem 1. Consider a pre-code D = ( r , 0, /?, y, p., <p) of second type. 
Let A be the automaton tl/(r*(r1(D)))=(A, X, Y, 8, X, ax). Clearly, \A\=r+2. 
It is obvious by Construction 1 that X(ai)7iX(ar+2) if /'£NJ+1. 

Consider two different states ait a j of A. Introduce kl} k} as the smallest num-
bers fulfilling 8(as, p{"))=ar+2, 8(aj, plc"J

))=ar+2, respectively. Lemma 12 (applied 
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for / \ ( D ) instead of D) assures k ^ k j . We can suppose (without loss of generality) 
ki < k j . We obtain 

from the previous considerations, hence 

P t f ) ) = * ¿ ( H a j , p<?>)), 

thus 03 (of, a J) S kt< °o. 
Since the above inference holds for each pair (a,-, a J) of states of the finite 

automaton A, the complexity i3^(A) is finite. Consequently, 

flc(D) ^ Qc(r*(F l(D))) = Oa(A) < -

by D ^ - T ^ F ^ D ) ) and Proposition B. • 

The next result follows from Lemmas 10 and 11 immediately: 

Corollary 1. Let D and A be as in Lemma 6. There exists a permutation n of 
Jhe set {1, 2, .. . , r} such that 

m o * J a " ( i + 1 ) l f l - i < r > * . K o > * ( ' H a r + 1 ,/ i = r, 

and moreover, S(ar+l, x^n))=ar+1. • 

Fig. 2 

Corollary 2. If D = (r, 0, /?, y, fi, <p) is a pre-code of second type, then Qc (D) ^ r. 

Proof. Analyze the proof of Theorem 1, let n have the same sense (for f l (D)) 
as in Corollary 1. It is clear that a„(j) and aMj) can be distinguished by the word 
P (r+2-na) i f " ( 0 h e n c e 

a («*(.), an(J)) ^ r+2 — n(J) r 
(the second inequality holds because n(i)+i = n ( j ) = 2 is the worst choice). Thus 
Qa(A)=Sr. • 

§ 6 . 

The assertion (iii) of the next result is a conversion of Theorem 1. 

Theorem 2. Let k be an arbitrary non-negative integer. Then 
(i) there is a code Ck such that Qc(Ck)=k, 

(ii) there is an automaton Ak such that QA(Ak) = k, 
(iii) there is a pre-code D t such that Qc(D^) = k and is of second type. 
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Proof. We define Ck = (r, s, /?, y, p., <p) in the following manner: 

r = k+l (hence s( = rn + n — r) = kn+2n — k+l), 

J8(i) = / - 1 if /6 N'2+1, 

y ( 0 = n i f N 5 + 1 , 

/ i (0 = 1 if i€NI, 

Ai(r+1) = 2, 

fl»(0 = l if ¿€NJÍ5+ 1 . 

/?(z) and y(¡) are defined, of course, by virtue of Postulate (VII) if í ' €N ' Í | + 1 . 
Fig. 3 shows a part of Ak=i¡/(Ck). (In the full graph of Ak every edge which 

is not indicated in this figure goes into ax.) 

It can be seen easily that Ck satisfies all the postulates (1)—(VIII). Thus Ck 
is a pre-code; it is a code since s equals the maximal possible value rn+n—r (see 
the remark in § 4.3 of [3]). 

We can verify easily that co(at, aj)=r—j+1 is valid in Ak if / '</. (Indeed, 
on one hand, 

S{a„ pi
r'L>j+1) = fl(r+1)_(j_0 ^ ar+1 = 8(aj, p^J+1)i 

on the other hand, the relations 8(ai,p)^{a1, a2, ..., ar} and 8(aj,p)£{at, a.£, ..., ar} 
are true if i<j and L(p)^.r—j.) The value of oj(at, aj) reaches its maximum when 
/ '=1 and j=2, namely, 

co(a1,a2) — r — 1 = k. 

Hence i2c(Ck) = £2A (Ak)=k. The proof of (i) and (ii) is completed. 
Denote by D t the pre-code satisfying D ^ Q and having the size r + 1 . (In 

other words, consists of the first and second blocks of Ck.) The estimate 

i2c(D t) ^ Qc(Ck) = k ' (6.1) 

is obvious. Before verifying the converse inequality, we interrupt the proof by 
stating a lemma. 

L e m m a 13. Consider an arbitrary code C such that Dt-=cC. Let the automaton 
4/(C)=A=(A, X, Y, 8, A, ax) be studied. If a&A, i^r (where r is understood in D J 
and a state aj(£A) is representable inform ai—8{ai,xw) (where x'h) is an arbitrary 
element of X), then j^i+l. 

Proof. Case 1: h~n. The transition 8{au x(h)) is determined by a row of the 
pre-code D t , hence dj=al+1. 
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Case 2: h^n. Since n=\X\, we have h<n. The transition ¿(a,-, xw) is de-
termined by a row being in the third block10 of C; say, by the mlb row. Then 
P(m)=i,y(m)=h and <p(m)=j. We have f}(<p(m))^fi{m) by Postulate (VIII), 
this implies 

j = <p(m) =sj9(m) + l = i +1 

by f i ( m ) = i ^ r and the construction of D t . • 

Proof of Theorem 2 (final part). If C is an arbitrary code fulfilling D t < C , 
then the equality 

p)) = yx = ).(S(a2, p)) 

holds in i/i (C) for every word p whose length does not exceed r—2 (by an iterated 
application of Lemma 13). Hence co(alt a2)^r — l holds in ij/(C), consequently 

and 
Sc( Q ^ k , (6.2) 

thus 
i2c(D k ) ^ k , (6.3) 

since (6.2) holds for each C satisfying D t < C . 
The inequalities (6.1) and (6.3) give together the assertion (iii) of the theorem. • 

§7-

By use of Corollary 2 and slight modifications of the idea of the proof of Theo-
rem 2, we can infer the following assertions concerning the complexity and the 
first component r of codes and pre-codes: 

Proposition 3. Let two non-negative integers k, r be given. The inequality k^r 
is a necessary and sufficient condition of the existence of a pre-code D —(r, 0, /?, 7, /1, <p) 
such that D is of second type and Qc (D) = k. 

Proposition 4. If the non-negative integers k and r satisfy k<r, then there 
exists a code C = (r, s, y, n, (p) such that Qc(C) = k. 

Proof of Propositions 3 and 4. The proof will consist of three parts. In (A) 
we verify Proposition 4 and we show that k < r is sufficient in Proposition 3. In 
(B) we make some preparations for proving the sufficiency of k=r. In (C) we 
verify the necessity part of Proposition 3 and we complete the proof of the suffi-
ciency of the equality k=r. 

(A) Consider k and r (k<r). Recall the procedure proving Theorem 2, let 
us start with the code C r _ j (i.e., with Ck such that r—l is taken for k). Alter C r_x 
by putting 

fl if Ï6NÎ+1, 
K 0 ~ \ i - k if N Î " ; 

10 This row cannot be in the second block of C (by Postulate (V)) even if the second block 
has > r rows. 



On the complexity of codes and pre-codes assigned to finite Moore automat". 131 

denote the originating code by C'k>r (of course, Ci_ l j P =C r _ 1 ) and the pre-code 
consisting of the first and second blocks of Ck r by D£ r . The first component of 
C'kir and of D£ r is clearly r. 

The whole proof of Theorem 2 remains valid for CktT, D k r with certain nu-
merical changes. In fact, co(ai, aj) = max (0, k —j+2) (where /< / ) , especially, 

k = (o(ai, a2) = C;,r)) - QdClrl 
Thus Proposition 4 is proved. 

No word whose length is smaller than k can distinguish ax and a2 for an ar-
bitrary code C(>D^ r ) , consequently, £2c(D'k r)=k. 

(B) We start again with the code Ck occurring in the proof of Theorem 2. 
We modify it by putting / ¿ ( r + l ) = l ; we denote the resulting code by Ck and the 
pre-code of its first r + 1 rows by Although the considerations of the proof 
of Theorem 2 do not remain valid in general, -Lemma 13 holds in the present case, 
too, hence no word whose length is < r can distinguish aL and a2 for an arbitrary 
code C ( > D t ) , thus Qc(Dt)=r. 

(C) Corollary 2 states that i2c(D)^/- holds for each pre-code D=( r , 0, /?, y, n, cp) 
of second type. The necessity of the condition in Proposition 3 is proved. 

Especially, i2 c(D*)^r. This inequality and the conclusion of (B) mean that 
k=r is sufficient in Proposition 3. • • 

Since the automaton iMC) has r + 1 states, Proposition 4 can be formulated 
in the following (equivalent) form: 

Corollary 3. Jf the non-negative integers k and v satisfy k^v — 2, then there 
exists a Moore automaton A such that C2A (A) = k and the number of states of A 
is v. • 

I conjecture that the conversion of Corollary 3 is also true, see [4]. 

§ 8 . 

In the last section of the paper, an example will be studied how / \ ( D ) and 
r * ( r 1 (D)) are built up if a pre-code D of second type is given concretely. 

Suppose X= (x(1), x(2)}. Let D be the pre-code given by Table 2/a. (r equals 
24. The tree assigned to D can be seen in Fig. 4. For the sake of simplicity, the 
vertices are labelled by i and the edges are by j instead of at and x'J\ resp.) 

We get J \ (D) if we supplement D by a 26th row given by Table 2/b. The sets 
H, G, Glt G2, Gh, Gg, Glih, Ghg are (for / \ (D) ) the following: 

H = {1, 2,4,7,11,15,17, 20,22,25,26}, 
G = {2, 3,4, 5,6,7,9,10,11,13,14,15,16,17,19,21, 22,24, 25, 26}, 

Gx — {7,13,14,19,24,26}, 
G2 = {2,3,5,11,16,22}, 

G„ = {2,4, 7,11,15,17, 21,22,24,25,26}, 

Gg = {3,5,6,9,10,13,14,16,19}, 
= {7,24,26}, 

Glig = {13,14,19}. 
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Table 2. Table 3. 

i ß{') yif) <p(i) i ß(0 y(0 <p(i) 

1 1 27 1 2 2 
2 1 1 1 — 28 4 1 — 1 
3 2 1 1 — 29 6 1 — 1 
4 2 2 1 — 30 7 2 — 11 
5 3 1 1 — 31 8 1 — 1 
6 3 2 1 — 32 8 2 — 5 
7 4 2 1 — 33 10 1 — 1 
8 5 1 1 — 34 11 1 — 1 
9 5 2 1 — 35 12 1 •— 1 

10 6 2 1 — 36 12 2 — 8 
11 7 1 1 — 37 13 1 — 1 
12 9 1 1 — 38 13 2 — 3 
13 9 2 1 — 39 14 2 — 1 
14 10 2 1 — 40 15 1 — 1 
15 11 2 1 — 41 18 1 — 1 
16 14 1 1 — 42 18 2 — 16 
17 15 2 1 — 43 19 1 — 1 
18 16 1 1 — . . 44 19 2 — 12 
19 16 2 1 — 45 20 2 — 22 
20 17 1 1 — 46 22 1 — 1 
21 17 2 1 — 47 23 1 — 1 
22 20 1 1 — 48 23 2 — 18 
23 21 1 1 — 49 24 1 — 1 
24 21 2 1 — 50 24 2 — 20 
25 22 2 1 — 51 25 1 — 1 

(a) 52 26 1 • — 1 (a) 
53 26 2 — 26 

26 2 5 2 
(b) 

2 — 

The functions T and x' are indicated in Table 4. 

Table 4. 

i T (Ó 

7 2 
13 5 — . 

14 3 — . 

19 .16 — 

24 11 17 
26 22 — 

Now we are able to obtain r* ( / \ (D) ) by applying Construction 2 as many 
times as possible (beginning with rx(D)). We get that the 26 rows (seen in Table 2) 
are supplemented by 27 rows (as a third block) which are given in Table 3. 

In course of forming Table 3, the values q>{27), 9(30), (p(45) are determined 
in sense of case (c) of rule (iv) of Construction 2. The values <¡¡>(32), cp(36), <p (42), 
<¡<>(48) are determined by case (f). The values <p(38), <p(39), (p(44) are determined 
by case (e). cp (50) and cp(53) are determined by cases (d) and (b), respectively. (The 
remaining 15 values are by case (a).) 
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Fig. 5 shows the (autonomous) automaton that is obtained from r*( r x (D)) 
if solely the input sign x(-2) is considered. It is evident that Corollary 1 (in § 5) is 
fulfilled by a suitable permutation n (for which 7t(l)=23,7r(2) = 18,7r(3) = 16, 
and so on). 
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On the isomorphism-complete problems 
and polynomial time isomorphism 

B y G H . GRIGORAS 

Introduction 

One of the important open problems in computer science today is the com-
putational complexity of deciding when two graphs are isomorphic. No polynomial 
time algorithm is known, nor is the problem known to be NP-complete. Many 
restrictions and generalizations of the problem have been the focus of much re-
search during last years and many of these problems have turned out to be pol-
ynomial time equivalent to graph isomorphism ([3], [4], [6], [7], [9], [10]). 

In this paper, starting from the results of Berman and Hartmanis paper on 
/»-isomorphism [2] we give some analogous necesary and sufficient conditions for 
a language to be isomorphic under polynomial time mappings to graph isomorph-
ism problem. Next we give the proof of the existence of /»-isomorphism for some 
problems which are known to be polynomial time equivalent to graph isomorph-
ism. We conjecture that all problems polynomial time equivalent to graph iso-
morphism problem are /»-isomorphic. 

Preliminaries 

In our paper we suppose the reader is familiar with the terminology of com-
plexity theory. In this section, we make precise some of the objects; for more details 
see [1], [5], [6], [8]. 

A language AQE* is said to be reducible to a language BQT* if there exists 
some function / : I*—r* such that f(x)£B iff x£A, A is said to be re-
ducible to B in polynomial time (p-reducible) if the function / is computed by 
a deterministic Turing machine M which runs in polynomial time. 

A language L0 is said to be #-hard for some class of languages if for every 
L in <€, L is /»-reducible to L0. 

A language L0 is complete for if it is in and is 'ii-hard. 
By P (NP) we denote the class of languages accepted by deterministic (non-

deterministic) Turing machines which run in polynomial time. 
A language A^Z* is said to be p-isomorphic to a language BQT* ([2]) iff 

there exists a bijection / : r * such that / is a /»-reduction of A to B and f ~ l 

is a /»-reduction of B to A. 

i* 
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Let AQS*; the function ZA: I*—E* is a padding function for the set A if 
it satisfies the following two properties 

1. Za(.X)£A iff x£A, Vx£Z*; 

2. ZA is invertible (i.e. one-one). 

The following theorem due to Berman and Hartmanis [2], is useful in the proof 
of the fact that the problems computationally equivalent with the graph isomorph-
ism are /^-isomorphic. > 

Theorem 1. Let A g I* and BQT* be two languages such that A is ^-re-
ducible to B and B is /^-reducible to A (in other words, A and B are polynomially 
equivalent); furthermore let the language A have a padding function ZA satisfying 

1:A. ZA has polynomial time complexity; 

2A• > | j ' | 2 + l ] ; 

and polynomial-time computable functions SA( —, —) and DA( — ) satisfying 

3 A . ( V x , . y ) [ ^ ( * > y ) £ A iff x£A]; 

4 a . (Vx, = }']• 

Then B is p-isomorphic to A iff B has the polynomial-time computable func-
tions SB and DB satisfying 3B and 4B. 

Berman and Hartmanis show that all NP-complete languages known in the 
literature are /^-isomorphic. If all NP-complete problems are /^-isomorphic, then 

- : /VNP. 
Now, let us consider the Graph Isomorphism Problem: are given two graphs 

Gl=(V1, £i) and C2=(K2, E2) isomorphic? In other words, is there any bijection h 
from Vx to F2 for which (v, w) is an edge in EL if and only if (h(o), h(w)) is an edge 
in E21 

The complexity of Graph, Isomorphism Problem is unknown yet and this 
problem has been the focus of much research in recent years ([3], [4], [7], [9], [10]). 
Many of the restrictions and generalizations of the problem turn out to be polynomi-
al time equivalent to graph isomorphism [3]. 

Caracterization of problems p-isomorphic to graph isomorphism 

In this section we apply the theorem of Berman—Hartmanis to the Graph 
Isomorphism Problem. 

• First, let us consider an enconding scheme in which a graph G = (V, E) can 
be described as a word over an alphabet I (see [6] p. 10). Let us denote by G the 
enconding of G, and let i be a symbol not belonging to I. Then, the graph iso-
morphism problem can be formulated as the problem of recognizing the language 

G1 = {x |x€( lU {#})*, x = G ^ G a , Gj is isomorphic to G2}. 



On the isomorphism-complete problems and polynomial time isomorphism 137 

Let us note that we consider and by the word Gx & G2, where GL and 
G2 are the encondings of two graphs G1 and G2 , we mean the enconding of graph 
with components Gj and G2 . 

Lemma 1. The language GI has a function denoted by SGl(-^,—) with the 
properties 

i) SGI has polynomial time complexity; 

ii) (Vx,y)[SG I(x, JOGGI iff x£GI] . 

Proof. Let us consider the language A g{0,1}* defined by yd A iff 

1 ) 3 n £ N , y =y1yt...y*. ^¡€{0,1}, i = 1,2, ...,n2; 

2) V i J 1 si i, j == n, ya-1)n+i = y(i-1)m+j.-

Note that the language A is decidable in polynomial time. 

Now we define the function 

Sgi : (£ U { # })*xJ -»- (Z U { # , 0 , 0 , 1 } ) * , 

where • is a new symbol by 

S (x y) = i G i & G # G & G 2 if x = G1#G2, 
G in other cases. 

The graph G which appear in the definition of SGl is constructed as follows. 
L e t G1 = (V1,E1), G 2 = (F 2 , E2), Vx = {u l 5 v2)..., u„}, V2 = {W11_W2, ..., WM} a n d 

X = G1^FG2. Then G = (Z, E) where Z = { Z 1 ; Z 2 , . . . , Z J , / = ^ 1 , and the edge 
(Z r , Zs) 6 E iff y ( s_ 1 ) ( + r = 1. In other words G is the graph with the adjacency matrix 
rows yki+iyki+2-- y(k+»i> 0 = s f c s s / - 1. J> 

It is clear that G1 and G2_are isomorphic if and only if so are the graphs with 
encondings Gx & G and G & G2. Hence SG I(x, _y)6GI iff x £ GI. 

Furthermore it is easy to see that SGJ is computable in polynomial time which 
completes the proof of the lemma. 

Lemma 2. The language GI has a function denoted by £>GI( — ) with the prop-
erties 

i).Z)Gi has polynomial time complexity; 

ii) (Vx, y), DGI(SGl(x,y)) =y; 

where SGl is the function defined in Lemma 1. 

Proof. Let us concider the function 

D g i : ( Z U { # , • , 0,1})* - ¿ U ( r U { # , D.O,!})* , 

1 For short, we say G has the adjacency matrix 3'. 
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where A is the language from Lemma 1, defined by 

y if u — & u2 # "2 & us> ui ( ' n which & does not occur) is the enconding 
of a graph the rows of adjacency matrix of which are y=y1-.yr, 

z if u = u1Uz, 
u in other cases. 

by 

From the definition of Dcl it follows that, given u € ( £ U { # , • , ( ) , 1,})* the 
computation of DGl(u) can be made in polynomial time depending on ¡«[̂  _ 

Now, let x e ( l U { # } ) * and_y£A. If x = G X # G 2 then SOI(x, y) = Gt & G # 
# G & G 2 and Z > G I ( G 1 & G # G & G 2 ) = 7 (the adjacency matrix of G ) . If x is not 
of the form G X # G 2 , then and Dai(xiUy)=y-

Hence, Vx, y, DGl(SGl(x, y))=y and the lemma is proved. 

Lemma 3. The language GI has a padding function ZGl such that 

i) ZG I has polynomial time complexity; 
i i ) V x £ ( l U {#})*, |Z G I (x )M* | 2 + l. 

Proof: Let us define the function 
Z G 1 : ( l U { # } ) * - ( r U { # , •} )* , 

Zai(x) = SGt(x, 1^1»») for all x<E(ZU{#})* 

where <p:N—N is a function depending on enconding scheme. We will show that 
there exists this function such that condition ii) of lemma is satisfied. Let us note 
that ZGi is a padding function. Indeed, from Lemma 1, we have. .S^, (x, y) £ G I iff 
xg 'GI, hence Z G I ( x ) e G I iff x £ G I , V x £ ( I U { # } ) * . From the definition of SGl, 
it follows that ZG I is an injective function, hence ZG I is invertible. It is clear that 
ZG I has polynomial time complexity. It remains to prove that for all x, 

|ZGI(x)| > | x | a + l . 
If X9*G1#G2, then 

|ZGI(x)| = |SG |(x, 1*M>)| = |x 2D l«l»l)| > |x | 2 +1. 

If X = G 1 # G 2 , then 

|ZG1(x)| = | S c l ( . G ^ G 2 , l*l«>l)| = | G 1 & G # G & G 2 | = 
= | G 1 # G 2 | + 2 ( | G | + 1) = | x | + 2 | G | + 2 . 

Of course, |G| depends on |x| because j=]V(i*l>. Let e(n) be the length of 
G where G has n vertex, and let e(n) be of order 0(nk), k^l. Then | G | = e ( « ) = 
=e(<p(\x\))—0(<p(\x\)k). If we consider <p(n)=0(n2/k) then 

|G| = 0((0(\x\zlk))k) = 0( |x |2) , 
hence 

|ZGI(x)| = | x | - f 2 0 ( | x | 2 ) + 2 . 

It follows that we can find a function cp(n) such that 

|ZG1(x)| > | x | 2 + l . 
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Theorem 2. Let A be a language polynomial time equivalent to GI (A is p-
reducible to GI and GI is /»-reducible to A). Then A is /»-isomorphic to GI if and 
only if A has two polynomial time computable functions SA(—, —) and DA{—) 
such that 

1) (Vx,y)[SA(x,y)6 / i iff x£A]; 
2) ( Y x , y) [DA{Sa(X, y ) ) = y]. 

Proof. From Lemmas 1—3 it follows that GI satisfies the conditions of 
Berman—Harmanis theorem. 

Problems p-isomorphic to graph isomorphism 

Booth and Colbourn [3] present a comprehensive list of problems which are 
known to be polynomial time equivalent to graph isomorphism. Such problems 
are called isomorphism complete. 

Now, we consider some of these problems and prove that they are /»-isomorphic 
to graph isomorphism. 

1. Directed Graph Isomorphism. Given two directed graphs, are they isomorph-
ic? Miller [10] shows this problem is isomorphism complete. 

2. Oriented Graph Isomorphism. An oriented graph [3] is a digraph in which 
the presence of the arc (x, y) precludes the presence of (y, x). Oriented graph iso-
morphism problem is isomorphism complete [3]. 

* 3. Bipartite Graph Isomorphism. Given two bipartite graphs, are they iso-
morphic? This problem is isomorphism complete [3]. 

4. Semiautomata Isomorphism. A semiautomaton is a 3-tuple A=(I, S, / ) , 
where I and S are finite sets of inputs and states respectively and / : SXI^-S is 
the transition function. Two semiautomata A1=(I1, Si, f ) and A2=(I2, S2, /2) 
are isomorphic if there exist two bijections g: /i—/2 and h: S^ —S2 such that the 
following diagram commute: 

S1XL1-II'SL 

j('>,») j* ' 

s% X s% 

Semiautomata isomorphism problem is isomorphism complete ([3], [7]). 

Lemma 4. Directed graph isomorphism is /»-isomorphic to graph isomorphism. 

Proof. Let us define the function SDGi and X>DGi satisfying Theorem 2, where 

DGI = { x l x ^ G j * ^ , Gx and G2 are encondings of two 

directed isomorphic graphs} Q ( I U { # })*. 

Let us consider J={>>b6{0,1}*, \y\=n\ n£N}. Then, for all x6(2;U {#})*, y£A 

c ' . JGi&G + S&G, if x = G x #G 2 ; 
otherwise, 

where G is the enconding of the directed graph which has the adjacent matrix y. 
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Like in Lemma 2 we define Z»DGI, by V u i ^ U i D , # , 0 , 1 } ) 

* = y if u = Ui & u2 # «2 & "3, it2 is the enconding of the 
directed graph, the adjacent matrix of which is y; 

z if u = utnz; 
u in other cases. 

It is obvious that SDCl and D0Cl are polynomial time computable and 

1) (Vx,y) SDGl(x,y)e D G I I F F J C E D G I ; 

2) (Vx,y) I>DCI(SDGI(x, >»)) = y. 

Lemma 5. Oriented graph isomorphism is /»-isomorphic to graph isomorphism. 
Proof. Like in Lemma 4, we construct the functions S0Cl and DOGI satisfying 

Theorem 2. In this case we take 

4 = {y/K{0, 1}*, \y\ =n\ yu.1)n+i = 1 => y(i-1)lt+j = 0}. 

It is clear that A can be recognized in polynomial time and the graph with 
adjacent matrix y€A is an oriented graph. 

The functions are defined in the manner of Lemma 4. 

Lemma 6. Bipartite graph isomorphism is /»-isomorphic to graph isomorphism. 

Proof Let us consider the language A g {0,1}* defined by 

A = {y\y = (0*16)*(1*0*)*, k£N}. 

It is easy to see that A can be recognized in polynomial time and, the graphs 
with 2k vertices and adjacent matrix yd A are bipartite graphs. Like in Lemma 4, 
there exist the functions SBG1 and DBCl satisfying Theorem 2. 

REMARK . The bipartite graph constructed in Lemma 6 is also a regular graph: 
-all the vertices have the degree k. Hence the regular graph isomorphism (which is 
isomorphism complete [3], [10]) is /»-isomorphic to graph isomorphism. 

Lemma 7. Semiautomata isomorphism is /»-isomorphic to graph isomorphism. 

Proof. Let A=(T, S, f ) be a semiautomaton, I={ix, ..., /„}, S= ..., sm} 
and f ( s k , ij)=f

k
j£S l^k^m, l^j^n. We consider an enconding scheme in 

which A is represented by the word 

A = i [ l ] . . . i [n ]*s [ l ] . . . s [m]//u /2 1 . . . /m l / / 1 2 / 2 2 . . . fmJ.. ./fmfin-fmn. 

where 
f i j = s[l\ if f(sk, ij) = s,. 

Now, if Ax and A2 are two semiautomata with the same input sets and disjoint 
sets of states, the semiautomaton encoded by Ax & A2 is the semiautomaton with 
the same inputs, the set of states is the union of states of Ax and A% and the transi-
tion function is defined in natural way. 
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Set S I={ J 4 1 #Aal^ i is isomorphic to A2}c:r*. We define Ssl: r*Xt!-• 
~ ( r U { D , 0 , 1 } ) * and 2)SI: ( r U { a } ) * - ^ U ( r U { D , 0 , 1 } ) * , where ¿ ^ { 0 , 1 } * , 
in the following way: 

Let x = y 4 1 # ^ 2 6 S I and y^A, y=y1y2...y,. Consider the semiautomata 
A[=([1,1, g j and A'2=(I2,1, g2) where and /2 are the input sets of Ax and A2 
respectively, Z={a1, . . . , at, a} such that IPl Si=<P, ¿=1 ,2 and gj (j= 1,2) 
are defined by l ^ f c ^ Z —1, 

y, = h 
yi 

y) = a, 
for all ij£Ij ( j = 1,2). Then we define 

i°i y, = 1, 
*M>'J = \s yi = 0, 

:Uy 
-and 

s . iA1&A'1#A2&A2 if x = A1#A2, 
U D v otherwise 

An(u) = 

y if u = Ax St À2 # À3 & A4 and A2, A3 have 
the same states and transition functions, 

z if u=xHz, 
u in other cases, 

where y£ {0,1}* is determined in the following way: 

If Az=(I2,Z,f2), Aa = (I3,I,f3), X={(r1, o-2, ..., <7„} then y=ylt ...,yn-! where 

y * = l if f2(pk,i^ =fa(Pk> h) = Vi 2e/ 2 , ¿3€/3, l = = n ë n - 2 ; 

= l if AiPn-iJè =fs(.^n-i,h) = Vi2€/2 , i3€/3 ; 

yk = 0 in other cases O s f c â / i - 1 . 

It is not hard to verify that SM and Z)Si satisfy the conditions of Theorem 2. 

Conclusions 

We have given à caracterisation of ^-isomorphic problems to graph isomorph-
ism showing that graph isomorphism satisfy the conditions of Berman—Hartmanis 

. Theorem. Next we have proved that some of the problems which are polynomial 
time equivalent to graph isomorphism are ^-isomorphic. Are all the isomorphism 
complete problems /^-isomorphic? Perhaps the answer of this question is useful in 
determining the complexity of graph isomorphism problem. 

DEPT. O F APPLIED MATHEMATICS 
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Remarks on finite commutative automata 

B y Z . ESIK a n d B . IMREH 

A. C. Fleck has proved in [1] that a strongly connected commutative quasi-
automaton — called- perfect quasi-automaton in [2] •— is directly irreducible if 
and only if its characteristic semigroup, which is actually an Abelian group, is 
directly irreducible. I. Peak generalized this result for commutative cyclic automata 
(cf. [4]). In this paper we point out that this connection between automata and 
their characteristic semigroups is based on the fact that the congruence lattice of 
a commutative cyclic automaton is isomorphic to the congruence lattice of its 
characteristic semigroup. Furthermore, we give a characterization of strongly con-
nected commutative automata through their corresponding algebraic structures. 
Finally, we employ these results to obtain isomorphically complete systems for 
the class of all strongly connected commutative automata with respect to the direct 
product and quasi-direct product. 

By an automaton A = ( A , X, ¿) we always mean a finite automaton. Isomorph-
isms of automata are ^-isomorphisms. For arbitrary automaton A we denote by 
C(A) and C(£(A)) the congruence lattices of A and its characteristic semigroup,* 
respectively. Otherwise we use the terminology and notations in accordance with [2]. 

Theorem 1. The following three conditions are satisfied for arbitrary commuta-
tive cyclic automaton A = ( A , X, 5): 

(i) 5(A) - E(A), 

(ii) \A\ = |£(A)|, 

(hi) C ( A ) ~ C ( S ( A ) ) . 

Proof. The validity of (i) and (ii) was already proved by I. Peak in [4]. The 
proof of this fact is based on the observation that every commutative cyclic auto-
maton A is a free commutative automaton generated by one of its states. In other 
words, A is a free commutative unoid in the equational class generated by A and 
each generator of A is a free generator of A. This means that if a0£A generates 
the automaton A then every correspondence a0—a(£A) has a unique ,4-homo-
morphic extension of A into itself. By Corollary to Theorem 24.2 in [3] this implies 
that A'ssA where A '=(S(A), X, 5') and 5' is defined by d'(Ce(p), x)=Ct(px). 

* By the characteristic semigroup 5(A) of an automaton A we always mean a monoid with 
identity Ce(X), where X denotes the empty word. 
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Indeed, if a0 denotes an arbitrary generator of A then a natural isomorphism can 
be given by the correspondence Ce(p)-+d(a0, p) (Ce(p)£S(A)). Therefore C(A) = 
= C(A'). On the other hand C(A') = C(A") where the automaton A" is the semi-
group-automaton corresponding to A' with transition 8"(Ce(p),Ce(q))=Ce(pq). 
It is evident that each congruence relation of the semigroup 5(A) is a congruence 
relation of the semigroup-automaton A" as well. The converse follows by the 
commutativity of 5(A). Thus C(A") = C(5(A)). Putting together these isomorph-
isms we get C(A) = C(5(A)). This ends the proof of Theorem 1. 

It is interesting to note that I. Peak gave an example in [4] for a commutative 
automaton which is not cyclic but satisfies conditions (i) and (ii) of Theorem 1. 
It is not difficult to see that this example does not satisfy (iii). We now give another 
automaton which contents each Of the conditions (i)—(iii) of Theorem 1 and which 
is not cyclic. This automaton is the following A=({1, 2, 3, 4}, {x, y}, S), where 
S is defined by the table below: 

1 2 3 4 

X 1 2 3 2 

y 2 3 3 3 

Thus the converse of Theorem 1 is not true in general. However, in spite of 
the previous example, in case of strongly connected commutative automata, we 
have succeeded in proving a certain converse of Theorem 1. 

Theorem 2. An automaton A = ( A , X, 5) is strongly connected and commuta-
tive if and only if each of the following conditions is satisfied by A: 

(i) 5(A) is an Abelian group, 

(ii) 5 (A) - E{A), 

(iii) \A\ = |£(A)|, 

(iv) C(A) - C(S(A)). 

Proof. Necessity follows by Theorem 1. Conversely, the commutativity of A 
is immediate by (i). In order to prove that A is strongly connected first observe 
that since (ii) is also satisfied by A there is a natural isomorphism v of 5(A) onto 
E(A). This isomorphism is defined in the following manner: v(Ce(p)) is the mapping 
induced by the word p on the set of states of A. In other words, v(CQ(p)) is simply 
the polynomial induced by p in the automaton A being considered as a unoid. 

Assume to the contrary A is not strongly connected. As 5(A) is a group we 
can decompose A into the direct sum of its strongly connected subautomata A,= 
=(A,,X,5t) (i—1, ..., n, n > l ) . According to the previously established natural 
isomorphism v, the inclusion (p(A,)QA, ( f = l , . . . ,« ) is satisfied for any cp£E(A). 

n 
Consequently, |/4,|>1 (t=l,...,n) and J] E(At) Si E(A) under the mapping 

t= l n 

(P-^IVLAII •••) <P\AJ- Thus, by Theorem 1 and our assumption (iii), [J \A,\ = 

= n\mt)ME(A)\ = \A\=Z\At\. 
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It is not difficult to see by (t=1, •••, n) that .the above equality is 
possible only if n—2 and \A1\ = \A2\=2. In this case C(A) contains the chain 
induced by the compatible partitions 

C 0 = { { a n } , {«12}, {«21}» {«22}}, 

Q = {At, {a21}, {a22}}, 
C2 = {Ax, A2}, 
CS={A}, 

where At={an, at2} (t=1, 2). On the other hand 5(A) can contain only shorter 
chains. This is a simple consequence of the well-known fact that the congruence 
lattice of an Abelian group is isomorphic to the lattice of its subgroups. 

COROLLARY. The following conditions are equivalent for every strongly con-
nected commutative automaton A=(A, X, S): 

(i) A is subdirectly irreducible, 
(ii) A is directly irreducible, 

(iii) S(A) is a cyclic group of prime-power order, 
(iv) The cardinality of A is a prime-power and there is an input-sign x£X 

inducing a cyclic permutation of A. 

Proof. The equivalence of (i), (ii) and (iii) is a consequence of Theorem 2 and 
the Fundamental Theorem of Finite Abelian Groups. The implication (iv)=>-(iii) 
is trivial. It remains to prove that (iii)=>(iv). 

In the proof of Theorem 1 we have shown that A ^ A' therefore, \A\ is a prime-
power, say \A\=rn. Assume that none of the signs xdX induces a cyclic permuta-
tion of A. Then, for each x£X, the order of CQ(x) in S(A) is less than r". But this 
yields a contradiction since for arbitrary word p=x1...xk the order of Cg(p) can 
not exceed the maximum of the orders of the signs x1; ..., xk, which completes 
the proof of the Corollary. 

It is evident that the automata given in (iv) form a minimal isomorphically 
complete system of strongly connected commutative automata with respect to the 
direct product for any fixed set of input signs X. We proceed by stating a similar 
result with respect to the quasi-direct product. 

Let « ( > 1) be an arbitrary natural number and let M„=({0, ..., n—1}, 
{x0, . . . , x,,-!}, <5„) denote the automaton with transition §„(J, xs)=j+s (mod 11) 
(76 {0, .. . , n—1}, xs£ {x0, . . . , x„_i}). Let ft consist of all automata M„ where « > 1 
and n is a prime-power. 

Theorem 3. A system Z of automata is isomorphically complete for the class 
of all strongly connected commutative automata with respect to the quasi-direct 
product if and only if each can be embedded isomorphically into a quasi-
direct product of an automaton A£Z with a single factor. 

Proof. Sufficiency is obvious. In order to prove necessity let be arbitrary. 
M„ can be embedded isomorphically into a quasi-direct product of automata from 
Z, and hence it can be embedded isomorphically into a direct product whose each 
component is a quasi-direct product of an automaton from Z with a single factor. 
But, by Corollary to Theorem 2, M„ is subdirectly irreducible. Therefore M„ can 
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be embedded isomorphically into a quasi direct product of an automaton from 
I with a single factor. 

COROLLARY . There exists no system of automata which is isomorphically com-
plete for the class of all strongly connected commutative automata with respect to 
the quasi-direct product and minimal. 

Proof. It is easy to show that the class Я \ { М , « | / = 5 } constitutes a complete 
system for any fixed prime r and integer s. 
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Functor state machines 

B y G . HORVÁTH 

In the present paper we introduce a notion of a machine in an arbitrary category. 
A machine in a category is a computational device computing a morphism from 
a free algebra to another one. The computation is defined by means of homomorphic 
extension. We are dealing with two types of machines each of them having a functor 
as its state. These two families of machines are related to bottom-up and top-down 
tree transformations, respectively. The state functor of a machine working in top-
down way is required to have a right adjoint. We show that every top-down com-
putation can be carried out in bottom-up way. 

A special type of machines, namely the generalized sequential machines in 
categories having binary products are investigated. A generalized sequential machine 
is a machine whose state funtor is a product functor and whose final state trans-
formation is the corresponding projection. Morphisms can be computed by general-
ized sequential machines in a category are characterized. We show that the process 
transformations of Arbib and Manes, and the generalized sequential machines in 
a category have the same processing capacity. Results of the present paper have 
been announced in [6]. 

1. Preliminaries 

We assume the reader to be familiar with the elements of category theory such 
as the notion of category, functor and natural transformation. Now we will list 
some basic notions, definitions and results to be used in the sequel. 

/ 

DEFINITION 1 . 1 . Let J F be any category and let X: be an endofunctor. 
An X-algebra is a pair (A, d) where A is an object and d: XA-*A is a morphism 
in X. Given two A'-algebras (A, d), (A', d'), a morphism h: A~*A' is an X-homo-
morphism if the diagram 

A' XA' 

* F , T » ( U ) 

is commutative. 
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DEFINITION 1.2 (Arbib—Manes [3]). Let A be an object in J f A free X-algebra 
over A is an X-algebra (X* A, p0A) coupled with a morphism rjA: A—X* A with 
the universal property that for every other X-algebra (B, d) and morphism / : A -+B 
there exists a unique X-homomorphism / * : (X* A, p0A)-*(B, d) such that 
f* 't]A=f That is, given d and / there is a unique / * such that (1.2) commutes. 

B XB 

/ V \xf* (1.2) 

The morphism / * in (1.2) iscalled the X-homomorphic extension of / from the 
free X-algebra (X* A, p0A) into the X-algebra (B, d). 

Following Adamek and Trnkova (see [1]) we say that a functor X: Jf— J f 
is a varietor if there exists a free X^algebra over each object in tf. Arbib and Manes 
use the terms input process or recursion process [3, 4] depending on context. Let 
X: J f - X be a varietor. If we fix a choice of tjA: A-*X*A, p0A: XX*A-~X*A 
in (1.2) for each object A in tf, and for every morphism / : A-"B the morphism 
X*f: X*A—X*B is defined to be the X-homomorphic extension of. r\B'f, i.e. 

B Jl+X*B 

•f 

J^-XX*B 
i / 

X*f 
tjA 

XX*f (1.3) 

-XX* A 

then we get a functor X # : Moreover, we obtain a pair of.natural trans-
formations 

Ijr-^-X*, u0:XX*~X*, 

the insertion of generators and the free operation of X, respectively. We omit the 
subscript in the identity functor l x \ whenever X is understood. Note that 
each varietor X yields a family of morphisms pA: X*X*A-~X*A defined by 
the diagram 

X*A r\X*A 

X*A<-

pA 

+X*X*A-z 

•XX* A 
i > 

/4. X*A 

XpA 

XX* X^A 

(1.4) 

where X*A—X*A is the identity morphism. One can show by an easy 
computation that pA is natural in A, i.e. we have a natural transformation 
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ju: X*X* —~X*, the extended free operation of X, rendering the diagram (1.5) 
commutative. 

H I Xn (1.5) 

XX* 

\Xn 
# V" •XX X # V# 

The basic algebraic structure in string processing is X0*, the free monoid over 
a set X0 of generators. Monads, rather than monoids are fundamental in our de-
velopment. Now we recall the definition of a monad. 

DEFINITION 1 . 3 . A monad (T, t], n) in a category JF" consists of a functor T: 
Jf— Jf and two natural transformations 

tj: I-~T, p: TT--T 

which make the following diagrams commute. 

t]T Trj 
T ——TT ——' T TTT ' 

TT 

nT * TT 
(1.6) 

T 

The diagrams in (1.6) are called unitary and associativity axioms, respectively. 
We state, without proof, the following well-known fact: for every varietor X the 
triple (X*,t],n) is a monad in where tj is the insertion of the generators.and 
H is the extended free operation of X. 

DEFINITION 1.4. Let (T, t], n) be a monad in Jf. A T-monad algebra is a pair 
(A, d) consisting of an object A o f J f and a jf-morphism d: TA-+A such that 

A 

tjsi 
'lA 

M 

TA 

P " 
TTA 

(1.7) 

It is easy to prove that the pair ( X * A , ¡xA) is an X #-monad algebra for every varietor 
X and object A. 

CONVENTION 1 . 5 . In the remaining of this paper if a varietor is referred to by 
the letter X, then the insertion of the generators, the free operation and the ex-
tended free operation of X are denoted by tj, p0 and p, respectively 

ij: I ^ X * , /*„: p: X*X*^X*. 

3 Acta Cybernetica 
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If we use the letter Y to denote another varietor then the items above are denoted 
by the same letters but with bar, i.e. tj, fi0 and p.. 

PROPOSITION 1 . 6 . Let X: be a varietor. Given functors F, G: J F — J T 
and natural transformations 5: XG -^G,<p: F-^ G there is a unique natural trans-
formation <p*: X* F-^ G such that the following diagram is commutative. 

G ^ XG 

r,F 
<P * \Xcp* (1-8) 

HQF . F X F F 

Proof is immediate. 

DEFINITION 1.7. An adjunction (F, U, v, e): consists of a pair of functors 
F: U: and natural transformations v: IX-^UF, e: FU-^I^ (called 
unit and counit, respectively) subject to the so called "triangular identities": 

U-^UFU . FUF*^~F 

> "i X
 (L9) 

U F' 

F is said to be a left adjoint to U and U a right adjoint to F. We say that a functor 
F has right adjoint, if there is a functor U right adjoint to F. 

2. Machines 

In this section we introduce a notion of a machine in an arbitrary category. 
This is based on the notion of the free algebra. A machine is a computational device 
which computes a morphism of a free algebra into another one. The basic idea of 
our development — due to Alagic [2] — is to take a functor to be the state of a 
machine. Alagic offered in his paper [2] the general concept of a direct state trans-
formation which took the form XQ—~QY*, where X and Y are varietors and 
Q now is a functor. Arbib and Manes remarked in [4] that the Alagic approach 
has one flaw: because Q is a functor rather than an object, thus running the direct 
state transformation yields a natural transformation X*Q—-QY* instead of a 
morphism X*A — Y*B between free algebras. But, in spite of this note there is 
a general way in which we can extract from X*Q-^QY* a "state-free" input-
output response of the form X*A — Y*B. Thus, the benifits of the Alagic ap-
proach can be obtained in any category, not only those having binary products. 
Appart from the fact that we actually do not use the notion of the direct state trans-
formation of Alagid in the definition of a machine and its response, there is a close 
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relationship between them. We will show this relationship. There are several ad-
ventages of taking a functor to be the state of a machine. First of all this provides 
a uniform treatment of top-down and bottom-up computations which are well-
known in the theory of tree transformations (see Engelfriet [5]). 

DEFINITION 2 .1 . Let A, B be objects of a category .yf, and let X, Y be varietors 
in tf. A machine M: (A, X)~(B, Y) in Jf is M=(Q, i, a, []), where 

Q : J T — J T is a functor, the state functor, 
i: A^-QY*B is a morphism, the initial state-output morphism, 
o: XQ-.-QY* is a natural transformation, the transition, 
ft: Q—~I is a natural transformation, the final state transformation. 

DEFINITION, 2.2. Let M=(Q, i, <7, /?): (A, X)^(B, Y) be a machine in X . The 
response of M is the morphism fM: X*A-~Y*B defined by the composite 

fM: X*A^QY*B-^^Y*B> (2.1) 

where i* is the run map of M, i.e. the Z-homomorphic extension 

QY*B£>^QY*Y*B£-1XQY*B 

t < # , k 
A — XX*A 

(2.2) 

of the initial state-output i. 
By Proposition 1.6 the transition a\ XQ--+QY* has a unique extension 

a*: X*Q-L~QY* defined by 

( 2 . 3 ) 
I a I Xa ^ 

Q-^X*Q<- ^ x x * q 

a* is called the extended transition of the machine M. Natural transformations like 
a * in (2.3) were studied by Alagic in [2] under the name "direct state transfor-
mation". 

We show that the response of a machine M'can be expressed in terms of the 
extended transition of M. 

STATEMENT 2 . 3 . Let M={Q, i, a, /?): (A, X)-*(B, Y) be a machine in JF. Then 
the response of M is 

fM = PY*B-Q(iB-<r*Y*B-X*i.. (2.4) 
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Proof. Consider the following diagram. 

QPB QY*Y*B oY* B XQY*B 

c) \QjlB d) 

QftY*B 
QY*f,B e) 

o*Y*B 

QY B >• X* QY B-

QY*Y*Y*B*? 

0 

HoQY*B 

oY Y B 
XQUB 

• XQY Y B 

Xa*Y*B 

XX* QY* B 

(2.5) 

a) 
t]A 

X*i 

-+ X*A -<-

g) 

Ho 4 

Jxx*/ 
-XX* A 

The parts a), e) and g) are naturality squares for t], a, and ¡i0, respectively. Commuta-
tivity of b) and f ) directly follow from the definition of a * (2.3). The monad iden-
tities (1.6) for the monad (Y*, ij, ft) imply c) and d), thus, (2.5) is completely com-
mutative. Since the homomorphic extension is unique, putting thogether (2.2) and 
(2.5) we have i* = QJiB-o* Y*B- X* i. Hence by (2.1) fM = fiY* B • i* =fiY* B • 
• QjlB •o*Y*B- X*i. • 

Now we introduce a definition of a machine working in such a way that ele-
mentary input produces an elementary output. 

DEFINITION 2 . 4 . Let X and Y be varietors in <?F and let A, B be objects of J F . 
A simple machine in J f is a system M=(Q, i0, o0, (i): (A, X)—(B, Y), where 

Q: JT—X is a functor, the state functor, 
/„: A-<-QB is a Jf-morphism, the initial state-output, 
<r0: XQ—~QY is a natural transformation, the transition, 
/?: Q--I is a natural transformation, the final state transformation. 

The response of a simple machine M=(Q, i0, er0, fi) is the composite morphism 

fM: x*A QY*B 1L Y* B, 

where /¿f is the run map of M defined by the homomorphic extension 

(2.6) 

QB^QY*B S M QYY*B J ^ X Q Y * B 

» o f f t f 

A X*A ^ Ho A 
Xi* 

•XX* A 

(2.7) 
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DEFINITION 2 . 5 . Let M=(Q, i, a, /?): (A, X)-(B, Y) be a machine in J F . We 
say that the initial state-output morphism i is simple if it can be factored thorough 
QfjB: QB-+QY*B, i.e. there is a morphism i0: A-+QB such that 

A—L+QY*B 

f QfjB 
(2.8) 

QB 

Similarly, the transition a is called simple if there exists a natural transformation 
<70: XQ—*QY such that 

XQ- QY* 

QY 

(2.9) 

is commutative, where t]t is the embedding of 7 into Y*, i.e. r\t\ Y—^ YY*-^-*- Y*. 

LEMMA 2.6. Let M—{Q, i, a, [}): (A, X)-*(B, 7 ) be a machine in X , and let 
i and a be simple. Then the simple machine M'=(Q, /'„, a 0 , /?): (A, X)-*(B, Y). 
where i0 and a0 are as in (2.8) and (2.9), respectively, has the same response as M, 

Proof. Since the final state transformation of M and that of M' is fi, it is enough 
to prove that the corresponding run maps i* and /0

# coincide. 
Consider the following diagram. 

<*oY*B 

QnB 
QB— » (2.10) 

XX* A 

By the defining diagram (1.5) of an extended free operation, the equalities 
fi-jl(,Y*=ti0-Yfi and jl-fjY* = lY# hold, thus we have 

fi-KY* = ¡i-Qk-mY* = P-ikY* - YfjY* = ik-Yji-YrjY = 

= ^o'Y(Ji-r\Y*) = fi-Yly* = ¡¡o-

Hence Qfi' QfjiY* = Qfi0. Now, from the factorizations (2.8), (2.9) and the de-
finition (2.2) of the run map i*, we obtain that the diagram (2.10) is completely 
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commutative. This means that /'* satisfies the commutativity of diagram (2.7) 
which defines/'* uniquely. Thus / * = / * . ' • 

The diagram (2.3) defines for every natural transformation a: XQ-^QY*, 
i.e. without a being a transition of any machine, the extension a*: X*Q-^QY*. 
Alagic studied this extension in his paper [2] and proved the following theorem 
replaced the monad (Y*,fj, p.) by an arbitrary one. 

THEOREM 2.7 (Alagic [2], Theorem 2.30, p. 287). Let X, Y: X - O F be varietors, 
and Q:Jf—X be a functor. Then for every natural transformation a: XQ—~QY* 
the extension a*: X*Q-L~QY* defined by (2.3) satisfies the commutativity of 
the following diagram: 

/r* v * 

Q. >1Q->X*Q 

(2.11) 

THEOREM 2.8. Let f : X* A-~Y*B,f2: Y*B-~Z*C be responses of machines 
Mx: (A, X) — (B, Y) and M2: (B, Y)—(C, Z), respectively. Then the composite 
morphism f2 f : X*A—Z*C is again the response of a machine M: (A, X)—(C, Z). 

Proof. Assume that machines Mx and M2 are specified by Mx=(Q1, ix, ox, ft), 
M2=(Q2, i2, <r2, ft)- Consider the machine M—(Q, i, a, P)\ (A, X)—(C, Z), where 

Q = QiQz, o = Q1o*-a1Q2, 
<, •* (2-12) 

i = A±Q1Y*B^Q1Q2Z*C, P = Q1Q2^Q2^I. 

Let us denote by rj and Ji the insertion of generators and the extended free operation 
of Z, respectively. By the definition of the responses of Mx and M2, f2'fx=P2Z*C • 
•i* • PXY*B-if. Using the naturality of ft we have 

/2-A = PiZ*C'P1Q2Z*C-Qlif -n* = (PfihQ^C-Qo* • if = pz*C-Q1i* • i f . 

The response of M is fM=pZ*C • /* , where i* is the run map of M.Thus, in order 
to prove that the machine M computes the composite / 2 • fx we need only to show 
that (2.13) holds 

Q . i t - i f = i * . _ (2.13) 

Taking into account that the run map i* is the unique morphism satisfying (2.14), 
it is enough to prove that the left side of (2.13) also satisfies (2.14). 

QiQzZ*C ,QlQ^C Q x Q ^ Z ^ + ^ X Q ^ C 

I 

^ X * A - "°A' X A ' ^ 

f x / * (2.14) 
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Consider the diagram (2.15) below. 

<rZ*C 

QIQ^C ? QI<T£ Z*C ( v i ) axQ,Z*C 
QIQ2Z*C+—Q1Q2Z*Z*C*—QXY*Q2Z*C-—™ " * 

(iv) 

QifiB 

•XQlQ2Z*C 

* . * (iii) QiY '2 

* * <TiY B 
QiY Y B 

XQii* (2-15) 

+X*A> 

(ii) 

Ho A 

XQIY* B 

XX* A 

The subdiagrams (i) and (ii) commute by the definition of the run map / * . (iii) 
is a naturality square for the natural transformation a 1 . (v) and (vi) are commutative 
by (2.12). Thus the commutativity of (iv) is remained to prove. By Proposition 2.3 
the run map i* can be expressed by the extended transition a* of M2 as follows 

IT = Q2JLC-A*Z*C-Y*I (2.16) 
The diagrams (i) and (iv) in (2.17) commute, being naturality squares for p, and a*, 
respectively, (ii) is commutative by Theorem 2.7, finally, the commutativity of 
(iii) in (2.17) follows from the associativity axiom of the monad ( Z # , rj, ¡5). Hence, 
(2.17) is completely commutative. 

Q2Z*C«Q2JLC Q2Z*Z*C. 
at Z*C 

Qzfic 
(iii) 

| Ö 2 Z * £ C 
(iv) 

Q2Z*Z*cJtiLZ '-**-*+• 

a?Z*C\ (ii) 

Y*Q2Z*C 
ßQ2Z C 

a* Z* Z*C 

• Y*QtZ*C 

\Y*Qjc t> 

4 (i) 
Y*B 

fiB 

Y*Q2Z*Z*C 

I Y*ATZ*c 
Y*Y*QOZ*C 

\ 

(2.17) 

Y*Y*I2 

Y*Y*B 

Putting together (2.16) and (2.17) we have 

ßi'f -QißB = Qidt-ßB) = Q1(Q2ßC-a*Z*C-Y*i2-ßB) = 

= Q1(Q2HC-a*Z*C'Y*Q2^C-Y*^Z*C-Y*Y*i2) = 

= Q1Q2pC-Q1<x*Z*C-Q1Y'*(Q2ßC'<r*Z*C'Y*i2) = 

= Q1Q^C-Q1a*Z*C.QlY*i*. 
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Hence the diagram (iii) in (2.15) is commutative which completes the proof 
of the theorem. • 

DEFINITION 2.9. Let M=(Q, i, o, P): (A, X)-*(B, Y) and Mx=(Q±, il3 alt ft): 
(A, X)-"(B, Y) be machines in J f . A simulation Q: M is a natural transforma-
tion Q: Qi-^-Q rendering the diagrams (2.18) commutative. 

QY*B 0Y* 
QIY*B *~QY*B QIY*— + QY* Qi 

I , } \ . / ' XQ, 
p (2.18) 

a) b) c) 

THEOREM 2.10. Let M: (A, X)^(B, 7 ) and Mx\ (A, X)^(B, Y) be machines 
in JT. Whenever a simulation g: M^M exists then fM =fMl. 

Proof. Assume that the machines M and Mx are given by M=(Q, i, a, ft), 
M1=(Q1, ilt CT1; ft). Then the response of M is fM—PY*B'i* and the response 
of Mx is fM=pxY* B-if • Consider the diagram (2 .19) . 

QY*B-
QUB 

•QY *Y*B** oY*B 

\QY*B ( iv) 

QiUB, 

XQY B 

QY*Y*B (ül) 

<rlY*B Q1Y*Y*B^-^XQ1Y*B (2 .19) 

Ho A 
(ü) \x,T 

XX* A 

The diagrams (i) and (ii) in (2.19) are commutative just they define the run map 
if of Mi- Since Q: QI~-Q is a simulation (iii) and (v) commute by (2.18b) and 
(2.18a), respectively, (iv) is a naturality square for Q thus (2.19) is completely com-
mutative. Hence, we have that the morpisms / * and QY*B-if both are defined 
by homomorphic extensions on the same specification. The uniquenes of the homo-
morphic extension implies / * = QY* B • i f . Finally, we have 

fM = pY*B.i* =flY*B.QY*B.i* =(P-Q)Y*B.i* =p1Y*B.i* =fMi. • 

3. Inverse-state machines 

In this section we shall develop a categorial model of Thatcher's generalized2 

sequential machine maps (see [8]), and Engelfriet's top-down tree transformations 
(see [5]). The term "inverse-state machine" is used here because these machines 
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are very closely related to the inverse state transformations of Alagic [2]. We shall 
show that every top-down, i.e. inverse-state computation can be carried out by 
a machine with sutable state functor. 

First, we need a theorem whose analogous one was proved in [2] and what 
we state as a consequence of our theorem. 

THEOREM 3.1. Let (T , tj', n') be a monad and let (B, d) be a T-monad algebra 
in Jf". Furthermore, let X: J f — J f be varietor and Q: JT—JT be a functor with 
right adjoint. Then for every morphism j: QA-+B and natural transformation 
T: QX-+TQ there exists a unique morphism QX* A-*B satisfying (3.1). 

d TJ* ± B .«-¡7- TB< TQX*A 

t>* n A V' <31) 

Q A ^ Q X l A * Bf,° QXX*A 

Moreover, there is a bijective correspondence between_triples ( j, r , y # ) satisfying 
(3.1)_and triples (/: A-+QB, a: XQ--QT, i*: X*A-QB) satisfying (3.2), where 
(Q, Q,v, «) is an adjunction due to Q. 

_ Qd _ oB _ 
QB QTB~*-—XQB 

fvi* (3-2) 
I , \Xi 

A -2d*. X*A - ^ XX*A 

Mutually inverse passages are given by (3.3) and (3.4) below. 

i-.A^QB j: QA^QQB^B 

<t:XQ-~QT ~ t : QX-^.QXQQ-^QQTQ-^TQ (3.3) 

i*: X*A — QB QX*A-~QQB-^B 

j:QA~B i: A QQA ~ QB 

T: QX^TQ ~ a: XQ^~ QQXQ^S-QTQQ^QT (3.4) 

U: QX* A -*B /*: X* A—-QQX* A-^QB 

Proof. First we show that $ and f are inverses of each other. It is a well know 
property of the adjunction (Q, Q, v, e) that if - <P(i) = i, <P- By the same 
argument we get *F • <P(i *)=/'*, <P • ¥U*)=j# • We prove that W •<!> (a) = a and 

f • = Y(eTQ • QoQ • QXv) = QTE • Q(sTQ • QoQ • QXv) Q-vXQ = 

= QTe • QsTQQ • QQoQQ • QQXvQ • vXQ. 
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Consider the diagram (3.5) whose triangular parts are commutative according 
to the triangular identities of the adjunction (Q, Q, v, e). The other two parts of 
(3.5) commute since they are naturality squares for v and a, respectively. Thus 
we have ?P • <& (CT)=tr. 

- f o _ 
-> QT 

_ f Q T z 

+ QTQQ l * T Q Q * QTQQ (3.5) 

j vQTQQ X 

QQXQ ^%QQXQQQ S&M. QQQTQQ X ^ 

The following diagram also commutes by the adjunction identity EQ-QV — 1Q , 
and the naturality of v, T and e. 

TQ 

I eTQ t-
QQQX -v QQTQ ^QQTQ (3-6) 

\QQQXV_ _ [QQTQV S 

n Inn QvXQQ„ ^ w ^ QQrQQ^J _ /QQTeQ 
QXQQ • QQQXQQ »• QQTQQQ ' 

Hence, 

<*>. T(T) = 4>(QTE • QTQ • vXQ) = ETQ • Q(QTS • QrQ • vXQ)Q- QXv = 

= ETQ• QQTeQ • QQrQQ • QvXQQ • QXv = r • 1 aX = t • 1QX = t. 

Let us prove that the passages <P and W preserve satisfyability of the appro-
priate diagrams, Assume that a triple (/', a, i*) satisfies (3.2), Then, 

<P(i*)-QrjA = eB-Qi*-Qt]A = eB-Q(i*-t]A) = sB-Qi = <P(f). 

Thus the triangular part of (3.1) holds. 

: 4>(i*)-Qn0A = eB-Qi*-Qn0A = sB-Q(i* • pi0A) = EB-Q(Qd-oB• Xi*) = 

= e B-QQd-QoB-QXi*. 

One of_the _adjunction identities says 1Q=QE-VQ and hence 1QXQB = QX1QB= 
= QX(QE • vQ) B= QXQEB • QXvQB, which yields <*>(/*)• QH0A=EB- QQd- QoB • 
•(QXQEB- QXVQB) • QXI*. Application of commuta t ions for the na tura l trans-
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formations e, sT- Qa, <P(a) and <P(O)=ETQ • QoQ • QXv produces 

<*K'#) *Qfi0A=d• eTB • QoB • QXQeB • QXvQB -QXi* = 

= d • TsB • eTQQB • QoQQB- QXvQB -QXi*=d- TsB • (eTQ • QoQ • QXv)QB •QXi* = 

= d • TeB• <P(o)QB • QXi* = d • TeB • TQi* • 4>(o)X*A = 

= d-T(eB-Qi*)-0(o)X*A = d • T®(i*) • &(o)X*A. 

Thus, the triple ( j , x, y#)=(<*>(i), 3>(<r), <P(/*>) satisfies (3.1). 
Conversely, let us suppose that the left side ( j , x, j#) of (3.4) makes (3.1) 

commutative. Then, for the right side of (3.4), we have 

V{j+)-tiA = Qj+-vX*A.riA = Qj*.QQriA-vA = 

= QU*-QriA)'vA = Qj.vA = >F(j). 

This means that the triangular part of (3.2) is satisfied. Let us see the other 
part of (3.2). By the definition (3.4) of W and the naturality of v we have 

V(j*) • M = Qj* • vX*A • AV4 = Qj* ' QQHoA • vXX*A = 

= QU*'QHoA)-vXX*A = Q(d-Tj#-xX*A).vXX*A = 

= Qd • QTj* • QxX* A • vXX* A. 

From the adjunction identity 1Q = SQ-QV follows 1 Q T Q X * A = QFIQX* A = 
= QT(eQ • Qv)X* A = QTeQX* A • QTQvX* A, thus we get 

yU*)-VoA = Qd-QTj#-QTEQX*A-QTQvX*A-QTX*A-vXX*A. 

Using the naturality of QTz and' Qx -vX we conclude 

V(.j)-HoA = Qd-QT£B-QTQQj#-QTQvX* A-QxX* A-vXX* A = 

= Qd-QTeB.QTQ(QU.vX*A)-(Qx-vX)X*A = 

= Qd-QTeB.QTQVU#)-(Q,TvX)X*A = Qd-QTeB-(Qx-vX)QB-X<F(j*) = 

= Qd • (QTz. QxQ • vXQ)B • XV(j%) = Qd • W(x)B - XV(j*)-

Thus the triple (/, o, i*)=(V(j), lF(x), •?(./#))-satisfies (3.2). The existential state-
ment of the Theorem can be obtained as follows. For given morphism j: QA-+B 
and natural transformation x: QX-*TQ consider i:=4>(j), a:=<P(x) and take 
the unique /* satisfying (3.2). This i* exists because ( X * A, fi0A) is a free Z-algebra. 
Then, as we have shown,. {¥(})> ^0 '*)) satisfies (3.1). But W( i )= j and 
W ( f f ) = x, hence ( j , t , •?(/*)) satisfies (3.1). The uniqueness, of y'# in (3.1) follows 
from the facts that W is bijective and i* is unique in (3.2). This completes the proof 
of Theorem 3.1. • 

The following statement was proved in another way in Alagic [2] (see Theorem 
3.10 pp. 297) replaced (Y*,rj,ji) by an arbitrary monad. 
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STATEMENT 3 . 2 . Let X, Y be varietors in J F and let Q: X — J F be a functor having 
right adjoint. Then for every natural transformation r : QX—~Y*Q there is a 
unique r # : Q X * - L ~ Y * Q defined by 

Y*Y*Q 1Y* QX 

QN QXX* 

Proof. Let A be an object of X . As (Y*, rj, p.) is a monad it is evident that 
(Y* QA, pQA) is an Y*-monad algebra. Take j:=fjQA: QA-+Y* QA and apply 
Theorem 3.1 for this j and r above. We have that there exists a unique 
QX* A — Y* QA denoted by t + A which renders (3.8) commutative. 

mA.Y*Y*QA+Y*'*AY*QX*A 

| r X * A (3-8) 

QA ~'~~*QX*A- ^ ^ — QXX*A 
QnA ' , Quo A 

Thus we need only to show that x#A in (3.8) is natural in A. The proof is 
straightforward. • 

DEFINITION 3 . 3 . Let A, B be objects of X and let X, Y be varietors in J f . An 
inverse-state machine 

M = (Q, a, r,j): (A, X) — (B, y ) 

in JT consists of the following data: 

Q : Jf—JT a functor, the state functor, having right adjoint, 
a: I—~Q a natural transformation, the initial state transformation, 
T: QX-^Y* Q a natural transformation, the transition, 
j: QA — Y* B a morphism, the final state-output morphism. 

DEFINITION 3 . 4 . Let M=(Q,ot,t, j): (A, X)-*(B, Y) be an inverse-state ma-
chine in X . The morphism fM computed by M or the response of M is defined by 

fM: X*A--QX*Ai±~Y*B, (3.9) 

where is the (inverse-state) run map defined to be the unique morphism 

,Y*B + Y*Y*B J*J*Y* QX*A 

\ h f t X*A (3-10) 

QA-9ZLQi*A* ^ QXX*A 

according to Theorem 3.1. 
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By Statement 3.2 we define the extended transition of the inverse-state machine 
M by the diagram (3.11). 

We shall show that the response of an inverse-state machine can be expressed 
in terms of the extended transition. 

LEMMA 3.5. Let M=(Q, a, r, j): (A, X)-*(B, Y) be an inverse-state machine 
in J f . The response of M is 

where т # is the extended transition of M. 

Proof. Because of the fact that the run map y # of M is unique in (3.10) it is 
sufficient to prove that substituting the morphism ЦВ-Y*j-r#A for y # , (3.10) 
remaines commutative. Consider the diagram 

(i) and (ii) are commutative by the diagram (3.11) of the extended transition r # . 
(iii) and (iv) are naturality squares for fj and /7, respectively, hence they commute. 
The commutativity of (vi) and (vii) follows directly from the monad identities of 
(F* , f j , p)..(y) just expresses the value of the functor Y * on a composite morphism. 
Thus the whole diagram is commutative which ends the proof of the Lemma. • 

THEOREM 3.6. Given inverse-state machine M=(Q, a, r, j): (A, X)-*(B, Y) 
there is a machine M: (A, X)-»(B, Y) computing the response of M. 

Proof. Let Q be a right adjoint of Q, and denote the corresponding adjunction 
by (g , 6 , v, e). Define a machine M=(Q,i,o,p) by 

i: A-^QQA^QY* B, 

( 3 . 1 1 ) 

fM=ßB.Y*j-T*A-'<xX*A, ( 3 . 1 2 ) 

Y*B - ИВ— Y*Y*B 

( 3 . 1 3 ) 

a : XQ^QQXQ&2~QY*QQ^QY QY*, ( 3 . 1 4 ) 

ß•• Q QQ i-n nn Л. 
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We are going to prove that / м = / # - By the notations above 

fM=U;aX*A, /Я = РУ*В.1*, (3.15) 

where and i* are the run maps of M and M , respectively. Thus the triple 
(j> T> j#) satisfies (3.10) and hence, by Theorem 3.1 the triple (i, a, • vX* A) 
satisfies the. commutativity of the diagram which defines the run map i* of M. 
The uniqueness of the homomorphic extension implies 

i*=QJ*-vX*A- (3.16) 

Thus we have 

fm = («•'«Q)Y*B.Qj#.vx*A = eY*В• aQY*В• Qj# -vX*A. (3.17) 

Consider the diagram below. • 

Q Y * B « M ^ Q Q Y * B > y * B 

® A Ie6j%ex*A \ U 

QQX*A QQQX*A >~QX*A (3.18) 

vX*A\ # ]QvX*A 
I a X A 

X*A »- QX*A 

The triangular part of (3.18) is commutative by reason of the adjunction identity 
e Q ' Q y = \ Q , and the other two parts of (3.18) commute being naturality squares 
for a and e, respectively. Putting together (3.17) and (3.18) we have 

fM=j*-lQX*A-«X*A=j*-<xX*A=fM. • 

Now we state the dual of Theorem 3.6. 

THEOREM 3.7. Let M=(Q, i, a, /?): (A, X)^(B, Y) be a machine in Ж such 
that its state functor Q has a left adjoint. Then the response of M can be computed 
by an inverse-state machine. 

Proof. Let (Q, Q, v, e) be an adjunction. Define an inverse-state machine 
M=(Q,cc,r, J): (A, X)^(B,Y) by 

a: QQ —-Q, 

t : QX^QXQQ ^QQY*.Q Y*Q, (3.19) 

j: QA^QQY*B-^~Y*B. 

In consequence of Theorem 3.6 it is sufficient to prove that applying the con-
struction (3.14) for the data in (3.19) we get back the specification of the machine 
M, i.e. 

i = Qj-vA, о = eY*Q'QtQ-vXQ, ft = e-aQ. (3.20) 
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The first two equalities of (3.19) have already been proved in Theorem 3.1 in con-
text that <P and ¥ are inverses of each other. The remaining fi = s • aQ is obvious 
from the adjunction identity 

1Q = Qs-vQ; e-«Q = e-№-v)Q = £-PQQ-vQ = P-Qe-vQ = /Ma = 0. • 
THEOREM 3.8. Let (A, X)-*{B, Y) and M2: (B,Y)-~(C,Z) be inverse-

state machines in X. Then the composite morphism fM2'fMl- X* A—Z* C can 
be again computed by an inverse state machine. 

Proof. Assume that Mx has a. state functor Qj and M2 has a state functor Q2. 
Denote a right adjoint of Qx and Q2 by 2 i and Q2, respectively. By Theorem 3.6 
the responses fMl and fM, can be computed by machines whose state functors are 
Qj and Q2> respectively. Now apply Theorem 2.8 which says that the composite 
morphism /Ma is the response of a machine with state functor QXQ2. According 
to Theorem 3.7 if the composite functor Qx Q2 has left adjoint then the morphism 
fMl • fMl can be computed by an inverse-state machine. But, it is a well known result 
in category theory that the composite functors yield an adjunction,, i.e. Q2QX is 
left adjoint to QXQ2 (see [7], Theorem 8.1, pp. 101). • 

4. Generalized sequential machines in categories 

The concept of generalized sequential machines in categories having binary 
products is developed in this section. A generalized sequential machine is a ma-
chine whose state functor is a product-functor and its final state transformation 
is a projection. 

We also investigate sequential machines, i.e. machines working sequentially, 
moreover, elementary input produces an elementary output. Morphisms com-
puted by generalized sequential as well as sequential machines in a category are 
characterized. 

Throughout this section we assume that a category X with binary products 
is given. 

DEFINITION 4.1. Fix a choice of a product diagram A-^- AXB-^-B for every 
given pair (A, B) of objects of X , and given morphisms / : A'-*A, g: B'-^B define 
the morphism fXg' A'XB'—AXB by 

P q 
A AXB *~B A y H f* (4I) 

It is well known that in this case each object S of X induces a functor 
S X - : X ^ X by 

(SX-)A:=SXA, ( S X - ) / : = l s X / (4.2) 

These functors are called product functors. It is obvious from (4.1) that the family 
of projections nA: SXA—A constitute a natural transformation n: (SX 
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called projection transformation. For orbitrary morphisms hl: C—A, h2: C—B 
we use the notation (hi, h2) for the unique morphism satisfying (4.3) below. 

(4.3) 

According to (4.1) and (4.3) we have the following identities: 

(fXg)-(h1,h2) = (f.h1,g'h2) (4.4) 

( / X g ) - ( / i X g 1 ) = ( / - / L )X(g-g 1 ) (4.5) 

(h1,h2)-h=(h1-h,h2-h) (4.6) 

DEFINITION 4.2. A generalized sequential machine in Ж is a machine 
M=(Q, i, a, f$): (A, X)-*(B, Y) whose state functor Q is a product-functor induced 
by an object S of Ж, and the final state transformation is the projection SX——*I. 
Thus, a generalized sequential machine can be specified by 

M~(S,i,a): (A, X)-*(B, Y), where S is an object of Ж, the state object, 
i: A-+SXY*В is а Ж-morphism, the initial state-output morphism, 

a: X(SX —)—~(SX—)Y* is a natural transformation, the transition. 

The response of a generalized sequential machine M=(S, i, a): (A, X)-*(B, Y) 
is defined to be the response of the machine M'=(SX —, i, a, n): (A, X)—(B, Y), 
where n is the projection SX — / . 

Now we give a definition of sequential machines in a category. A sequential 
machine is a simple machine whose state functor is a product functor and whose 
final state transformation is the projection. 

DEFINITION 4 . 3 . Let А, В be objects of Ж and let X, Y be varietors in Ж. A 
sequential machine 

M = (S, J"0, <70): (A, X) — (B, Y) 

in Ж consists of the following data: 
an object S of Ж, the state object, 
a X-morphism i0: A-+SXB, the initial state-output, 
a natural transformation a0: X(SX-)—~(SX— )Y, the transition. 

The response of a sequential machine M=(S, z'0, a0) is the composite morphism 
fM=nY*В• i^, where я : SX——~I is the projection and if is the run map of 
M defined by 

SXB h X i i B > S X Y * B * s X h B SxY-Y*B J l H l X ( S x Y * B ) 

f / o U \xi* (4-7> 

A — A ^ ^ XX* A 
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DEFINITION 4 . 4 . Let A, B be objects of X and let X, Y be varietors in X. A 
morphism / : X* A-+Y*B is called initial-segment preserving if there is a natural 
transformation 

A: X(X*AX-)^~ Y*, (4.8) 
such that 

X*A L ^Y*B 

W yn n r (4'9) 

X X * A ^ L J *~X(XAXY B) ?'Y >'Y*Y*B 

THEOREM 4 . 5 . A morphism / : X* A — Y*B can be computed by a generalized 
sequential machine in X if and only if / is initial-segment preserving. 

Proof. Assume that a morphism f:X*A — Y*B is computed by a generalized 
sequential machine M=(S,i,o)\ (A, X)-*(B, Y). Thus, f=fM = nY*B-i*, where 
n is the projection transformation Sx—-*/ and i* is the run map of M defined 
by ( 4 . 1 0 ) below. 

„ „ hXpB oY*B 
SxY B«* SXY*Y*B < X(SxY*B) 

f > „ f * / * 
t]A ^J t Ho A \. 

(4.10) 

A —!—>X*A XX*A 

Denote by p the projection S~- SX Y* B, and let 

r: X*A^~'SXY*B-Z~S. (4.11) 

It can be seen by the identity (4.5) that the morphism r : -X* A—S induces a natural 
transformation ( rX - ) : , X* A X —-*<SX - by 

( r X - ) C : r x l c : - X*AxC-SxC (4.12) 

for each object C of X. Consider the natural transformation 

X ( X * A x - ) ^ ^ - X ( S ' X - ) - ^ ( S X - ) Y * - ! ^ Y * . (4.13) 

We shall prove that this X satisfies (4.9) with the response morphism / . First, we 
show that i*=(r,f). Because S~?-SXY*B nY*B- Y*B is a product diagram 
(p, nY*B) = ISXY*B- Thus we have 

= 1SXY*B • = (P. * « ) ' = ( P ' »'*• B • »'*) = (R>F)- (4-14) 

By (4.4) we obtain from (4.14) 

i*=(r.lx*A, \Y*B-f) = ( ' • X l K # ; B ) - ( l x # y t , / ) . (4.15) 

4 Acta Cybernetica 

o 
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Taking into account ( 4 . 1 0 ) and ( 4 . 1 5 ) we have 

yf-toA = TiY*B-i*-»0A = nY*B-(lsXjiB)-aY*B-Xi* = 

= JiB• nY*Y*B• oY*B• Xi* = pB• (nY* -a)Y*B-Xi* = 

= HB. (Try* .a)Y*B' X({rX 1 Y*B) • (1 / ) ) = 

= fiB-(nY*-ff)Y*B-X(rX-)Y±B-X(lx#.Aj.f) = 

= jiB-{nY*.o.X(rX-))Y*B.X(\x*A, / ) . 

Applying the definition ( 4 . 1 3 ) of the natural transformation A we conclude that 

f.li0A = nB.XY*B.X{\x*A,f), 

which proves the commutativity of ( 4 .9 ) . 

Conversely, assume that a morphism / : X* A — Y* B is initial-segment pre-
serving, i.e. there is a natural transformation A: X(X* AX—)—~ Y* rendering 
the diagram (4.9) commutative. For each object C of J f let us denote by QC the pro-
jection X*A — X*AXC. We show that the composite morphism 

aC: X(X*AX-)C = X(X* AxC)(UaA'XeC,xc} X*AxY*C = 

= (X*AX-)Y*C 

is natural in C, thus we get a natural transformation 

. A: X ( X * A X - ) ^ ( X * A X - ) Y * . ( 4 . 1 7 ) 

Let h: C—D be an arbitrary morphism. We have to prove that 

( 4 . 1 6 ) 

X(X*A X C ) — * X*A X Y*C 

X(X*A X - . 

X(X*A X D)^- »X*A XY*D. 

: - ) A | | ( Z * ^ X - ) y # / z <4.18) 

By (4.4) and the definition of the product-functor X*AX— we have 

AD-X(X*AX-)h = (n0A-XQD, W)-X(lx#AXh) = 

= (n0A • X(qD • (1 x#AXh)), ID • X(lx#AXh)). 

From (4.1) follows QD-(\x*AXh) — \x*A-QC=QC, hence using the naturality 
of A we obtain 

oD-X(X*AX-)h =(p0A-XgC,Y*h-AC) = 

= Ox#AXY*h)-(p0A'XgC,AC) = (X*AX-)Y*h-(rC. 

Thus the diagram ( 4 . 1 8 ) is commutative. 
Let us define the generalized sequential machine 

M = (X*A,I,A): (A,X)-+(B,Y) 
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by a in (4.16) and put 

i: —X*AXY*B. (4.19) 

We show that / is the response of M, i.e. 

f = nY* B • i*, (4.20) 

where n is the projection transformation X* AX—'-*/ and i* is the run map of M: 

X*A X'Y* B < [**A X ** X*A X Y* Y* B ^ - ^ X ( X * A X Y*B) 
(4-21) 

/1 > X*A : XX*A 

In order to prove (4.20) it is enough to verify that i*=(lx*A, / ) • We do this by 
observing from the following that (1X*A, f ) is an Z-homomorphic extension by 
the same specification as i*, which means (4.21). 

a) ( 1 X # A , / ) • rjA — i, by definition (4.19) of /. 

b) (1 X*A> X*A' 

JiB).<;Y*B.X(\x*A,f). 

Applying (4.6), (4.9) and (4.4) in this order we have 

(lx*A,f)-H0A = (HoA,f-n0A) = (ii0A,fiB.XY*B.X(lx#A,f)) = 

= C1
 x*AXfiB).(n0A,XY*B-X(lx#A,f)). 

By (4.3) ey*B-(lx*A,f) = holds, thus •: 

VX*A,F)-HOA=VX*AXLIB)-((IOA-XLX#A,XY*B.X(LX*A,F)) = 

= (1 x*AXjiB)-(VoA • X(gY*B• (lx#A,/)), AY*B• X(lx#A,/)) = 

= (\x*AXJiB).(noA-XQY*B,AY*B).X(\x%A,f). 

Taking the definition (4.16) of the natural transformation a we conclude that 

Ox*A,f)-HoA =(lx*AXflB). aY*B.X(\x*A,f) 

which completes the proof of the theorem. 
COROLLARY 4.6. Let A be an object of JT and let I be a varietor in JF. The 

object X* A is universal in the sense that for every generalized sequential machine 
M\ (A, X)-*(B, y ) there is a generalized sequential machine M'\ (A, X)—(B, Y) 
whose state object is X* A, and M' computes the response of M. 

Now we give a characterization of morphisms computed by sequential ma-
chines in JT. 4* 
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THEOREM 4 . 7 . Let X, Y be varietors in J F and let A, B be objects of J F . A morph-
ism / : X* A-~ Y* B can be computed by a sequential machine in X Iff the following 
two conditions are satisfied: 

i) there is a morphism f0: A—B such that 

X*A Y*B *.} , <422> 
A a A >- B 

ii) there is a natural transformation X0: X(X* AX —) —~X making (4.23) com-
mutative. 

# . f 
X*A ' ^ — Y B 

» A k * ( 4 - 2 3 ) 

< X(\x*A,f) X0Y*B ' 
XX*A — ^ X(X*AXY*B) -2 *-YY B 

Proof. Assume that a sequential machine M=(S, i0, o0): (A, X)—(B, Y) com-
putes / : X* A — Y* B. Let us take the generalized sequential machine M' = 
= (S, / , o r ) : (A, X)-(B, Y), where 

A^ S X B ^ ^ SXY*B, 
(4.24) 

Remember that rj1 = p0-Yfj. Then, by Lemma 2.6, the machine M' computes 
the response of M, i.e. the morphism / . Therefore f=nY*B • i*, where n: SX—'•—!• 
is the projection and i* is the run map of M'. Thus we have from (2.2) 

/• t]A = nY* B- i* -t]A — itY*B • i = i:Y*B • (1 s X f j B ) • i0 = fjB-nB • i0. 

Hence, taking /„ to be nB • /'„ the condition i) of Theorem 4.7 will be satisfied. Accord-
ing to.Theorem 4.5 there is a natural transformation X: X(X*AX-) — Y* such 
that for this X and / the diagram (4.9) is commutative. Moreover, by (4.13), X has 
the form 

X = X(X*AX-)J^-)~X(Sx-)~ ( S X - ) Y + — • ~ Y * . (4.25) 

Now let us define the natural transformation XQ by 

X0 = X(X* A X - ) X(SX~)-^'(SX-)Y^~ Y. (4.26) 

Since (4.9) holds for X in (4.25) it is enough to prove 

' Ji-XY* =fi0-X0Y*. 

By (4.24), (4.25), (4.26) and the naturality of n we have 

fi-XY* =Jx{nY*-o.X(rX-))Y* =P'(nY*-(SX-)rj1-(x0-X(rX-))Y* = 

= fi • (rn • nY . <70. X(rX -))Y"* = p • fa • X0)Y* = ¡1. fj.Y* • X0Y*. 
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But we have already proved in Lemma 2.6 that n - t ] iY* =fi0 , thus we obtain 
p -XY*=p0-X0Y*. 

Conversely, assume that the conditions i) and ii) are satisfied for a morphism 
/: X*A^Y*B. If we take X=fjiX0 we have p-XY*=p.(fj1-X0)Y* = 
=p-fj1Y* -X0Y*=p0'X0Y*. Thus (4.23) implies that the X above and / satis-
fies (4.9), and hence by Theorem 4.5 there is generalized sequential machine 
M=(X* A, i, tT) computing the morphism / . In the sense of Lemma 2.6 it is 
sufficient to prove that the initial state-output morphism i and the transition a 
of M are simple. Since the initial state-output i of M is defined in Theorem 4.5 by 

thus, if we take /0 to be (t]A, f0) for the f0 in condition i), then 

(X*AX-)rjB-i0 = (lx#AXfjB)-Ox*A,fo) = (tl4,riB-f0) = 

= (f}A,/'tjA) = (1 x*A,/)-lA = i. 

This means that i is simple in the sense of Definition 2.5. The transition a of M 
has the form (a, A) for some a by Theorem 4.5. From X=ij1- x0 we conclude 
that a is simple. This completes the proof of the theorem. • 

THEOREM 4.8. The family of the generalized sequential machine morphisms in 
J f is closed under composition. 

Proof. Let M^S^iltoJ: (A, Y) and M2 = (S2, i2, o2): (B, Y) + 
-*(C, Z ) be generalized sequential machines in Jf computing the morphisms f : 
X*A-*Y*B, f2: Y*B-+Z*C, respectively. By Theorem 2.8 the composite 
morphism f - f : X*A->~Z*C can be computed by a machine 

M = (Q,i,a,P): (A,X)^(C,Z) 

where Q=(SiX - ) ( S 2 X -), 

i=A±S1xY*B-!?l^-~(S1X-)(S2X-)Z*C = S1X(S2XZ*'C), 
(4.27) 

p = ( S l x - ) ( s 2 x - ) 

Here 71 j: S^X— -~I ,n 2 \ S2X—-»/ are the projection transformations. The object 
map of the composite functor ( ^ X -)(S2X - ) is (S1X~)(S2X~)D = 
=(SiX —)(5*2XD)=S1X(S2XD) for any object D of X . Since the category X" 
has binary products we may recall the well known result (see Mac Lane [7], pp. 
73. Proposition 1) which asserts that there is an isomorphism 

«s1>s,: S1X(S2XD)^(S1XS2)XD 

natural in SV, S2 and D, moreover, aSliSa D commutes with the projections to 
Si, S2 and D, respectively. Thus there is a natural transformation • 
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with inverse ^ (i.e., both (p • and </> • <p are the identity natural transformations 
on the corresponding functors), 

such that n-(p=n1-(S1X—)n2, where n: ( S 2 X S i ) X — • / is the projection. Con-
sider the generalized sequential machine 

By Theorem 2.10 it is sufficient to prove that cp is a simulation <p: M—M'. We 
have to show the equalities 

The first equality of (4.29) holds by (4.28). As P = nL'(SxX-)n2, thus = 
Using the definition (4.28) of <x' and the equality ^•<p = l (s 1 x-)(s 2 x-) we have 

a' -X<p = <pZ* • a • X\jj • X(p = (pZ* • a • X(ij/ • <p) = (pZ* • a • Zl(SiX _xs2x -) = <pZ* • <*. 

This proves that (p is a simulation and completes the proof of the theorem. • 

Finally, we show that the computational capacity of the generalized sequential 
machines in a category and that of the process transformations of Arbib and 
Manes are equal. 

DEFINITION 4 . 9 (Arbib and Manes [4]). Let A, B be objects of J F and let X, Y 
be varietors in J f . A process transformation T: (A, X)-*(B, Y) in Jf is 
T=(S, d, t, k, /?), where 

(5, d) is an X-algebra, the state algebra, 
t: A —S is the initial state, 
k: A — Y* B is the initial throughput, 
fi: X(SX —)—~7# is a natural transformation, the output. 

The response of T is the morphism g: X* A — Y*B defined by 

ift: (S1XS2)X — 1 *(5 1 X —)(S2X —) 

M' = ( № X S 2 ) X »', * ) : (A, X ) - (C, Z ) 

where i' and a are defined by / and a in (4.27) as follows 

/' = ^ - i - ( 5 1 X - ) ( S 2 X - ) Z # C - ^ - ( ( 5 1 X S 2 ) - ) Z * C , (4.28) 

a' = cpZ* • a • X\¡/. 

V = <pZ* C • i, a' • Xcp = (pZ* -a, n • (p = ft. (4.29) 

„ * „ A« * * PY*B Y B — 7*7*5-*^-
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where r: X* A — S is the reachability map of (t, d), i.e. the homomorphic extension 

5 ¿ L x s 

V ^ f r \xr (4-31) 
A ^ x * A J^±XX*A 

THEOREM 4.10. A morphism g: X* A — Y* B is the response of a process 
transformation iff g can be computed by a generalized sequential machine in 

Proof. Assume that a morphism g: X* A-*Y*B is the response of a process 
transformation T=(S,d,t,k, j8): (A, X)^(B, Y). For each object C of X let 

S f — S X C ^ C (4.32) 

be the product diagram, and define the morphism oC: X(SXC)-+(SX—)Y*C 
by the composite 

aC: X(SXC) <d x°c'l,clSxY*C. (4.33) 

One can check by an easy coputation that oC in (4.32) is natural in C, i.e. we get 
a natural transformation 

Consider the generalized sequential machine M=(S, i, <x): (A, X)--(B, 7 ) , where 
i'=(/, k) and a is defined in (4.32). We prove that this machine computes the morph-
ism g, i.e. ftd—g• The response of M is fM = nY* B• i*, where / * is the run map 
of M, i.e. the unique morphism satisfying both (4.34) and (4.35) below 

i* 't]A = i',' (4.34) 

i*-H0A =(lsXfiB)-oY*B-Xi*. (4.35) 

Since TCY*B-(r, g)=g, it is enough to prove that i*=(r, g). We do this by 
observing that the1 morphism (r, g) satisfies (4.34) and (4.35) in place of /* , i.e. 
(4.36) and (4.37) hold 

(r,g)-tiA=i,- (4.36) 

(r, g) - no A = ( l s X p B ) •uY*B • X(r, g). (4.37) 

By the triangular part of (4.30) and (4.31) we have 

(r, g).rjA = (r-rjA, g-t]A) = (t, k), 

thus (4.36) holds. Again by (4.30) and (4.31) 

(r, g) • H0A = (r • fi0A, g • p0A) = (d-Xr,flB'PY*B• X(r, g)). (4.38) 

From the definition (4.33) of o it follows that nY*Y*B-oY*B=PY*B, and 
hence, using the naturality of n we obtain 

(r, g)-p0A=(d-Xr,pB-nY*Y*B-aY*B.X(r, g)) = 
(4 39) 

= (d-Xr, nY*B-(lsXjiB)'oy*B'X(r, g)). 
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Because (4.32) is a product diagram we have 

d-Xr = d• X(QY*B • ( r , g)) - 0Y*B-(d.XGY*BX(r, g), PB • FLY*B • X(r, g)) = 

= QY * B • (d • XQY* B,pB •FIY*B)• X(r, G) = 

= QY*B• (1 sxpB) • (d - XQY*B, f}Y*B) • X(r, g). 

And by the definition (4.33) of a 

d • Xr =QY * B • ( l s X pB) • aY* B • X(R, g). (4.40) 

Putting toghether (4.39), (4.40) and the equality \SxY#b=(QY*B, nY*B) we 
conclude 

(r, g) • HO A = (QY* B, 7:Y*B). (1SXPD) •aY* B• X(r, g) = (lsxpB)-aY*B-X(r, g). 

Thus (4.37) holds, which ends the proof of the "only i f " part. 
Conversely, assume that a morphism / : X* A — Y* B can be computed by 

a generalized sequential machine in X . Then, by Theorem 4.5, the morphism / 
is initial-segment preserving, i.e. there is a natural transformation 

A: X ( X * A X - ) - Y * , 

such that the diagram (4.9) is commutative. Now consider the process transforma-
tion T=(X*A, n0A, f-rjA, t]A, X): (A, X)-(B, Y). It is obvious that 1X*A is the 
reacability map of (qA, HQA). Hence, taking into account the defining diagram 
(4.30) of a process transformation we obtain that (4.9) defines the response of T, 
which is / . 
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A 5 state solution of the early bird problem 
in a one dimensional cellular space 

B y T . LEGENDI a n d E . KATONA 

There exists a class of interesting problems for cellular automata characterized 
by their common property of decomposing some global behaviour into homo-
geneous parallel local transitions (VOLLMAR [6]). Well known representatives of 
this class are the firing squad synchronization problem (MOORE [2], VOLLMAR [4]) 
and the French flag problem (HERMAN [1]). 

Another problem of this class was defined by ROSENSTIEHL et al. in [3] and 
named as the "early bird" problem. 

1. The original definition of the early bird problem 

To each of the n vertices of an elementary cyclic graph there is assigned an 
automaton. These automata may be "excited" (birds may come from the outside 
world) at different moments. The task is to distinguish between the first (early) 
and the later birds. More exactly the transition function must ensure the automaton 
excited first to be assumed a distinguished state while all the others a different 
state after some time interval. ROSENSTIEHL et al. [3] gave a 2n step solution on con-
dition that at each moment maximally one excitation occurs. 

2. The modified early bird problem 

VOLLMAR in [5] defined the problem for a one-dimensional cellular space allow-
ing more than one cell to be excited at a given time step. Only quiescent cells may 
be excited; before the first time step at least one cell should be excited. After a 
certain period the first bird(s) should be in a distinguished state while all the 
others in a different state. 

The solution (VOLLMAR [5]) uses the "age of waves" concept: each bird sends 
out age signals that are compared (numerically). As a consequence elder bird(s) 
survive, while waves of the same age or waves reaching the border are reflected 
and mark the sender automata. After a certain number of time steps there remain(s) 
only early bird(s) marked from both directions. 
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3. A 5 state solution to the problem 

The proposed solution uses the "age of waves" concept of VOLLMAR [ 5 ] but 
in a simplified manner. The age of a wave (i.e. of a bird) is modelled directly by 
the length of the waves, rather than by a counter which is hard to handle, especially, 
for the number of needed bits of a counter is dependent on the number of cells. 
Therefore the counter cannot be incorporated in cells' states, it is rather simulated 
by a group of cells. 

The basic idea is to send L (left) and R (right) waves in the left and the right 
directions. At each time step the wave is growing by one cell thus modelling the 
age of the sender. When two waves are colliding, pairs of R and L states annihilate 
each other, and N (neutral) states will replace them. 

An L or R wave reaching a bird (in state B) will cause the annihilation of it 
(state N will be generated instead of the state B). 

Consequently, the needed cell-states are: 

Q = quiescent (initial) state, 
B = bird state-(arises from state Q, spontaneously), 
L = left wave, expanding to left, 
R = right wave, expanding to right, 
N = neutral state. 

4. Construction of the transition function 

In the following we construct the transition function on the basis of the above-
described principle. The transition function will be described with "left, own, right — 
— new-state" terms. 

First we assume only two birds with different ages (they were born in different 
time-steps). Each bird sends waves in both directions, this is ensured by terms 

1 .BQQ-R, 

2. QQB - L. 

The waves are growing in each step: 

1/a. RQQ — R, 

2/a. QQL - L. 

It is clear, that the length of the waves is equal to the age of the sender, in each 
step. After a certain time the waves are colliding between the birds, then an anni-
hilation process begins: 

3. RQL^N, 
4. RRL—N\ These terms imply the transition RRLL^RNNL (that is, each 
5. RLL^N) section of cells with states RRLL goes into RNNL). 
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From annihilation a neutral area arises, in which the R states step to the right, 
the L states to the left (the points mean arbitrary state): 

6. RN (not L) —R \ R steps right by the transition 
7. -RN -Nf • RN (not L)--NR-
8. (not R) NL—L \ L steps left by the transition 
9. NL- -JVJ (not R) NL • — • LN • 

10. RNL -+N annihilation. 

If the left bird is the earlier one, then after a certain time all the L states are 
annihilated between the birds, and the remained R states can go to the right and 
"kill" the right bird: 

6/a. RBR-R, 
7/a. -RB-+N. 

For the state L similarly: 

8/a. LBL-L, 
9/a. BL • -N. 

The described process is presented on Listing 1 generated by computer-simulation. 
The cell-states are displayed with the conversion g = " • ", B="B", !,="<", 

and N="*". On the edges of the cellular space dummy cells are used 
with the state N. 

Listing 1 

STEP 0 : * . . . . В . . . . * 
STEP 1 : * . . . < В * 
STEP 2 : * . . < < B > > . . . * 
STEP 2: * . . В B . . * 
STEP 3: < В . * 
STEP 4 : * - = < - < < В . . . . < < B > > * 
STEP 5: * * - = < - = : В . . <<-=R В > * * 
STEP 6: < B > > В * = - * 
STEP 7 : * * < * < В > = » > = - > * * - = : - = : - = В * * * 
STEP 8 : * < * - = * В =- :=-=-> * X * < < В * * * 
STEP 9: * * < * * В > > > * = - * * < * < В * * * 
STEP 10: * < * * * В » * > * х * < * В * * * 
STEP 11: * * * * * B = - * > * > * * < * * B * * * 
STEP 12: * * * * * В * > * = - * = - < * * * В * * * 
STEP 13: * * * * * В * * = - * > * * * * * В * * * 
STEP 14: * * * * * В * * * > * > * * * * В * * * 
STEP 15: * * * * * В * * * * = » * > * * * В * * * 
STEP 1 6 : * * * * * В * * * * * > * = - * * В * * * 
STEP 1 7 : * * * * * В * * * * * * = - * ^ * В * * * 
STEP 18: * * * * * В * * * * * * * > * > В * * * 
STEP 19: * * * * * В * . * * * * * * * = - * : = - * * * 
STEP 2 0 : * * * * * В * * * * * * * * * > * > * * 
STEP 2 1 : * * * * * В * * * * * * * * * * > * > * 
STEP 2 2 : * * * * * В * * * * * * * * * * * = - * * 
STEP 2 3 : * * * * * В * * * * * * * * * * * * > * 
STEP 2 4 : * * * * * В * * * * * * * * * * * * * * 
STEP 2 5 : * * * * * В * * * * * * * * * * * * * * 



176 Т. Legendi and E. Katona 

The terms described above represent only the typical situations in the case 
of two birds. If more then two birds are allowed and all special cases are respected 
(e.g. two neighbouring birds, a bird killed from both direction at the same time, 
etc.), then the following extended transition function called as "early bird function" 
is needed (in the following terms an expression (B, R) means "state B or state R") : 

2. (Q, TV) Q (B, L) J wave-growing 
3. (B, R) Q (B, L) —TV wave-growing with annihilation 
4. • R L — TVl annihilation by the transition 
5. RL • —TVJ • RL • — • NN• 
6. R (B, N) (not L)—R \ R steps right by the transition 
7. • R (B, N) —TV J ' -R(B, N) (not L) — • NR • 
8. (not R) (B, N) L —L 1 L steps left by the transition 
9 . ( B , N ) L - -TV J (not R) (B, N) L- — • LN• 

10. R(B, N) L —TV annihilation by the transition 
• R(B,N)L'-*'NNN-

11. In all other cases the new state must be equal to the old own state. 

5. Exact proof of the algorithm 

It is easy to prove that for two birds the "early bird function" works right. 
For the general case, where in each step any quiescent cell can change into the 
bird-state, an exact proof is given in the following. 

Theorem. A one dimensional 5-state cellular space consisting of m cells is 
considered, where 

— in the initial configuration (at i = 0 ) each cell is in state Q, and the dummy 
cells on the edges are in state N, 

— between any two steps (so to say, at i + 1/2) any quiescent cell can alter 
into state B. 

Statement. Using the "early bird function" in this cellular space, after a finite 
time (it seems that maximum 3m steps) only the "early birds" (the birds arisen 
at first) are existing, all other cells have the state N. 

The proof is based on the notion "route of the wave-states". To define this 
notion some investigations are needed for the behaviour of wave-states. The follow-
ing properties can be found: 

— A wave-state (i.e. L or R) may arise only from state Q, by terms 1 and 2. 
— L states move to the left, R states to the right. More exactly, if in f ront 

of a wave-state there is a state N or B, then the wave-state steps forward (see terms 
6—9). If in front of a wave-state there is the same wave-state or state Q, then the 
wave-state remains on its place (by "term 11"). 

— If an R and an L are colliding, then they annihilate each other (see terms 
4, 5, 10). A wave-state reaching the border of the cellular space is annihilated by 
the dummy cell (see terms 7, 9). • 

— The behaviour of a wave-state is always independent from the state occur-
ing behind it. 
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These properties show, that a wave-state arises on a certain point of the cellular 
space, it goes left or right depending on its type, and it is annihilated on another 
point of the cellular space. The section of cells, determined by the point of origin 
and the point of annihilation of a wave-state, will be called as the route of the 
wave-state. 

If a cell contained in a route of a wave-state has been excited, then obviously 
this bird cannot survive. This fact gives special importance for the routes of the 
states R and L, which can be characterized in the following lemma. 

Lemma, (i) If a state L and a state R arose at the same time on the both ends 
of a quiescent section Q...Q, then after a finite time they will meet and annihilate 
one another. 

(ii) If a wave-state arose on the end of an outside quiescent section (bounded 
by a dummy cell on its other end), then the wave-state will go to the left or to the 
right until it reaches the border, and will be annihilated by the dummy cell. 

Proof First the statement (i) will be proved, using induction for the length 
n of the quiescent section Q...Q. 

For n—2 the statement (i) is obvious, because we have the transition QQ — 
— RL—NN in this case. 

Now the statement (i) is assumed for any section with length less then n, and 
a quiescent section of length n is considered, on the both ends of which an R—L 
pair was arisen at time t (hereby the length of the section was reduced to n—2). 
Between t and i + 1 (so to say, at i+1/2) a number of birds may be excited in this 
section', hereby the section may be divided into more subsections, each having a 
length less then n. At time t +1 all quiescent sections of length 1 have disappeared 
(see term 3), and on the both ends of all other sections states R and L are arising. 
By the induction assumption these R—L pairs must annihilate each other. So the 
original R and L — arisen on the ends of the section of length n — cannot meet 
with any other wave-state, therefore they will annihilate each other. 

The statement (ii) can be proved in a similar way. • 
Applying these results it is easy to prove the original theorem. 
Assume, that the early birds are excited at time /„+1/2, the configuration at 

this time-point consists from bird sections and quiescent sections alternating one 
another. At time f 0 + l on the ends of each quiescent section an R—L pair arises. 
These pairs — according to the lemma — will annihilate each other, so their routes 
cover all the space between the early birds. Similarly, the routes of the wave-states, 
arisen on the ends of the outside quiescent sections, cover the space between the 
outside early birds and the dummy cells. This fact implies, that all later birds will 
be killed. On the other hand, the early birds must survive, because the route of any 
wave-state (arising after t0) is contained by one of the quiescent sections at /0 +1 . 

With these notes the proof of the theorem is complete. 

6. Simulation examples 

The presented solution of the early bird problem is demonstrated below using 
computer-simulation. The cell-states are displayed with the conversion Q="'", 
B="B", L = " < " , i ? = " > " and N="*". On the edges of the cellular space the 
dummy cells are displayed, too. 
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In the case of Listing 2 four birds come from the outside world (at / = 4 , 5 
two birds at the same time). After /=15 only the early bird lives, in the further 
(not displayed) steps the remained wave-states will be annihilated by the dummy 
cells. 

Listing 2 

STEP 0 : * B . . . . . * 
STEP 1 : * < B > * 
STEP 2 : * * 
STEP 2 : * B . . . < < B > > * 
STEP 3 : * < B > . B * 
STEP 4 : * < B X B - - * 
STEP 4 : * B > . . . . B . B * 
STEP 5 : * « < B N N < < B > > > > > . . < B * B =- * 
STEP 6 : * , . . . C -=: < «= B * B * B =- > * 
STEP 7 : * . . . . . * 
STEP 8 : * . . . * 
STEP 9 : * . < « = - < - E : < - = : - = - = * « = : * * * B > : = - = - * > * * * B * B > = - > > = - . . * • 
STEP 1 0 : * - = - = < « = - = ; - = C < - £ - = : < * * * * B : = - > * : ^ * > * * B * B > > > : » = - > . * 
STEP 1 1 : * I < « « « « I J I T I B > * > ) | > * > * B * B > > > > > = - > * 
STEP 1 2 : * < * < « = - = : < « = - < < - = : * * * * B * > * > * > * > B * B > > > > > = - * * 
STEP 1 3 : * * . < * * = » * > * = - . * > * B = » > > > > * ; » * 
STEP 1 4 : * - E * < * < - < < - < - E < * * * * B * * * = - * : = » * : » * : = - B ^ = - : » = - * = = - * * 
STEP 1 5 : * * - = * « : * < C - = : - < - < - = : * * * * B * * * * = » * > * > * = - > = » : ^ * > * > - ' * 
STEP 1 6 : * « = * < * < * - C - < - = : « C * * * * B * * * * * : = - * > * > : = » > > * > * = - * * 

In the case of Listing 3 six birds come from the outside world (three birds at 
/ =0,5 and three birds at /=2,5). During 22. steps all late birds are killed. 

Listing 3 

STEP 0 : * B B . B ' * 
STEP 1 : * < B B * B > * 
STEP 2 : * « B B I B » , . . . . . * 
STEP 2 : * . . . . B B B « B B I F B » * 
STEP 3 : * . . . B > < B B > . . . < « B B * B > > > * 
STEP 4 : * . . < - B - . . . . . < < B B > > . < < < < B B * B > > > > . . . * 
STEP 5 : . < « B B » * « « B B * B > » » . . * 
STEP 6 : * « < < B > > > > < < < < B B > * * * < < < B B * B > > > > > > . * 
STEP 7 : * * < « B > > > * * < < < B B * > * < * < < B B * B > > > > > > > * 
STEP 8 : * < ) K < < B > > * > < * < < B B * F * * < * < B B * B > > > > > > * ) I F 
STEP 9 : * * < * < B > I > T I I < * < B B * * * < * < * B B * B > > > > > ) ( F > * 
STEP 1 0 : * < * B * < * B B * * - = * < * * B B * B = > = - > > * = > * * 
STEP 1 1 : * * < * * B * * ^ - * * < * * B B * « ; * < * * * B B * B > ^ > * > * : » * 
STEP 1 2 : * < * * * B * * * > - = * * * B B < * - = * * * * B B * B > > * > * > * * 
STEP 1 3 : - ' * * * * * B * * * * * * * * B < * - = : * * * * * B B * B > * > * > * = - * 
STEP 1 4 : * * * * * B . * * * * * * * * < * < * * * * * * B B * B * = - * > * = - * * 
STEP 1 5 : * * * * * B * * * * * * * < * < * * * * * * * B B * B * * = - * > * = - * 
STEP 1 6 : * * * * * B * * * * * * < * < * * * * * * * * B B * B * * * = - * > * * 
STEP 1 7 : * * * * * B * * * * * < * < * * * * * * * * * B B * B * * * * = - * = - * 
STEP 1 8 : * * * * * B * * * * < * < * * * * * * * * * * B B * B * * * * * = - * * 

• STEP 1 9 : * * * * * B * * * < * < * * * * * * * * * * * B B * B * * * * * * = - * 
STEP 2 0 : * * * * * B * * < * < * * * * * * * * * * * * B B * B * * * * * * * * 
STEP 2 1 : * * * * * B * < * - E * * * * * * * * * * * * * B B * B * * * * * * * * . 
STEP 2 2 : * * * * * B < * « = * * * * * * * * * * * * * * B B * B * * * * * * * ' * 
STEP 2 3 : * * * * * « = * < * * * * * * * * * * * * * * * B B * B * * * * * * * * 
STEP 2 4 : * * * * - = * < * * - * * * * * * * * * * * * * * B B * B * * * * * * * * 
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On the completeness of proving partial correctness 
B y L . CSIRMAZ 

We give here a proof for the completeness of the Floyd—Hoare program veri-
fication method in a case which has remained open in [1]. The method used here 
is basically the same as in [5]. For the motivation behind our concepts see [1, 3, 10]. 
Applications of our results in dynamic logic can be found in [10]. 

1. Introduction 

Structures will be denoted by bold-faced type letters, their underlying sets 
by the corresponding capital letters. If A is a set and n£co then A" denotes the set 
of «-tuples of the elements of A. Throughout the paper d denotes an arbitrary, 
but fixed similarity type, and T denotes an arbitrary but fixed consistent theory of 
that type. For F% denotes the set of first order formulas of type d with free 
variables among {j>f: /<«}, and we let Fd=(J {Fj1: n£co}. In particular, T is 
a proper subset of . For the sake of simplicity we make no typographical distinc-
tion between single symbols and sequences of symbols. 

A program (or rather a program scheme) can be regarded as a prescription 
which defines uniquely the next moment contents of the registers f rom their present 
moment contents. Therefore we adapt 

Definition 1. Let Tc:F$ be arbitrary. A ¿/-type program (in T) is a formula 
(p£Ff such that 

T h- VxB! y(p(pc, y)- • 

Let D be a ¿-type structure, and D t = r . Then, by this definition, the progra m <p 
defines a function from D to D which we denote by p9t D- More precisely, for every 
q£D there is exactly one element of D, denoted by p9<\>(q) for which D N cp(q, pv,v(.q)). 
To avoid long and unreadable formulas we omit the indices <p, D everywhere and 
use the letter p as a new function symbol denoting in every model D of the 
theory T. For example, if I¡/£F% then the formula. 

is abbreviated as i l / (p (x ) ) . 
To define semantics of programs we need the notion of the time-model 

[1, 3, 10]. 
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Definition 2. The triplet 4)1 = (1, D, /> is a time-model if I is a structure of 
similarity type D is a structure of similarity type d, and f : f—D is a function, 
where the type t consists of the constant symbol 0, the one placed function symbol 
" + 1", and the two placed relation symbol " S " . • 

We say that I is the time structure, and D is the data structure of 9)1=(I, D , / ) . 
Time-models can be regarded as a special 2-sorted models with sorts t and d (called 
time and data), and with operation symbols of t and d and the extra operation 
symbol / , see [9, 10]. Let TF denote the set of 2-sorted formulas of this type. By 
a little abuse of notation, we assume that F, and Fd are disjoint, and Ft{JFdc: TF. 

Now we can give the strict definition of the program run. Note that by our 
agreement on the type t, we may write / + 1 (/'€/). 

Definition 3. Let 9W=(I, D, / ) be a time-model and let p: D—D be a pro-
gram. The function / constitutes a trace of the program p in 90i if for every /£/, 
/ ( / + 1 ) =/>(/(/)) . We say that the (trace of the) program halts at the timepoint 
/ € / i f / ( i + l ) = / ( / ) • • 

Definition 4. Let <piB and (pould Fd be two formulas. The program p is partially 
correct with respect to <pia and <poul in the time-model 9)i if whenever / is a trace 
of p, and Df=<p in(/(0)) (i.e. the input satisfies (pin) then for every id I such that 
/ ( / + ! ) = / ( / ' ) (i.e. the program halts at the timepoint i), D|=<pout(/(0)- This asser-
tion is denoted by 2)11=(cpin,p, <p0J. 

Let ScTF be arbitrary. If for every time-model Hi, 9Ji |= S implies 
SHNOPin,/?, «Pout) then this fact is denoted by S\=(<piD,p, <pout). • 

So far we have completed the definition of the partial correctness. The following 
definition is a reformulation of the well-known Floyd—Hoare partial correctness 
proof rule [7, 8, 10]. 

Definition 5. The program p is Floyd—Hoare derivable from the theory Tcs F% 
with respect to <pin and (poatdFJ, in symbols T\-(<pin, p, <pout), if there is a formula 
<P£FJ such that 

T H (pin(x) - <*>(*) 

T \- $(x) — <P(p(x)) 

T 1- $(x)Ap(x) = x - <poat(x)- • 

Let 77 denote the set of axioms of the discrete linear ordering with initial 
element for the type t. That is, 77 states that the relation is a linear ordering, 
0 is the least element, every element i has an immediate successor denoted by / '+1, 
and every element except for the 0 has an immediate predecessor. We remark that 
TI is finite and its theory is complete, see [4] pp. 159—162. 

If in the time-model 951=(I, D, / ) the time structure I is isomorphic to the 
ordering of the natural numbers (the time-model is standard) then D ( = 7 and 
T\-(<pin,p, i»out) implies <$R\={(pia,p, <pout). By the upward Lovenheim—Skolem 
theorem, there is no SczTF for which sDJN S would force 9Jt to be standard. 
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But we may require 9JI to satisfy the most important feature of standard time-
models, namely that they admit induction on the time. Let <p(x)(iTF be such that 
x is a variable of sort t (i.e. x is a time-variable). Then <p* denotes the following 
formula of TF: 

[>(0)A \ / x ( < P (x ) - cp(x+ 1))] - Vx<p(x). ^ 

The set of induction axioms are 

I A = {(p*: (p(x)£TF and x is of sort t}. 
Moreover we introduce a proper subset of I A, the induction axioms of restricted 
form: 

IR = {<p*: (p(x)£TF and there is no quantifier for any variable of sort t in <p(x)}. 

It is important to remark here that <p(x) may contain other free variables. All these 
free variables are also free in cp* except for x, they are the parameters of the in-
duction. 

Of course IRalAcTF, and one can easily prove the following theorem. 

Theorem 1. Suppose TaF$ and p is a ¿-type program. Then T\-(cpin,p, <poul) 
implies (TIUIR[JT)\=((pin,p,(p0Ut). • 

The aim of this paper is to prove the inverse of this theorem. 

Theorem 2. With the notation of Theorem 1, (TfUiRUT))=((pin, p, <poul) im-
plies T\-((pin,p, (pout). • 

These theorems state the completeness of the Floyd—Hoare program veri-
fication method in the case when the time-models satisfy the axioms TIUIR. In 
Theorem 2 the fact that induction axioms of restricted form are required only is 
essential as it is shown by the following theorem [1]. 

Theorem 3. There is a type d, a theory Tcz Fd° and a ¿-type program p such 
that (TI{JIAUT)^((pin,p,(pout) while T\^(<pin, p, cpBat). • 

2. Strongly continuous traces 

We start to prove Theorem 2. From now on we fix the similarity type d, the 
theory TaF$, the ¿-type program p and the formulas <pin, <pout€ FJ. In this sec-
tion for every time-model 2H=<I, D , / ) we assume 991 (=77. The explicit declara-
tion of this fact will be omitted everywhere. 

First we need a definition. 

Definition 6. Let -S0t=<I, D, / ) be a time-model, D|= T. The function / con-
stitutes a strongly continuous trace of p if 

(i) f ( i +1 )= /> ( / (0 ) for every id/; 
(ii) let /', j e l , i ^ j , uGD" and <P£FJ+" be arbitrary. If D)= <£(/(/), it) A 

Al<P(f(j), u) then there is a k f j , irsk^j such that D\=4>(f(k), u)A 
A ! < £ ( / ( * : + ! ) , « ) • • 



184 L. Csirmaz 

Strongly continuous traces (set in the sequel) are traces, cf. Definition 3. In 
other words, an set satisfies the induction principle in every time interval. Obviously, 
if 9HN/J? and / is a trace then / is an set, too. Properties of continuous traces 
are discussed in [2, 6, 10]. 

Lemma 1. Let / be a trace of the program p in 9Ji. Then 90? \=IR iff / is strongly 
continuous. 

Proof. We prove the " i f " part only. Let cp(x0)£TF be such that <p(x0) does 
not contain quantifiers on variables of sort t. Let x0 , xlt ..., x m _ j be the free vari-
ables of cp of sort t, and jo, . . . ,y„-x be that of sort d. Because there are finitely 
many applications of the function " + 1" only in (p, we may assume that there is 
none, simply replace these applications by a new parameter of sort t or use the 
identity f (x + \)=p(f (xj). We may assume also that every f ( x j ) is denoted by 
some of the parameters among y0, ..., y„-1, i.e. the function f is applied to x0 
only. Thereafter for every (p(x0)£TF with fixed parameters from / and D, there 
are elements = ...=/,„ from I, elements u0, ux, . . . , M„_! from D, and formulas 
4>0, ..., <£m<EFd

1+" such that 

901 N <p{x) - {[ x < ii - <P0(f(x), u)] A 

A[/x x < /, - * , ( / ( * ) , i,)]A 

A f / ^ s x < /,„ - ^ m _! ( / (x ) , w)]A 

A[/m = x - ^ m ( / ( x ) , «)]} 

which can be got, for example, by induction on the complexity of cp. Now if 
9Mt=<p(0)A\/x(<p(x)—<p(x+l)) then, applying the strongly continuity in the in-
tervals [0, /J, [Y1; /2], etc. we get i)Jt 1= Vx<p(x) which was to be proved. • 

By this lemma it is enough to show that either the triplet (cpin,p, <pout) is Floyd— 
Hoare derivable, or there is a strongly continuous trace which shows that p is not 
partially correct. 

Let us make a step forward. 

Definition 7. Let HaFj consist of the formulas <P^F} for which 

T h (ph,(x) - 4>(x) 
and 

T <?>(x) <P(p(x)). • 

Note that H is closed under conjunction, i.e. if <PX and <P2 are in H then 
<&xA<P2£H. Now let c0 and ca denote two new constant symbols not occuring pre-
viously. We distinguish two cases. 

Case I. In every model of the theory 

{T, <pin (c0), H(ca), p (cj = c j 

the formula (poui(cm) is valid. Here N(cJ= {<P(ctJ: <££//}. Then by the compact-
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ness theorem and by the fact that H is closed under conjunction, there is a 
such that 

T I - [ < p i n ( c 0 ) A ^ ( c J A / ; ( c J = c j - <pmt(ca). 

The constants c0 and cm do not occur in T, so introducing <P (x)=(3y<Pi„(y)) A f ( x ) , 
we get 

T h <P(x)hp(x) = x - (poM(x). 

This and the obvious shows the Floyd—Hoare derivability of (<pia,p, <poul)-

Case II. Not the case above, i.e. 

Con {T, (pia(c0), H(ca), p(ca) = ca, l<pout(cB1)}. 

By Theorem 4 of the following section, in this case we have a time-model 
S M = < I , D, f)\=T such that / is an set of p, Dh=<z>in(/(0)) and for some 
DN/(O=p(/0 ' ) )A"l<p„ u , ( / ( ' ) )• Thismeans m^((pin,p, <pout), i.e. p is not partial-
ly correct. This proves Theorem 2, because 9JiN TIUIRUT by Lemma 1. 

3. The proof of the crucial theorem 

In the remaining part of this paper we prove the following theorem. 

Theorem 4. With the notation of the previous section, suppose 

Con {T, <pin(c0), H(ca), p(ca) = cWJ-1 <pou,(cro)}. 

Then there is a time-model = D, / > such that I(=77, D(=T, / is a strongly 
continuous trace of p, Dt=<p in(/(0)), and for some / ( / + l ) = / ( 0 and 
D N l < p o u t ( / ( 0 ) -

Proof. We need some more definitions. If and d2 are similarity types then 
dx<d2 means that dx and d2 have the same function and relation symbols with 
the same arities and every constant symbol of d± is a constant symbol of d2. 

Definition 8 .Let d be a similarity type, TczF? be a theory. The pair R=(Ir, fR) 
is a (d, T)-pretrace if IR is a time structure, IR )= 7Y, and fR is a function which 

• assigns to every i£lR a constant symbol of d in such a way that (i) and (ii) below 
are satisfied. A bit loosely but not ambiguously, we write R(i) or simply Ri instead 
o f / * ( « ) • 

(i) T\-R(i+l)=p(Ri) for every iCjR 
(ii) C o n ( r U { ^ ( i ? y ) : j£IR, $£Bd

T and there exists ielR, such that 
T\- <P(Ri)}), 

where 

Bd
T = {4>eF}-. T h <J>(x) - $(px)}. • 

Note that the set Bd
T is closed under conjunction, this fact will be used many times. 

Lemma 2. Let R be a (d, 7>pretrace. Then there exists a complete theory 
TcSczFH such that R is a (d, 5)-pretrace. 
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Proof. It suffices to show that for any /?£ Fd°, R is either (d, T(J {/?>) or 
(d, rU{~l)?})-pretrace. If neither of them hold then in both cases (ii) of Definition 8 
is violated. It means that there are finitely many is> js(LlR, is = js, and <£s€i?ru{0}, s u c h t h a t 

TU{P) H 1 A <t>sWs) and 7U{/?} (3.1) 
s s 

TU{-\P} h i A ^ W s ) and T{J{lp}\-A^m- (3 .2) 
s s 

Now let !P,(*)=(0-0,(*))A(-l/?-4>i(;c)). Obviously, VsiBd
T and 2 V A 

s 
Elementary considerations show that (3.1) and (3.2) imply 

T h l A W 
s 

which contradicts the assumption Con (71, {!PSCR/S)}). • 

Lemma 3. Let i i be a (d, T)-pretrace, and let T be complete. Then there exist 
a similarity type e>d and a complete theory TczSczF° such that 

(i) R is an (e, 5)-pretrace, 
(ii) for every ij/ZF}, if 3x \ j / (x )£T then for some constant c from the type 

(iii) the cardinality of the new constants in e does not exceed the cardinality 
of F j , i.e. 

\Fe\ = \e\^\Fi\ = \d\-co. 

Proof. What we have to prove is the following. Suppose that the type e con-
tains the extra constant symbol c only, F} and Con {T, P(c)}, then R is an 
(e, TU {j8(c)})-pretrace. From this (i)—(iii) can be got by a standard argument, 
see, e.g. [4] pp. 62—66. Now suppose that this is not the case, i.e. there are finitely 
many 4>s(x, c)£Be

TU[ll(c)} and is, js£lR, is<js such that 

T\J{fi(c)}\-lA*M(Rj.,c) (3.3) 
S 

TU{P(c)}\-A^s(Ris,c). (3.4) 
S 

The condition i m P ^ e s 

= Vy(jg(y) - <Ps{x,y))dB*r, 
and by (3.4), T\-Vy(P(y)-~<Ps(Ris, j)), i.e. Ws(Ris)£T. Now T is complete, there-
fore 7 s >i s implies T\- from which 

T i - A {№ - $s(Rjs, c)) h pic) - A c). 
s s 

This and (3.3) gives T\-~\f}(c), a contradiction. • 

Lemma 4. Let R be a (d, T)-pretrace, and let T be complete. Suppose /„, j0dIR, 
i0<j0 and xdF/ such that 

T H z(Ri0)A lz(Rj0). 
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Then there exist a type e>d, a theory r < = S c F ° and an (e, S)-pretrace Q such 
that 

(i) IQ is an elementary extension of IR and Qz> R, i.e. 

Q(i) = R(i) for iOn 

(ii) there is an i '€/e , /0 = i<io such that 
S H x ( e ( o ) A i 5 c ( e o + i ) ) . 

Proof. Let a ={i^IR: for every T\-x.(R'')}- Obviously, a is an initial 
segment of IR, we write / < a and *':>a instead of i£a and /(J a, respectively. The 
element j0 a, and we may assume that there is no largest element in a otherwise 
there is nothing to prove. It means that for every there exists such 
that T\- 1 x ( R f ) .We shall insert a thread isomorphic to the set of integer numbers, 
denoted by Z, into the cut indicated by a. 

Let {a,: l£Z} be countably many new symbols and let {c(: / £ Z } be new con-
stant symbols. Let IQ=IR\J{al: l£Z\ and define the ordering on IQ by a , < a l + 1 , 
/'<«, if IR, / < a and if i f J R , / > « for every /£Z. Evidently, IQ is an 
elementary extension of IR . 

Define the function Q by Q(i)=R(i) if id/R and Q(a,) = cl otherwise. Let 
the type e be the enlargement of d by the constant symbols {c,: /£Z}, and finally 
let the theory S c F c ° be 

5 = T U { / 7 ( c ( ) = c ( + 1 : / € Z } U { z ( c 0 ) , " U t f c O J U 
U{4>(e,): IdZ, $£Bd

T and T I- <£(/?i) for some i < a}U 
U{~itf>(c,): l£Z,4>£Bd

T and T b for some 7 > a}. 

We claim that S is consistent. It suffices to show that T is consistent with any finite 
part of S \ T . Using the facts that T is complete, Bd

T is closed under conjunction, 
and the formulas <P^Bd- are hereditary in this reduces to 

Con (TU {<*> (c_,), Z(c0), 17.(cd, 1 <t>*(c,)}) 

where l£to is a natural number, <P, and T\- <P(Ri,)A "1 ^ ( R j j ) for some 
Now if this consistency does not hold then, T being complete, 

T \- <P(x)A/(p'(x))A l^*(p2l(x)) x(pl+1(x))-

Now let By the previous statement, 
J i - W(x)-*xP(px), i.e. T£Bd

T. Now, by the assumptions, T\- $(R(ij) and 
T\- x(R(i+l)) for therefore T\- T(Ri). But R is a pretrace so for every 
a < 7 < 7 ! - 2 / , 7 V f (Rj), although for some a < 7 " < 7 ! - 2 / , T\- Ix(Rj') and 
T\- ~\<I>*(R(j'+l— 1)). This contradiction shows that S is consistent indeed. . 

We prove that Q is an (e, S)-pretrace, (i) and (ii) of the lemma are clear from 
the construction. First assume that i£/R, V€B§ and S\-V(Ri). We are going to 
show that in this case S\-T(Qj) for every j£lQ, Indeed, we may suppose 
that W contains the new constant symbol c—c_t only and that 

TU{<5(c)} h f ( x , c) - Y(px,c) 
TU{5(c)}]-<P(Ri,c) 
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where <5(c)= <P(c)Ax(y(c))A lx{pl+1 (c))A"1 <P* (p2\c)). By the first derivability, 
0 ( x ) = V j [<5 O ) - (x, y)} d £T , and by the second one, T\-0(Ri). R is a pretrace, 
and by the definition of S, S\-0(Qj) for every j£lQ,j>i. But S|-<5(c_,), i.e. 
S i - xP(Qj, c_,) as was stated. 

Now if Q is not an (e, S)-pretrace then (ii) of Definition 8 is violated, which 
means that there are finitely many I's£IQ\IR , Js£IR, js^oc and <PsdB% such that 
S\-lf\<Ps(Rjs) while S h A 4>s(QO- The set B% is closed under conjunction, 

therefore we may assume that all the is and <PS coincide,.that this <PS= contains 
the new constant symbol c=c_, = Qis only, and that with S(c) as above, 

By the first derivability, 0(x)=3y(S(y)A9/(x, and by the third one, 
7 V V "10(i?ys). T is complete, which means T\- ~[0(Rjs) for some / s > a , i.e. by 
the definition of S, S | -~ l©(c) , which contradicts the second derivability. • 

Returning to the proof of Theorem 4, we shall define three increasing sequences 
of similarity types, theories and pretraces. Recall that the type d, the theory T c 
and the formulas (pin, <pom£F} are such that 

Let c, t e new constant symbols for /£<y — {0}, and let the similarity type e > d 
be the smallest one containing them. Let the time structure consist of a thread 
isomorphic to co and another one isomorphic to Z. The definition of the function 
R goes as follows: 

s 

T U {¿(c)} H V(x, c) - V(px, c) 

TU{<5(c)} 1- W(c,c) 

r U { S ( c ) } H l A m ' s , c ) . 

S 

Con {r, (¡»¡„(Co), H(cJ, p(ca) = cœ, Kpout(cJ}. (3.5) 

Finally let 

S = r U { i ( C | ) = c ( + 1 : /Çft>}U {<pin(c0), p ( c j = cm, l<pmt(cj}. 

Lemma 5. R is an (e, S)-pretrace. 

Proof. For the sake of simplicity, let 

y(*) = (p(x) = *A 1 <?„„,(*)). 

It is enough to prove that if <1>£F}, 

S I- $(x, c0, c j - 4>(px, c0, c j (3.6) 

(3.7) 
and 

S <P(c0, c0 , O 

then Con {S, <P(ca, c0, cm)}. Suppose the contrary, i.e. 

S I— "1 ^(Co, c0, ca). 

at J 

(3.8) 
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We may change S to FU {^>in(c0), y(cm)} everywhere, so introducing 

«*(*) = Vz 3 y [ y { z ) - ( p i n { y ) y , z)]£Fj, 

(3.6) says that T\-'i/(x)-'F(px). From (3.7) we get T\-(pin(x)-+V(x), therefore 
¥£H. Choosing x — z = cm in W, the condition (3.5) gives 

Con {T, <p]n(c0), y ( c j , 3v[ ) ' (cJ - ^in(y)A<f(c(0,>', O]}-

But by (3.8), 
TVVy[y(cJAtpin(y) - c j ] 

a contradiction. • 

Let d0=e,R0=R. By Lemma 2 there is a complete theory S C F Q C F ^ F ^ 
such that R0 is a (dn, 7T

0)-pretrace. Let the cardinality of Fd°0 be x, and let x+ denote 
the smallest cardinal exceeding x. Let C = { c ? : be different constant sym-
bols such that the constants of the type d0 are among them, and let J= {af 
be symbols of time points such that / R o c / . (Note that I R o is countable.) 

Arrange the triplets of JXJXF}UC in a sequence {(i(, , : of 
length in such a way that every triplet occurs x+ times in this sequence. Now 
we define three increasing sequences and R( for such that 

(i) df is a similarity type, 
(ii) T^czF^ is a complete theory, and |Fj>?\ = x, 

(iii) is a (d^, T^-pretrace, and IRicJ, \IR;\^x. 

Suppose we have defined d t , T ^ , R ^ for f t h e y have properties 
(i)—(iii) and we want to define dn, Tn,Rrt. 

If >7 is a limit ordinal, simply put DN= U ^ : TN = U 
= U {R^: This definition is sound because is the union of the increasing 
elementary chain (Ij, : therefore it is also a model of the axiom system 
77. Tn is the union of an increasing sequence of complete theories, therefore itself 
is complete. Similarly for the other properties. 

If tj is a successor ordinal, say = ^ + then work as follows. If either 
or ii,j(aR(, <Pi£Fd\ but or Tt\^<Pt(Rti()M<P^Rej{) 

then let de+1=dit T^+^T^, R(+1=R(. 
If not, i.e. and T(\- $ { ( R ( i ( ) A ~ \ < I > ( ( R ( j ( ) then, by Lemma 4, there 

is a type d^d^, a theory T^3 T( and a (d't, T't)-pretrace R(+1z>Rt such that 
d£\d( and are countable, so we may put 7 R ? + l c 7 , \ I R ( + 1 \ I S \ I R i ; \ + CQ^X 
and for some k£lK and 

T\ V- ^{R(+1(k))Al^(Ri+1(k+l)). 

By Lemma 2, there is a complete theory such that Ri+1 is a Tp-
pretrace, finally, by Lemma 3, Rt+1 is a (d(+1, T(+1)-pretrace, where di+1>d£, 

7^', Ti+1 is complete, the cardinality of di+1\di is at most x, and every 
existential formula of (and therefore of T^) is satisfied by some constant of d(+r. 
In this case the inductive assertions are trivially satisfied. 

Now let d*=\J{d(: T*= U x + } , and R*=\J{RI,-. 
The theory T* is complete and R* is a (d*, r*)-pretrace. The constants of the 
type d* form a model for the theory T* because every existential formula of T* 
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is satisfied by some constant, this was ensured by the applications of Lemma 3. 
(Strictly speaking, certain equivalence classes of these constants form this model, 
see [4], pp. 63—66). Let this model be D, we claim that the time-model 
SH=(Ij,*, D, fR*) satisfies the requirements of Theorem 4. 

Indeed, I«* 1=77, and T<zT0czT*, therefore D |=T. By the definition of 
the pretrace i?0>/«*(0)=Ao(0)=c0 , T0y-cpin(c0). For some ¡€ /*„aI R * , f R . (? ) =fRo(i) = 
=ca, and T0\-p(ca))=cmAl(pout(ca>). Because D|= T0, these formulas are valid 
in D. What have remained is to check that fR* is a strongly continuous trace of p. 

Let /'£/„* be arbitrary. Then for some and because Rt is a (d(, 7^)-
pretrace, Ti[-fR((i+i)=p{fR((i)), from which 

D N / * . ( / + l ) = *(/*.(/)) 

proving (i) of Definition 6. Finally, let i, jdIR*, i=j, u£D" and f be such that 

DN !PC/k.(0,«)An!P(/R.0'),«). 
Every element of D is named by some constant of the type d*, so there is a formula 
(p£F}t such that D|= ¥(x, u)++ <P(x). Now <P£F}uC therefore the triplet (i, j, <P) 
occurs x+ times in the sequence {(/», Consequently there exists 
an index such that i, and j—jt., <!> = $£. Then, by 
the construction, there is a i ^ k s j such that 

Ti+1 h í ( / Í 5 + l ( k ) ) M $ ( / K f t l ( f e + l)), 
that is, 

D N *(/k.(fc))A n<P(/«*(fc+l)) 

which completes the proof of Theorem 4. 
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Axiomatic systems in fuzzy algebra 
B y J . D R E W N I A K * 

1. Introduction 

One of the most interesting problems in fuzzy set theory is that of the axiomat-
ization of fuzzy algebra. At the beginning, it is necessary to note that there is not 
any agreement between authors of papers what a "fuzzy algebra" really is (cf. [1], 
[8], [12], [15]). So we have dilferent fuzzy algebras and they are useful in different 
applications of fuzzy set theory (cf. [9], [14]). 

We are going to consider different systems of axioms on the set of fuzzy sets 
and on the one hand — to find all common properties of different fuzzy algebras, 
and on the other hand — to distinguish the characteristic properties of considered 
algebras. We start with the recollection of definition of fuzzy sets in the following 
form: 

Definition 1.1. A fuzzy set / in a nonempty universe X is an arbitrary function 
(cf. [3], [17]) 

/ : X — [ 0 , 1 ] . 

Similarly (cf. [7]), an L-fuzzy set in X is a function 

f:X~L, ( 

where L or (L, is a poset (partially ordered set), e.g. lattice or the interval of 
real axis. 

The collection of all fuzzy sets (¿-sets) in X is denoted by F(X) (FL(X)) or 
shortly by F. 

In applications of fuzzy sets (cf. [13], [18]), another definition of fuzzy object 
is needed, not in the meaning of fuzzy subset. 

Definition 1.2 ([12]). Let X and L be as in definition 1.1. Elements of the non-
empty set Z are called fuzzy objects if there exists a mapping 

M : Z - F L ( X ) . (1) 

Function fA = M(A) for A£Z is then named the membership function of fuzzy 
object A and fA(x) for x£X is called the membership grade of point .v. 

* On leave from Silesian Technical University, Gliwice, Poland; Technical University of 
Budapest, Department of Communication Electronics. 
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We shall say that two fuzzy objects A, B£Z are equal if 

M(A) = M{B) <JA=fB), (2) 
i.e. 

IAM = fB(x) for x(iX. (3) 

The last sentence in definition 1.2 is equivalent to the assumption that mapping 
(1) is one to one (injection) and we can consider the inverse mapping 

M : M(Z) — Z. (4) 

Remark 1.3. The particular case of membership function is that of characteristic 
function for a subset in X. The set of all characteristic functions 

Ch = Ch(X) = F{0il](X) 

is contained in F whenever {0, 1 } c l , where 

0 = infF, 1 = supL. 

Then we can obtain different relations between Ch and M(Z). For example 

ChC\M(Z) = Q, ChdM(Z) or M(Z) a Ch. 

In this last case we see that definition 1.2 admits not entirely fuzzy objects. 
Usually in theoretic papers it is assumed that Z = F and then M is omitted 

as identity function. But if we want to write for example about fuzzy statements 
(cf. [1], [14], [18]), we must consider fuzzy objects different than fuzzy subsets of 
the universe, and the universe can be settled different in particular cases as suitable 
for applications (e.g. consider statements about age, height or weight of people). 

In general we have three base sets: L, X and Z, and assumptions about one 
of these sets would have consequences in two other sets. So for Z=[0, 1], where 
there are different algebraic structures, we have greater possibilities in construction 
of fuzzy algebra than in the case of abstract poset L. In every case we can make 
use of its order by considering induced orders between fuzzy sets and between 
fuzzy objects. 

Definition 1.4. We say that the fuzzy set f£F is contained in the fuzzy set 

g £ F i f 
f(x)^g(x) for . (5) 

and we write 
g- (6) 

Similarly we say that the fuzzy object A^Z is dominated by the fuzzy object 2?£Z if 

M(A) M(B) ( f A S / B ) (7) 
and we write 

A B. (8) 

(The sign in (5), (6) and (8) is used as symbol for three different relations but 
its meaning will be understood because of the context). 
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Remark 1.5. Defined order is a generalization of inclusion relation for subsets 
in X because in the case 

Cha F and A,BczX 

inequality (6) can be written as 

which is equivalent to AcB, where 
/1 if x£A, 

e A x ) = h if x u . ( ) 

Proposition 1.6. Relation (6) introduces a partial order in F and relation (8) 
introduces a partial order in Z, i.e. for every A, B, C€Z-we have 

A =2 A (reflexivity), (10) 

A^B and B^A imply A = B (antisymmetry), (11) 

A^B and Í S C imply A ^ C (transitivity). (12) 

We omit the simple proof of this proposition and we consider only the case 
of antisymmetry (11) of relation (8). If A, B, C£Z and 

A ^ B and B ^ A , 

then by definition 1.4 from (7) we get 

ÍA^/B and f B S f A , 

fA(x)^fB(x) and fB(x) for xGZ. (13) 

For every x we have fA(x), fB(x)£L and in virtue of antisymmetry in L, (13) imply 
(3), i.e. (2). Now by definition 1.2 we get A=B which proves (11). 

This property cannot be proved if the mapping (1) is not injective which makes 
this part of proof more interesting. 

After proposition 1.6 we can say that F and Z are posets when L is a poset. 
Obviously beside the case of singleton X there are incomparable functions (elements) 
in F even then, when L is linearly ordered. So we do not have a generalization of 
proposition 1.6 to the case of linear order. We can look forward to properties typical 
in lattices under suitable assumptions about L. 

In the structure of fuzzy objects we have greater variety of possibilities, because 
card Z can be small in comparison with card F. So it is possible that all considered 
fuzzy objects are comparable and M(Z) forms a chain in poset F. It seems that 
in applications of fuzzy sets we obtain the situation described in proposition 1.6 
in more natural way than definition 1.4 (cf. [16]). First we have certain dominance 
relation in the set Z and then we need a function M in (1) such that (8) implies (7) 
for every A,B£Z. But the result is the same. 

Now let consider an algebraic operation in the set of fuzzy sets or in the set 
of fuzzy objects, i.e. 

u:F"-F or v.Zn-Z (14) 
• 
for fixed n s l . Such operations in an ordered set can have the following properties: 
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Definition 1.7 ([5], Chapter 1): We shall say that an operation u is isotone (anti-
tone) if the inequalities 

/ =£ g; for / = 1 , 2 , ...,71 (15) 
imply 

"C/i> •••>/„) = " (g i , •••>g„) ("(gi , •••>gn) = " ( / i . •••,/.)) (16) 

for every ( / , . . . , /„), (gj , . . . , g„)6 F". 
Operation u is monotonic if it is isotone or antitone. 

We are interested in transferring of operations from one base set to the other. 

Definition 1.8. Let one of the operations (14) be given. We say that the opera-
tion v: Z" —Z is induced by the operation u: F"-~F to the domain of M if 
it: M(Z)"-~M(Z) and v is defined by (see (4)) 

v(Alt ..., A„) = M~x(u(M(Af), ..., M(AJj) (17) 
for Ax, ..., A„£Z. 

We say that the operation it: M(Z)n-~M(Z) is induced by v: Z n — Z to the 
codomain of M if u is defined by 

U(fx, ...,/„) = M{v(M-\fx), ..., M"H/„))) (18) 

f o r / , , . . . , / „ ( M ( Z ) . 

The algebraic fact described in definition 1.8 can be repeated as (cf. [4]). 

Corollary 1.9. If the operations u: M(Z)n-~M(Z), v: Z " - Z satisfy (17) then 

M is an isomorphism between the algebraic structures (Z, v) and (M(Z), u). 

Now from the known property of isomorphism we get (cf. [4]). 

Proposition 1.10. The operation induced in the domain or in the codomain of 
an injection has such algebraic properties as the initial one. 

We prove also 

Proposition 1.11. The operation induced in the ordered domain or codomain 
of a monotonic injection by monotonic operation is also monotonic. 

Proof. We prove only the first part of the proposition because the codomain 
of M is the domain of M(see (1)) and we can omit the case of the codomain. 

Let u be isotone, i.e. (15) imply (16). Assume that 

A ^ B i for A ^ B ^ Z , / = 1 , . . . ,« , (19) 
and put 

f = M(A,), g; = M(B,), i = 1, ...,n. (20) 

Now if M is also isotone as in definition 1.4, then from (8) we get (7) and from (19) 
and (20) we get (15). Therefore from (16) and (20) it follows 

u(M{AJ, ..., M(An)) ^ u(M{Bx), ,.., M(Bn)) 

and both parts of this inequality belong to M(Z) under the conditions of definition 
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1.8. But the inverse M~x of the isotone mapping M is also isotone and we obtain 

M~*iu{M{AJ, ..., M(An))) == M~i(u[MiBJ, .... M(Bn)j), 
i.e. 

in virtue of (17). Thus the operation v is also isotone and monotonic. 
If u or M is antitone then very similar argumentation finishes the proof. 
Now we can see that the algebraic structure can be transformed only between 

Z and M(Z) if M(Z) jt F. We cannot use definition 1.8 if the operation u does 
not introduce any substructure into M ( Z ) (if the set M(Z) is not closed under 
operation w). Also if v is given we obtain a new structure only in M ( Z ) but not 
in F. Thus the general assumption M(Z) = F and even Z = F can be very useful 
(and it is often used). 

Another situation is between F and L. Every algebraic operation in L induces 
a similar operation in F (cf. [7]) but inverse transferring is impossible. None of 
the operations defined in F can be transformed to the set L independently of xdX 
(obviously if we omit all operations just induced from L to F). 

So if we do not assume any algebraic operation in L we cannot induce a unique 
algebraic structure there similar to the considered one in F (different possibilities 
can be considered if we restrict all f£F to a fixed point x0£X). 

At that stage we can give the most general statement about the meaning of 
the phrase "fuzzy algebra". ' 

Definition 1.12. By a fuzzy algebra (algebra of fuzzy sets, algebra of fuzzy ob-
jects) we mean every algebraic structure in F or in Z such that 

( * ) every its operation is monotonic (definition 1.7) in the ordered structure 
induced from L (definition 1.4). 

A fuzzy algebra is named "ordinary" one if the following assumptions are 
fulfilled (cf. remark 1.3): 

( * * ) 0 = inf L£L, 1 =sup L£L, Ch<zM(Z), 
( * * * ) every its algebraic operation restricted to Ch is identical to one of 

the set-theoretical operations as union, intersection, difference, complementation 
or symmetric difference. 

In the contrary we speak about "special" fuzzy algebra. 
Condition ( * ) can be written in a weak form under the assumption that the 

operations are monotonic in each variable separatively, but if we consider only 
unary operations or binary associative operations then it is equivalent to ( * ) (cf. [5], 
Chapter 1). Assumption about L in ( * * ) is equivalent to boundedness of poset 
L. At last assumption (* * * ) guarantes that the considered algebra is a generaliza-
tion of certain part of the set algebra. 

Now we can overlook different papers regarding the fuzzy set theory and con-
sider different further assumptions accepted in the fuzzy algebra. We select only 
a few papers which are principally concerning about operations and axioms of 
fuzzy algebras. 
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2. The first definition of Zadeh 

I think it is forgotten now that Zadeh [17] has given a very simple argumenta-
tion for introducting his "max" and "min" operations. He writes that intuitively 

Z1 the union of two fuzzy sets is the smallest fuzzy set containing both these 
sets ; 

Z2 the intersection of two fuzzy sets is the largest fuzzy set which is contained 
in both these sets. 

It is a definition as natural as possible, because in the order structure it is 
equivalent to the definition of union and intersection in the set theory. For the case 
L=[0, 1] Zadeh [17] proved that Z1 and Z2 are equivalent to "max" and "min" 
operations in F. It is usually proved in the lattice theory (cf. [2]) that operations 
of supremum and infimum for subsets containing only two elements are equivalent 
to the lattice operations V and A. So Zadeh's definition and proof can be used in 
every lattice and we have 

Theorem 2.1. If L=(L,V , A) is a lattice, then Z l and Z2 are equivalent to 

The following result is from Brown [3]. 

Theorem 2.2. If L is a lattice, then F with operations (21) is a lattice, too. 

As we remarked above, the operations (21) can be reduced to the set-theoretical 
operations whenever 0 ,1 (see ( * * ) ) , they are also monotonic and we have 

Corollary 2.3. If L is a lattice with 0 and 1 then the operations (21) introduce 
in F an ordinary fuzzy algebra which is a lattice algebra. 

If the lattice L is nonbounded (which is possible only for infinite lattices — 
of. [2]) then the operations (21) introduce in F a special fuzzy algebra which is a 
lattice algebra, too. 

This corollary stressed the importance of assumptions about the poset L in 
definition 1.12. Under additional assumptions it is possible to consider further 
lattice properties (distributivity, completeness) or even continuity of operations (21) 
in the interval topology (cf. [7]), but we have not any further problems why the 
union and the intersection of fuzzy sets has form (21). (I think that none in the world 
has examined why the set-theoretical sum is the "sum" but it is not a "composition" 
of sets, because it was so named and that is all.) Obviously we can introduce many 
other operations which will have other names and will compose other fuzzy algebras. 
For example Zadeh [17] proposed other operations as the complement 1—/, the 
arithmetic product fg, the arithmetic sum f+g—fg, and the absolute difference 
]f—g\, which can be considered for arbitrary / , g£ F in the case L=[ 0, 1]. All these 
operations will be reduced in jL= {0,1} to the ordinary set-theoretical operations 
and thus form in F different ordinary fuzzy algebras. There were also defined the 

where 
/ V g = sup {/, g} and / A g = inf {/, g} for / , g£ F, 

( /Vg)(x) = sup {f{x), g(x)} = f(x)Wg(x), 

(fAg)(x) = inf {/(x), g(x)} = fix)A g(x) 

(21) 

(22) 

for x e r . 
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sum f+g and the convex combination hf+(i—h)g, which cannot be reduced to 
ordinary set-theoretical operations and so they form special fuzzy algebras. We 
do not consider more precisely all these algebras because of the great literature 
on the case L=[0 ,1 ] (e.g. almoust the entire book of Kaufmann [10] treates the 
case L=[0, 1]). 

Now remains the problem, what we can say about an ordinary fuzzy algebra 
if L is not a lattice. In this case we cannot use the natural definitions Z1 and Z2, 
because it is possible that the needed elements do not exist in F. 

If we want to preserve as much as possible from, the definition (22) in a bounded 
poset L, we can use the following extension of the lattice operations: 

(f\ /<A(r\ - i s u p i f s u P r e m u m ex is t s> L / v g J W - j j o t h e r w i s e ; KAi) 

(fK - / i n f {/(*)> S(x)} if infimum exists, 
otherwise. ^ 

These operations are idempotent and commutative and also can be reduced to the 
set-theoretical operations in the case L= {0,1}. Unfortunately operations (23) 
and (24) are not associative what is illustrated by 

Example 2.4. Let 

¿ = {(0,0), (0,1/3), (1/3,0), (1/3,2/3), (2/3,1/3), (2/3,1), (1,2/3), (1,1)} 

be the poset with partial order induced in Cartesian product. It is bounded and 
0=(0, 0), 1 =(1 ,1) but it is not a lattice, because e.g. sup {a, b} and inf {a, b} do 
not exist for 

a - ( 1 / 3 , 2 / 3 ) , ¿= (2 /3 ,1 /3 ) , c = (1, 2/3), ¿ = (0,1/3). 

By (23) we compute 
aVb = 1 and b\l c = c 

so 
(aVb)Vc = l and aV(6.Vc) = aVc = c ^ 1. 

Similarly by (24) we get 

(aAb)Ad = 0 and aA(bAd) = d^0, 

thus none of these operations is associative and in consequence they are not very 
interesting as algebraic operations. Moreover operations (23) and (24) are not 
monotonic in the poset L because we have 

b < c and d < a 
and simultaneously 

aVb = 1 > aVc = c and b\ld = b < b\la = 1, 

aAb=0<aAc = a and bAd = d > bAa = 0. 
Therefore operations (23) and (24) do not form any fuzzy algebra in F and it is 
not a simple way to introduce a fuzzy algebra in F if L is not a lattice. 

6 Acta Cybernetica 
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Another problem related paper [17] brings the definition of the complement 
of the fuzzy set. Namely, the natural meaning of the word "complement" in the 
set theory is "the smallest set in the universe which in the union with the given 
set makes the universe", or it means "the greatest set in universe disjoint with the 
given one". So independently of Zadeh's definition 

Z3 the (arithmetic) complement of a fuzzy set is the arithmetic complementa-
tion of its values to 1 in L=[0,1]. 

We can consider two other definitions 
Z3' the (union) complement of a fuzzy set is the smallest fuzzy set which in 

union with the given set makes ex (see (9)); 
Z3" the (intersection) complement of a fuzzy set is the greatest fuzzy set dis-

joint with the given set. 

We propose to name these three complements by arithmetic, union and inter-
section complement, respectively. It is evident that definitions Z3' and Z3" can be 
used in the case of complete lattice L while the definition Z3 can be extended to 
the case of complemented lattice L. However, the use of definitions Z3' and Z3" 
is a little confounding because as complements we always obtain the elements of 
Ch (see remark 1.3). 

3. The axiom system of Bellman and Giertz 

Many authors find the paper [1] very useful (cf. [6], [8], [16]), so we too are 
going to use it. The paper treates the naturality of Zadeh's "max" and "min" 
operations. We have already remarked above that it is a hard work to add something 
interesting to Zadeh's own argumentation in Z1 and Z2. We give here a short 
review of this new argumentation from paper [1]. 

Let Z denote the set of fuzzy objects named "fuzzy statements". Then the 
existence of two binary operations "and" and "o r " is required, but we have not 
exact information about mapping (1). Thus it is impossible to consider the induced 
operations (18) in the set of membership functions. Authors in [1] could not use 
a definition like definition 1.8 and introduced operations in F by system of axioms. 
They assumed that P, S: F 2 —F are such that (we use different notation) 

/A and B — fB), /A or B — S ( f A , f B ) (25) 

for every A, B£Z and its dependence on the membership functions can be described 
by 

P ( f , g)(x) = p{f(x), g{x)), S ( f , g)(x) .= s (/(*), g(x)), (26) 
where functions 

p,s: [0, l ] 2 — [0 ,1 ] 

fulfil the following system of axioms: 
BG1 p and s are nondecreasing and continuous in both variables; 
BG2 p and s are symmetric {p{x,y)=p(y,x),s(x,y)=s(y,x))\ 
BG3 p(x, x) and s(x, x) are strictly increasing in x; 
BG4 p(x, j ) s m i n (x, y), s[x, y) s m a x (x, y); 
BG5 p(l, 1) = 1 ,J (0 ,0 )=0 ; 
BG6 logically equivalent statements have equal membership functions (grades). 
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Further they deduced from this axioms the system of functional equations for 
functions p and s, and they proved that this system of functional equations and 
inequalities (see BG4) has a unique solution 

p(x, }>) = min (x, y), s(x, >') = max (x, y) for x, vf[0,1]. (27) 

The mentioned system of equations and inequalities was discussed in details 
in Hamacher's paper [8] and in Koczy's dissertation [11] and we do not want to 
say any more about it. However, we devote a little time to the consideration of 
the above BG1—BG6 axioms. 

I think that for the consequences of the prescribed axiom system almost all 
depends on the meaning of BG6. We show that it is difficult to find a correct meaning 
of BG6. 

First, let us suppose that operations "and" and "or" fulfil in Z the prepositional 
calculus of conjunction and disjunction. Then we have e.g. 

" A and B" is equivalent to " B and A", 
"A or B" is equivalent to "B or A", 
"A and A" is equivalent to "A", 
" A or A" is equivalent to "A" 

for arbitrary A, B£ Z, and we can omit axioms BG2 and BG5 as implied from BG6. 
Moreover we can write 

p(x, x) = x, s(x, x) = x for x£[0, 1] (28) 

and it is more interesting because of 

Theorem 3.1. If the functions p, s: [0, l ] 2 - [ 0 , 1 ] fulfil BG4, (28) and 

p and i are nondecreasing in both variables, (29) 

then we obtain (27). 

Proof. Let x, y(z [0, 1], x^y. Thus from (29) and (28) we get 

x = p(x, x) p(x, j;) S p(y, y) = y, 

x = s(x, x) S s(x, y) s(y, y) = y 
and therefore 

p(x, y) a: m i n (x, y), s(x, y) ^ max (x, y). 

This together with BG4 proves (27). 
This short theorem contains more informations about "max" and "min" 

operations than all information contained in paper [1] because we use exactly only 
axiom BG4 and our assumption (29) is weaker than BG1, and assumption (28) 
is a very special case of BG6. It seems, we must be very satisfied because of this 
great reduction of the axiom system BG1—BG6. However, we are not satisfactory 
because of the unnatural assumption BG4. Namely, assumption (29) is equivalent 
to condition ( * ) from the definition of fuzzy algebra (see definition 1.12) and if 
we omit (29) we can obtain an algebraic structure different from the fuzzy algebra 
(cf. example 2.4). Assumption (28) can be admitted as a natural extension of this 
law from the algebra of sets and we cannot say anything similar about BG4. 

6« 
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It was only the first part of our consideration of axiom BG6. If we admit a part 
of propositional calculus in Z we can ask why not admit the whole propositional 
calculus in Z with all operations used in logic. Thus axiom BG6 can be understood 
as the assumption that Z is a Boolean algebra of fuzzy objects and then it can be 
supposed that paper [1] is devoted to transferring of this algebra on the set of 
fuzzy sets. 

We have remarked after proposition 1.11 that the structure induced in M{Z) 
can be different from that in F (obviously in the case M(Z)?£F). However, there 
is assumed here the transferring of the Boolean algebra on the whole F, what is 
impossible in the case L=[0 ,1] (it is possible if L is a Boolean algebra, cf. [3]). 

The last remark about axiom BG6 has moral meaning. It is not right to sup-
pose that "fuzzy statements" are "logically equivalent" in the same manner as 
logical sentences are in the propositional calculus. If there are "fuzzy statements" 
they can be totally unlogical and it is the main reason of the different "fuzzy" in-
vestigations. 

4. Hamacher's axiom system 

Paper [8] contains a very interesting method of the generalization of the set-
theoretical operations but two things make reading difficult: 

a) many proofs are omitted without a hint, how or where they were obtained; 
b) lack of tfie list of references (in my copy). 
The author creates the following system of axioms for two operations 

p, s: [0, l]2->-[0, 1] (we change notations): 

HI p and s are associative, 
H2 p and s are continuous, 
H3 p in (0, 1] and s in [0, 1) are injections in both variables, 
H4 p(x, x)=xox = 1 for x€(0,1] and s(x, x)=xox=0 for [0, 1). 

These axioms are considered independently for p and s and both operations 
form certain semigroups in the intervals from H3, respectively. Axiom H3 with 
continuity H2 gives strict monotonicity of p and s in both variables and these to-
gether with HI imply that (cf. [5]) p and s are strictly increasing in (0, 1] and [0,1), 
respectively. It is a stronger property than ( * ) in definition 1.12 and stronger than 
in natural models of those operations for L={0,1}. Thus the author must ex-
clude certain boundary points in H3 and H4. It is noted in [8] that H3 admits only 
one idempotent case 

p(x, x) = x in (0,1] and s(x, x) — x in [0,1). 

In this situation axiom H4 is equivalent to the assumption that for functions 

pjx) = p(a, x) in (0,1] (30) 
and 

sb(x)=s(b,x) in [0,1) (31) 

there exist such a=1 and b = 0 that suitable functions px and s0 are surjections. 
Indeed we have 
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Lemma 4.1. Under assumptions HI—H3 if there exists u < 1 such that 

p(u,u) = u, (32) 

then none of the operations (30) is a surjection. 
Similarly if there exists y > 0 such that 

s(v,v) = v, (33) 

then none of the operations (31) is a surjection. 

Proof. Because of the unicity of the idempotents for both operations we have 

j p ( l , l ) ^ l and s(0,0) 5*0 
and therefore 

p ( l , l ) < l and s ( 0 , 0 ) > 0 . 
Thus by monotonity 

p(x, y) s= p( 1,1) < 1 for x, y£(0,1] 
and 

s(x, y) S s ( 0 , 0 ) > 0 for x, [0,1). 

Therefore none of the functions (30) or (31) obtain the value p(x, y) = 1 or s(x, v)=0, 
respectively, and none of them is a surjection. 

It is a strange situation, because in paper [8] one theorem tells that every idem-
potent for operations p or s is an identity element and this implies the mentioned 
unicity of idempotents. But every identity element forms the identity bijection 
and we get 

p„(x) = x for x£(0, I] 

from (30) and (32), and also 

su(x) = x for x£[0, 1) 

from (31) and (33). This contradicts the thesis of lemma. Thus the assumptions 
w< 1 and !/>0 are not fulfilled for any «6(0, 1] and u6[0, 1). Therefore we have 
proved 

Lemma 4.2. Under assumptions HI—H3 if u fulfils (32) then u—1, and if 
v fulfils (33) then y=0. " • 

This result is not else than the first implication in axiom H4. Thus we can assume 
only the second implication from H4, i.e. 

p( 1,1) = 1 and s(0,0) = 0 

and it is exactly axiom BG5 from paper [1]. Now we have 

Theorem 4.3. The system of axioms HI—H4 is equivalent to the system of 
axioms HI—H3 and BG5. 

Our consideration about lemma 4.1 brings one more result, because of the 
mentioned equivalence between idempotents and identity elements and thus axiom 
BG5 (under assumption HI—H3) is equivalent to 

H4' p ( l , x ) = p(x, 1) = x and s(x, 0) = s(0, x) = x for x€[0, 1]. 
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We have 

Theorem 4.4. The system of axioms HI—H4 is equivalent to the system of 
axioms HI—H3 and H4'. 

A great part of paper [8] contains considerations about the class of functions 
fulfilling axioms HI—H4. We remark here only three results: 

a) every function 

p: [0, I ] 2 - [ 0 , 1 ] (34) 

fulfilling axioms HI—H3 has the form 

P(.x,y)=f-1{f(x)+f(y)) (35) 

with the continuous, monotonic real function / defined in [0,1]; 

b) every rational function (34) fulfilling axioms HI—H4 has the form 

dxv 
P(-X'y)= aHd-a)(x+y-xy) (36) 

with suitable constants a and d. 

c) if function (34), fulfilling HI—H4 is a polynomial then 

p(x, y) = xy. (37) 

At first we use formula (35). Let a>~0 and 

f(x) = x° for x € [ 0 , 1 ] . 
We get 

p(x, v) = (xa+ya)1/a 

and it indeed fulfils axioms HI—H3 but the function 

p: [0, l]2 — [0, 21 / a] 
is different from (34) and it does not fulfil H4. Thus formula (35) admits operations 
over our interest. So we put a question: 

I. Is there any assumption about function f under which every function (35) 
is of the type (34)? 

We put 

P(*>y)= ( 2 - x ° - r + x a y a Y l a f ° r • V - J ; 6 [ ( ) ' 1 ] ' ( 3 8 ) 

and now it is a good example of irrational functions fulfilling the system of axioms 
HI—H4. We also ask: 

II. Does exist a finite-parametric formula for the class of all functions (34) 
fulfilling axioms HI—H4? 

At last put a = 1 in (38). We get 

p(x,y) = - (39) 2 — x—y + xy 

i 
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and it is example of rational function which fulfils axiom system HI—H4. We 
could find it between rational solutions in (36). 

At the finish of this part, we remark that using formulas (25), (26) we obtain 

Corollary 4.5. Functions (34) from class (36) introduce in F an ordinary fuzzy 
algebra which is a commutative semigroup with identity. 

It is also interesting, that under assumptions HI—H4 Hamacher proved the 
inequalities similar to BG4 with strict inequality. 

5. The axiomatic system of Koczy 

The papers [12] and [13] contain the readiest system of axioms of fuzzy algebra. 
We have used these papers in many places in our introduction, and our definition 
1.2 is exactly the first axiom of paper [12]. Thus all our considerations are made 
in terminology of paper [12]. Now we rewrite the other axioms from this paper. 

K2 card Z s 2 and (Z, V, A, ' ) is algebraic structure with operations 
V:Z 2 —Z, A: Z 2 —Z and ' : Z—Z; . 

K3 there exist an element 0£Z called zero and the operations in Z fulfil 

Ay B — By A, (40) 

04 V B)\IC = Ay (By C), (41) 
A" = A, (42) 

AyO = A, AAO = 0, (43) 
(Ay BY = A'AB' (44) 

for every A, B, C£Z; 

K4 under order induced in F from L (see definition 1.4) mapping (1) fulfils 
(here fA=M(A)): 

/ P > / Q for P = (A/\B)y(Af\C) ^ 0, Q = A/\(ByC) ^0', (45) 
/ P < / Q for P = (AyB)A(AyC) ^ 0 ' , Q = Ay(BAC)^0, (46) 

f A V B ^ h for A^0',B^0, (47) 
fAKB < / a for A ^ 0, B * 0', (48) ' 
/ , - / B = / W r (49) 

for arbitrary A, B, C£Z~, 
K4' under order in F it is assumed that 

SAVA^/A f o r A^0, A 9^0', (50) 

/ A A A ^ / A f o r A ^ O , (51) 

/4VA>/BVB iff (52) 
/AAA >/BAB iff /A >/B (53) 

for arbitrary A, BdZ\ 
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K5 there is admitted at most one solution U for every of the equations 

A\JU = B (A, ££Z, A 0'), (54) 

AAU = B (A.BeZ, A ^ 0); (55) 

K5' there is assumed exactly one solution U for every of the equations (54), (55); 

K6 L is a interval of real axis and (cf. notation (25), (26)) , 

IANB = VUAJB), JAVB = s ( f A , fB), fA, = c ( f A ) , (56) 

where functions p, s: L2-*L and c: L-*L are continuously differentiate. 
It is possible that this is not the final form of Koczy's work upon axiomatization 

of fuzzy algebra. The form presented in papers [12] and [13] has some reticences. 
For example in fact it is not precised what kind of order is considered in F (we 
wrote in K4 our supposition only) and it is also not precised, what kind of con-
tinuous differentiation is possible in L (and we suppose that L is in the real axis). 

Now we precise some consequences of the above axioms. 

Proposition 5.1. Under assumptions K2 and K3 the operation A has the following 
"dual" properties : 

AAB=BAA, (57) 

(A!\B)KC = AI\(BI\C), (58) 

Ahl = A, AM I ~ I, (59) 

(AAB)' = A'VB' (60) 
for arbitrary A, B, C£Z, where 

1 = 0'. (61) 

Proof. Let A, B, CdZ. From (42) and (44) we get 

AMB = (AVB)" = (A'AB'y. (62) 

First we prove the "dual" formula 

AAB = (A'VBJ (63) 

Indeed, it follows from (42) and (44) that 

AAB = A"AB" = (A')'A(B'Y = (A'\/ B')'. 

Now using (42) in (63) we get (60): 

(AAB)' = (A'VB')" = A'VB'. 

(63) and (40) gives now (57): 

AAB = (A'VB')' = (B'VA')' = BAA. 

In a similar way from (63), (60) and (41) we get 

(AAB) AC — {(AABYVC)' = ((A'V B')V C ' ) ' = 

= {A'V(B'VC')Y = {A'V(BAC)'Y = AA(BAC), 
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which gives (58). Now from (42) and (61) we have 

/ ' = 0. (64) 

By (61)—(64) and (43) we obtain 

AM = {A'Viy = (A'VOy = A" = A, 

AVI=(A'M'y = (A'A0)'= 0'= I, 

which completes the proof. Immediately from (43) and (59) we get 

Proposition 5.2 (idempotent and absorption cases). Under assumptions K2 and 
K3 we have 

0 V 0 = 0, 0 A 0 = 0, 

7 V / = I, /A / = / , 

AV(AA0)=A, AA(AVO) = AAA, 

AA(AV/) = A, AV(AAf) — AVA, 

0 V ( 0 A A ) = 0, 0 A ( 0 V A ) = 0, 

IA(IVA) = I, 1M(IAA) = I 

for every A£Z. 

Proposition 5.3. Under assumption K2 and K4 or K4' 

a) Z contains only two idempotents 0 and I, b) if card L=2 then card Z = 2 . 
Proof. Case a) is a consequence of strict inequalities from (47), (48), (50) 

and (51). 
If card L = 2 then L can be considered as Boolean algebra and then F is a 

Boolean algebra, too (cf. [3]). Then every element of F is a idempotent of both 
binary operations and (by homomorphism M) every element of Z is an idempotent. 
This together with a) ends the proof. 

Our considerations of axiom system K2—K6 will be continued in further 
papers. 

6. Conclusion 

The axiomatic method of the introduction of fuzzy algebra has great meaning 
in the development of fuzzy set theory, obviously if the axiom system admits a 
broader class of operations as it was done e.g. in papers [8] and [12]. In the contrary, 
if the axiom system is constructed for the purpose of characterizing one given opera-
tion as in paper [1], it would have greater meaning in the theory of functional equa-
tions then in fuzzy set theory. 
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The interesting direction in considerations of different fuzzy algebras brings 
, papers [9] and [16] where it is proved that different fuzzy algebras can be useful 

for different applications. 
I am very indebted to Dr. L. T. Koczy for his advices and help in my con-

siderations on fuzzy algebras and in preparation of this work. 
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Priority schedules of a steady job-flow pair* 
B y J . T A N K Ô 

The priority schedules are discussed for a steady job-flow pair defined in [5] 
as a non-finite deterministic model of servicing invariably renewing demand series. 
Though these schedules are not dominating with respect to the utilization of the 
servicing processor, they are very important in practice. A method is defined for 
reducing the problem of evaluation of the schedules to the evaluation of simpler 
ones. The method is based on the reduction of the configuration constituted by 
the demands of job-flows. The reduction is a generalization of the Euclidean algo-
rithm of the regular continued fraction expansion. For some configurations the 
reduction procedure does not prove to be finite or the evaluation procedure of 
the schedule of the reduced configuration is not known to be finite. For some of 
these configurations direct evaluation methods are given. 

1. Introduction 

In an earlier work [5] the problem of scheduling steady job-flow pairs was 
defined as scheduling the processor triple 3P = {PA, PB1, PB2) to service two series 
g 0 ) = {Cij, j—1, 2, ...}, i '= l , 2, of task pairs C , 7 =(^ , 7 ) Bu) demanding service 
of time t]i=0 and from the processor PA and PBl, respectively. The series 
Q(i> is a steady job-flow with parameters r]h as renewing demands for processors 
PA and PBi. The steady job-flow pair is characterized by the values of the four 
parameters Q=(r]1; rj2; 32) called configuration. The space H of configurations 
is the non-negative sixteenth of the four-dimensional Cartesian space. 

We use below the following notations: 

t ^ i / , + 3 , , ¿ = 1 , 2 , i7 = i h + i f t , 9 = = i ~ 1 , 2 . 

A schedule is a unique determination for t=sO of which tasks are serviced 
at the moment t by which processors. The demands for the processor PA can be 
conflicting. The schedule can be considered a decision process by which the .con-
flicting situations are resolved and the normal continuation of service can be broken. 

An important class of schedules is the set of non-preemptive schedules in which 

* This article reports on some results of a study of the author supported by the Computer and 
Automation Institute of the Hungarian Academy of Sciences. 
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the service of any task cannot be preempted after starting until it finishes automat-
ically. These schedules were discussed in the article [5]. A relatively simple algo-
rithm was given to determine the optimal schedule. 

The efficiency measure of schedules is the utilization of the processor PA. 
Formally, the efficiency of a schedule R is defined by the limit 

y(R)=\\m^p- (1) 
I —CO I 

where / , (0=^(0 , 0 is the -usage in the interval (0, t). The algorithm for choosing 
an optimal non-preemptive schedule is based on the method of reducing the con-
figuration which is a generalization of the well-known Euclidean algorithm of the 
regular continued fraction expansion. The determination of the optimal schedule 
takes place by the full evaluation of the elements of the dominant set of the con-
sistent natural schedules with maximum number six. Only one reduction has to 
be executed. The amount of the necessary computation is well bounded and es-
timated. 

For the preemptive scheduling in which preempt-resume is permitted, another 
set, the consistent economical schedules, is a dominant set but it is not so nicely 
bounded as the set of consistent natural schedules [6]. The criteria of finiteness and 
bounds for the cardinal of the set are not known. Neither optimal strategy nor 
a smaller dominant set of schedules is known. It is shown [6] that the priority sched-
ules are not optimal either. Since the only general method for determining an op-
timal schedule is the full evaluation of this dominant set the optimization pro-
cedure is uncontrolled. 

Though the priority schedules are neither dominant, nor actually of better 
efficiency than the non-preemptive schedules in general, they are of great practical 
importance because of their simple scheduling rule. In a priority schedule one of 
the job-flows has priority versus other(s) which means that it is serviced in the 
moment it needs the processor. If the processor is busy by servicing another job-
flow, the service will be preempted during the service of the priority job-flow-task 
and resumed after that. For job-flow pairs there are only two priority schedules 
according to job-flows Q w and Q(2) as priority ones. In [6] the priority schedules 
were denoted by Rh2 and R21, accordingly. In the schedule ( /=1, 2) the 
job-flow ö ( , ) is scheduled without preemption and delay as when the job-flow 
g<3-o w e r e not present at all. The service of on PA takes place only in the 
intervals the PA is free from servicing QUK The priority schedules R12 and J?2,i 
of the configuration g = ( l ; 3; 5; 7.5) are illustrated by Gantt-charts in Fig. I . 

The priority scheduling of the stochastic version of job-flow pairs was studied 
by A R A T Ó [1] with diffusion approximation and by T O M K Ó [7]. 

For the schedules JR]2 and i?2,i a r e symmetric in the role of the job-flows 
Q{1)_ and ő ( 2 ) , every fact concerning i? 1 2 (ő) becomes a fact concerning /?21(Q) 
if Q is the conjugate configuration of Q defined as 

8 = Oh; Si ; n*, $>) = 0?2; 3 2 ; h i SO-

This is why we need not word definitions and theorems depending on the order 
of the job-flows for both orders, only for the order Q a > , g ( 2 ) . 
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The Gantt-charts of the priority schedules 

In section 2 below we define first a method for reducing configurations Q^2L 
into simpler, reduced configurations Q*(L£l. The reduction takes place by the itera-
tion of an operator A to the configurations Q„ = A"Q until a fixpoint Q* = ArQ 
called reduction of Q is reached. We show the relationships between the parameters 
of Q„ and Qm, n, m = 0, 1, 2, . . . , n These remind one of the relationships 
known in the theory of continued fractions [4]. 

In paragraph 3 we show the connections between the characteristics of the 
schedules R12(On) and R1>2(Qm), n^m. This provides means to determine the 
characteristics of Rlt2(Q) f rom the characteristics of / ^ ( C D -

Section 4 surveys the configuration space 2,, the reduced configurations in-
cluded, and give answer to the Question whether R\i2(Q) is periodic and what are 
its characteristics in dilferent domains of SL. The domain 0 < T i < r 2 remains un-
answered in this section. 

Section 5 is dealing with the above domain. The periodicity of R1I2(Q*) is 
not cleared for the whole domain only for some parts of it. An algorithm is given 
for evaluating i?i j 2(6*) if it is periodic. 

In section 6 we shall briefly deal with the connection between the /(¡-reductions 
defined in section 2 and ^¡-reductions given in the article [5]. Also some reference 
is made to the analogy between the ¿-reduction and the continued fraction ex-
pansion algorithm. 

Section 7 reviews the configuration space 2. from the point of view whether 
the "Question" of periodicity and evaluation is answered or not, and by which 
theorem, if it is. 

2. The method of A -reduction 

The transformation of configurations defined below as ¿-reduction enables 
us to reduce the investigation of priority scheduling of some configurations to 
one of other configurations. This method is analogous to the reduction method 
applied for non-preemptive schedules by means of an operator [5]. 

The operator A defined below is the Ax from the two operators Ah ¿=1 ,2 , 
in the application of which the roles of Q(1) and Q(2) are symmetrical. We shall 
see later that the operator At is connected to the priority schedule Ri<3-i, i=1, 2. 
The index 1 of Aj is omitted in the notation A. 
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Let the operator A be defined for any configuration Qdl by the relationships 
between its parameters and the parameters of the configuration Q—AQ = 
=(rjl; 5X; rj2; 92)£J2. The parameters of Q are defined by the relations 

(a) fjy = 

(b) = /jTa+Sj where 
0 is an integer and 0 S < T2 if r2 > 0, 

/j = 0, = if t2 = 0, 

(c) rj2 — k2 Sj ~h fj2 where (2) 
k2 S 0 is an integer and 0 < r\2 ̂  if rj2 =»• 0, 
k2 = 0, r}2 = t]2 if f/aSi = 0, 

(d) 92 = l2 Ti + S2 where 
/2 = 0 is an integer and 0 S S2 -== f j if f j > 0, 
l 2 - o , £>2 = S2 if f x = 0 . 

This definition shows that the operation J g determines also an integer triple 
(l1, k2, /2) out of the configuration Q. This triple is characteristic of the configuration 
Q from the point of view of the effect of the operator A on Q. 

If l1 + k2 + l2=0 then the operator A is ineffective for Q and AQ = Q. We 
say Q that is reduced in this case. If l1+k2+l2^0 then A is effective for Q, AQ^Q 
and at least one of the parameters of Q is less than that of Q. Therefore the operator 
A is called a reduction operator. The triple (/, , k2, l2)Js the quotient generated by A 
applied to Q. A is defined for all points Q of 2., and Therefore A is applicable 
repeatedly to the transformed configurations and the series of configurations 

Qo = Q, Qn = AQn-1, « = 1 , 2 , . . . , 

can be defined for any point Q of Si. Using the powers A", n=0,1, 2, . . . , of the 
operator A, we can write 

Qn = A"Q, n = 0 , 1 , 2 , . . . . (3) 

Let the series of triples generated by the series A, A2, ..., A", ... be 

(Z,): (¡1,01 ^2,0> h,o)> 01,1' ^2,1) '2,1)1 •••) 0l,n-li h,n-1)> ••• and let 
(A): ( / l l 0 > ^ . O + ^ . o ) » C l . l , ¿ 2 , l + ? 2 , l ) , ••• > Ul,n-1> ^ 2 , n - l + ' 2 , n - l ) > 

These are the series of quotients. Let us define the length of (L) and (A) the index 
v of the first triple for which 

if such an index exists and v=oo otherwise. Let us use the notation |(L)| = 
— |(yl)|=v. If v<°° , the Q, is the first member in the sequence Q0, ... which 
is reduced, v is called the degree of compositeness (dc) of Q. If v< °° then Q is 
reducible, otherwise, it is non-reducible. If the dc of Q is 0 < v < o o then 

(a) h.t + Kt + k.t^O, i = 0, 1, . . . , v - l , 
( b ) / 1 ) v + / c 2 , v + / 2 . v = 0 ( ) 
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and the series (L) and (A) contain exactly v non-zero members. The configuration 
Q* = QV is a reduced configuration and it is the reduction of Q. 

From the definition (2) of A we can deduce the conditions of Q* to be reduced. 
By (2), (4b) will hold if 

(a) 0 Si 9Î < t2* 

(b) 0 ^ r , * 2 s 9 t 

(c) 

or x% = 0 and 

or rj%9i =0 and (5) 

T î or x î = 0 . 

Conditions (5a)—(5c) are not independent of but include each other. The set 
M*aM of the reduced configurations is illustrated by planes ( r / t , ^ ) fixed in Fig. 
2a—d. 
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Fig. 2 
Illustration of the set â * of reduced configurations 

On the graphs we show the disjunct domains of configurations by the follow-
ing lemma. 

Lemma 1. The operator A defined by (2) is ineffective for Q* i.e. Q* is reduced, 
i f f one of the following conditions holds 

* m 

(a) zht = 0 

OS) TÎT* > 0, 9* = 0 , 0 ^ 9t 

(y) 9 * 4 > 0, t,* = 0, 0 < 5 Î < 9t 

(.5) « > 0 , r,* s 9* < rl 0^9: 

(6) 

Proof. In either domain of (6a) —(65) every of the conditions (5a)—(5c) holds. 
Conditions (6a)—(65) are, therefore, sufficient for Q* to be reduced. To see the 
necessity it is easy to verify that one of (6a)—(65) holds if (5a)—(5c) are true [4]. • 

Let the number series (A) defined as ^21+1=^2,»+^,¡> '=0 .1» — 
The following lemma shows that no zero value in the series (A) between /1>0 and 
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^'2,v-i + /2,v-i exists. This means that the parameters of both job-flows are reduced 
in the transformation Qi+1, /=1 , 2 , . . . , v—2. They are the transformations 
QO^QI a n < i Q,-I~*QV o^ly 111 which it is possible that only one of the job-flows 
be reduced: Q(2) in Q0-^Qi and Q w in Q r-1-~QV . This fact is expressed by the 
relations concerning (A) 

0, /c2 > i+/2 > 1 > 0 , O s i < » - l , / i , i > 0 , 1 = s / s v - l , A « . . - i + / s . , - i ^ 0. (7) 

In any circumstances, the following relations hold for /=0 , 1, ...: 

( a ) + l = 'l,iT2,i> Tl;i' — Tl,i + 1 = h,ir2,i 

(b) l2,i~ l2,i + l = + T2,i — T2,i + 1 — (k2,i + h,i)<}l,i + l + h,itll (8) 

(C) ^2, i — + 1 = i2 , iT l , i + l-

Lemma 2. Let 
^2,1 + 12,1=0, 7 = 0 , or Zx , = 0, 7 & 1 , 

be the first zero value after /10 in the series (A) if such one exists. Then all members 
in (A) following it are zeros and the degree of compositeness of Q is as follows: 

incase k2t0 + l20 = 0: v = 0 if l10 ~ 0 

v = 1 if C^O, 
in cases I >- 0: v = I if t = 0 

v = 7 + 1 if k2J + l2J = 0, / ^ > 0 . 

Proof. If llt0 = k2 0+l2 0=:0 (7=0) then Q0 is reduced by definition and v=0 . 
If / ^ > 0 but k2I + l2I=0, 7 ^ 0 , then v > 7 and £ 1 > / + 1 < t 2 > / , r2 , /+i = T2;f f rom (2), 
and, therefore, 9 1 > / + 1 < T 2 7 + 1 and so li,r+1—0 and r l i i + 2 = T L J / + 1 . If, however, 
i i , /+i=0, 7 ^ 1 , then T 1 ) / + 2 = T l j f + 1 . But in this case V2,i+2 = rl2,i+i a n < i 5 2 > / + 2 = 
= + i from (2) and so QI+2 = QI+i- This means v ^ 7 + l . • 

The following lemma shows the part of 2. in which non-reducibility is possible. 

Lemma 3. To any £)££ there exists a finite integer v ' § 0 for which the con-
figuration 

is either reduced or defective with 
= 0 . 

Proof. If //1=0, there is nothing to prove. Let tj^0. If /2 i > 0 then from 
(2d) we get 

^2 , i~$2, i + l = i2,iTl,i + l — T l , i + 1 — 'h > 0 

and, therefore, the value of 92>i decreases at least by rjy. This means that only a 
finite number of positive l2 i members in the series l2t$, i > ... can exist and there 
exists an i 0 =0 so that 

h,i = 0, 92ii = 3 V o if i a ;0. 

If 3 2 j i o =0 then v '=i 0• Let 3 2 i l o>0. If / l i f > 0 then from (2b) we get 
—Sl l + 1 = — T2,i — $2,i0 > 0 
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and, therefore, the value of 9 h i decreases at least by 92f io . This means that only 
a finite number of positive l l t i member can exist in (A). If /j^. is the last positive 
/1>f member then v'=i' +1 and Qv. is reduced. • 

By Lemma 3 only the cases 
r\ A = 0 (9) 

remain questionable in regard to reducibility. The following lemma concerns these 
cases. 

Lemma 4. Any with (9) is either reducible or 

fi,-(Jh;0;0;0) as n -
In the latter case 

\ „ t 2 , „ > 0 (10) 

after any finite step n. This case comes true if 

T1T2 > 0 , t]292 = 0, 91 and .9, are rationally independent. (11) 

Proof. Q is reduced if T2=0. Let now T2>0. 
If 92=0,q2>0, the reduction procedure will be equivalent to the regular 

continued fraction expansion of the number 

- ' É = ^ (12) 

with the restriction that the number n +1 of the partial quotients [b0,b..., 6„] 
must be chosen odd in finite cases because cannot be zero by definition (2). This 
choice is always possible [3]. The number of the partial quotients and the steps 
of reduction will be finite exactly when ^ is a rational number [3]. The reduction 
results in Q*=(ti1; 0; rj2-, 0). If (11) holds, neither 91<t nor rj2i becomes zero in 
finite steps and (10) is true. 

Let now 9 a > 0 . Then rj1=0 from (9). If 9 i = 0 then Q is reduced. Let, there-
fore, S x > 0 as well. 

If r j2=0, the reduction procedure becomes equivalent to the continued frac-
tion expansion of £ and it is finite .exactly when £ is a rational number. The reduc-
tion results in g * = ( 0 ; 9Ï ; 0; 0) or Q*=(0; 0; 0; £>£)• If ^ and t2 are rationally 
independent, the expansion procedure is infinite and neither of 9li and 92i will 
be zero for finite i and (10) holds. 

Let f / 2 >0 as well. Suppose Q is not-reducible, i.e., the degree of compositeness 
v= co. By Lemma 2 all members of (A) are positive after / 1 0 . From (8) we can write 
for any / > 0 : 

^l.i + l = h,iT2,i — h,i[{k2,i+f2,i)<)l,i + l + Z2,i + l] — 

— m a X ( 9 i , i + l,>72, , + l , 3 2 i + 1). 

If either of the parameters 9r, rj2, 92 remained bounded from below by a pos-
itive number a > 0 , then 9 t would be decreased by at least a in every step of re-
duction. After 9Ja. steps 9lit would surely become negative which is a contradic-
tion. Thus none of 9t ¡,t]2 92 { could be bounded by an a > 0 , and Q,— 
-»(0; 0; 0; 0) if This proves (10). 

7 Acta Cybernetica 
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In cases (11) we have shown that v = and (10) holds. But from (2) we get 

— m a x ($l,i + ls '?2,i + l» $2,i + l) 

also in these cases and the parameters cannot remain bounded from below and 
so Qi~(ih\ 0; 0; 0) as • 

From Lemma 3 and Lemma 4 we can assert that v = °° can hold only for 
defective configurations for which >7i=0 and for configurations for which 92;v-.=0 
for some v ' ^0 . We cannot exactly show the domains or points of SL in which Q 
is non-reducible. We know such subsets of 3 but not all such points. 

The relationships below are true independently of the finiteness of v and the 
relation of v and n. These relationships concern the parameters of Q and Q„ and 
Qn and Q„+1. 

As the definition (2) of Qi+1 = dQi, we get 

>7l, / — Vl, l + l ' *]2,i = ^2, i^l, i + l + + l „ , ,,„. 
i = 0 , l , . . . (13) 

= 'l,iT2,i + $l,i + l ' $2,i = ' 2 , iT l , i+l + $2,i + l-

From the same definition we can obtain the relationship between the parameters 
of Q„ and <2„+i in the following form: 

V l,N — ^l.N + l 
= 'l,n'2,n'/l,n + l + ['l,n('C2,n+'2,n)+ + l + ll,nl2,n + l + ¡l,n^2,n + l 

'72, n = ¡i2,N^l,N + l+V2,N + l 
$2,n — '2,n^l,11 + 1 + ^2,n$l,n + l + $2,n + l 

Tl,n = t̂ J, n « + ' 2 ,n)+ 1 ] Tl, n + l + 'l,nT2, n + l — h,n^2,nrll 

h,n + l=1l,n 

$l,n + l = $1,11— U,ntli,a~ h,n®2,n 
'?2,n + l — — ^2,n$l,n + ('l,n^2,n"t" 1) '?2, n + 'l,n^2,n$2, n 
$2,n + l = —^.n^l.n - '2 ,n$l ,n+'l ,n'2,n' i2,n + (' l ,n'2,n+ l)$2,n Tl,n + 1 = Tl,n~ h,nZ2,n 
T2, n +1 = - {k 2, „ + k, „)Ti, „ + ['i, „ (k2, n + >2, n)+11H n + k2;n >ll • 

(14) 

(15) 

(14') 

(15') 

As the parameter r\x is not concerned during reduction, >71,n='7i, « = 0 , I, . . . , 
and it can be separated from the other parameters. 

From the relationships (14) the connection between the parameters of any 
two Q„ and Q„. n^n', especially between the parameters of Q = Q0 and Q„ can 
be obtained. To make the further relationships more compact we have to introduce 
some series of integers, vectors and matrices as follow. 

Let (A1) be the formal notation of the infinite sequence: 

(.V): X0, Xx, X2, ..., Xn, ... 
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and let |(JC)| be the index of the first member of (X) from which all members are 
the same, if such a member exists. This is called the length of (X). 

We have already defined the two series (L) and {A). The members of (Q) are 
the configurations Q„ = (>ti; 9h„; tj2t„; S2 n). The lengths of (L), (A), (Q) are the 
same v, the dc of the configuration Q 0 = Q . Let (0) be the series of the identically 
zero members with the length 0. We have referred to the series (A) the members 
of which are 

(A): A2i- = /1; i, A2i+1 = f +/ 2 , , , ' = 0, 1, ... . 
Define also the series 

(k): kn = k2,n, n= 0 , 1 , . . . 

and 

( 0 : l„ = k „ , n = 0 , 1 , . . . . 

We define now a set of new series necessary to writing down the relationships . 
among the parameters of (Q). The definitions are recursive for / , « = 0 , 1 , . . . . 

(A): An =AnA„_1 + A„_2 with ^ _ 2 = 0, A^ = 1 

(B): B„ =XnB„_1+B„_2 with B.t = 1, / ? _ 1 = 0 

(C): C2i = A2i, C2 i + 1 = k^Cu + Cu-! with C_x = 0 

(.D): D2i = B2i, D2i+1 = k2riD2i+D2i_1 with D_1 = 0 

(B')\ B2i = À2iB'2i_1 + B2i_2, B'2i+1 = l2ii_1B'2i + B'2i_1 + k2ii with 
B'_2 = 0, B'_x = 0 

(B")\ B2i = l2iB2l_x + B2i_2, B2i+1 = A2i + 1B2i+B2i-1 — k2ti with 
B'L2=UB'L1 = Q 

{D'Y D'2i = B'2i, D'2i+1 = k^iD'x+Dii^ + k^; with D'^ = 0 

CD"Y Ki = fla'i, D2i + 1 = / i o . ^ + ^ - i - f c , . , - with D'U = 0 
Define the following sequences of vectors and matrices for « = 0, 1, . . . as well. 

»72, n 
,N 

(0: Q. = 

®= MM 
with 

>72, n =-rl2,»+£>L-ih 
^2,n — — 9 2 n + (-S2„_1—Z>2„_i)>7I 

,n = Tl,n + -®2n-2'7l 

2̂,11 ~ — T2, n+-®2n-l>7l 

(16) 
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An.n + i 

m a = ( f - 2 A / " - 2 ) 

(£•• i n -

f 1 )-2n 1 

'̂2/1 +1 /• 2n ̂ "¿n +1 + V U , „ + h,n 
1 'l.n h.n 

ki,„ h.nk2,„ + l ' l .n^ .n 
h,„ h,nh,n h.nh.n+l 

Bln-1 
C2n-l 

... _ ^2n-2 

We remark at once that 
T 

6o = 
1,0 

>72,0 

$2,0 
= 2 , !o = ( T l ' ° ) = i (17) 

and that the D-matrices can be obtained from the corresponding zl-matrices by 
summing up the two last rows and omitting one of the last two equal columns. 

The foregoing entities simplify the relationships between the parameters of 
the members of (Q). The proof of the relationships will be automatic by means 
of the relationships of the following lemma. The relationships are interesting on 
their own right as well. To simplify writing we use the following determinant no-
tation: 

Un{x, y) = = x„y„-1-xn_1 y„, n = 1, 2, ..., 
x„ y„ 
Xn-1 -Vn-1 

for any two series (x) and (y). From this definition the relation 

Hn(y,x)=-Hn(x,y) 

(18) 

(19) 

is trivial. (18)—(19) can be interpreted for « = — 1,0 as well if the values x_2,y_2, 
x_ 1 ; are also given. 

Lemma 5. Among the entities defined beforehand, the following relationships hold. 
For i, n= — 1, 0, 1, ... 

Hn(A,B)=:(-1)-1 (20) 

(.An, Bn), (An, An_J, {Bn, B„_J, (An_ Bn_J (21) 

are relatively prime integer pairs* 
£-1 i - l 

•^21+1 = 2 + 12j)A2J+ 1, • B2i+1 = ^ (.k2yj + l2j)B2; 
o ;=o 

i - l i - l 
^21+1 = 2 k2jA2j, D2i+1 = ^ k2jB2j j=o j=o 

(22) 

* 0 and 1 are considered relatively prime integers.. 
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(with the definition £ Xj = 0) 
7 = 0 

For i, n=0, 1, 
B'n+B: = B„, D'„+D:=D„. 

H2i{B,A) = H2i-1(A, B) =1 
H2i(B',A) = H2i-x(A, B') =\ -C2i_! 
H2i(B", A) = H ^ A , B") = 1 + C2i^ 
H2i(B',B) = //2i_i(5, B') = 1 
H2i(B",B) =H2i^(B,B") =D2i^ 
H2i(B", B') = H ^ B ' , B") = D2i_i; 

A2iD2i—B2iC2i = 0, yi2;_1Z)2i_1 — B2i_x C2i-! = B2i-1 

A2i+iD2l—B2i+1C2i = A2l_1£)2j — B2;_1C2i = 1 
A2iD2l+1 — B2i C2i+1 = A2iD2i_1-B2tC2i-1 = B2i; 

if (k) = (0) then 

C2i+1=D2i+1 = 0, (B') = (0), (B") = (B) 

CD') = (0), /)£ = 2»M, D'2i+1 = 0; 
, / ( / ) = (0) then 

B2i = B2i— 1, B2;+1 = B2i+1, B2i = 1, B2 i+1 = 0 
= Bii-i* -D2;+1 = B2l+1, D2i = 1, D2i+1 = 0; 

with D0 = I, Aq = [, D„ An+1 — An,n+iAn 

"¿2„ï = (ll,n(k2,n + h,n)+l 
1 ) I Hk2,n + h,n) 1 ) 

(^2n^2n + l + 1 
" 2̂n +1 

+ " / I . - ~h,N 

•^2/1-1 
~B2N-X 
~~ 2/1-1 

_ / 1 2 n - 2 

•»2 . -8+1 
Bzn-2— 1 

-»27.-2 
-»2/1-2 

^ • " + 1 ~ { k J + l 2 i n l ) ( o V ) 

£n""+1 = (o M t -
1 

<k2tn + l2J 1) 

(23) 

(24) 

(25) 

(26) 

(26') 

(27) 

1 0 (28) 

" ' m 0 1 / 

•̂ 2/1-1 
—

 -̂ 2/1-2 1 
~B2n-l B2n-2) 

(29) 
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' l 0 0' ' 1 0 o' 
/ 

1 kn U 

An,n + 1 = 0 1 0 1 0 0 1 0 

kn 0 1 . 0 0 1. ,0 0 1 
/ 

l -•h.n C 1 0 . 0 1 0 0 

i = 0 1 0 ,n 1 0 0 1 0 
0 0 1 0 0 1 / -h „ 0 1 

The determinant det ( X ) for every matrix encounters above is 

det (X) = 1. (30) 

Proof Taking into account definition (18), we easily see (20) and (24) for n— — 1 
and i,n=0. The other relations (21)—(26') can be checked for the least index 
by the definitions of the entities. Using the recursive definitions of the series, we 
can verify (20), (22)—(26') by induction. (21) follows from (20) because every com-
mon divisor of the pairs must divide (— l ) " - 1 and is, therefore, ±1 . (27) can be 
verified by executing the multiplications. The inverse matrices (28) can be verified 
most simply by multiplying them with the corresponding original matrices and 
using (20)—(25). The factorizations (29) can simply be checked by executing the 
assigned multiplications. (30) is trivial for every matrix encountering. • 

After Lemma 5 we can now easily prove 

Theorem 1. For any configuration the following relationships between the 
parameters of (Q) hold: 

Ûn+1 = An,n+iQn, Qn = 4n,1n+iQn+i, Qn = AnQ, Q = 

ÏlJ + l - 12n,n + lïn> Li — i?n,n + lîn + l> t = D T x — Z)_1r •in ±1n ±> i — —n ±n • 
(31) 

Proof The relationships in the second and fourth columns follow from those 
of the first and third columns. The relationships in the third column follow from 
the ones of the first column because of (17) and the recursions (27). The rela-
tionships of the first column are to be verified. This can be done by (14')—(15') 
and definitions (16) and (D+), ( J + ) . By (16) 

^l.n + l — Tl,n + l+-®2n'/l 

+ l ~ — T2,n + l+-®2n + l'7l-

From (140—(15') and (B'), CD'), (16) 

= 5 i , n +/ 1 > n ^ 2 > n +Zi > B 5 2 > 1 ) , 
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'?2,n +1 — ^2,n$l,n Cl, n n + 1)^2,« 'l,n^2,n$2,n + ['C2,«^2n+^2n-l + 'C2,ii]'7l ~ 

= 'C2,n$l,n + ('l,n'C2,n+ D'72,n + 'l,n'C2, n ^ . n ! 

$2,n + l = + h,Ji,ntl2,n~ C l ,n '2 ,n+ l )$2 , n + ['2,n^2n + ^2ri-l—^£)2n-l]'7l = 

- *2, „ ill + Kn~kn Cl«.» + $2, „) + (/l. n K - 1 + B L _ 2) 1/J -
— $2,n+(-»2/l-l—^>2n-l)'7l = 

These are exactly the relationship Q„+i=Aj, n + 1 Q n . Taken into account that 
f l n = 5 l n and f2>n=»72,n+$2,n and summing up the last two equations, we get 
the relationship T b + 1=^„ i„+ 1T„. • 

This theorem is applicable to relate the parameters of a configuration Q and 
its reduction Q* if the latter does exist. 

3. The priority schedule and the reduction 

In our previous article [6] we discussed the so-called consistent economical 
schedules (CESs) which represent a dominant set. There also the priority schedules 
were defined and shown as specific CESs. This means that the priority schedules 
R12 and R2yl possess all the characteristics every CES possesses. There we illustrated 
the CESs by graphs which showed the basic characteristics of the CESs such as 
periodicity, the succession of the so-called typical and critical situations etc. The 
specific characteristics of R i t 3 - i (7=1, 2) is that no task type A{ can be preempted 
and, therefore, the job-flow is always delayed whenever a cycle C 3 _ u of 
it finishes in such a moment when a task type At is under service or is ready for 
service. These are the critical situations type cr3-itl and <r0, respectively, defined 

, in [6]. The delay can be 0 a n d after finishing the service of At the situa-
tion will be the same as the situation after finishing the first task An. Since R l i 3 - i 
is consistent, the continuation of the servicing process after the two task-finishing 
points passes off similarly. This means that Ri i3~i is periodic with a period represented 
by the schedule section between the two task-finishing points. If $ ¡ > 0 then the 
task A3_iyl begins immediately after the finishing point /,'=>/,- of the task Aa 
in R i ) 3 - i . This situation is called fi¡-situation [5, 6]. This situation returns next to 
the first delay of Q<3~1> after t{. The &-situation returns, however, whenever a 
cycle C 3 _ t j finishes during the service of a task type At if If 3 ; = 0 then the 
initial situation c0 returns at the point t[ immediately and, because of the-consist-
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ency, the scheduling of the job-flow Q M is repeated. The period consists then of 
a cycle C, of Q( i) and the job-flow <2(3-,) fails to be scheduled. The efficiency of 
-K/,3-; will be y = l , the possible maximum, if ^¡>0. But this schedule is by no 
means acceptable in practice. /?3_ f i i has efficiency y = l as well if //¡>0, 9 , = 0 
unless T3_,=0. If T ,=0 and 9 3 _ ,>0 , the schedules Rh2 and R21 are degenerated 
with a finite length and some modification of the scheduling strategy is needed to 

_ produce practically acceptable schedules. This problem and generally the scheduling 
specialities of degenerate job-flow pairs (for which T1T2=0) were discussed in [4]. 
In spite of this fact we cannot keep degenerate and defective configurations (with 
zero value parameters) away from further discussion because the reduction of a 
nondefective configuration Q can lead to defective reduced configuration Q*. 

Confining ourselves to the priority schedules Rlt2(Q), which always 
start with the service of the task An, we know that Rlt2(Q) ' s periodic if 91 = 0 
or the /^-situation returns. A period is the section of the schedule between the point 
/]'=>)! and the first recurrence point T* > t{ of p i if S ^ O . R12 is not periodic 
if .9i>0 and the recurrence point of Pi does not exist. In this case <2(2) cannot be 
delayed out of the starting delay of value and the preemptions. This means that 
the finishing times /(/ ' ) of the cycles C 2 | i , / = 1,2, . . . , of Q(2) can be written as 

f(i) = r]1 + iT2 + z(i)>1i (32) 

where /(/') is an integer depending on /', the number of preemptions of the first i 
C2-cycles. (32) is valid only until the first recurrence of the px-situation. Suppose 
the Pi -situation recurs first after the /i2th cycle-finishing point. The length of period 
p is then the distance between t[, the start-point of C2; j , and T*, the start-point 
of C2 j ( I a + 1 , which consists of ¡x2 demand cycles of g ( 2 ) , x 2 = y ( P i ) services of pre-
empting /li-tasks and the last delay d2 of Q'2), if any, i.e. 

P = T f - t i = PzTz+Xiiii+Wi (33) 

where / / 2>0, are integers and 

0 S £ 2 s l . (34) 

In both points ti and J f a task type Ax finishes and, as a result of priority, 
the service of the job-flow Q w goes on continually without break and delay and 
an integer number of Q-cycles are serviced in the period between t[ and 7\*. Let 
this number be denoted by ^ . Thus 

P = Hi?i, (33') 

where / / i>0 . Let us call and /(2 the cycle numbers, x2 the preemption number 
and e2 the relative delay. These are the characteristics of R12 and they are denoted 
by the quaternary 

= ; Hii * 2 ; £2)- (35) 

If 9 1 = 0 then R h 2 will be periodic with p = r 1 = rjl which accords with (33) and 
(33') if we define the characteristics as 

J71i2 = ( 1 ; 0 ; 0 ; 1). ' (35') 

Another degenerate case must be discussed yet. This is when S ^ O and r 2 = 0 . 
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Scheduling this configuration with the priority of Qw the cycles C2j with length 
0 will be scheduled infinite times after the first, Au, task and the further section 
of the schedule RLT2(Q) is undefined. Without modification of the strategy the 
obtained section of R1I2(Q) can be considered as periodic with length p=0 and 
the period consists of a C2-cycle. In this exceptional case let the characteristics 
of RI 2(Q) be defined as 

771 i 2 = (0; 1 ; 0 ; 0 ) . (35") 

From definition (1) of the efficiency y(R) of a schedule R the efficiency of a periodic 
schedule can be obtained as 

(£=4 (i'> 
where pR=0 is the length of the period of R and aR = 0 is the PA-usage time in 
a period of R and the quotient is defined as zero if both of aR and pR are zeros. 

By the characteristics (35) of a priority schedule R1>2(Q) the PA-usage is com-
posed exactly from the service times of A^-tasks of number and from the service 
times of A2-tasks of number fi2 and, therefore, 

«1,2 = /*l>7l+/<2>?2- (36) 
We have proved 

Theorem 2. If for any configuration Qe<H the priority schedule R=Rly2(Q) is 
periodic then the length of the period p and the PA -usage a can be written in the forms 

P = = Wz + fa + ^rh, (37) 

2, (38) 

where integers Hi = 0, x2 = 0 and real 0 S e 2 S l are the characteristics 

N = (PÙ /<2; x 2 ; e2) 
of R with the specialities 

Q Hi H2 k2 e2 

> 0, x2 = 0 0 1 0 0 ( 3 9 ) 

S i = 0 1 0 0 1 

9 i T 2 > 0 > 0 > 0 S O € [ 0 , 1 ] 

Proof After the preliminary discussion there is nothing to prove. • 

Let us inspect now the influence of the reduction step defined by (2) on the 
periodicity and the characteristics of a priority schedule R1I2(Q). Denote by 

( * ) : Rn = Ri .»{QÙ, n = 0 , 1 , 2 

the sequence of priority schedules of the sequence of configurations (Q). 
Fig. 3 illustrates the influence of the reduction step Q„—Q„+i on the corre-

sponding priority schedules. The transformation Rn-+ R„+1 defined implicitly is 
shown in three substeps Ra—R'n, R'„—R'^, R%-~Rn+1 corresponding to the sub-
steps (2b)—(2d) as transformations Qn-Q'n, Q'n-Q'û, QZ~*Qn+i- T h i s decom-
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position of the transformation Q„+1 corresponds to the factorization (29) 
of the matrix Aji,n-ri of the transformation. The series of configurations in 
Fig. 3 is £„ = (!;' 15.5; 5; 7.5), Q=( 1; 3; 5; 7.5), 0„ = ( 1; 3; 2; 7.5), Qn+1 = 
= (1; 3; 2; 3.5). 

Rn 
rnrnm. 

Wtâzmmmi 

mmm». 

iliiill!!!!lll//L WÊÊÊÊBÊMM 7///////////M 
m 
i 

It - - -71 1r 71 
E L 

PH V///////A [F] M 2 
PN \V NN W//M MM w/M PN 2\J 

m ixM 1 Wt 1 | yA 1 KG >4 1 1 1 T 

WW////////M//M 2 VM WA 2 | 

K 
2 w \ w / A m 2 ^ w r n / i ï w m 

kC. J* V- -X 

~RM 

m z ) 

R, n+1 
1 2 WA 2 1 W/M 1 i 
Và 1 1 a 1 1 
YA ̂ 2 M % 2 m 

Fig. 3 

The influence of the substeps of the reduction Q„ + i—AQ„ on the priority schedule Rltl 

The sequence of R„, R'n, , Rn+1 shows that these schedules are periodic 
at once and the transformation Qn-*Qn+i does not influence the existence of 
periodicity of priority schedules. This means that the members of the sequence 
(R) are simultaneously periodic or not periodic at all. 

Let us introduce the following symbolics. Denote the characteristics of R„ by 

(/7): n„ = (/'!,„; /<2.„; ,«', e2.„), n = o, l, 2,... 
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and let the vectors /i„ and n„ be defined as 

(2): ft. = ( ' H - ' ~ V*2. n' 

(t{): ZL. = 

n' 

Hl.n 
H2,n n =0, 1, 

and let the matrices M„ and M„„+ 1 be defined as 

( M ) : M« 
-®2n-2 ^2n-2 -®2n-2 
Bin-l B2n-1 

0 0 1. 

« = 0 , 1, . . . 

( M + ) : M , „ „ + i = 
1 kn 0 

0 0 1 

n = 0, 1, . . . 

Lemma 6. For the matrices (M) a«<i (A/+) the following relationships hold for 
u = 0, 1, . . . _ 

= with (40) 

M„-
^2n- l A2n-2 C2n-1 

~&2n-l B2„-2 —D2 „_J 
0 0 ' 1 

~~ (^2, 71 + ll) 1 
0 0 

v 2 , n 

(41) 

Mn,n + 1 

Mn,l +1 

i o o 
I«.» 1 0 

o o 1 

1 0 0 

•2,n 1 ^2,1 
0 0 1 

1 

1 kn 0 
0 1 0 
0 0 1 

1 -kn o' 
/ 

0 1 0 
,0 0 1, 

1 
-k, 

0 

0 0 

2, n 1 — ^2, n 

' 1 0 0' 

-kn 1 0 

o 0 1 0 1 

The determinant det (X) for every matrix encountered above is 

d e t Q Q = 1. 

(42) 

(43) 

Proof (40) can be verified by executing the matrix production and using the 
definitions of (A), (B), (B'). The verification of (41) is easy by multiplying the 
matrices with their inverses and using (20)—(25). The factorizations (42) are ob-
vious by executing the multiplications. (43) is trivial. • 

Now we prove our main result. 
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Theorem 3. For any configuration the whole sequence (R) of priority 
schedules of the sequence of configurations (Q) is periodic at once and the following 
relationships hold among the members of the sequence (77) of characteristics: 

e2 ,n = £2 (44) 
and 

Ajn + l = £¿2+1 ffn, ffn = 0.n+lftn + l, Hn = 

ZLi+i = M f J + i l L , , En = Mi<i+iZL.+i» ZE» -

for n = 0, 1,2, ..., where X~T denotes the transpose of the inverse of matrix X^ 

Proof The second and fourth columns of (45) follow from the first and third. 
The first line follows from the second because the D-matrices are the 2 x 2 sub-
matrices of the M-matrices as their definitions show. The relationships of the third 
column follow from the ones of the first in consequence of (27) and (40). The first 
relationship of the first line of (45) remains to be proved with (44). To go on with 
the proof we need the following triads. 

Define 

9 { i ) = R r ) a n d e ( - i ) = f W - ( p ( i > Z i > i = l , 2 , . . . (46) 

as moduli and residua of the cycle-finishing times / ( / ) of Q(2). 

g(i)=f(i) (mod Tj) and 0 S g ( i ) < T 1 . (47) 

For the cycle-finishing times the decomposition (32) is. true until the first recurrence 
of the /^-situation. Substituting this into g(i) in (46) we get 

6 (0 = h + i r 2 + x (i) m ~ <P (0 • (48) 
The triads 

H{i) = (<?>('), X(0), i = 1 ,2 , . . . 

for Q are determined by the priority schedule R=R12(Q). We saw earlier that 
the periodicity of R is true if for a finite i there exists a triad H(i) for which 

0 — 6(0 — >7i> 

because the -situation recurs exactly in this case. The length p of the period is 
determined by the first such i and H(i) because the first recurrence point 7\* of 
the Pi -situation is the ^-task-finishing point next / ( / ) which is by time t]1 — g(i) 
later than / ( / ) , that is 

H = / ( 0 + t f i - < ? (0-
From this 

P = Tt-t[ =f(i)~e(i) = rh + i?2 + x(i)h-Q(Q-
On the other hand 

P = <P( 0*i = 'T2 + (x(0 + e2)'7i 
from which 

8(0 = 0 ~£2)>7i and e2 = l - Q ( i ) / h -

fi = { £ f i n 

n = MTn„ 
(45) 
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We have got that R is periodic if and only if there exists a triad H(i) for which 

0 ^ e 2 t ] 1 = ( p ( i ) T 1 - h 2 ~ x ( O h ^ 1 i - (49) 

Since the member of triads determined by R are monotonic with each other, there 
exists a unique minimum i satisfying (49). Let 

Hi = <P(0, Hi - h = / ( 0 . £
2 = 1 -e(i)hi (49') 

with this i. Then the so defined 27„ are the characteristics of R„. /<2, „ is the minimum 
value of i for which (49) holds for Rn, i.e. • 

Hi,n^i,«-Hi,nH«-x».» rli = e2,„ri1.^ri1. (50) 

Let us see the first substep Q„^Q'„- Substitute from (2b) T 1 „ = / 1 „ T 2 I „ - } - T 1 _ „ + 1 

into (50) and we get 

0 S Hi,n*i,n + i-(Hi,n-h,nHi,n)T:2,n-X2,n1i = ^2,nh = h - (50') 
This means that 

Hn = (Hl.ni H2, n~~h, nHl.ni ^2,11) 

is a triad for R'n=Rli2(Q'n) for which (49) holds. Because the correspondence 
between parameters of Qn and Q'„ is unique, H'„ must also be the minimum triad 
for which (49) holds. This means that the characteristics of R'„ are 

Hl,n = Hl,ni H2,n — H2,n~~h,nHl,m *2,(l = ^2,ni E2 ,n = £2,n-

The matrix of this transformation is the transpose of the first factor of M^i+ i >n (42). 
Substitute now the expression >j2, —k2, »$1, n+i+12, n+i from (2c) into (50) 

correspondingly to the transformation Q'n-»QZ- We obtain unambiguously the 
inequality 

0 ^ (H[,n-KnHin)?i ,n±i-Hin(n2,n + i + \n ) - (x2 ,n -h ,„H2,n)n i = e2,„i/x r^. (50") 

This means that 
H„ = (Hi, n~ „fl2.ni H2,ni >C2,n~k2,nH2,rd 

is the unique minimum triad for Ql for which (49) holds and, therefore 

Hl,n = Hl.n k2!„P2,ni H2, n — H2.n1 n — ^2,(1 ~~ ^2, nH2,n > e2, n = e2,(l-

The matrix of this transformation is the transpose of the second factor of 
1 in (42). 

At last we substitute the expression 32j „=/2 i „ r^ „ + 1 + 32i „ + L from (2d) into 
(50") correspondingly to the transformation QZ—Qn+i- We obtain the inequality 

0 — (Hl,n~~ h,nH2,n)rl, n + l ~ H2,nX2, n + l — ^2,nil = B2,n1l — 1l-

In consequence of the uniqueness of the transformation QZ~*Q„+1 and the mini-
mum triads for their R12-schedules we get 

Hl,n + 1 = Hi, n l2,nH2,n> H2, n +1 = Hi.m ^2,n +1 — ^2 ,n> e2, n + 1 ~ S2,n 

as the characteristics of Rn+1. The matrix of this transformation is the transpose 
of the third factor of M^.l+i ' n (42). This proves the theorem. • 
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Fig. 3 illustrates the course of the proof. 
Theorem 3 makes it possible to determine the characteristics 77 of ~ 

from the characteristics II* of R*~Rli 2(0*) if Q is reducible, R* is periodic and 
n* is known. The question of reducibility was discussed in the previous section. 
The characteristics of reduced configurations will be inspected in the next two 
sections. 

4. Priority schedules of specific configurations 

We saw in the proof of Theorem 3 that the periodicity of a priority schedule 
R—R12(Q) depends on the fact whether there exists a triad H(i) satisfying (49). 
This is not equivalent to the existence of an integer solution of the inequality 

0 S A*2T2 — X2Vl — >h (51) 

because not every triple (/iX) fi2, y-,) satisfying this inequality is a triad defined by 
(32), (46)—(49) on a schedule Rlt2(Q)• Unfortunately, we do not know analytic 
conditions for the triads instead of the fact that its elements represent the number 
of Cx -cycles, C2-cycles and preemptions, respectively, until the C2-cycle finishing 
points of Rlr2(Q). The triads and (51) cannot be used, therefore, to decide the 
periodicity and determine the characteristics of a priority schedule Rlt2(Q). This 
circumstance raises the significance of results on characteristics for some specific 
configurations Q€M including reduced ones. 

The characteristics of Rlt2(Q) were made clear for configurations for which 
SLR2=0 in Theorem 2. We suppose that 

V 2 > 0. (52) 
We can make clear the special cases in which (9), the condition J7i92=0 for 

Q is true. Let first J/I=0. Since Qw do not delay the service of Q{2) in this case, 
we can determine the condition of periodicity of Rli2(Q) as 9L and T, are rationally 
dependent. This is illustrated in Fig. 4a. 

Independently of the value of rj t, we can easily determine the condition of 
^1,2(6) t o be periodic for Q£2 with 9 2 = 0 (but 9 1 t 2 > 0 ! ) . This condition is that 

r . J 1 • i I I I 1 1 n 1 
WBMMY/MMBKi •W//M7 2 W////Ä '/A 2 W. y///M 2 2} 

1 I 1 1 1 1 1 I 1 1 Tj 
W///M 2 Y///M 2 W M l 2 • 2 W/////A 2 I a 

2 2 2 2 2 
Fig. 4 

R l i t (Q) schedules for specific configurations with S|T2>0, >/,,9.-0 
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and r\2 are rationally dependent, which is the same condition as in case rj 1 = 0 . 
The values of the characteristics of the periodic schedule Rli2(Q) are, obviously, 
determined by the relation of and r2 according to 

Theorem 4. For the configurations with 

V 2 > 0 , >/iS2 = 0 (53) 

the priority schedule 7? = /?J 2(2) is periodic i f f and x2 are rationally dependent. If 

^ = 4 (54) r2 B 

with relatively prime integers A, B > 0, then the characteristics of R are 

77 = B - A - f ^ f y l ) , (55) 

where / < ( x ) is the greatest integer less than x . . 

Proof. Fig. 4 shows that Px — B, /¿2 = A if (54) holds because (B, A) is the least 
integer solution of the equation x9x— yx2=0. Since q(A) = 0, therefore, - e 2 = l 
from the relationship (49') if t jx>0 and e2 = l can be considered as a convention 
if t]x—0. If 9 2 = 0 then every ^ - t a s k but the first in the period is a preempting 

one and, therefore, x2=B—1 = c a s e ' ? i=0 the AltJ task is pre-

empting if ¿to<j&x < i r 2 + ri2 for some integer /=s0 (see Fig. 4a). This means that 
' < y 9 i / T 2 < ' + f2/'r2 a n d using (54) we get i< jAIB<i+t ] 2 lx 2 , i.e. 

where {x} denotes the fractional part of x. It is well known [4] that the numbers 
{jA/B}, j=0,1, ..., B-l, go through the points Ic/B, k=0,1, ..., B-l, of the 
interval [0,1) in some order. This means that for / = 1 , 2 , . . . , B, the inequality 
takes place as many times as many of the points kfB are in the interval (0, //2/r2). 
This number is [072/t2)/(1/-8)] if (>/2/t2)/(1/5) is not an integer and is (rjJx^Kl/B) — 1 
if this is an integer. This number is exactly f<((r]2/x2)B). • 

Lemma 3 establishes that every configuration Q becomes reduced or defective 
with (53) after a finite number v ' s O of application of the operator A to it. Theorem 
4 means that after finite v ' s O times application of A we can reduce Q or decide 
whether its schedule i?i>2(C) is periodic. We show that Q with (53) is reducible 
when i ? 1 2 ( g ) is periodic, i.e. 9x and r2 are rationally dependent. 

Lemma 7. The configurations Q^Q with (53) are reducible i f f (54) is true except 
eventually the case ?/1 = 0 in which Q can be reducible with rationally independent 
.9j and t2 as well. 

Proof. If 92—0 then the reduction procedure is equivalent to the regular 
continued fraction expansion of the number ^ = and is finite exactly when 
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C is rational and so (54) holds (see also the proof of the Lemma 4). Let now 3 2 > 0 
and t]i—0. If Q is not reducible then neither „ nor r]2§n+92,n of Q„=A"Q, 
n^O, is zero by Lemma 4. If ^2i„92i„ = 0 for some finite nSO then the reducibility 
is equivalent to the validity of (54) by the same lemma. 

Let, therefore, Si.nfa.n^./i^Oj 0 , 1 , . . . . Suppose Q is not reducible. This 
means that the series (¿) has infinite length and has no zero element after A n = / 1 0 . 
This means that / ) i n > 0 , « S l . From (2b) we conclude then that 0 < 9 1 > n + 1 < 
<T2 n < 3 l n , « = 1, 2, . . . , which means that 

^ = if ¿ > 0 , c 2 ; + 1 = - ^ i - > l if i s 0, 
T2,i ^l. i + l 

and (2) is equivalent to the definition of series 

L = K + > n = 0 , 1, . . . , 
Cn + 1 

where 0 < l / c „ + 1 < l and, consequently, /.„ = [£„]. This is, however, exactly the 
definition of the Euclidean algorithm of the regular continued fraction expansion 
of the number £ o = \ o / t 2 , o = |9i/t2- This algorithm is infinite exactly when is 
an irrational number, i.e. (54) does not hold [3]. If (54) is true, Q must be reducible. 
If (54) does not hold but ^ = 0 then Q can be reducible as for instance 
Q = (0; 1; 7t/2; it/2) shows for which <?„ is irrational but v = l and Q* = 
= (0; 1; w / 2 - 1 ; n / 2 - 1 ) . • 

From Lemma 7 we can conclude that the question of periodicity of Rli2(Q) 
remained unanswered in cases in which Q is reducible and for its reduction Q* 

0, ^ > 0 . (56) 

In all other cases reducibility and periodicity are equivalent except the case >h=0> 
Si and r2 are rationally independent, in which case the periodicity is not true-

We now show that in case (56) the schedule j 2 ( 0 is periodic if t ^ S t ^ . 

Theorem 5. If the configuration is reducible and for its reduction Q* = Q, 
the relations 

r i s (57) 

hold then the priority schedule i ? 1 > 2 ( 0 °f Q ' s periodic with characteristics 

n = (58) 
\ i] x j 

with 
I11 — ^2v-2 + ^2v- l 

H2 = A2V_2 + A2V-1 (59) 

= - ® 2 v - 2 + ^ 2 v - l 
I 

where v is the degree of compositeness of Q. ¡.^ and p2 are relatively prime integers. 
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Proof. First of all f /L>0 follows from (57) because the reducedness of Q* 
implies if ^ > 0 by (5c). From and (5b) it follows that O s i ^ S * 
and, therefore, the characteristics of 7?*=/?I ;2(2*) cannot be else than 

77* = ( l ; l ; 0 ; ^ - ^ - ) (58') 

which is the special case of (58) with v = 0 in (59). This fact can be verified most 
simply on the Gantt-chart of R* as in Fig. 5. (59) follows then from Theorem 3 

R* 

p •*-

1 2 Ï-W-. 1 2 
1 1 

2 
Fig. 5 

The schedule for a reduced configuration with i t ï ; r î - - d t =-0 

applied for n = v and entities x * = x v . By the last relationship of (45), n=MJn* 
and in detailed form 

Hi 

Hi = A2v 

Bo„ 

T 
1 

. 0 

which is (59). e2 = e2 follows from (44). 
Applying ¡.i* = D~T)j. obtained from (45) for n = v, we get from (28) the 

relationships l=A2v_1p1 — B2v_1n2 and 1 = -A2v_2fi1+B2v_2i]2 and from (21) that 
Hi and fi2 cannot have common divisors other than ± 1 . • 

After this theorem the only questionable case remained is the set of configura-
tions reducible to Q* with 

0 < h < To (60) 

The domain (60) of 2 is the part of the domain (5) in Fig. 2d and is illustrated in 
Fig. 6. We will further investigate this case in the next section. 

Fig. 6 
The domain of reduced configurations with O ^ i h c t i - s z l 

8 Acta Cybernetica 
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Supposing that R* is periodic, some relations among its characteristics can 
be stated. These follow from the following more general Lemma 8. We need some 
simple definitions. Let s(X) and f ( X ) denote the start and finishing point of the 
service of a task or cycle X, respectively. We say that task A starts during task B 
if s(B)^s(A)s/(B) and task A runs during task B if s(B)^s(A) and f { A ) ^ f ( B ) . 
Let u denote the number of task type Ax in a period of Rx,i(Q) which do not preempt 
task type A2. 

Lemma 8. For the characteristics 17 and u of a periodic priority schedule 
R= R12(Q) the following assertions are true: 

Hl = u+x2; (61) 

" = № > , = + (62) 

i f f exactly one Ax-task starts during every B2-task; 

(a) w==/i2> Hx^fi2 + x2 if #2-=*!, 
(b) u ^ f i 2 , fi1^n2+x2 if (63) 
(c) u = n 2 , px = fio + y-2 if = $2 < ; 

(a) Hx^p2+\ if tx^r2, 
(b) ix2^x2+l if r , 9 x > 0 , (64) 
(c). > / i 2 > x2 S 0 if i i ^ i ^ i ^ T i , $ i > 0 ; 

x2s=l if < Tj < r 2 , > 0; (65) 

Hx ^ 3, n2 ^ 2 , x2 ^ 1 if ri2 ^ > 0 , 32 < < t 2 . (66) 

Proof. (61) follows from the definition of u and x2. u=p2 in (62) is clearly 
true if exactly one ^ - t a s k starts during every 52-task because these ^ - t a s k s are 
those which do not cause preemption. The number of B2 -tasks in a period is fx2. 
Suppose u=fi2 and there exists a l?2-task during which more than one Ax -tasks 
start. This is possible only if and so 9x^9 2 . But at least one y^-task 
must start during every J52-task if 9xS92 and, therefore, we get + which 
proves (63b) but contradicts u=pi2. If we suppose that no x-task starts during 
some i?2-task in the period of R, it follows that S a ^ A must hold. But if 9 2 < t 1 
then no fi2-task during which more than one Ax -tasks start exists and, therefore, 
u^p2 — l , proving (63a) but contradicting u=fi.2.. This proves (62), and (63a) 
and (63b) involve (63c). 

To prove (64a) we use Theorem 2. From (37) —¡i2) t j = ¡ i 2 ( t 2 —r^+(x 2 +s 2 ) t j 1 
and /i!>/i2 follow if t 2 > t 1 and n 2 >0 . But / / 2 >0 follows from 9 X > 0 by (39). 
If 3 1 = 0 then / / 1 = l > f i 2 = 0 by (39). If r j 2 ^ 9 1 then no ^¡,-task can exist which 
is preempted more than once and, therefore, x2—/V If then the first A21 
task is serviced without preemption as soon as t]2=Qi- Therefore, x 2 ^ f i 2 —l, 
as (64b) asserts. (64a) and (64b) imply (64c). 

To prove (65) we consider the last l?2-task in the first period of R which pre-
cedes the recurrence point T* of the ft-situation. This task finishes in the interval 
[T*-t]x, I f ] as Fig. 7 shows. The period ends with the service of an ^ - t a s k . The 
last _B2-task cannot start before the preceding A- ta sk because 92—Ti would follow 
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Fig. 7 
Illicit intervals for the last i?2-task starting point s(B2) if 32-=r1<r2 , S ^ O 

in this case. This fl2-task cannot start, however, later than the preceding ^ - t a s k 
finishing because 9 2 ^ x i — t]2 and r2^Xx would follow. This means that 32

 Ti T2 
implies that the last B2-task starts after the preceding x-task but the previous 
y42-task cannot be serviced without preemption and so x 2 s l . (66) follows from 
(64c) and (65). • ' 

Before we turn to the case (60), we prove two theorems which give the charac-
teristics of R1>2(Q) for configurations not necessarily reduced but representing (58') 
as their special case. 

Theorem 6. If for the configuration QÇ.2L 

Sj > 0 and 92 < f/j (67) 

hold then T ? 1 2 ( 0 is periodic. Its characteristics are 

II = (A;£;A-1; 1 - ^ - ) (68) 

where co = (B, A) is the least solution of the coincidence problem 

and 

is its error, where 

The cycle numbers and /i2 are relatively prime integers. 

Proof. An ^i-task causing no preemption starts during a 52-task. Since 
this ¿fi-task must finish later than the Z?2-task and cause a recurrence of the f}x-
situation. Only one such j-task can exist in every period. Therefore, 
if J ? l j 2 ( 0 is periodic. The condition of the periodicity is the recurrence of the 
situation and the existence of and p 2 > 0 fulfilling the inequality 

0 =£ m+Wi+iVi-Vh-Wi = 

The cycle numbers represent the least solution of this inequality which is equivalent 
to the inequality 0 ^ 2 t 2 — h 1 9 1 ^ 9 2 and this to (69) with fi2=B, fix=A and (71). 
The coincidence problem (69) always has a unique least solution (B, A) because 
a>-0 and this solution represents a pair of relatively prime integers [4]. • 

0 SBÇ-A â a , co = (1,0) 

A = BÇ—A 

92 a = 

(69) 

(70) 

(71) 

8* 
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In the special case 0<rç2 = $ Î < T 2 of (67) £>-a but O^Ç — I s a and, there-
fore, the solution of (69) ¡is <o=(l, 1) with A = 1 = ^ / 9 ^ - 1 and 

n = 11; 1; 0; l i ^ l from (68), correspondingly to (58'). 
V RJX ) 

Theorem 7. If for the configuration Q^â 

A > 0 , ^ = 0 (72) 

/lofafr then Rh2(Q) is periodic. Its characteristics are 

n = [ B - A ; 0 ; ^ ) (73) 
v rjx / 

where a> = (B, A) is thè least solution of the coincidence problem (69) with error 
(70) where now 

a = f - (74) 
>>2 

The cycle numbers and ¡i2 are relatively prime integers. 

Proof. Because of t]2 = 0, preemption cannot exist in /? ]>2(ô) and Rly2(Q) 
is periodic if and only if i?2-tasks finishing during Ax-tasks exist. This is the con-
dition of the recurrence of the ft -situation. Such" a 52-task exists iff integers B > 0, 
A > 0 exist such that 

Bz1 ^ t]x + A92 â fi^ + min (vi, 92) 

holds. The least co = (B, A) supplies and /<2, respectively. This inequality is 
equivalent to 

j / i - min (>h, 92) S Bxx — A92 ^ tjx. 

The left side is positive if r/1^92. In this case the least a)=(B, A) satisfying the 
inequality is cu=(l , fs(9J92)) where / £ ( x ) is the least integer not less than x. 
Namely, from x ^ / s ( x ) < x + 1 the inequality —92 <= t2 —f^(91j92)9À ^ 
¿ r 1 —9 1 =t ] 1 follows. This (o is the least solution of (69) with (74) as well. (69) 
always has a solution because of a >0, and the least solution is a relatively prime 
integer pair [4]. The values of plt n2 and x2 in (73) are proved. Obviously, £ 2 fh= 
= A92 from which the value of e 2 in (73) follows. • 

If (57) holds, i.e. 0 < 9 Ï < 9 2 ST? is true then the least solution of (69) with 
(74) is c » = ( l , l ) and A92 = ^ — 9^=TÎ-T£. (73) gives (58') as a special case. 

* 5. The case 0<Ti 

We did not find conditions for a reduced configuration Q* with (60) to have 
a periodic schedule R*=Rlt 2{Q*). This case requires further investigation. By 
(60) and condition (5) we can write 

0 < i / î - = T Î < r î , r,t^9t 92 < t j . (75) 
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This is equivalent to the two series of inequalities 

0 < ?/2 9 t < tJ < < rit + rt 

0 < ^ < 3* < r? < r2* s + .9J <= ,9i + i i . ( ? 6 ) 

These relations do not determine the relations between t]* and 9*, /jf and or 
and if t l t > r l i (Fig- 6b). These latter relations are, however, not independent 

of each other. E.g. the following series of implications is right: 

9t s 4 => r,t 9t < 9*2 => 9* s 9t (77) 

From Lemma 8 we can obtain relations among the characteristics of R* if it 
is periodic. From (63a) we get 

• t i ^ t i + x t (78) 

but from (63c) we get +>4 if any member of the. series of implications (77) 
is true. From (64c) and (65) 

fit S ^ + l + (79) 

Before we further investigate some special cases of (75) we introduce an algo 
rithm to generate some entities and the characteristics 77* of R* if R* is periodic. 

In the schedule R* the sequence C21, C22, ... of C2-cycles can be grouped into 
subsequences in which all cycles are either preempted or not preempted. Denote 
by Mt, / = 1 , 2 , ..., the sequence of the subsequences of the preempted and Nit 
/ = 1 ,2 , . . . , the sequence of the subsequences of the non-preempted C2-cycles. 
The first subsequence will be the with at least one C2-cycle since A21 is a non-
preempted task because of = 9 W e call an M-section or an N-section of R* 
the section from the last cycle-finishing point of the previous subsequence until 
the last cycle-finishing point of the current subsequence M, or Nh respectively. 
This definition will be modified slightly below by dividing some M-sections defined 
now into more M-sections and inserting empty iV-sections in between them. 

Define 
AO) = f l i , / ( 0 = >?t + " i + x O K (80) 

as C2-cycle finishing points, 

<p(0) = 0, Q(0) = nt, cp(0 = , e (0 = / (0 - cp (0z* , (81) 

/ = 1 , 2 , ..., as moduli and residua of the cycle-finishing points and 

H(i) = (<p(i), i, x(0), '= 0, 1, ... (82) 

as triads according to (32) and proof of Theorem 3. (80)—(82) are only valid until 
the first recurrence point T* of ;the ft -situation which occurs exactly when the 
residuum g(i) is not greater than t ] f , i.e. 

0 3= e ( i ) ^ if*. (83) 

After e(fy=1i the next such residuum and the corresponding triad determine 
the characteristics of R* which is periodic if such a residuum exists. Otherwise 
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R* is not periodic. The value of the residuum g(i) determines whether the next 
A2-task A2J+1 is preempted or not. If 

«if s e ( 0 s t i - i , i (83') 

then /4 M + 1 will be serviced without preemption and if 

0 < t i * (83") 

then A2-i+1 will be preempted. 
Without preemption / ( / + ! ) = / ( / ' ) + T2 and 

eCi+i) = G ( 0 + x S - T ; <?co (84) 

because from (83') we obtain 

With preemption /(i+l)=/(i)+r2+rj*• I n this case we get 

r , u = i e ( i ) + 4 - s i >c?(0 if and 
^ J l e ( 0 + T I - S i - T I ^ E ( « - ) if T f - m i n ( » / I > T I - S f ) < i ? ( O ^ T f (85) 

where the symbol < denotes a relation sign by 

3 
if 

(85) holds because £ > £ + + ^ i f x f — + i.e. 
and . T f - i j i - = c ( O ^ T i + S i - T i and O ^ t J - S i - m i n ( i / J , r J - S f ) < e ( 0 + T j - S f -
- T i < T j - 9 i < T i if r i - m i n 

Since g(0)=rj*^T*—tj2 by (75), R* starts with a non-preempted ^2- task 
and e(i) is monoton increasing until (83") results and preempted ^2-task follows. 
g(i) can increase further until a decrease because of tf—min (t]2, r2 — < g(i) 
follows. If the g(i+1) obtained by (85) satisfies (83'), a non-preempted C2-cycle 
follows, otherwise the following C2 -cycle is preempted as well. In both cases we 
regard the situation as the end of an M-section and beginning of an TV-section. 
In the second case in which the following C2-cycle is preempted as well, the TV-
section is empty and begins a new M-section simultaneously. 

The schedule R* consists of a sequence (Nx, Mf), (N2, M2), ... of (N, M)-
section pairs in which cannot but Nt, />1 , can be empty, too. Let the numbers 
of C2 -cycles in the sections Nt and Mi be n\ and m\, respectively. These are called 
the lengths of the sections. 

The bounds obtained for e ( / + l ) show that 

0 s e ( i + l ) s i / j (87) 

can only come to pass if e ( i + l ) < e ( 0 i.e. at the end of an M-section. With the 
purpose of finding the first g ( /+ l ) , i s 0 , for which (87) comes true, the residua 
at the end of M-sections are enough to consider. These residua are the local minima 
in the series e(0), g(l), . . . . The next minimum comes after the ¡'th local minimum 
Qi-i, when in the series et-i, ei-i+?i-?l, ei-i+ni(?t-*l), + 
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+«, ' (T£-ri) + T£-i>i ) . . . , e,-_ 1+«i(f i — tJ) (tJ — Si), ... the first j=m'i occurs 
for which 

fc-i + nl(4-Ti) + mi(zt-9t) S rt 
and, therefore, 

6, = fc-i + "K4-rt)+m,
i(tt-9t)-zt 

This condition determines m'i and (?,• by and n[. n\ is determined by gi_1 as 
the first j = n ' i ^ 0 for which 

e,-i+n'i(zi—tT) ^ t J - i j i . 

This means that «•, m\, gt are uniquely determined by as 

m, = / b = [C] + S g n { ( } ( 8 9 ) 

e , = 0,- , + - t i ) + mi(t2* - 9 ? ) - z t (90) 

(88) 

where 

r _ ^ Î - g M - n K - T Î ) 

and f&(x) is the least integer not less than x. 
Let us use the notations 

i • 
nQ = m0 = k0 = 0, «,• = 2 n'j. mi= 2 m'j, ifa = «¡-(-m,., ¿ = 1 ,2 , . . . . (92) 

i j=i 

The integers nit m{ and i/^ give the number of C2-cycles serviced without preemp-
tion, with preemption and totally until the end of the (Nit M,) section pair, re-
spectively. 

Denote by 
Hi = ((Pi,*l>i,Xi), 1 = 1 , 2 , . . . , 

the triads at the ends of the (N, Af)-section pairs. We call i = l , 2, ..., R12-triples. 
Clearly H i = + / w f ) and 

(pi = n,+m,+i, ip, = tii+mt, Xi = i = 1, 2, ... . (93) 

The residuum at the end of the (7V;, Ms) section pair can be written from the re-
cursion (90) and g0=e(0)—t}Z as 

ft = nt + (r2 - t i ) + m, (r2* - 9?) - izt (94) 
or with (93) as 

Qi = (95) 

The end of the first period of R*, if such one exists, is determined by the entities 
at the end of the first (TV, M)-section pair with Q, satisfying (83). If such a section-
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pair exists, it can be determined recursively by the formulas (88)—(91). If for 
/ = / > 0 the relation (83) comes to pass first, the characteristics of R* will be 

n* = (<PI\*!>I\7.I\ 1 -Qihl) 
by (49'), i e. 

ut = <Pi = nl + m, +1, -4 = Xi = m, ^ 

f4 = «A/ = nj + mi, et = \-Q,ht- ! 

From (93) we can express nh m-, by the elements of the J?12-triple as 

i = <Pi~^i, = Z,-> mi= Zi . . (97) 

and from (96) we can express 7, «/, m,, gt by the characteristics /7* of R* as 

' = HÎ-HÎ, »/ = HÎ-XÎ, »»»/ = -4, Qi = it ( 1 - 4 ) . (97') 

These quantities are the number of (N , Af)-section pairs, the number of C2-cycles 
serviced without and with preemption and the last residuum, respectively, in a 
period of R*. 

We phrase our main results in 

Theorem 8. The priority schedule R*=Ri,i(Q*) of a reduced configuration Q* 
satisfying ' 

0 < fix < t* < r* (98) 

is periodic exactly when such a residuum g(i), / > 0, does exist which fulfils (83). 
This condition is equivalent to the fact that R* has an M-section MIt / > 0 , the last 
residuum Q, of which fulfils the inequality 

max (0, 9* - &t) <• Qi — it- (99) 

The characteristics are determined then by the Rn-triple HI and the residuum gt as 

n * = (< P l ; i iy I ix , ; i - e i h ï ) . ( i o o ) 

Proof The only assertion to be proved is that (83) is equivalent to (99) with 
regard to g^ This follows, however, from the fact that if g(i) is the last residuum 
of an M-section then e(/') = 0O'—1) + T a ~ T ï and, since r f— t f c<g( i—1) by 
(83") because of the preemption of the last C2-cycle, g(i)>9t—$t and 
<-g(i)^r]t must stand instead of (83) in the case — U s i n g the definition 
(86) of < we obtain the inequality (99) for g(i) and consequently for Qi. • 

We now define the formal algorithm to determine the characteristics 17* of R* 
if R* is periodic. As we do not have finite method to decide whether R* is periodic, 
wejiave to choose an integer L as the tolerable number of (N, M)-section pairs for 
which the critérium (99) is allowed to be tested. If R* is not periodic or the number 
7. of the (N, M)-section pairs in a period is greater than L the algorithm finishes 
without giving the characteristics 77*. Nevertheless, the algoritm gives the values 
of the Jî12-triplé HL and residuum Ql also in this case. The output for 71* is as its 
input (0; 0; 0; .0) in this case. 
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Algori thm Input data: Q* = (t]*', it; L; 
Output data: II* = (pi; 4 ) , HL = (<pL, \j/L, X L ) , 8L\ 
StepO\tt:=nt + K\ 4'-=lt + $t; 

If does not hold then E R R O R and. go to End; 
q := tit; n:= m:= i:= 0; 

Step l:n':= [ » 1 ; n : = n + n'; <?:= e + n K - T i ) ; C-= 
I T2 — Tj J T2 v̂ i 

m ' : = [C] + sgn{C}; m:= m + m'; <?:= ̂  + m ' ( r | - - t^ ; i:= i +1; 
Step 2: If gstf then p\:= n + m + /, p2:=n + m, x2:=m, e2:= l—ellt a n d go t o End; 

If i=L then (pL:=n + m + i, t¡ / L :=n + m, xL'.= m, 6L'=6 a n d go to End; 
G o t o Step 1; 

End. 

We say that the Algorithm R{2 finishes normally if it gives II* and abnormally 
if it does not give II* but gives HL and gL . The algorithm does not put out the data 
of all ( N , M)-section pairs but only those of the last. After minimal modification 
it would furnish these data as well. Independently of the algorithm it is worth to 
analyse the data the algorithm is dealing with because we can obtain further in-
ferences from this analysis. 

First we show bounds on the lengths n[, m\ of the N- and M-sections. Let us 
use the quantities 

• 31-it . - %-it it+it , _ it , , n n n B = * * - L n = — — 5 — h i , . rn = - 5 — q * I, m = + 1 . (101) 
T2 — T j T2 T j T 2 — T 2 if i 

Let / be the number of the (N, A/)-section pairs in a period of R* if R* is periodic 
and 7=o° otherwise. The formulae (88)—(91) define ni,mi,Qi for / ' = 1 , 2 , . . . 
(I, if / is finite). 

L e m m a 9. For the lengths n't, m'u / = 1, 2, . . . ( / ) the following bounds are valid: 

"i = [«]> n < «,' < n, 1 < /' S I, (102) 

m < m\ < m, 1 / < / , m < W j < m , (103) 

where the symbol < is defined by (86). 

9* — n* 

Proof. From (88) with g0 = t]Z we get n{>-f—±—l=n-l and n[^ 

| | - = n and so «i = [n]. Using the inequalities and Qi-i^-t t — T2 — T1 Q*_ Q. 

obtainable from (89) and (90), we get from (88) for / > 1 that n\ > % ^ - 1 > n 

and % 
T2 Tj 

If C would be integer by (91) for / < / then we would get m\ = ^ and (>¡=0 
which contradicts the definition of I. For i—I, Qi=0 is only possible by (99) if 

This means that + 1 if and if i=I and S j f s S i . 
By this fact and. ( T ^ - T ^ S ^ obtainable from (88) we get m [ > 
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> C s 4 Z S = m and m ? < C + 1 < ^ +l=in for / < / and i = 7, 9£i=9i , 
t 2 — T2— 

and we get and m | < ( + l < m for / = / and 9£<9J\ • 

This lemma shows that the series n\, / = 1 , 2 , . . . , and m \ , i = 1 , 2 , . . . , of 
lengths have only small fluctuations, if any. The bandwidth of the variations are 

* 

n—n = 2 and 1 < in — m = 2 j - ^ * " < 2 i f t f > 0. (104) 

These show that both the n\ and m\ values can always vary at most on two adjacent 
integers. 

From the conditions (78), definitions (101) and estimations (102) and (103) 
we easily get 

n i = £ l , 0, l < i ^ 7 , (105) 

ffl,' g 1, 1 S i =2 7. (106) 

Simple regularity conditions can be given for the series of lengths by the para-
meters of Q* which further limit their fluctuations. To simplify writing we use the 
quantities 

*J = 7 = 1 , 2 . (107) 

L e m m a 10. For the lengths n\ and mi of the (N, M)-section pairs the following 
assertions hold. 

(a ) If 

n' < * * < n ' + l 
• Xj 

for some integer n' 0, then 

n[ = n'+1 and n' s n't ^ n'+1 

for 1 < i ^ I. Especially 

n[ = 1 owrf O S n,' 1, 1 < i S / i / 0 < S f - f f J < T * - t i 

= 2 and l^n'tm2, l < i ^ 7 if zj—rf < < 2«-!?) 

(b) If 

X2~ X1 

for some integer n' 0, then 

n i = n ' + l and n\ = n' 

for 1 < i S / . Especially 

n[ = 1, = 0, 1 < i ^ I, if 9i = r,t 

n[ = 2, n,' = 1, i / = r i - t i . -

(108a) 

(109a) 

(109'a) 

(108b) 

(109b) 

(109'b) 
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(c) If 
m' 1 m 

for some integer ra'^1, then 

* ~~ Xs-Xj. + tit < 1 0 8 C

^ 

m'i = m ' , . (109c) 

for all 1 ^ i ^ I. Especially 

m't = 1, l ^ i ^ I , if 
(I09'c) 

mi = 2, l ^ i ^ I , if 

(d) If 
* 

^ = m' (108d) 
Xz-Xi + lt 

for some integer m' > 1then 

m\ = m for 1 ^ j I and m ' - l S m i S m ' . (109d) 
Especially 

m'i = 2 for 1 ^ / < 7 a«i/ 1 =s mi 2, i / t£—r? = af—Si: (109'd) 

COMMENT. (108d) cannot be true for m'=\ because = T I would follow 
which contradicts (75). (108d) is equivalent to ( m ' - l ) ( T £ - S i ) + S £ ~ 9 t = t i * from 
which S i - S £ = ( m ' - l ) ( T £ - S i ) - f / i S T £ - T i > 0 if m ' > 1 and, therefore, 
follows. In case of the condition (108d) is impossible. 

Proof. The method of proof is to relate the bounds (101) to the parameter n 
or m' of the condition (108). (101) is equivalent to n=x1l(x2—x1) — l, 
fi=xj(x2 - x j +1 , m=t]*l(x2—Xi+z/i) —1, m =i/i/(xg - x x+f/J) + 1 . From (108a) we 
get ri — and n ' - f l < « < « ' + 2 and, therefore, the interval (n, n) contains 
the integers n' and n' +1 and (102) is equivalent to (109a). We get (109'a) from 
(109a) for w' = 0 and n'=1. From (108b) we get n=n'~ 1- and n=n' +1 and 
the relations (102) make possible only (109b). (109'b) follows from (109b) for 
n'—0 and n'=1. From (108c) we obtain m' — lon and m ^ m ' + l and, there-
fore, the interval [m, m) contains the only integer m and (109c) follows from (103). 
(109'c) follows from (109c) for m' = 1 and m ' = 2 . From (108d) we get m = m ' ~ 1 
as an integer. The interval [m, m) contains now the integers m'— 1 and m' and 
(109d) follows from (103) and (86) because (108d) is possible only if (see 
Comment) and < = ^ by (86) in this case. (109'd) follows from (109d) for 
m' = 2. • 

The conditions (108) are only sufficient but not necessary for (109) to be valid. 
One of the conditions (108a) and (108b) is always true and (109a) is valid because 
(109b) implies (109a). Lemma 10 is valid also for 1= °° (R* is not periodic) if the 
assertions with i = 7 are neglected. 

From Lemma 10 we can deduce some relationships among the i? la-triples 
which can reduce the problem of existence and determination of the least 
triple satisfying (99) to the problem of solution of a coincidence problem [4]. This 
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problem is generally solved and leads to the regular continued fraction expansion 
of a number depending on the parameters of Q* [4]. The coincidence problems 
encountering have the form of the determination of the least solution A>* = (B*, A*) 
of an inequality pair 

0 ^ B { - A < A , ftj^coo ( 1 1 0 ) 

for the unknown integers CO = (B,A) where reals a s O , sign < and integers 
co0 = (B0, A0) are given, co* exists and is unique if a > 0 or < = S , a = 0 and £ 
is rational, co* does not exist otherwise. B* and A* are relatively prime [4]. 

The following lemma is necessary to prove the periodicity of R* if 
in addition to (75). 

Lemma 11. For the schedule R* = R\,2(Q*) of any configuration ful-
filling (75) the following assertions hold. 

(I) The following three facts are equivalent: 

(a) <¡9, = ^, + */, 1 S i S i , 

(b) m[=\, . \ s i s l , (111) 

(c) R* is periodic and fit = 'A + 4 

(II) If any of (Ilia—c) holds, the characteristics Jl* of R* are determined by 
the least solution co*=(B*,A*) and its error A*~B*Q* — A* of a coincidence 
problem 

O s B ^ - A c a * , . 0 ) ^ ( 1 , 0 ) (112) 

where £*, a*>0 are determined by Q* and < is defined by (86); fit, nt> 4 arepair-
wise relatively prime integers; 

(III) £* and a* in (112) and the characteristics II* have the alternative values 
by the three rows of the following table: 

* * * * ' * 
- C a Hi H2 4 4 

9t * h — r 
T*-TX* T*-'2 - 4 

* * 4 - i t * 1l — r 

4 - 4 4- -4 

st it — r 
4 - i t 4- -it 

0 0 A* + B* A* B* 
2 ~~ T1 T2 — T1 

(b) 4 Z 4 - - 4 ^ A* A* —B* B* 

A*(4~4) 
it 

r D ( 1 1 3 ) 

it 

^ ( 4 - i t ) 
it 

(C) — J — ^ — I
1

 ; B* A* B*-A* 
4 - i t 4~" 

where 
r — max (0, 3% — 

Proof. We begin with the assertions (I). From m\ = 1 we get (/>¡=«¡+2/, 
4>i=«, + ', Xi=i from (93), and (111a) is true. From (111a) and (97) we get 
i=(pi — ij/i=Xi=mi, and (106) and definition (92) prove m'v=1. If R* is periodic, 
exactly one /fj-task starts during every fi2-task by (111c) and (62). This means 
that the number <p;—Xt of Ax-tasks causing no preemption is equal to 0:,-, the number 
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of C2-cycles. This proves ( i l i a ) . From the assertion (I) only the periodicity of 
R* if (111a) is true, remainded to be proved. This will be done together with (II) 
and (III). 

Consider the Gantt-chart of R* until the first recurrence point T* of the ft-
situation (not supposed finite). Carve out the -tasks from it and denote the re-
sulting chart by R". Since exactly one y^-task starts during every 52-task and the 
ft-situation occurs if the ^ - t a s k does not finish during the i?2-task, it follows 
that exactly one /^-task runs during every fi2-task except the last before the ft-
situation, where the /fj-task can finish after the 52-task as well. Therefore, chart 
R" will agree with the schedule R' = Ri , i (Q) of the configuration Q' = 
=(0; 9 i ; t]t\ X—tit) except eventually the last fi2-task which has the length 
9 2 = 9 J — ril+£% instead of 92 = 92— rjZ. As t][=0, the preempting ^ - t a s k s in 
R' do not cause delays and, therefore, the cycle-finishing points are 

/ ' (C 2 „) = /(r2*-//i), ¿ = 1 , 2 , . . . . 

The periodicity of R* is equivalent to the finiteness of T* and this to the fact that 
the last i?2-task in the first period (if such one exists) of R' would run during a Bx-
task and finish not more than rfi earlier than the By -task (see Fig. 8). This corre-

Qi Pi 
( 2 m M 3 2 1 2 m m 
L l 'M 1 vm 1 WA 
m 2 V////A -mm 2 

f(C»t) 

(2 w m 2 
\ 1 i 1 
v m 2 • m 5- 1 

i i 
( 2 W////A 2 W/////A№ 
1 1 1 1 1 1 
torn 2 w/m m ? w 

nt-ei 
Fig. 8 

The transformation R* -+R" and the schedule R' 

sponds to the first situation in R' in which the inequalities 92 — >/i<i'(T2 — t ] f ) — 
-(j—1)9^9? and — for some positive integers i, j, result: 
The values of i and j correspond to the characteristics II* of R* as ¿=/4 , j=nl-
The two inequalities are equivalent to the inequality 

0 =g fit 9* - £ (r* - nt) < ni ~ max (0, 92* - 3*) 

in which the sign < is defined by (86). This shows that the periodicity of R* is 
equivalent to the existence of positive integers co=(B, A) for which the inequalities 
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(112) with and a* of (113c) hold. The least such pair determines //* and pt by 
(113c). x%=B* — A* follows from (111a) and the expression of et from the rela-
tionships et = ( n t - Q Î ) h t and Q I = n t + n t 4 + 4 l î - t â 4 = l ï + A * 4 + ( B * - A * ) r i X -
— B * 4 = t i l — A*(r%—rii). The existence of a>* is garanteed by oc*>0 and this 
by (75). 

We have to prove that (113a)—(113c) are equivalent. The inequality 
0 s B * 9 t - A * ( r t - » i t ) < r i t - r is equivalent to the inequality O s B ' f â - r j X ) -
-A'(4-4)<nt~r if B*=A' and A*=A'-B'. The least solutions of the two 
inequalities with the condition (B, 4 ) ^ ( 1 , 0 ) correspond to each other by this 
transformation. This proves (113b). By the transformation B*=A'+B', A* = A' 
we can similarly prove the equivalence of (113c) and (113a). If B* and A* are 
relatively prime, such are the transformed values as well. This completes our 
proof. • 

Lemma 10 and 11 enable us to solve the evaluation problem of R* for con-
figurations Q* satisfying (75) and any of the relations (77). 

Theorem 9. If the configuration Q*€J2 is reduced, 

rf<Tt and (114) 

then R* = R, 2 ( 0 ' s periodic and its characteristics II* are obtainable by (113) 
and nX, pt, 4 are pairwise relatively prime integers. 

Proof. In R* we obtain w - = 1 from (109'c) and R* is periodic with p* = 
by (111c). The assertions (II)—(III) of the Lemma 11 corresponds to 

the statement of the theorem. • 

With this theorem the only case not solved is the configuration Q££i which is 
reducible and its reduction Q* satisfies the relations 

t Î < T * , S î > 9 2 * . (115) 

If we know that R*=R12(Q*) is periodic, the Algorithm R*2 can be used to de-
termine the characteristics II*. This method does not answer the question whether 
H*, / 4 and j<2 are relatively prime integers wich fact was shown in all other cases. 
In fact, pi and p* a r e relatively prime in every known periodicity case. Some further 
specific cases of (115) can be solved by using Lemma 10. For example, it can be 
proved that mI=m'—1 if (108d) hold and, under the conditions (115), R* is periodic 
if and only if and T2— T* are rationally dependent. If 

g a r - r ê A 
ç ~ B' 

A,B>- 0 are relatively prime integers then the characteristics of R* are 

II* =((m'+l)B+A;m'B+A;m'B-l;l) 

with relatively prime pX and p% [4]. This assertion will not be proved here. This 
result is interesting because it shows that R* can be non-periodic for non-defective 
Q* as well. By another assertion [4], R* is always periodic and its characteristics 
TI* is determined by a given coincidence problem type (110) if (108c) holds. p\ 
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and /4 are relatively prime again. Similar assertions hold for non-defective con-
figurations QÇ.2. (not necessarily reduced) with [4]. The proofs of these 
assertions are lengthy and, therefore, we do not show them here. 

For any independently of its periodicity, the efficiency y 1 2 of the priority 
schedule Rli2(Q) can be approximated by the -utility yi>2(>/i, t) of its section 
r j ^ s ^ t defined by 

= (116) 
- * VI 

as t grows (see (1)). It can be proved [4] that 

yi . .0h, 0 ~ y ( 1 ) + y ( 2 ) - ^ y y ( 1 ) y ( 2 ) ~ Vi,2 (117) 

if t is big enough, where Hi(t) is the number of the completed and x2(t) the number 
of preempting ^ - t a s k s until t in the schedule Rlt2(Q). If Ri,2(Q) is periodic with 
characteristics TI=(ji1\ s2) then 

y1>8 = y a ) + y w _ f i t i ± ( 1 1 8 ) 
Hi 

(Theorem 5.10 in [4]). The proof of these facts we omit as well. 

6. Some comments on the reduction methods 

Theorem 3 in section 3 establishes relationships between the characteristics 
of the priority schedule of Q and of any transform Qn=A"Q of it. The reduction 
operator A defined in section 2 is actually the Ax from the two operators Ax and 
A2 defined for Q symmetrically in the job-flows Qw and Q(2>. The operator Ax 
is only usable in the investigation of the priority schedules Rlt2(Q) and we know 
nothing about the connections between the characteristics of i?2 , i(ô) a n d -R21(gn), 
for instance. In the investigation of R2t i(Q) we can use the operator A2. The Q=A2Q 
can be defined as the Ax Q by (2) but the role of Qa) and Q(2> (the indices 1 and 2) 
must be_changed. The operation A2Q is, therefore, equivalent to the operation 
A1Q=AQ with the conjugate configuration g of g defined in section 1. 

In a previous article [5] we defined other operators Qix and for Q as reduc-
tions utilized in the investigations of non-preemptive schedulings. In the operation 
S/jQ=Si1Q only the parameters and 32 are reduced versus operation A Q in 
which also t]2 is reduced. The ^-reduction is much simpler than the ¿-reduction 
and is defined by (2b) and (2d) replaced (2c) by the instruction ij2—tj2. Q* is reduced 
by S> if [51 

< or T2 = 0 and < Tï or z* = 0 

which are exactly the conditions (5a) and (5c) as part of conditions Q* to be reduced 
by A. This means Q* reduced by A is always reduced by ^ as well. The opposite 
is not true, of course. The conditions (5a) and (5c) show that a configuration Q* 
is reduced simultaneously by both and Oi2. This is not true in respect to Ax and 
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A 2. Fig. 9 shows the domains of reduced configurations g by the operators £ 
and Ai3 i= 1, 2 (refer also to Fig. 2). We distinguish the following domains: 

(a) TJTJ = 0; g is reduced by all operators 

03) th t ] 2 > 0, = 92 = 0; g is reduced by all operators 

(y) t] > 0, 0 i )/, S 32 < i n 0 s //2 S 9X < r2; g is reduced by all 
operators 

(a) rj2 > 0, 0 ^ //x ^ 92 < rx < g is not reduced by but it is 
reduced by the other operators 

(b) > 0, O S i f i S ^ r ^ i j ; g is not reduced by J 2 but it is 
reduced by the other operators 

(c) t]il2 9 > 0, 0 ^ 9,- < rj3..t, i = 1 , 2 ; g is n o t r educed b y Ar, 
i = 1,2, but it is reduced by , i = 1, 2. 

. u 

/^-reduced 
; A ¡¡-reduced 

k92 

9* 

(k 

*l2 («) 
( a ) 

9L 

tt9o 

>72 
(b) 

»72 

(C) 

. Fig. 9 
Domains of reduced configurations 

. Let us introduce two simple operators and d2 defined by g = <5,g as of para-
meters 

m-i = 
13 

i_/<plf)Si if (119) 
f/3_( otherwise 

where /< (x) is the greatest integer less than x. Let It is clear that /<(f72/$i) = 
=k2 in (2c) if 9x>0. The operator <5; is effective for g if / /3_ i>9 i>-0 and in-
effective for g if 91>73_i=0 or t j ^ iS&i . Since the order of steps (2c) and (2d) 
in the operation AQ is indifferent, the operator A can be represented as the oper-
ators S and S in succession: 

A = 5S. 

As 9 x ^ t 2 implies the operator 5 will be ineffective until g is not reduced 
by S and S is effective on g . This means that the manifestation of A for g is S 
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until 2>Q will not be ^-reduced, i.e. AQ=3Q. If 3>Q is ^-reduced, but not A-
reduced, then AQ=D!2IQ^3)Q. This means that the manifestation of A"Q, « > 0 , 
is the alternate series of operator-powers and the operator <5. 

The manifestation is determined by the series (L) of quotients, or rather, by 
the subseries (K) of (L), defined in section 2. The operator <5 in A =83) is ineffective 
whenever k2t„=0. 

Define. VQ — — 1 and for />0 , v -=r if k2r>0 is the ith positive member 
in the series (k), if such one exists, and v- is undefined if less than i positive members 
in (k) exist. It can easily be seen that 

— 1 S VQ < vi < . . . and v'i = / — 1 

and for any integer. rfeO there exists a greatest v- for which v,' < r. Let this be 
v'h(r), '-e. 

h(r) = max i, r = 0 , 1 , . . . . 

h(r) is the number of positive members in the series k2>0, k2tl, ..., k2 r_1 and v'h{r) 
is the index of the last positive member if such one exists, and v'hir) = —1, otherwise. 
This means that 

v i ( o ) = - l . r s 0. 

By means of the series (v') and function h(r) the manifestation of Ar on Q can be 
written as 

ARQ = ®r~1-*h(r)[ [[ 5S)v'J-V'J-AQ, RSZ 0, (120) 

V=AW > 

and if the degree of compositeness v of Q is finite, 

ARQ = ® v - 1 - , ' / i ( v ) | ¡1 53V'J~V'J-I\ Q, R - v. (120') 
\j = h(v) ) 

1 1 
Here / 7 x j = xh(r)xh(r)-L---x± and J JXj = Q is the identity operator. The factor-j=Wr) j=o 
izations (120) and (120') depend, of course, on Q and, directly, on the series (L). 
If the series (v') is finite and, with ./=|(v')|, the last positive member of 
it is Vj_ t. Let us supplement (v') with the last member v'j = v — I. Define the series 
of integers 

Vj = Vj-v'j.l5 j = l,2, . . . , / . 

The ^-reduction of Q is then 

{2<*> = 3>^Q = = Q / i + 1 

and the ¿-reduction of Q is 

Q* = A*Q = 3>A 77 D9'J)Q = QY. (121) 
\j=J-i J 

The factorization (121) shows that the ¿-reduction of any configuration 
is equivalent to some alternate series of ^-reductions and ¿-operations. This fact 
clearly shows the connection between the two kinds of reduction. 

9 Acta Cybernetica 
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The reduction operators Ai and A2 differ in both of their factors, and <5,-: 

A1 = 8l91, A2 = 52®2 (122) 

but the manifestations (121) of the At- and A ¡.-reductions, if finite, are of similar 
factorizations in structure. In the analogous to (121) of the A2-reduction of Q 
the same operator <2> can be applied because a configuration <2(+) is reduced by 
both of and 3>2 at once and the degrees of compositeness by 3>x and S)2 have 
a known connection [4]. Nevertheless, the series (L) by Ax and A2 are different and, 
consequently, the series (v) playing the central role in (121) are also different. 
Though the data of Ax- and A2-reduction are not independent of each other, the 
interrelationships are likewise complicated and hardly provide a useful basis in 
practice to avoid evaluation of one of the two schedules i ? i , 2 ( 0 and i ? 2 > 1 ( 0 . To 
inspect the relationships between both schedules the two reductions Ax and A2 
seem to be a usable basis. The results given here can provide a grounding to this 
inspection by revealing the nature of the priority schedules in themselves. The method 
of /4-reduction is a useful tool to this. 

We mention the connection of the A -reduction with the regular continued 
fraction expansion. The Euclidean algorithm of the expansion of the number 
£ = xih-i c a n be defined as the iteration [2]: 

1,0 — T l> T 2,0 = r2 and for n = l , 2 , .. . 

l , n - l — b , „ - 2 T , 2 , n - i + T i , „ where 

b2n-2 — 0 is an integer and 0 s T1>n r. 

¿>2/1-2 ar>d r1>n are not defined otherwise 

*2,n —1 ~ ^ 2 / i - l T i , n + T 2 , „ where 

i>2„-1 S 0 is an integer and 0 S T2J„ < T: 

bi„-1 a " d T2_„ are not defined otherwise. 

2,11-1 if ,„-1 > 0, 

if t , „ > 0 , 1,n 11 1,n 

Both components of the pair (T1>n_i, T2,„-I) are reduced by the step. This iteration 
ends with a t ; > „=0, z'=1 or 2, n S O if ^ is a rational number and is infinite if ^ 
is irrational. 

The definition (2) of the zl-reduction differs from this iteration by and T2 
being decomposed into two parts: r - i / j + S , - , i ' = l , 2, and this parts are reduced 
separately except rfx which is not reduced at all. The iteration can end not only 
with a zero component but with conditions (5) of the reducedness. We have seen 
that the zl-reduction becomes continued fraction expansion if one of the parts 
i]2 and 32 is zero. If, however, 92=0, the reduction becomes the expansion of 
9Jri2 and not of t J 3 2 . 

The entities defined in section 2 in connection with ¿4-reduction remind us 
of those in connection with the regular continued fraction expansion [3]. The special 
case of t]=0 corresponds to the expansion of i = T 1 / t 2 . 
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7. Summary 

We review below the points Q of the configuration space 2 by our theorems 
proved from the point of view of whether the Question of periodicity and evaluation 
of the priority schedules i?1>2 and i?2,i of Q is answered. See Fig. 10 as an illustra-
tion. Tx refers to the Theorem x in the Fig. 10. 

Fig. 10 
The domains of 2- where theorems answer the question of periodicity 

Tx 
of Ri,t(Q) (Tx) and Ri.iiQ) (Ty) as — 

Ty 

9» 
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By Lemma 3 any configuration Q is reducible to a Ax-reduced configuration 
Q* or a defective configuration Q' with r\'x 9'2 = 0. This means that the questionable 
part of 2 is reduced to the three-dimensional subspaces t]x=0, f]2=0, 9X=0, 9 2 = 0 
and to the four-dimensional domain of 2 the two-dimensional cuts by fixing 
Oil. Ч2) of which are the domains (a), (b), and (y) in Fig. 9d. Lemma 3 (L3) is used 
in Fig. 10 only when no other theorem answering the Question directly exists. In 
the three-dimensional subspaces t]x92 =0 the Question of R12 is solved by Theorem 2 
if 9 1 T 2 =0 and by Theorem 4 if 91T2>0. These solve the Question of R2 x in 
the subspaces tj29x=0. The Question of RX2 in the space 9X=0 and of R2X in 
9 2 = 0 is solved by Theorem 2 independently of //,• and т 3_ ; . 

If rj2=0 but rix9x9.£>0 the Question of R12 is answered by Theorem 7 and 
this answers the Question of R2X if qx = 0 but r]29x92^-0, too. 

The Question is answered so for every defective configuration and, by Theorem 
3, for every configuration reducible to a defective one by any of the operators Ax 
and A2. By Lemma 3 all other configurations are reducible by both of Ax and A2 
to configurations Q* and Q**, respectively, which are in the. domains (b) and (7) 
and domains (a) and (y), respectively, in Fig. 9d. Theorem 6 answers the Question 
of Rx 2 in the domain 92<r]x and of R21 in the domain 9x^t]2 without reduction. 

As far as the configurations Q reduced by both of Ax and A2 the Question of 
RX 2 is answered by Theorem 5 in the domain тх = т2 and the Question of T?2,i in 
the domain txSz2. Theorem 9 answers the Question of Rx 2 in the domain 9xs92 
and the Question of i?2,i ' n the domain 9 X ^ 9 2 . 

In Fig. lOd the only questionable domain remained for R2 x is 

ri2sr2-rix<9x'=:92. 

This contains "absolutely" (by both of Ax and A2) reduced configurations for which 
t ] x s 9 2 < T 1 and t ] 2 s 9 x ^ x 2 . In general, the unanswered domain of 2, remaining 
Only if Г]Х^Г]2, is 

0 < 1i = Ь - П з - i < $3-/ < for Ri,3-i if J/i -= i/3-i- (123) 

Further parts from the domain (123) are answered by results based upon the Lemma 
10 and mentioned after (115) but not proved here. These are found in [4]. A direct 
answer is given by Theorem 6 for Rx 2 in the domain 92<r]x and for R2 x in the 
domain 9x<t]2 which is the answer for both schedules in the domain 0 

The flow of evaluation of the priority schedules Rx 2 and R2 x for a configura-
tion Q is illustrated on the flow-chart in Fig. 11. Tx refers to the Theorem x and in 
\ xx; yx\ x2; y2 \ xt, yt refer to the schedule 7?>>3_;. x{=p means periodicity, xt= ? 
refers to unanswered Question and = other refers to the rationality of x t as the 
condition of periodicity. number gives the efficiency value of i? I>3_ ;, 
refers to the undefinedness of the efficiency or unanswered Question and ^ ¡ = T x 
refers to the Theorem x as means of determination of the efficiency. (xi,yi)=Ai 
refers to the application of the operator A{ iteratively until a configuration results 
which is in a domain where the schedule is directly évaluable by one of the 
Theorems 2, 4, 5, 6, 7, 9. 

KEYWORDS: steady job-flow pairs, priority schedules, reduction method 
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Fig. 11 
The flow-chart of the evaluation of the priority schedules /?,j2 and R2A 

COMPUTER SERVICE FOR 
STATE ADMIN1STRATION 
CSALOGÁNY U. 30—32. 
BUDAPEST, H U N G A R Y 
H—1015 
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