58724

Tomus 5. Fasciculus 1.

ACTA
CYBERNETICA

FORUM CENTRALE PUBLICATIONUM
CYBERNETICARUM HUNGARICUM

FUNDAVIT: L. KALMAR
REDIGIT: F. GECSEG

COMMISSIO REDACTORUM

A. ADAM F. OBAL
M. ARATO F. PAPP
S. CSIBI A. PREKOPA
B. DOMOLKI J. SZELEZSAN
B. KREKO J. SZENTAGOTHAI
K. LISSAK S. SZEKELY
A. MAKAY J. SZEP
D. MUSZKA L. VARGA
ZS. NARAY T. VAMOS
SECRETARIUS COMMISSIONIS
I. BERECZKI
Szeged, 1980

Curat: Universitas Szegediensis de Attila Jézsef nominata

5. kétet . 1. fiizet

ACTA
' CYBERNETICA

A HAZAI KIBERNETIKAI KUTATASOK
KOZPONTI PUBLIKACIOS FORUMA

ALAPITOTTA: KALMAR LASZLO
FOSZERKESZTO: GECSEG FERENC

A SZERKESZTO BIZOTTSAG TAGJAI

ADAM ANDRAS OBAL FERENC

ARATO MATYAS PAPP FERENC

CSIBI SANDOR PREKOPA ANDRAS
DOMOLKI BALINT- SZELEZSAN JANOS
KREKO BELA _ SZENTAGOTHAI JANOS
LISSAK KALMAN SZEKELY SANDOR
MAKAY ARPAD SZEP JENO

MUSZKA DANIEL VARGA LASZLO
NARAY ZSOLT VAMOS TIBOR

A simumsz-rﬁ BIZOTTSAG TITKARA
BERECZKI ILONA

Szeged, 1980. december
A Szegedi J6zsef Attila Tudoményegyetem gondozisiban

Decidability results concerning tree transducers I

By Z: Esik

A tree transducer is called functional if its induced transformation is a partial
mapping. We show that the functionality of tree transducers is decidable. Con-
sequently, the equivalence problem for deterministic tree transducers is also de-
cidable, The latter result was independently achieved by Z. ZACHAR in [12] for bottom-
up tree transducers and a restricted class of top-down tree transducers. The solv-
ability of the equivalence problem for generalized deterministic sequential machines
is known from [2] and [4]. It was proved in [11] that this positive result can not be
generalized for arbitrary, i.e. generalized nondeterministic; sequential machines.
Therefore, the equivalence problem for nondeterministic tree transducers is un-
decidable.

Our result can be used to minimize deterministic tree transducers in an effective
manner. However, the minimal realizations of a deterministic tree transducer are
not isomorphic. We investigate conditions assuring the uniqueness (up to iso-
morphism) of minimal realizations in certain classes of tree transducers.

Part of the results of the present paper have been announced in [8] The terminol-
ogy is used in the sense of [S].

1. Notions and notations

By a type F= U F,- we mean a finite type such that . F,=0. For the type

F, v(F)=max {n| F,#0}. An ‘F-algebra is a system A=(4, {(/)a|fEF}),
shortly, (4, F), where for every nonnegative integer n and f€F, (f),: A"—~A4 is
the realization of the n-ary operational symbol f.

Let Y be an arbitrary set. Then Tp y=(Tf,y, F) denotes the free F-algebra
generated by Y. The elements of Tp y are called frees and they can be obtained
by induction as follows: Ty y is the smallest set satisfying

(l) FOaYgTF,Y,'

@) if n=0, feF,, t,.. €Ty then f(py,...,p.)Ty.

1 Acta Cybernetica V/1

2 ' Z. Esik

In particular, if Y=X,, the set of the first # variables x,, ..., x, for a nonnegative
integer n, Tp,y is denoted by Tr , and Tp is written Tp. Each n-ary tree pcTg ,
induces a mapping (p),: A"—~A in an F- algebra A. If A is the free algebra Ty y
then (p)a(ty, ..., t)=p(4, ..., 1,), i.e. the tree obtained by substituting f; for
x; (i=1,...,n) in p.

The depth (dp), rank (rn) and frontier (fr) of trees are defined as usually. For
a tree pc Tg,y we have

@ do@=0, m@=1, frp)=p if pe,

@) dp(p)=0, m(p)=1, fri(p=41- if pEF,

(i) dp(p) =1+max{dp(p)li=1,..,n}, m(p) =1+ é’rn(p,-),
)= (). fr @) I p=Srr o ps SeFur

P1s s Po€Tpy and n=(Q. Here A denotes the empty string.
In connection with the elements of Ty ,(n=0) we shall also use the concept
of path. For an arbitrary i(1=i=n) and p€Ty , path;(p) is given by

() path(p) = {2} if p=x,
(i) path;(p) =0 if pcF,UX,—{x},
(ifi) path;(p) = {jwlwe path; (p;), 1=j=m} if P =f(pss - Pu)s

m=0, fe Fouy b1y oo P TE .. If path; (p) is a singleton then it is identified with
its umque element For prath (p) we denote by |w| the length of w. path(p)=

= U path;(p). For arbitrary two strmgs vand w ofw denotes the derivative of v with

respect to w, i.e. v/w=u if and only if v=wu.

Further on we shall often use vector notations to simplify the treatment. Vectors,
except possibly the one dimensional ones, are always denoted by boldfaced letters.
For each k dimensional vector acA4* (k=0) and i (1=i=k) a; denotes the ith
component of a. Conversely, if ac4 then a*¢ 4% is the k dimensional vector whose
each component is equal to a. The product ab of the k dimensional vectors a
and b is defined by ab=(ayb,, ..., a;b) where a;b; are short notations for
(a;, b)) (=1, ..., k). For the vectors of trees pET},, and q€T§ ., we denote by
p(@ the vector (py(q), ..., py(@)). -

According to the function fr one can dlstmgulsh the subset Ty, of T% ,. This
consists of those elements of T , whose frontier is a permutation of the variables
in X,. We may extend this definition to vectors as follows: Ea=
={peTk,|fr (p,)... fr (p,) is a permutation of X,}. Observe that 7%, is not the
kth power of Ty ,.

We now turn to the deﬁnltlon of tree transducers. Following 5l a top-down
tree transducer is a system A=(F, 4, G, A,, %), where F and G are types, A4 is
a finite, nonvoid set, the set of states, 4,S A4 is the set of initial states, finally, X
is a finite set of top-down rewriting rules. A top-down rule has the form af—p
— or equivalently af(x,, ..., x,)—~p, where n=0,a€Ad, fcF,,pcT; 44x,. A
bottom-up tree transducer A=(F, A, G, Ay, Z) has a similar structure except A4,
is called the set of final states and Z-contains bottom-up rewriting rules. A typical -

Decidability results concerning tree transducers I. 3

bottom-up rewriting rule is of form f(ayxy,...,a,x,)~ap whére n=0, fCF,,
pETG s 4, ay, ..., a,€A. By a tree transducer we mean a top-down or bottom-up
transducer. o ' - B

Take an arbitrary tree transducer A=(F, 4, G, AO,E) and let Y. be an ar-
bitrary set. T can be useéd to define a bmary relation % Ay on: TG AXTF , in the
top-down case and on the set Tr, axtq, ¥ in the bottom- -up case. It is called derivation
and its exact definition can be found in [S]. If there is no danger. of confusion A

is omitted in -2, y. It can be seen that if Y, £ Y, and p, g€Tg, AxT,,- f then
p=>,,]q if and only if p=>y2q Similar equivalence is valid in the bottom-up case.

Thus we may omit ¥ in & .
Agam take the tree transducer A. This induces a transformation 1, S TpX Tg:

_ 14 = {(p, 9)|3a,€ 4, app =)
in the top-down case, and .
s = {(p, DI3a€ 4 p S a4}

for bottom-up A. If 7, is a (partial) function A is called functional. This is always
the case if A is deterministic, i.e. different rules have different left sides, moreover,
A, is a singleton in the top-down case. Two tree transducers are called equivalent
if their induced transformations coinside. For a tree transducer A=(F, 4, G, 4,, %)
and a state acA we denote by A(q) the transducer A(a)= (F, 4, G {a}, 2).

The domain of the transformation 74 is denoted by dom 7. It is a regular sub-
set of Tg, i.e. a regular forest. Regular forests are -exactly the forests recognized
by tree automata. A tree automaton is a system B=(F, B, B,) with (B, F) a finite
F-algebra which is denoted by B too, B,S B is the st of final states. The forest
recognized by B is determined by " T(B)={p< T¢|(p)s€ B,}-

Sometimes we need to restrict a top-down tree’ transducer to a regular forest.
If A=(F, A,G, A,,%) is a top-down tree transducer and 7& Ty is a regular
forest then ‘the system B=(F, T, A, G, A,, X) ‘1s called a regularly restricted top-
down tree transducer. Its induced transformation is t3={(p, ¢)€14|p€T}. A similar
but more general concept is the concept of top-down tree. transducer with regular
look-ahead introduced in [6]. A top-down tree transdiicer with regular look-ahead
is a system A=(F, 4, G, 4,, %) where F, A, G, A, are the same as for top down
tree transducers and X is a finite set of rules

(afCx,, A p; Ry, ..,R)

where af (x;, ..., x,)—p is a top-down rewriting rule, i.e. acA, f€F, (n=0),
PTG axx,, and RS Tp (1=i=n). are regular forests. The regular forests R;
are used to restrict -the applicability of the coressponding’ top-down rule
af (x4, ..., x,)—~p. The rule (af(xy; ..., x,)>p; Ry, ..., R,) can be .applied for
a subtree of a tree in T, 4«1, if and only if it is of: form af{(p,, ..., p,). with p,€R;
for each i (1=i=#n). Apart from this derivation is defined as for top-down trans-
ducers. The induced transformation is the relation 7,= {(p, q)|app2q for some
a,C Ay} Again, if it is a function A is called functzonal It is known that every func-
tional bottom-up or top-down tree transducer is equivalent to some deterministic
top-down transducer with regular look-ahead (cf [7D. :

1*

4 Z. Esik

2. The decidability of functionality of tree transducers

First we show that the decision of functionality of bottom-up transducers is
reducible to the decision of functionality of regularly restricted top-down ones.

Let A=(F, 4, G, 4y, Z) be an arbitrary bottom-up transducer. Define the
top-down transducer with regular look-ahead A’ as follows: A’=(F, 4, G, 4,, X’)
where .

2 ={(af > p(a1 X1, ... @4%,); Ry, ..r R flayxy, -.s 8,X,) —~ ap€Z,
Ri=domtyg,, (i=1,..,n)}
Lemma 1. A is functional if and only if A is functional.

Proof. 1t is obvious that t,C1,.. Therefore if A’ is functional then A is func-

tional, too. To prove the converse first we show that if ap®,.q and a’p3,.q’
where a,a’€A, pcTy, q,q9'€Ts and g#q° then there exist different trees r,r'€Tg

such that p2 ,br and p%,b'r’ are also satisfied for certain choise of states b, b’
with {b, b'}< {a, a’}. We shall prove this by induction on p. The basis, p€ F,
is immediate. Suppose now that p=f(p,, ..., p,) where n=0, f€F,, py, ..., P.€Tp.
Since apZq and a’p3 g’ there exist rules f(ayx,, ..., @,X,) ~aqe, f(aiX1, - » AoXn)—~
—~a' g€ X with p,cdom 1, Ndom 1,y and satisfying go(a,p;, -, 4,7,)>g and
ao(@py, ..., a,p)>q’, respectively. We distinguish two cases.

Firstly assume that for each i€{l, ..., n} if x;.appears in fr(g,) then there
exists exactly one tree ¢, €T; with a;p;2q;. Then also. p;%a;q;. This and
pi€dom 15,y (i=1, ..., n) yield pEaq. Similarly, we get p3a’q’ if, for each
x; occuring 1n fr (g;), there is only one tree in T; which can be derived from qjp;.
This proves our assertion in the first case.

Secondly assume that there is an integer i€ {1, ..., n} such that x; appears in fr(q)

and there are different trees ¢;,g/€Ts with a;p;%¢q; and a;p;5q], respectively.
Then, by the induction hypothesis, there exist trees r;=ri€7T; satisfying both

pi>ar;, and p;Sar{. For each index j(j=i) choose r;¢T; in such a way that
we have p;=a;r;. This can be done by p;€édom Ta@y)- Now let r=go(ry, ..., 1),
F'=Go(Pyy o Fiv1s iy Fisas ooy T). F#r’ because r;=r{. On the other hand p%ar
and pSar’.

Now assume that A’ is not functional. Then there exist trees pe Ty, g=2q'€ Ty
.and initial states a,, @j€¢ 4, such that both agp3,.q and ajp,.¢q’ are satisfied.
By the previous considerations it follows that there are different trees r,r €7Tg
with p3,b,r and pZ,bir’ where each of the states b, and b, denotes either
ay or ay. This means that both (p, r) and (p, r’) are in 1,, i.e. A is not functional.

Lemma 2. The decision of functionality of bottom-up tree transducers is re-
ducible to the decision of functionality of regularly restricted top-down ones.

Proof. Let A be an arbitfary bottom-up transducer and A’ the top-down trans-
ducer with regular look-ahead constructed in the previous lemma. We know that
A is functional if and only if A" is functional. By Theorem 2.6 in [6] we have

Decidability results concerning tree transducers 1. 5

14-=toTg Where 7 is a deterministic bottom-up relabeling, i.e. a transformation
induced by a special deterministic bottom-up transducer, and B is a top-down
transducer. Since 1 is a function A’ is functional if and only if B restricted to the
regular forest 7 (dom 7,.) is functional. Note that dom t,=dom 74... As one can
construct the transducers A" and B in an effective manner this proves Lemma 2.

Now let us fix an arbitrary regularly restricted top-down tree transducer
A=(F, T, A, G, Ay, Z), and a tree automaton B=(F, B, By) recognizing T. Set

P = {peT|3q # q'€T; (p, 9), (b, ¢)ETA}.

In the next five lemmas we shall present five reduction rules. Each reduction
rule produces a smaller tree p’€ P for a tree p€ T if it can be applied for p.

Lemma 3.. Let p;,p€Tp 1, p€Tp, my,ny, ny, ny=0, q1ETG,,,l, QiETG,,.'I,
QETy, TR | A€ TE, GETE, ao, age Ao, a€A™, a{€A™ (i=1, 2). Let us denote
by A;and A; the sets 4;,={a; ;|1=j=n;} and A{={a; ;|1=j=n]} (i=1, 2) respec-
tively. Assume that each of the following conditions is satisfied:

() pi(p(P)ET,

(i) aop 5 511(31?‘?), agp = qi(a{x:ll),
n n reony X o nh
(i) a,py? % q (a, xlz), 1p,' = q (alez),

. n rony ¥,

(iv) a,pg = q;, azp3’=qs,

v (pads = (Pz(Ps))B, A4, S 4, A1 E A4S,

(vi) ¢,(r) # ¢q;(r") holds for any re7® and r’ETgi.

Then p,(p;)€P.

Proof. First note that our assumptions imply the condition p,(p,(ps))€P.

From now on let [n] denote the set of the first n positive integers for every
n=0. Thus [0] is the empty set. Let ¢: [n]—[n,] and ¢’: [#])—~[r3] be mappings
with a; ;=a 4 (iE['hD and aj ;=da;s .-y ({€[ng]), respectively. Obviously we
have a piSr and ajplSr’ where 1=(3,a)s > 95, pm) ¥ =(93,0' 1) -+-> G5, 0" (n))-
By (ii) this implies that ayp1(P)=q,(r) and ajp, (ps)=qi(’). On the other hand
¢, (r)=q,@’) by our assumption (vi). Furthermore, p,(p3)€T holds by (v). Hence
Pi(p)EP. '

Lemma 4. Let p1€Tp,1,P2€TF, n, I’l’>0, fhéTG,,,, qiefG,n” q2€TG"’ (IQETZ;",
ay, ay Ay, a€ A", a°€ A™. Let |A| and |B| denote the cardinality of 4 and B, re-
spectively and let [|4||=2!4!, K=max {dp (q)|3a€ 4, p€ Tr,x ap—q€Z). Assume
that the following conditions are valid: '

(0 p(po)ET,

.. b
(i) aop = q,(axy), agp1 = q1(a’xy),

6 Z. Esik

(i) ap} g, 29 =4,

(iv) path(q,) is a preﬁx of path,(q;),

N Ipath, (¢ DI —|path, (gDl > [4I*[BIK, dp(p) = [4]%|B].

Then there is a tree r€7T, such that p,(r)€EP and rn(r)<rn(p,)-
‘Proof. Let R be the forest defined by '

= {r€Telp,(NET, m(r) =rtn(py), 3Is€TE, s;E T arSs, ar.> s}

Since p,€R R'is nonvoid. Let r be an element of R with minimal rank. We shall
. show that p,(r)€P and dp (r)<[j4]*B. _
Assume that the condition dp (r)<|A4[2B does not hold. In this case there
exist ' '
T "2€TF,17 r3€ Ty, My, my, my, mj =0, SIET(;',ml’ S{ET(';',,,,/I,

€150, sgef’.';",",,.g_,; so€ 17, sieTr?, bed™, bicd™ (i=1,2)
such that each of the following five conditions is satisfied: '
®» r= "1(”2("3))7 Fg # Xy,
() arp S s (b,x™), aTy Ss{(b{x™),
() by S sy(b,x7E), biryt 5 s (bXT),
(@) brreS sy, birre o s,
B @d= ("2("3))35 B, S B,, B;ES B;, where v
Blz{bhi|1§j§m,}, B’ {bl,_]ll §j§m£} (i:1,2).

Now let ¢: [m]—[m,], ¢’: [m7]—-[m3] be mappings satisfying the equalities
bi=byoq GElm), by i=blpw GElmD. It is immediate that ar, (ry)"=
=>sl(s3 o(1)s -3 53, p(mpy) and a’rl(rs)"';si(sg,w{l), w5 83, @/(my)- This, together with
(rl(r3))B_(r)B yields - that ri(ry)¢R, which is a contradiction because
™ (ry (rs))<rn'(r).

Therefore, dp (r)<|[A[| |B]. Thls implies that for every seTE and SETE
if the derivations ar"3s and a’r"Z»s’ exist then dp (s1), dp(sp) =4} |B| K,
thus by (iv), p(r)€P. Since r was of minimal rank this ends the proof of Lemma 4.

Lemmas Let plap29p3ETF 1’p4€TF1nnnnm -—0 (1—1 2 3) q1ETG,n1+1,

9y gt ons 1€ TG s €T3, €T, 0, €T, ,QSET"E" ,qaeT"z T ez’"g‘zm ,

€T, Q,ETIS, ¥,E T, ay,)€ Ao, A€ A, €A™, A€ A", b 4™ (i=1,2, 3). Finally,
let v€T; and v —rl(rz(r3(r4))) Denote by A4;, A and B; (i=1,2,3) the sets
of components of a;, a; and b, respectlvely Assume that the followmg conditions
are satisfied: R :

Decidability results concerning tree transducers 1. 7

@) pi(P(ps(P))ET,

(i) aop, ;/‘h(axn a1x:1)’ . a(;Pl;’ \4{("1(b1X;"1), a; X:II ,
i) 2l D go(@:x), apl S qi(xl), ap S ax, byl S ry(bx™),
(iv) apg = q:(a;x7?), a‘ép;; ut qé(aéx;s), aps = ax;, b, p;e 2 ry(b, x7's),

n * , "' * ’ * m * .
(V) appP=4qs, APpP=q, ap=v, bp=1,

) (pods = (P3(P4))B _— (Pz (pa (P4)))B,
A, C A, C Ay, A, S A, S A, B, = B, < B,,
(vii) v #v’, pathy(qy) = path,(g;).
Then at least one of the trees p,(p.(py)), p1(ps(ps) and py(py) is in P.

_ Proof. First observe that by the assumptions of the lemma it follows that
pi(p(ps(P)))EP. - -

Let @;: [n]~[n4q), 070 [n{]=[ni i} and ;2 [m]—~[m;y,] ((=1,2) be mapp-
ings such that we have a; ;=@iy1,4,5) (=1,2, j€[m), ai’,,=a:+1'q,;(j) (i=1, 2,
J€miD, by j=bisrgy (=12, jé[m]). Furthermore, let @3=¢,00,, ¢3=
= 1003, Y3=Y10Y;. .

Let us introduce the following notations:

v

S1 = (93,0, (1) +++» qs,m(nl))(‘h),
’ I 7 ’
8 = (qa,cp’l(l)a seey q3,¢'1(ni))(q4)9

t1 = (r3,|h @)s:;°°» "s,wl (ml))(r4)’

Sy = qz(%,w @> s 94,00 (02))>

§; = Q2(q4,¢;(1)’ <3 G4, 0% (n})),

t, = 1'2("4,%(1), cee "4,.11,(».2)),

S5 = (44,0535 -+ T4, 03(m)

’ 7 ’

83 = (q4,¢é(l1)a'-"9 q4,q)'a(n'l))’

ts = (g, 095 s T, 05 (m)- i
It is easy to check that each of the following derivations is valid: aopl(ps(p4))§>
é>ql(v, s, 06P1(P3(P4))*2’4i(f 1(t), Si), aoP1(P2(P4));>Q1(U, Sa), ‘16171(172@4))é>
é"]i(" 1 (t), SQ), a,p1(P)=> 4, (v, S3), a(,)Pl(P:x)é"II(r 1(ts), SQ)- On the other hand
P1(2s(PD))s Pr(P2(Pa)), P1(PW)ET. o

© Assume that p,(p,(p,)) ¢ P. Then, by (vii), it follows that nz,, my, my>0 and

there is an integer i€[my] with ry (r)=rs, .. Without loss of “generality we
may assume that this integer i is in the range of i/, i.e. there exist j€[m,] satisfying

—

8 Z. Esik

Y1(j)=i. Now suppose that neither p,(ps(p,)) nor p,(p,) is in P. Then ry(t))=
- =n(t)=r(ty) (=v). But this is impossible because ¢, ;¢ ;.

Note that Lemma 5 remains valid even if A;C 45 and B,< B; are replaced
by A;UB,S A;UB;.

The proof of the next lemma is similar to the previous one.

Lemma 6. Let pl’P2,p3ETF,1”p4€TF’ ni’n;: miEO (i=1,2’ 3’)1 q1€TG m+1l>
qleTG,,,;_,_lerET G,m,’ q2ET23,,2’ QZETG:,,;, r2€TG,l,,,2i Q3ETG";.',,33 qséf(’;?n;’ rsefg; ’
QeT, q4€T"3, r€T58, ay, ap€ Ay, a€A™, aj€A™, b;2A™ (i=1,2,3). Further-

more, let v’€T; and v=r,(r,(rs(r,))). Denote by 4;, A; and B; (i=1, 2, 3) the sets
of components of a;, aj and b;, respectively. Assume that

@ P1(Pz(P3$P4)))6T,

() aopy = qi(ry(byx™), a,X7), afp, 5 (v, ax"d),

(iii) alp;i;qz(angZ); a1p21=>q2(a2x) blp'z”lérz(bzx;""’),
(v) 2P} qo(asX]), a3 = q5(a3X15), byplt = ry(byx™™),

V) 3PS q., apt>q;, bp Sy,
i) (p)s = (P3 (P4))B = (Pz (ps (P4)))B,
A, & A, & A4, AigAégA:’s, B, = B, & B,,
(vii) v =0, path,(gq) = path; (g9).

Then at least one of the trees p,(p.(pa)), Pr(Ps(Ps)), P1(py) is in P.
Our last lemma is stated as follows:

Lemma 7. Let PanETF nPaETh k,L,m Kk, I',m =0, %ETG k+1> %ETG K +1s
42676 1015 956 T6, 141, ¥€TE s T ETG,m) %ETG 1> 93, V€T, SETGy SETE, Ty,
VETE, ay, ayE Ay, a, '€ A, acA¥, a’CA¥, be AL, €AY, c€A™, cA™. Let A,, B,
and C; denote the sets of all components of a, b and ¢, respectively. Similarly, denote
by Ay, B] and Cj the sets of components of a’, b’ and ¢’. Suppose that the following
conditions are satisfied:

@) P1(P2(P3))E T,
(") aopl ; ql(axl’ ax’{), a(’)pl ; q{ (a’xl’ a,xi’)’
(i) ap S galax;, bx)), a'pe> gi(a'x,, b'xY),
api S riexy), a'py S r(exy),
(V)" aps= gs(0), a'ps> g5, bpiSs, VPSS, oSt py S 4,

V) 4, B UG, A4S B;UC{’ (pa)s = (Pz(Ps))B,

Decidability results concerning tree transducers 1. 9

(vi) path, (g) = path, (¢;) path(g;), path, (¢,) path (g;) =
= path(q;) path, (q2), v # ¢s.
Then p,(p;)€P.

Proof. Let us introduce the following notations: d=(b, ¢), d’=(b’, ¢’), u=(s, t),.
0'=(s’,t’). Choose the mappings ¢: [k]—[/+m] and ¢’: [K]-[/"+m’] in such
a way that we have a;=d,; and a;=d,. ¢, for every i€[k] and]E[k’] Obviously,.

*
aopl(Ps)=>‘11(Q3(U), Upqys ---» Upy) @nd aoP1(P3)=>Q1(q3,u«p "@)s v Ug), further--
more, p(p)ET. On the other hand path, (ql(q3, o(1)s o3 Uog)) =
=path, (91 (x1, W1y ---» Upry) @nd gis2v. Therefore, g,(qs(®), Upays ---» Upay) =
#q1(g35 Ugr(rys -5 Ui >) showing that p,(p,)€P.
, We are now able to prove our main result:

Theorem 8. The functionality of top-down as well as bottom-up tree trans--
ducers is decidable.

Proof. By Lemma 2 it suffices to prove our statement for regularly restricted
top-down transducers. Hence take an arbitrary regularly restricted top-down trans--
ducer A=(F, T, A, G, Ay, 2) with T=T(B), where B is the tree automaton
B=(F, B, B;)). Define the set P and integers |4|, | 4], |B| and K as previously
(cf. Lemma 4) and let L denote the number of nonempty strings over [v(G)] with
length not exceeding [A4(%|B|K. Furthermore, let” k=|A4|2|4[?|B|(2L+]1),
I=k+2[4AP|4||B|(14)2{B|K+1) and finally, m=142{4]|_2|B|.

We shall show that P is nonvoid if and only if it contains a tree of depth less.
than m. It is obvious if K=0. Therefore let K<0 and assume that p is an element
of P with minimal rank. Let ¢ and ¢” be different images of p under 74.

Assume to the contrary dp(p)=m. Then there exist a4, ag€A,,

Do - ,PmETF,I’ Pm+1€TFa n, n:EO (i=0,...,m), qOETG,nO’ q(’)ETG,nQ’ qzef‘a;:’
q,ET""l (i=1,...,m), q, € T(";"‘, q:,,HETZ’", a,-EA"', aEEA"‘ (=0, ...,m) such
that the following three conditions are satisfied:

M p=po(Pi(-- P -))y PiEX (=1,..,m),
@ 9=0(a:(..@n+0--)) 9" = go(@ (... (gms1)--))s

* * ’
() apy= 9,(3,%7), aéPﬁ%(ﬂéX”“

aip:'il ;7 qi+1(ai+1x;“1)’ a p,+1 :> q,+1(a,+1 :“1) (l = 0: vy M— 1)’
mp::m+1 ;’ 9n+15 a,',,p','""'H ;’ q:n+1'
Further on we shall often use the following notations. Let ic {0, ..., m+1;
JE{0, ..., m}. Then pi=po(pa(.- (p.))) 4:=40(q: (- (@).-)) 4= qo(ql((q7)--.)

Slmllarly’ pj—'p1+1 (Pm+1) q_l+1 (qm+1) o)s qj+1 (qm+1)
Furthermore, for each i=0,...,m, and A; denotes the set of all. components

of a; and aj, respectively.

If for any veT7' and v'€T, g; we have g(v)#4g/(v") then, by Lemma 3 and
the fact that the cardinality of the set {/, ..., m} is at least ||A4|*|B]+1, we get that
for some i, j (I=i<j=m) p;(p;)€P. It is a contradiction. ‘

10 Z. Esik

Therefore we may assume that #,>0 and the existence of an index i€[n)]
such that there are trees w'€Tg,,v'€T; with ¢’=u'(v'), path(@’)=path; (g,
and v'#4; ;. Obviously, n;=>0 holds for each i<Il. Now let i; 0=i<l, je[n))
be those umquely determlned idices for which path; (g;) is a preﬁx of path; (g,).
Of course we may assume that i,=...=i=1.

Suppose now that there is no «’¢path (g;) such that path, (g, is a prefix of
o or conversely. In this case let

B,={a; ; | path, (¢,) is a prefix of path; ()},

C {a, ;| path; ()" is not a prefix of path; ()}
for each i (/=i=m). Since the cardinality of the set {l, ...,m} is exactly
2||A|3|B|+1 there exist indices iy, iy, Iy ((Sh<iy<iz=m) satlsfymg the following
conditions:

(ﬁil)B (Ptz)B (pxa)B’ B - B = By39 Czl = C = ng? A" g A, g A/ .

By Lemma 6 this yields that at least one of the trees p; (5;,), p,z(p,a) P, (B;,) isin P,
which is a contradiction.

We have shown that there exists an o’€path (/) such that path, (g, is a prefix
of «’ or conversely. Consequently n;=>0 holds for each i (0=i=/) and there exist
integers i, ..., f; with the property that path; (g}) is a prefix of path, (q,) or con-
versely (j= 0 ., 1). We may also assume that if j,<j, then path (q %) 1s a prefix

of path e (qn), moreover, we may assume that i=...=i=1. In *this way either

path, (g;) is a prefix of path, (qj) (j=0,...,1) or conversely

Now there are two cases. First suppose that path, (g;) is a prefix of path, (q,)

If, within this case, there exists an integer i (0<z<k) such that |path; (g)|—

— |pathy (g7)l|=>|4]?|B{K then, by Lemma 4, there is a tree rcT} satisfying both
Di()EP and rn(r)<rn(p). This is a contradlctlon because rn (r)<rn:(p;) im-
plies m (p;(r))<rn(p). Thus we have |path, (g;)|—|path, ()| =|I4[?[B|K for
every i (0=i=k). But this yields another contradiction. Indeed, the cardinality
of the set {0, ..., k} is equal to [[4}2|4*|B|(2QL+1)+1, thus, there are” at least
two indices i, j (0=i<j=k) such that — say — path, (g;) is a prefix of path, (§/),
pathy (3) is a prefix of ~pathy), pathy (3)/pathy () =path, (3)/path, ().
moreover, (F)g=(Pps, @,1=a;1, ai1=a;., BiSB;, B/{SB; where B=
—{as,|2_tsns} Bi={a;, J|2=t=nf} (s=i, j). By an apphcatlon of Lemma 7
this results that p,(pj)eP — contrary to the minimality of p. '

We have shown that path, (¢7) can not be a prefix of path, (§;). Therefore
path; (7, is a prefix of path, (§;). If we prove that |path, (g)]— |path, (g,)]=
>||4]|2|B|K then also |path; (§;)| —|path, (g,)|=[|4|?|B|K. Again by Lemma 4,
this yields a contradiction. Therefore it is enough to show that [path, ()|
— |path, (g)| =] 4| B| K.

Assume that this condition does not hold. The cardinality of the set {k+1, ..., I}
1is exactly 21|A113|A||B|(||A|| |B|K+1), therefore, there exist indices iy, (k511<12Sl)
such that i,—i;=2||4|*|4||B] and path, (g;)=...=path; (¢;,), ie. @y41,1=.

=g 1=X;. Now let

B;={a} ,|1=t=nj, path, (q,l) is a prefix of path, ()},

C {a ¢|1=t=nj, path, (g;) is not a prefix of path, @n}
for each](1151<12) Since the cardinality of {i,, ..., iy} is equal to 2[|4|2®|4||B|+1 ~
there exist indices j, fo, js (G=ji<jo<js=iy) such that each of the following

Decidability results concerning tree transducers 1. 11

conditions is satisfied: (§;)s=(F;)s=(b;)s, 4;,SA4;,S4;,, B;,=B;,,SB;,, C;,;S
SC,ECy,s aj,1=aj,1=a;,,, where A, =1a; ,[2= s<n} Thus, applying
Lemma 5, we get that-one of the trees p,l(p,z), P;,(P;), P;,(B;,) is in P, contradicting

to the minimality of p. This ends the proof of Theorem 8:

Observe that, by the decomposition result for top-down tree transducers with
regular look-ahead in [6], the above theorem holds for this type of transducers
as well. But Theorem 8 has some other important consequences, too.

Take two arbitrary top-down or bottom-up tree transducers A=(F, 4, G, A,, 2)
and B=(F, B, G, By,). Assume that A is functional and A4 and B are disjoint.
Then construct the sum of A and B, i.e. take C=(F, AUB, G, 4,UB,, ZUZ").
For C we have the following equivalence: 7, =15 if and only if dom t,=dom 7y
and C is functional. From this and by the fact that the equality of regular forests
is decidable we get: -

_ Theorem 9. There exists an algorithm to decide fot an arbitrary tree trans-
‘ducer A and a functional transducer B whether they are equivalent, i.e. such that
TA=T8- -

CoOROLLARY. A similar argument shows that Theorem 9 holds even if 17,=1g
is replaced by 7,Stg. On the other hand every deterministic transducer is func-
tional. Thus, the equivalence problem for deterministic transducers is decidable.

Another consequence of Theorem 8 concerns with minimization of transducers.
For any given tree transducer A one can compute a bound k with the following
property: A has a corresponding tree transducer B which is minimal and satisfies
that each tree in the right hand side of a rule of B has depth not exceeding k. This |
k can be obtained as 2K 4| in the top-down case and as 2K|4] in the bottom-up
case. (Here |4], | A]| and K are determined as in the proof of Theorem 8.) Therefore,
if we assume that A is functional and we want to minimize A, it is enough to check
only for a finite number of transducers whether they are equivalent to A or not.
This proves :

Theorem 10. The mlmmlzatlon of" functional tree -transducers is effectively
solvable. '

COROLLARY. As every deterministic tree transducer is functlonal the same state-
ment holds for deterministic transducers.

This corollary as well as the positive decidability result concerning the equiv-
alence problem for deterministic bottom-up transducers and a restricted class of"
deterministic top- -down transducers was independently achieved by Z. ZACHAR
in [12] too.

3. Minimization of deterministic transducers

Let A be a class of tree transducers. A transducer A€.¢" is said to be-minimal
in A if there is no transducer B€ ¢ which is equivalent to A and has fewer states
than.A. In the preceding section we have shown that if " is the class of all func-
tional top-down or all bottom-up transducers, or if 2 is the class of all deterministic
top- down or all Bottom-up transducers, then, for every given A€, one can effec-
tively find a minimal equivalent transducer B€#". However, these minimal realiza-

“

12 Z. Esik

tions are not uniquely determined. In this section we investigate conditions assuring
the uniqueness (up to isomorphism) of minimal realizations. Similar results are
already known for Mealy-type automata (cf. [9]) and tree automata [1, 3, 10]. We
point out that the minimizing process of Mealy-type automata can be generalized
in a natural way for certain classes of deterministic tree transducers. For the sake
of simplicity we shall consider completely defined deterministic tree transducers
only. Therefore, from now on, by a tree transducer we shall always mean a com-
pletely defined deterministic transducer. Furthermore, all transducers will be taken
with a fixed input type F and output type G. Since the case F=F, is trivial we
assume that F#=F,.

First we treat top-down transducers. Let A= (F 4, G, {a,}, 2) be a top-down
transducer. It is completely defined, i.e. for any a€ A and fc F there is a rule in X
with left side af. Let B=(F, B, G, {b,}, ") be another top-down transducer and
take a mapping ¢: A—B. If the following two conditions are satisfied for arbitrary
n,m=0, f€F,,pETG m» 4, @y, ..., ,€A and iy,...., i,€[n] then ¢ is called a homo-
morphism of A into B: . : ‘

@) if af-playx;, ..., anx;)EX then bf—p(bix;, ..., b,x;)X where
b=¢(a),b;=¢(a)) (Jélm])

(i) ¢(ap —bo
If, moreover, ¢ is surjective then B is a homomorphic image of A. If ¢ is bijective
then we speak about isomorphism, written A=B. If BC A4 and ¢ is the natural
embedding of B into A then B is a subtransducer of A. If.A has not proper sub-
transducers then it is called connected.

The next statement is obvious:

Statement 11. If there is a homomorphism from A into B then 7, =15.

As in case of universal algebras there is a bijective correspondence between
homomorphic images and congruence relations. Let A=(F, 4, G, {a,}, Z) be an
arbitrary top-down transducer and take an equivalence relatlon 0 on A. It is called
a congruence relation if for any two rules f»p(alx,l, v dmX;), bf—
—’q(bl Jl’ sres)EE (I’l, m, 1>0 fe 9P€I'G m» qETG 1> lla [lm’ jla . 9]16[’1]’
a, .-y am,bl, .. b,,a b€ A) abb 1mphes m= lp 4, i:=J and a,0b, (t_l m).
Here for any nonnegatlve integer n the notation Tg, , is used to denote the set
TG 2= {PETG,,| fr (P) =X X}

Assume that 6 is a congruence relation of A. Then we can define the quotient
of A induced by 6. This is the top-down transducer A/0=(F, A6, G, {8(ay)}, Z")
where for every n,m=0, fcF,,pcT; n, 0,0y, ...,0,64" .

0(a) f~p(0(a)x, ..., 0(a)x; JEZ

af ~ p(ay x;), -5 U X; JEZ.

Statement 12. A/ is a homomorphic image of 4. If B is a homomorphic image
of A then there is a congruence relation 8 of A such that A/@=B.

if and only if

Take again the top-down tree transducer A=(F, 4, G, {a,}, Z). Let us define
an equivalence relation 8, on A: af,b if and only if 7,,)=744). Unfortunately,
this will not always be a congruence relation. We need certain additional require-
ments on A. '

Decidability results concerning tree transducers 1. 13

Let o be any mapping of the set of nonnegative integers into itself, i.e. ¢: w—w.
Then let " (o) denote the class of all top-down tree transducers A=(F, 4, G, {a,}, X)
which satisfy the condition [path; (p)|=0(i;) for every n,m=0, fcF,, pcT; p,
a,ay, ..., 0,6 A, X, ., X €X,, j€lm] and af-p(ayx;, ..., anx;)EZ, as well
as the condition |[t4(,)(TF)|>1 for arbitrary state a appearing in the right side
of arulein Z.

Statement 13. If A€ (o) then 6, is a congruence relation.

Proof. Let A=(F, A4,G, {a},2) and assume that af—p(a,x;, ..., a,x;)

and bf—q(byx;,, ..., byx;) are rules in X where a,b€d, al,b, n,m, =0, fcF,,

ETG m> qETG 1> ala cies Qms bla e bIEAa 113 e lm’]1: cesy]le[n] - Assume that
there is an integer tE[m] such that none of the strmgs in U (pathg (9)|i,=J,, s€[I])
is a prefix of path,(p) or conversely. Then, by [t5, (T, w)|>1, it is easy to show
the existence of a tree r&Ty With 7,¢)(r)=Tap (7). On the other hand if i,=j
holds for some #€[m] and s€[l] then the equality |path, (p)|=|path,(q)| is also
valid. This proves that m=Il, i,=j,, path,(p)=path,(q) (¢t=1,...,m). But
Ta@=Tnp), hence from this we get p=gq, a,b, (1=1, ..., m).

Another class of top-down transducers in which 6, is always a congruence
relation is the class % 4, where d denotes an arbitrary nonnegative integer. A top-
down transducer A=(F, 4, G, {a,}, 2) is in A, if and only if for every ac 4, f¢ F,
and p€T; if af->pcX then dp(p)=d, moreover, as in case of A (o),
|ta@(Tp)|=1 is satisfied for each ac4 appearing in the right side of a rule in X.

Statement 14. If A€, then 8, is a congruence relation.

Proof. The proof of this statement is similar to that of Statement 13. Only use
the conditions defining 5", to establish the bijective correspondence between -the
sets U (path, (p)|#€[m]) and U (path, (¢)|s€[/]) for the rules af—>p(ayx, ..., 4,%;)
and bf>q(b,x;,, ..., bx;).

Note that for AE,%’ (o) or Acx, the definition of #, can be reformulated
as follows. Let a, b€ A. Then af,b if and only if for every n, m=0, p€ T, ,, g€ T4
and iy, ..., i,€[n] the following equivalence holds:

da,, ..., a,6A ap L q(asx;, ..., Gux;)
if and only if '

dby, ..., b,€A bp = q(byx;y, vy by,

This is an easy consequence of statements 13, 14. Observe that this new definition
of 8, makes 6, a congruence relation without requiring A€ (@) or A€X ;.

A transducer A€ (g) or A€, is called reduced if 6, is the equality relation.
As both o (g) and &, are closed under homomorphic images the transducer A/,
is reduced for any A€ (g) or Ae'y. The following statement is the basic step
to show that minimal transducers in 2 (¢) and o, are exactly the connected and
reduced transducers.

Theorem 15. Let A, B€# (¢) be connected top-down transducers. Then A
and B are equivalent if and only if A/f,=B/0g. The same holds for x£,;..

Proof. Sufficiency follows by statements 11—14. In order to prove necessity
first observe that if A=(F, 4, G, {a,}, Z) and B=(F, B, G, {by},), moreover,

14 Z. Esik

qop;}Aq(alxil, vees @pX;) — where p€Ty,, n=0, geT; ,,, m=0, ay, ..., a,€4,
ity ..., in€[n) — then there exist states by, ..., b,€ B with bypZpq(byX;,, - » buX; i)
Furthermore, for these states b; (i=1, .. m) we have T,x,,)=Tap,)- Tms 1s a con-
sequence of the assumption TA=Tp and the definitions of # (¢) and ;. Using
the above mentioned facts it is easy to prove that the correspondence ¢@: A/6,~
—B[0g defined by ¢(0,(a))=05(b) if and only 1f there exist p€ Tp 1, §€ TG mss
(m=0), a,...,a,€A4, by, ..., b,eB such that aop:>Aq(ax1,a1x1,. , X)) and
b(,p*an(bxl, bixy, ..., b x,) forms an isomorphism of A/f, into B/0g.

The next theorem is an immediate consequence of Theorem 15 and the fact
that (o) and &, are closed under the formatlon of ‘subtransducers and homo-
morphic images: .

Theorem 16. A transducer is minimal'in 2 (o) if and only if it is connected
and reduced. If both A and B are minimal in 2/ (¢) and they are equivalent then
A=B, i.e. the minimal realization -of a transducer in % (o) is unlque up to iso-
morphism. The same holds for the class ;.

Of course Theorem 16 holds for every class” 2#"C o (@) or A4 & A, provided
A is closed under the formation of subtransducers and homomorphic, images.
The most important example for a class of this type is the class of all top-down
relabelmgs (cf: [5]).

It is natural to raise the question whether the minimal transducers in % (g)
or A, are minimal in the class of all top-down transducers. The following examples
prove that the answer is negative in general. In these examples the adjectives
“linear”, “nondeleting’”’ are used in the sense of [5]. Furthermore, a top-down
tree transducer A= (F, A, G, {ay}, Z) will be called uniform if each rule af-p
(ac4, feF, (n=0), pETG AxX,.) can be written as af—q(a; x,, ..., a,x,) for a tree
g€Tg,, and states a,, ..., a,€A4 :

Example 17. This example shows that there is a linear nondeleting top-down
tree transducer A€, N4 (¢) which is connected and reduced — i.e. minimal in
both ", and 2 (¢) — but which is not minimal in the class of all linear nondeleting
top-down tree transducers. Here ¢: w—w is the mapping defined by o(n)=1
{(n=0). Indeed, let A=(F,[5], F,[1], Z) where F is the type determined by the
conditions Fy={3t}, Fy= {f, g}, F,=0 if n>1 and X consists of the rules (1)—(5)
listed below: : :

D 1#E—~fH), . Yl ~f2x), 1g(x) —~ g(3x),
@ 2%~ (), 20x) ~ flax), 2g(x) ~ fxy),
@) 3#-g(#), ¥x) - g(4x), 3g(x) —~ g(4xy),
@ 4% —>f (), 4f(x) —f(5x), dg(x) —~ g(5x),
(5 SH—~Sf(#), S —~flxy), 58(x) = g(Ixy).

However A is equlvalent to A’—(F [4], F,[1], ") where X’ contains the
followmg rules. (1)—(4): .

() 1# /(%) Yo f(f(2‘€1)) 1g(x) — g(g(2x),

Decidability results concerning tree transducers I. 15

@ 2#-%,) -3xn, 2g(x)~3x,
@) 3% -f(#),) ~f@x), 3g(x) ~ g(@x),
@) 4% ~f(5), 4 ~fx), 4g(x) > g(lx).

Example 18. This example proves that there is a top-down tree transducer
A€, which is minimal in 2, but not minimal in the class of all top-down:
transducers. .

Let us define the types F and G by Fo={%}, /,={f}, F =0 if n>1 and
Go={#, %4, #.}, Gi={f), G.={g}y G,=0 (n=>2), respectlvely Then put
A=(F, {4}, G,[1], %) where consmts of the following rules:

() 1%, 1/(x)—~g(2x,3x),
(D). 24 —#y, 2(x) > f(4x),
B 3%, Ilx) —~ fEx),
@) 4% -, 4(x) —~f(4x).

It is easy to check that A is minimal in /. On the other hand A is equlvalent to-
=(F, [3], G, [1], ") with X’ containing the following rules:

n 1#—’#, ‘lf(xl)"’zx1a4
(D 2% —g(#1, ¥, 2f(x) ~ 2(S(3x), f(3xY),
() 3% —~#, 3f(xy) — f(3x-

Observe that A was not uniform.
In spite of Example 18 we have

Theorem 19. If a uniform transducer is minimal in 2, then it is minimal in
the class of all top-down tree transducers.

Proof. Let A=(F, 4, G {ao}, 2)e Ay be uniform and minimal in . Assume
that the top-down tree transducer B=(F, B G {bo}, 2 is equivalent to A and
has fewer states than A, i.e. |B|<|A].

Take an arbitrary state ac 4. We shall correspond to this state a state o@cB
as follows. First let us choose the trees pETF 1 and g€ T, (n>0) in such a way

that we have a0p==~ aq@"x])). If a=a, choose p=g=x;. This can be done since
A is connected. Let r€Tg, (m=0) and by,...,b,6B be determined by
bop=gr(bixy, ... b,,,xl) As |14 (TRI=1 is satisﬁéd for each ¢€A occuring in
the right sxde of a rule in ¥ we must have m=0. Or even, there must be an index
Ji€[m) for ‘each ic[n] with the property that either path;, (r) is a prefix of path; (¢)
or conversely. But, by the definition of ", it is 1mposs1b1e that path; (¢) is a proper
prefix of path; (r). Therefore j; is uniquely determined for each i€[n] and path;, (r)
is a prefix of path; (g).-As A and B are equivalent this implies that there exist trees
Fis ooy Tm€T6 1 With -r(ry, ..., r)=gq. Let @(a)=b, and r, =rj,. We-must have
(TA(a)(t))—'TB(¢(a))(t) for each tETF’ ie. r (TA(G)) TB({u(a))

As |B|<|A| there exist states a,=a,€4 with @(a)=¢(a,). Consequently,

Fo(Ta@)) =Fa(Ta@ny)- But, again by the definition of 5, this is possible only if

Fay=la, @Nd Ty =Ta, yielding a contradiction.

16 Z. Esik

We will now turn our attention to the bottom-up case. A deterministic bottom-
pu tree transducer A=(F, 4, G, Ay, 2) is called completely defined if there is
arule in ¥ with left hand side f(aq,x,, ..., a,x,) for every n=0, f€F, and
a, ..., a,€A. First of all we have to define homomorphisms, congruence rela-
tions etc.

Let A=(F, A4, G, 4,,%) and B=(F, B, G, By, ") be bottom-up transducers.

By a homomorphism of A into B we mean a mapping ¢: A—B which satisfies the
following two conditions:

(l) f(blxls teey bnxn) g prZ’ lf f(alxla sy anxn) - apez, bi q’(az)
i=1,..,n, b=¢l@ (=0 fEF,, a,..,a, acd, pcTg,),
(i) @4 E By, ¢X(By) S 4.

Again, if ¢ is surjective then B is a homomorphic image of A and bijective homo-
morphisms are called isomorphisms. If BS A and ¢ is the natural embeddmg of
B into A then B is a substransducer of A.

We now define congruence relations. A congruence relatlon of A is an equivalence
relation & on A with the following property: for any n=0, fcF,, a;, bcA
(i=1,..,n), ab€A and p,qcT;, if both f(ayx,...,a,x,)~ap and
f(byxy, ..., byx,)~bg are in X and q;6b; (i=1,...,n) are satisfied then p=gq
.and afb hold too. Furthermore, A4, is required to be equal to the union of certain
blocks of the partition induced by 6: Ay,=U(0(a)|a€ Ay). The quotient transducer
determined by 6 is the transducer A/0=(F, A/6, G, A,/0, Z") where

={f(8(apxy, ..., 0(a)x,) —~ 0(a) plf(a, %y, ..., a,%,) ~ ap€ L}.

With the above definitions in mind one can easily prove the analogues of
statements 11 and 12.

For a bottom-up transducer A=(F, 4, G, Ay, X) the relation 6, is defined
as follows. Let a, bcA. Then af,b if and only if the equivalence JFa,€A4,
playxy, ..o, @iy Xy, axn Qip1Xi41s ov5 Ap x);aoq‘”aboel‘io p(ay Xy, ..o, Gy Xy,
bx;, i1 X415 -5 @ x)=>boq holds for all n=0, i€[n), a;, ..., Gy, Qiyy, ..., G,€A,
PETg,, (or equlvalently p€Ty,, or peT;,) and q€T; .

Likewise in the top- -down case, N will not always be a congruence relatlon,
but it will be a congruence relation if we require A to be in J#'(¢) for a mapping
o of the set of nonnegative integers into itself. A bottom-up transducer
A=(F, A4, G, Ay, X) belongs to A (¢) provided it satisfies the following three con-
-ditions:

O if f(ayxy, ..., a,x,)~ape (n=0, fE€F, a,ay,...,a,£4, p€T;,) then
|w|=e0(@) holds for each i€[n] and wepath; (p),

(ii) A is nondeleting, i.e. for all n=0, f€F,, a,a,,...,a,6A and peTg, if
flayxy, ..., a,x,)~apcX then each of the variables x,, ..., x, occurs in fr(p),

(i) for any acA there'exist p€Ty ui1, 9€T6 ne1 (n=0), ap€ 4y, ay, ..., a,€ A4
such that p(ax,, a;Xs, ..., @ X,41)=>0eq.

Statement 20. If .\ 4 (Ag). then 6, is a congruence relation.

Decidability results concerning tree transducers I. 17

Proof. Let A=(F, A, G, Ay, X), a, b€ A. Assume that afl, b and let
SO X105 ey Qi1 Xio15 QX5 Qi1 Xis1s oves AgXy) —~ CD,
S@ Xy, ooy @1 X1, bX;, Qi1 X415 oees pX,) ~ dg

be arbitrary rules in 2. Here n=0, i€[n], f€F,, ay, ..., Gi_1; i1y, --rs Ay, C, €A,
P, q€Tg ,. We have to show that p=g and c0,d. .

As AcA (o), there exist m=0, ¢y, ..., cu€A, Go€Ay r€lp mey and SE€ETG, iy
such that

r(cxl’ C1X2s ey mem-i-l) *: QS
Let ry=r(f(x1, - Xp)s X415 o> Xnim)s $1=5(D, X1, ---» Xpem)- Of course we have
Iy
rl(alxl’ vy B3 X1 AXyy Qip1 X415 cony QX5 C1 X415 ooy cmxn+m) = 448y .
Since af, b, this implies
*
71(@1 X1, s i1 X1, DXy Qi1 Xi41s oo BuXgs C1Xn 415 oes CnXim) = boSy
for a state byc A,. But this is possible only if s, is of form s;,=2(g, X,11, «++5 Xpsm)
where t€7g iy and rdxg, ¢, ..., c,,,xm+1)*=bot. :
We know that s(p, X,115 -os Xpam)=2(q, Xpy15 ---» Xpem)- By (i) and (ii) in
the definition of () this results that s=¢ and p=gq. Essentially the same argu-
ment shows that c,d.
Observe that for a bottom-up transducer A=(F, 4, G, 4,, 2)eHA(¢) the
relation 8, can be redefined as follows. Let a, b€ A. Then af, b if and only if the

following, two equivalences are satisfied for arbitrary p€Ty,, qcT;, (n=0),
iy eees Qi1 Qigqs .., d,€A and i€[n)]:

. *
() Fag€dplayxy, o Qjo1Xi-1, AX;18541 %5415 -5 QX)) = Goq
if and only if '
E 3
3be€A p(ar Xy, -5 @i—1X;-1, bXy5 Qi1 Xi41s --os X)) > b g,

(i) for a, and b, of (i) it holds that a,€ 4, if and only if by€A,.

A transducer A€ (g) is called reduced if 0, is the equality relation on A4.
A/8, is always reduced.

In contrast with the top- down case there are nomsomorphlc but equlvalent
minimal transducers in J#(g). However, if a bottom-up transducer is minimal in
A'(@) then it is both reduced and connected (i.e. 1t has not proper subtransducers).
The converse is not true in general.

According to the above discussion we need some further restrictions to guaran-
tee the uniqueness of minimal realizations. For this purpose we introduce the sub-
class o(¢) of A (p). A bottom-up transducer A=(F, 4, G, 4y, T)€H (@) belongs
to X (¢) if and only if it satisfies the condition:

if f(ayxy, ..., a,x,)~ap€X where n=0, fcF, s A1y ooy Gpy aEA and p€Tg ,

then pefl‘; » and none of the operational symbols in Gy occurs in p.

Now we are able to state an analogue of Theorem 15 for bottom-up transducers.

Theorem 21. Let A, B€E£“(g) be connected. Then they are equivalent if and
only if A/0,2=B/0y.

2 Acta Cybernetica V/1

18 Z. Esik

Proof. The sufficiency follows in the same way as in Theorem 14. In order to
prove the necessity of our statement, first observe that if A=(F, 4, G, 4y, %) and

(F B, G, By, Z’), moreover, Tae(p)=q where p€Ty, q€T; and acA4, then
there is a state b¢B with 1g4,(p)=¢. In fact, if a;€4, bCB (i=1, ..., n, n>0)
are such that dom 7,4,dom 1p4,y=0 (i=1,...,n) and p(a;x,, .. ax)=> Aaq
where pETp ., 9€T;, and acA then there is a state bEB satisfying
p(bixy, ..., b,x,)=pbg. The same assertions holds if we change the role of A and
B. By these observations it is easy to verify that the correspondence ¢ defined by
¢(0s(@)=0s(®) if and only if dom 14,Ndom 154)P is an isomorphism of
A/8, into B/fy.

Theorem 22. A bottom-up transducer is.minimal in #(g) if and only if it
is both reduced and connected. The minimal realization of a bottom-up trans-
_ducer in 2£”(g) is unique up to isomorphism.

Proof. Immediate by Theorem 21.

Observe that Theorem 22 holds for every class 4 S (@) prov1ded it is
closed under the formation of subtransducers and homomorphic images. An example
of a class of this sort is the class of all bottom-up relabelings satisfying condition
(iii) in the definition of #'(9). A tree transducer A=(F, 4, G, 4, X) is called
a bottom-up relabeling if each rule in Z is of form

flayxy, ooy @px,) = ag(xy, ooy X,)

where n=0, fcF,, gcG,, ay, ..., a,, a€ A.

The following example shows that there is a transducer which is minimal in
A(0) but which is not minimal in the class of all bottom-up transducers. Let
Fo={#)}, F,={f,g} and F;=0 if i>1. Take the bottom-up transducer
A=(F,[5], F,[1],2) where X consists of the following rules:

D #=-1%,

@) fIx) ~2f(xp), g(lx)) —~3g(x),
(3 f2x) ~4f(x), g(2x) ~ 4f(x),
(4) fBx) —4g(x), g(Bx) —~ 4g(x),
(5 f@x) —~5f(x), g@xy) —~4g(x),
©6) f(5x) ~ 1f(x1), g(5xp) —~ 1g(x).

It is easy to see that A is minimal in #”(g) where ¢ is a constant mapping: ¢(n)=1
for all #=0. On the other hand t, can be induced by a four state transducer
=(F, [4}, F, [1], 2’) where X’ consists of the rules (1)——(5) listed below:

1) #F 13, N
2 f(x) = 2f(f(x0), g(1x) ~ 2g(g(x),
3 fQx) = 3xy, - g(2x1) — 3xy,

@) fGx) = 4(x), g0x) ~ 4g(x),
(5) f@x) —~1f(x), g(@xy) ~ lg(xy).

Decidability results concerning tree transducers 1. 19

In spite of the preceding example the following theorem is valid.

Theorem 23. Let A=(F, A, G, Ay, Z) be minimal in #7(¢). Assume that
A=A,. Then A is minimal in the class of all bottom-up transducers. -

Proof. Let us correspond to each a€ 4 a tree p,6dom 7,(,. This can be done
because A is connected. Assume that B=(F, B, G, B,, X") is equivalent to A and
has fewer states than A, ie. |B|<|4|. Of course B=B,. Define the mapping
¢: A~B by ¢(a)=>b if and only if p,dom 75¢,. Since |B|<|4| there are distinct .
states @, a,€ A with @(a;)=¢(a,). Denote this state ¢(a,) by b. As A is reduced,
there exist pCTy ,, ¢1#9:€T6,» (m=>0) and i€[n], as well as states c,, ..., ¢;—-1,
Cig+1s +++3 Cn» i, d3€ A such that

. k3
pleyxy, ooy Cio—1Xig—1> Q1 Xiys Cig+1Xig+15 -5 CuXn) = ad1qys
*
pleyxy, .o Cio—1Xig—15 A2Xiys Cigr1Xig+1s < o» CnXy) = adsqs.

Of course ¢y, €75 -

As A€ A’(¢) we may assume that p=f(x,, ..., x,) for an operational symbol
JEF,. It can be seen, by g,%¢, and A€2’(0), that ¢, and ¢, are of form ¢,=
=qo(r1s -.os Fw) and go=gqo(r5, ..., rh), respectively, where ¢o¢Tg ,, (m=0),
rj> ;€ Tg,,, furthermore, there is at least one index j,€[m] such that r; =r}, rj,,
r;,§ X,. More exactly, we may choose g, in such a way that r; =g, (s,) and rj} =g,(sz)
hold for some vectors s,, s, and different operational symbols g;, g,€ G. This implies
that

TA(f(pcl’ et pL‘io_l’ pa13 pCio+1’;"’ pc")) # TA(f(pcl’ cery pcin_l’ paz’ pcio+19 ey pc,.))'

Now let b;=¢(c;) (i=1, ..., n, i#iy). There is a state e B and a tree g€Tg,,
with f(byxy, ..., b1 X1, bXyy, bigr1Xigs1s o> DpX,)>eq€Z’. Since A and B are
equivalent we have t4(p.)=75(Ps) (=1, ..., , iiy), Ta(Pa)=T5(Pa) (i=1,2),
qi(TA(pcl)i cevs TA(p"io—l)’ TA(pai)a TA(pciO+1), i TA(pc,,)):q(TB(pcl)a ey TB(pcio—l)’
TB(pa,-)’ TB(pcio+1)5 vy TB(pcn)) (I: 17 2)

But TA(f(pclﬁ >pcio_13pa1:pcio+1’ spcn))¢TA(f(pc1’ (AR p"io-—l’ pag’pcio_'_l’ sersy
.3 Pe))- Thus 13(p,)#78(p,,) and path, (¢)=0. Even more, by rj,=rj,
there is a string w¢ path,, (g) which is a prefix of path;, (g,). Now there are two cases.

First suppose that path; (g, is a prefix of pathy(g;) and let p;=
:f(pcp ere ’pcig—l’ Pai,pci°+1> '”,pc,.) (lzl, 2) Then TA(P1)=u(TA(Pa1)) and
tp(p)=u(tg(p,,)) whereu,u’ ¢ Ty, satisfy path (u)=path;(q,) and path (@)=w,
respectively. As w is a proper prefix of path; (g,) and 7,(p,,)=75(p,,) this results
that ,(p)=tg(py), contrary to our assumption 7,=tg. A similar argument
yields a contradiction if path;, (g,) is assumed to be a prefix of path; (g,).

Thus none of the strings path;, (¢,) and path; (g;) is a postfix of path;, (go).
This implies that t,(p))=u(v), 1a(p)=u'(@), tg(p)=u(v) and 15(p)=1'(v)
where u, ' €Ty 1, v, V'€ T satisfy the conditions path (x) =path (#)=w and vv'.
Indeed, v=tg(p,), and v'=14(p,). It is again a contradiction.

DEPT. OF COMPUTER SCIENCE ’
A. JOZSEF UNIVERSITY
ARADI VERTANUK TERE 1.

SZEGED, HUNGARY
H—6720

2‘

20 Z. Esik: Decidability results concerning tree transducers 1.

References

‘1] ArBiB, M. A. and Y. GiveE'oN, Algebra automata I: Paraliel programming as a prolegomena
to the categorical approach, Inform. and Control, v. 12, 1968, pp. 331—345.
:[2] BLATTINER, M. and T. HEeap, The decidability of equivalence for deterministic finite trans-
ducers, J. Comput. System Sci., v. 19, 1979, pp. 45—49.
[3] BRAINERD, W. S., The minimization of tree-automata, Inform. and Control, v. 13, 1968, pp.
484—491.
‘[4] Cunic1l, K. and A. SALOMAA, On the decidability of homomorphism equivalence for languages,
J. Comput. System Sci., v. 17, 1978, pp. 163—175.
i[5] ENGELFRIET, J., Bottom-up and top-down tree transformations, A comparison, Math. Systems
Theory, v. 9, 1975, pp. 198—231.
6] ENGELFRIET, J., Top-down tree transducers with regular look-ahead, Math. Systems Theory,
v. 10, 1977, pp. 289—303.
‘[7]1 ENGELFRIET, J., On tree transducers for partial functions, Inform. Process. Lett., v. 7, 1978,
pp. 170—172.
[8] Esix, Z., On functional tree transducers, in Proceedings, Conference on Fundamentals of Com-
patation Theory, ed. Budach, L., Akademie-Verlag, Berlin, 1979, pp. 121—127.
[9] Gtcseg, F. and 1. PEAK, Algebraic theory of automata, Akadémia Kiado, Budapest, 1972.
T10] Gfcseg, F. and M. SteINBY, Minimal ascending tree automata, Acta Cybernet., v. 4, 1978,
pp. 37—44.
111 Grirrrtas, T. V., The unsolvability of the equivalence problem for i-free nondeterministic
generalized machines, J. Assoc. Comput. Mach., v. 15, 1968, pp. 409—413.
i{12] ZAcHAr, Z., The solvability of the equivalence problem for deterministic frontier-to-root tree
transducers, Acta Cybernet., v. 4, 1978, pp. 167—177. .

(Received May 8, 1980)

On isomorphic representations of commutative automata
with respect to x-products

By B. IMREH

The purpose of this paper is to study the «;-products (see [1]) from the point
of view of isomorphic completeness for the class of all commutative automata.
Namely, we give necessary and sufficient conditions for a system of automata to
be isomorphically complete for the class of all commutative automata with respect
to the a;-products; It will turn out that if i=1 then such isomorphically complete
systems coincide with each other with respect to different o;-products. Furthermore
they coincide with isomorphically complete systems of automata.

By an automaton we mean a finite automaton A=(X, 4, §) without output.
Moreover isomorphism and subautomaton will mean A-isomorphism and A-sub-
automaton. ;

Take an automaton A=(X, 4,35) and let us denote by X* the free monoid
generated by X. The elements p€X™ are called input words of A. The transition
function & can be extended to AXX*—~A4 in a natural way: for any p=p’x
(p'eX*, x¢X) and a€A 8(a, p)=05(5(a, p’), x). Further on we shall use the more
convenient notation ap, for §(a, p) and A’ p, for the set {ap,: a€ A’} where A'c A4
and p€X*. If there is no danger of confusion, then we omit the index A in ap,
and A’p, . Define a binary relation ¢ on X™* in the following manner: for two input
words p, g€ X*, p=q (o) if and only if ap=ag for all a¢ 4. The quotient semigroup
X* /o is called the characteristic semigroup of A, and it will be denoted by S(A).
We use the notation [p] for the element of S(A) containing p€ X*.

An automaton A=(X, 4, 0) is commutative if ax;x,=ax,x; for any acA
and x;, x,€X. Denote by & the class of all commutative automata.

Take an automaton A=(X, 4,) and let w be an equivalence relation of the
set 4. It is said that w is a congruence relation of A if a=b(w) implies ax=bx(w)
for all a,b€A4 and xcX. The partition induced by the congruence relation is
called compatible partition of A.

Let A=(X, 4,5) be an automaton. Define the relation C of A4 in the following
way: a=b(C) if and only if there exist p, g¢ X* such that ap=b and bg=a.
It is clear that C is a congruence relation of A if the automaton A is commutative.
In the following we use the notation C(a) for the block of the partition induced
by C which contains a. On the set A/C={C(a): a€ A} we define a partial ordering
in the following way: for any a, b€A4, C(a)=C(b) if there exists p£ X™* such that
ap=b. If C(@)=C(b) and C(a)#C(b) then we write C(a)<C(b).

22 B. Imreh

The automaton A=(X, A4,9) is called a permutation automaton if for any
a,b€A and pcX*, ap=bp implies a=b. The automaton A is connected if for
any a, b€ A there exist p, g€ X* such that ap=bgq.

Let A,=(X,, 4,,0,) (t=1,...,n) be a system of automata. Moreover, let X
be a finite nonvond set and ¢ a mapping of 4;X... X4, XX into X;X...X X, such
that o(ay, ..., a,,)=(¢1(ay, ..., @y, X), ..., 9,(ay, ..., a,, X)), and cach @;(1=j=n)
is mdependent of states havmg indices greater than or equal to j+i, where iis
a fixed nonnegative integer. We say that the automaton A=(X, 4,8) with
A= AIX XA and 5((01, A n)7 x) (51(01’ (pl(al’ <oy 4y, X)), . 5 (ana (pn(aly

> Qs x))) is the o-product of A (t=1, ..., n) with respect to X and ¢. For this

product we use the notation]] A (X, @) and A, XA,(X, ¢) for n=2. Moreover,

=1
if in a;-product A, A,=B for all ¢ (t=1, ..., n), then A is called an o;-power of
B and we use the notation A=B"(X, ¢).

Let B be an arbitrary class of automata. Further on let X be a system of auto-
mata. X is called isomorphically complete for B with respect to the a;-product if
any automaton from B can be embedded isomorphically into an «;-product of
automata from Z. If B is the class of all automata and ¥ is isomorphically complete
for B, then it is said that X is isomorphically complete.

Let us denote by E,=({x, y}, {0, 1}, 6g) the automaton for which &z(0, y)=0,
6E(0, X)=1, 5E(1’ x)=5E(1’ }’): 1.

An automaton A=(X, 4, d) is called monotone if there exists a partial order-
ing = on A4 such that a=6(a, x) holds for any a€4 and x€X.

For monotone automata the following result holds:

Lemma 1. Every connected monotone automaton can be embedded 1somorph1—
cally into an ay-power of E,.

Proof. We proceed by induction on the number of states of the automaton.
In the cases n=1 and n=2 our statement is trivial. Now let n=>2 and suppose
that the statement is valid for any natural number m-<n. Denote by A=(X, 4, §)
an arbitrary connected monotone automaton with n states. Since A is connected
thus among the blocks C(a) (a€ 4) there exists exactly one maximal element under
our partial ordering of blocks. On the other hand, since A is monotone thus the
partition induced by C has one-element blocks only. Denote by a, the element of
the maximal block. Since n=2 thus there exists an a€ 4 such that C(a)<C(a,).
Denote by g, an element of 4 for which C(q,)<C(a,) and C(a)<C(a) implies
a=a, for any a€A. Obviously there exists such an a,. It is also obvious that
(X, H, 0,5<x) is a subautomaton of A, where H={a,, a,} and the restriction to
HXX of the function ¢ is denoted by d;z.x. Let us define the automata A;=
=(X, (ANH)U{#}, ;) and A:,-(((A\H)U{ele})xX HU{O}, d,) in the follow-

ing way:
8(a,x) if 6(a,x)¢H,

51(‘1’ x) = { * otherWiSE,

0,(%,x) = %, ((
8(a, x) if &(a, x)EH,
52([],(0, x)) = { 0 otherwise,
d5(a’,(a, x)) = a’, 3,(a’,(*, X)) = 8(a’, x), 3,(0, (%, X)) = O

On isomorphic representations of commutative automata with respect to «,-products 23

for all ac AN\ H, x€X and a’c H. Take the ao-productl B=A;XA,(X, ¢) where
1 (X)=x, ¢ (v, x)=(v, x) for all x€X and ve(AN\H)U{*}. It is easy to prove
that the correspondence

(a,00) if acANH,
v(“)z{(* a) if acH,

is an isomorphism of A into B.

Now let us consider the automata A, and A,. Since A, is a connected monotone
automaton with n—1 states thus, by our assumption, A; can be embedded iso-
morphically into an oty~power of E,. Denote by U the set of input s1gnals of A,
and take the following partitions of U:

U, = {(a, x): a€AN\H, x€X, 5(a, x)¢ HYU{(*, x): x€X},
U, = {(a, X): a€A\H, x€X, §(a, x) = a,},

Us = {(a, x): a€A\H, x€X, 6(a, x) = a,},

V, = {(a, x): ac AN\H, x€X}U{(*,x): x€X, 5(a;, x) = a;},
Ve = {(*,x): x€X, 6(a;, x) = a,}.

Consider the og-product E2(U, ¢) where @,(u)=y, ¢;(u)=0¢1(u)=x,
02(0, 1) =05(0, u) =y, @20, uz)=x, ¢,(1,v)=y and @,(1,v5)=x for all u,cU;
(=1,2,3) and v;€V; (j=1,2). It can easily be seen that the correspondence

0,0, ¢, O) and a,--(1, 1) is an isomorphism of A, into E2(U, ¢). Since
the formation of the oco-product is associative thus we have proved that A can be
embedded isomorphically into an oy-power of E,.

For any natural number n=1 let M,=({x, ... X,_1}, {0, ..., n—1}, 8) de-
note the automaton for which &(j, x)=j+/(modn) for any j€{0,...,n—1}
and .x,€ {xg, ..., x,_1}, where j+/(mod n) denotes the least nonnegative residue
of j+I modulo n. Moreover let 9t denote the set of all M,, such that » is a prime
number.

It holds the following

Lemma 2. If the number of states of a strongly connected commutative auto-
maton A is a prime number, then there exists an automaton MeIR- such that A
is isomorphic to an o4-product of M with a single factor.

Proof. First we prove that every strongly connected commutative automaton
is a permutation automaton. Indeed, denote by A=(X, 4, §) a strongly connected
commutative automaton and assume that there exist a, b€ 4 and p€ X* with ap=bp.
Since A is strongly connected thus there exist input words ¢, w€ X* such apg=a
and aw=>b. Using the commutativity of A, we have bpg=awpq=apgqw=aw=b.
Therefore, a=apq=>bpg=>b, showing that A is a permutation automaton.

Now let us assume that the number of states of A is prime and denote it by r.
Let a€A and pcX™* be arbitrary and -consider the states a, ap, ap?, Since A is
a permutation automaton thus there exists a ¢ (I=t¢=r) such that a=ap'. Denote
by (a, p) the set {a, ap, ..., ap'~'}. Assume that (a,p)cA. Let a’€¢AN\(a, p) and
consider the set (@, p), which is defined as above. Since A is a strongly connected

24 B. Imreh

automaton thus there exists a g¢ X™ such that ag=a’. Using the commutativity
of A we have ap'q=agp'=a’p' (i=0, ...,t—1). From this it follows that (a, p)
and (a’, p) have the same cardinality since A is a permutation automaton. On the
other hand it can easily be seen that (g, p) and (a’, p) are disjoint subsets of 4. There-
fore, the set ¢,={(a, p): a€ A} is a partition of A4 and the blocks of ¢, have the same
cardinality. Since r is prime thus we get that g, has one-clement blocks only, or it
has one block only. Now we choose an x¢€ X such that g, has one block only. The
automaton A is strongly connected therefore such an x€X exists. Let a€4 be a
fixed state of A and write ay=a, a,=ayx* (i=1, ..., r—1). Thus the mapping induced
by x on A can be described in the form a;x=a;, 1 (moary (=0, ..., r—1). Now let y be
an arbitrary input signal of A and assume that a,y=a; for some jc {0, 1, ..., r—1}.
From the commutativity of A we have g, y=a,x'y=a,yx'=a;X'=a;, j(moar for ail
i€{0,1,...,r—1}. Take the «,-product B=IIM,(X, ¢) with a single factor,
where @(x)=x, if ayx=a, for all xcX. It is easy to prove that A is isomorphic
to B, which completes the proof of Lemma 2.

Lemma 3. Every strongly connected commutative automaton can be em-
bedded isomorphically into an a4-product of automata from IR,

Proof. We prove by induction on the number of states of the automaton. In
case n<4, by Lemma 2, the statement holds. Now let »=4 and assume that our
statement is valid for any natural number m<n. Denote by A=(X, 4,) an ar-
bitrary strongly connected commutative automaton with # states. If » is prime then,
by Lemma 2, the statement holds. Assume that » is not prime. Let pc X™* be ar-
bitrary. Consider the partition g,. Since A is commutative thus g, is a compatible
partition of A. Denote by @ the set of all partitions ¢, of A such that [p]¢ S(A)\ {[e]},
where e denotes the empty word of X*. Take the partition ¢ of A given by o=) ¢,.
We distinguish two cases. €0

First assume that ¢ has one-element blocks only. In this case it can easily be
seen that A can be embedded isomorphically into the direct product of the quotient
automata A/g, (0,€ Q). On the other hand, for any ¢,€Q the quotient automaton
A/g, is a strongly connected comimutative automaton with number of states less
than n. Therefore, by our induction hypothesis the statement is valid.

Now assume, that there exist a, b6 4 such that a=b and a=b(p). Take an
input signal x of A such that the mapping induced by it on A is not the identity.
Then 0,€Q and thus g,=g¢. Therefore, a=b(p,). This means that there exists
a natural number />0 such that ax'=b. Since g is compatible thus ax'=bx'(g).
From this, by the above equality, we get that the states g, ax!, ax?, ... are in g(a).
Therefore, (a, x)& o(a). On the other hand g.=¢ thus (a, x")=¢(a), showing
that p.=¢. Denote by p the word x' and assume that ¢(a)={a, ap, ..., ap*~1}.
We show that k is prime. Indeed, if 1<wv<k and ,* then (a, p®)c(a, p) which
contradicts the relation ¢,.=0. Denote by ¢(ay), g(a), ..., ¢(a,_,) the blocks of g.
From the equality g=g, it follows that o (a;)={a;, a;p, ..., ;p*~*} (i=0, 1, ..., s—1).
Thus n=k-.s. From this we get that s1 because k is prime. On the other hand,
since A is strongly connected thus there exist words p;, ¢; (i=0, ..., s—1) such that
app;=a; and a;q;=a, for all i€{0,1, ..., s—1}. Using the commutativity of A
we have app/pi=a;p’ and ap'qi=ap’ for any j€{0,1,..,k—1} and
i€{0,1,...,s—1}. Now define two automata A;=(X,0,8,) and A,=
=(¢X X, 0(ay), 6,) in the following way: 8,(¢(a), x)=¢(5(a;, x)) for all g(a)co

On isomorphic representations of commutative automata with respect to a,-products 25

and x€X, 8,(aop’, (0(a), x))=aop’pixq, if ¢(8(a;, x))=0(a,) for all ayp€o(ay)
and (¢(a;), x)€gXX. Take the oy-product B= A, XAy (X, @), where o,(x)=x
and ¢,(e(a), x)=(o(a), x) for any x€X and ¢(a)€g. It is not difficult to prove
that the correspondence v: a;p/~(o(a), a,p’) (i=0, 1, —1; j=0,1,...,k=1)
is an isomorphism of A into B. Now consider the automata A1 and A,. T hey are
strongly connected commutative automata with number of states less then #n. There-
fore, by our assumption, the statement holds.

For any prime number r, let M,=({x,, x,, ..., x,}, {0, ..., 7}, 6) denote the
automaton for which o(/, x;)=/+j (mod r), é(r, x) r, o(l, x,) r and o(r, x,)=r
for any /€{0, ...,r—1} and x, €4{x0s s Xq)-

The next Theorem gives necessary and sufficient conditions for a system of
automata to be isomorphically complete for & with respect to the o,-product.

Theorem 1. A system X of automata is isomorphically complete for & with
respect to the «,-product if and only if the following conditions are satisfied:

(1) There exists Ay Z such that the automaton E, can be embedded isomorphi-
cally into an ay-product of A, with a single factor;

(2) For any prime number 7 there exists A¢X such that the automaton M,
can be embedded isomorphically into an ay-product of the automata A, and A.

Proof. In order to prove the necessity assume that X is isomorphically complete
for & with respect to the o,-product. Then E, can be embedded isomorphically
k

into an «g-product]] A;({x, }, @) of automata from X. Assume that k=1 and.

let 4 denote a sultable isomorphism. For any j€{0, 1} denote by (a;;, ..., a) the
image of junder u. Among the sets {ay, a;,} (¢=1, ..., k) there should be at least
one which has more than one element. Let / be the least index for which ay#ay,.
It is obvious that the automaton A,;€ZX satisfies condition (1).
~Now take an arbitrary prime number r and consider the automaton M,. By
our assumption M, can be embedded isomorphically into an o4-product
k

IT Ai({xo, ..., x,},) of automata from X. Assume that k>1 and let u denote
i=1

" a suitable isomorphism. For any #€{0, ..., #} denote by (ay, ..., ay) the image of
t under p. Define compatible partitions =; (j=1,...,k) of M, in the following
way: for any u, uE{O o), uso(n) if and only if Ay =0y, ..., Q,;j=a,;. It is
obvious that n;=n,=...=mn, and x, has one-element blocks only. On the other
hand M, has only one nontrivial compatible partition: ¢={{0, ..., r—1}, {r}}.
Denote by s the least index for which o=>m,. It is not dlﬁ‘icult to prove that the
automaton A €X' satisfies condition (2).

To prove the sufficiency of the conditions of Theorem 1 we shall show that
arbitrary commutative automaton can be embedded isomorphically into an ¢,-
product of automata from R where N={E,}U{M,: r is a prime number}.

We prove by induction on the number of states of the automaton. In the case
n=2 our statement is trivial. Now let n=>2 and assume that for any m<n the
statement is valid. Denote by A=(X, 4,) an arbitrary commutative automaton
with n states.

If A is not connected then it can be given as a direct sum of its connected sub-
automata. Denote by A,=(X, 4,,9,) (¢=1, ..., k) these subautomata of A. Take

26 B. Imreh

an arbitrary symbol z such that z¢ X. Define the automata A;=(XU{z}, 4;, 5;)

{i=1, ..., k) in the following way: 8&;(a;, xX)=6,(a;, x) and &;(a;, z)=a;, for all

a€A;and x€X (i=1, ..., k). Take the ay-products B;=E,XA;(X, ¢?) (i=1,..., k)

where o (x)=y, (0, x)=z and @{?(l,x)=x for all xeX. It is clear that A
ok

can be embedded isomorphically into the direct product [J B;. On the other hand,
i=1

for any index i (1=i=k) the automaton 4; is commutative with number of states
less than n. Therefore, by our induction hypothesis the statement holds.

Now assume that A is connected. Consider the partition {C(a): a€ A} and the
partial ordering of blocks introduced on page 1. Since A is connected thus among
the blocks there exists one maximal only. Let C(a) denote this block. We distinguish
two cases.

(D Assume that the cardinality of C(@) is greater than one. In this case
(X, C(@), 6\c@xx) is a strongly connected subautomaton of A. If C(@)=4 then,
by Lemma 2 and Lemma 3, the statement holds. If C(a)c A then we distinguish
three cases.

(a) Assume that the cardinality of C(a) is prime and denote it by r. Let us
define the automata A,=(X, (ANC@)U{*},,) and A,=(((A\C@)U{*} XX,
C(@U {0}, ,) in the following way:

o(a, x) if d(a, x)¢C(a),
51 (a: x) = { H
% otherwise,
51(* > x) =%, .
52(0’, (a: x)) = a,’ 52(‘1’: (7"1 X)) = 5("7,’ X), 52(D7 (*’ x)) =D,
d(a, x) if 6&(a, x)€C(a),
O otherwise,

3:(0,(a, x)) = {

for all x€ X, a€ ANC(a) and a’¢€ C(a). Take the ay-product B=A, X A,(X, ¢) where
¢ (x)=x and @,(v, x)=(v, x) for any x€X, ve(AN\C(@)U{*}. It can be proved
easily that the correspondence
{(a, Q) if acAN\C(@),

V@ =, a) if aeC(@),
is an isomorphism of A into B. Consider the automata A; and A,. A; is a com-
mutative automaton with number of states less than n. Therefore, by our induction
assuption, it can be decomposed in the form required. For investigating A, we need
the automaton C=({x,,...,x}, {0,...,r},6c) where Jc(/, x)=I+i(mod r),
Oc(l, x)=1, dc(r, x;))=i and dc(r, x,)=r for any I€{0, ..., r—1}, x;€ {xq, ..., X, _1}. -
Now denote by U the set of the input signals of A, and consider the following parti-
tions of U:

Uy = {(+, %): x€X}U{(a, x): a€ANC(@), x€X, 5(a, ©)¢ C@),

U, = {(a. x): acAN\C(@@), x€X, 6(a, x)€C(a)},

Vi = {(a, x): acANC(a), x€X},

Ve = {(*,x): x€X}.

On isomorphic representations of commutative automata with respect to «,-products 27

By Lemma 2, we have that (X, C(a), Oic@yx x) is isomorphic to an a,-product of
M, with a single factor. Denote by p this isomorphism. We write a=a; if p(i)=a
(i=0,1,...,r—1). Now take the oy-product E,XC(U, ¢) where for any #,€U,,
u€ Uy and 0,€Vy, 0:€Ve, @)=y, @1(u)=x, ¢:(0,u)=x,, @00, u)=x; if
0.(0, u)=a;, @1, v))=x, and @,(1,v)=x; if 0s(ay, v)=a;. It is clear that
the correspondence v given by v(0O)=(0,r) and v(a)=(1,7) (¢=0,...,r-1) is
an isomorphism of A, into E,XC(U, ¢). On the other hand, it is not difficult to
prove that C can be embedded isomorphically into an «,-product of E, and M,.
Thus A; can be embedded isomorphically into an o,-product of E, and M,. Taking
into consideration the above decomposition of A,, this ends the discussion of (a)
in case (I).

(b) Assume that the cardinality of C(a) is not prime and the partition ¢ of
(X, C(@), 8,czxx) has one-element blocks only where ¢ is defined for (X, C(a),
5|C(a)xx) in the same way as in the proof of Lemma 3. Now for any @,€%,
define the partition g, of A in the following way:

2,(a) = { {a} if acANC(a),

0,(a) otherwise.
Now let @ denote the set of all such g,. It can easily be seen that A can be embedded
isomorphically into the direct product [A/g,. On the other hand for any g,€ Q
2,8

e

the quotient automaton A/g, is commutative with number of states less than .
Thus, by our induction assumption, we have a required decomposition of A.

(c) Assume that the cardinality of C(a) is not prime and the partition ¢ of
(x, C@), Jic@) x x) has at least one block whose cardinality is greater than one.
Then, by the proof of Lemma 3, (X, C(a), Jic@xx) can be embedded isomorphically
into an o4-product of automata A,=(X, o, 5)1) and A,=(¢XX, ¢(a,), ;) where
A, is isomorphic to an «,-product of M, with a single factor for some prime r<n.
Define the automata A,=(X,(A\C(@)Ue¢, d,) and A,=((A\C(@)Uog)XJX,
e(apU {0}, 8,) in the following way: for any a€AN\C(a), o(a)€g, x€X and
ap’€g(ay)

51(9(‘%), x) = 51(Q (a), x),

5(a, x) if d(a,)EANC@) .
du(a, x) = { o(a) if 8(a,x)eC(@) and &(a, x)€0(a),
52(“01""’ (a, x)) = a,p’, 52(“0Pj’ (e(ay), x)) = 32(‘1017]’ (e(ay, x)), '
62(51 (e(ay)s x)) =0,
6(a, x)q, if 6(a, x)€o(ay),
5(0, (@,) = { o if &(a, x)¢ C(@).

Notations used in the above definition coincide with those used in the proof of
Lemma 3. Take the oy-product A;XA,(X, @) where ¢,;(x)=x and @,(v, x)=(2, x)
for any x€X and v€(AN\C(a))Upg. It can easily be seen that the correspondence

(e D) if acANC(@),
v(a)_{(g(ai),aop") if ace(a) and a=a;p/,

28 ’ - B. Imreh

is an isomorphism of A into A;XA,(X, ¢). Consider the automata A; and A,.
The automaton A, is commutative with number of states less than n. Therefore,
by our induction hypothesis, it can be decomposed in the form required. The auto-
maton A, can be embedded isomorphically into an «,-product of automata E,
and M,. This can be proved in a similar way as in the case (a). Thus we get a re-
quired decomposmon of A.

(I) Now assume that the cardinality of C(@) is equal to one. Denote by R’
the set of all a€ 4 for which the cardinality of C(a) is equal to one and C(a)<C(b)
implies b=a for all b€ 4. Let R be the set R"U{a}. We distinguish two cases:

(a) First assume that R’ is nonvoid. Then (X, R, 6|z «x) is a connected monotone
subautomaton of A. Define the automata Al—(X (ANR)U{*},6,) and A2—
=(((A\RU{#PXxX, RU{O}, ;) in the following way: for any a€ A\R, a’€R
and x¢X

6(a,x) if é(a,x)¢R,
% otherwise,

bula, %) = |

51(*,'-\’) =%,

8:(a’, (a, %)) =a’, 85(a’, (%, %)) = 6(a’, %), 5:(0, (%, ¥)) = O
S) if | |

3,(00, (a, ¥)) = {0(“’ x) if &(a, X)ER

[0 otherwise.
Take the o,-product A; XA,(X, @) where @,(x)=x, ¢,(v, x)=(v, x) for any x€X
and v€(ANR)U{*}. It is obvious that the correspondence

(a, O) if acA\R,

V(@) = {(*, a) if a€R,

is an isomorphism of A into A;XA,(X, ¢). Consider A, and A,. A, is commutative
with number of states less than »n. Thus by our induction assumption, it can be de-
composed in the form required. On the other hand A, is a connected monotone
automaton thus, by Lemma 1, it can be embedded isomorphically into an «,-power
of E,. Therefore, we get a requlred decomposmon of A.

(b) Now assume that R’ is empty. Denote By Q the set of all blocks C(a) for
which the cardinality of C(a) is greater than one, and C(a)<C(b) implies b=a
for all A€ A. Since A is connected and R’ is empty thus the set Q contains at least
one block. We distinguish two cases.

(1) First assume that Q contains the bloks C(ay), ..., C(q) where k=1. De-
fine compatible partitions g; (i=1, ..., k) of A in the following way:

{ {a} if a&C(a)U{a},
i(0) = C(apU{a) otherwise.
It is not difficult to prove that o;={{a}: a€ A}. From this we get that A can

]S;S
be embedded isomorphically into the direct product]] A/g;. On the other hand,
i=1

for any i€{l, .:., k} the quotient automaton Afg; is commutative with number of

‘

On isomorphic representations of commutative automata with respect to e.-products 29

states less than n. Therefore, by our induction assumption, we have a required
decomposition of A. : :

(2) Now assume that Q contains one block only and denote it by C(b). Since
C is a compatible partition of A thus {X;, X,} is a partition of X where X;=
={x: x€X, C(b)xS C(b)} and X,={x: x€X, C(b)x=a}. It is clear that X; and
X, are nonvoid sets and B=(X;, C(b), iy x x,) Is a strongly connected commuta-
tive automaton. Now we distinguish three cases according to Lemma 3.

(i) Assume that the number of states of B is prime and denote it by r. Define
the automata A,;=(X, (AN\(CG)U{@)U{x},48,) and A,=(((A\(COU{a)U
U{*})xX, C()U{a, O}, 5,) in the following way: for any x€X, a€AN\(C(H)U
U {a}) and a’cC(b)U{a}

6(a, x) -if 4&(a, x)¢ C(b)U{a},
91(a, x) = { % otherwise,
51(*’ x) = ¥,

5,(0, (a, x)) ={

S(a’, (@, 0) = @, 8(a, (%, %) = 8(a’, %), 6,(0, (%, %) = 0.

Take the «,-product A; XA,(X, ¢) where ¢,(x)=x and ¢,(v, x)=(v, x) for any
© xeX, ve(AN(COIU{@P)U{*}. It is clear that the correspondence

{(a, 0) if- a¢cUa),
Y@ =(s a) if acCh)Ua

is an isomorphism of A into A,XA4,(X, ¢). Consider the factors of the previous
op-product. A, is commutative with number of states less than n. Thus, by our
induction assumption it can be decomposed in the required form. For investigating
A,, we need the following automaton. Denote by W=({x,, ..., x,, X}, {0, ..., r, F},
dw) the automaton where dw(/, x))=I+i(modr), Sw(#, x)=i, ow(l, x,)=r,
dw(l, ¥)=Il, dw(r,x)=r for any I€{0,...,r—1} and x;€{x,,...,x,_4}, and
Sw(r, x)=0w(r, X)=0w(F, x,)=r, dw(F, X)=rF. Now denote by U the set of the input
signals of A, and take the following partitions of U.

U, = {(*, 0): x€X}U{(a, x): ac AN(C(HYU{@)), x€X, 6(a,)¢ C(b)U{@}),
U, = {(a, x): acAN(C(b)U{a}), x€X, 5(a, x)C(b)},

Us = {(a, x): ac AN\(C(b)U{a}), x€X, 6(a, x) =a}, n

vy ={(a, x): acAN\(C(H)U{a}). xeX},

Ve = {(*,x): x€X;} and V3= {(*,x): x€X,}.

By definitions, we have that (V;UV,, C(b), 62|C(,,)X(V1Uyg)) is a strongly con-
nected commutative automaton with r states. Thus, by Lemma 2, it is isomorphic
to an ay-product of M, with a single factor. Denote by u a suitable isomorphism,
and for any #€{0, 1, ..., r—1} denote by b, the image of ¢ under u. Now take the
ap-product E,XW(U, ¢) where o¢,(u)=y, ¢)=¢1(u)=x, ¢5(0,u,)=%,

8(a, x) if &(a, x)eCh)U{a},
O otherwise,

30 B. Imreh

@20, up)=x; if 6x(0, u)=b;, @20, u)=x,, @s(1,0)=%, @o(l,v)=x, If
0a(bg, Vo) =b;, @-(1,v5)=x, for any €U, (t_l 2,3), v;€V; (j=1,2,3). Tt is
obvious that the correspondence v given by v(O)=(0, r), v(a) 1,), v(b)=(1, 1)
(i=0,...,r—1) is an isomorphism of A, into E;XW(U, ¢). On the other hand,
it is not “difficult to prove that the automaton W can be embedded isomorphically
into an «y-product of E, and M,. Thus we get a required decomposition of A.

(ii) Assume that the number of states of B is not prime and the partition ¢
of B has one-element blocks only where g is defined for B in the same way as above.
Now for any g, € define a partition g, of A in the following way:

%
{a} if a€cA\C(a),
¢,(a) otherwise.

0p(a) = {

Let Q denote the set of all such g,. It is clear that A can be embedded isomorphi-
cally into the direct product]] A/g,. The quotient automaton A/g, is commuta-

LEa
tive and its number of states is less than n for any g,€ Q. Thus, by our induction
assumption we have a required decomposmon of A.

(iii) Assume that the number of states of B is not prime and the partition ¢
of B has at least one block whose cardinality is greater than one. Then, by Lemma 3,
B can be embedded isomorphically into an o,-product of the automata B,=
=(X1, 0,8,) and B,=(oX X, 0(by), §;) where B, is isomorphic to an «,-product
of M, with a single factor for some prime r. Define the automata A,;= -
=(X, (A\C(b))UQ, 8;) and A, =((A\C®)HU XX, o(bpU{*, O}, 8;) in the
following way: for any a€ ANC(b), o(b)€0, x€X and b, p’€ o(by)

8(a,x) if 6(a, x)¢C(b),
01(a, x) = {g(é (a, x)) otherwise,
' 5:.(e(b), x) if x€X,,
Si(e(b), %) = {a (if xG)XZ,
Su(bop’, (a(b), ®) if x€Xy,
5ot (oo,) = | 20 400)X
O if 8(a,)€ AN(C(b)U {@)),
8:(0, (a, x)) =1 6(a, x)g, if d(a,)€ (dy),
* if é(a, x) =a,

52(b0pjs (aa x)) = bopj, 52(*: (a’ X)) = 62(*9 (Q(b!)’ x)) = *,
52(5, (e(by, x)) =0

(The notations coincide with those used in the proof of the Lemma 3.) Take the
ap-product A, XA,(X, @) where ¢,(x)=x and @,(v, x)=(v, x) for any x€X and
vE(A\C(b))UQ It is not difficult to prove that the correspondence

(a, 0 if . ac AN\(C(h)U {@)),
v(a) =1(e(b), bop?) if a€C(b)- and a = b;p’,
(a, #) if a=a,

On isomorphic representations of commutative automata with respect to o;-products 3F

is an isomorphism of A into A;XA,(X, ¢). Consider the automata A; and A,.
The automaton A, is commutative with number of states less than n. Thus, by our
induction assumption, it can be decomposed in the required form. The automaton
A, can be embedded isomorphically into an «,-product of E, and M,. This can
be proved in a similar way as in the case (i). Thus we get a required decomposi-
tion of A.

The following statement is obvious for arbitrary natural number i=0.

Lemma 4. If A can be embedded isomorphically into an a;-product of B with
a single factor and B can be embedded isomorphically into an «;-product of C
with a single factor, then A can be embedded isomorphically into an oproduct
of C with a single factor.

The next Theorem holds for «;-products with i=1.

Theorem 2. A system X of automata is isomorphically complete for & with
respect to the a;-product (i=1) if and only if for any prime number r there exists
an automaton A€Z such that M, can be embedded isomorphically into an o
product of A with a single factor.

Proof. To prove the sufficiency, by Lemma 4, it is enough to show that ar-
bitrary automaton with n states can be embedded isomorphically into an a, -product
of M, with a single factor for some prime r=n. This is trivial.

To prove the necessity take a prime r. First we prove that M, can be embedded
isomorphically into an «;product of automata from X with at most i factors if
M, can be embedded isomorphically into an o;-product of automata from X. In-
deed, assume that M, can be embedded isomorphically into the o;-product

k
B=J] A;({xo, ..., X,_1}, ®) of automata from X with k=i and denote by u
j=1

such an isomorphism. For any /€{0, ..., r—1} denote by (ay, ..., ay) the image
of / under u. We may suppose that there exist natural numbers s#t (0=s, r=r—1)
such that ay>a,, since in the opposite case M, can be embedded isomorphically
into an a;-product of automata from X2 with k—1 factors. Now assume .that there
exist natural numbers uzv (0=u,v=r—1) such that a,=a, (=1, ...,i). Then
1@y o5 Qs X)=1(@01, -, A, X)) for any x;€{x,,..., x,_1}. Thus in the
o;-product B the automaton A, obtains the same input signal in the states a,, and
a,; for any x;€{x,,...,X,_;}. Since pu is an isomorphism thus we have that
Ayt j(mod 1 =p+jemodry fOT any j€{0,...,r—1}. On the other hand, r is prime
thus from the above equations we get that @,,=a, for any I€ {0, ..., r—1} which
contradicts our assumption. Therefore, we have that the elements (g, ..., q;)
O=l=r-1) are pairwise different. Take the following a;-product

C= [T A({xo, ..., X,_1}, ¥) where for any j€{l,...,i}, (ay, ..., €A X... X 4;
=1
and x,€ {Xq, ..., X,_1}

@;j(an, .., ajyi-1, x) if j+i—1=k and there exists
0=1!=r—1 such that a,=qa,, @w=1,..,1),
Yilay, ..., 8, x) =1 9;(an, ..., ag,x) if j+i—1>k and there exists
_ O0=Il=r—1such thatag,=qa, u=1,..,1i),
arbitrary input signal from X; otherwise.

32 B. Imreh: On isomorphic representations of commutative automata with respect to «;-products

It is not difficult to prove that the correspondence v(/)=(ay, ..., a) (=0, ..., r—1)
1is an isomorphism of M, into C.
Now we prove that if M, can be embedded isomorphically into an «;-product

k
IT A;({xo, ..., X,-1}, @) of automata from X with k=i, then there exists an auto-
J=1

maton A€ZX such that Mprimcllv:]

i
product of A with a single factor, where prime [V?] denotes the largest prime less

can be embedded isomorphically into an o;-

i
than Jr. Denote by pu such an isomorphism. For any /{0, ..., r—1} denote by
(@, ..., ay) the image of / under u. Since g is a 1 —1 mapping thus the elements
(ay, ..., ay) (=0, ...,r—1) are pairwise different. Therefore, there exists an s
{1=s=k) such that the number of pairwise different elements among ay,, a5, ..., @, _15

1
is greater than or equal to prime [l/;] Let a;, ..., a;,_,s denote pairwise different

i
elements, where u=prime [Vr], and denote by X the set {x,, ..., x,_;}. Take the
ao-product C=ITA (X,) with a single factor, where for any a;.€{a;;, ..., a;,_,s}
and xDEXa ‘p(aj,s, xv) =(ps(aj,1’ cen aj,k’ xd) if 5M,.(u_1(aj,1: tery aj,k)’ xd)=
=UTH@,, smoaiol? <> Bes vmoawk): 1T 18 DO difficult to prove that M, can be em-
‘bedded isomorphically into C which ends the proof of Theorem 2.
From Theorem 2 we get the following.

COROLLARY. A system X of automata is isomorphically complete for & with
tespect to the a;-product if and only if it is isomorphically complete with respect
‘to the a-product (i=1).

DEPT. OF COMPUTER SCIENCE
.A. JOZSEF UNIVERSITY

ARADI VERTANUK TERE 1.
‘SZEGED, HUNGARY

H—6720

Reference

1] GEcseG, F., Composition of automata, Proceedings of the 2nd Colloquium on Automata,
Languages and Programming, Saarbriicken, Springer Lecture Notes in Computer Science, v,
14, 1974, pp. 351—363.

(Received Feb. 29, 1980)

Deterministic ascending tree automata |

]

By J. VIRAGH

1. Introduction

In the early 60s Automata Theory was considerably influenced by the methods
and results of Universal Algebra. In fact, if we regard the input signs as unary oper-
ational symbols over the state set, then the automaton can be identified with a special
universal algebra (unoid). Allowing non-unary input signs Thatcher and Wright {7]
and Doner [3] came to the notion of the generalized or tree automata which accept
arbitrary trees instead of the linear words of ordinary automata.

Two types of tree automata are investigated in the literature. The first one,
the descending tree automata (known also as frontier-to-root or sinking auto-
mata, cf. [3], [6], [7]) proceed the input trees from the leaves along all branches
towards the root. AIl results of the ‘classical theory’ such as the equivalence of
the deterministic and nondeterministic devices, the minimization algorithm, Nerode’s
theorem, regular (tree) grammars, regular expressions and the Kleene-theorem
can be generalized for this type of automata (cf. [1]—[3] and [6], [7]).

A less investigated generalization led to the notion of the ascending (called
also root-to-frontier or climbing) tree automata, cf. [4], [6]. This device reads the
input trees starting at the root proceeding then towards the leaves along the branches.
Our investigations were inspired by the results of Magidor and Moran [6] especially
by Section 6 of their paper.

Our aim is to generalize the results of the classical theory for ascending tree
automata. In this part I we investigate a generalization of the Kleene-theorem and
the characterization of sets accepted by ascending tree automata as sets generated
by special regular tree grammars. The algebraic notations developed by Gécseg
and Steinby in [4] will be used throughout this paper. Nullary operations will be
excluded. This restriction is necessary by some investigations concerning ascending
tree automata, cf. [4].

2. Preliminaries

-

For arbitrary set 4, 2(4) denotes the power set of A. N stands for the set
of all positive integers, i.e., N={1,2,3,...}.

Let F be a finite nonvoid set and a mapping of F into N. We call the ordered
pair {F,r) a type. The elements of F are the operational symbols. If fcF and

3 Acta Cybernetica V/1

34 J. Viragh

r(f)=n, then we say that the arity of f is n or f is an n-ary operational symbol.
We often refer to the type {F, r) simply by F and we take the set F as the (disjoint)
union U (F,|n¢N), where F, is the set of all n-ary operational symbols from F.

Let X={x;, X,, ...} be a countable set of variables and X,={x;, X, ..., X,}
for every n€ N. We define the set Ty , of n-ary F-trees as the smallest set satisfying

(1) Xn-c_—TF,n and

(i) f(p1s ---s Pm)€TE,, Whenever py, ..., p,€T¢, and fCF, for some mEN.
We note that the set Ty , is identical with the set of all n-ary polinomial symbols
of type F in the sense of Grétzer [5]. The subsets of Ty , are called n-ary F-forests
or simply forests when n and F are specified by the context. Ty stands for the
set U(TF,,|n€N).

Next we define devices capable of recognizing forests. To this we need some
preparations.

Let F be an arbitrary type. The ordered pair U=(A4, F¥) is called a non-
deterministic F-algebra if A is a nonempty set and F%=(f¥|fcF) is a set of non-
deterministic operations on 4, i.e., if f€F,, then f¥ is a mapping

oA -2(4)8

In that special case when f(a,,...,q;) is a singleton for every f¢F and
(ai, ..., q)€A*, we speak about F-algebra. Identifying the singletons with their
elements (and that will be our practice in the following discussions) we can define
an F-algebra as a system U=(4, F¥), where every operation is a mapping

FETA A

The triple A=(W, a, A") is called an n-ary nondeterministic descending F-
automaton if . '

(i) A=(4, F¥) is a nondeterministic F-algebra, whose carrier 4 is called
the state set of the automaton,

(i) a=(4W, 4@, ..., AM)e(P(A))" is the initial vector,

(iii)) 4°S A is the set of final states.

If U is an F-algebra and all components of the initial vector are singletons,
then we say that A=(, a, A’) is an n-ary deterministic descending F-automaton.

Every automaton A induces a mapping fA: Tf,—~%(4) in the following
manner: '

1) pA(x) =4V (x;€X,, j=12,..,n),

(ll) ﬁA(p) = U(fw(bls seey bk)lbjeﬁA(pj)s J= 19 2, esy k) lf p =f(p1, [ERE] pk)
Then T(A)={p|p€TF,, & pA(p)NA =8} is the forest recognized by A.If A is de-
terministic, then BA(p) is a singleton for every p€Tr,, and T(A) can be written as

T(A) = {plp€Tr,, & BA(p)€A’).

Now we present the necessary “definitions for our second type of devices, the so-
called ascending tree automata.

The ordered pair B=(B, F?®) is called a nondeterministic ascending F-algebra
if B is a nonempty set and F®=(f®B|fcF) is a set of nondeterministic ascending

Deterministic ascending tree automata 1.) 35

operations on B, i.e., if f€F,, then f® is a mapping
f3: B —~P(BY).

Again, if for all f€F and b€B, fB(b) is a singleton, then we say that B is a de-
terministic ascending F-algebra and we write the operations as mappings

f®:. B — B

The triple B=(B, B’,b) is called an n-ary nondeterministic ascending F-
automaton, if

(i) B=(B, FB) is a nondeterministic ascending F-algebra and B is called
the state set of B,

(ii) B’S B is the set of initial states,

(i) 5=(BW, B?, ..., B"™c(P(B))" is the vector of final states.
If 8B is a deterministic ascending F-algebra and B’ is a singleton, then we say that
B=(B, B’,b) is an n-ary deterministic ascending F-automaton.

With every ascending automaton B we associate a mapping oB: Ty ,~Z(B)
as follows:

@D oB(x) =BY (x;€X,, j=12,..,n),
(i) B (p)={b/B(D)NaP(p) XaB(pe) X ... X0B(py) 5 0}
if feF, and p=f(ps, P> ---» Di)-
. The forest recognized by B is defined by
T(B) = {plp€Ty,, &P ()N B = 9).
If B is deterministic and B’={p"}, then we can write simply
T(B) = {plp€Tr,, & b'caP(p)}:

Our definitions are rather general because we allow even infinite state sets
of automata. But this general case is needed only by some later discussions. In this
Part I by automata we always mean finite automata.

Two automata, A and B are called equivalent if T(A)=T(B). Two class of
automata, C, and C, are equivalent if for every A from C, there is a B from C,,
equivalent to A, and conversely. ‘The following statements are well known,’
cf. [6], [7].

Proposition 1. The classes:of deterministic descending, nondeterministic de-
scending and nondeterministic ascending automata are. equivalent. Taking an
arbitrary automaton from one of these classes, we can effectively construct two
automata belonging to the two other classes equivalent to it.

Let Fpge denote the class of forests, recognizable by deterministic descending
automata and %, the class, recognizable by deterministic ascending automata.

Proposition 2. %, & Frec-

Since forests are subsets of T ,, we may define the usual set-theoretic oper-
ations U (union), M (intersection) and ~ (complementation) on them. Let us now
define two more operations the x;-product and x-iteration.

3*

36 ' J. Virigh

The x;-product of the forests T, and T,, denoted by T - ., T, is the forest which
can be obtained by replacing every occurence of x; in some tree from 7, by a tree
from T,. The xgiteration of the forest T, denoted by T*x, is defined by T*x=
= U (Tkx|k=0,1,2,...) where :

@) Tox=x,
(i) Trx=T"-5%UT-, "%

or n€ N. We refer to the operations union, x;-product and x-iteration as regular
operations. It is well known that Fpgc is closed under the regular operations,
but %, is not. ‘
Let us take some language Z suitable for describing the sets accepted by
automata. In Automata Theory the following two problems play an important role:
(1) Given an automaton A. Describe the set accepted by A in terms of Z.

(2) Given a description of the set T in the language . Construct an auto-
maton accepting T.

The solution is given by the famous Kleene-theorem if .# is the language of regular
expressions. Next we review briefly the generalization of this theorem for deter-
ministic descending automata. First of all, we have to define the language % of
(generalized) regular expressions.

Let F be an arbitrary type. The set &5 of regular F-expressions is the smallest
set for which

(1) ﬂéﬂr,
(i) if péeTy, then peRy, and .
(i) if #y, H2€Re and €N, then (Hy+35), (HyiHy), (H)"€Ry hold.

If F is known from the context, we speak about regular expressions simply. An
occurrence of the variable x; in " is called bounded if this occurrence is in X,
for a subexpression A i, of A . All other occurrences of x; are called free. x;
is a free variable of A" if x; has at least one free occurrence in 2. " is an n-regular
expression if all its free variables are in X,.

Each regular expression # €%, denotes a forest |#’] given by the following
rules:

@ if oA =0, then |7 is the empty forest,
@) if A = p(peTy), then |X| = {p},
(i) if A = (AL+HY), then || = [A U,
(iv) if A =(ALiAy), then || = [A| -, |5,
(v) if A = (A, then |A| = |A ™.
T is an n-regular forest if T=|#"| for some n-regular expression 2. Moreover,

T is a regular forest if T is n-regular for some n€N. Finally, #ygg stands for the
class of all regular forests.

Deterministic ascending tree automata I. 37

Proposition 3. (Kleene-theorem, cf. [7]) Freg=Frec. More precisely, for an
arbitrary deterministic descending automaton one can effectively construct a regular
expression denoting the forest accepted by this automaton, and conversely.

Regular tree grammars are direct generalizations of the well known regular
(string) grammars. The following definition is equivalent to the usual one, cf. [2].

Let F be a type, a regular F-grammar is a system I'=(Q, F, P, S), where
(i) QO is a finite nonempty set of nonterminal symbols,

(i) SSQ is the set of initial symbols,

(iii) P is a finite set of rewriting rules of the form

g —~x;(g€Q, x,£X) or q-f(q1, -,) (@ q1s ..., BEQ, fEF).

If all variables occuring in the rules of P are from X,, then we say that I' is an
n-ary regular F-grammar. When n and F are not specified, we speak about regular
(tree) grammars. The n-ary regular F-grammar I’ induces a binary relation =
on the set Tr qux,, t=rr iff r can be obtained from 7 by replacing a nonterminal .
g in ¢ with the right side of some rule ¢—~f(g;, ..., qy) or g—x; from P. Let =}
denote the reflexive, transitive closure of the relation = .

The set T(N)={p|p€ T , & (35)(s€ S & s=7p)} is the forest generated by T.
T is called generable, if T=T(I') for some regular grammar I'. Fggy denotes
the class of all generable forests.

Propdsition 4. (Brainerd [2])) Sprec=%Gen-

3..Closed forests

- In this section we show that every forest' T€#, contains all trees composed
from the paths of some trees belonging to 7. We shall use this characteristic feature
for deriving a connection between Fppc and F,,.

With every type F we associate a new type d(F) of unary operational symbols
in the following way:

() if feF, then 6(f) = {fi, /o, .- i}
Gi) if fs g, then 3(/)Nd(g) =0,
(i) S(F)= UB(NIfEF). ' /
Now let us define the functions &;: Z(Tx)—~2P (T3¢, for all i€EN as follows

f(x if i=k,
(1) dilx) = {Q) otherwise,
@ o (f 1, - Pk)) =f1(5i (Pl)) Ufe (55(1’2)) U... Uﬂ (5i (Pk)),
(3) 6AT) = U(8:(DIteT). ¢

Let 6: 2(Ty,,) ~ P (T5r),,) be the function for which
o(T)=U(@(DNi=1,2,...,n).

38 J. Virigh

Speaking informally, 6(¢) consist of all words which can be read along the
paths of 7. The inserted indices show the position of the node to be visited next.
The elements of 6(7T) can be regarded as words of the free semigroup generated
by §(F)UX, as well.

Lemma 1. The function é is monotone and commutes with the regular opera-
tions, i.e.

() if T, E T, then §(Ty) E 6(TY),

(i) (T UT) = $(T)VS(T),

(i) (T To) = 6(TD) -, 0(To),

(v) o(T™) = (8(1))™

Proof. (i).and (ii) are obvious. For verifying (iii), first we show the inclusion
(1) 0(TYE(Ty - To). If g€d(T)-,0(T,), then we must distinguish the
following two cases:)

1) g€6,(Ty) and jw=i. This directly implies g€6;(T;-,T,). Therefore,
gea(Tl ° ng2)'

2) g=g,-,,8: where g,€5,(t;) for some €T, and g,€6;(t,) for some 1,€T,.
Then g€d;(t;) holds for the tree t,=t . ,1,€Ty -, T,. Thus g€é(Ty-,T,).
The inclusion 8(T; -, To) S 6(Ty) - ,,0(T) can be verified in a similar way.

Using (i), (iii) and the identity T™*=7T"-1-%UT. T"~L% it is easy to prove
by induction on » that (iv) holds, too. O

ReMARK. From Lemma 1 it follows that the regularity of T implies the regular-

ity of (7). The converse is not true. For this it is enough to consider the forest
T of all balanced trees in T ,. .

Let 07': P (Tyky,n)~P(Tf,,) denote the inverse of 4, ie, 6~ (U)=
={t|6(t)S U} for every UZ Ty(),,. We define the operator 4: P(Ty,) ~P(Tf,,)
as the composition 6 71.6

A(T) = {t6() S 8T} (T ST,
Lemma 2, 4 is an algebréic closure operator on #(T¢,), that is
() TS T.= AT) S AT, 4 ,
() T & 4(D),
(i) 4(T) = 4(A(T)), ,
(iv) if 2€A(T), then (€A4(T,) for some finite T; S T.
Proof. Obvious.

We say that T& Ty, is A-closed if A(T)=T. Let %, denote the class of all
A-~closed forests.

Lemma 3. If F has at least one non-unary operational symbol then %, and
&Z rec are incomparable,

s/
/

Deterministic ascending tree automata 1. 39

Proof. For the sake of simplicity assume that F,=@ and f€F,. Let
T = {0 SO ®), S(fGxn, 3, 1))
. T, = T;NT,, where
=TI), T'={{S R}, {f} {§~fRS), S~x;, R~x1}, §)

= {p|p is composed from an arbitrary number of f’s and a prime

and

and

number of x,’s}.

T\€EFgc is obvious, but T4 %, because of f(x,,x)€A4(Ty) and f(xy, x)§T;.
On the other hand T.€%,, but T,€Fpec would lead to a contradiction. O

Now we generalize the construction of the well-known powerset automaton
for ascending tree automata. Let A=(%, A’,a) 'be an n-ary nondeterministic
ascending F-automaton. The powerset automaton, belonging to A is the n-ary de-
- terministic ascending F-automaton PA=(PU, 4, b), where PUAU=(P(4), F) is
the deterministic ascending - F-algebra with operations f®¥ defined by

fFou (C)=ié(U(ni(f“(C))ICE)

for every CS 4 and f€ F,, b=(BW, B®, ..., B™) with BO=(D| DS A & DN A =0)
and m; denotes the ith projection.

Now we recall some concepts from [4]. For any state a of the n-ary non-
deterministic ascending F-automaton A we define

T(A, a) = {plpETF,n &anzA(p)}.

A state a is called a O-state if T(A, a)=0. We say that A is normalized if, for all
ac A, neN and fe€F, either all of the components of f%(a) are O-states or none
of them is a O-state.

Lemma 4. For any nondeterministic ascending automaton A an equivalent
pormalized nondeterministic ascending automaton A* can be constructed.

Proof. This lemma is a generalization of Theorem 3 in [4] for nondeterministic
automata. The proof can be performed similarly. O

Lemma 5. For. every normalized nondeterministic ascending automaton A,
T(PA)=4(T(A)). ‘

Proof. We shall verify the inclusion T(PA)SA(T(A)) first. Let 1€ T(PA)
and g€d,(?) for some 1=j=n. It follows from the definition of T(PA), that in
this case we can correspond to the branches of g a sequence a,, al, ..., a, of states
from A such that

() a,.c4 (0=k=v), a4 and a,cA4AV,

(i) a;p1€m(f%(a)) if a;(0=i=v-1) corresponds to the branch labelled by f;.
We can complete g to a tree 7 accepted by A because A is normalized. Thus
g€8,(D<6;(T(A)) which implies t€A(T(A)) since g and ¢ were arbitrary.

The reverse inclusion can be verified in a similar manner. 3

40 J. Virigh

ReMARK. We show by a simple counterexample that the preceding Lemma does
not hold for unnormalized automata. Let A=(%, 4’, a) be the automaton where

A={ay,d}, F=F={f}, n=1,
ay) = {(d, ag)s (ao, d)}’ fAdy = {(d’ d)}
. A =AYV = {a,}.
Then f(x,,x,) is in T(PA), but not in 4(T(A)). O -

If we apply the construction of PA for a deterministic automaton A, we get
an automaton equivalent to A. From this assertion, using Lemma 5, it directly
follows.

Corollary 6. The regular forest T can be recognized by a deterministic ascend-
ing automaton iff 7 is closed.

Corollary 7. It is effectively decidable for every regular forest T whether T
is recognizable by a deterministic ascending automaton.

Proof. Let T=T(A), where A is a nondeterministic normalized ascending
automaton. In this case, by Corollary 6, T¢ & , iff T(A)=T(PA). By Proposition
2.1 we can construct two deterministic descending automata equivalent to A and
PA, respectively. For this type of automata the equivalence problem is decidable. O

4. D-regular operations and the generalized Kleene-theorem

It can easily be seen that &%, is not closed under the regular operations. In
fact, it is not closed under the polinomials of these operations, either. More pre-
cisely, this is true for almost all- polinomials but those unary ones constructed by
unions only. Since &, can be obtained as the A-closure of %y it seems reasonable
to define ‘D-regular operations’ by combining 4 and the regular operations. This
enables us to derive a ‘Kleene theorem’ for Z,.

Now let us define the D-regular operations for any T, and T, from T} as follows:

(1) 4-union U: T10T2=A(T1UT2),
(2) (4, x)yproduct ©,: T)0,,To=4(Ty- Ty,

(3) (4, x)-iteration F,,: (T)*x=A4(T*x),
where on the right sides U, -, and x, stand for the ordinary regular operations.

Lemma 1. The D-regular operations preserve regularity and recognizability
by deterministic ascending automata.

Proof. Follows from Proposition 2.3 and Corollary 3.6. O -

Lemma 2. For D-regular operations the following identities hold
® nOn=4amUam,

(i) 1,041, = A(T) 0 ,,4(T),

(i) (T)*x = (A(T))*=.

Deterministic ascending tree automata 1. 41

Proof. These identities can be derived applying the function §~2 for both sides.
of the equations

(%) 6(T1UT2) = 8(4(TPUA(TY),
(k%) O(Ty+ ., To) = 6(4(T) - 5, 4(T),
(% % %) O((T)=) = 6(4(Ty*=).

We know from Lemma 3.1 that § commutes with the regular operations. It is also-
easily seen that 6(4(T))=6(T) holds for every forest T. These assertions imply
the identities (#)}—(* % %). O

Next we introduce a new ‘D-regular interpretation’ || of the regular ex-
pression %

(i) if A =40, then ||| is the empty forest,
(i) if o = p(peTp), then A = {p},

i) if o =+, then [= 1 D1,
(v) if o = (AH,iHy), then |A|| = A1l o, |A5],
W) if o = (AHD*, then |H) = |4 *x.

T is a D-regular forest if T'=| '] for some regular expression 4"

1

Lemma 3. For every regular expression ¢, ||| =4(X]).

Proof. By induction on the number of the symbols of regular operations in ¢~
using Lemma 2, O ,

Theorem 4. The forest T is recognizable by deterministic ascending automata.
iff T is D-regular, and this connection is effective.

Proof. (1) Let T be given by the deterministic ascending automaton A. Ac-
-cording to Proposition 2.1 and 2.3 we can effectively construct a deterministic
descending automaton B and a regular expression # such that

T = T(A) = T(B) = |).

T is closed (see Corollary 3.6) thus T=4(T)=A(|o¢"|). But this yields, by Lemma 3,
T=|A]. :

(2) Now let us assume that T=|>"| for the regular expression . By Pro-
position 2.1 and 2.3 we can effectively construct a nondeterministic ascending auto-
maton C accepting |4 |. C can be assumed to be normalized (see.Lemma 3.4).
Proceeding as in Lemma 3.5 we get the deterministic ascending powerset auto-
maton PC for which T(PC)=4(T(O)=4(2¢)=||o¢] holds. O

REMARK. In the preceding proof we used Proposition 2.3 in both directions.
- Theorem 4 could be proved without it, but i in that case the proof would be more

lengthy and difficult. ,

42 J. Viragh: Deterministic ascending tree automata I.

5. D-regular tree grammars

In Proposition 2.4 we have established a close connection between forests
-generable by regular tree grammars and forests recognizable by deterministic
descending automata. In this section we shall give a similar characterization for
forests accepted by deterministic ascending automata. To this we define a special
kind of regular tree grammars.

The regular tree grammar I'=(Q, F, P, S) is called deterministic regular, or
‘briefly D-regular if

(i) S is a singleton and

(ii) for every nonterminal ¢ and operational symbol f there is exactly one
derivation rule in P, whose left side is 4 and whose right side begins with f.

Theorem 1. The forest T is recognizable by deterministic ascending automata
iff T is generable by D-regular tree grammars. '

Proof. The well-known constructions of converting a regular tree grammar
into an equivalent (nondeterministic) ascending automaton and vice versa can
be used. The only thing to be noted is that the assumptions (i) and (ii) in the de-
finition guarantee the preservation of the determinism in both directions. [

Corollary 2. For every regular tree grammar I" one can decide effectively whether.
T(I') can be generated by D-regular tree grammars.

Proof. Since a nondeterministic ascending automaton accepting T'(I') Ttan
-effectively be constructed (cf. Proposition 2.1 and [2]) Corollary 3.6 and Theorem 1
immediately imply our Corollary. O

Acknowledgement. The author wishes to thank Professor M. Steinby for his
valuable suggestions especially for those concerning Theorem 4.4 and for providing .
‘the example for the Remark in Section 3.

DEPT. OF COMPUTER SCIENCE
..A. JOZSEF UNIVERSITY

ARADI VERTANUK TERE 1.
:SZEGED, HUNGARY

H—6720

References

‘1] . BraiNerD, W. S., The minimization of tree-automata, Inform. and Control, v. 13, 1968, pp.
484—491.

I[2] BRAINERD, W. S., Tree generating regular systems, Inform. and Control, v. 14, 1969, pp. 217—
231.

'[3] DONER, J., Tree acceptors and some of their applications, J. Comput. System. Sci., v. 4, 1970,
ppP. 406—451.

4] Gécseg, F. and M. STENBY, Minimal ascending tree automata, Acta Cybernet., v. 4, 1978,

p.
5] GRATZER, G., Universal algebra, Van Nostrand, Princeton, N. J., 1968.
{6) MaGIDOR, M. and G. MoRrAN, Finite automata over finite trees, Tech. Rep. Hebrew Univ., Jeru-
salem, No. 30, 1969.
{7] THATCHER, J. W. and J. B. WriGHT, Generalized finite automata theory with an application
to a decision problem of second order logic, Math. Systems Theory, v. 2, 1968, pp. 57—S38I.

(Received Oct. 24, 1979)" \

Iterated grammars

By L. CsiRMAZ

1. Notations and definitions

1.1. Let X be any, finite or infinite, set. X* denotes the set of finite se-
quences of elements of X including the empty sequence which is denoted by e. X+
stands for 2*—{e}. If a€Z* then x| is the length of the sequence, in particular
le|=0. The elements of X* are called words. The mirror image of a word « is
denoted by o~

If X is finite we refer it as an alphabet. The subsets of XZ* are the languages

over X. .
) If ¥ does not contain the comma symbol, we define 2° as the set of sequences
of elements of X separated by commas. For example, if X={ab,q, b} then
“a, b,ab” and ‘“ab” are elements: of X5 Clearly Z*NZ*=XU{e}. If acZ®
then ||«| denotes the length of the sequence, i.e. the number of commas in « plus
one. For example |a, b, ab|| =3, labl|=1, [e|=0 but |a, b, ab|=6.

1.2. A grammar or metagrammar is a 4-tuple ¥=(N, T, P, S) where N and
T are disjoint finite sets of nonterminal and terminal symbols, respectively, P is
a finite set of production rules of the form a—p where ac N+, Be(NUT)*, and
SEN is the starting symbol. £ (%) denotes the language generated by 4.

Grammars are_classified by the structure of their production rules as it can
be seen in Table 1 below. The language L T* is of type 1 (=0, 1, 2, 3) if there
is a grammar of type 7 generating L. The family of languages of type t is denoted

by x(2).

4 is of type _ if «— e P implies
0 (phrase structure) o anyway
1 (context sensivite) S does not occur in B and either || = || or « =S and f=¢
2 (context free) ' Je] =1
3 (regular) le} = 1 and either [f] = 1 or 8 is of the form t# where 1€ T and n¢ N

Table 1.

44 L. Csirmaz

1.3. An iterated grammar is a 5-tuple S=(X,N,T,P,S) where Z and T
are disjoint finite sets none of them containing the symbols = and , (double arrow
and comma). NS X% is the set of nonterminal symbols, T is the set of terminal
symbols. P is the set of production rules of the form a=pf where a€N°*— {¢},
Be(NUT)® and S€N is the starting symbol. The sets N and P may be infinite. The
language #(#) generated by the iterated grammar # is a subset of T* the elements
of which can be derived from S in the usual way using finitely many production
rules only. During the derivation the commas serve as separators between the
symbols but they are abandoned at the end.

Iterated grammars are classified also as Table 2 shows.

£ is of type . if « = B€ P implies
0 anyway
1 S does not occur in B and either ||«|] = ||fll or e =S and B=¢
2 flell =1
3 |l¢ll=1 and either || |]|=1 or B is of theform 7, w where t€Tand weN
Table 2.

The iterated grammar S£=(Z, N,, Ty, P,, S;) is said to be generated by the
metagrammar ¥=(N,, T}, P, S;) if

Z.=‘T'1—]w2¢ﬂa N2=Z+’v T‘.’ng’ P2:$(g)‘ ’

An iterated grammar is of type (o, 7) if it is of type 7 and there is a metagrammar
of type ¢ which generates it. A language L is of type (o, 1) if there is an iterated
grammar of type (o, 7) generating L. The family of languages of type (o, 7) is de-
noted by y(o, 7).

2. The theorems
- Because every finite language is regular, and y(1)Sy(t") if =1 we have
the following :

ProrosITION. If o=¢’ and t=7" then

10 E 1B, E 20, 1) E x(0',) S 1(0).
Theorem 1. (3, 7)=y(r) for t=0,1,2,3.

Proof. For 7=0 the Proposition implies the statement. For the other cases
first we need a

Lemma. Let LS (TU{a})* be a regular language, a¢ T. Then there is a finite
set R, a regular language KS R* and regular languages K,ST™* for every bER
such that

L = {w,aw,a...aw,: wcK,, and by b,...b,EK}.

Iterated grammars 45

ReMARK. The converse of the Lemma is evidently true, i.e. if K and the K,’s
are regular languages then L is regular, too.

Proof of the lemma. Tt is well-known (see, e.g., [1]) that L — {¢} can be generated
by a regular grammar ¥=(N, TU{a}, P, S) where P consists of rules of the
form A--x and 4A-—xB only (4, BEN, x¢ TU{a}). Now define P,, P;, Qy, Q; S P
as follows.

‘ Py = {acP: o = A —~ aB for some 4, BEN},

P, = {0€P: a = A -~ xB for some A4, BEN, x€T},
Qy={a€P: a =4 —a for some AEN},
O, ={acP: =4 —~x for some AEN, x€T}.

Obviously, P=P,UP,UQ,UQ,. Let s and f be two new symbols (for start
and finish) and define '

R = {{o, By o, BEPUQ YU {(s, B): BEPUQ U {ot, 1) a€ PoUQYU s, 1}

The languages K, 5 for {a,)€ R will be the “cuts” starting after symbol a generated
by the rule « and ending before the next symbol a generated by the rule §. We need
two more definitions. For A€N let

{4 —-¢} if A—aBeP, for some BEN or A - a€Q,,
0 otherwise,
P(4) = P,U{B ~ x: B~ xAcP}.

Now we are ready to define the languages K, 4 for all {a, B)cR. If a€Q,, BEP,UQ,
then let K, ;,=0, K, ={e}. If a=A-~aBcP, and either B=C-aDE¢P, or
B=C—acQ, then K, 4 is the language generated by the grammar (N, T, Py(B)U
UPy(C), B), K, py is the language generated by (N, T, Po(S)UP,(C), S) and K, 5
is generated by (N, T, Po(B)UP,UQ,, B). Finally, K/, », is the language generated
by (N, T, P,UQ;, S) plus the empty word if it was also in L.

What remained is to define the language K. It is the one which is generated

by the grammar
(PUQoU{s, f}, R, P, s)

PR = {o ~ (o, BYB: (o, BYER, B = f and K, py # ayu
Ulx =<{a, f): &, /YER and K, gy = 0}
It is easy to check that R, K and the K,’s satisfy the requirements. [

Py(4) = {

where

Now we return to the proof of the Theorem 1. Let P be the regular set of pro-
duction rules of the iterated grammar J=(X,N,T,P,S). In this case
PS(EUTU{=}U{, D* and neither the double arrow nor the comma is an
element of XUT. The double arrow must occur exactly once in every production
rule, so, by the Lemma, there are regular languages P} and PR over ZUTU{, }
such that P is the finite union of languages

{w, = wy: w,€PE, we PR}

46 L. Csirmaz

Applying the Lemma to the languages P} and P} with the comma as the special
terminal symbol, we get languages KT and K} over disjoint alphabets R} and RF
for each j, and finitely many regular languages K, over ZUT indexed by the ele-
ments of I={J(RYURF). To be more precise the K;’s are subsets of Z+UT.

J
For wy, we€ X+ define the relation w,=w, as w,€EK—w,€K; for all icl.
It is clear that this is an equivalence relation and there are finitely many equivalence
classes (no more than 2* where k is the cardinality of I). The definition of equivalence
means that if a€ P is a production rule, w,€X* is a nonterminal symbol in it and
w; =w, then putting w, in places of the nonterminal occurences of w, in « the re-
sulting word is in P, too. Therefore every derivation can be rewritten so that it
contains at most one element from each equivalence class, i.e. only finitely many
different nonterminal symbols are used. It means that the languages K; can be
assumed to be finite, or, equivalently, to have one element. This element will be
denoted by u(P).
We now have finitely many regular languages Kf and K} over the finite set I,
and a function pu: I-(NUT) such that S€range (). The set of production rules
was reduced to the finite union of sets '

{wy = wy: wi€PE, we PR}

Pf = {[1(11), ﬂ(12), ’ﬂ(ln) lll2ln€K§l}s
= {u(iy), p(i), ..., u(iy): iyiy...i,€K¥).

Our next aim is to show that the K}’s are finite languages If not, there are arbitrary
long elements in K}, i.e. fixing some wo€ P there is an x€ K} such that |x|=>[w,| +1.
Let w,€ P be the word belonging to x. Then ||wy||=|x|>{w.]|+1 which contradicts
the assumption that £€x(3, 1) with 7=0.

- If in the languages K} we replace i€1 by u(i) if p(i)€T then the followmg set
of production rules

where

0 = U {wy — wy: wi€K}, wo€KT}

J
generates the same language as P does. Moreover if all of the rules of P are of
type 7, then the same is true for Q.

Now we are able to give a finite grammar which generates the same language
as f-does. It is enough to start from Q and we may assume that 7€ 7 and I—T
is the set of nonterminal symbols of Q.

Case 7=3. The same argument as above shows that the languages K¥ must
be finite, Therefore Q is finite and obviously of type 3.

Case 1=2. Because KF is a regular language it is generated by some type 3
grammar ¥,=(N; S ;> where N; and I are disjoint sets, S;€N; and the
N;’s are disjoint for dlfferent J’s. The grammar Q is of type 2 so wEKL implies
wel Now take the followmg set of rules:

Obviously, U Q; is finite and of type 2 and Z(Q)= .Sf’(U a2y

Case 1:—1 K7 is finite, so we may assume that it contams only one word,
wi, and let |wf I_n The lengths of the words of K} are at least n;, except if wj

Iterated grammars 4T

is the starting symbol, then K may contain the empty word, too. If we fix the first
n; symbols of the right hand side of a rule then the remaining part forms a regular
language, which may be empty. There are only finitely many words of length n;,
therefore we may drop them into different sets, i.e. we arrive at

0= L,J {w] ~ wiw: wekR}UQ*

where |w{|=|w{|, KF is regular, and Q* is either empty or contains the rule S—¢&
only. The method of Case 2 now gives immediately a finite language of type 3.
generating .#(Q), only a little care should be taken of the empty word in K}. O

REMARK. A close examination of the proof shows that given some regular
metagrammar ¢ and an iterated grammar # generated by ¥, there is an effective:
procedure: which gives from ¢ and # a grammar 3 for which Z(S)=2(s#).

Theorem 2. x(2, 3)=yx(0). ‘

Proof. By the Proposition, it is enough to prove that yx(2,3)2yx(0). Let
%=(N, T, P, S) bea type 0 grammar and assume that the comma and the double
arrow are not in NU7. We give the iterated grammar of type (2, 3) simply by list-
ing its production rules, which form evidently a context free language, or, what
is more, a deterministic one.

Choose a new symbol 7 for each 1€ T and let 7= {f: t¢T}. Change all terminals.
in the production rules to their counterpart, let P be the resulting set. Let S=NUT"
and R a new symbol not in X or T. The desired iterated grammar is

. F=(ZU{R}, CU{RD™, T, Q, S)
where Q consists_of

Rt~ = o] for.each a€X*
yad = R6-1Bp~1y~1 for each y,8€Z* and o — BeP
[fo =1, Roo™? for each t€T and a€Z*.

The production rules of # are of type 3, the derivations of the grammar ¥ are
encoded in the nonterminals of # in a straighforward way. 0O

. Abstract

The definition of the programming language Algol 68 [2] raised the following problem: If
a grammar is not given by some finite description but itself is a language generated by some meta-
grammar, what strength may the iterated grammar have? We show that a regular metagrammar
does not increase the strength of the iterated grammar, but a context free metagrammar (even a de--
terministic one) with a regular iterated grammar has the strength of the phrase structure grammars..

MATHEMATICAL INSTITUTE OF THE
HUNGARIAN ACADEMY OF SCIENCES
REALTANODA U. 13—15.

BUDAPEST, HUNGARY

H—1053

References

[1] Hopcrorr and ULLMAN, Formal languages and their relation to automata, Addison-Wesley, 1967..
[2] vAN WIINGAARDEN A, et al., Revised report on the algorithmic language Algol 68, Springer, 1976..

(Received May 31, 1979)

d-dependency structures in the relational model of data

By G. CzfpL1

I. Introduction

The use of the relational model of data structures proposed by E. F. CopD

[2, 3] is a promising mathematical tool for handling data. In this model the user’s

data are represented by relationships. For definition, let Q be a finite non-empty

set, and for each b€ Q let T, be a nonempty set associated with b. The elements of

Q are called attribute names and T, is said to be the domain of 5. Now a relationship

over Q is defined to be any finite subset of [J 7T,. A relationship R over
b

€n
Q={ay, ..., a,} can be represented by a two-dimensional table in which the columns
correspond to attribute names and rows correspond to the elements of R:
|a1|a2|...la,,
g(ay)

g l g(ay) ‘ g(a,)

(g¢R and g(a)eT,).
This table is not unique, the order of columns and that of rows are arbitrary.
The concept of functional dependency. is due to E. F. Copp [2, 3]. For the
definition, let 4 and B be subsets of Q and let R be a relationship over Q. We say

that B functionally depends on 4 in R (in notation A—Rf-I——B or simply 4L~ B)if
for all g, h€R

(Vac4)(g(a) = h(a)) = (Vb<B)(g(b) = h(b))
is satisfied. The link ATf>B is said to be a functional dependency.

From the above definition we can obtain three other concepts of dependency
by changing the quantifiers. Particularly, the concept of d-dependency is introduced
as follows: .

- DerNITION. Let 4 and B be subsets of Q and let R be a relationship over €.
Bis said to be d-dependent on A in the relationship R (in notation A4 —;»B or simply
A2+ B) if for any g, héR

(Fac A)(g(a) = h(a)) = (Fb€B)(g(b) = h(b))
holds. :

4 Acta Cybernetica V/1

50 G. Czédli

In any relationship of a time-varying data structure at a particular moment
of time there are- dependencies. Some of them may be fortuitous or unimportant,
but it is reasonable to require that at least certain dependencies be present at any
time. Organizing the data structure and some of the user’s activities can be based
on these constant dependencies. In case of functional dependencies this has been
shown in Codd’s papers [2, 3]. Now we want to show the applicability of d-
dependencies in this aspect. For this reason we give an example. Let

Q = {author, title, room, bookcase}

and let a relationship R be given in the following table:

author title room bookcase author title room bookcase
1 1 1 2 10 10 3 2
2 2 1 3 11 11 3 3
3 3 1 1 12 12 3 1
4 4 1 2 1 4 1 1
5 5 2 3 5 8 3 3
6 6 2 1 4 1 1 3
7 7 2 2 7 10 3 2
8 8 2 3 6 10 2 2
9 9 3 1 6 9 2 1

For the sake of visibility we can think R is a library in which eighteen books are
stocked. The library consists of three rooms, each room has three bookcases, and
only two books can go in each bookcase. The library is organized so that

{author, title}-{—»{room, bookcase}. Furthermore, the book with author=title=i
@(=1,2,...,12) is in the [11-3]-th room in the [1 +3{%}]-th bookcase. (Here [x]
denotes the largest integer not greater than x and {x}=x—[x].) A reader who
knows that either the title or the author of a particular book is, say, i can find the
book by scanning the [l—j;—?l]-th room and the [1 +3 {si}]-th bookcases only.

Now in connection with this example we try to express why the concept of
d-dependency can have some practical importance. The task of obtaining informa-
tion from a given data structure is closely connected with the dependencies that
are present in the data stucture. So, when we list some possibly advantageous prop-
erties of using d-dependencies below, we restrict our interest to the case of obtain-
ing information only. Suppose the user “knows” the values of attributes of a given
set A of attribute names and wants to learn the values of attributes of another set B.

OIf 4 -, B (in a given relationship R) then the user is not assumed to know
all the attribute values from 4. If he knows the value of at least one attribute in
A and the d-dependency AL+ B is also given (by a suitable family of functions

8, (a€A), é6,: T,~][T,, compare with the functions [——113] and 1+3{?1} in
beB

d-dependency structures in the relational model of data 51

our example), then he can find the values of attributes in B by scanning a part
of R only. (The values of attributes in B can be not unique if AL+ B does not hold.)

(2) Suppose both 4L~ B and 4-2~ B hold. (This was the case in our example
with A= {author, title} and B={room, bookcase}.) Sometimes, in spite of scann-
ing a part of R, the method of (I) can be more immediate than making use of the

explicit function ¢: [T,—~ [] T, which describes the functional dependency
acA beB

AL~ B, since such a function ¢ can be given by another table in general.

(3) One can have 4-%~B without having A-Z-B.

(4) The user can need only at least one value of attributes in B (without knowing
which one is correct). E.g., this can occur when he is intérested in C, B is an inter-
mediate step, and B—;——C holds in an other relationship Q.

For a given relationship R over Q let

Fe={(4,B): ASQ BSQ, A4 B}
and
Dy ={(4,B): ASQ, BSQ, A4~ B}.

Fr and D, are called the full family of functional dependencies of R and the full
family of d-dependencies of R, respectively. In [1] W. W. ARMSTRONG has given an
abstract characterization of full families of functional dependencies. Our main
goal here is to give an abstract characterization for full families of d-dependencies.
Due to duality between the concept of functional dependency and that of d-
dependency, a considerable part of Armstrong’s paper [1] is dualized and used in
the present paper.

I1. Abstract characterization of d-dependencies

Let Q be a finite non-empty set and let P(Q) denote the set of all subsets of Q.
We define a partial order = over P(Q)XP(2) by (4, B)=(C,D) iff ASC and
B2D. We recall a definition from Armstrong’s paper [1]:

A subset # of P(Q)XP(Q) is called an abstract full family of functional de-
pendencies over Q if the following four axioms hold for any elements 4, B, C and
D in P(Q): '

(F1) (4, Ae#Z..
(F2) (4, B)eZF and (B, C)cF imply (4, C)c #.

(F3) If (4, BYe# and (4, B)=(C, D) then (C, D) Z.
(F4) If (4, B)¢F and (C, D)¢# then (4UC, BUD)c#.

Now Armstrong’s abstract characterization of functional dependencies is the
following:

A subset F of P(Q)XP(Q) is of the form F =%, for some relationship R
over Q iff & is an abstract full family of functional dependencies.

To formulate our main result the following definition is needed.

4t

52 G. Czédli

-DEFINITION. A subset & of P(Q)XP(Q) is called an abstract full family of
d-dependencies if the following five axioms hold for any elements 4, B, C and D

in P(Q) (The notation X—2~Y will be used instead of (X, Y)c9).
(D) A4~ 4.
(D2) If A%+ B and B4~ C then 4-2-C.
(D3) If A~%~B and (C, D)=(4, B) then C-2-D.
(D4) If A-2+~B and C2~D then 4UC-2-~BUD.
D3y If A——»Q then A= ﬂ

In the main theorem below an abstract characterization of d-dependencies
is glven

Theorem. Let Q be an arbitrary non-empty set of attribute names. Then, for
any non-empty relationship R over Q, @y is an abstract full family of d-dependencies.
Conversely, for any abstract full family @ of d-dependencies over Q there exists
a nonempty relationship R over Q such that D =%y.

REMARK. The case R=0 is excluded from the Theorem. However this fact
does not mean the loss of generality, since .@g trivially can be characterized by

Dy=P(Q)X P(Q)
II1. The proof of the Theorem

Tt is a straightforward consequence of definitions that 2, is an abstract full
family of d-dependencies.

To prove the converse several lemmas will be needed. In what follows all
concepts and statements concern a fixed set Q={ay, ..., a,} of attribute names.
For an abstract full family & of d-dependencies let us denote by_.#, the set of
maximal elements of 2.

Claim 1. Let us denote (4, B)¢.#, by A,/ B. Then 4, has the following four
propertles

(M1) For any A€ P(Q) there exist X and Y in P(Q) such that (4, A)=(X, Y)
and X /'Y;

M2) If A/B,C,/D and (4, B)=(C, D), then (4, B)=(C, D);

(M3) If A/B,BSC and C /7D, then ACSC;

(M4) If A9 then A=0;
where A, B, C and D are universally quantified over P(Q).

Proof. M1, M2 and M4 are trivially satisfied. Suppose we have 4 B, BCC

and C/D. Then B-4-C (i.e., (B, C)€9) follows from D1 and D3, whence 4 -2~ D
follows by D2. Now D4 ‘yields 4UC—%>D. The maximality of (C, D) in & implies
AUCESC, whence we obtain the required inclusion ASC. O

Let a subset .# of P(Q)XP(Q) be called an m-family if it satisfies the axioms
M1, M2, M3 and M4.

d-dependency structures in the relational model of data 53

Claim 2. For any m-family .4 the set
D = {(4, BYE P(Q)X P(Q): there exists (C, D)€/ such that (4, B) = (C, D)}

is an abstract full family of d-dependencies.

Proof. It is trivial that 2, satisfies D1, D3 and D5. To check D2, let (4, B)
and (B, C) belong to 2,. Then (4, B)=(4,,B,) and (B, C)=(B,, C,) hold
for some (4,, B,) and (B,, Cy)¢.#. From B,< BC B, and M3 we obtain 4,< B,.
Now (4, C)¢2, follows from (4, C)=(B,, Cy).

As for D4, suppose (4, B) and (C, D) are in &,. Let (4,, B)) and (C;, D,)
be taken from .# such that (A B)=(4,, B;) and (C, D)=(C;, D;). Now Ml
yields the existence of an (U, V) in .# with the property (B,UD,, BIUDl) U, »).
Since B,S U and D,S U, M3 applies. We obtain 4, S U and C,E U. Thus the
required (AUC, BUD)E@,,, follows from (4UC, BUD)=(4,UC,, B,UD,)=
=U, V). O : ‘

Lemma 1. For any abstract full family &2 of d-dependencies the family ./%9
of maximal elements of & is an m-family. Conversely, any m-family .# is the family
of maximal elements of exactly one abstract full family

Dy = {(4, BIEP(QXP(R): (4, B) = (C, D) for some (C, D)eM}

of d—depen&encies.

Proof. D3 yields that any abstract full family & of d-dependencies is un'iquely
determined by .#g5. The rest has already been proved in Claims 1 and 2. [

Now we could deal with m-families instead of abstract full families by Lemma 1.
However, the concept of m-families is still complicated to our purposes. Surprisingly;
certain semilattices will be suitable to characterize both abstract full families and
m-families. For the sake of brevity, 0—1 subsemilattices of P(Q) will be called
d-semilattices. l.e., & is a d-semilattice over Q iff it is a subset of P(Q) containing
0, Q and the intersection of any two of its elements. The following statements will
show the significance of d-semilattices. First, for an m-family .#, % ,, the semi-
lattice according to ., is defined by ;

Fu=1{4: ACQ and (4, B for some B).

Similarly, for an abstract full family 9, ¥ is defined by FLug.

Claim 3. ¥, and ¥, are d-semilattices for any abstract full family 2 of d-
dependencies and m-family .#. - » 1

Proof. It is enough to check that &, is a d—semllattlce From M1 we conclude
that Q€. M1 and M4 yields that & ,. Suppose A and B are in %, and let
C, D be chosen so that (4, C)é.# and (B, D)c./4. By M1 a pair (U, Ve is ob-
tained such that (ANB, ANB)=(U, V). Since VA and VS B, M3 apphes
and we obtain US4 and ‘UZSB. Hence ANB=U implies AOBE.VJ, =

54 G. Czédli

Claim 4. For any d-semilattice & over Q the family
Dy = {(A, B)EP(Q)XP(Q): for any X€¢& B S X implies 4 S X}

is an abstract full family of d-dependencies.
The proof is straightforward and so it will be omitted.

Lemma 2. For any abstract full family & of d-dependencies %5 is a d-semilattice.
Conversely, any d-semilattice &% coincides with &5 for exactly one abstract full
family 2 of d-dependencies, namely for 2=2,,.

Proof. We have already proved that 2, is an abstract full family of d-
dependencies and &, is a d-semilattice. First we show that &=%5_,. Suppose
AES and choose Be P(Q), BS A, such that B is minimal with respect to the prop-
erty (A, B)¢Z,. In order to show that (4, B) is a maximal element in 2, we
assume that (A4, B)<(C, D)¢%,. Then A< C because of the coice of B, and
we have (4, B)<(C, B)=(C, D). Hence we obtain (C, B)¢Z,. Now BEZ AcY
and the definition of 2, yield CS A4, which is a contradiction. Therefore (4, B)
is maximal in Z, and so A€ 5,,.

To show the converse inclusion, suppose A€%g,. Then (4, B) is maximal
in 9, for some B. Let # denote the set {X: XcP(Q) and AcX}. Since (X, B)¢ D,
(Xe#), we can assign an element Ux€$ such that BEUy and XL Uy. Since
& is a finite semilattice, H=(1{Ux: X€#} belongs to &. Now BSH and
(4, B)¢¥ implies ASH. If we had Hes# then HE U, would contradict
H=N{Uyx: Xe#}S Uy. Consequently, A¢H and so A=HcS. The equality
F =%, has been shown.

For the uniqueness of 2 we assume that =%, =%,,. We denote ./,
by ;. Suppose (4, B) belongs to 2;,. We can choose elements (4;, B;) from .#;
(i=1,2) such that (4,B)=(4,,B,) and (B, B)=(4,,B,). Since A,£%,
(4;, C)c A, for a suitable C. Now M3 yields 4, A,, which implies (4, B)<
=(4,, B,). By D3 we obtain (4, B)€Z,. We have shown the inclusion DE
while 2,S 2, follows similarly.

A map ¢: P(Q)—P(Q) is called a closure operator (on Q) if for any
X, YEP(Q), XY,

>

X< Xo=(Xo)o
and
XoSYo

hold. For any d-semilattice & we define a closure operator ¢ by the following way:
Xoy=N{Y: Y& and XS Y}.

It is easy to see that, for any X€P(Q), Xp,€%. Moreover Xc& iff X=Xo¢,
Lemma 3. Let & be a d-semilattice and X€ P(Q). Then X(pyz{a: ({a}, X)e2 y}.

Proof. Let U denote the right-hand side of the above equality, and let 2=92,,.
DI and D3 yield XS U and (X, U)c2. We have (U, X)€2 by D4. Let 4 be a
minimal (with respect to &) subset of X for which (U, 4)¢2. We claim that

d-dependency structures in the relational model of data 55

(U, A)€# 4. To show this let the opposite case, (U, A)<(V, B)€2, be assumed.
By the choice of A we have UcV and (U, 4)<(V, 4)=(V, B). We obtain
(V, AP by D3, -
(4, X)E2 by D1 and D3,
and
(V, X)€E9 by D2.
Now ({v}, X)€2 for any v€ V by D3. This means V'S U, which contradicts Uc V.
Thus we have shown (U, A)€.#,. Therefore Uc ¥y, whence UcS by Lemma 2.
Now X,, S U follows from XS U and Ue¥. To make the proof complete
we have to show that if XS Cc¥ then USC. Suppose X& CeS and choose
an element D¢ P(Q) such that (C, D) is a maximal element in 2. Since (U, 4) is
also a maximal element in 2 and AS XS C, we obtain USC from M3. O

COROLLARY. Let & be a d-semilattice and let X¢ P(Q). Then X¢ & iff ({a}, X)e@f,
for ac X only.

The concept of d-semilattices is already simple and worth being connected with
relationships. A natural connection is given in the following definition.

DEerFINITION. Let R be a relationship. We define %y, the d-semllattlce associated
with R, to be Fy,..
Now, by Lemma 2, we have only to prove that for any d-semllattlce & there
- exists a relationship R such that & =%;. The simplest case is settled in the
following

Claim 5. Let & ={@, 2}. Then ¥=%% for any one-element relationship R’
The proof, which is trivial by definitions, will be omitted.

For A¢ P(Q) we define an at most three-element d-semilattice 7, to be {8, 4, Q}.
A relatively simple case is handled in the following

Lemma 4, Let A€ P(Q), A0 and A=Q. Then ./A Fr where R={g, h}
is a two-element relationship defined by

g(@=1 for all acQ,

h(a)=2 for acA,

h(a)=1 for ac O\ A.

Proof. The relationship R can be visualized by the following table:

A QA
a b c d
g1 1 1 1
h|2 2 e 11

Since ({x}, 4) ¢ Dy for x¢ A, we have A€ F by the Corollary. Hence 7, S . Now
suppose X€P(Q), X#A4, X#0, X=Q. If ANX is non-empty, say u€ ANX, then
({u}, X)€Dr. Hence ucXpy, \X. If AN\X is empty, ie. AcXcQ, then
(o}, X)€2 and v€EXpy, \X for any v€ \X. In both cases X=X¢g,,, whence
X¢ #r. Therefore 7, A—.S/’R O

56 o, G. Czédli

For d-semilattices .9’ (161) we deﬁne ‘2’ ¥;, the sum of &, to be the smallest
d-semilattice containing &; for all 161 It 1s easy to check that:
Claim 6. Let &; (i€1, I finite) be d-semilattices over Q. Then the following

equality holds:
2= { ﬂ Air A, }

icl

Now we introduce an addition concept for relationships, which will be in
a close connection with the addition of d-semilattices.

DerFINITION. Let R; (i€7, I finite) be non-empty relationships over @, where
RS]]T,,, For i€l and fER; we define f‘E]]({I}XT,,) by fi(p)= (1, f®)

(b¢ Q) Set R{={f": feR}. Then Z'R,, the sum of R;, is defined to be |J Ri.
i ier
Roughly saying, we obtain R if we make R; (icI) pairwise disjoint by in-
iel .
dices and take their disjoint union.
A crucial step of our proof is

Lemma 5. Let R; (ic/, I finite) be arbitrary relationships over Q. Let > R,

i€l
be denoted by R. Then = > F%,.
ier
Proof. Let Dy, Dr,, Fr and Fg, (i€]) be denoted by 2, Z;, & and ¥, re-
spectively. First we show that for any (4, B)EP(Q)XP(Q) -

(4, B)cD iff (4, B)c9; for all icl. 1)

Suppose (4, B)€Z. Let g, h€ R; such that g(a)=h(a) for some ac A. Then g'(a)=
=h'(a) as well, whence g'(b)=Hh'(b) and so g(b)=h(b) for some bEB. le.,
(4, B)¢9;. Conversely, let (4, B)E@i for all i€ . Suppose g’, hER and gl(a)=H(a).
Then (i, g(s))=(J, h(a)) implies i=;j and g(@)=h(a) in R;. Therefore there
exists b€ B such that g(b)=h(b), from which we obtain gi(b)= (z g®)=(J, h(d))=
=h/(b). Thus (1) has been shown.

Now let us assume that 4€&. We compute by Lemma 3, Corollary 1 and (1)
as follows:

4= A(py = {a: ({a}’ A)E@} = {a: ({a}:IA)E@i fOI' IEI} =
= N{a: (@), HEDY =) Aos, |
el iel

Therefore A€ > &; by Claim 6. We have obtained that & & 2.9" To prove
el
the converse inclusion let 4€.%; and suppose 4 ¢%. Then there ex1sts an a€ such
that a€ Apy\A. We have ({a}, A)€9D by Lemma 3 and ({a}, 4)€2; by (1). But
({a}, A)€2, implies a€ Apy,=A, which is a contradiction. Hence A¢% and there-
fore ¥, . Finally, &,C % (icI) implies .2 FC S, Wthh completes the proof.
Now we can prove

d-dependency structures in the relational model of data 57

Lemma 6. For any d-semilattice &% there exists a relationship R such
that .9 Zy R* f

/
Proof. If & has at least three elements then Lemmas 4 and 5 together with
the equality
S= 2 Ta

Aey
A=0,Q

imply our statement. The rest is included in Claim 5. 3

Finally, Lemmas 2 and 6 complete the proof of Theorem.

Abstract

The concept of d-dependencies in relationships is introduced. An axiomatic description of
d-dependencies in an arbitrary relationship is presented.

BOLYAI INSTITUTE
A, JOZSEF UNIVERSITY
ARADI VERTANUK TERE 1.
SZEGED, HUNGARY
H—6720

References

[1] ArRMsTRONG, W. W., Dependency structures of data base relationships, Information Processing
74, North Holland, 1974, pp. 580—583.

[2] Copp, E. F., A relational model of data for large shared data banks, Comm. ACM, v. 13, 1970,
pp. 377—387. .

[3] Copp, E. F., Further normalization of the data base relational model, Courant Inst. Comp.
Sci. Symp. 6, Data Base Systems, Prentice-Hall, Englewood Cliffs, N. J., 1971, pp. 33—64..

(Received Sept. 17, 1979)

Synthesis of abstract algorithms
By L. VARGA

1. Introduction

In the second half of the sixties the programming methodology evolved on
the basis of the recognation that the correctness of a program, corresponding to
a given specification can be proven, and during the last ten years, the programming
methodology has become one of the most important branches of computer science.

The programming methodology has been changed radically and it now in-
cludes broad research areas that deal with both practical and theoretical questions
of program development and management. The current research directions in pro-
gramming methodology is summarized in [14] and a more detailed description of
its principal subareas can be found in the books [13], [15].

Within the scope of programming methodology important research has been
concentrated on studying the correctness of programs. In recent years there has
been increasing activity in this field. There are two different approaches to achieving
program correctness.

1. The engineering approach has been aiming at turning the art of programming
into an engineering science. Its aim is to develop more efficient software tools and
specify standard that can be used in the process of development of programs as
a means to improve the relaibility and reduce the software cost. Complete systems
called automated software evaluation systems, for different phase of software life
cycle have been developed such a system includes automatic tools for requirement
and design analysis, testing, maintenance etc. A comprehensive survey of the soft-
ware tools and automated software evaluation systems can be found in [12].

Altough the engineering approach generally is not capable of demonstrating
the correctness of a program, this approach seems to be an effective approach to
the validation of programs in practice.

2. The analytic approach uses program verification methods to ensure that
the desired program conformes to its correctness specifications. The role of soft-
ware verification, the proof techniques and various verification systems are dis-
cussed in the survey papers [5], [7].

As far as the analytic approach is concerned, in the beginning the attention
was focused on a posteriori verification of programs. That is, the problem of the
program correctness proof was approached in the following way. Given a program

60 L. Varga

and a specification, it is to be proven, that the program realizes exactly the mapping
stated in the specification.

Later on, however it turned out, that different programs, which realize the
same mapping may be essentially different from the point of view of the correctness
proof. The difficulty of a proof depends on the complexity of the program.

This led to the conclusion, that the correctness of a program has to be established
during its construction. Programs have to*be designed such'a way, that the proof
of their correctness should be simple. In fact, first a correctness proof has to be
constructed and than a corresponding program to this proof should be given. This
is the constructive approach to achieving program correctness, which represents
one of the most significant advance in programming methodology. This approach
has produced various program design and construction methods ([1], [3], [10], [17]).
This methods require as input a specification of what is to be achieved and produce
as output a program text which is a specification of how is to be achieved.

The methods initiated by the constructive approach have made a fundamental
contribution to the synthesis of programs in extracting principles for deriving pro-
grams systematically from their specifications. These principles are formulated pre-
cisely enough to be carried out by an automatic synthesis system in [8], [9].

The main steps of an automatic program synthesis system are.

1. The system accepts specifications, which describe some function to be real-
ized by means of primitives of a well defined system. Generally these primitives
are the statements of a programming language.

i The basic approach is to transform the specifications step by step according
to certain transformation rules, which are guided by two kinds of strategic controls:

2. Some transformations attempt to transform the specifications into equivalent
specifications or replace them by stronger assertions about the states of the desired
programs. The aim is to produce an appropriate form for applying programming
strategies.

3. Other transformations attempt to transform the specification into the de-
sired program text, decomposing a given program description into subprogram
descriptions.

These new descriptions are transformed into newer ones repeatedly until a pro-
gram text of a source programming language is obtained.

In this paper we concentrate on the third problem, and programming strategies
are formulated for developing the desired abstract programs step by step using the
Hoare’s deductive system [3]. The levels of abstraction are used with the Vienna
Definition Language [16]. This language permits concentration on logical solutions
to problems, rather than the form and contraints within that the solution must be
stated. The language helps the programmers to think in terms of hierarchy of macro
statements and express structured programming logic in stepwise refinement of
a program and its data structure.

We are influenced by the strategies formulated by N. Dershowitz and Z.
Manna [2]. The -essence of our paper is the presentation:of similar strategies
applied to VDL-programs.

The programming strategies are based on the Hoare’s deductive system. Ex-
tending the Hoare’s methods to VDL-statements of similar structure to the state-
ments of usual programming languages is relatively simple. However the inde-
terminism — which means, that the VDL-language allows programs to be written

Synthesis of abstract algorithms 61

in that the execution order of the statements is not predefined — presents a special
problem. The programming strategies of such structures can be formulated by
using the results of correctness proof of parallel programs [4]. A detailed treatment
of correctness proofs of parallel programs can be found in Gries and Owicky’s
papers [11]. y :

The next section presents the bagg strategies for developing VDL-programs
from appropriate forms of speciﬁcatiﬁs.

In Section 3 the VDL-graph is defined as an abstraction of a class of data
structures. The VDL-graph specify a connected graph which has one entry node
at least, but may have several terminal nodes and there must be a path from one
entry node at least to a terminal node through every node in the graph.

In Section 4 the deductive technique is illustrated by the example of an abstract
graph walk algorithm. Sections 5 and 6 demonstrate the application of VDL-graph
to specifying a linkage editor and an inverse assembler model, respectively.

2. Strategies for stepwise refinement

In this section the main strategies are formulated for developing a VDL-
program from its specification.
The following notation will be used

{R} P {0}

where Q and R are logical statements about states of the abstract machine (VDL-
machine) and P is a VDL-program (program-tree). This may be interpreted as
follows: If Q is true before execution of a VDL-program P, and if the execution
terminates, then R will hold after executing P. This notation expresses the partial
correctness of a VDL-program P with respect to its input specification Q and out-
put specification R.

Our initial goal is to synthesize a program of the general form

{R©)} stmt(x1, x5, ..., %) {QEAx = fiE)AR= foEIN ... Ax, = f,(50)}

where &, is the initial state of the abstract machine and f;, f;, ..., f, are given func-
tions. We require that the output state £ of the desired program s#mt satisfy the
given specification R(£), provided the initial state &, satisfies the given input speci-
fication Q(&y).

In order to synthesize the program this top-level goal may be transformed
into equivalent goal or it may be replaced by a stronger goal, which can be achieved
by an assignement (value returning) instruction or reduced to subgoals by using
the following strategies.

2.1. The strategy of assignment. Given the goal of the form
{R(eg; n(&; (s—crt e, ..., {s—cq: eM} e5: stmt (xq, ..., %) {Q(xy, ..h Xi5 O}
where the selectors s—c¢,, s—¢,, ..., s—¢, are independent, and '

e =e(xy, ..., x; &, i=0,1,..,n

62 L. Varga

then this goal can be achieved by the following value returning instruction

Stmt(Xy, Xy ooy Xp) =
PASS: ey(xy, ..., Xz; ©)
S—clf e(xy, ..., x5 6
s—c,,:@,,(xl, s X3).

2.2. The conditional strategy. A goal of the form
. {@:V g,V ...V q,} stmt {p}

can be reduced by the conditional instruction

stmt =
pl - Stmtl
Pps — stmt,

T - stmft,
to the subgoals

{q.} stmty {pApy}, {2} stmty {pA N piA Dy}, .., {44} stmt, {PATTPIA-..A T pu_y}.

Any control tree can be constructed by using only the following two macro
definitions:
stmt =
stmty;
stmt,
and
stmt =
null;
stmt,y,

stmt,
The strategies for these basic forms will now be given.

2.3. The strategy of composition. A goal
{r} stmt {p}

can be decomposed by the instruction

stmt =
stmty;

stmty
2

{q} stmt, {p} and {r} stmt, {q}.

2.4. The strategy of indeterminism. Given a conjunctive goal of the form

{q1/\q2A "'/\qn} stmt {PIAPZ/\ "'/\pn}

to the subgoals

Synthesis of abstract algorithms 63

then it can be reduced by the instruction

stmt =
null;
stmt,,
stmt,,
. :
stmt,
to the following subgoals

{q1} stmty {p\}, {g2} stmty {p:}, ..., {q.} stmt, {p,}

provided these theorems are interference-free. This property of the theorems is
defined as follows: '

Definition 2.1. Given a control tree ¢ with the theorem
{4} ¢ {p} @y
and the value returning instruction stmt with some precondition pre(simz). If the

execution of stmt after ¢+ does not alter the validity of ¢, that is

b

{q} stmt {pre (stmt)A q}

and the execution of stmt before any st within ¢ does not alter the validity of the:
precondition of sz, that is

N\
{pre (sO)} stmt {pre (stmt)Apre (st)}
then we say that stmt does not interfere with theorem (i).

Definition 2.2. Given the theorems

{ql} Stmtl {pl}’ {q2} 'Stmt2 {p2}’ ey {qn} Stmtn {pn}) (ll)

and let st; be a value returning instruction within stme;. If for all i, i=1,2,...,n
st; does not interfere with ' -

{g;} stmt; {p;}; j=1,2,..,n, j#i

then the theorems (ii) are interference-free.

Accordingly, in applying the strategy of indeterminism, we must ensure the
interference-free. If ¢y, ¢qs, ..., g, are statements about different components of
the state ¢ and similarly p,, p,, ..., p, do not contain common variables and the
macros stmt,, stmt,, ..., stmt, operate on independent components of ¢ then the
interference-freeness obviously satisfies.

The conditional strategy has an important.special case:

'2.5. The strategy of iteration. A goal of the form

{q} stmt {p}

64 L. Varga

can be decomposed by the iteration

stmt = .

Py — stmt,

T - stmt;
stmt,

{p} stmt; {pA7p}. a;ld {q} stmt; {pAp,}

provided the iteration terminates. :

Here the conjunctive goal pAp;.is achieved by forming an iteration so that
the predicate p remains invariant during the iteration until the predicate p, is
found false.

In the special case of g=pAp,, the instruction

10 the subgoals

stmt =
p, — null
T — stmt;
stmty

.can be used for reducing our goal to the subgoal

{p} stmt; {pA7pi}.

At last a rule will be given here, which can be used for proving the termination
of an iteration.

2.6. The rule of termination. Let the iteration

stmt =
py ~ null
T — stmt;
_ ~ stmt,
with the precondition
pre (stmt) = p
be given.
Let u be an integer function of the appropriate variables. If

a)pDu=0
b) pATlp, D u=0
©) {u’ <u} stmt; {pAp.} (is the value of u after stmt))

d) and any assignment statement, that can be executed parallel with the
statement stmt does not interfere with the theorem c;
then the iteration terminates.

For example, the termination of the iteration

process ()=
length (list) =0 —null
T—process (tail (1));
proc (head (¢))

Synthesis of abstract algorithms 65.

is guaranted, because for the function

u(t) = length (¢)
with the precondition
‘ is-pred-list (t)
all the criterions a)—d) hold.

3. The VDL-graph
The graph, that can be walked from its entry nodes, plays an important: role

in programming. In this section the definition of the VDL-graph is given, which
can be viewed as an abstraction of graph data structures.

Let
is-node-set=({(s: is-node)lis-select (s)})
is-node=(({s-value: is-pred), {s-desc: is-select-list))
where “is-select” and ““is-pred” represent arbitrary predicates. Such.an object is

shown in Figure 3.1, where
a¢ {x|is-pred (x)}

and

8, ;€ {s’|is-select (s")}
Let

is-node-set (f) =
The notation t€f is used if

(3s, is-select () = T)(s(f) = ¢).
Definition 3.1. Let t€f and néf. The node n refers to t if and only if
(3i, 1 = i = length (s-desc (n)))(elem (i) (s-desc (n))(f) = t)

Notationally, we shall use the form
n=t

Definition 3.2. The node ¢, is reachable from node t,, or there exists a reference
path from ¢ to ¢, if and only if

Hh=th=> .= tk,'~ (ef, i=1,2,..,%).
We shall use the following notation for the reference path
, 'tl = %1,
Definition 3.3. The set of VDL-graph is

{glis-pred-graph (g)}
where

is-pred-graph = is-node-set
and there exists a non-empty subset M(g) of the nodes of g distinquished with the

property that any node. nc¢g and n¢ M(g) can be reached from at least one
element of M(g).

5 Acta Cybernetica V/1

©

66 "~ L. Varga

The elements of M(g) are called directly reachable nodes.
Consequently each node of a VDL -graph can be reached from at least one

directly reachable node.
Definition 3.4. Let root (i) be .the function, for which

root (i) =s,-,: i= 1, 2
M (g) {s:(2), so(g) -5 5a(2)}

value (n) = s -value (n)

if

and'let

next ()(n) = (elem (1)(s desc (n))(g) lsi= length (s desc (n))

These functions can be used as selectors, for example
-value. next (2).next-(1).root (3) (g) value (next (2)(next (1) (root 3 (M)

Using the functions defined above, -the structure of a VDL-graph can be VJSual-
ized by a graph. For example, the VDL- graph denoted by the following relations

g = o((root (1): ny), (root 2): "2> (831 ng), (847 M), (S50 M3)),

= po((s-value: a), (s-desc: (sg, 54))).

= po((s-value: b), (s-desc: (s5))), .
n3 = po({s-value: c), (s-desc: ()}), o
ny = po((s-value: d), (s-desc: (s5, 52))),
ns = po((s-value: €), (s-desc: ())),

can be represented by the graph shown in Figure 3, 2.

e i\\\ /O\ .
Ealyi RS
- root(1) root(2)

5

s-value s-desc next(1) next(2) next(l) next(2)

/ }
a NN
elem(i)
l next(1)
-
Fig. 3.1 Fig. 3.2
A node set) - A VDL-graph .

The nodes of thé graph in the Fig. 3.2 are circles and the values yielded by the
nodes are put in the circles. The relationships between the nodes are represented
by arrows and the arrows are named by the function next (i). :

Synthesis of abstract algorithms 67

. © The figure of a VDL-graph reflects. its structure in this way, but the formula
of a VDL-graph does not do it directly. However it is not difficult to construct
a formula that also satisfies this requirement. This problem is not dealt here.

In Definition 3.4 selection operations are defined on the VDL-graph. Con-
struction operations can also defined on it, but we intend to deal with statlcal VDL-
graph only, hence construction operations’ are not defiried.

4. The synthesis of the graph wa]i(élgbrithm

The graph walk is a fundamental operation. Most of the selection and con-
struction operations of a graph can be established on- it. ,

A graph walk can be carried out according to different strategies. In a graph
walk algorithm each node of the graph is processed one after the other. The walk
strategy determines the order of the nodes to be processed. In the following, we
present a systematic development of a general graph walk algorithm, where ‘the
walk strategy and the operations over the nodes are not specified. In this way an
abstraction of the graph walk algorithms is given from which concrete graph walks
can be deduce by the specification of the walk strategy and the operation .over
the nodes. ,

Our top level goal is

' Coal 1. , .
' {is-target-graph (g")} g’: walk (g) {is-source-graph (g)}

where the map :
trans: {x|is-source (x)}— {ylis-target (»)}

is not specified. Therefore the function trans will be used as a parameter of the

desired algorithm: .
' walk (g; trans).

Let the set of states of the abstract machine be

{¢lis-state (&)}
where

is-state=((s-graph: is-pred-graph), (s-table: is-table), (s-control:is—cbntr@l)).

The component s-graph (¢) is the graph g to ‘be “walked. The component
s-table () is used to mark which nodes of the graph g have been processed. Therefore

is-table=({(s: is-value)|is-select (s)})
where

N
is-value = {Y, N}
so that
‘ s(s-table (&) =Y
if and only if the s-value (s(g)) has been maped to a target value. -

5%

68 L. Varga

We do not intend to specify the walk strategy. Therefore we introduce the
function - ' - :

o next-selector
as follows: = -

Definition 4.1. The function next-selector is a function over the set
{tlis-table (z)}
and the range of the function is

. N
is-selectU {Q}
so that if .
(3s, is-select (s) = T)(s(¢) = F)
then next-selector provides a selector s with the property
s)=N

else
next-selector ()= Q.

Informally, the function next-selector (¢) provides one of the selectors of the
table ¢ as' s(¢)=N, if such an s exists and the object Q otherwise.

It is supposed that if the function next-selector is applied to the same table
t several times the result is the same.

The function next-selector will also be used as a formal parameter of the desired
algorithm and the formal parameter g will be omitted, because it is a component
of the state &:

walk (; next-selector, trans)

and it is not a value returning macro.
We can now define the initial state &, of the abstract machine as follows

&y = uo({s-graph: g), (s-table: t,), (s-control:walk (;next-selector, trans)))

where
1s-source-graph (g) =T

to = po({(s: M)ls(eM()}).
Hence the input specification is ,
@(&g): s-table (&) = po({(s: N)Is(g)€ M()})A is-source-graph (g)A g = s-graph (g),
and our goal is
Goal 2,

and

{is-target-graph (s-graph (£))} walk (; next-selector, trans) {p(&,)}

where the formal specifications of the formal parameters next-selector and trans
are disregarded.

In order to synthesize the program, we must find a sequence of transformations
to yield an equivalent description of the specification, that can be reduced by apply-

Synthesis of abstract algorithms 69

mg one of the strategies given in Section 2. First let us intend to prepare the apphca-
tion of the strategy of iteration.

To produce an appropriate form of the output specification, let us specify
the invariable properties of the data structures.

Let
a(s, &) = s(s-table (£)).

, Our graph walk strategy could be the foIlowmg Each node s'(g) with the
property
a_(s’, é) -

must be reachable from at least one node s(g) that waits for being processed ‘with
the property .
a(s, &) =

- Hence, the formal specification of the data components of ¢ is

" 0:1(8): Ri(& AR,)N R (S, A RU(E, QAR5 ()N g ='s-grabh' (55,:
where - 7
R(&, 8): (Vs, a(s, &) = Q)(s(g) = Q)Ais-table (s-table (¢)),

Ry(C, 8): (Vs,als, &) = Y)(is-target (s-value (s(g)))

R3(&, g): (Vs, is-target (s-value (s(g)))(a(s, &) =

Ry(¢, 8): (V5. s'(8) # QAa(s’, &) = Q)((3s, as, C) N)(S(g) = *s (g)))
R;(g): is-mixed-graph (g)Ais-mixed = is-sourceVis-target.

Theorem 4.1. '

_ 0,290
Theorem 4.2.

04(&) Anext-selector (s-table (£)) = 2 Dis-target-graph (s-graph(f)).

Hence our goal may be
- Goal 3. _ !

{01 (&) Anext-selector (s-table(&))= Q} walk (; next-selectot, trans)b {Q‘1 (ﬁj}.

This suggests achieving Goal 3 with a recursive call applied to the- macro walk
as follows: _
walk (; next-selector, trans)=
next-selector (s-table (¢))=Q—null .
T—walk (; next-selector, trans);
process (; next-selector, trans)

which reduces Goal 3 to the subgoal
Goal 4. ’

{01(5)} process (; next-selector, trans) {Q; () Anext-selector (s-tablé (é));é Q...

70 " L. Varga

-

Furthermore we must ensure the termination of the iteration. To achieve the
termination, we could require that the number of the nodes s(g) with the property

Cafs, &) =

be strictly increased with each 1teratlon Let U(f) be the number of nodes with
the above property, then our goal is

Goal 5. . _ ; .
{01 (EYAU(E) = a} process (; next-selector, trans)

{Q1(&)Anext-selector (s-table (£))s« QAU(E) =a}.
Using the strategy of composition this can be achieved by the macro

process (; next-selector, trans) =
process-node (s; trans);
. §: produce-selector (; next-selector)

reducing Goal 5 to two subgoals
Goal 6.
{0:1(OAa(s, &) = YAU(E) =a+1} process;node (s; trans)
{Q:(ONa(s, &) = NAU() = a}

and
Goal 7.
{01 (E)Aa(s, &) = NAU(E) = a} s: produce-selector (; next-selector)
{Q1(&) Anext-selector (s-table (&)= QA U(E)=a}.
Goal 7-can be achieved by the strategy of assignment:

produce-selector (; next-selector) =
PASS: next-selector (s-table (£)).

. In order to find a strategy for reducing Goal 5, let us isolate the effect of selector
s on predicate Q,(£). Predicate Q, hds five components. The predicate

als, &) =YVa(s, &) =

is of no effect on the first component of Q,.
Let us consider the components R, and R,.

Theorem 4.3. 7 ,
Ry (&, 2)AR;(, 8) = Ru(S, 8, YARyu (&, 8 HNQa (€, 8, 5),

R, (&, g, 9): (Vs a(s’, &) = YA # s)(is-target (s-value (s* (g)))),
Ry (¢, g, 5): (Vs is-target (s-value (s’ (g))As” # s)(a(s", f)
Q21 (&, g, 9): a(s, &) = Y Ais-target (s-value (s(g))).

Let us se¢ the component R,. We have different cases:

where

Synthesis of abstract algorithms 71

1. s(g)=l]>*s(g) (s’(g) is not reachable from s(g)),
2. s(@=s(g)==*s(g) and a(s*/) #Q,
3. s(g)=s(g)=%*5(g) and a(s é) =
4. s(g) = 5(g)-
"Obviously, we have not to bother with ‘the ﬁrsf two cases. Hence

Theorem 4.4. :
R4(£,9 g)E R41(5’) S)/\Q22(é: 6,9 g3 S)

where
Ru(C, 8 9): (V5 5'(g) # QAa(s’, &) = QA ((s(g) = 5*(8) = *s"(R)A
a(s*, &) = QVs(g) = 5'(8))) (35, a5, &) =.NAF = 5)(3(g) = #5°(g), -
05(£, 8, 8, 9): (V5',5(8) = s°(8) = s'(QNa(s", &) = o', &) = Q)(a(s", &) =N)A

(v, 5(8) = 5" (@Aa(s, &) = Q)(a(s, &) = N).
Theorem 4.5.
0:(E)Na(s, &) =YAU() = a+1 = 0x(&,)NQu (&, 8, HNQ20 (&, &' 8, 5)
.where

0. (5,,’ s) = Ry(&,)N R (&, 8,)A Ry (5’; g AR, (&, g,)AR5(g)A
‘ ’ g = s-graph (¢').

Theorem 4.6. _ . :
::@2(E, Nals, =N (OAals, H=N.

Hence our goal is
Goal 8.

{0:(, 9NQn (&', 8 INQ:(¢, &', 8, 9)} process-node (s(s-graph (&)); s; trans)
. {Q2(69 S)/\(X(S, é) }

We try to achieve it with the strategy of mdetermmlsm of the form

process-node (n, s trans)=
process-value (trans (s-value (n)), 5),
process-desc (s-desc (n))

reducing Goal 8 to the subgoals

Goal 9. -
{Q2(é’ S)AQ21(63 g, s)}prOcess-value (U S) o

{Q. (5, s)/\oz(s é) NAv = trans (s-value (s (g)))}
and ; ; . .

Goal 10.
{0:(8, HNQas (&, é, g, s)} process-desc (hst) {QZ(C, s)/\hst = s-desc (s(g))}

provided these are interference-free..

72 L. Varga

Goal 8 can be achieved by using the strategy of assignment:

process=value (v, s) = -
s-graph: u(s-graph (¢); (s-valueos v})
s-table: p(s-table (&); (s: Y)).

Let us consider Goal 10. The significant part of the specification is Q. In
order to try to achieve it by iteration, we attempt to apply the followmg transfor-
mation:

Theorem 4.7.
Q022(¢', ¢, 8,)= Q01 (W, wo)Alength (wy) = 0,
where : : . :
 Qun(wr, wa): (VS 5(8) = 57(2) = s'(@)ANa(s%, &) = a(s', &) = QAs*Ewy)
(a(s*, &N = N)/\(‘v’s s(g)—> s (@Aa(s’, &) = QAs’ €wy)
} (oc(s’, &)= N)A w1 w, = s-desc (s(g))-
We can now achieve our goal by creating an iteration whose exit is length (w,)=0

and whose invariant assertion is Q,AQ,,. The desired program is

process-desc (w) =
length (w) = 0 — null
T - process- desc (tail (w));
' set (head (w))
which reduces Goal 10 to the subgoal

Goal 11.) ~
{02,)A Qo (wils*), tail (wo)} set (s*)
{02,)A Qa1 (w1, wo)As™ = head (wy)Alength (wp) = 0}.

Obviously, the termination is now ensured.
Goal 11 can be achieved by the conditional strategy:

set(s) ="
s(s-table (&) = Q — null
T - link (s)

which reduces Goal 11 to the subgoal
Goal 12. S o o .

- {ols, &) = N} link (s) {a(s, &) = Q).

Goal 12 can be achieved by a smple assignment:

link (s) =
s-table: y(s table (¢); (s: N))

¢ Synthesis of abstract algorithms 73

Theorem 4.8. The theorems in Goal 9 and Goal 10-are interference-free. The
complete program is -

walk (; next-selector, trans) =
next-selector (s-table (£))=Q—null
T—walk (; next-selector, trans);
process (; next-selector, trans)

process (; next-selector, trans)=
process-node (s(s-graph (£)), s; trans);
s: produce-selector (; next-selector)

produce-selector (; next-selector)=
PASS: next-selector (s-table (£))

process-node (n, §; trans)="
process-value (trans (s-value(n)), s),
process-desc (s-desc (n))

process-value (v, s)=
s~graph: p(s-graph (); (s-value.s: v))
s-table: u(s-table (&); (s: Y))

process-desc (list)=
length (list)=0—nul!
T—process-desc (tail (list));
set (head (list))

set ()=
s(s-table (€)== Q--null
) T link (ss)

link (s)=
s-table: p(s-table (&); (s:N)).

5. An abstract linkage editor

Let us consider a programming system where the segments refer to each other
only by the segments name. Then the graph walk algorithm can be applied for
defining: a linkage editor of this system as follows:

Let . :
is-r /b-program =is-segment-code-graph’
and
is-select = is-segment-name.
In detail:

is-r [b-program =({(s: is-node}|is-segment-name (s)}), .
is-node=((s-value: is-segment-code), {s-desc: is-segment-name-list)). -

Let

-editor (¢)

74 . . . L. Varga

be a function that maps a segment-code’to an appropriate form as needed for link-
ing. The actual mapping is not relevant here.

Then an abstract linkage edltor can be characterlzed by the VDL-machme
‘with the initial state:

Eo=po({s-input: p), {s-table: #y), (s -ccntrol: walk(‘next- selector editor)))

‘where
is-r /b-program (p)=T:

A linkage editor model of the syste.m in v’vhic,‘li the segments may refer to each
«other by entry names different from the segment name, can be defined by a general-
ization of the VDL-graph and the graph walk algorithm.

6. An inverse assembler model

Semantics of a class of inverse assemblers can also be defined by the graph
‘walk algorithm.

First of all, let us define the machine code program. A machine code program
_ s an ordered set of codes, where a code according to its function, may be an instruc-
tion or a data. That is, those programs are considered where the instructions and
ithe data are not separated.

Definition 6.1. The set of machine code program is given by
{plis-code-list (p)}

is-code = is-dataVis-stmt.

‘where

It is assumed that the program does not alter the instruction code at all and
.each instruction code contains the address of the next mstructlon explicitly that
-should be executed.

The instruction code part of a machine code program is called an actual
program. It is assumed, that an actual program has a finite set of entries, and for
any instruction at least one entry can be found where starting the program results
in the execution of the instruction, that is the flow graph of an actual program is
.a VDL-graph:

Deﬁmtlon 62 The set of actual program is given by ~
. Arlis- 1nstr-graph (t)}
that is :
is-instr-graph = ({(s is-stmt)lis-select (s)}),
is-stmt = ({(s-value: is-instr), (s-desc: is-select-list}))

‘where the predicate “is-stmt’ is used-instead. of ‘“‘is-node” in the definition of the
‘VDL-graph. :
Definition 6.3. Let oo
' " is-code-list (p) =T
and
is-instr-graph (¢) = T.

Synthesis of abstract algorithms . 75

The actual program ¢ is a paft of the program p if and only if

(s, s@) = Q)((Ii)(elem (i)(p) = s(1)).

Definition 6.4. Let
{alls-ass-mstr (a)}

be the set of assembly form of instructions be considered. Let the function
' translator {vlis-instr (v)} -~ {alls-ass 1nstr (@)}

be given. Then the abstract inverse assembler is specxﬁed by the initial state of
abstract machine

&o = po((s-input: p), (s-table: t,), (s-control: walk (; next-selector, translator)))

where
is-code-list (p). :

7. Conclusions and remarks

This paper can be viewed as a contribution towards the solution of some actual
problem of program synthesis. The specifications used in this paper, describe the
invariable properties of states of an abstract machine rather than the input-output’
relationship which is expected to be realized by the desired program. The same
techniques can be applled to specify programs, which are never intended to
terminate. .

Our example demonstrates the application of deductive techniques for deriving
program that manipulates the structure of complex data. structures llke list
and graphs.

We have concerned with some aspect of transformation rules for achlevmg
more than one goal simultaneously by checking the protection condition of inter-
ference-free.

Abstract

Our purpose in this paper is to illustrate a deductive technique for developing abstract pro-
grams systematically from given specifications using the Vienna Definition Language.

The role and the importance of program synthesis within the scope of programming methodology
is emphasized. The basic principles and the main steps of a deductive technique for deriving pro-
grams systematically from their specifications is summarized.

Programming strategies are formulated for attempting to transform the specifications into
a desired VDL-program and the technique is illustrated by the example of an abstract graph walk
algorithm. The example includes the definition of an abstract data graph too.

An abstract lmkage editor and a general inverse assembler model are given by specifying the
graph walk.

KEYywORDs: Abstract data structures, derivation of programs, program veri-
fication, program synthesis, programming methodology, Vienna Definition Language.

DEPT. OF MATHEMATICS
L. EOTVOS UNIVERSITY
MUZEUM KRT. 6—8.
BUDAPEST, HUNGARY
H—1088

76 ’ L. Varga: Synthesis of abstract algorithms

References

[1) DuxsTrRA, E. W., A4 discipline of programming, Prentice Hall, Englewood Cliffs, New Jersey,
1976.

[2] DersHovITZ, N. and Z. MANNA, On automating structured programming, Proc. IRIA Symp.
Proving and Improuing Programs, Arc. et. Senans, France, July 1975, pp. 167—193.

3} Hoarg, C. A. R., An axiomatic basis of computer programming, Comm. ACM, v. 12, 1969,
pp.576—583.

[4] HoArg, .C. A. R., Parallel programming: An axnomanc approach, Computer Languages, v.
1, No. 2, 1975, pp. 151—160.

[s} LONDON R. L., A view of program verification, Proc. International Conference on Reliable
Software, April 1975 pp. 534—545.

[6] MANNA, Z., Mathematical theory of computation, New York, McGraw-Hill, 1974.

{71 MANNA, Z. "and R. WALDINGER, The loglc of computer programming, IEEE T rans. Software
Engrg., v. 4, 1978, pp. 199-—229.

[8] ManNA, Z. and R WALDINGER, The automatic synthesis of recursive programs, SIGPLAN
Notices, v. 12, No. 8, 1977, pp. 29—36.

[9] MaNNA, Z. and R. WALDINGER, The synthesis of structure-changing program, Proc. 3rd Inter-
national Conference on Software Engineering, Atlanta, Georgia, USA, May 10—12, 1978, pp.
175—187.

[10] MiLLs, H. D., How to write correct programs and know it, Proc. International Conference of
Reliable Software, Los Angeles, Calif., April 1975, pp. 363—370.
[11] Owickl, S. and D. Grigs, Verifying properties of parallel programs: An axiomatic approach,

° Comm. ACM, v. 19, 1976, pp. 279—285.

[12] RamMaMooRTHY, C. V. and S. B. F. Ho, Testing large software with automated software evalua-
tion systems, IEEE Trans. Software Engrg., v. 1, 1975, pp. 46—58.

[13] RaymonDp T. YeH (Ed.), Current trends in programming methodology, Vol. 2. Prentice Hall,
Inc., Englewood Cliffs, New Yersey, 1977.

[14] WEGNER P, Research directions in software technology, Proc. 3rd Internanonal Software

. Engmeermg Conference, Atlanta, Georgia, USA, May 10—12, 1978.

[15] WEGNER, P. (Ed.), Research directions in software technalogy, MIT Press, 1979.

[16] WEGNER, P., The Vienna Definition Language, Comput. Surveys, v. 4, 1972, pp. 5—63.

{171 WirTH, N., On the composition of well-structured programs, Comput. Surveys, v. 6, 1974,
pp. 247—259. .

(Received Oct. 24, 1979)

On optimal performance in self-organizing paging algorithms -

By R.1. PHELPS* and L. C. THOMAS**

Introduction

A large body of literature has grown up concerned with paging algorithms
[e.g. 1, 3, 4, 6, 10]. In the terminology of Arato [2] a program’s address space is
d1v1ded into equal size blocks called page. Thére are two levels of memory: the
first level is a fast access device and the second level is a larger, slower backing store.
These levels are each divided into page frames. If a program references a page in
the second level a page fault is said to occur. In this case the referenced page is
brought into the first level and to make room for it another page is selected by the
paging algorithm to be removed from the first to the second level.

The objective of the algorithm is to minimize the expected number of page
faults. Most authors. have considered this problem when either the probability
distribution of the string of program references is known or when the algorithm
stores information on the number of times each page has been referenced in order
to estimate the distribution [1, 2, 3, 4, 10].

Interest has recently been shown in a different type of paging algorithm, when
the distribution is unknown and no information on page references ‘is collected
[6, 7]. The page references are assumed to form an independent sequence. These
are self-organizing algorithms. Since no information about the reference probabilities
is available they can only select the page to be removed from first level memory
on the basis of its position in the memory. The advantages of this approach are
that no prior knowledge of reference probabilities is required, and no memory needs
to be used in collecting information on these probabilities changing, the algorithm
will automatlcally adjust to the new distribution.

The problem of finding the optimal self-organizing paging algorlthm is re-
lated to another problem that has recently received much attention: there is a linear
array of n storage positions 1, ..., n, containing n pages I, I, ..., I,, together with
a self-organizing algorithm 7. 7 acts so that if the page referenced was in position
j it is moved to position (7). If 7(j)<j then the pages in positions j—1 to 7(;)
are all moved back one position each to make room for the page moved from j
to 7(j). If z(j)=j, then the pages in positions j+1 to 7(j) all move forward
one position each. No other pages are moved.

-

78 ’ R. I. Phelps and L. C. Thomas

" The objective of the algorithm is to minimize the cost, which is the asymptotic.
expected position of the next page referenced. This is known as the library problem.
In this context the algorithm 7(j)=1, 1=j=n, known as the “move to the
front” algorithm, has been studied by several authors [5, 8, 11, 12, 13]. McCabe [13]
found an expression for the cost and for its variance. Hendricks [8] gives the station-
ary distribution of arrangements of pages in the store and Burville and Kingman [5]
show that the cost is less than 2m —1, where m is the cost if the reference distribution
is known and the pages arranged optimally. Letac [12] considers the extension of
this system in an infinite set of storage positions. Hendricks [9] gives stationary
distributions for the algorithms 1(j)=k, 1=j=n.

McCabe [13] suggested that the algorithm <(j)=j—1, 2=j=n, 1(1)=1, the
‘transposition’ algorithm would have a cost less than that of the move to the front
algorithm. Rivest [14] gives the stationary distribution of the transposition algorithm
and shows that the cost of the transposition is always less than or equal to the cost "
of move to the front. He suggested that transposition is optimal for all reference:
distributions and supports this with simulation results. Thomas [15] proves that
if such an optimal algorithm exists, it must be the transposition.

Returning to the-specific paging algorithm setting with, two levels of memory,
we take the first level to have a.capacity of M pages and the second level to have
capacity n—M pages. The page frames in the first level are numbered 1 to M and
those in-the second level M+1 to n. We can only consider paging algorlthms of
form 1(1)<M =M.’

To minimize the number of page faults we take the following cost structure
A cost of 1 is incurred whenever a Jpage in any of the positions M+1 to n is ref-
erenced. The cost is O otherwise. From among the possible paging algorithms, the
closest to the transposition algorithm is the paging algorithm ‘CLIMB’ for which

M,' =M
r(])— ,2=i=M
1, j=1

Franaszek and Wagner [6] suggest that CLIMB is the optimal self-organizing paging
algorithm for all reference distributions.

The purpose of this paper is to provide supporting analytical evidence for these
suggestions by showing that in the special case of any reference distribution of
form p,=ka, p,=...=p,=a, where p; is the reference probability of page I,
transposition and CLIMB are indeed optimal for their respective cost functions.

1. OptimalityI for the special case of library problem

The. intuitive justification: for self-organizing algorithms is that when a page
is referenced its posterior reference probability will increase. Since it is clear that
it is optimal to have the pages with higher probability in the first positions, it
follows that when a page has been referenced it should be moved forward. In this
way the pages which are referenced most will tend to be moved into the first positions.

Because of this we restrict attention to algorithms for which t(j)=j, 1=j=n,
and initially. we will consider only ‘forward moving’ algorithms, that is ©(j)<j,
1=j=n. (The results can easily be extended to.t(j)=j, as will be indicated later.)

On optimal performance in self-organizing paging algorithms 79

With the reference distribution p,=ka, p,=...=p,=a, pages L, ..., I, have
the same probablllty of reference and hence are equivalent as far as the self-organls-
ing system is concerned, and it only has n différent states, depending on thé position
of page I,. Any algorlthm 7 then gives rise to a Markov chain with »n states, state
i corresponding to I; being in the i'® position. Let P* be the one step transition
matrix for this algorithm, whose elements pj; are the probabltltles that referencing
one page and applying t changes the system from state i to'state“j. The limiting

“steady-state’’ probabilities for each state under t are n*=(r}, n}, ..., n7) where
o' =n"P’, provrded this exists. Thus the average expected position of the next
page referenced is .

é’ [—-n(n+1)+l(a—1)]

We will show’ that the transposmon algorrthm whrch we denote as T, where
T(DH=1, T(j)=j—1, 2=j=n, minimises this expected posntlon among all algo-
rithms 7, where 7(j)<j, j#1 and t(1)=1.

For any algorithm 7 of n+1 positions, define an algorlthm Dt on n positions by

i+ 1)—1 if z(i+1)#1,
pey={3 T T
- if- t(i+1) = 1.
As an example, suppose 7 is defined on four positions with t(1)=1, 1(?)=1, 1(3)—1

7(4)=3. If the probablllty of referencmg I is ka and of referencing the others is a,.
then

ka+a 2a 0 O

. ka 2a a 0} .
pr= ka 0 2a a

0 0 ka 3a

The correspondmg algorithm Dt on 3 positions satisfied’ Dr(l)—l Dz (Q)=1,
Dz(3)=2, and if the probabilities of referencmg L, I 1 are ka’, a’, a’ respectively,
then

|ka’+a” a” O
Pr=1| ka a al.
0 ka 2da

It can be shown (Appendix 1) that
nf=0-nd)nP,, i=2,..,n+l1,.. (ty

 Lemma 1. For any forward movmg algorithm 1 on n positions with p,=ka,
Py=p3= ...=Pp,=a,

i) k=s ot if k=1, | - BN

(ii) kz%gk"-" if k=1 I &)

n

80 R. L Phelps and L. C. Thomas

Proof. Appendix.
Lemma 2. With the conditions of lemma 1, nl ==}, |=i=n.
- Proof. Appendix.

Theorem 1. For any reference distribution on pages I, ..., I, of the form
py=ka, p,=...=p,=a, then amongst all algorithms t of the form z(1)=1, t(i)<i,
the transposition algorlthm minimises the expected position of the next page
referenced.

Proof. We proceed by induction on the number of positions. The result is
true if there are only two positions, as T is the only forward moving algorithm.
So suppose the theorem is true for n-positions and consider a forward moving algo-
rithm on n+1 positions. The expected position under algorithm 7 is

n+1
-;—(n+1)(n+2)a+a-(k—1) > inf.
i=1

‘Thus we want to show

n+1 n+1 .
Dinf= X inf if k=1
i=1 i=1

and
n+1 n+1
D inl = inf if k=1
i=1 i=1

for any algorithm 7. Using (1) we have

n+1 n+1l

2’ inf =ni+ Z' il—nr)nl, =ni+(A—nd) > al+(1—n)) 3 inP"
i= i=1 i=1

=1+(1—m) an’ in?. | 4)

Assume k=1, then by the induction hypothesis Z’m”< Z’m, , since DT

is in fact transportatlon on n—1 items. Also from lemma 2, 71'1 _7z1 Hence the
induction is completed.

2. Optimal paging algorithm for the special case

We can now use these results to prove the optimality of CLIMB as a paging
algorithm. We consider a 2-level memory with M page frames in level 1 and n—M
page frames in level 2. We denote the algorithm CLIMB by C.

Lemma 3. n=nf, 1=i=n, for all t of form t(1)=1, t(i)<i, 2=i=M;
(=M, i=M; M<n.

- Proof. Appenciix 4,

On optimal performance in self-organizing paging algorithms 81

Theorem 2. For any reference distribution p,=ka, p,=...=p,=a, with M
page frames in first-level memory, M<n, the algorithm CLIMB asymptotically
minimizes the number of paging faults among all algorithms of form ()=1,
()<, 2=i=M; t()=M,i=M.

Proof. We use induction on n. If n=2, then independent of whether M=1
or 2, CLIMB is the only policy in the class we are dealing with. Moreover, for
any n, if M=1, then again CLIMB is the only possible policy. Assume the results
holds for » positions, and look at the case with n+1 positions and first level memory
of M+1 items, M=1. For any algorithm 7 in this class, Dt is an algorithm on
n items with a first level memory of M items. The expected paging cost using algo-
rithm 7 is

M+1 ' n+l

n+l
2 mfn—Mya+ 2 ni(n—M+k—1)a=m—-M)a+(k—1)a 3 =i
i=1 i=M+2 i=M+2

‘Hence we need to show that

> =
i=M+2 i=M+2
By (1)
n+1 n
2> m=(-n) 3 =P~
i=M+42 i=M+1

n

The induction hypothesis implies that > =#P¢= 3 =zP*, and lemma 3 gives
i=M+1

i=M+1
n+1 n+1
C T C T
atz=n,s0 > af= 3 i
i=M+1 i=M-+2

Other algorithms. Two other - paging algorithms which can be run in a self
organizing manner are [6] namely:

Least Recently Used — where the page Wthh is moved from first-level memory
is the one least recently referenced. This corresponds to an algorithm (j)=1,
1=j=n, which is forward moving and hence inferior to CLIMB -at least.for this
reference distribution.

First In, First Out — where the one to leave is the one whlch arrived first,
of those presently in the first level. This is an algorithm where

=1, i=1,..M (j)=1 j=M.

This algorithm does not seem to be covered by the theorem. However, all the above
results can be extended to include the cases where t(j)=j. The difficulty is that
one can then have algorithms which give rise to a Markov chain in which it is not
possible to get from some states to others. Thus the ‘steady state’ probabilities
depend on the initial ordering of the pages. However, if we assume that the initial
ordering is equally likely to be any of the possible orderings, the above results
still hold. This is because any set of connected states corresponds to the page with
reference probability ka being in a set of consecutive positions, and an overall
transposition algorithm is better than one which is a transposition algorithm on

6 Acta Cybernetica V/1

82 .R. 1. Phelps and L. C. Thomas

each set individually. Thus Theorems 1 and 2 can be extended to allow algorithms
where 7(j)=j.

APPENDIX 1. Proof of nf=(-—n)nP7,, i=2,...,n+1. i
For a forward moving t, let S(t|r)-—|{r|r>1,r(r)sz}| where |A4| denotes
the cardinality of the set 4. Let : : :

T(ilt) = {rlr = i, 2(r) = i}.
The i+1™ component of the equation n*=n*P® then reads

iy, = (ka m)+af, (1 —ka—aS@i+1|0)+niaS(ilt), i=1. - (L.1)
re T(L+1|t)
This follows because as 1 is forward moving a page will only move if it is referenced
or if the referenced page moves from behind it to in front of it. Thus 7, is in the
i+ 18 position, because either it was in the r*® position previously and was referenced,
where t(r)=i+1, or it was in the i+ 1'® position and the page referenced did not
move it, or was in the i'® position and the page referenced moved in front of it.
Thus 1.1 becomes
S@l)nf + af (k+SGE+10))—-k > =f. (1.2)
re T(i+1]0)

Applying the same procedure to the i component of ltD:ED‘PD’, when the

probabilities of referencing the pages are (ka’, a’, ..., a") gives

' S(i—1|Dy)nPs, = nP(k+SDD)—k > #Pr, iz=2. (1.3)
r€T(i|D1)

By the definition of D it is obvious that

T(ilD7) = {j—11jeTG+1[0)}, SGDD) = SG+1[1), i=2,.,n (14)

Thus if we identified #P*, with =}, equations 1.2 and 1.3 would be the same.

Consider 1.2 for the case i==n. The right hand side of the equation can only
contain terms in x%,, since 7 is forward moving and so T(rn+1jz) is empty,. while
S(n|7) is 1. We thus have a linear equation n;=XK, 7}, , for some constant K.
Since 1.3 is identical with 1.2 except that nP°, replaces n} throughout, in the corre-
sponding case it becomes n2f,=K,n>". :

Now consider 1.2 with i=n —1 The right hand side can now only contain
terms in #n and #7,,. We can substitute K, 7., for n} and so obtain another linear
equation ni_,=K, ;mj.,, for some K,_;. The same argument implies that 1.3
will give nP*,=K,_,nP". Repeating the procedure gives

ﬂp_tl nf . ’
s = =K, =2,...,n .
n"Dt TC"+1 i 2: » (1 5)
Thus
S =(3 Kt)ar =1
i=1 i=
and

n+1

Z' 7} —(Z'K-i-l)n,,“—l nl

i= i=2

On optimal performance in self-organizing paging algorithms 83

so nt,,=(1—n)nP* and hence
2= (=), i=2, .., n+l. (L)
APPENDIX 2. Proof of Lemma 1.

Proof. Proceed by induction on n. The result is true when #=2 for the only
algorithm satisfying the requirements is the transposition algorithm T where ‘T(1)=
=T(2)=1, and =nT/nl=0. Assume the bounds hold for forward. moving algo-
rithms on n items, and look at z, a forward moving algorithm on.n+1 items: Since
Dr is a forward moving algorithm on n items, (1) gives

T _ (1 —=n}) =Pz, _), i=2 n , @.1)
Ty (I=mdn w e ”

and so, because of the induction hypothesis,

T
7

k= s krG-D =t if k=1, i=2,.,n - (22)
nn+1 . N

s
. Thus we only have to prove that k= ﬂtl =k"
n+l

Consider the first component of the equation z*=na"P. Since T(l|7) is the
set of positions that are mapped on the first position by 7, page I, can only be in
the first position if it was in one of the positions of T(1|t) and was referenced, or
if it was in the first position and the page referenced was not in the set 7'(1]7).
Then '

;= (ka-)+ (1—alT (A7) (2.3)

re¢ T(ll

where [T(Ilr)[denotes the number of positions in the set {]Ir(])—l]>1} Thus

m k
= H rc,, df k=1, (22 already gives 1=k= ~
7If;+1 IT(”T)l rETZ(I’lt) e/ T 22) ye oy

=k'+1-2 Thus k"=

T

=krtior=

=k for k=1. The induction is complete and a similar
+1
proof works for k<1.n

APPENDIX 3. Proof of Lemma 2.

Proof. Assume k=1 (the coresponding resuit for k<1 follows similarly),
and assume that n{ =n? for algorithms acting on n positions. The result is trivially
true for n=2, and so we proceed by induction. For #+1 positions, using (2.3)
and (1) gives

i = (k) AT = (k 2 A (1—7:1)] ATl (3.1)
r€T(1|r)
By the inductive hypothesis, #nP*;=r]7, so
7t = anlT(1—n3). (32
T

Rivest’s result [4] is that %=k"‘1, so nf=knj, while (1) gives nf=n} T(l—n)

6%

‘84 ' R. I Phelps and L. C. Thomas

Thus .
nl = kaPT(1 —nl). (3.3)
Thus we have
Mo
l1—m = 1—nf
and so
. 7, =7l (3.9
For nf, i=2,...,n+1 (1) gives
al (1—=m
=P —n) = a7 (1 -np = 2L G, (3.5
So it is sufficient to show that
1—m,
= = k.
Writing n;= K nt,., as before, we get
. a1
71':,.,_1 = (1 + ; Kl] .
Thus i va K
+ ;
n+l n B +
l—nf = 2 T = 7'[;+1[1+ 2> Kx] = _:_,._2"_ (3.6)
= 1+ YK .
i=1
l1+max > K;
i=2
= 3.7

1+ k+max Z K
i=2

The inequality follows since (3.6) is a maximum when K is as small as it can be,
which is k from Lemma 1, and the sum of the rest of the K; are as large as they

can be.
Using the inequalities of Lemma 1

1 +max ZK 1+ Skt kn—1

i=2 _ i=2

l+k+max 3K, L+k+ Sk . ktki—k—
i=2 i=2

n

.From Rivest’s result (1—n{)='klf++—ll
-1 _ k(k"=1)
kK+kt—k—1 "~ (k"*1-1)

APPENDIX 4. Proof of Lemma 3.

, so we have (1—n)=k(l—nrJ), since

for k positive. This completes the induction

Proof. The lemma is trivially true for n=2. Assume that it is true for up to
n positions, and consider C and another such algorithm ¢ on n+1 positions. Since
“C acts as the transposition algorithm T, on the first M 41 positions, it follows that
n$=kn$ just as =] =knl. Thus (3.2), (3.3), (3.4) follow as in Appendix 3, replacing

On optimal performance in self-organizing paging algorithms 85

T by C, giving ni=nr{. For i=2,...,n+l, we have

nf =5 (1-n)) = nP(1— 1)_ k ((11 721;
It is sufficient to show i: rék. As C is a forward moving algorithm the in-
duction of theorem 1 gives nl=xn{ and so
11
1—al = 1—=f"

So

l—nf _ l—nisk
1-n§ = 1—al = 7

Abstract

A brief survey is given of developments in the study of self organizing paging algorithms and
the associated library problem. It has been conjectured that two related algorithms, transposition
and climb, are optimal in these fields and we establish this optimality for a specific distribution
of page references.

* DEPARTMENT OF MATHEMATICS ** DEPARTMENT OF DECISION THEORY
POLYTECHNIC OF THE SOUTH BANK UNIVERSITY OF MANCHASTER
LONDON MANCHESTER

References

{1] Aro, A. V., P. J. DINNING, J. D. ULLMANN, Principles of optimal page replacement, J. Assoc-
Comput, Mach., v. 18, 1971, pp. 80—93.
[21 ArATO, M., A note on optimal performance of page storage, Acra Cybernet., v. 2, 1976, pp.
25—30.
[3]1 BELADY, L. A., A study of replacement algorithms for a virtual storage computer, IBM Systems
J., v. 5, 1966, pp. 78—101.
[4] BENCZUR, A., A. KrAMLI, J. PERGEL, On the Bayesian approach to optima performance of-
page storage hierarchies, Acta Cybernet., v. 3, 1976, pp. 79—89.
[5] BurviLLE, P. J. and J. F. C. KiNn6MAN, On a model for storage and search, J. Appl. Probab.,
v. 10, 1973, pp. 697—701.
[6] FraNaszek, P. A. and T. J. WAGNER, Some distribution-free aspects of paging algorithm per-
formance, J. Assoc. Comput. Mach., v. 21, 1974, pp. 31—39.
[7] GELENEE, E., A unified approach to the evaluation of a class of replacement algorithms, /EEE.
Trans. Compur v. 22, 1973, pp. 611—617.
[8] HENDRICKS, W, J., The stationary dlstrlbutlon of an interesting Markov chain, J. AppI Probab.,
v. 9, 1972, pp. 231—233
9] HENDRICKS W. J., An extension of a theorem concerning an interesting Markov chain, J.
Appl. Probab., v. 10, 1973, pp. 886—890.
[10] INGARGIOLA, G. and J. F. KorsH, Finding optimal demand paging algorithms, J. Assoc. Comput.
Mach., v. 21, 1974, pp. 40—53.
{11] KnutH, D. E., The art of computer programming (Volume 3: Sorting and Searching), Addison—
Wesley Publlshmg Co. Reading, Mass., 1973.
[12] Lerac, G., Transcience and recurrence of an interesting Markov chain, J Appl. Probab., v.
11, 1974 pp. 818—824.
113] MCCABE, J., On serial files with relocatable records, Oper. Res., v. 13, 1965, pp. 609—618.
[14] RivesT, R. L., On self-organising sequential search heuristics, Comm. ACM, v. 19, 1976, pp.
63—67.
[15] TeoMmas, L. C., Optimal replacement of library type Markov chains, University of Manchester,
Department of Decision Theory, Note No. 22, 1975.

(Received Oct. 24, 1979)

' Dominant schedules o'f a Steady job-flow pair*

By J. TANKO

A specific approach to some non-finite deterministic scheduling problems is
the scheduling of a steady job-flow pair model. Its non-preemptive scheduling prob-
lem was discussed earlier [4). The more general preemptive scheduling is discussed
below. A very simple scheduling discipline leads to the dominant set of the so-
called consistent economical schedules (CESs). The proof of dominance is the main
goal of this article. An algorithm to evaluate the dominant schedules and choose
an optimal one is given as well.

1. Introduction

In an earlier article [4] we defined the general scheduling model of steady job-
flow pairs as a new approach to some non-finite deterministic scheduling problems.
There we referred to the study [2] and to the dissertation [3] of the author dealing
~ with this problem and to other works dealing with scheduling problems related

to our problem. Some practical cases the model may be applicable in are men-
tioned there. .

Some statements below bear some resemblance to those of non-preemptive
scheduling [4] but, for example the cardinal of the dominant set, is not bounded
as in the non-preemptive case. The task of determining the optimal schedule under
the restriction of non-preemption is simpler than without this restriction. In a non-
preemptive case the dominant set of the so-called consistent natural schedules have
six elements maximum. These elements can be evaluated at once, e.g., by the method
of reduction [4]. The general problem of determining or producing an optimal
schedule (preemptive if necessary) for any steady job-flow pair is not completely
solved until now.

" We reduce below the set of feasible schedules to a dominant set of consistent
economical schedules containing optimal schedules and give an algorithm to choose
an optimal schedule by evaluation of the whole set if it is finite.

* This article reports on some results of a study of the author supported by the Computer and
Automation Institute of the Hungarian Academy of Sciences.

88 J. Tanké

2. Definitions

The scheduling problem of steady job-flow pairs is to schedule three pro-
cessors P=(P,, Pp, Pp;) to service, without conflicts, pairs Q= (QW, 0®) of
steady job-flows 0V ={C;, j=1,2,...} consisting of task-pairs ~-—(A,J, B;)
with service demands »; and 9 on processor P, and Pg;, respectively. The order
of servicing the tasks is strictly serial within job-flows but it is not restricted among
job-flows. Conflicts might only be on the processor P, and the efficiency of a schedul-
ing R is measured by the utilization of the processor P,. Define P,-utilization of
a section from time ¢, to time f, of a scheduling R by A(¢,, 2,)/(t.—t,) with P -usage
A(t,, t,) as the sum of activity durations of P, in the while from ¢, to 1,. Let A(¢)=
=2(0, #). The efficiency of a scheduling R is defined by the limit

=& = lim 200)

The efficiency of any scheduling cannot be greater than 1 or the sum y®+9® of
the P, -utilizations of the job-flows @M and Q® which are given by y®=pn/1,,
i=1,2. We use the notations .

=m+9, i=12 n=m+n,, 9=9i+92-

The scheduling procedure is a decision process determining for all moment
1=0 and state of processors and job-flows the way of continuation of the servicing
process. The plan or result of a scheduling procedure is a schedule R as an ordered
set of situations g. The situation o characterises the state of processors, the state
of demand cycles under service, if any, of both job-flows and the duration of these
states in a given phase of the scheduling.

Two components of ¢ are the functions BY(r), i=1,2, =0, the value of
B®(z) being the demand not served yet from the demand cycle started but not
finished (active), if it exists, of the job-flow Q®@, and 0 otherwise.

A schedule is consistent if the scheduling decision is the same when the situa-
tion ¢ has the same value. A schedule is tight if processor is never idle when demand
it could serve exists. A schedule is non-preemptive if the service of every task finishes
without breaks after its beginning. The specific class of non-preemptive schedules
is discussed in [4]. Here now we allow the service of a task to be preempted and
resumed later on the same processor.

The instance of a scheduling problem is fully determined by the values
Q=(m; %; n:; 95) of the service demands of tasks type 4,, B;, 4., B,, respec-
tively. 1y, 9,, 15, 9, are called parameters and the quaternaries Q are called con-
Sfigurations. The non-negative sixteenth 2 of the four-dimensional Cartesian space
constitutes the configuration space. The goal of the study of the model defined is
to find a method for choosing a schedule R* for every configuration Q¢.2 for which
y(R*) exists and has the maximum value among all the feasible schedules. This
schedule is called an optimal schedule.. Simple method for finding optimal schedule
for all Q¢2 i.e. an optimal scheduling strategy is not found yet.

Two schedules R and R’ are essentially-the-same and denoted by R=~R’ if
they are congruent after some finite initial sections of them. y(R)=y(R’) if R=R’.
The schedule R’ dominates the schedule R if for the efficiency values y(R") and y(R)

Dominant schedules of a steady job-flow pair 89

defined by (1) the relation y(R’)=y(R) is true. The set £’ of schedules is a dominant
set if for every feasible schedule R there exists an R’€ %’ dominating it.

Looking for an optimal schedule the investigation of a dominant set %’ is
enough for. We obtain a dominant set of schedules by means of the concept of
the dominant decision.

The scheduling decision s’ dominates s in a situation ¢ if the minimal next
following cycle-finishes of both job-flows are not later by s” than by s. A decision
s is economical if-decision s” dominating it does not exist (see Fig.-2 below). A schedule
R is an economical schedule (ES) if the scheduling decisions in its every situation are
economical. Let #(Q) denote the class of all economical schedules for the con-
figuration Q€ 2. Let #= U Z(Q). We will show that # is a dominant set of
schedules.

3. Economical schedules

The importance of the economlcal schedules (ESs) lies in. their dominance
which we show below. . .

Theorem 1. The class & of economical schedules constitutes a dominant set.

Proof. Let R be any feasible schedule having scheduling decisions not economical.
Let s be a not economical decision in the situation ¢ of R. There exists an economical.
decision s’ in ¢.dominating s because s would be economical decision otherwise.
By exchanging s for s” both the next following cycle-ends could come forward and.
this eventually makes possible to anticipate all cycle-ends. This transformation
does not diminish the function A(z) and, consequently, y in (1). The new schedule:
R’ obtained by this transformation dominates R as a result. Starting from =0
and initial situation ¢=g,, we can construct a dominating ES R’ for any feasible
schedule R. This was to be proven. 0O

The class £ is a true part of the set of all feasible schedules but it can be very
big to choose an optimal schedule by direct evaluations. To show this and to look.
for further reduction of the dominant set we investigate the characteristics of the ESs.

It is easy to be seen that the economical decision is unique in all situations o
except an enumerable set of situations for every ES. The exceptional situations
are called critical situations. The economical decisions made in this sifuations are
defined as critical decisions. The initial situation g, of every schedule and the initial
decision s;, i=1, 2, for servicing the task A, first, are always critical but we mean
by first critical situation of an ES the next one if it exists. Fig. 1 shows the types.
of critical situations and the possible alternative critical decisions. These and their
conditions are the following:

Type | Decisions Conditions
Og 515 Sg BV(@) = p2@) =0
9i,1 Sos Si O =0, 95, <pC () <15y, i=1,2

Fig. 2 illustrates the dominance of scheduling decisions. The graphs (a) and
(b) illustrate that the idleness of a processor cannot be a dominating decision if

90

B

1 1 1 2 V774))
’////////_’///
-’//// Z7A 2, Y4

Go: Sy hfe

l§

B‘.’.’ ﬁl

.--’ /43)

.l//////////
(2 VA 2 Y74 2, S

/I,

Go:S> fo N

J. Tanké

B~ B
704 2 | 1+ |2 VA1)

(Vs Y
2 VZ7A 2 V774 2 |

oL18% [h

OA 12 V741)
W77, Y27
2 V774 2, A

\

a2 1277778 2)
(1 7

v/
(2 V7777774 2 /////
01,1°5; f=r

) Fig. 1
Critical situations and decisions

demand waiting for service does exist. The graphs (c)—(d) show that the decisions
.s{ causing preemption for not a complete service of the preempting task are not
-dominant as well. The graph (¢) shows the non-dominance of the preemption of

.a preempting task.

It follows that the ESs are tight, usually preemptive schedules but have no
-superfluous preemptions. Only cycle-ends f; can be critical situations and they
really are if the processor P, is busy or demanded simultaneously by the other

g 112 VA 1)

o1 VI 1 Y7
2 Va2, ¢

g:8, N fa
"///////--’///////n

o-:s1

flfz

(@

///// _///,
-///////-/// A2}

Gz,1:5¢

74 112 V71)
\ 74 1 V)
| 2 Va2, Y

C)

Va1l 2 11 VA 2 VA1)
W R 7
//// | 2 YA 2)

S /o

Fig. 2
Dominating decisions

Dominant schedules of a steady job-flow pair 91

job-flow. Preemption can only occur in critical situations and every critical decision
causes a delay of the service of the job-flow not preferred by the decision. Delay
is not caused by decisions other than critical. Between critical situations the sections
of any ES are uniquely determined by the initial situation and decision. These
sections are, therefore, called determined sections. The infinite section starting with
the last critical situation if it exists, is the /ast determined section.

All ESs start with the service of the task A4;, without preemption in the interval
(0, n;) in accordance with the initial decision s;, i=1,2. Accordingly, the class
% bursts into two subclasses #®, i=1,2, consisting of ESs with the initial deci-
sions s;, i=1, 2, respectively. The initial decision s; uniquely determines the first
determined section together with the closing critical situation — the first — if it
exists. It follows that all elements of 2 (Q) have the.same first determined sections
and critical situations g; if the latters exist at all. Let 77 be the length of the first
determined section. There is no preemptlon and delay on the first determined sec-
tion except the initial delay of Q®-? in the interval (0 #:). Use the notation ¢(?
for the situation of schedules R€Z in the point #/ =n;.

The concepts of critical situation and decision were introduced for the natural
schedules defined in [4] as well. The types of critical situations were o, and o;,
i=1,2, and the conditions for o, were the same as here. The conditions of o;
there and the Fig. 1 show that a situation type o; ; in ESs is always preceded by
a situation type g3.;, being critical situation of a natural schedule but not of an
economical one. This simultaneousness of a;_; o and ¢; ; has a particular importance
at the first determined sections playing a central role in the discussion of ECs
(see Theorem 2). Out of types gy, 6, and o0;; the natural and economical deci-
sions are the same for every situation and cause no preemptions or delays. The
first determined sections for the ESs are, therefore, almost the same as for the
natural schedules. The differences are only in the last subsections of the ESs starting
with 6;_; , and ending with ¢; ,. The processor P, is busy throughout the subsec-
tions. If the first critical situation does not exist, the set Z consists of a single
schedule R;, being natural schedule, simultaneously.

. The connection between the first critical situations of the natural and economlcal
schedules allow us to simply prove an important theorem concerning typical situa-
tions by reference. Typical situations of an ES are defined as its critical situations
and the f;-situations which are not ¢(situations directly following critical situations
[4]. Bi-situation is a situation in which an A;-task finishes and an A,_;-task starts
at the same moment. Let o} denote the first typical situation of the ESs of #(Q)
if it exists. The possible first typical situations are illustrated in Fig. 3. We also use
the wording characteristic situations for the critical and every f;-situations.

Theorem 2. In one and the same cases all elements of #®(Q) have a first typical
situation o) iff the simultaneous inequalities

0=4,=1 w,=(,0) 2

have a solution, where w,=(B,, A,) are integers and 4,=B,t,—A,t3_,, a=1, 2.

When (2) has no solution, Z®(Q) consists of the single (non-preemptive and
consistent) schedule R,,. This occurs in the cases

n=0, 9, and 9, are rationally independent 3)

92 . J. Tanko

By B, B - B
T12) 2] T12) 2 1]
N A — O
: 2 v _Az2)
. o Nty
1=0,m>0" 47 =1, 1,>0, §, >0
1 g 1B 70,) B1 Oy Go?
12)W) 2Oz 17 -2 W _2Z1)
i\ O — (7 WA v\ _—[va
V720, \Wh Vs \2Y a4 w4zl __\22)
Y o) ey 2 e
Ai=m=>0, 47=0=y A7=m=0, 4{=n=0, 4di=n=n=0,
9,=0 3H=0 1:>0,8=0 1: =0, § >0
By 01,1 ﬁ} _ 02,1
(1 12) _WA2 2) — VA 7?)
' VA1 1 __ [1+ YA Va1 |\ 1 V773
- V4 - \2 ¥z 2273 L2 ¥
: o g
Osnm<di<n >0 0 <4y <n, 3.>0
Fig. 3
First typical situations and their conditions (47 = Bf 1, — A% 1)
and

'9“ > 0, T3g — 0- (4)

When (2) has a solution, the type (and place) of o7 is determined by the error
A% of the least solution w}=(B;, A} of (2) according to the table .

*

G, Conditions

Ba 4; =0<n,
Bs-a | 4a=n=>n, 95-,>0
C 0, AX=n, or AX=n=n, bt J3_,=0
Our | Ma=<4ds <1
O3—a1| 0 < 47 <1,

Proof. The assertions of the ;cheorem follow from Theorem 4 of the article [4]
and the comments made above. [J

The problem of finding the least solution of (2) is a coincidence problem [2].
If 6@ is not a critical situation, it is always a B,-situation. It follows that B,
returns periodically and o] does not exist if o;=f,. If af=p,_, then the first

Dominant schedules of a steady job-flow pair 93

\\
\
\

G®

Fig. 4
The cyclic graph G, of the first determined sections

determined section of #(Q) from its B,_,-situation on is congruent with the first
determined section of #3-9(Q) from its ¢3-9=pg,_,-situation on.

The assertions of Theorem 2 are. well illustrated by the cyclical graph G, of
Fig. 4 showing the possible characteristic situations of the first determined sections
of ESs. The vertices of the graph represent situations and the (directed) arcs succes-
sions or identities. The arcs are labeled by critical decisions after critical situations
and by conditions for A} and the parameters after other vertices. The vertices framed
by circles or squares can be the situations of Z® and #®, respectively, until the

94 J. Tanké :

first typical situations. The graph G,
represents all the possible cases for the
whole ‘configuration space 2. For every
Q€2 only one arc going from a not
critical situation is right. The graph can
be partitioned into four subgraphs by
Fig. 5. On the graphs the results of
the decisions in the first critical situa-
tions are drawn by broken arcs.

-‘Before we investigate = further
characteristic situations of the ESs, we
-show an example by Fig. 6. The part
(a) shows the Gantt-chart of an
ReRM(Q), the part (b) is the graph
Go(Q) and the part (c) illustrates
the graph G(Q) of the ESs of
Z(0Q).)

Fig. 5
The partitioning of the graph G,

EXAMPLE. Q=(4.5; 3.5; 1; 2),7,=8; 1,=3,1=5.5, 9=5.5. '
wi=(1,1), 4;=5¢(4.5; 5.5) and so of=a,,.
w3 =(1,0), 45=3€(1; 5.5) and so o65=0,,.

It is seen that always the characteristic situation ¢®-9¢G, occurs after the
critical decision s, in a critical situation type o, ;. This means that new characteristic
situation value can only be generated by decision s; in a situation type o; ,. The type
of the generated critical situation can be either of ¢;,, j=1, 2,0, and B;, j=1, 2.
The situations except type o; , are not new and lead back into the subgraph G,.
But the generated critical situation value must be new if its type is a;,, j=1, 2.
This is the consequence of the fact that determined sections are determined by their
closing critical situations as well. Returning of an earlier ¢; , value after ¢; ; would
contradict this fact.

All the possibilities of the ES elements R¢Z can well be illustrated by G,
and the further critical situations according to the graph G on Fig. 7. The vertices
0;,, all illustrate different values of critical situations of type ¢, ; and o, , independ-
ently of each other. The graph G is composed from five subgraphs by Fig. 7/b.
G, a=1,2, are the branches of G. The number of different vertices of G is in-
finite as we show below.

For any given configuration Q€2 the elements R€Z(Q) can similarly be illus-
trated by a graph G(Q) which is the subgraph of G (see Fig. 6/c). The dotted arcs
on Fig. 7/a, b may be present only of a branch of G(Q) is finite or missing. From
the arcs going out from G{® at most one can be present in any G(Q). The number
of vertices of G(Q) can be infinite. Examples for infinity are the configurations with

Na93-.=0, 3, and 73_, rationally independent N6

(see Fig. 8/b, c). The general conditions of the infinite vertices of G(Q) is an opeh
question. Perhaps, the above conditions are necessary.

Dominant schedules-of a steady job-flow pair

o) . o

2 /A2 VA2 Y1) lllll/l/////ll
////// 4\ Y7 /-///// 2774) V77777774 1\ V7

(200078 2 V70 ////-/-//-%-/-/-/-///-’/////

Go B 01,1 s C21 021 O2,1 02,1 Gy
Sy 1 Sa Sa So Sa S
(a) Gantt-chart
B &
2 Sg
ro-AT
1021} - B-
| Sp—
/] "\
(2 S € |
e S et 0 ‘0 %o So \
4 \ S1 _j \
I Vs \ }'
Poow_sh
’-V ~rk sl
l 01,1}

’_ 0 30 Sfo J.“

52;# ﬁz a 0.2,1 - S0t ()'2’1\—52-. 0'2’1 -5 o - o‘z’lr—Sz—l

() Graph G(Q)

Fig. 6 '
Grapbhical illustrations of the ESs for the configuration Q=(4.5; 3.5; 1; 2)

For any Q¢ 2 every REZ(Q) can well be illustrated by a subgraph G(R) of
G(Q). The configurations Q€2 and the schedules R€Z(Q) can be classified e.g.
by some significant characteristics of their graphs as well. Such characteristics can
be the existence and number (one or two) of the branches G{®(R), the finiteness
the number of loops in G(R), etc. We will use some classifications below.

95

Let REZ(Q) be an ES and G(R) the graph representing it. G(R) may have

finite or infinite vertices. Let us call the rour of R the passage along the arcs and:

96 J. Tanko
Ry
|
3]] S
1 So So So i
6@ Oit e Sid O 1 fosjm o o o =0y Ls,,‘

@ (@

NG

(b) ©

) Fig. 7
The graph G of the elements of & and its partitions

vertices of G(R) in accordance with all the characteristic situations of R. The passage
of R may be finite ending in a vertex R,y or infinite with finite or infinite number
of loops. A simple loop in any graph is a loop having no other loops as its part.
For any loop in G(Q) there is at least one path from the vertex o, to the loop with-
out any other loop. The first vertex of the loop reached by the path from g, to the
loop is called a root of the loop.

For some reasons it may be necessary to allow demands of tasks to be zeros.
The job-flow Q@ is defective if one of n; and 9; is zero and is degenerate if both are
zeros. For degenerate configurations (for which 7,=0 or 1,=0) we can impose
specific restrictions to better model practical cases in which demands of one job-
flow are negligible with respect to others. In such cases our methods could lead
to optimal schedule not reasonable with regard to other optimal schedules. A re-

S

Dominant schedules of a steady job-flow pair 97

12 21 12 1 2 12 yal

(a) 1 1 1 1 1 1 Ri2 =Ry,
2l 2 T2 2T2TJ2T1T2712

n =0, 3, and 3, are rationally independent

7, =0, 9; and 7, are rationally independent

Fig. 8
Examples for CESs not periodic and having infinitely many different
critical situation values

striction may be the prohibition of servicing repeatedly the cycles of the same de-
generate job-flow alone [2, 3]. Such restrictions further complicate the discussion
of the schedules. In degenerate cases the ESs are non-preemptive and are discussed
in the course of non-preemptive scheduling of steady job-flow pairs [3].

4. Consistent economical schedules

After the preparations made in the previous paragraph, we are near to be able
to prove our most important assertion: the class of consistent economical schedules
is a dominant set.

An ES is a consistent economical schedule (CES) if its critical decisions are
consistent: they are the same in every occurrence of the same critical situation
values. Note that two situations of the same type, o;, say, may well have different

values by having different values of f®(t) or @ (¢), for instance. Let Z(Q)c2(Q)

be the class of CESs for Q and Z= U Z(Q).
Qe

The graphs G(R’) of CESs R’€Z have specific characteristics. It can only
have one out-arc from any vertex except the vertex Ry, i=1,2, if it is in G(R').
R, has no out-arc. Any vertex has only one in-arc except eventually the vertex o,
and one more. g, has no in-arc if R,y is in G(R") or G(R’) is infinite. In case
of a finite number of vertices and without R;,, G(R’) has exactly one simple loop
with root ¢, if 6, has an in-arc or with another root which has two in-arcs then.
The CES R’ is said constructed from this loop. For any simple loop of G(Q) there
is at least one G(R’) composed from the loop and a path leading from o, to. the root
of the loop. The tour of R’ is the path from ¢, to the root and infinitely many rep-
etitions of the loop after. The efficiency of the CES so constructed is the P,-

7 Acta Cybernetica V/1

98 J. Tankd

utilization of the constituent loop. This CES is periodic with periods represented
by the loop. If G(Q) is infinite, let R, .. denote the CES with a tour from o, through
0@ and vertices 6, , to the infinity without any loop.

Theorem 3. The class & of the consistent economical schedules is a dominant set.

Proof. Let REZ be any ES with efficiency y(R). We will show a CES R'€¢ %
dominating R. The dominance follows if R is CES or is essentially-the-same as
a CES R

If the graph G(Q) does not have loops, all ESs are consistent and R may not
be other as well. If the P,-utilizations of the simple loops of G(@) have a maximum,
the R’ constructed from a simple loop with maximal P -utilization will dominate
every other ESs except eventually those which are essentially-the-same as Ry,
or R, i=1,2.

The only crucial G(Q) is that in which the P,-utilizations of simple loops
have no maximum. But if the G(R)CG(Q) has a simple loop with P -utilization
not less than y(R), the CES R’ constructed from this loop will dominate R. Thus
the dominatedness of R with finite G(R) by CESs is proved. If G(R) is infinite
but with a finite' number of simple loops, the tour of R cannot have a loop after
a finite initial section and is essentially-the-same as an R; ..

The only crucial G(R) is, therefore, that which has infinitely many simple loops
without one having maximum P, -utilization. Whether such a G(R) does or does
not exist is an open but irrelevant question now. The length of loops cannot be
bounded in this case. The schedule R is composed from two kinds of simple loops
represented by Fig. 9.

0’1,1 Bz ‘71‘ 1 ﬁz 021 B
N Y - D S
/i . Y W // -////////// VA 1 |
/0 2) //////////// ///// // -/////////////

2(1) A(l) 3@ A(Z)

a’ : 4®
_——-’ —————— e |
x + @ - l
;/}2_.»...._’.0'11 ﬂz__»...—-—0'2lr——.-l
. A)

AY
4

l____
=<
)
Bt
2
-

/-\
> B
\~,

Fig. 9
The two possibilities of simple loops

Dominant schedules of a steady job-flow pair 99

By definition (1) of y(R) we can choose a sequence X,, %, ..., Z,, ... of initial
sections of R which are ending with simple loops and for which

A(Z)
1)

where A(Z,) and t(Z,) are the PA-usage and length, respectively, of the section
Z,. But

y(R) = 11m

AZn)
1(Z,)

is the weighted mean of the P ,-utilizations of the finite many simple loops composing
2,. Let 4Z,, A%,, ... a sequence of simple loops carved out of Z;, Z,, ..., respec-
tively, with maximal P,-utilizations. By assumptions

Y = y(42,) < v(R)

and so the convergence y(4Z,)—y(R) is true. The sequence A4ZX;, 4%, ... must
have a subsequence with monotonically increasing length and P, -utilization because
the contrary would lead to contradiction with the assumptions y(4Z,)—y(R) and
no finite loop with y(4ZX,)=y(R) exists. Let 4%,, A%,, ... be this subsequence
already. Clearly y(42,)—>7(R). Every 4Z, could be composed either from an ini-
tial section X, of an R; ., i=1, 2, and a section 4, of bounded length or from an
initial section XV of R1 o, an initial section P of R;,., a section 4 and a sec-
tion A of bounded lengths as in Fig. 9. Because of boundedness of sections
4;, 4 (1) and 4® they do not influence the limit of y(4Z,) and

lim y(4Z,) = lim y(ZP UZP)
n-+co n-+co

(2, =

allowing one of X and X(® to be missing. In the sequence AZ,, AZ,, ... at least
one of Z(V and X @ tends to Ry Or R, ., tespectively. y(4X,) cannot be greater
in limit than the maximum of limits of y(Z) and y(Z(®). Therefore, the maximum
of y(R;,) and y(R;,.) will not be less than y(R) and the corresponding CES R; .. .
dominates R. This concludes our proof. O

The set #(0Q) of CESs can have fairly many — if not infinite — elements in
general. Methods for reducing further the dominant set or a simple algorithm to
choose an optimal schedule from £(Q) are not known. A direct method to determine
the optimal schedule is to survey the whole set £ and compare the efficiencies of
the elements. In some cases this is a feasible arrangement. To judge better the
amount of work on this way we can use the number Ny (Q) of simple loops in G(Q)
and the number N(Q) of elements of #(Q). To determine these we need the graph
G(Q) or at least some data of it.

Let us define the following data (see Fig. 6 and Fig. 7 as illustration):

n, is the number of R, vertices in G(Q)
n,; is the number of vertices g;, of the branch G (Q)

©)

T*

100 J. Tanké

fora=12 j=1,2

{1 if the last arc of G leads to vertex o)
aj =

0 otherwise ™
for a=1,2 j=0,1,2 and ¢© = g,.
Use the notations
na = nal+na2’ a= 1, 2 (8)

n, is the number of vertices in the branch G{® (Q) All the data can be read from
two schedule-sections 2@, a=1, 2, constructed in the following way. For 2@
schedule O economically with crmcal decisions s(0)=s, and s(o;,)=s;, i=1, 2,
until the first typical situation other than ¢, , occurs. This procedure is finite iff
G(Q) is finite. From these two schedule-sections we can read the P,-usages 1(42)
and lengths #(42) of determined sections AX which are necessary to evaluate the
CESs of Q. These two schedule-sections enable us to draw simply the graph G(Q)
and determine the data (6)—(8). To illustrate this method, Fig. 12 below can be
considered. The way to use the data to determine N;(Q) and N(Q) is stated by the
following lemma.

Lemma 1. The number Ny of the simple loops of G(Q) and the number N of the
elements of R(Q) can be. expressed as

Ny = (11 + 019+ 619) (Ngg + 09+ 021) + (M1 + 015+ 011) + (a1 + 020+ 020) — 610050 (9)
N= ("11"‘512)(”2+520+521+522)+("22+521)(n1+510+511+512)+
+(n1g+ 819+ 011) + (1121 + Jog+320) + 11 (10)
where n;, n,; and d,; are defined by (6)—(8).

Proof. Consider Fig. 7 as illustration. We count the number of simple loops
of the graph G(Q) and the number of different paths from g, to the loop without
other loops.

The number N @ of loops not leading out from the subgraph G is the number
of vertices o5_,,; plus one if the last arc of G@ leads to the vertex ¢®@. This gives
N =n, 5_ ++6... The root ¢‘@ of these loops can be reached directly from o,
or through ¢®-9 if arcs connect G@=9 to 6@, The number of the latter arcs is the
number of vertices o, ; in G®~? plus one if the last arc of G®~9 leads to ¢®. This
gives the number of paths from o, to 6@ as 1+n;_, 5_,+05_,, and the number
N of the CESs as N“9=(n, 3_,+8,)(14+n3_, 5 «+03_0.). Further loops arise
from arcs leading from G® to ¢® and back from G® to ¢®. The number of arcs
leading from G to ¢©®-9 is the number of vertices o, ; in the branch G{® plus
one if the last arc of G* leads to 6®~? as well. This gives the number N * of simple
loops as N{®=(ny +015)(Mes+351). Any of these loops can be reached directly
through ¢® or ¢® giving the number of CESs as N©=2(n;, +6,,) (125455
There are loops between ¢, and G if the last arc in G leads to o,. Because the
vertex o, is the component of the loop, one or other of the paths ¢,—~o® and
6o—~0'® is an arc of the loop and determine the possible loops. The arc 65—~
is the part of only one loop if J,=1. The arc g,~6®~9 is the part of loops

Dominant schedules of a steady job-flow pair 101

0y>0C"V~g;_, 5 ,~0®—>0g, the number of which is n3_,3_,+8;_,,. These
give the number of loops N{®=(1+n3_,35_4+83-4,0)000- Each loop is the con-
stituent of exactly one CES and this fact gives the number N@=(1+n;_,3_,+
+63 a,a)5n0

Adding up the numbers for a=1 and a=2, we have

NL — N£11)+N£22)+N£0)+NI(‘1)+N£2) —
= N1s+ 017+ Mgy +0ga+ (1131 + 012) (Nge + 051) + (1 + 1y +612) O+ (1 + 120+ 021) 04
and T _ _ _ : ‘
N'=NOO+NE+NO L NO+NO =(ma+61) (1 + 10+ 020) +
+ (Ngy +050) (1 + 133 +819) +2(1133 + 615) (e + 5o + (1 + "11'*‘512)520"'(1_ +Nga+05)010-

If GP®(Q) contains the vertex R,y, the subgraph G{ in Fig. 7/b has no out-arc
and cannot take part in any cycle but represents a CES the path of which ends in
vertex R,. This means that the value N’ obtained above must be corrected by
adding n, to the number of CESs generated by loops. The identity of the so ob-
tained expressions of Ny and N’+n, with (9) and (10) is obvious. . OO

For the example of Fig. 6 we get
mp=1, np =0, 9p=0, 6;;,=0, =1 |
gy =0, nyp=4, dy5=1, 95y =0, 8y =0.
From these data the numbers are
Ny=11 and N=19.

If G(Q) has no branches, i.e. n,;=0,a=1, 2 1—1 2 then the particular for-
mulae are

NL(Q) = (610+612) (050 +021) +(S10+ 1) + (520 +329) — 019029 = 2 %)
N©) =2. (10) -

The relations can be proved simply by taking the possible values of n, and
every d,;
The CESs having the same simple loop as their constituent (period) are essen-

tially-the-same. The number of essentially different CESs is N, and 2(Q) represents
at most N, different efficiency values.

Except the trivial cases of existence of a vertex R,y in Gy(Q) — which can only
be in the defective cases (3) and (4) — the relations

6a0+6a1+6a2= 1, a = 1, 2, n0=0 . (11)

are always true and the expressions (9) and (10) can be written in the simpler forms
Ny = (1 +1=061) (Maa+1—020) +(m1a+ 1 —815) +(ngy + 1 —831) — 619020)

N_ = (N +012) (M + 1)+ (M2 +0y) (1 + 1) + (g + 1 = 530) 4+ (ny; +1—35). (10)

The expressions (9) and (9”) show how the number N, of the possible CESs
representing different values of efficiency depends on the numbers n,;, a, j=1,2,

102 . J. Tanko

of the vertices.in the branches of G(Q). N, is finite if all n,; are finite and if* ny=co
but ny5_;,n,_;; are finite and ny_; 5 i+03_;0+0;_;,;=0 (provided that thls
last case is possible for some conﬁguratlon 0).

For the sake of reference, we have to identify the elements of %(Q) In view
of evaluation, the identification of the simple loops is enough: We introduce a sym-
bolism for this purpose.

We identify the vertices of the branches G®,a=1,2, by numbering them
serially with 1, 2, ..., n, in the order of occurrences in G{®. Let the vertex ¢® have
the serial number 0 and the vertex of G (Q) the last arc of G (Q) leads to the serial
number n,+ 1. This last vertex can be either 6, or o or ¢‘®. The serial numbers
of vertices of G™M-and G® of our example in Fig. 6 will be 0, 1,2 and 0, 1, 2, 3, 4, 5,
respectively. The last number of G® represents the vertex 0'(2) and the last number
of G® represents the vertex 4,. Every simple loop is composed from one or two
sections belonging to subgraphs G® and G®, respectively. Every loop-section of
G starts with the ‘vertex .¢(®, goes through some further vertices of G{® if they
exist, and finishes in oy, ¢V or ¢®. A loop-section of a given G(Q) can be identi-
fied by the maximum of serial numbers of its vertices. The character of a loop-
section can well be given by a code (abc) constructed from the number “a” of the
subgraph it belongs to, from the maximal serial number “b” of its vertlces and

&6 09

from the code “¢” of its last vertex by the coding:

/ type | 6o 6V 0(2)

ccode [0 1 2

The code (ac) identifies the shape of the loop-section which can be symbohzed in

the following way: _
c
;x o 1 2 6o —~ 0@

= =& N
2 | = E. =)

The simple loops are composed from one or two sections dlrectly or by means of
a section' 6y—0® or .g,~c® symbolized by _and /.

" To identify a 51mple loop we can, use the b-codes of its component loop-
sections. The loop identified with (b, b,) has vertices from G and G® with maximum
serial number b, and b,, respectlvely If 'a loop has no vertex from G, the com-
ponent b, is zero.

The_elements ‘R of Z can be characterized by the code (byb,) of its simple.loop.
The CESs R,; for degenerate conﬁguratlons (3) and (4) will be characterized by
* the code (00): The code (b, b,) of a CES is called its zype. The code (b, b,).represents

an essentlally-the -same class of Q?(Q) the number of which was counted in_the proof
of Lemma 1.

“Not ‘every codé (b, b,) can represent an ex1$t1ng loop in G(Q). In Table 1 we
marked by, sign_.+ -or.— that a loop of code (b,b,) composed froin the existing

Dominant schedules of a steady job-flow pair 103

loop-section pair (1b,¢,), (2b,¢,) did or did not exist, respectively. The code (00)
is possible if at least one vertex R,, of G(Q) exists (and 7n,=0, of course). In this
case the only possible value of b, is 0. The other (b,b,) entries of Table 1 for given
(abc) codes can be easily made. We put sign — in every entries of rows with ¢, =1
and of columns with c¢,=2 except their first entries. In row b,=0 we put — in
entries with heading c,=1 and in column b,=0 we put — in entries with heading
c;=2. If an entry with ¢,=c,=0 existed, we put — in it. In the remaining entries
we put signs +.

Table 1. The existing codes (b, b,) of simple loops.-.

- b | 0 .. R :
TN @ - - — ' Example of Fig. 6
. 2) = i e | . .
\\ - (Reo) =r = N 5|0 1 2 3 45
b i AN , 2 1 o 2-1 N G
-1 1110
0 (Rig) (+) -+ - + + - bl
' 0 — |- - - - = ®
I 2 |- @ + + + +
— 1| =« o _ 2{ 2 |- @ + + + +
b, i
I
= 0| + - + - =+
T e + - - - - =

L, 2| - -+ o+ -+

Table 1 says which loops have to be evaluated for determining the optimat
one. The possibilities for some specific types of CESs are represented by Fig. 10/a,

The set Z(Q) always contains exactly two non- preemptive schedules- R, o,
-a=1, 2, which are the two tight consistént natural schedules defined in [4]. These
are the non-preemptive priority. schedules, at the same time [2] Two other remark-

" able elements of Z(Q) are the priority schedules R34, a=1,2. R, ;_, is defined
as the CES in which the job-flow Q(") has absolute priority against 9@~ which
‘means that every task 4,;, j=1,2, ..., is serviced by P, at the moment it is ready
for service, independently of the state of P,. The priority schedules .are schedules
of great practical importance. With the help of Table 1 it is easy to determine the
types (bib;) of the priority schedules R, o and R, ;_,, a=1,2, by their ‘definitions.

R, ¢ is determined by the restriction that no preemption is allowed and s(0)=s,
This means. that R, O—Rao and has type (00) if the vertex R, exists: Otherw1se
b.=1, b3 a=0, except if ¢,;=3-a when b; =1, and ¢g_, =c a1—3 -a. when
b’ 0 moreover,.

R, 3418 determined by the fact that any task" type A,_, must and any task
type A4, must not be preempted in conflicting situations ¢;,, i=1,2. This means
that s(aa V=5, and s(o5-,,)=5,. The possibilities are 1llustrated by Fig. 10/b.
If the vertex Rao exists, then R, 3 .=R, =R, with type (00). Otherwise, b, cf

104 J. Tanké
R(Oo)v L
R, .=R;,= Ry (cases (3) and (4))
R(lo)
=%
|
- TTT T
9 =0 é ! :E] X 44 X R,.=R
1 L. L-V:_ 1,2 1.0
R(ll) ‘ _ _
l N -~} - - 3—
. < < <
Ry = Rao _L_i:l - L= l_:j_ e
= Roy=Roor Ri,=R;,x — -
R, =Ry, 2; R 02,0 1,; R‘,,:'o o R,
R, (b>1) ' g |
" :—? b :' 4 ==
| 1 -1 I «-—1——3 11 < 1 b
e e o = R L NG
I Y I L. ¥, | 2 A ;__
L Yy | SIS S K. e 1t __
o =1 10=1 Ny >0

ROV, (b =>1)

ny, =0, 0 =1,
Nys+0s >0

(n,b) (b)

@

< b

b

-
1
1

il e

Ny, >0

(b0)

u

<Tm

L__3_vyd
Ry =0,0,=1
("10)

(..ol

1 n
1 2ny

™
v b4 v Ve
n;3=0,0;, =1 N =0,0,, =
Ny =0, 05 =1 Ny =0,y =1
(nyn) ©Ony)
" Fig. 10

Special types R(b1b2) and types of Ry,

Dominant schedules of a steady job-flow pair 105

R, s, is the serial number of the first vertex type 65_,, in the branch G{?, if it
exists (n,3-,>0) and b,=n,+1 or b,=0 otherwise (when n,;_,=0). b;=n, +1
if 8,3-,=0 or 0,3_,=1 and n3_, 3 ,+1—03_,3_,>0. b;=0 if 6,, 3—a=
and ny_, 3 ,+1— 63 a.3—a=0. The value of b;_, of Ry, 1s 0 when n, 5 ,,+
+1—90,3_,>0, the serial number of the first vertex d;_,, in the branch GE-9,
if it exists (ny_,3.,0) and n,_,+1, otherwise, when Ny s—at1—0, 3_,,—0

In the completed Table 1 we can pick out the types of R, o and R, 3_,as follows.
R, , is tepresented by the sign + encounters first in counter- clockwise for a=1
and clockwise for g=2 in the left upper 2X2 subtable and R, ;_, is represented
by the first + encounters on the border of the whole table counter-clockwise for
a=1 and clockwise for a=2 starting from the entry (00). If Table 1 consists only
from one row then R, (=R, ,=R;, and if it consists only from one.column then
R, 0=R; 1=Ry.

Let Z#.(Q)= {Ry,5, Ry 1} be the pair of pnorJty schedules. This is a subset
of Z(Q). If Z(Q)=2,(Q) then Z,(Q) is a dominant set. In this case R, 3-.=R, 0,
a=1,2. An example for this is the configuration Q=(1; 4; 2; 5) with R, ,(Q)
optimal. If 2Z(Q)=%,(Q), the set %#,(Q) is not necessarily dominant. Trivial
examples for this are the configurations Q with 3;<n,;_;<23;, i=1, 2. For these
configurations the CESs R, ,~R,, are optimal with efficiency y=1. A non-
trivial example is the configuration @=(4.5; 3.5; 1; 2) in Fig. 6 as we will see
in the next paragraph.

_Though the priority schedules are not dominant, they are interesting on their
own, because they are often used in practice and can be produced by simple rules.
They are investigated in the study [2]. The evaluation of R, , and R, ; is not a trivial
task at all. The priority schedules were investigated also for the stochastic version
of job-flow pairs [1, 5].

5. Evaluation of the CESs

Though the cardiﬁal of the dominant set 2(Q) of the consistent economical
schedules is not necessarily finite, we give an algorithm for the direct evaluation

of the CESs. This is applicable only when £(Q) is finite. Z(Q) is finite exactly
then when the graph G(Q) is finite. For some cases the automatic application of
the given algorithm can be superfluously complicate. Four such cases will be men-
tioned below as cases (i)—(iv). These cases contain the configurations we know
as having G(Q) with infinite vertices. By general case non-defective configurations
are meant. The special cases (i)—(iv) are illustrated by Fig. 11. '

Case (i). 7,7,=0, degenerate configurations (see (4)). The CESs are the R, ,,
a=1,2, and y,,=0. If the number of cycles of the same degenerate job-flow
scheduled directly after each other is restricted, the maximal efficiency y®+y®
can be achieved.

Case (ii). =0, $,3,>0. R, o, a=1, 2, are the only CESs with y=0. R, =R,
and has no typical situations for the configurations (3).

Case (iii).. 1,7,>0, >0 _but Q is defective. If 7,9;,_,=0 then R, ,_, has the
maximum efficiency of y=yG-9 (see Fig. 8). The shape of the graph G(Q) depends

106 " : J. Tanké

<5€<%

. %>0 9,>0 9=
Case (ii). =0, 91.92>o

<4

—lrratlonal ——ratlon 1
9, 9, 2

Case (). 7,7, =0

Case (iii). 7,7,>0, >0, 7,729,9,=0

<

=0
9,>0,9,=0, :3 rational 5, = 0, 9,>0, solution of (#) exists
2
Case (iv). 1, > 9, >0, n,> 91 =0
. ﬁ(z)(‘) =9 _ \ﬁm(f) =9
1 2 1 2
Wi R . 1 V/////////////////////////////////////// 1 ’/A
6‘0 B 011 - 011 /32 02,1 0'2.1 By 01,
5 Sp So So . 5,
Fig. 11

Trivial cases for optimal schedule

on the existence and relations of the least non-trivial non-negative integer solutions
X7, X3) of the equations

0
A EXS —X3 aT3_a={

iﬂa -a

- but this fact is irrelevant from the pomt of view of optimality. There is no solutxon
oy (%) in cases (5).

Case (1V)_. 7;=94_,>0, i=1,2. The maximal efficiency of the CESs is y=1
and any R€Z(Q) with decisions s(a;,,)=s, if only BC-9(r)—3;_;<9;, is optimal.
E.g. also the R0, a= 1,2, are opt1ma1 with 7y, o=1.

Before we give an algorlthm for the general case, we show the evaluation of
the CESs of the example configuration Q=(4.5; 3.5; 1; 2).

a=1,2 (%)

Dominant schedules of a steady job-flow pair

B

01,1

B 02,1

B

SN/ W), v R 1)), —4°
) V. Y -’//////////////// T

V0 //-/////////////////-%ler//////////A . _ﬁ:l? (

A(l) N .
R,
— 1 1 1 [] 1
AW 4z Y PAY 4z AP

[_J
Z(l) .

B: 031,091 021 03,1 gy Ba . o
217 1211 _12hV7 I///lllﬂlil/l/////I. 4,2 Zg
® VI O 0, &%

//-//-///-//-///-//-//-//[r?
| 1|}) Ry 4
2 2 (2 .
42 AS > AD p
1.]) 1 1 1]
AP ATP AZD ATHAZTD AP
—_ 1
3
B Ga,1 O, 1 a1,1 B AD
AERAEMA7/AEEA AR
QR B RETRIC)
VA2 VA2 VA2 Y42 V4 L “2
.—_jA{I)
i Rl *
A“’Z‘"’A Z(Q’A@)A Z(I)A(l) R
A(2) A(2) A(2) A(2)
T4 I AP Az AZ‘” 4z UP
(d) '
A{,’) A Ei” A Zél) G(Q)
[a [ag
Fig. 12

The sections ¥ (), a=1, 2, the priority and the optimal schedules of the example

0=

“4.5; 3.5;1; 2)

108 J. Tanko

In Fig. 12/a, b we show the Gantt-charts of the two schedule sections T®
and ™ expanded here to provide R, , and R, , at the same time. It can be realized
that every loop-section is composed from consecutive subsections 42, j=1, ..., b,
of X and a section 4 of full P,-utilization as X{?U4{?. This fact is illustrated
by Fig. 12/d. The lengths and P -usages of the subsections can be read from £
and X® andare given in Table 2. The data (lengths and P, -usages) of loop-sections are

1(EEN+4 and A(ZP)+49

with b

I = 4z®, b=12,..,n+1, a=12
i=1

These data are given in Table 2 as well.

Table 2. The data of loop-sections of the example of Fig. 12

a b|Typeofsect.| ¢ " A(4X) t(4X) A4 I(Z+4) 1+
0 o - = - 4.5 - -
11 61,1 2 15 3.5 0.5 2
2 o - 2 6 8 0 7.6 11.5
0 @ ~ _ _ 1 _ -
1 03,1 1 2 2 2.5 4.5 4.5
, 2 Ga,1 1 3 3 0.5 55 5.5
"3 o1 1 35 6 35 12 14.5
4 Gan 1 3 3 1.5 13 15.5
5 Go 0 35 6 0 15 20
Table 3. The simple loops and their characteristics for the example of AFig. 12
No. Gb) G Composition . AX) 1) () Rmk.
1 ,5) £/ ZBUA® 16 21 0.762 Ra,y
2 (1,1 E zuanyz®ya® 6.5 8.5 0.765 Ry,0~R:,,
3 1,2) E TMyUAMYZP Y@ 1.5 9.5 0.789 R*
4 1,3) E—I TOYUAR UZP YA 14 18.5 0.757
5 1,4) |: PRAVY ILIUPH AW O 15 19.5 0.769
6 1,5 [:.:: ZOyudaPuzPuap 21.5 28.5 0.754
7 @0 | TOUZE Y AP 12 16 0750 Ry,
8 @2 E MU ULP 13 17 0.765
9 2,3 ’:) PAAOPN AP 1Y 19.5 26 0.750
10 @y [meumpup 205 27 0159
11 2,5 3 TMyreyarm 27 36 0.750

Dominant schedules of a steady job-flow pair 109

I3

The c-codes of the loop-sections are easy to determine from the fact that the
result of the decision s(o;,,)=s, is 6®~9, i=1,2, and the vertex the last arc of”
G leads to can be obtained as the last typical situation of 2@ with B;=c®, i=1, 2.

From the possible (abc) codes Table 1 of the possible types (b, b,) of the simple
loops can be completed. The data of the simple loops can be obtained from those
loop-sections which are shown in Table 3. The last datum is y(X), the efficiency
of the corresponding simple loop. Comparing these data we can choose the max--
imum value as 0.789. The type of the optimal schedule R* is (1, 2) and its Gantt--
chart can be seen in Fig. 12/c.

The table

R (b,b,) R 100y/y*

R* | (1,2) {0789 | 100

Rio| @, »0765] 969
Ryol (1,1) | 0765 | 969
R, (2,1) 075 | 950
R,.| (0,5 |0762] 96.5

shows that the priority schedules are not optimal. The efficiency y* of the optimal
schedule is 88% of the sum y®M+y®=475/841/3=0.896 and the efficiency of

every priority schedule is_less than y*. y; , is the minimum of the efficiency values
of the CESs. This is 95% of the value y* To find a good estimation for the
min y(R)/y* is an open question. A trivial estimation is clearly max yOID 4+ y®),
REA(Q) =5

In the example y, ; is not minimal but there are 8 other CESs with greater effici--

ency. Also R, =~ R,, have better efficiency.

Fig. 12/c shows that the economic decisions in the optimal schedule are chosen
such that the delay d caused by the decision be minimal. This heuristic scheduling
strategy can often give a not bad schedule but not optimal in general. One can argue
that a unit delay of the job-flow with a higher P -utilization y®¥=gn,/t; is worse
than a unit delay of the other job-flow. Therefore, we can expect better schedule-
by the strategy which decides such that the loss of utilization D;=y®d; by the
delay d; of O be minimum. For our example the critical situations of R*, the:
delays d;, the losses D; and the decisions s* are from the Fig. 12/c as follows:

o’ dl : Dl d2 .D2 s*

0.56 | 4.5 | 1.50| s,

Oy 1

Gop | 1 [056] 2.5 (083 s,
g1 1 | 056 0.5]0.17 | s,
61,1 | 05028 45 [1.50] s

The table shows that the optimal decisions correspond to the strategy of minimizing:
local losses of utilization. This strategy is not optimal in every cases either. We-
show this by the example configuration Q@=(1; 3.5; 2; 1.5) in Fig. 13. The graph

110 J. Tanké

‘G(Q) with the data A(4Z), £1(4Z) and 4 is the part (d). The data (6)—(10) are"
=0, ny=0, np=0, =1, 6;=0, 6;3=0, n =0,
" Ty =0, np=1, 6y=0, 6y =1, 522=0,>n2=1,
N, =3, N=3.

‘The possible three CESs -are R, ,=R,,, R, and Ry, by Fig. 13/a, b, c. The
<fficiency values are 7,,,=7y,0=0.667, 7,,=0.743, 7;,,=0.727. R*=R,, is the

3
N Riz=Ryo 7= 55 = 0667

.Aél) Az‘{l)

Oy

Tyl L
/////9’1///-;/'/////-////-/////-////-/,

A(2)

L 1 Il 1 R s — =0.74
A® 43P Az 21 V=973 3
© IR S 53
c A '
’/////./////-/////-////-//)
1 L1 o 8 —
lA((’z) AZP AP A z{l)lAsz)l Ry, ¥ = = 0.727
0.5[(M .
;2210
2. ‘ad .
@ 5 @
0,]
1AGED
Fig. 13

Example configuration for no optimal minimum local losses strategy Q=(1; 3.5; 2; 1.5)

Dominant schedules of a steady job-flow pair ' 111

optimal “schedule. The delays, - ‘losses and opt1ma1 decisions are the following
(W=0.222, y®=0.571):

o' |dy| D, {dy| Dy | s*

oo | 20.444|1 [0.571] s;
05,1] 2[0.444|0.5[0.285] s,

The preemption s(o-2 =5, causes a greater delay (2) and local loss (0.444) than
the decision s(o,, 1) =s, would but it is, nevertheless, optimal. The decision
5(09,1) =5, results in R, , which is not an optimal schedule (see Fig. 13/c). This
example shows that the “locally optimal” decisioris are not “‘totally optimal”.
An evident problem is the ratio y/y* of the efficiency of the schedule w1th m1n1ma1
local losses and the eﬁ‘ic1ency of the optimal schedule.

After the examples we give, now, an algorithm to determine an optlmal schedule
by direct evaluation and comparison of the CESs in finite cases. Formally we
divide the algorithm into two parts and formulate the parts as the S-algorithm and

the E-algorithm.
’ The S-algorithm produce the series of vectors

Zab = ()'ab’ tab, cab)’ b = 1, 2, ...,n,,—{-l, a = 1: 2

with components :
ab - }(Z(a))_*_A(a), tab = t();éa))+AI§a)’ Cab

as P,-usage, length and c-code of the loop-section with code (ab). An auxiliary
variable is in the algorithm X=(4, ¢, 4) as P,-usage, length of subsections of
Z@ and the length of a next section which will be inspected afterwards. Another
auxiliary variable is Y=(/, 7) the cumulated P -usages and lengths of the sub-
sections. The algorithm supplies also the data n,;, 6,; defined by (6)—(7) and used
in (9)—(10)

" S-algorithm. Input data: O=(11; 345 125 $9);
Output data: n,, n,;, j=1,2, 6,;, j=0,1,2, a=1,2, Z,,=a, taps Cap)s

- ob=1,..,n,+1, a=1,2;
Step 0: "-'13—’11+91a Tpi=M+9y; ai=1; ni=1; i:=2;
Step 1: X:=(0,0,3,); Y:=(0, 0);
Step 2: I:=[dA/x)]; A":=4—It;
Step 3: If A"=n; then X:=(A+(+Dn;, t+4,1,—4’), i:=3—iand

go to Step 2;

If A’=n; then Y:=(I+2+(+)y;, i+1+4), Z,,: —-(J i, l), Li=1 and
go to Step 4,

if A’=0thenY: —(I+l+/r1,, t+t+4), Z,:=(,10), 8,: —1 and

go to Step 4;

Vi=@+2+in+A" i4+t+4); di=n—4"; Z,:=(+4,1+4, i);
Nyg—gi=Nyg_,+1; i:=3—i; k —[A/9,], A’ =A4—-k9;

If k>0 then Yi=(141,1+1), Zopsji=(A+4—j9;, i+4—j3;,3-1),
Jj= sk and ngi=n,+k;

n: —n+k

112 : J. Tanko

If A/=0 then Y:=(A+71;,i4+71); Zp:=(4 1, 3—10); nyi=n,;—1;

n:=n—1; 8,3_;;=1 and go to Step 4;

n:=n+1;

If \93_,-'*‘41'—‘9,'%0 then X:':()']i'l'A,, Ti» 93—i+A,—‘9i) and

go to Step 2;

Xi=(+4",ni+A4"+85_;, 9;—85_;,—4"); i:=3—i; go to Step 2;
Step 4: f a=2 then n,:=n and go to End;

n:=n; n:=1; a:=2; i:=1; go to Step 1;
End.

The output data of the S-algorithm corresponds to the data of Table 2 and
the data (6)—(7). From these data the efficiency values of the possible simple loops
¢an be determined by the E-algorithm. The flow-chart of the S-algorithm is shown
in Fig. 14.

The E-algorithm uses the output data n,,a=1,2, and Z,_, b,=1, ..., n,+1,
a=1,2, of the S-algorithm and determines the efficiency values y of the simple
loops and provides the type (b} b3) and efficiency y* of a simple loop with maximum
efficiency. The order of evaluation of the simple loops will determine which of the
possibly more than one simple loops with maximum efficiency will be chosen.
This order can be seen in Table 1: the + entries of the first column with increasing
b,, the + entries of the first row with increasing b, and the other + entries by
rows after.

E-algorithm. Input data: ny, No, 1y, Ney Zoy=0ps taps Cap)y 0=1,2, ..., 0,41,
a=1,2;

Output data: by, b}, v*;
Definition of operatton F: If y=>y* then bf:=b, bj:=b, and y*:=
Begm by =b}:=y*: b :=0; l

For b,:=1 step 1 until n,+1 do if ¢y, =1 then y:=1y [, and F;
If c1b1_0 then y: —()1b1+'11)/(t1b1+’71) and F; b,:=0;
For b,:=1 step 1 until m,+1 do if cpp,=2 then 7! = Agp,/top, and F,
If cp,=0 then y:=(lgp,+12)/(t2p,+12) and F;
For b1 =1 step 1 until m+1 do if ¢, =2 then
begin For by,:=1 step 1 until n,+1 do
if Cop, =1 then y:=(Ay,+ Aop,)/(t1p, +12,) and F;
Ifd6'2b2=0 then y::()'1b1+)‘2bz+’11)/(t1b1+t2bz+’71) and F,
end;
If ¢;;,=0 then for b,:=1 step 1 until n,+1 do *
lf C2b2:1 then ‘y:=(;'1b1+)~2b2+’72)/(t1b1+t2b2+'12) and F;
End. -

Fig. 15 shows the flow-chart of the E-algorithm. This clarifies the meaning of
the “for-step-until-do”’ cycles used in the algoritm.

The verification of the S-algorithm is easy e.g. by following its operations
graphically on the Gantt-charts of some configurations as of Q=(4.5; 3.5; 1; 2)
in Fig. 12. The E-algorithm does not need further verification.

Dominant schedules of a steady job-flow pair

~

1= M9y = e+ 9y;
a=1;n=1;i=2

[x:=0.03) F=00]

L={4]t); 4= A-1It;

X:=(Z+(+Dn, i+4, 1,-4);

i=3-i

Vi= (A+A+(+ D, I+1+4);
Zypi= (L1 0); 8ai=1

Yi=(I4+2+1n;, i+1+4);
| Zai= (41,00 5,5:=1 @

Y= (A+A+in+d’, i+144); A:=n—47;
Zpi= (A A, T+4,0); My gogi= g 3-+1

® ©

ii=3—i; k:=[4/8); 4":=A4—k&

Yi=(CG+1;, i+1);
Zopsji=(A+4—j9;, i+4-j9;, 3-i);

J=1 ks ny= gtk @

Y= (+1, +1); Zoyi= (L, 1,3-0); [| X o= (it 4, 1,4+ 8"+ %5, 8—9,_—4');

Nyi= Ny=1; 8y a-pi=1; n:=n-1 i=3=i

no n=n;n:=1; a:=2; i::l—-@

yes

Fig. 14
The flow-chart of the S-algorithm

8 Acta Cybernetica V/1

114 L J.'Tanké .

[b; i=bii=9":=0; by:=1; by:= 0| —
NG N PN
Cupy =1 .
by:i=by+ 1| po F . T T
. ™
™
es '
b by < ny+1
no,
_ yes { . Jam i
Cy, =0 = ————,m_*_m —
L=

- FangtdanF
f1py F 12y +

.

- Zapy+Aap, +11,
TR L S

. FigIs .
The flow-chart of the E-algorithm

6. Summary.

No simple rule to produce nor any simple method to choose an optimal
schedule R*(Q) of any job-flow pair configuration- Q is known. The dominance
of the class of the consistent economical schedules (CESs) is proven here. We in-
vestigated the structure of the CESs and gave a classification for them. This is
based upon the graph G(Q) of the typical (critical) situations of two schedule sec-
tions 2@, a=1,2. The information necessiry to obtain G(Q) and its data can be
got by the S-algorithm if only G(Q) is finite. In this case the E-algorithm supplies
an optimal schedule and its efficiency. The discussion has shown the importance
of some' open problems which require further investigation. Such problems are:
necessary and sufficient conditions for G(Q) to be finite; estimations for the ratio
of the efficiency values of CESs to the maximum value; detailed information about

MLy

R

edrellienL &L

Ay

Dominant schedules of a steady job-flow pair 115

some heuristic strategies such as priority schedules and the schedule with minimum:
local losses.

KEYWORDS: steady job-flow pairs, preemptive scheduling, economic schedules,.
dominance.

COMPUTER SERVICE FOR
STATE ADMINISTRATION
CSALOGANY U. 30—32,
BUDAPEST, HUNGARY
H—1015

References

[1] AraT6, M., Diffusion approximation for multiprogrammed computer systems, Comput. Math.
Appl., v. 1, 1975, pp. 315—326.

[2] TankO, J., A study on scheduling steady job-flow pairs, Tanulmdnyok — MTA S:zdmitdstech.
Automat. Kutaté Int. Budapest, v. 82, 83, 1978 (in Hungarian).

[3] TaNkO, J., On non-preemptive scheduling of steady job-flow pairs, Dissertation, Hungarian
Academy of Sciences, Budapest, 1979 (in Hungarian).

[4] Tank®, J., Non-preemptive scheduling of steady job-flow pairs, Found. Control Engrg., to appear..
Reduction method for non-preemtive scheduling steady job-flow pairs, Found. Control Engrg.,
to appear.

[5]1 ToMmkO, J., Processor utilization study, Comput. Math. Appl., v. 1, 1975, pp. 337—344,

(Received Oct. 24, 1979)

8‘

INDEX—TARTALOM

Z. Esik: Decidability results concerning tree transducers Tuuuereeeeiiineeeeeeennn. 1
B. Imreh: On isomorphic representations of commutative automata with mpect to a‘-products 21
J. Virdgh: Deterministic ascending tree automatal eeeas Ceeiiaraaes eeeeeean

L.Csirmaz: Iterated grammars cvieeeiitieunirotesnonnioosarrsnnnns Ceeeann .. 43
G. Czédli: d-dependency structuresin the relational model of data e 49.
L. Varga: Synthesis of abstractalgorithms i ittt iiionrnenanes 59
R. I Phelps and L. C. Thomas: On optimal performance in self-organizing paging algonthms 71
J. Tanks: Dominant schedules of asteady job-flowpairc.iiiiiiiiiiiiiininnenn. 87

ISSN 0324—721 X |

Kiadja a Szegedi Jézsef Attila Tudomdnyegyetem
Felelds szerkesztd és kiad6: Gécseg Ferenc

80-2403 Szegedi Nyomda — FelelGs vezets: Dob6 J6zsef igazgatd

A kézirat a nyomdéba érkezett: 1980. jinius 5.
Megjelent: 1980. december hé '
Példanyszdm: 1000. Terjedelem: 10,12 (A]5) iv
Készilt monészedéssel, ives magasnyomadssal
az MSZ 5601 és az MSZ 3602—55 szabvany szerint

ey

