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Decidability results concerning tree transducers I 
B y Z . E S I K 

A tree transducer is called functional if its induced transformation is a partial 
mapping. We show that the functionality of tree transducers is decidable. Con-
sequently, the equivalence problem for deterministic tree transducers is also de-
cidable. The latter result was independently achieved by Z . Z A C H A R in [12] for bottom-
up tree transducers and a restricted class of top-down tree transducers. The solv-
ability of the equivalence problem for generalized deterministic sequential machines 
is known from [2] and [4]. It was proved in [11] that this positive result can not be 
generalized for arbitrary, i.e. generalized nondeterministic", sequential machines. 
Therefore, the equivalence problem for nondeterministic tree transducers is un-
decidable. 

Our result can be used to minimize deterministic tree transducers in an effective 
manner. However, the minimal realizations of a deterministic tree transducer are 
not isomorphic. We investigate conditions assuring the uniqueness (up to iso-
morphism) of minimal realizations in certain , classes of tree transducers. 

Part of the results of the present paper have been announced in [8]. The terminol-
ogy is used in the sense of [5]. 

1. Notions and notations 

By a type F= (J F„ we mean a finite type such that F„?i0. For the type 

F, v (F)=max {«| ,F„ ̂  0}. ka. F-algebra is a system { ( / ) A [ / € f} ) , or 
shortly, (A, F), where for every nonnegative integer n and /€F„ ( f ) A : A"-*A is 
the realization of the n-ary operational symbol / . 

Let Y be an arbitrary set. Then TF r = ( r F y , F) denotes the free F-algebra 
generated by Y. The elements of TF Y are called trees and they can be obtained 
by induction as follows: TF Y is the smallest set satisfying 

(i) F0,YQTf,y, 

(ii) if n > 0, / €F„ , tt, ..., tneTFrY then f(p1>...,pnKTFtY. 
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In particular, if Y=X„, the set of the first n variables x1, ..., x„ for a nonnegative 
integer », TP Y is denoted by TFn and TF0 is written TF. Each n-ary tree p£TFt„ 
induces a mapping (p)A: A" ^A in an F-algebra A. If A is the free algebra TF i ' r 
then (p)x(h> •••> O— P(h> •••> 0» i-e- the tree obtained by substituting t{ for 

( i = l , . . . , ri) in p. 
The depth (dp), rank (rn) and frontier (fr) of trees are defined as usually. For 

a tree p£ 7>, Y we have 

(i) d p ( p ) = 0, m(p) = 1, f r ( p ) = p if per, 

(ii) dp (p) = 0, m(p ) = l , fr(p) = A if p€F0, 
n 

(iii) dp 0 ) = 1 + max {dp 0, ) | i = 1, ..., n}, rn (p) = 1 + 2 rn (?.)> 

fr(p) = fr(p1)...fr(pII) if P = f ( P l , ...,Pn), f i F ^ 
p1, . . . ,p n £T F Y and n>Q. Here A denotes the empty string. 

In connection with the elements of r F j „ («S0) we shall also use the concept 
of path. For an arbitrary z ' ( l ^ i ^ n ) and p£TFt„ path;(/?) is given by 

(i) pathj (p) = {/} if p = Xi, 

(ii) pa th j (p ) = 0 if PeF0VX,-{Xi}, 

(iii) pathj (p) = {jw\we pathj (j>}), l s j s m } if > = f(pn p j , 

;H>0, fdFm,p1, ..., pm£ TF n. If pathj (p) is a singleton then it is identified with 
its unique element. For u-'g pathj (p) we denote by |vv| the length of w. path(/>)= 

n 
= U pathj(^). For arbitrary two strings v and w v/w denotes the derivative of v with 

i=1 
respect to w, i.e. v/w = u if and only if v = wu. 

Further on we shall often use vector notations to simplify the treatment. Vectors, 
except possibly the one dimensional ones, are always denoted by boldfaced letters. 
For each k dimensional vector afAk (k^O) and i (l^i^k) a{ denotes the ith 
component of a. Conversely, if a£A then a k £A k is the k dimensional vector whose 
each component is equal to a. The product ab of the k dimensional vectors a 
and b is defined by ab=(a1b1, ..., akbk) where ^¡6; are short notations for 
(a ; , 6;) (/= 1, ..., k). For the vectors of trees TFi„ and q£TF<m we denote by 
p(q) the vector (/>i(q), ...,pk(q)). • ' [ 

According to the function fr one can distinguish the subset t F n of TFn. This 
consists of those elements of r f j „ whose frontier is a permutation of the variables 
in X„. We may extend this definition to vectors as follows: fF,„ = 
= {p£ TFt„ | fr (A) ... fr (pk) is a permutation of X„}. Observe that 7£„ is not the 
A:th power of fF ,„-

We now turn to the definition of tree transducers. Following [5] a top-down 
tree transducer is a system A = ( F , A, G,A0,1), where F and G are types, A is 
a finite, nonvoid set, the set of states, A0QA is the set of initial states, finally, I 
is a finite set of top-down rewriting rules. A top-down rule has the form af—p 
— or equivalently af{x1,...,x^^p, where n^O, a£A, f£F„,peTGtAxXn. A 
bottom-up tree transducer A = (F, A, G, A0,1) has a similar structure except A0 
is called the set of final states and I contains bottom-up rewriting rules. A typical 
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bottom-up rewriting rule is of form f(a1x1,...,a„x„)->-ap' where «SO, f£Fn, 
TGn, a, ax, ..., an£A. By a tree transducer we mean a top-down or bottom-up 

transducer. 
Take an arbitrary tree transducer A = ( F , A, G, A0,1) and let Y be an ar-

bitrary set. E can be used to define a binary relation =>A,Y on TGiAxTfy in the 
top-down case and on the set AXTc, r the bottom-up case. It is called derivation 
and its exact definition can be found' in [5]. If there is no danger of confusion A' 
is omitted in =^>A.y- It c a n be seen that if YXQY2 and p, q£TG AxTF then 
p^>Yiq if and only if P=>Y2

cI- Similar equivalence is valid in the bottom-up case. 
Thus we may omit Y in =>-Y. 

Again take the tree transducer A. This induces a transformation TaQTfXTg: 
TA = {(P> aoP=> q) 

in the top-down case, and 

= {(P, q)\3a0£A0 p a0q} 

for bottom-up^A. If Ta is a (partial) function A is called functional. This is always 
the case if A is deterministic, i.e. different rules have different left sides, moreover, 
A0 is a singleton in the top-down case. Two tree transducers are called equivalent 
if their induced transformations coinside. For a tree transducer A—(F, A, G, A0,1) 
and a state a f A we denote by A (a) the transducer A (a) = (F, A, G, {a}, I ) . 

The domain of the transformation Ta is denoted by dom Ta . It is a regular sub-
set of TF, i.e. a regular forest. Regular forests are exactly the forests recognized 
by tree automata. A tree automaton is a system B = (F,B, B0) with (B, F) a finite 
/"-algebra which is denoted by B too, B0%B is the set of final states. The forest 
recognized by B is determined by T(B) = {p£TF\(p)RfBn}. 

Sometimes we need to restrict a top-down tree transducer to a regular forest. 
If A = (F, A, G, A0,1) is a top-down tree transducer and TQTF is a regular 
forest then the system B = (F, T, A, G, A0,1) is called a regularly restricted top-
down tree transducer. Its induced transformation is TB ={{p, T). A similar 
but more general concept is the concept of top-down tree, transducer with regular 
look-ahead introduced in [6]. A top-down tree transducer with regular look-ahead 
is a. system A = {F, A, G, A0,1) where F, A, G, A0 are the same as for top-down 
tree transducers and I is a finite set of rules - , ' ' 

(a/(*i, ..., x„) - p; J?l5 ..., Rn) 

where af(x1, ..., x„)—p is a top-down rewriting rule, i.e. af A, /£ Fn (n £0) , 
p£TGAxXn, and R^ TF (1 s i s « ) are regular forests. The regular forests Rt 
are used to restrict -the applicability of the coressponding top-down rule 
af{x1,...,x,^-*p. The rule (af(x1,... ,x„)^p; ..., R„) can be .applied for 
a subtree of a tree in TGyAxTFY if and only if it is of form af(p1, ..., p„) with p^Ri 
for each i (1 S /S i i ) . Apart from this derivation is defined as for top-down trans-
ducers. The induced transformation is the relation Ta = {(p, q) \a0p^q for some 
a0dA0}. Again, if it is a function A is called functional. It is known that every func-
tional bottom-up or top-down tree transducer is equivalent to some deterministic 
top-down transducer with regular look-ahead (cf. [7]). 

i 
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2. The decidability of functionality of tree transducers 

First we show that the decision of functionality of bottom-up transducers is 
reducible to the decision of functionality of regularly restricted top-down ones. 

Let A = ( F , A, G, A0, Z) be an arbitrary bottom-up transducer. Define the 
top-down transducer with regular look-ahead A' as follows: A ' = ( F , A, G, A0,1') 
where 

z' = {{af ~*P(a 1*1> •••> a-x„); Ri, •••> •••> anX„) - ap^I, 

R t = d o m T A ( 0 ( ) ( I = 1 , . . . , n ) } . 

Lemma 1. A is functional if and only if A ' is functional. 

Proof. It is obvious that T a Q T a . . Therefore if A ' is functional then A is func-
tional, too. To prove the converse first we show that if ap^>A.q and a! p^>A.q' 
where a, a'£A, p£TF, q, q'£TG and q^q' then there exist different trees r,r'£TG 

such that p^>Abr and p=>Ab'r' are also satisfied for certain choise of states b, b' 
with {b,b'}^{a,a'}. We shall prove this by induction on p. The basis, pd F0, 
is immediate. Suppose now that p—f(pi, • ••,/>„) where « > 0 , / £ F „ , P l , ...,pn£TF. 
Since ap^>q and a'p=>q' there exist rules / ( a ^ , . . . , anx„)-»aq0, f(a[xt, a'nxn)— 
-*a'q'0€Z w i t h / ^ d o m TA((Jj)Pldom tA(0;) and satisfying q^a^, ..., anp„)^>q and 

q'oiaip!, ...,a'np„)^>q', respectively. We distinguish two cases. 
Firstly assume that for each i€{l , •••,"} if Aj-appears in fr(<jr0) then there 

exists exactly one tree TG with Then also, p^a-.q^. This and 
/?i(idomTA(0() ( i '= l , . . . , « ) yield p^>aq. Similarly, we get p=>a'q' if, for each 
X; occuring in fr (<7Q), there is only one tree in TG which can be derived f rom a[pi. 
This proves our assertion in the first case. 

Secondly assume that there is an integer {1, . . . , n} such that xt appears in fr (q0) 
and there are different trees qt,^^TG with aip^qi and aiPi=>q{, respectively. 
Then, by the induction hypothesis, there exist trees r ^ r ' ^ T Q satisfying both 
pi=>airi and p ^ a ^ . For each index j(J^i) choose rj£T0 in such a way that 
we have p^a^j. This can be done by />y£domTA(aj). Now let r—q0{r1, .... r„), 
r'—<lo(ri> - >ri-i>r'i>ri+i> - >rn)- because r^r^. On the other hand p=>ar 
and p^>ar'. 

Now assume that A' is not functional. Then there exist trees p£TF, q^q'd TG 

and initial states a0, a'0^A0 such that both a0p^>A,q and a'0p^>A,q' are satisfied. 
By the previous considerations it follows that there are different trees r,r'dTG 

with p=>Ab0r and p=>Ab'0r' where each of the states b0 and b'0 denotes either 
a0 or a'0. This means that both (p, r) and (p, r') are in T a , i.e. A is not functional. 

Lemma 2. The decision of functionality of bottom-up tree transducers is re-
ducible to the decision of functionality of regularly restricted top-down ones. 

Proof. Let A be an arbitrary bottom-up transducer and A' the top-down trans-
ducer with regular look-ahead constructed in the previous lemma. We know that 
A is functional if and only if A' is functional. By Theorem 2.6 in [6] we have 
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TA. =TOTb where x is a deterministic bottom-up relabeling, i.e. a transformation 
induced by a special deterministic bottom-up transducer, and B is a top-down 
transducer. Since t is a function A' is functional if and only if B restricted to the 
regular forest T(domrA . ) is functional. Note that dom tA = dom t a . ., As one can 
construct the transducers A' and B in an effective manner this proves Lemma 2. 

Now let us fix an arbitrary regularly restricted top-down tree transducer 
A—(F, T, A, G, A0,1) and a tree automaton B = (F, B, B0) recognizing T. Set 

P = {piT\^q * q'£Ta (p, g), (p, q'KtA}. 

In the next five lemmas we shall present five reduction rules. Each reduction 
rule produces a smaller tree p'£P for a tree p£ T if it can be applied for p. 

Lemma 3. • Let PJ, P2€TF1, pzeTF, n1, n[, n2, n'2^0, q ^ f ^ n ^ q ' ^ f ^ , 
q2€tG";n2, q2€f£„2 , q36 q ^ T ^ , a0, a'0£A0, a , £ A \ a ^ A " ' ( /= 1, 2). Let us denote 
by Ai and A[ the sets i ={«;,_,• 11 =^ = and A'i = {a'i ]\\^j^n'i) {i=l,2) respec-
tively. Assume that each of the following conditions is satisfied: 

(0 Pi{Pi( .P'^T, 

(ii) ^(»ix"1), a 'oPi^q ' i i^ iK 1 ) , 

(iii) a ^ 1 =>• q2(a2xj2), a i p£ *> q'2(a'2x^), 

(iv) a2p"°- q3, a a P a ' ^ q s , 

(V) (P.I)B = (P2(P3))B, A I ¿ 2 , A [ Q A ' 2 , 

(vi) q^t ) ^ ^ ( r ' ) holds for any r a n d x ' ^ j f . 

Then p A P ^ P -

Proof. First note that our assumptions imply the condition py{p2(p3))^P. 
From now on let [n] denote the set of the first n positive integers for every 

0. Thus [0] is the empty set. Let <p: [«,]-•[«,] and q>': —[«2] be mappings 
with a l t i = a2y<f(i) («€[«]]) and a'lti = a'2 ip.U) (/'6[n2]), respectively. Obviously we 
have a1Pg1=>r and a ^ p ^ r ' where i = (q3ill>(1), ..., qs,^), r'={q'z^m,..., q'3><P'ini)). 
By (ii) this implies that a0p1 (p3) =>qt(r) and a'0p1(p.i)^>q'1(r'). On the other hand 
q1(r)^q[(r') by our assumption (vi). Furthermore, pl(a,)6T holds by (v). Hence 
PiiPzKP-

Lemma 4. Let PlifFA,p£TF, n,n'> 0, qxifc,n, q'^fc,n., q 2 € ^ , q 
a0, a'0£A0, a£A", . Let \A\ and denote the cardinality of A and B, re-
spectively and let \\A\\=2^, X = m a x {dp (q)\3a£A,p£TF X ap-+q£Z}. Assume 
that the following conditions are valid: 

0) PliPiKT, 

(ii) a0pj U q i(axj) , a'0p1 ^ q[{a'xj), 
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(iii) ap§ =>q2, a ' p g ' ^ q a , 

(iv) path^ifr) is a prefix of pathx(^i). 

| p a t h x — |pathxOfr)! > [|/4||2\B\K, dp(pj S \\A\\*\B\. 

Then there is a tree r £ T e such that P i{ r )^P and rn ( r )< rn (p 2 ) . 

•Proof. Let R be the forest defined by 

R = {r£TF\Pl(r)eT, rn 00 si rn(p2), 3seTS, s'£Tg a r " ^ s , a V ' . s ' } . 

Since p2£R R is nonvoid. Let r be an element of R with minimal rank. We shall 
. show that Piir^P and dp (r)<\\A\\2B. 

Assume that the condition dp (r)<| |/4| |2i? does not hold. In this case there 
exist ' 

r2£fp>1, r 3 £ T F , m l 5 m[, m2, m2 is 0, s ^ f j ^ , s i € 7 £ m i , 

s3t fG*> 0 = 1,2) 

such that each of the following five conditions is satisfied: 

( 1 ) r = ^ ( R A O S ) ) , ' '2 ^ 

(2) a r i ^ f a x ^ ) , a ' r f ^ s i ( b i x ^ ) , 

(3) b ^ ^ C M ^ ) , b ^ ^ s ^ x ^ ) , 

(4) b 2 r 3 ^ S s 3 , b i r f ' ^ s S , 

(5) (r !)B = (r i(r3))B , A i B2, B[QB'2, where 

Bi = 11 == m,}, = {b'tiJ 11 s j s m;} (i = 1, 2). 

Now let cp: [ m j — [m2], cp': [wiJ^fmj] be mappings satisfying the equalities 
bi , i=h,9{i) 0£[™i])> b ' h i =b ' 2 t y 0 ) (i£[™[])- It is immediate that a r ^ r g ) " ^ 
^ S l i ^ p d ) ; — s *̂ 3,(p(mi)) a n d a ' r ! <p'(i)> ••• j ^.«•'(mi))- This, together with 

0 I O ' 3 ) ) B = O ' ) B yields that i\(r„)£R, which is a contradiction .because 
n i^Crg^-c rnXr ) . x 

Therefore, dp ( / - )<P | | 2 | J5 | . This implies that for every s£T£ and s 
if the derivations ar"^>s and a'r"'^>s' exist then dp (.$•,), dp.(.si) = M| | \B\K, 
thus, by (iv), py{r)<zP. Since r was of minimal rank this ends the proof of Lemma 4. 

Lemma 5. Let p 1 , p 2 , p ^ f F A , p i ^ T p , n i , n ' i , m i ^ 0 0 = 1 , 2 , 3 ) , q ^ f G „ 1 + i , 
>\tfc,mi> %ifna\> f ^ , q 3 € f ^ 3 , q ^ f ^ , , x ^ f ^ , 

<\£Tn
G\ r4er™', a0, a'0(iA0, a£A, a £ A \ b£Am< ( /=1 , 2, 3). Finally, 

let V£Tg and a'=/1(^(13(1:4))). Denote by At, A\ and Bt ( / = 1 , 2 , 3 ) the sets 
of components of a ( ) a,- and b f, respectively. Assume that the following conditions 
are satisfied: -. * • 
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(i) Pi{Pz(Pa(Pi)))iT, 

(ii) a o P i ^ V i O * ! , * ! ^ 1 ) , a'oPl=> ^('iCbiX™1), a^x"/1), 

(iii) a l P ^ q 2 ( a 2 ^ ) , a i p £ ^ qi(a£xj'«), ap2±> axlt blP2
mi ^ r2(b2x™»), 

(iv) a2Pg2 q3(a3xj3), 4 q ^ x " ^ ) , ap32>aXl, b2p3
M* r3(b3x™°), 

(v) a 3 p ^ ^ q 4 , a 3 p ^ 4 q i , ap^v, 

(vi) (P4)B = (Ps(l>i))B.= (P2(P3(P4)))B, 

AxQA2Q A3, AiQAi^ A'3, B^BzQ B3, 

(vii) v ^ v', path1(^1) = pathiC^')-

Then at least one of the trees px{pz(pd), Pi{Ps(.Pd) and Pt(Pi) is in P. 

Proof. First observe that by the assumptions of the lemma it follows that 
Pi(P2(Pz(Pi)))£P-

Let <Pi: [nJ-*-[nt+J, cp[: [ « i M » i + J and i/^: 0 = 1,2) be mapp-
ings such that we have aiyj=ai+lt<PiU) ( /=1, 2, y'G [«,]), a i , j=a i + 1 y i ( J ) (/'=1, 2, 
M«,']), bij=bi+1^iU) ( / = 1 , 2 , 7 6 K 1 ) . Furthermore, let = (p'3= 

Let us introduce the following notations: 

SI — ( 9 3 , 9 , ( 1 ) ; •• 

/ 

S I = C^3,<pic i ) ' •• ^«^(„ijHqi). 

tl = ( > " 3 , ^ ( 1 ) >;••• > r3,ilil(.m1))(j'i)> 

S 2 
= Q2(<?4 ,92(1 ) ' • •*, ^4,Ç>2 ("2)) ' 

t 
S 2 = ^ 2 ( ^ 4 , ^ ( 1 ) » •••» #4 , P'A ("A) )> 

t2 = r 2 ( r 4 , ifra (1) ' • • • , {¡i: (M2))I 

S3" = ( ? 4 , ? a ( l ) > •• •> ?4,ç>8 ( " l ) ) ' 

f 
S3 

t3 = (r4,$i(l)> •• •J 

It is easy to check that each of the following derivations is valid: 10^1(^3(^4))=* 
Si), a'op^paipjj^-qi^itj), sQ, a ^ p ^ p ^ ^ - q ^ v , s2), (4Pi{Pi(PÙ)^ 

^q'iiriik), s0, a ^ i p ^ q ^ v , s3), a 'opM^qi ir^ts l s ' i ) . On the other hand 
Pi(Pa(PÙ)> Pi(Pn(PÙ), Pi(PiK T'-

Assume that Pi(p2(P4))$.P- Then, by (vii), it follows that mlt m2, w3=-0 and 
there is an integer /£[m2] with Without loss of generality we 
may assume that this integer i is in the range of ipx, i.e. there exist / € [ m j satisfying 
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ip i { j )—i . Now suppose that neither /)1(p3(/?4)) nor (p4) is in P. Then rx(tx) = 
='"i( t2)=''i( t3) (= v ) - But this is impossible because t l j ^ t 3 j . 

Note that Lemma 5 remains valid even if A2<^A3
 a n d B 2 ^ B 3 are replaced 

by A'2UB2<gA'z\JB3. 
The proof of the next lemma is similar to the previous one. 

Lemma 6. Let 

^ » A ^ t - S « f a € f c \ , 
a0,a'0eA0, a£An>, a ( / = 1 , 2, 3). Further-

more, let v'£Tc and v—r^o(r3(r4))). Denote by A-„ A[ and Bt ( /=1, 2, 3) the sets 
of components of a i ; a- and b,, respectively. Assume that 

(0 

(ii) a<>Pi^><h (ri (bx x^), ax x^), OQ p t => qi(v', a^xf) , 

(iii) aiP^1 q2(a2x^); a ^ => q ^ x " ^ , bjp™1 r2(b2x™2), 

(iy) a2P3
2 q3(a3x?), a ip£ q i ( a ^ ) , b2P3

 2 r3(b3x™»), 

(v) a3P43 ^ Q4, a3p '̂3 qi, b3p^ 4 r4, 

(vi) (Pd B = (PS(P4))B = (P2(P3(PJ))B, 
AXQA2QA3, AiQA'2QA'3, B1=B2QB3, 

(vii) v t± v', patha (qj = patl^ (qi). 

Then at least one of the trees />1 (p2 (pt)), Pi (p3 (A)), Pi ( AI) is in P. 
Our last lemma is stated as follows: 

Lemma 7. Let p2£TFtl, p3£TF, k, /, m, k', I', m' ^ 0, q-&TGtk^, qi^fG> k .+ 1 , 
^ e f c > 1 + 1 , q'2efG,v+!, r £ t l „ , T'ef£m,, q3ifGil, q'3,v£TG, s t £ T g , 
t ' € 7 £ \ a0,ai€A0, a,a'€A, a£A", a'6A*, b£Al, b ' £ A e , c£Am, c'6Am ' . Let Ax, B1 
and C-i denote the sets of all components of a, b and c, respectively. Similarly, denote 
by A{, B[ and C[ the sets of components of a', b' and c'. Suppose that the following 
conditions are satisfied: 

0) Pi(PiCPa))67; 

(ii) a0p1^> q1(ax1,ax^), a'oPl ^ q[(a'xl, a'xj'), 

(iii) ap2 ^ q2(ax1, bxi), a'Pi q'2{a'xx, b'x'i), 

ap* 4 r(cxl-), a'pg 4 r'Cc'xf): 

(iv) ap3 q3(v), a'p3 q3, bp£ ^ s, b'p£ 4 s', cp™ U t, c'p f t', 

(v) A1QB1UC1, AiQBiUCi, (p3)B = (p2(p3))B, 
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(vi) pathj {q{) = patl^ path (q3), pathj (q2) path (q3) = 

= path (q3) pathi (q'2), v ^ q3. 

Then Pi(p3)eP. 

Proof. Let us introduce the following notations: d=(b, c), d '=(b ' , c'), u=(s , t),. 
u '=(s ' , t ' ) . Choose the mappings <p: |7c]^[/+w] and cp': +m ] in such 
a way that we have a ^ d ^ and a ^ d ^ ^ for every /£[£] and j^[k']. Obviously,. 
a0pi(p3)^>qi(q3(v), .. . , M„№)) and a'<sp1{p3)^>q[(q'3,u<f,.m, ..., u'^^), further--
more, PiiPn)iT. On the other hand pathx ( ^ f e , w„(1), . . . , w„(lt))) = 
= patha (q'Axj, u'v(1), ..., u'^^) and q3^v. Therefore, q1(q3(p), u ^ , ..., u ^ ) ^ 

X ' W •••=<'№'))> showing that p1(p3)€P. 
, We are now able to prove our main result: 

Theorem 8. The functionality of top-down as well as bottom-up tree trans-
ducers is decidable. 

Proof. By Lemma 2 it suffices to prove our statement for regularly restricted 
top-down transducers. Hence take an arbitrary regularly restricted top-down trans-
ducer A—(F, T, A, G, A0,1) with T— T(JS), where B is the tree automaton 
B—(F,B,B0). Define the set P and integers \A\, \B\ and K as previously 
(cf. Lemma 4) and let L denote the number of nonempty strings over [v (G)] with 
length not exceeding \\Af\B\K. Furthermore, let / c=M| | 2 M| 2 | 5 | ( 2L+l ) , . 
I=k+2\}A\\3\A\\B\(\\A\\2\B\K+\) and finally, m=l+2\\A\\3\B\. 

We shall show that P is nonvoid if and only if it contains a tree of depth less-
than m. It is obvious if K= 0. Therefore let K^O and assume that p is an element 
of P with minimal rank. Let q and q' be different images of p under TA. 

Assume to the contrary dp ( p ) ^ m . Then there exist a0 , ai$A0 , 
Po, •••,Pm€fF,1, pm+i£TF, 0 (i=0,...,m), q 

(/ = 1, ...,m), q m + 1 € q a a ¡ £ A " ' ' 0 = 0 , ...,m) such, 
that the following three conditions are satisfied: 

(1) P = Po(Pi(-(Pm+i) •••))>. Pi^Xi 0 = 1, —,m), 
(2) ? = ? 0 ( q i ( - ( q » + 1 ) - ) ) , = q i ( - (q ; + i ) • • • ) ) , 

(3) a0p0 f 0 ( v £ ) , V o ^ ? ; « ^ ) , 

« » ^ ^ • q i + i ^ + i ^ ' " ) , a . r P - i i ^ q , ' + 1 « + 1
x i ; + 1 ) 0 = o, . . . , m—i), 

amPmm
+i ^ lm + 1, ^ % + l• 

Further on we shall often use the following notations. Let i '£{0,..., /w+1},. 
j£{0, ...,m). Then ^ = P o ( / ' i ( - (A) -))>ii = 9o(qi( - (q i) - )), ¥i=q'o(qi(-(q,')•••))• 
similarly, j2,=p,+ 1( . . . (pm + 1) . . . ) q j = q j + i ( - (qm+i) - )) q i = q i + 1 ( - ( q i , + i ) - ) . 
Furthermore, for each ¿=0, ...,m, At and A\ denotes the set of allcomponents-
of a;> and a-, respectively. 

If for any and we have q,(\) ^ qi (v') then, by Lemma 3 and 
the fact that the cardinality of the set {/ , . . . , m} is at least ||/i||2|i?| + l, we get tha t 
for some i, j (l^icj^m) pt(J>j)£P. It is a contradiction. 
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Therefore we may assume that « ,>0 and the existence of an index /,£[«,] 
such that there are trees u'£TGtl, v £Ta with q'=u'(v'), pa th (u ' )=path i l (qt) 
and v'?sql i r Obviously, «¡>0 holds for each /.-</. Now let i: (0 = / < /, 
be those uniquely determined idices for which path f j (qt) is a prefix of path,-, (qt). 
Of course we may assume that i0 = ...=ii — l. 

Suppose now that there is no a'£path (¡7,') such that pathx (q,) is a prefix of 
•a' or conversely. In this case let 

Bl = {aitj | pathj (qt) is a prefix of pathy 
Ci = {ai j | pathj (q,)" is not a prefix of pathy (<7,)} 

for each i (J^i^m). Since the cardinality of the set {/, . . . , m) is exactly 
2 p | | 3 | 5 | + l there exist indices 4 , i2, i3 satisfying the following 
conditions: 

(Pn)B = ( /Ub = (pOb, Bix = BhQBh, Ch g Ci2 i ch, A'h Q A'h c A'h. 

By Lemma 6 this yields that at least one of the trees ph(pi2), Pit (Pi3), PiSPO's ' n 

which is a contradiction. 
We have shown that there exists an a'£ path (q{) such that pathj (q,) is a prefix 

of a ' or conversely. Consequently 0 holds for each i (O^i 'S/) and there exist, 
integers i0, ..., 1) with the property that pathiy (q'j) is a prefix of pathx (q{) or con-
versely ( 7 = 0 , . . . , /). We may also assume that if j \ < j 2 then path,^. (q'jJ is a prefix 
of path^. (qj2), moreover, we may assume that ;u = . . . = / , = 1. In this way either 
pathiC^) is a prefix of path^ (q'j) (j=0,...,l) or conversely. 

Now there are two cases. First suppose that patl^ (q'k) is a prefix of pathx (qt). 
If, within this case, there exists an integer i (0 sisk) such that Upat^ ( ^ j — 
— |pathx (gOUHMlH^I-K then, by Lemma 4, there is a tree TF satisfying both 

Pi ( r )£P and rn (>)<rn (/>;). This is a contradiction because rn ( r ) < r n (/?,) im-
plies rn(p i(/-))<rn(/?). Thus we have ||pathx - |pathx (qi)\\ ^\\Af\B\K for 
every i (O^i^k). But this yields another contradiction. Indeed, the cardinality 
of the set {0, ...,k) is equal to \\A\\2\Af\B\{2L+\) + \, thus, there are" at least 
two indices i, j (0 ̂ i-^j^k) such that — say — pathj (¡7,) is a prefix of pathx (q[), 
pathx{qj) is a prefix of pathx (§;.), pathx foO/pathi (? i )=path 1 (q '^paX^ % ) , 
moreover, (pdv = (Pjhi, alA = ajA, B^Bj, B\ B) where Bs = 
= {a s > ( |2^i^w s}, B's = {a'st\2^t^n's} (s~i, j). By an application of Lemma 7 
this results that Pi(pj)£P — contrary to the minimality of p. 

We have shown that pathx (qk) can not be a prefix of pathx (qt). Therefore 
pathj (c/i) is a prefix of pathj (qk). If we prove that Ipathj (<7;)j — |path r (i^)) > 
>M||2 | j5 | is : then also | pathi (q'k)[-1pathx ( q k ) H M li21 ̂  I Again by Lemma 4, 
this yields a contradiction. Therefore it is enough to show that Ipa th j^ , ) ! — 
- i p a t M ^ H M I N * ! * . 

Assume that this condition does not hold. The cardinality of the set {&+1, . . . , /} 
•is exactly. 21| 1 | 3 1 | J B| . (pf |5 |A"+1) , therefore, there exist indices ^ ( k ^ i ^ i ^ l ) 
such that ¿ 2 - / i=2 |M | | 3 M! |£ j and path t = =pathx i.e. qh+lfl = ... 
— = 9 H , I = X I - N O W l e t 

J? ;={a;. f | l S f ^ w J ^ p a t h ! (§,-,) is a prefix of path, (#.)}, 
ci~{a'j,t \i=t = n'j, pathx (qk) is not a prefix of path, (q'j)} 

for each Since the cardinality of {4, . . . , j2} is equal to 2 | | , 4 | | 3 | 5 | + 1 
there exist indices j\, j2, j3 (h —Ah<h—h) such that each of the following 
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conditions is satisfied: (PJi)B=(PJ2)B=(P;3)B. Ah<^AhQAh, Bh=BhQBh, Ch% 
ah.i=ah,i=ah.i> where Ait = {ai„s\2-s-nt}- T h u s > applying 

Lemma 5, we get t h a f o n e of the trees pJl(pj2), Pj2(pj3), Ph(Pj3) is in P, contradicting 
to the minimality of p. This ends the proof of Theorem 8. 

Observe that, by the decomposition result for top-down tree transducers with 
regular look-ahead in [6], the above theorem holds for this type of transducers 
as well. But Theorem 8 has some other important consequences, too. 

Take two arbitrary top-down or bottom-up tree transducers A = ( F , A, G, A0,1) 
and B=(F, B, G, B0,1'). Assume that A is functional and A and B are disjoint. 
Then construct the sum of A and B, i.e. take C=(F, AUB, G, A0UB0, ZUS'). 
For C we have the following equivalence: t a = Tb if and only if dom t A = dom t b 
and C is functional. From this and by the fact that the equality of regular forests 
is decidable we get: 

Theorem 9. There exists an algorithm to decide for an arbitrary tree trans-
ducer A and a functional transducer B whether they are equivalent, i.e. such that 
t a = Tb. 

COROLLARY. A similar argument shows that Theorem 9 holds even if T a = T b 
is replaced by Ta Q Tb . On the other hand every deterministic transducer is func-
tional. Thus, the equivalence problem for deterministic transducers is decidable. 

Another consequence of Theorem 8 concerns with minimization of transducers. 
For any given tree transducer A one can compute a bound k with the following 
property: A has a corresponding tree transducer B which is minimal and satisfies 
that each tree in the right hand side of a rule of B has depth not exceeding k. This 
k can be obtained as 2JRT||.4|| in the top-down case and as 2K\A\ in the bottom-up 
case. (Here \A\, \\A\\ and AT are determined as in the proof of Theorem 8.) Therefore, 
if we assume that A is functional and we want to minimize A, it is enough to check 
only for a finite number of transducers whether they are equivalent to A or not. 
This proves 

Theorem 10. The minimization of" functional tree transducers is effectively 
solvable. 

/ 

COROLLARY. A S every deterministic tree transducer is functional the same state-
ment holds for deterministic transducers. 

This corol|ary as well as the positive decidability result concerning the equiv-
alence problem for deterministic bottom-up transducers and a restricted class of 
deterministic top-down transducers was independently achieved by Z . ZACHAR 
in [12] too. 

3. Minimization of deterministic transducers 

Let J f be a class of tree transducers. A transducer is said to be minimal 
in J f if there is no transducer B£ ¿ f which is equivalent to A and has fewer states 
than A. In the preceding section we have shown that if j f is the class of all func-
tional top-down or all bottom-up transducers, or if J f is the class of all deterministic 
top-down or all bottom-up transducers, then, for every given A € J f , one can effec-
tively find a minimal equivalent transducer B £ j f . However, these minimal realiza-
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tions are not uniquely determined. In this section we investigate conditions assuring 
the uniqueness (up to isomorphism) of minimal realizations. Similar results are 
already known for Mealy-type automata (cf. [9]) and tree automata [1, 3, 10]. We 
point out that the minimizing process of Mealy-type automata can be generalized 
in a natural way for certain classes of deterministic tree transducers. For the sake 
of simplicity we shall consider completely defined deterministic tree transducers 
only. Therefore, from now on, by a tree transducer we shall always mean a com-
pletely defined deterministic transducer. Furthermore, all transducers will be taken 
with a fixed input type F and output type G. Since the case F=F0 is trivial we 
assume that F ^ F 0 . 

First we treat top-down transducers. Let A=(F, A, G, {a0}> E) be a top-down 
transducer. It is completely defined, i.e. for any ad A and f<iF there is a rule in E 
with left side af. Let B—(F)B,G, {60}, I') be another top-down transducer and 
take a mapping (p: A -+B. If the following two conditions are satisfied for arbitrary 
n, fflSO, f£F„,p£TGtm, a, al, . . . , am£A and ily ..., im£[n] then <p is called a homo-
morphism of A into B: 

(i) if af-*p(axxh, ...,amxim)eZ then bf^p(b1xil,...,bmxij£E' where 
b = <p(d),bj = <p(aj) (Mm]), 

(ii) (p(a„)=b0. 
If, moreover, <p is surjective then В is a homomorphic image of A. If cp is bijective 
then we speak about isomorphism, written As=B. If ВЯА and (p is the natural 
embedding of В into A then В is a subtransducer of A. If .A has not proper sub-
transducers then it is called connected. 

The next statement is obvious: 

Statement 11. If there is a homomorphism from A into В then т А = т в . 

As in case of universal algebras there is a bijective correspondence between 
homomorphic images and congruence relations. Let A=(F, A, G, {a„}, I ) be an 
arbitrary top-down transducer and take an equivalence relation в on A. It is called 
a congruence relation if for any two _rules af-*p(a1xil, ,.., amxim), bf-~ 
^д(Ьгхн, ..., b^XE (n, m, 1^0, fCF„,pefa_m, qefGJ, /x, ...,im, j\, ,jt€[n], 
als ..., am, ¿ j , ..., bu a, b£A) a9b implies m=l,p=q,Jt=jt and at6b, (t= 1, ..., m). 
Here for any nonnegative integer n the notation TGt„ is used to denote the set 
fG,„={peTGJii(p)=x1...x„}. 

Assume that в is a congruence relation of A. Then we can define the quotient 
of A induced by в. This is the top-down transducer A/e=(F,A/e, G, {в(а0)},Г) 
where for every n, m^O, f£Fn,p<=TG<m, a, ..., am£A ' 

e(d)f^p(e(a1)xil,...,9(am)xim)er 
if and only if 

af^v{<*ixh,..., amxim)£l. 

Statement 12. А/в is a homomorphic image of A. If В is a homomorphic image 
of A then there is a congruence relation в of A such that A / 0 s B . 

Take again the top-down tree transducer A = ( F , A, G, {a0}, Z). Let us define 
an equivalence relation 6A on А: авАЬ if and only if тА(о)=тА(Ь) . Unfortunately, 
this will not always be a congruence relation. We need certain additional require-
ments on A. 
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Let Q be any mapping of the set of nonnegative integers into itself, i.e. Q: CO-*CO. 
Then let .5T (Q) denote the class of all top-down tree transducers A = (F, A, G, {a0}, Z) 
which satisfy the condition |path^ (/>) I = (?((/) f ° r every n, m^0, f£Fn, p£ TG m, 
¿t, cii, ..., am£A, x . . . , Xfm(iXn, je[m] and af+p(ax X;)£Z, as well 
as the condition | rA ( a )(7V)|>l for arbitrary state a appearing in the right side 
of a rule in Z. 

Statement 13. If A£ J f (q) then 0A is a congruence relation. 

Proof. Let A = (F, A, G, {<z0}, Z) and assume that af^p(a1xh, ..., amxin) 
and bf^q{btxh, ...,b,x}) are rules in Z where a,b£A, a6Ab, n, m, / s 0 , f£F„, 
pefG>m, q£TGyl, ax, ...,am,bx, ...,bt£A, ilt ...,im, j\, . . . , 7,€[n]. Assume that 
there is an integer t£[m] such that none of the strings in U (paths (q)\i,=js, .?£[/]) 
is a prefix of path, (p) or conversely. Then, by |TA(0t)(rp)| =-1, it is easy to show 
the existence of a tree r£TF with tA(a)(r)^rA(b)(r). On the other hand if i, =js 
holds for some t£[m] and i€[/] then the equality |path, (/?){= [paths (q)\ is also 
valid. This proves that m=l, i,=jt, path,(/>) = p a t h , ( q ) ( i = l , ...,m). But 
IA ( O )=TB № ) , hence from this we get p=q, at6Ab, 0 = 1 , ...,m). 

Another class of top-down transducers in which 6A is always a congruence 
relation is the class where d denotes an arbitrary nonnegative integer. A top-
down transducer A = (F, A, G, {a0}, Z) is in ,JTd if and only if for every a£A, f£F0 
and p(zTG if af^-p(LZ then dp (p)=d, moreover, as in case of J f (g), 
lTA(a)(7V)|=-l is satisfied for each a£A appearing in the right side of a rule in Z. 

Statement 14. If then dA is a congruence relation. 

Proof. The proof of this statement is similar to that of Statement 13. Only use 
the conditions defining X d to establish the bijective correspondence between the 
sets U (path, (p) \ t£[m]) and U (paths (?) |j€[/]) for the rules af^p{axxh, .... amxim) 
and bf-—q(b1xJl, 

Note that for A£.yT(g) or the definition of 6A can be reformulated 
as follows. Let a, b£A. Then aOAb if and only if for every n, mgO, p£TFt„, qf_TG m 
and ... , im£[n] the following equivalence holds: 

3fli, •••> am£A ap qfax^ ..., amxim) 
if and only if 

3bj_, ..., bm€A bp ^ qib^, ..., bmx,J. 
This is an easy consequence of statements 13, 14. Observe that this new definition 
of 0A makes 6A a congruence relation without requiring A o r A£.J/fd. 

A transducer A o r A£3fd is called reduced if 6A is the equality relation. 
As both and are closed under homomorphic images the transducer A/0A 
is reduced for any A£Jf(g) or A£3fd. The following statement is the basic step 
to show that minimal transducers in and are exactly the connected and 
reduced transducers. 

Theorem 15. Let A, B£jf(g) be connected top-down transducers. Then A 
and B are equivalent if and only if A / 0 a ^ B / 0 b . The same holds for X d . 

Proof. Sufficiency follows by statements 11—14. In order to prove necessity 
first observe that if A = ( F , A, G, {a0}, Z) and B = ( F , B, G, {b0}, Z'), moreover, 
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a<>P=>•••, amxO ~ w h e r e P^tf,„, " = 0, q£TG<m, m^O, ax,...,am^At 
h, ..., imi[n] — then there exist states blt ..., bm£E with bop^nqfax^, ...,bmxQ. 
Furthermore, for these states bt (i— 1, . . . , m) we have TA(ai)=^B(6j)' This is a con-
sequence of the assumption T a =T b and the definitions of and Using 
the above mentioned facts it is easy to prove that the correspondence cp: A/6a— 
-~B/6b defined by <p(BA(a)) = dB(b) if and only if there exist p ^ f F i l , q£.TG,m+i 
(m^O), a1, ...,am£A, b1,...,bm£B such that a0p^>-Aq(ax1,a1x1,...,amx1) and 
bQp=>Bq(bxl, ¿ jx x , ..., bmxx) forms an isomorphism of A/0A into B/0B. 

. The next theorem is an immediate consequence of Theorem 15 and the fact 
that J f (¿0 and are closed under the formation of subtransducers and homo-
morphic images.- . 

Theorem 16. A transducer is minimal in JiT(g) if and only if it is connected 
and reduced. If both A and B are minimal in J f ( g ) and they are equivalent then 
AsiB, i.e. the minimal realization of a transducer in is unique up to iso-
morphism. The same holds for the class j f d . 

Of course Theorem 16 holds for every class J ^ ^ z J o r Crif & provided 
J f is closed under the formation of subtransducers and homomorphic. images. 
The most important example for a class of this type is the class of all top-down 
relabelings (cf. [5]). 

It is natural to raise the question whether the minimal transducers in 
or are minimal in the class of all top-down transducers. The following examples 
prove that the answer is negative in general. In these examples the adjectives 
"linear", "nondeleting" are used in the sense of [5]. Furthermore, a top-down 
tree transducer A=(F , A, G, {a0}, Z) will be called uniform if each rule a f ^ p 
(a&A, /£F„ («^0) , pd.TGyAxXJ can be written as af-~q(axxY, ..., a„xn) for a tree 
q£TGi„ and states at, ...,anCA. 

Example 17. This example shows that'there is a linear nondeleting top-down 
tree transducer A £ j f 1 i ) J i r ( g ) which is connected and reduced — i.e. minimal in 
both J f 1 and J f ( g ) — but which is not minimal in the class of all linear nondeleting 
top-down tree transducers. Here Q: to—oj is the mapping defined by g(n) = 1 
(nssO). Indeed, let A — (F, [5], F, [1], Z) where F is the type determined by the 
conditions F0 = {# }, F a = {/, g}, F„ = 0 if « > 1 and Z consists of the rules (1)—(5) 
listed below: 

(1) i * - / ( # ) , , i/(*i) - f a x , ) , \g(Xl) ^ gOxj, 

(2) 2 # - / ( # ) , 2f(Xl) - / ( 4 * 0 , 2g(*1) - / ( 4 x 0 , 

(3) 3 # — g ( # ) , 3/(xa) - g(4x1), 3g(Xl) - g(4x1), 

(4) 4 # - / ( # ) , 4 / ( x 1 ) - / ( 5 x 0 , 4g(x1) - g(5Xl), 

• (5) 5 * ^ / ( 1 ) , 5/(xJ - / ( ] * , ) , Sgfe ) - g O ^ ) . 

However, A is equivalent to A '=(F , [4], F, [1], Z') where Z' contains the 
following rules. (1)—(4): 

(1) ! # - / ( # ) , l / ( x j - / ( / (2X, ) ) , lg(xj) - g(g(2x1)), 
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(2) 2 = * - # , 2 / ( x 1 ) - 3 x 1 , 2g(x1) — 3x l 5 

(3) 3 # - / ( # ) , 3/(xx) - / ( 4 x 0 , 3g(Xl) - g(4x0, 

(4) 4 # - / ( # ) , 4f(Xl) - / ( l x j , 4 g ( x 1 ) g O x J . 

Example 18. This example proves that there is a top-down tree transducer 
A£ which is minimal in J f 0 but not minimal in the class of all top-down 
transducers. 

Let us define the types F and G by F 0 = { # } , F1={f), F„=0 if « > 1 and 
G o = { # > # i , ' # 2 } , Gi = { f ) , G2 = {g}, G„=9 («>2), respectively. Then put 
A=(F , [4], G, [1], I ) where Z consists of the following rules: 

(1) l = * - # , l / ( x 1 ) - g ( 2 x 1 , 3 x 1 ) , 

(2) . 2 # - # 1 , 2/(x1) - / ( 4 x 0 , 

(3) 3 # - # 2 , 3 / (xJ - / ( 4 x 0 , 

(4) 4 # — # , 4/(x t) - / ( 4 x 0 -

It is easy to check that A is minimal in J f 0 . On the other hand A is equivalent to-
A '=(F , [3], G, [1], Z') with Z' containing the following rules: 

(1) l / ( x 0 - 2 x 1 , . 
(2) 2 # — g ( # i , #2), 2/(x0 - g(/(3xO,/(3xO), 
(3) 3 # — # , ' 3 / ( x 0 - / ( 3 x 0 -

Observe that A was not uniform. 
In spite of Example 18 we have 

Theorem 19. If a uniform transducer is minimal in J f 0 then it is minimal in 
the class of all top-down tree transducers. 

Proof. Let A = ( F , A, G, {o0}, 0 be uniform and minimal in J f 0 . Assume 
that the top-down tree transducer B = ( F , B, G, {Z>0}, Z') is equivalent to A and 
has fewer states than A, i.e. | f i |< |yl | . 

Take an arbitrary state a£A. We shall correspond to this state a state <p(a)£B 
as follows. First let us choose the trees p£TFil and q£TGn («>0) in such a way 
that we have a9p^>Aq(a"xj). If a=a0 choose p = q=Xl. This can be done since 
A is connected. Let r£TG>m (raS0) and bu ...,bm£B be determined by 
b0p=>Br(blXl, ...,bmXl). As ! t A ( c ) ( 7 » | > l is satisfied for each c£A occuring in 
the right side of a rule in Z we must have m > 0 . Or even, there must be an index 
jfc[m] for each [n] with the property that either path,-. (r~) is a prefix of path( (q) 
or conversely. But, by the definition of it is impossible that path; (q) is a proper 
prefix of pathj (r). Therefore j) is uniquely determined for each [«] and path^ (r) 
is a prefix of path; (q). As A and B are equivalent this implies that there exist trees 
r j , ..., rm£TG>1 with r(rlt ..., rm) = q. Let <p(a) = b± and ra=rJl. We must have 
'•a(TA(a)(0)=TB(?(fl))(0 for each t£TF, i.e. ra(tA(o)) = t B ( 9 W ) . ' 

As |5 |< |y i | there exist states o , w i t h cpia^ — cp^) . Consequently, 
roi(TA{oi)) = roi(rA{a2))- But, again by the definition of this is possible only if 
ra=ra„ and TA(FLL") = TA(FL2) yielding a contradiction. 
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We will now turn our attention to the bottom-up case. A deterministic bottom-
pu tree transducer A = ( F , A, G, A0,1) is called completely defined if there is 
a rule in I with left hand side f{alxl, ..., anx„) for every иёО, / £F„ and 
al, ...,a„£A. First of all we have to define homomorphisms, congruence rela-
tions etc. 

Let A = ( F , A, G, A0,1) and В = ( F , В, G, B0, Г ) be bottom-up transducers. 
By a homomorphism of A into В we mean a mapping <p: A —B which satisfies the 
following two conditions: 

(i) / ( M i b„x„) - bp£Z' if / ( a i * i , . . . , anxn) - ap^I, bt = <p(af) 

(i = 1, ..., n), b = (p(a) (n S 0, f£Fn, alt ..., an, a£A, p£TG.„), 

(ii) <)o(A0)QB0, cp-i(B0)QA0. 

Again, if <p is surjective then В is a homomorphic image of A and bijective homo-
morphisms are called isomorphisms. If BQ A and <p is the natural, embedding of 
В into A then В is a substransducer of A. 

We now define congruence relations. A congruence relation of A is an equivalence 
relation 0 on A with the following property: for any и^О, / £F„ , ah b£A 
•0'=1 и), a, b£A and p,q$.TG>n if both / f o x i , . . . , a„x„)—ap and 
f(b1x1, ..., bnxn)^bq are in I and а^вЬ, ( /=1, ...,n) are satisfied then p=q 
and adb hold too. Furthermore, A0 is required to be equal to the union of certain 
blocks of the partition induced by в: A0= и(0(а) |а£Л о) . The quotient transducer 
•determined by в is the transducer A¡6=(F, А/в, G, AJ9,1') where 

Г = {/(вы*!, ..., в(ап)х„) - 6(a)p\f(a1x1,..., a„x„) - ap£l}. 

With the above definitions in mind one can easily prove the analogues of 
statements 11 and 12. 

For a bottom-up transducer A = ( F , A, G, A0,1) the relation вА is defined 
as follows. Let a, b£A. Then a6Ab if and only if the equivalence 3a0£A0 

Р (ai a„xn)=>a0q*>3b0€A0 р{аххх, ..., a ^ x ^ , 
bxt, a i + 1 x i + 1 , ...,anxn)^>-b0q^ holds for j i l l 0, г£[и], alt ..., a f _ ъ ai+1, ...,aneA, 
P£TFi„ (or equivalently pefFt„ or pefF>„) and q£TUn. 

Likewise in the top-down case, 0A will not always be a congruence relation, 
but it will be a congruence relation if we require A to be in X~(Q) for a mapping 
Q of the set of nonnegative integers into itself. A bottom-up transducer 
A = ( F , A, G, A0,1) belongs to 3f(g) provided it satisfies the following three con-
ditions: 

(i) if /0*1*1, . . . , anxn)-~ap£E («>0, / £F„ , a, alt ..., an£A, p£TC n) then 
M — h o l d s for each г £ [и] and u'£pathj (/>), 

(ii) A is nondeleting, i.e. for all 0, / £F„ , a, ax, ..., a„£A and />£ TGn if 
/ ( f l i ^ i , . . . , a„xn) —ap£Z then each of the variables jcl5 ...,x„ occurs in f r (p), 

(iii) for any a£A there exist PefFi„+1, q£TGn+1 (n^0), a0£A0, ax, ..., a„£A 
such that p(axlt alx2, ..., a„x„+1)=>a0q. 

Statement 20. If A€Jf (g) then 0A is a congruence relation. 
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Proof. Let A = ( F , A, G, A0, Z), a, b£A. Assume that adAb and let 

f i f l ^ , ..., a^x,-!, axh al+1xl+1, ..., a„x„) - cp, 
/ ( a ^ , ..., a^Xi-i, bxt, at+1xi+1,..., a„x„) - dq 

be arbitrary rules in Z. Here « > 0 , /€[«], f£F„,a1, ..., ai+1, ..., an, c, d£A, 
p, qdTGn. We have to show that p=q and cdAd. 

As'A^^ie), there exist m^O, c1 ; . . . , cm£A, a0eA0 r^TF>m+1 and s£ r G _ m + 1 
such that 

r(cxx, ctx2, ..., cmxm+1) => a0s. 
Let r1=r(/(x1, ...,xn), x n + 1 , ..., x„+m), si=s(p, xn+i, ...,xn+J. Of course we have 

R1(a1x1, ..., ai_1Xj-1, axi, ai+1xi+1, ..., anxn, c1xn+1, ..., cmxn+m) => CIQSX. 

Since a9Ab, this implies 
r1(a1x1, ..., al_1xi^1, bxh ai+1xi+1, ..., anxn, c1x„+l! ..., cmxn+m) => b0sx 

for a state b0£A0. But this is possible only if is of form = xn+1, ..., xn+m) 
where t£TGim+1 and r(dxlt cxx2, ..., cmxm+1)^>b0t. 

We know that s(p, xn+1, ..., xn+m) = t(q, xn+1, ..., xn+m). By (i) and (ii) in 
the definition of Jf(<?) this results that s=t and p=q. Essentially the same argu-
ment shows that cOAd. 

Observe that for a bottom-up transducer A = ( F , A, G, A0, Z)£Jf(g) the 
relation 0A can be redefined as follows. Let a, b£A. Then aOAb if and only if the 
following, two equivalences are satisfied for arbitrary p£TFt„, q£TG „ (w^O), 
a1 ; ..., aj-i, a i + i , ..., an£A and *€[«]: 

(i) 3a0^Ap(a1x1, ..., a^x^i, axtai+1xi+1,..., a„x„) ^ a0q 

if and only if 
Bbo^Apia^!, ..., ai-1xi-1, bxt, al+1xi+1, ..., a„x„) b0q, 

(ii) for a0 and b0 of (i) it holds that a0£A0 if and only if b0£A0. 
A transducer A£jT(g) is called reduced if 6A is the equality relation on A. 

A/0A is always reduced. 
In contrast with the top-down case there are nonisomorphic but equivalent 

minimal transducers in Jf(g). However, if a bottom-up transducer is minimal in 
•5f(<?) then it is both reduced and connected (i.e. it has not proper subtransducers). 
The converse is not true in general. 

According to the above discussion we need some further restrictions to guaran-
tee the uniqueness of minimal realizations. For this purpose we introduce the sub-
class X'(q) of Jf(g). A bottom-up transducer A = ( F , A, G, A0, Z)£Jf(g) belongs 
to Jf'(g) if and only if it satisfies the condition: 

if f(a1Xi,...,anxr)+ap£Z where w>0, f£F„, al3 ...,an, a£A and p€Tc „ 
then p£TGi„ and none of the operational symbols in G0 occurs in p. 
Now we are able to state an analogue of Theorem 15 for bottom-up transducers. 

Theorem 21. Let A, B dJf'(g) be connected. Then they are equivalent if and 
only if A / 0 a ^ B / 0 b . 

2 Acta Cybernetica V/l 
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Proof. The sufficiency follows in the same way as in Theorem 14. In order to 
prove the necessity of our statement, first observe that if A = ( F , A, G, A0,Z) and 
B = (F, B, G, B0, Z'), moreover, xMa)(p) = q where p£TF, q£TG and a£A, then 
there is a state b£B with TB№) (/>) = #• In fact, if a£A, b£B ( i = l , . . . , « , « > 0 ) 
are such that dom TA(f l i )fldom TB ( b i )^0 ( / = 1, . . . , n) and p i f l ^ , ..., a„xn)=>Aaq 
where p£TFi„, q£TG n and a£A then there is a state b£B satisfying 
pfaXi, ..., bnxn)=*Bbq. The same assertions holds if we change the role of A and 
B. By these observations it is easy to verify that the correspondence q> defined by 
(p(9a(a))=9B(b) if and only if dom tA ( a ) f l dom T b w ^ 0 is an isomorphism of 
A/OA into b¡EB . 

Theorem 22. A bottom-up transducer is minimal in J f ' ( g ) if and only if it 
is both reduced and connected. The minimal realization of a bottom-up trans-
ducer in y f \ g ) is unique up to isomorphism. 

Proof. Immediate by Theorem 21. 
Observe that Theorem 22 holds for every class J f Q j f ' ( g ) provided it is 

closed under the formation of subtransducers and homomorphic images. An example 
of a class of this sort is the class of all bottom-up relabelings satisfying condition 
(iii) in the definition of Jf(i>). A tree transducer A = (F, A, G, A0, Z) is called 
a bottom-up relabeling if each rule in Z is of form 

f i a ^ , ...,anxn) - a g O i , ..., x„) . 

where «SO, f£Fn,g£Gn, ax, ...,a„, a£A. 
The following example shows that there is a transducer which is minimal in 

jf'(<?) but which is not minimal in the class of all bottom-up transducers. Let 
F 0 = { # } , F, = { / g} and F ( = 0 if 1. Take the bottom-up transducer 
A = (JF, [5], F, [1], I ) where Z consists of the following rules: 

(1) # - 1 # , 

(2) f(\Xl) - 2f(xJ, g(lXl)~3g(xJ, 

(3) f{2xs) - 4f(Xl), g(2Xl) - 4/(x1), 

(4) / ( 3 x 0 - 4g(x1), g ( 3 x 1 ) - 4 g ( x 1 ) , 

(5) / (4x j ) -*• 5f(xj), g(4xx) - 4g(x1), 

(6) / ( 5 x 0 - l f ( X l ) , g(5Xl) - lg(xO-

It is easy to see that A is minimal in X~'(Q) where Q is a constant mapping: £>(«) = ! 
for all « ^ 0 . On the other hand rA can be induced by a four state transducer 
B = ( F , [4], F, [1], Z') where Z' consists of the rules (1)—(5) listed below: 

(1) * 

(2) / ( 1 x 0 - 2 / ( / (x0) , g ( l x 1 ) - 2 g ( g ( x 1 ) ) , 

(3) f(2Xl) — 3xj , g(2Xi) — 3xj, 

(4). / (3x0 . - 4 f i x , ) , g(3xj) - 4g(xj), 

(5) / ( 4 x 0 - 1 / ( 4 g(4xj - lg(*D-
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In spite of the preceding example the following theorem is valid. 

Theorem 23. Let A = ( F , A, G, A0, Z) be minimal in Jf'(e). Assume that 
A = A 0 . Then A is minimal in the class of all bottom-up transducers. 

Proof. Let us correspond to each a£A a tree /?a6dom rA ( a ) . This can be done 
because A is connected. Assume that B = ( F , B, G,B0,Z') is equivalent to A and 
has fewer states than A, i.e. Of course B=B9. Define the mapping 
(p: A-+B by (p(a)=b if and only if />a£dom TB(íj). Since \B\<\A\ there are distinct 
states ax, a2£Ajvith (p (a^ = (p (a2). Denote this state <p (a,) by b. As A is reduced, 
there exist p£TF<n, q^q^TGn (n>0) and z0e[«], as well as states c1 ; . . . , c i o _ l t 
cb+i> •••' cn> d2£A such that 

p(c1x1, ..., Cja_jxit)_x, ci1xio, Cj0+1xi0+1, ..., cnxn) =>Ad1ql, 

P(c lxl> •••> cio-lxio-l> a-Xio ' c /o + l ^ i o + l> • • • ' cnxn) d-2 • 

Of course q1,q2£TGin. 
As A£JÍ"(Q) we may assume that p = f(xx, ..., xn) for an operational symbol 

f£F„. It can be seen, by q1^q2 and A t J f ' ( o ) , that and q2 are of form q1 = 
= q0(r1, . . . , r j and q2 = q0(ri, ..., r'm), respectively, where q^fG,m (w>0) , 
rj,r'j£TGin, furthermore, there is at least one index j0£[m] such that rh^r'ja, rJo, 
r'h $ Xn. More exactly, we may choose q0 in such a way that rj(l=g1 (sj) and /-y0=g2(s2) 
hold for some vectors sJ; s2 and different operational symbols gly g2£G. This implies 
that 

TA(/(PC . •••» Vcin_t, pai, P%+v..., P j ) S- T A ( f ( p c i , ..., p ^ , pa2, P%+1, ..., p j ) . 

Now let bi = <p(c;) (7=1, . . . , « , ir^io). There is a state e£B and a tree q£TG>n 
with f(blXl, ..., 2\0_iX i0_i, bxh, bk+1xio+l, ..., bnxn)^eq£Z'. Since A and B are 
equivalent we have rA(pc) = tB(pbi) ( / = 1 , . . . , « , i^i0), Ta (/>„,) = rB (/>„,) ( /=1 ,2) , 
q^AÍPd), •••> T A O C , W ) , ^AÍPa), T A (Pc k + 1), •• ^x(Pcn)) = q(^a(Pcl), • • • , ^(Pc^J* 
TB(Püi), XB(PCÍ0+1), - , *BOC„)) 0 = 1, 2). 

•-,Pc„))- Thus HÍPJ^TBÍPJ and path,„ (<7)^0. Even more, by rJo^r'Jo, 
there is a string w£path ;o (q) which is a prefix of pathJo (q0). Now there are two cases. 

First suppose that pathJo (^0) is a prefix of path/o (q,) and let pt= 
=f(pCl, •••>Pciíí-1>Pat,Pcilí+1, 0 = 1,2). Then ^ A ( P i ) = u ( r A ( p a i ) ) and 
*B(/>I) = "'(TB(/7<JI)) where u, fF1 satisfy path (w) = pathio Oft) and path (u') = w, 
respectively. As w is a proper prefix of path,0 (q,) and T A ( p a i ) = x B ( p a i ) this results 
that T A ( p 1 ) ^ r i t ( p 1 ) , contrary to our assumption T A = T b . A similar argument 
yields a contradiction if pathJ0 (qa) is assumed to be a prefix of path;0 (q2). 

Thus none of the strings path io (<?,) and path,-0 (q2) is a postfix of pathJ0 (qd). 
This implies^ that TA(p1) = u(v), TA(p2) = u'(v), xB(pj) = u(v) and TB(/?2) = w/(t)') 
where u, u'd Tf l , v, u'£ TG satisfy the conditions path (u) = path (u')=w and v^v'. 
Indeed, v=zB(pai), and v'=x¿(p„2). It is again a contradiction. 
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On isomorphic representations of commutative automata 
with respect to «¡-products 

B y B . IMREH 

The purpose of this paper is to study the «¡-products (see [1]) from the point 
of view of isomorphic completeness for the class of all commutative automata. 
Namely, we give necessary and sufficient conditions for a system of automata to 
be isomorphically complete for the class of all commutative automata with respect 
to the «¡-products; It will turn out that if 1 then such isomorphically complete 
systems coincide with each other with respect to different «¡-products. Furthermore 
they coincide with isomorphically complete systems of automata. 

By an automaton we mean a finite automaton A = (X, A, <S) without output. 
Moreover isomorphism and subautomaton will mean ^-isomorphism and ,4-sub-
automaton. 

Take an automaton A = (X, A, S) and let us denote by X* the free monoid-
generated by X. The elements pdX* are called input words of A. The transition 
function (5 can be extended to AxX*^A in a natural way: for any p=p'x 
(p'dX*, xdX) and ad A 5(a, p) = §(5(a, p'), x). Further on we shall use the more 
convenient notation apA for 5(a,p) and A' pA for the set {apA: ad. A'} where A'cA 
and p£X*. If there is no danger of confusion, then we omit the index A in apA 
and A'pA. Define a binary relation a on X* in the following manner: for two input 
words p, qdX*, p = q (a) if and only if ap = aq for all ad A. The quotient semigroup 
X* la is called the characteristic semigroup of A, and it will be denoted by S(A). 
We use the notation [/?] for the element of S(A) containing pdX*. 

An automaton A = (X, A, 5) is commutative if ax1x2=ax2x1 for any ad A 
and X l , x 2 dX. Denote by 5\ the class of all commutative automata. 

Take an automaton A=(X, A, d) and let co be an equivalence relation of the 
set A. It is said that © is a congruence relation of A if a = b(co) implies ax = bx(co) 
for all a,bdA and xdX. The partition induced by the congruence relation co is 
called compatible partition of A. 

Let A = (X, A, 5) be an automaton. Define the relation C of A in the following 
way: a = b(C) if and only if there exist p,qdX* such that ap = b and bq—a. 
It is clear that C is a congruence relation of A if the automaton A is commutative. 
In the following we use the notation C(a) for the block of the partition induced 
by C which contains a. On the set A/C={C(a): ad A} we define a partial ordering 
in the following way: for any a,bdA, C(a)sC(b) if there exists pdX* such that 
ap = b. If C(a)SC(6) and C(a)^C(b) then we write C(a)<C(i>). 
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The automaton A = (A', A, 8) is called a permutation automaton if for any 
a,bd.A and pdX*, ap—bp implies a—b. The automaton A is connected if for 
any a,b£A there exist p,q£X* such that ap=bq. 

Let A , = ( X t , A,, 3,) (t— 1, . . . ,« ) be a system of automata. Moreover, let X 
be a finite nonvoid set and (p a mapping of AxX...XAnxX into X1X-..XXn such 
that (p(a1; ...,an, x)=(cpl(al, ...,an, x), ..., (pn(ai, *)), and each <pj (1 ^j^n) 
is independent of states having indices greater than or equal to j+i, where i is 
a fixed nonnegative integer. We say that the automaton A—(X, A, 3) with 
A=A1X...XAn and ¿((a l s . . . ,«„), x)=(51(a1 , ( p ^ , ...,an, x)), ...,3n(an, cp„(au 
...,a„,x))) is the a rproduct of A, ( / = 1 , ...,ri) with respect to X and (p. For this 

n 
product we use the notation JJ At(X, (p) and A^ X A2 (X, (p) for n=2. Moreover, 

(=i 
if in a r product A, A t = B for all t (t—l,...,n), then A is called an arpower of 
B and we use the notation A = B " (X, cp). 

Let SB be an arbitrary class of automata. Further on let E be a system of auto-
mata. I is called isomorphically complete for S with respect to the a r produc t if 
any automaton from S can be embedded isomorphically into an a r produc t of 
automata from I . If © is the class of all automata and I is isomorphically complete 
for 23, then it is said that I is isomorphically complete. 

Let us denote by E 2=({x, y}, {0, 1}, <5E) the automaton for which <5E(0, >0=0, 
<5e(0,X)=1,<5£(1,X)=<5e(1,>)=1. 

An automaton A=(X, A, 8) is called monotone if there exists a partial order-
ing ^ on A such that a^8(a, x) holds for any a£A and xdX. 

For monotone automata the following result holds: 
Lemma 1. Every connected monotone automaton can be embedded isomorphi-

cally into an a0-power of E2 . 

Proof We proceed by induction on the number of states of the automaton. 
In the cases n = 1 and n=2 our statement is trivial. Now let n > 2 and suppose 
that the statement is valid for any natural number m<n. Denote by A=(X, A, 8) 
an arbitrary connected monotone automaton with n states. Since A is connected 
thus among the blocks C(a) (ad A) there exists exactly one maximal element under 
our partial ordering of blocks. On the other hand, since A is monotone thus the 
partition induced by C has one-element blocks only. Denote by a„ the element of 
the maximal block. Since « > 2 thus there exists an ad A such that C(a)<C(an). 
Denote by ak an element of A for which C(ak)<C(a„) and C(ak)<C(a) implies 
a—an for any ad A. Obviously there exists such an ak . It is also obvious that 
(X, H, 5\HxX) is a subautomaton of A, where H={ak,a„} and the restriction to 
HxX of the function 8 is denoted by Let us define the automata Ax = 
=(X, ( ¿ V ^ U i * } , ^ ) and A2=(((A\H)U{i})Xl, HiJ { • }, <5,) in the follow-
ing way: 

f S(a,x) if d(a, x)$H, 
3Aa, x) = i 

I * otherwise, 
¿i(*> = *> 

r8(a > X ) if 3(a,x)dH, 
« , ( • .<« .* ) ) = l D o t h e r w i s e j 

32(a',(a, x)) = a', S2(a',(*, x)) = 3(a', x), ¿ 2 ( C ] , ( * , X ) ) = • 
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for all a£A\H,xdX and a'£H. Take the a0-product B = A j X A 2 ( Z , (p) where 
<io1(x)—x,q>2(y,x)=(v,x) for all xdX and u € ( . 4 \ / f ) U { * } . It is easy to prove 
that the correspondence 

_ f ( a , • ) if a£A\H, 
V ( a ) - l ( * , a ) if a£H, 

is an isomorphism of. A into B. 
Now let us consider the automata Aj and A2. Since Ax is a connected monotone 

automaton with n — 1 states thus, by our assumption, Ax can be embedded iso-
morphically into an a0-power of E2 . Denote by TJ the set of input signals of A2 
and take the following partitions of U: 

Ux = {(a, x): a£A\H, x£X, 5(a, x)$H}U{(*, x): x£X}, 

U2 = {(a, x): a£A\H, x£X, 8 (a, x) = a J , 

U3 = {(a, x): a£A\H, xdX, 8 (a, x) = a„}, 

Vx = {(a, x): a£A\H, x £ X } U { ( * , x): xdX, 8(ak,x) = ak}, 

V2 = {(*, x): x£X, 8{ak, x) = a„}. 

Consider the a0-product E2(C/, <p) where (px(«0 =y, (py(M2)=(px(w3)=x, 
(p2(0,u1)=(p2(0,u2)=y, (p2(0,u3)=x, (p2(l,v1)=y and cp2(l,v2)=x for all u^U, 
(i= 1 ,2 ,3) and Vj£ Vj (7 = 1,2). It can easily be seen that the correspondence 
• —(0, 0), ak-*(l, 0) and an-*( 1, 1) is an isomorphism of A2 into E2(U, <p). Since 
the formation of the a0-product is associative thus we have proved that A can be 
embedded isomorphically into an a0-power of E2 . 

For any natural number « s i let M„=({x0 , . . . ,x„_1}, {0, ...,n—l},5) de-
note the automaton for which 8(j, x , )=y+/ (mod n) for any 7£{0, . . . , « — 1} 
and x,£{x0, . . . , x„_!}, where 7 + / ( m o d ri) denotes the least nonnegative residue 
of j+l modulo n. Moreover let 93i denote the set of all M„ such that n is a prime 
number. 

It holds the following 

Lemma 2. If the number of states of a strongly connected commutative auto-
maton A is a prime number, then there exists an automaton M£®i such that A 
is isomorphic to an a0-product of M with a single factor. 

Proof. First we prove that every strongly connected commutative automaton 
is a permutation automaton. Indeed, denote by A = ( X , A, 8) a strongly connected 
commutative automaton and assume that there exist a, b£ A and pdX* with ap—bp. 
Since A is strongly connected thus there exist input words q, w£X* such apq=a 
and aw=b. Using the commutativity of A, we have bpq=awpq=apqw=aw—b. 
Therefore, a=apq=bpq=b, showing that A is a permutation automaton. 

Now let us assume that the number of states of A is prime and denote it by r. 
Let ad A and pdX* be arbitrary and consider the states a, ap, ap%, . . . . Since A is 
a permutation automaton thus there exists a t ( l S i S / - ) such that a=ap'. Denote 
by (a,p) the set {a,ap, ..., ap'-1}. Assume that {a,p)aA. Let a'dA\(a, p) and 
consider the set (a' ,p), which is defined as above. Since A is a strongly connected 
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automaton thus there exists a qdX* such that aq=a'. Using the commutativity 
of A we have ap'q = aqp'~a'p' (i=0, ...,t— 1). From this it follows that (a,p) 
and (a ' ,p) have the same cardinality since A is a permutation automaton. On the 
other hand it can easily be seen that (a,p) and (a' ,p) are disjoint subsets of A. There-
fore, the set gp= {(a,p): ad A} is a partition of A and the blocks of gp have the same 
cardinality. Since r is prime thus we get that gp has one-element blocks only, or it 
has one block only. Now we choose an xdX such that gx has one block only. The 
automaton A is strongly connected therefore such an x£X exists. Let ad A be a 
fixed state of A and write a0=a, a^a^x1 ( i '=l, ..., r — 1). Thus the mapping induced 
by x on A can be described in the form i(m0dr) 0 = 0 , . . . , r— 1). Now let y be 
an arbitrary input signal of A and assume that a^y^aj for some jd {0, 1, . . . , r — 1}. 
From the commutativity of A we have a,y=a0 x'y=a0yx'=aj x'=ai+J (mod r) for all 
id {0, 1, ...,/* — 1}. Take the a0-product B = iTMr(X, q>) with a single factor, 
where q>(x)=xk if a0x = ak for all x f X . It is easy to prove that A is isomorphic 
to B, which completes the proof of Lemma 2. 

Lemma 3. Every strongly connected commutative automaton can be em-
bedded isomorphically into an a0-product of automata from 5Di. 

Proof. We prove by induction on the number of states of the automaton. In 
case « < 4 , by Lemma 2, the statement holds. Now let 4 and assume that our 
statement is valid for any natural number m-<n. Denote by A=(X, A, S) an ar-
bitrary strongly connected commutative automaton with n states. If n is prime then, 
by Lemma 2, the statement holds. Assume that n is not prime. Let pdX* be ar-
bitrary. Consider the partition gp. Since A is commutative thus gp is a compatible 
partition of A. Denote by Q the set of all partitions gp of A such that [p\d SOAJXfle]}, 
where e denotes the empty word of X*. Take the partition Q of A given by g= (~) gp. 
We distinguish two cases. 

First assume that g has one-element blocks only. In this case it can easily be 
seen that A can be embedded isomorphically into the direct product of the quotient 
automata A j g p (gpdQ). On the other hand, for any gpd Q the quotient automaton 
A/gp is a strongly connected commutative automaton with number of states less 
than n. Therefore, by our induction hypothesis the statement is valid. 

Now assume, that there exist a, bdA such that a^b and a=b(g). Take an 
input signal A: of A such that the mapping induced by it on A is not the identity. 
Then gxdS2 and thus Qx

T=g. Therefore, a=b(gx). This means that there exists 
a natural number / > 0 such that axl=b. Since g is compatible thus axl=bx\g). 
From this, by the above equality, we get that the states a, ax1, ax21, ... are in g(a). 
Therefore, (a, xl)^g(a). On the other hand gxi^g thus (a, x') — g(a), showing 
that gxi = g. Denote by p the word xl and assume that g(a) = {a, ap, ..., apk~1}. 
We show that k is prime. Indeed, if l < i x i and „|k then (a,pv)a(a,p) which 
contradicts the relation gp„^g. Denote by g(a0), g(a±), ..., g(as_x) the blocks of g. 
From the equality g = gp it follows that g{a^)={ai, a^p, ..., aiP

k~1} 0 = 0 , 1, ...,s— 1). 
Thus n=k'S. From this we get that s ^ l because k is prime. On the other hand, 
since A is strongly connected thus there exist words pt, qt 0 = 0 , ..., s—1) such that 
aoPi = ai a n d atqi = aa for all /£{0, 1, ..., s— 1}. Using the commutativity of A 
we have af)pipi=aipJ and aipJqi=a0pJ for any jd {0, 1, ..., k — 1} and 
id {0, 1, . . . , s— 1}. Now define two automata A j = ( X , g, ¿j) and A 2 = 
= (gXX, g(a0), ¿>2) in the following way: S1(g(ai), x) = g(S(ah x)) for all g(at)dg 
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and xeX,d2(a0pi,(e(at),x)) = a0p}pixqu if o ( < 5 , x)) = o(au) for all a0pJ£g(a0) 
and (g(di), x)£gXX. Take the a0-product B=A 1 XA 2 (Z , cp), where <px(x)=x 
and $>2(0(^1), x)={g(fli), x) for any x£X and g(at)dg- It is not difficult to prove 
that the correspondence v: aipi-<-(g(ai), a0pJ) (7=0, 1, ...,.s—1; j=0, 1, ..., k—\) 
is an isomorphism of A into B. Now consider the automata Ax and A2 . They are 
strongly connected commutative automata with number of states less then n. There-
fore, by our assumption, the statement holds. 

For any prime number r, let M r = ({x 0 ,x 1 , ...,*,.}, {0, ...,/•}, <5) denote the 
automaton for which 5(1, XJ) = l+j(mod r), 5(r, XJ)=r, <5(7, x,)=r and d(r, xr)=r 
for any /£{0, .. . , r—1} and Xj£ {x0, . . . , xr_1}. 

The next Theorem gives necessary and sufficient conditions for a system of 
automata to be isomorphically complete for 5v with respect to the a0-product. 

Theorem 1. A system E of automata is isomorphically complete for 5\ with 
respect to the a0-product if and only if the following conditions are satisfied: 

(1) There exists A0€£ such that the automaton E2 can be embedded isomorphi-
cally into an a0-product of A0 with a single factor; 

(2) For any prime number r there exists such that the automaton M r 
can be embedded isomorphically into an a0-product of the automata A0 and A. 

Proof. In order to prove the necessity assume that I is isomorphically complete 
for ft with respect to the a0-product. Then E2 can be embedded isomorphically 

k 
into an a0-product JJ At({x, y}, (p) of automata from I. Assume that 1 and 

i=l 
let n denote a suitable isomorphism. For any {0, 1} denote by (a jX, . . . ,a J k ) the 
image of j under p. Among the sets {a0t, alt} ( f = l , ..., k) there should be at least 
one which has more than one element. Let I be the least index for which a m ^ a 1 { . 
It is obvious that the automaton A¡£1 satisfies condition (1). 

Now take an arbitrary prime number r and consider the automaton M r . By 
our assumption M r can be embedded isomorphically into an a0-product 

k 
[J A,({x0, ...,xr},<p) of automata from E. Assume that k> 1 and let /1 denote 

¡=1 
a suitable isomorphism. For any td{0, ..., ;*} denote by (an, atk) the image of 
t under /¿. Define compatible partitions Uj (j= 1, ..., k) of M r in the following 
way: for any 0, ...,/"}, u = v(%}) if and only if aul=avl, ..., auj=avj. -It is 
obvious_that n ^ n . ^ . . . ^ n k and nk has one-element blocks only. On the other 
hand MP has only one nontrivial compatible partition: <7={{0, . . . , r—1}, {/•}}. 
Denote by s the least index for which G>IIs. It is not difficult to prove that the 
automaton AS£E satisfies condition (2). 

To prove the sufficiency of the conditions of Theorem 1 we shall show that 
arbitrary commutative automaton can be embedded isomorphically into an a0-
product of automata from where 9t={E 2}U{M r : r is a prime number}. 

We prove by induction on the number of states of the automaton. In the case 
our statement is trivial. Now let 2 and assume that for any m < n the 

statement is valid. Denote by A = (X, A, 5) an arbitrary commutative automaton 
with n states. 

If A is not connected then it can be given as a direct sum of its connected sub-
automata. Denote by At = (X, A,, §,) (t= 1, ... ,k) these subautomata of A. Take 
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an arbitrary symbol z such that z$X. Define the automata A; =(A"U{z}, A h 
</ = 1, k) in the following way: $i{ait x )=5 j ( a i , x) and $i(ai,z)=ai, for all 
¿¡¿At and x£X(i= 1, ...,k). Take the a0-products Bi=E2XAi(X, <p(i)) (i-1,..., k) 
where (pi"(x)=y, (p«\Q, x)=z and </><''>(1, x ) = x for all x£X. It is clear that A 

k 
can be embedded isomorphically into the direct product JJ B, . On the other hand, 

¡=1 
fo r any index i ( l s / ^ A : ) the automaton A; is commutative with number of states 
less than n. Therefore, by our induction hypothesis the statement holds. 

Now assume that A is connected. Consider the partition {C(a): a£A} and the 
partial ordering of blocks introduced on page 1. Since A is connected thus among 
the blocks there exists one maximal only. Let C(a) denote this block. We distinguish 
two cases. 

(I) Assume that the cardinality of C(a) is greater than one. In this case 
(X, C(a), <5|C(a)xx) is a strongly connected subautomaton of A. If C(a)=A then, 
by Lemma 2 and Lemma 3, the statement holds. If C(a)czA then we distinguish 
three cases. 

(a) Assume that the cardinality of C(a) is prime and denote it by r. Let us 
•define the automata A 1 = ( Z , G4\C(a) ) U { * }, and A 2 = ( ( ( ¿ \ C ( a ) ) U { * }) X X 
C(a )U{d} , 82) in the following way: 

(8(a, x) if 8(a, x)$C(a), 
¿i(a> *) | ^ otherwise, 

S2(a', (a, x)) = a', 82(a', ( * , x)) = 8(a\ x), 32(n, ( * , x)) = • , 

( 8 ( a , x) if 8(a, x)£C(a), 
« . ( • , ( « , * ) ) = t n o t h e r w i s e j 

fo r all x£X, a£A\C(a) and a'fC(a). Take the a0 -product B ^ A i X A a p f , cp) where 
(p1(x)=x and <p2(v, x)=(v, x) for any x£X, (A\C(d))U { * }. It can be proved 
easily that the correspondence 

•(«,•) if a£A\C(a), 
a) if a£C(a), 

is an isomorphism of A into B. Consider the automata Ax and A2. Ax is a com-
mutative automaton with number of states less than n. Therefore, by our induction 
assuption, it can be decomposed in the form required. For investigating A2 we need 
the automaton C=({x 0 , . . . , xr}, {0, .. . , r}, 8C) where 8C(/, x , ) = / + / (mod r), 
¿c(l,xr)=l, 8c(r, xt)=i and 8c(r,xr)=r for any /£{0 , . . . , r - 1 } , x ^ x , , , x ^ } . 
Now denote by U the set of the input signals of A2 and consider the following parti-
tions of U: 

Ux = {( '*,*): x€X}U{(a ,x) : aZA\C(a), x€Z, 8(a, x)$C(a)}, 

U2= {(a, x): a£A\C(a), x£X, 8{a, x)€C(a)}, 

Vx = {(a, x): a £ ^ \ C ( a ) , x£Z}, 

V2 = { (* ,x ) : x£X). 

((a 
v<«)={ ( , 
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By Lemma 2, we have that (X , C(a), S¡C(s)xX) is isomorphic to an a0-product of 
MP with a single factor. Denote by p this isomorphism. We write a=a¡ if / i{ i )=a 
( i=0, 1, ...,/•— 1). Now take the a„-product E 2 X C ( U , <p) where for any 
u2<lU2 and Vlt V2£V2, <p1(u1)=y, <p1(u¿=x, q>2(0,u¿ = xr, <p2(0, «2)=x f if 
^ ( 0 , u 2 ) = f l j , rp2(l, Vi)=x r and (p2(\ ,v2)=Xj if 52(a0,v2)=aj. It is clear that 
the correspondence v given by v(m)=(0 , r) and v(a,)=(l , /) ( /=0, .. . , r — 1) is 
an isomorphism of A2 into E 2 x C ( U , <p). On the other hand, it is not difficult to 
prove that C can be embedded isomorphically into an a0-product of E2 and M,. 
Thus A2 can be embedded isomorphically into an a0-product of E2 and M r . Taking 
into consideration the above decomposition of Ax, this ends the discussion of (a) 
in case (I). 

(b) Assume that the cardinality of C(a) is not prime and the partition g of 
(X, C(a), <5|C(a)xx) has one-element blocks only where g is defined for (X, C(a), 
¿¡c(a)xx) in the same way as in the proof of Lemma 3. Now for any gp£Q, 
define the partition gp of A in the following way: 

{a} if 
QP(A) otherwise. 

Now let Í2 denote the set of all such gp. It can easily be seen that A can be embedded 
isomorphically into the direct product ]J A/gp. On the other hand for any gp£ Q 

the quotient automaton A jg p is commutative with number of states less than n. 
Thus, by our induction assumption, we have a required decomposition of A. 

(c) Assume that the cardinality of C(a) is not prime and the partition g of 
(X, C(a), ¿|C(a)xx) has at least one block whose cardinality is greater than one. 
Then, by the proof of Lemma 3, (X,_C(a), ¿|C(s)Xx) can be embedded isomorphically 
into an a0-product of automata A l = (X,g,d1) and A2 = (gXX, g(a0), S2) where 
A2 is isomorphic to an a0-product of M r with a single factor for some prime r<n. 
Define the automata Ax=(X, G4\C(5) )Ue , and A 2 = ( ( ( ^ \ C ( a ) ) U e ) X X , 

{ •} , <52) in the following way: for any adA\C(a), g(a¡)dg, x£X and 

Si{g(a¡), x) = d^gicii), x), 

d(a,x) if 5(a, x)eA\C(a) 

}(a¿) if 5(a, x)dC(a) and 5(a, x)(ig(a¡), 

<52(aoPJ\ (a, x)) = a0pi, S2(a0pJ, (g(a¡), x)) = 32(a0pJ', (eO;)> xj), • 

(8(a¡), x)) = • , 

, ^ i&(a,x)qs if 
«,(•.(«,*))={• d(a,xHc(a). 

Notations used in the above definition coincide with those used in the proof of 
Lemma 3. Take the a0-product A1XA2(Ar, cp) where (p1(x)=x and cp2(v, x)—(v, x) 
for any x 4 X and í ) c (^ \C(á ) )Uo . It can easily be seen that the correspondence 

f (a , • ) if fl£AC(fl), 
1 (g(a¡), a0pJ) if aeg(a¡) and a = a¡pJ, 

xt ^ í ó ( 
S^a, x) = | 



28 B. Imreh 

is an isomorphism of A into A i X A ^ Z , <p). Consider the automata Ax and A 2 . 
The automaton Ax is commutative with number of states less than n. Therefore, 
by our induction hypothesis, it can be decomposed in the form required. The auto-
maton A2 can be embedded isomorphically into an a0-product of automata E 2 
and M r . This can be proved in a similar way as in the case (a). Thus we get a re-
quired decomposition of A. 

(II) Now assume that the cardinality of C(a) is equal to one. Denote by R' 
the set of all a£A for which the cardinality of C(a) is equal to one and C(a)<C(b) 
implies b—a for all b£A. Let R be the set i?'U{a}. We distinguish two cases: 

(a) First assume that R' is nonvoid. Then (X, R, <5|KxX) is a connected monotone 
subautomaton of A. Define the automata A1=(A r, {*}, ¿j) and A2= 
= ( ( ( . -4 \^)U{*})XA r , i ?U{n},5 2 ) in the following way: for any a£A\R, a\R 
and x£X 

(8 (a, x) if S(a,x)$R, 
¿ i ( a > x ) | ^ otherwise, 

S2(a', (a, x)) =a\ S,(a', (*,x)) = 8(a', x), &>(•, ( * , x ) ) = • , 

(d(a,x) if 8(a,x)£R, 
£),(•, (a, x)) = i ^ . -v v >> n otherwise. 

Take the a0-product A1XA2(X, (p) where <p1(x)=x, <p2(v, x)=(v, x) for any x£X 
and {*}. It is obvious that the correspondence 

(a, • ) if a£A\R, 
(#, a) if a£R, 

is an isomorphism of A into A j X A ^ X , (p). Consider Ax and A2. A t is commutative 
with number of states less than n. Thus by our induction assumption, it can be de-
composed in the form required. On the other hand A2 is a connected monotone 
automaton thus, by Lemma 1, it can be embedded isomorphically into an a0-power 
of E2 . Therefore, we get a required decomposition of A. 

(b) Now assume that R! is empty. Denote % Q the set of all blocks C(a) for 
which the cardinality of C(a) is greater than one, and C(a)<C(&) implies b—a 
for all b£A. Since A is connected and R' is empty thus the set Q contains at least 
one block. We distinguish two cases. 

(1) First assume that Q contains the bloks C ^ ) , . . . , C(ak) where k> 1. De-
fine compatible partitions gt (i= 1, ...,k) of A in the following way: 

f M if a$C(a,.)U{a}, 
Ql( ) ~ 1 C(aJU{a} otherwise. 

It is not difficult to prove that (") £?;={{a}: a£A}. From this we get that A can 
ISiSfc k 

be embedded isomorphically into the direct product JJ A/g^. On the other hand, 
¡=i 

for any ¿€{1, . : . , k} the quotient automaton A/g( is commutative with number of 
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states less than n. Therefore, by our induction assumption, we have a required 
decomposition of A. 

(2) Now assume that Q contains one block only and denote it by C(b). Since 
C is a compatible partition of A thus {Xx, X2} is a partition of X where Xx — 
= {x: xeX, C(b)xQC(b)} and X2 = {x: x£X, C(b)x=a). It is clear that X1 and 
X2 are nonvoid sets and B ^ A ^ , C(b), &\C(b)xxd is a strongly connected commuta-
tive automaton. Now we distinguish three cases according to Lemma 3. 

(i) Assume that the number of states of B is prime and denote it by r. Define 
the automata Ax = (X, (A\(C(b) U {a})) U {* }, <5j) and A2 = (((/1\(C(6)U {a}))U 
U{*})XA-, C(Z>)U{a, • } , in the following way: for any x£X, aiA\(C(b)U 
U {a}) and a'dC(b){J{a} 

(S(a,x) if S(a,x)iC(b)iJ{a}, 
x) | ^ otherwise, 

<5i(*> x) = * , 
r S(a, x) if <5(a,x)€C(b)U{a}, 

« . ( • . ( « , * ) ) = l D o t h e r w i s C j 

S2(a', (a, x)) = a', S2(a\ (*, x)) = 5(a', x), S2(a, (*, x)) = • . 

Take the a0-product AxXAaiA', <p) where cp1(x) = x and cp2(v, x)=(v, x) for any 
x£X, t>g(,4\(C(6)U{a}))U{*}. It is clear that the correspondence 

_ f ( a , • ) if- a$C(b)U{a}, 
V ( a ) _ l ( * , a ) if aeC(b)U{a} 

is an isomorphism of A into A1XA2(X, cp). Consider the factors of the previous 
a0-product. Ax is commutative with number of states less than n. Thus, by our 
induction assumption it can be decomposed in the required form. For investigating 
A2, we need the following automaton. Denote by W = ({x0, . . . , xr, 5c}, {0, ..., r, r}, 
<5W) the automaton where dw(/ , Xi) = l+i (mod r), <5w(r, x;) = i, <5W(/, xr)=r, 
<5W(/, = 5v/(r, xt) = r for any /€ {0, ..., r-\) and {x0, . . . , xr_x}, and 
8w(r, xr)=Sw(r, x)—Sw(r, xr)=r, <5w(r, x)=r. Now denote by U the set of the input 
signals of A2 and take the following partitions of U. 

= { (* ,* ) : x<EX}U{(«,x): aG4\(C(&)U {a}), x€Z, <5 (a, x )$C(b)U{a}} , 

U2 = {(a,x): a£A\(C(b)U {a}), x6A", 5(a, x)£C(b)}, 

U3 = {(a, x): a£A\(C(b)U {a}), x£X, d(a, x) = a}, 

V% = {(a,x): a€^\(C(ft)U{a}), xdX}, 

V2 = { (* ,* ) : xdX^ and V3 = {(*,*): x£X2}. 

By definitions, we have that (J^U F2, C(Z>), ¿2 |C{6)x(KlUK2)) is a strongly con-
nected commutative automaton with r states. Thus, by Lemma 2, it is isomorphic 
to an a0-product of M r with a single factor. Denote by ¿u a suitable isomorphism, 
and for any i£{0,1, .. . , r — 1} denote by b, the image of t under (i. Now take the 
a„-product E 2 x W ( t / , (p) where <Pi(uj=y, (Pi(ud=(Pi(.u3)—x> <p2(0, u1)=x, 
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(p2(P,ii2)=Xi if <52(D, u2) = bi, (p2(0,u3) = xr, <p2(l,i;1) = x, <p2(l, = if 
82(b0, v2)=bs, (p2(l, v3) — xr for any u,£ U, (/ = 1,2, 3), v^Vj (j=\, 2, 3). It is 
obvious that the correspondence v given by v ( d ) = ( 0 , r), v ( a ) = ( l , r), v (6 , )= ( l , 1) 
( /=0 , ...,/-—1) is an isomorphism of A2 into E 2 X\V( t / , q>). On the other hand, 
it is not difficult to prove that the automaton W can be embedded isomorphically 
into an a0-product of E2 and M r . Thus we get a required decomposition of A. 

(ii) Assume that the number of states of B is not prime and the partition g 
of B has one-element blocks only where g is defined for B in the same way as above. 
Now for any Gp£Q define a partition QP of A in the following way: 

f W if a€A\C(a), 
e" a ~ X gp(a) otherwise. 

Let Q denote the set of all such gp. It is clear that A can be embedded isomorphi-
cally into the direct product J ] A/gp . The quotient automaton Ajgp is commuta-

sP i ! } _ -
tive and its number of states is less than n for any gp£ Q. Thus, by our induction 
assumption we have a required decomposition of A. 

(iii) Assume that the number of states of B is not prime and the partition g 
of B has at least one block whose cardinality is greater than one. Then, by Lemma 3, 
B can be embedded isomorphically into an ot0-product of the automata Bi = 
= (X1,g,81) and B2 = (gXAr

1, eO>0), 52) where B2 is isomorphic to an a0 -product 
of M r with a single factor for some prime r. Define the automata Ax = 
=(X, (A\C(b))U g, 5j and A 2 = ( ( ( A \ C ( b ) ) U o ) X l , oO>0)U{*, • } , <52) in the 
following way: for any a£A\C(b), g(bi)£g, x£X and b0pJ€g(b0) 

[ ¿ ( a , * ) if <5 (a,x)iC(b), 
1 ' 10(¿(a, x)) otherwise, 

v iSi (e(bd,x) if 
S1(g(bd,x) = \ - jf ^ 

stu ! f tt Mb0p>,(Q{bd,x)) if x£Xlt 
WoP,.ie(Pd,x)) = [ t if ^ 

' • if S(a,x)£A\(C(b)\J{3}), 
Sz(D,(a,x))= d{a, x)qs if 5{a, x)£g(bs), 

* if 5(a, x) = a, 

d2(b0PJ, (a, x)) = ^p3, <52(*, (a, x)) = S2(*, (g(bj, x)) = *, 

<$a(D. (e&d, x)) = • . 
(The notations coincide with those used in the proof of the Lemma 3.) Take the 
a0-product AjXAaOV, <p) where (p1 (x) = x and (p2(v, x) = (v, x) for any x£X and 
v£(A\C(b)){Jg. It is not difficult to prove that the correspondence 

v ( « ) 

( a , D ) i f - a € ^ \ ( C ( 6 ) U { a } ) , 
•(e(bd, b0PJ) if atC(b) and a = b ^ , 
(a, *) if a = a, 
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is an isomorphism of A into AiXA^A', <p). Consider the automata Ax and A 2 . 
The automaton Ax is commutative with number of states less than n. Thus, by ou r 
induction assumption, it can be decomposed in the required form. The automaton 
A2 can be embedded isomorphically into an a0-product of E2 and M r . This can 
be proved in a similar way as in the case (i). Thus we get a required decomposi-
tion of A. 

The following statement is obvious for arbitrary natural number z'^0. 

Lemma 4. If A can be embedded isomorphically into an a r product of B with 
a single factor and B can be embedded isomorphically into an «¡-product of C 
with a single factor, then A can be embedded isomorphically into an a r produc t 
of C with a single factor. 

The next Theorem holds for af-products with i ^ l . 

Theorem 2. A system Z of automata is isomorphically complete for ft with 
respect to the a r product 0 = 1) if and only if for any prime number r there exists 
an automaton such that M r can be embedded isomorphically into an a r 
product of A with a single factor. 

Proof. To prove the sufficiency, by Lemma 4, it is enough to show that ar-
bitrary automaton with n states can be embedded isomorphically into an ax -product 
of M r with a single factor for some prime /•>«. This is trivial. 

• To prove the necessity take a prime r. First we prove that M r can be embedded 
isomorphically into an a r product of automata from I with at most i factors if 
M r can be embedded isomorphically into an a f-product of automata from I . In-
deed, assume that M r can be embedded isomorphically into the a r product 

k 
B = [J Aj({x0,..., xr_x}, <p) of automata from I with k>i and denote by ¡.i 

i = i 
such an isomorphism. For any /€{0, ...,/•— 1} denote by (an, ..., alk) the image 
of I under /i. We may suppose that there exist natural numbers s^t (0=s, tsr— 1) 
such that a s l ^ a n since in the opposite case M, can be embedded isomorphically 
into an a r product of automata from I with k— 1 factors. Now assume that there 
exist natural numbers u^v (O^w, v^r—\) such that aul — avl (1= 1, . . . , i). Then 
<Pi(aul, •••,aui,Xj) = (p1(avl, ...,avl,Xj) for any Xj£ {x0, . . . , x r_j}. Thus in the 
a rproduct B the automaton Ax obtains the same input signal in the states aul and 
av l for any x f i {x0, . . . , Since fi is an isomorphism thus we have that 
flu+y(modr)i=aD+i(modr)i for any j£ {0, .. . , r - 1}. On the other hand, r is prime 
thus from the above equations we get that aul = an for any /€{0, .. . , r — 1} which 
contradicts our assumption. Therefore, we have that the elements (an, ..., a,;) 
( 0 ^ / S r — 1 ) are pairwise different. Take the following a,-product 

i 
C = IJ A,({x0, . . . , </0 where for any {1, . . . , /} , (alt . . . , XAT t=i 
and x s € { x 0 , . . . , 

f , ( a 1 ; . . . , ai,xs) = 

<Pj(an, ..., alj+i_1, xh) if j+i — l-^k and there exists 
0 S I ^ r— 1 such that au=a!u (u = 1, ..., i), 

q>j(an, ..., alk, x j if j + i — 1 > k and there exists 
0 I = v — 1 such that au = alu (u — 1, ..., i), 

arbitrary input signal from X} otherwise. 
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It is not difficult to prove that the correspondence v(/)—(an, ..., au) (1=0, ..., r — 1) 
is an isomorphism of M r into C. 

Now we prove that if M r can be embedded isomorphically into an a r product 
k 

77A.-({x0, ..., x,_i}, <p) of automata from I with k^i, then there exists an autó-
é i 
maton A £ 1 such that M .<._. can be embedded isomorphically into an a.r primelKrJ 

product of A with a single factor, where prime [ / 7 ] denotes the largest prime less < _ 
than yV. Denote by p such an isomorphism. For any /£{0, . . . ,r— 1} denote by 
(a,i, . . . , alk) the image of / under p. Since p. is a 1 — 1 mapping thus the elements 
•(an, ..., a,k) (1=0, ..., r—1) are pairwise different. Therefore, there exists an s 
(l^s^k) such that the number of pairwise different elements among a0s, als, ..., ar_ls 

is greater than or equal to prime [j/r]. Let aJoS, ..., aJu_lS denote pairwise different 
i 

•elements, where w=prirne [ / r ] , and denote by X the set {x0, . . . , x„_j}- Take the 
a0-product C=nAs(X,i[/) with a single factor, where for any ajtS£ {aJoS, ..., aJu_lS} 
and xv£X, 4/(aJtS, xv) = cps(aJtl, ...,aJtk,xd) if SMr(ß~1(aJtl, ajtk), xd) = 
= u~1(aI i, . . . . a,• it). It is not difficult to prove that M„ can be em-™ v J t + u(raodu) ' J t + f í m o d u r ' c u 

bedded isomorphically into C which ends the proof of Theorem 2. 
From Theorem 2 we get the following. 
COROLLARY. A system Z of automata is isomorphically complete for 5T with 

respect to the a rproduct if and only if it is isomorphically complete with respect 
to the a rproduct ( ¿ s i ) . 
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Deterministic ascending tree automata I 
By J. VlRAGH ' 

1. Introduction 

In the early 60s Automata Theory was considerably influenced by the methods 
and results of Universal Algebra. In fact, if we regard the input signs as unary oper-
ational symbols over the state set, then the automaton can be identified with a special 
universal algebra (unoid). Allowing non-unary input signs Thatcher and Wright [7] 
and Doner [3] came to the notion of the generalized or tree automata which accept 
arbitrary trees instead of the linear words of ordinary automata. 

Two types of tree automata are investigated in the literature. The first one, 
the descending tree automata (known also as frontier-to-root or sinking auto-
mata, cf. [3], [6], [7]) proceed the input trees from the leaves along all branches 
towards the root. All results of the 'classical theory' such as the equivalence of 
the deterministic and nondeterministic devices, the minimization algorithm, Nerode's 
theorem, regular (tree) grammars, regular expressions and the Kleene-theorem 
can be generalized for this type of automata (cf. [1]—[3] and [6], [7]). 

A less investigated generalization led to the notion of the ascending (called 
also root-to-frontier or climbing) tree automata, cf. [4], [6]. This device reads the 
input trees starting at the root proceeding then towards the leaves along the branches. 
Our investigations were inspired by the results of Magidor and Moran [6] especially 
by Section 6 of their paper. 

Our aim is to generalize the results of the classical theory for ascending tree 
automata. In this part I we investigate a generalization of the Kleene-theorem and 
the characterization of sets accepted by ascending tree automata as sets generated 
by special regular tree grammars. The algebraic notations developed by Gecseg 
and Steinby in [4] will be used throughout this paper. Nullary operations will be 
excluded. This restriction is necessary by some investigations concerning ascending 
tree automata, cf. [4]. 

2. Preliminaries 

For arbitrary set A, 3P(A) denotes the power set of A. N stands for the set 
of all positive integers, i.e., N={1 ,2 ,3 , . . . } . 

Let F be a finite nonvoid set and r a mapping of F into N. We call the ordered 
pair (F,r) a type. The . elements of F are the operational symbols. If f£F and 

3 Acta Cybernetica V/l 
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r ( / ) = « , then we say that the arity of / is n or / is an n-ary operational symbol. 
We often refer to the type (F, r) simply by F and we take the set F as the (disjoint) 
union U (F„\n£N) , where F„ is the set of all n-ary operational symbols from F. 

Let X= x2, ...} be a countable set of variables and X„={xlt x2, ..., xn} 
for every n£N. We define the set TF „ of n-ary F-trees as the smallest set satisfying 

(i) I „ g r f > „ and 
( ¡ 0 / 0 » ! , . . . , /»J67>,„ whenever pu ...,pmeTFi„ and / £ F m for some m£N. 

We note that the set TFi „ is identical with the set of all n-ary polinomial symbols 
of type F in the sense of Gratzer [5]. The subsets of TF „ are called n-ary F-forests 
or simply forests when n and F are specified by the context. TF stands for the 
set U(7>.„|«€JV). 

Next we define devices capable of recognizing forests. To this we need some 
preparations. 

Let F be an arbitrary type. The ordered pair 'H=(A, Fffl) is called a non-
deterministic F-algebra if A is a nonempty set and F f f l = ( / a | / £ F ) is a set of non-
deterministic operations on A, i.e., if f£Fk, then f® is a mapping 

In that special case when f(a1, ...,ak) is a singleton for every / £ F and 
(alt ..., ak)£Ak, we speak about F-algebra. Identifying the singletons with their 
elements (and that will be our practice in the following discussions) we can define 
an F-algebra as a system 91=(A, Fai), where every operation is a mapping 

/ai[Ak -~'A.) 

The triple A = (21, a, A') is called an n-ary nondeterministic descending F-
automaton if 

(i) 91=(A, F a ) is a nondeterministic F-algebra, whose carrier A is called 
the state set of the automaton, 

(ii) a=(A(1),A(2),...,A(n))€(0'(A))" is the initial vector, 
(iii) A'QA is the set of final states. 

If 21 is an F-algebra and all components of the initial vector are singletons, 
then we say that A=(21, a, A') is an n-ary deterministic descending F-automaton. 

Every automaton A induces a mapping /?A: TF n~^&'(A) in the following 
manner: 

(i) p*(xj) = AU> (Xjexn, j = 1 , 2 , . . . , « ) , 

(ii) P(p)=U(f*(blt...,bJ\bj£P(pj), j = 1 ,2 , . . . , k) if P=f(Pl,...,Pk). 

Then T(A)= {p\p£TFi„ &pA(p)C)A'¿¿0} is the forest recognized by A. If A is de-
terministic, then j?A(/>) is a singleton for every p£ TF n and T(A) can be written as 

r(A) = {p\paF,„&PHP)ZA'}. 

Now we present the necessary definitions for our second type of devices, the so-
called ascending tree automata. 

The ordered pair 23=(5, F s ) is called a nondeterministic ascending F-algebra 
if B is a nonempty set and F ® = ( / ® | / 6 F ) is a set of nondeterministic ascending 
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operations on B, i.e., if f£Fk, then /® is a mapping 

/®: B+0>(B*). 

Again, if for all / £ F and b£B, /®(b) is a singleton, then we say that © is a de-
terministic ascending F-algebra and we write the operations as mappings 

/®: £'-*• Bk. 

The triple B = (S , B', b) is called an n-ary nondeterministic ascending F-
automaton, if 

(i) © = (B, F®) is a nondeterministic ascending F-algebra, and B is called 
the state set of B, 

(ii) B'QB is the set of initial states, 
(iii) b = (B(1\ B(2\ ...,B(n))£{S?{B))n is the vector of final states. 

If © is a deterministic ascending F-algebra and B' is a singleton, then we say that 
B = ( S , B', b) is an n-ary deterministic ascending F-automaton. 

With every ascending automaton B we associate a mapping aB: TFtn-*0>(B) 
as follows: 

(i) a*(xJ) = BM (xjdXn, j = 1,2, ....,11), 

(ii) aB (p) = {b\fm(b) H aB(pi) XaB (p2) X.. • X a B ( p k ) ^ 0} 

if f£Fk and p =f(p!,p2, Pk)-

The forest recognized by B is defined by 

F(B) = {p\p£TF,„ &a»(p)r)B'^ 0}. 

If B is deterministic and B'= {b'}, then we can write simply 

T(B) = {p\peTFt„ & b'ea*(p)}. 

Our definitions are rather general because we allow even infinite state sets 
of automata. But this general case is needed only by some later discussions. In this 
Part I by automata we always mean finite automata. 

Two automata, A and B are called equivalent if F(A) = F(B). Two class of 
automata, Cx and C2 are equivalent if for every A from Q there is a B from C2, 
equivalent to A, and conversely. The following statements are well known, 
cf. [6], [7]. 

Proposition 1. The classesof deterministic descending, nondeterministic de-
scending and nondeterministic ascending automata are equivalent. Taking an 
arbitrary automaton from one of these classes, we can effectively construct two 
automata belonging to the two other classes equivalent to it. 

Let #"REC denote the class of forests, recognizable by deterministic descending ( 
automata and !FA the class, recognizable by deterministic ascending automata. 

Proposition 2. 3Fa g Ĵ REC. 
Since forests are subsets of TF n, we may define the usual set-theoretic oper-

ations U (union), H (intersection) and ~ (complementation) on them. Let us now 
define two more operations the x rproduct and x riteration. 
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The x¡-product of the forests 7\ and T2, denoted by Tt • XlT2, is the forest which 
can be obtained by replacing every occurence of x{ in some tree from 7\ by a tree 
from T2. The xriteration of the forest T, denoted by T*x,, is defined by T**,= 
- U (Tk-xi\k=0, 1, 2, ...) where 

(i) T*-*=x„ 

(ii) Tn-x'=Tn-1'x<UT-XlTn-1'x' 

or n£N. We refer to the operations union, ^-product and ^.-iteration as regular 
operations. It is well known that ^ R E C is closed under the regular operations, 
but: ¿Fa is not. 

Let us take some language S£ suitable for describing the sets accepted by 
automata. In Automata Theory the following two problems play an important role: 

(1) Given an automaton A. Describe the set accepted by A in terms of ££. 
(2) Given a description of the set T in the language =S?. Construct an auto-

maton accepting T. 
The solution is given by the famous Kleene-theorem if is the language of regular 
expressions. Next we review briefly the generalization of this theorem for deter-
ministic descending automata. First of all, we have to define the language «S? of 
(generalized) regular expressions. 

Let F be an arbitrary type. The set 0lF of regular F-expressions is the smallest 
set for which 

(0 

(ii) if p£TF, then pe@F, and 

(iii) if J f j , Jir2e@F and idN, then C^+JT^, ( J f \ i j f 2 ) , ( j Q * 1 ^ ^ . hold. 

If F is known from the context, we speak about regular expressions simply. An 
occurrence of the variable xi in is called bounded if this occurrence is in ĈCi 
for a subexpression JT 1 / J f 2 of J f . All other occurrences of xt are called free. X; 
is a free variable of J f if x ; has at least one free occurrence in J f . j f is an n-regular 
expression if all its free variables are in X„. 

Each regular expression denotes a forest ¡JTj given by the following 
rules: 

(i) if J f — 0, then | J f I is the empty forest, 

(ii) if JT = p(p€TF), then | j f | = {/>}, 

(iii) if j f = (JTx+JTj), then \X\ = m U W , 

(iv) if j f = ( ^ 1 ^ ) , then \ j f \ = m • Xl\Jf2\, 

(v) if " JT = W , then \Jf\ = 

T is a n n-regular forest if T= \X\ for some «-regular expression JT. Moreover, 
T is a regular forest if T is n-regular for some n£N. Finally, stands for the 
class of all regular forests. 
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Proposition3. (Kleene-theorem, cf. [7]) ^REG^^REC- More precisely, for an 
arbitrary deterministic descending automaton one can effectively construct a regular 
expression denoting the forest accepted by this automaton, and conversely. 

Regular tree grammars are direct generalizations of the well known regular 
(string) grammars. The following definition is equivalent to the usual one, cf. [2]. 

Let F be a type, a regular F-grammar is a system r = (Q, F, P, S), where 
(i) Q is a finite nonempty set of nonterminal symbols, 

(ii) SQQ is the set of initial symbols, 
(iii) P is a finite set of rewriting rules of the form 

q^ 'Xi (q£Q, x £ X ) or q -*f(qx, ..., qk) (q, qi, ..., qk£Q, f£Fk). 
If all variables occuring in the rules of P are from Xn, then we say that F is an 
n-ary regular F-grammar. When n and F are not specified, we speak about regular 
(tree) grammars. The n-ary regular F-grammar F induces a binary relation =>r 
on the set TFiQ\jXn, t=>r r iff r can be obtained from t by replacing a nonterminal 
q in t with the right side of some rule q^f(qi, qt) or q-*x( from P. Let =>F 
denote the reflexive, transitive closure of the relation =>r. 

The set T(r) = {p\p£ TF n & (3-?)C?€ S & s^Fp)} is the forest generated by F. 
T is called generable, if T=T(F) for some regular grammar F. #"GEN denotes 
the class of all generable forests. 

Proposition 4. (Bra inerd [2]) .^REC—^GEN-

3. Closed forests 

In this section we show that every f o r e s t " c o n t a i n s all trees composed 
from the paths of some trees belonging to T. We shall use this characteristic feature 
for deriving a connection between ^ R E C and 

With every type F we associate a new type 5(F) of unary operational symbols 
in the following way: 

(i) if f€Fk, then 5 ( f ) = { f , f 2 , ...,fk), 

(ii) if then 5 ( f ) fl 5(g) = 0, 

(iii) 5(F) = U(5(f)\feF). 

Now let us define the functions ¿¡: &,(TF)-*3?(TL{F)) for all i£N as follows 

! f xk if i = k, 
(1) 5i(xk) = | g o t h e r w i s e ; 

(2) d-Xfifr, ..., pk)) = f [Si (p j ) U/2 («5,- (p2)) U . . . Ufk (¿j (pk)), 

(3) ¿,.(r) = u ( a i ( 0 l / e r ) . 

Let 5: 0>(TFi„) be the function for which 

8(T) = U(<5;(F)|i = 1, 2, ..., n). 
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• Speaking informally, S(t) consist of all words which can be read along the 
paths of t. The inserted indices show the position of the node to be visited next. 
The elements of 5(T) can be regarded as words of the free semigroup generated 
by 3 ( F ) U A ; as well. 

Lemma 1. The function 5 is monotone and commutes with the regular opera-
tions, i.e. 

(i) if Tx g T2, then d(Td E ¿ ( T J , 

(ii) 5{Tx\JT2) = ¿ ( r j u á ^ ) , 

(iii) &(T l . X t T¿ = 5 ( T J ' X l 5 { T ¿ , 

(iv) 5(T*X>) = (d(T))*xi. 

Proof, (i) and (ii) are obvious. For verifying (iii), first we show the inclusion 
¿(Ti)• xtHT^QS^-XIT2). If ged^) • x.5(T2), then we must distinguish the 
following two cases: 

1) gdSjiTJ and j^i. This directly implies gtS^-XiT2). Therefore, 
gtSpx'^TJ. 

2) g-gi • x,g2 where g^S^tJ for some tx6TX and g2£5j(Q for some t2£T2. 
Then g£Sj(t3) holds for the tree h = tx. Xit2dTx-XIT2. Thus g<ib(Tx. xtT2). 
The inclusion S(TX- X¡T2)Q ó(Tx) • x¡3(T¿) can be verified in a similar way. 

Using (ii), (iii) and the identity T"-x' = T"~1'xI[JT-x¡Tn~^x' it is easy to prove 
by induction on n that (iv) holds, too. • 

R E M A R K . From Lemma 1 it follows that the regularity of T implies the regular-
ity of § (T). The converse is not true. For this it is enough to consider the forest 
T of all balanced trees in TF n. 

Let á " 1 : ^(THFh„)^^(TFi„) denote the inverse of <5, i.e., S~1(U) = 
= {t\d(t)^U} for every UQT3(Fhn. We define the operator A: 
as the composition <5_1 • 5 

A(T) = {t\d(t)QS(T)} ( r g y . 

Lemma 2. A is an algebraic closure operator on ¿?(TFt„), that is 

(i) TXQT2^ A(TX)QA(T2), 

(ii) T^A(T), 

(iii) A(T) = A{A(T)), 

(iv) if t$.A(T), then t£A(T¿ for some finite Tx Q T. 

Proof. Obvious. • 

We say that TQTF¡„ is A-closed if A(T) = T. Let denote the class of all 
-closed forests. 

Lemma 3. If F has at least one non-unary operational symbol then !FC and 
#"REC are incomparable. 
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Proof. For the sake of simplicity assume that F2?£0 and / 6 F2 . Let 

= { / (* ! , / (* l ,Xl ) ) , / ( / ( * ! , *l), *l)} 
and 

T2 = r 3 n r 4 , where 

7 3 = T(F), r = <{S, i?}, {/}, {S ~f(R, S), Xl}, S) 
and 

Ti = {p\p is composed from an arbitrary number of / ' s and a prime 

number of XJ's}. 
7 \ £ J W is obvious, but F ^ J ^ . because of / ( x l 5 X J X ^ ^ ) and / ( X ! , xx)$ 7 \ . 
On the other hand T 2 f ^ c , but T 2 ^ R E C would lead to a contradiction. • 

Now we generalize the construction of the well-known powerset automaton 
for ascending tree automata. Let A = ( 9 l , A', a) be an n-ary nondeterministic 
ascending F-automaton. The powerset automaton, belonging to A is the n-ary de-
terministic ascending F-automaton PA=(^321, A', b), where tyS&={0>(A), F) is 
the deterministic ascending • F-algebra with operations / !p iH defined by 

/ » " ( C ) = J 7 ( U ( n i ( / « C c ) ) | c 6 C ) ) 
¡=i 

for every C^A and / £ Fk, b = (B(1\ B(2), ..., Bw) with =(D\D<^A&Df] A(i) jt 0) 
and 7T| denotes the zth projection. 

Now we recall some concepts from [4]. For any state a of the «-ary non-
deterministic ascending F-automaton A we define 

T(A,a) = {plpeTFin&aeocA(p)}. 

A state a is called a 0-state if 7(A, a ) = 0 . We say that A is normalized if, for all , 
a£A, ndN and / £ F „ either all of the components of fm(a) are 0-states or none 
of them is a 0-state. 

Lemma 4. For any nondeterministic ascending automaton A an equivalent 
normalized nondeterministic ascending automaton A* can be constructed. 

Proof. This lemma is a generalization of Theorem 3 in [4] for nondeterministic 
automata. The proof can be performed similarly. • 

Lemma 5. For- every normalized nondeterministic ascending automaton A, 
r ( P A ) = 4 ( r ( A ) ) . 

Proof We shall verify the inclusion 7(PA) § A (7(A)) first. Let t£ 7 (PA) 
and g€dj(t) for some l^j^n. It follows from the definition of 7(PA), that in 
this case we can correspond to the branches of g a sequence a0, at, ..., a„ of states 
from A such that 

(i) ak£A (O^k^u), a0eA' and av£Aa\ 
(ii) fli+i€7Tfc(/a(ai)) if a,- (O^i^v - 1 ) corresponds to the branch labelled by fk. 

We can complete g to a tree J accepted by A because A is normalized. Thus 
g€&j(f) = &j(T(A)) which implies t£A (7(A)) since g and t were arbitrary. 

The reverse inclusion can be verified in a similar manner. • 
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REMARK. We show by a simple counterexample that the preceding Lemma does 
not hold for unnormalized automata. Let A=(21, A', a) be the automaton where 

A = {a0,d}, F=F2 = { f } , n = 1, 

/*(«„) = {(d, flo), (a0 , d)}, / » ( d ) = {(d, d)} 

A' = A™ = {flo}. 

Then f ( x l t XL) is in T(PA), but not in A (T(A)). • 

If we apply the construction of P A for a deterministic automaton A, we get 
an automaton equivalent to A. From this assertion, using Lemma 5, it directly 
follows. 

Corollary 6. The regular forest T can be recognized by a deterministic ascend-
ing automaton iff T is closed. 

Corollary 7. It is effectively decidable for every regular forest T whether T 
is recognizable by a deterministic ascending automaton. 

Proof. Let T=T(A), where A is a nondeterministic normalized ascending 
automaton. In this case, by Corollary 6, iff 7 \A) = T(PA). By Proposition 
2.1 we can construct two deterministic descending automata equivalent to A and 
PA, respectively. For this type of automata the equivalence problem is decidable. • 

4. D-reguIar operations and the generalized Kleene-theorem 

It can easily be seen that J ^ is not closed under the regular operations. In 
fact, it is not closed under the polinomials of these operations, either. More pre-
cisely, this is true for almost all- polinomials but those unary ones constructed by 
unions only. Since 2FA can be obtained as the J-closure of ^ R E g it seems reasonable 
to define 'D-regular operations' by combining A and the regular operations. This 
enables us to derive a 'Kleene theorem' for 

Now let us define the D-regular operations for any Tt and T2 f rom TF as follows: 
(1) ¿-union 1 j : T ^ T ^ A i T ^ T ^ , 
(2) (A, XJ)-product ©Xi: O Xi T2=A(T1 • X{T^), 
(3) (A, X;)-iteration * X l : (T)*Xi=A{T**i), 

where on the right sides U, - Xl and * Xi stand for the ordinary regular operations. 

Lemma 1. The D-regular operations preserve regularity and recognizability 
by deterministic ascending automata. 

Proof. Follows from Proposition 2.3 and Corollary 3.6. • 

Lemma 2. For D-regular operations the following identities hold 

(i) TSJT2 = A(T,)UA(T2), 
(ii) TtQ XiT2 — A(T^) o A(T2), 

(iii) (T)*Xi = (A(T)fXl. 
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Proof. These identities can be derived applying the function < 5 f o r both sides 
of the equations 

( * ) 0(T1{JT^ = 0(A(TJ{JA(TJ), 

(**) Ô(T1.XIT2) = Ô(A(T1).XIA(T2)), 

(***) S((T)**,) = ô(A(T)**,). 

We know from Lemma 3.1 that <5 commutes with the regular operations. It is also-
easily seen that 3(A (Tj)=ô(T) holds for every forest T. These assertions imply 
the identities ( * ) — ( * * *) . • 

Next we introduce a new 'D-regular interpretation' | | j f [| of the regular ex-
pression X 

(i) if J f = 0, then || J f || is the empty forest, ; 

(ii) if x = p(per,), then i m i = {p}, 

(iii) if j f = ( J f Y + J Q , then | |X| | = l l^ l l U| |Jf2 | | , 

(iv) if _ j f = ( ^ / J Q , then | | j f | | = HJfJ O J | J f 2 | | , 

(v) if ¿T = (JTI)*1, then ||JT|| = 

7 is a D-regular forest if r = | | X | | for some regular expression j f . 

Lemma 3. For every regular expression j f , \ \ j f \ \ = A ( \ û f \ ) . 

Proof By induction on the number of the symbols of regular operations in 
using Lemma 2. • 

Theorem 4. The forest T is recognizable by deterministic ascending automata 
iff T is Z>-regular, and this connection is effective. 

Proof (1) Let T be given by the deterministic ascending automaton A. Ac-
cording to Proposition 2.1 and 2.3 we can effectively construct a deterministic 
descending automaton B and a regular expression j T such that 

T = T(A) = T(B) = \X\. 

T is closed (see Corollary 3.6) thus T=A(T)=A{|X |). But this yields, by Lemma 3, 
T= ||JT||. 

(2) Now let us assume that T— ||JT|| for the regular expression J f . By Pro-
position 2.1 and 2.3 we can effectively construct a nondeterministic ascending auto-
maton C accepting C can be assumed to be normalized (see. Lemma 3.4). 
Proceeding as in Lemma 3.5 we get the deterministic ascending powerset auto-
maton PC for which T{?C)=A{T{C))=A(\iï\)=\\iï\\ holds. • 

R E M A R K . In the preceding proof we used Proposition 2 . 3 in both directions. 
Theorem 4 could be proved without it, but in that case the proof would be more 
lengthy and difficult. 
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5. D-regular tree grammars 

In Proposition 2.4 we have established a close connection between forests 
.generable by regular tree grammars and forests recognizable by deterministic 
descending automata. In this section we shall give a similar characterization for 
forests accepted by deterministic ascending automata. To this we define a special 
kind of regular tree grammars. 

The regular tree grammar r=(Q, F, P, S) is called deterministic regular, or 
'briefly D-regular if 

(i) S is a singleton and 
(ii) for every nonterminal q and operational symbol / there is exactly one 

•derivation rule in P, whose left side is q and whose right side begins with / . 

Theorem 1. The forest T is recognizable by deterministic ascending automata 
iff T is generable by D-regular tree grammars. 

Proof. The well-known constructions of converting a regular tree grammar 
into an equivalent (nondeterministic) ascending automaton and vice versa ^can 
be used. The only thing to be noted is that the assumptions (i) and (ii) in the de-
finition guarantee the preservation of the determinism in both directions. • 

Corollary 2. For every regular tree grammar r one can decide effectively whether-
T(T) can be generated by D-regular tree grammars. 

Proof Since a nondeterministic ascending automaton accepting T(T) can 
•effectively be constructed (cf. Proposition 2.1 and [2]) Corollary 3.6 and Theorem 1 
immediately imply our Corollary. • 

Acknowledgement. The author wishes to thank Professor M. Steinby for his 
valuable suggestions especially for those concerning Theorem 4.4 and for providing . 
the example for the Remark in Section 3. 

DEPT. OF COMPUTER SCIENCE 
A. JÓZSEF UNIVERSITY 
ARADI VÉRTANUK TERE 1. 
iSZEGED, HUNGARY 
H—6720 

References 

:[1] BRAINERD, W. S., The minimization of tree-automata, Inform, and Control, v. 13, 1968, pp. 
4 8 4 — 4 9 1 . 

I[2] BRAINERD, W . S . , Tree generating regular systems, Inform, and Control, v. 14, 1969 , pp. 2 1 7 — 
231. 

[3] DONER, J., Tree acceptors and some of their applications, J. Comput. System. Sci., v. 4, 1970, 
pp. 406-451. 

[4] GÉCSEG, F . and M. STEINBY. Minimal ascending tree automata, Acta Cybernet., v. 4 , 1978 , 
p p . 3 7 — 4 4 . 

'[5] GRATZER, G . , Universal algebra, Van Nostrand, Princeton, N. J., 1968. 
[6] MAGIDOR, M . and G . MORAN, Finite automata over finite trees, Tech. Rep. Hebrew Univ., Jeru-

salem, No. 30, 1969. 
I{7] THATCHER, J . W . and J . B . WRIGHT, Generalized finite automata theory with an application 

to a decision problem of second order logic, Math. Systems Theory, v. 2, 1968, pp. 57—81. 

(Received Oct. 24, 1979) X 



Iterated grammars 

B y L . CSIRMAZ 

1. Notations and definitions 

1.1. Let I be any, finite or infinite, set. S* denotes the set of finite se-
quences of elements of I including the empty sequence which is denoted by e. I + 

stands for I * — {e}. If then |a| is the length of the sequence, in particular 
|e|=0. The elements of I * are called words. The mirror image of a word a is 
denoted by a - 1 . 

If I is finite we refer it as an alphabet. The subsets of £* are the languages 
over I . 

If I does not contain the comma symbol, we define Is as the set of sequences 
of elements of I separated by commas. For example, if 1= {ab, a, b} then 
"a,b,ab" and "ab" are elements of Xs. Clearly r n i s = I U { s } . If a€2? 
then ||a|| denotes the length of the sequence, i.e. the number of commas in a plus 
one. For example ||a, b, ab\\ =3 , \\ab\\ = 1, ||e|| = 0 but \a,b,ab\=6. 

1.2. A grammar or metagrammar is a 4-tuple tS={N, T, P, S) where N and 
T are disjoint finite sets of nonterminal and terminal symbols, respectively, P is 
a finite set of production rules of the form a—P where adN+, f}£(N{J T)*, and 
S£N is the starting symbol, i f ( ^ ) denotes the language generated by 'S. 

Grammars are.,classified by the structure of their production rules as it can 
be seen in Table 1 below. The language LczT* is of type x (=0 , 1, 2, 3) if there 
is a grammar of type r generating L. The family of languages of type T is denoted 
by xCO-

is of type if a ->- P £P implies 

0 (phrase structure) anyway 

1 (context sensivite) 5 does not occur in /? and either |a| s \P\ or a =S and fi '—e 

2 (context free) |a| = l 

3 (regular) |a| = 1 and either \[t\ ^ 1 or /? is of the form in where t£T and n£N 

Table 1. 
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1.3. An iterated grammar is a 5-tuple J={Z, N, T,P, S) where Z and T 
are disjoint finite sets none of them containing the symbols =>• and , (double arrow 
and comma). NQZ+ is the set of nonterminal symbols, T is the set of terminal 
symbols. P is the set of production rules of the form a=>/? where a£Ns— {e}, 
Pd(N{JT)s and S£N is the starting symbol. The sets N and P may be infinite. The 
language ££(J) generated by the iterated grammar J is a subset of T* the elements 
of which can be derived from S in the usual way using finitely many production 
rules only. During the derivation the commas serve as separators between the 
symbols but they are abandoned at the end. 

Iterated grammars are classified also as Table 2 shows. 

J is of type if a =» implies 

0 anyway 

1 S does not occur in P and either | |a| | s ||/?|| or a = S and /? = S 

2 llall = 1 

3 ||a|| = l and either | | /? | | s l or is of the form /, w where / g r a n d W£N~ 

Table 2. 

The iterated grammar J = (Z, N2,T2, P2, S2) is said to be generated by the 
metagrammar <S={N1, Tx, Px, Sx) if 

Z = Tx-T2 ?t 0, N2 = Z+,- r 2 g r i ; P2= <£(<§). 

An iterated grammar is of type (a, T) if it is of type T and there is a metagrammar 
of type <r which generates it. A language L is of type (cr, T) if there is an iterated 
grammar of type (a, T) generating L. The family of languages of type (a, T) is de-
noted by /(<7, T). 

2. The theorems 

Because every finite language is regular, and y(t)Qy_(z') if i g t ' we have 
the following 

PROPOSITION. If a ¡ s o ' a n d T ^ T ' t hen 

Z(R) G Z(3, T) G Z(CR, T) G x(< T') I *(0). 

Theorem 1. / (3, T)=/(T) for T=0, 1, 2, 3. 

Proof. For T=0 the Proposition implies the statement. For the other cases 
first we need a 

LEMMA. Let L g (TU {A})* be a regular language, a ( j r . Then there is a finite 
set R, a regular language KQR* and regular languages K b ^ T * for every b£R 
such that 

L = {w1aw2a... aw„\ w^K^ and bxb2...bn£K}. 
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REMARK. The converse of the Lemma is evidently true, i.e. if K and the Kb's 
are regular languages then L is regular, too. 

Proof of the lemma. It is well-known (see, e.g., [1]) that L — {e} can be generated 
by a regular grammar <^={N^T\J{a}, P, S) where P consists of rules of the 
form A-+x and A-xB only (A, B£N, x£ TU {a}). Now define P0, Q0, QtQP 
as follows. 

P0 = {x£P: a = A - aB for some A, B£N}, 

P± = {a£P: a = A - xB for some A\ B£N, x£T), 

Qo = {«€7*: a = A — a for some 

Q1 = {<x£P: a = A - x for some A£N, x g r } . 

Obviously, / , = P o U / , i U 0 o U 0 1 . Let s and / be two new symbols (for start 
and finish) and define 

R ={<«,/*>: a, P£P0UQ0}U {(s, /?): jSePoU0o}U {<«,/>: «6/»0Ue0}U {<s, />}• 

The languages for (a, P)£R will be the "cuts" starting after symbol a generated 
by the rule a and ending before the next symbol a generated by the rule fi. We need 
two more definitions. For A£N let 

f {A -» e} if A — aB£P0 for some B£N or A - a£Q0, 
Po(A)={0 otherwise, 

PJA) = P1U{B-»x: B ^xACPj. 

Now we are ready to define the languages for all (a, /})£ R. If a £ g 0 , P£P0UQ0 
then let K<Xifi> = &, K<Xif> = {s}. If <x = A^aB£P0 and either P = C^aD£P0 or 
fi=C^a£Q0 then K^ ^ is the language generated by the grammar (N, T, Pa(B){J 
UPi(C), B), K(SiP) is the language generated by (N, T, Pa(S)U P1(C), S) and KM) 
is generated by <N, T, P 0 ( 5 ) U / ' 1 U 2 1 , Finally, JsT(s,/> is the language generated 
by <N, T, P1UQ1, S) plus the empty word if it was also in L. 

What remained is to define the language K. It is the one which is generated 
by the grammar 

(P0UQ0U{s,f},R,PK,s) 
where 

<oe, /?>/?: (a, (1)£R, p ^ f and * 0}U 

U {a - (a, / > : (a, f)£R and K(7<f> * 0}. 

It is easy to check that R, K and the Kb's satisfy the requirements. • 

Now we return to the proof of the Theorem 1. Let P be the regular set of pro-
duction rules of the iterated grammar N, T, P, S). In this case 
P g ( I U T U (=>}U { , })* and neither the double arrow nor the comma is an 
element of EUT. The double arrow must occur exactly once in every production 
rule, so, by the Lemma, there are regular languages Pf and Pf over XUT\J { , } 
such that P is the finite union of languages 

{wx =>• w2: w^Pj, w2£Pf}. 
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Applying the Lemma to the languages Pf and Pf with the comma as the special 
terminal symbol, we get languages Kf and Kf over disjoint alphabets Rj and Rf 
for each j, and finitely many regular languages Kt over IUT indexed by the ele-
ments of / = g (RjURf). To be more precise the K?s are subsets of I + U T . 

j 
For define the relation w x s w2 as w1£Ki~-*w2£Ki for all id I. 

It is clear that this is an equivalence relation and there are finitely many equivalence 
classes (no more than 2k where k is the cardinality o f / ) . The definition of equivalence 
means that if a £ P is a production rule, is a nonterminal symbol in it and 
WJEWJ then putting w2 in places of the nonterminal occurences of vvt in a the re-
sulting word is in P, too. Therefore every derivation can be rewritten so that it 
contains at most one element from each equivalence class, i.e. only finitely many 
different nonterminal symbols are used. It means that the languages A", can be 
assumed to be finite, or, equivalently, to have one element. This element will be 
denoted by n(i). 

We now have finitely many regular languages Kf and Kf over the finite set I, 
and a function I—(NUT) such that range (/¿). The set of production rules 
was reduced to the finite union of sets 

{wi=>wt: w^Pj, w ^ P f ) 
where 

PLi = M'i), Kh), •••> fi(i„)- hh-hiKj), 

Pf = PO'i). •••> M'n): hU.-.i^Kf). 
Our next aim is to show that the Kf's are finite languages. If- not, there are arbitrary 
long elements in K f , i.e. fixing some w2£Pf there is an x£Kf such that |-x|>||w2|| +1-
Let w ^ P f be the word belonging to x. Then | | iv j = |x| >||vv2|| + 1 which contradicts 
the assumption that r) with t > 0 . 

If in the languages Kf we replace /£ / by pi(i) if p(i)dT then the following set 
of production rules 

2 = UK-vv2: w^Kj, w2£Kf} j 
generates the same language as P does. Moreover if all of the rules of P are of 
type T, then the same is true for Q. 

Now we are able to give a finite grammar which generates the same language 
as J does. It is enough to start from Q and we may assume that TQI and I—T 
is the set of nonterminal symbols of Q. 

Case t = 3 . The same argument as above shows that the languages Kf must 
be finite. Therefore Q is finite and obviously of type 3. 

Case T=2 . Because Kf is a regular language it is generated by some type 3 
grammar (Sj={Nj,I,Pj, Sj> where Nj and I are disjoint sets, SJ^NJ and the 
JV/s are disjoint for different j's. The grammar Q is of type 2 so w£Kf implies 
>v£/. Now take the following set of rules: 

Qj = {w - Sj: w£Kj}{JPj. 

Obviously, U Qj is finite and of type 2 and S£(Q)=J5?((j Qj)-J j 
Case T=1. Kf is finite, so we may assume that it contains only one word, 

w{, and let 1^1=«^. The lengths of the words of Kf are at least n}, except if w{ 
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is the starting symbol, then Kf may contain the empty word, too. If we fix the first 
tij symbols of the right hand side of a rule then the remaining part forms a regular 
language, which may be empty. There are only finitely many words of length rij, 
therefore we may drop them into different sets, i.e. we arrive at 

2 = U M - w£Kf}UQ* j 

where = Kf is regular, and Q* is either empty or contains the rule <S—e 
only. The method of Case 2 now gives immediately a finite language of type 3 
generating only a little care should be taken of the empty word in K f . • 

REMARK. A close examination of the proof shows that given some regular 
metagrammar 'S and an iterated grammar J- generated by <&, there is an effective 
procedure which gives from ^ and J a grammar ^C for which 

Theorem 2 . / ( 2 , 3)=x(0). 
Proof. By the Proposition, it is enough to prove that '¿(2, 3)5x(0) . Let 

^ = (N, T, P, S) be a type 0 grammar and assume that the comma and the double 
arrow are hot in NUT. We give the iterated grammar of type (2, 3) simply by list-
ing its production rules, which form evidently a context free language, or, what 
is more, a deterministic one. 

Choose a new symbol f for each i£Tand let T={i: t£T). Change all terminals 
in the production rules to their counterpart, let P be the resulting set. Let Z=N(J T 
and R a new symbol not in Z or T. The desired iterated grammar is 

J = {I\J{R},(I\J{R})+,T,Q, S) 
where Q consists ̂  of 

¡ i i a - ^ a ] ! for.each a€Z* 
yx5 ^Rd^p^y'1 for each y, d£Z* and a - p£P 
[fa =>t, Ra.-1 for each t£T and a£Z*. 

The production rules of J are of type 3, the derivations of the grammar ^ a re 
encoded in the nonterminals of in a straighforward way. • 

, Abstract 

The definition of the programming language Algol 68 [2] raised the following problem: I f 
a grammar is not given by some finite description but itself is a language generated by some meta-
grammar, what strength may the iterated grammar have? We show that a regular metagrammar 
does not increase the strength of the iterated grammar, but a context free metagrammar (even a de-
terministic one) with a regular iterated grammar has the strength of the phrase structure grammars.. 
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d-dependency structures in the relational model of data 

B y G . CZEDLI 

I. Introduction 

The use of the relational model of data structures proposed by E . F . CODD 
[2, 3] is a promising mathematical tool for handling data. In this model the user's 
data are represented by relationships. For definition, let Q be a finite non-empty 
set, and for each b£Q let Tb be a nonempty set associated with b. The elements of 
Q are called attribute names and Tb is said to be the domain of b. Now a relationship 
over Q is defined to be any finite subset of JJ Tb. A relationship R over 

b£Si 
Q={a1, . . . ,#„} can be represented by a two-dimensional table in which the columns 
correspond to attribute names and rows correspond to the elements of R: 

fll a2 ... 

g g ( « l ) g(«2) g(a„) 

(geR and g{a^Ta). 
This table is not unique, the order of columns and that of rows are arbitrary. 
The concept of functional dependency is due to E . F. CODD [2, 3]. For the 

definition, let A and B be subsets of Q and let J? be a relationship over Q. We say 
that B functionally depends on A in R (in notation A B or simply A —— B) if 
for all g, heR 

(Va€A)(g(a) = h(a)) =>(Vb£B)(g(b) - h(b)) 
is satisfied. The link A-£-»B is said to be a functional dependency. 

From the above definition we can obtain three other concepts of dependency 
by changing the quantifiers. Particularly, the concept of ¿-dependency is introduced 
as follows: 

DEFINITION. Let A and B be subsets of Q and let R be a relationship over Q. 
B is said to be d-dependent on A in the relationship R (in notation A -j-» B or simply 
A-±~B) if for any g, h£R 

(3a£A)(g(a) - k(a)) =>(3b6£)(g(b) = h(b)) 
holds. 

4 Acta Cybernetica V/l 
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In any relationship of a time-varying data structure at a particular moment 
of time there are dependencies. Some of them may be fortuitous or unimportant, 
but it is reasonable to require that at least certain dependencies be present at any 
time. Organizing the data structure and some of the user's activities can be based 
on these constant dependencies. In case of functional dependencies this has been 
shown in Codd's papers [2, 3]. Now we want to show the applicability of in-
dependencies in this aspect. For this reason we give an example. Let 

Q = {author, title, room, bookcase} 

and let a relationship R be given in the following table: 

author title room bookcase author title room bookcase 

1 1 1 2 10 10 3 2 
2 2 1 3 11 11 3 3 
3 3 1 1 12 12 3 1 
4 4 1 2 1 4 1 1 
5 5 2 3 5 8 3 3 
6 6 2 1 4 1 1 3 
7 7 2 2 7 10 3 2 
8 8 2 3 6 10 2 2 
9 9 " 3 1 6 9 2 1 

For the sake of visibility we can think R is a library in which eighteen books are 
stocked. The library consists of three rooms, each room has three bookcases, and 
only two books can go in each bookcase. The library is organized so that 
{author, title} {room, bookcase}. Furthermore, the book with au thor= t i t l e= / 

0 = 1, 2, . . . , 12) is in the [ — | p ] - t h room in the | l + 3 j y j j - t h bookcase. (Here [x] 

denotes the largest integer not greater than x and {x}=x—[x].) A reader who 
knows that either the title or the author of a particular book is, say, i can find the 

book by scanning the p ^ j - t h room and the | l + 3 j y j j - t h bookcases only. 

Now in connection with this example we try to express why the concept of 
¿-dependency can have some practical importance. The task of obtaining informa-
tion from a given data structure is closely connected with the dependencies that 
are present in the data stucture. So, when we list some possibly advantageous prop-
erties of using ¿/-dependencies below, we restrict our interest to the case of obtain-
ing information only. Suppose the user "knows" the values of attributes of a given 
set A of attribute names and wants to learn the values of attributes of another set B. 

(1) If A - i ^ B (in a given relationship R) then the user is not assumed to know 
all the attribute values from A. If he knows the value of at least one attribute in 
A and the «/-dependency A-^-B is also given (by a suitable family of functions 

¿a (a£A), da: Tg— ]J Tb, compare with the functions and 1 + 3 j y j in 



¿-dependency structures in the relational model of data 51 

our example), then he can find the values of attributes in B by scanning a part 
of R only. (The values of attributes in B can be not unique if A —-B does not hold.) 

(2) Suppose both A B and A B hold. (This was the case in our example 
with A = {author, title} and B= {room, bookcase}.) Sometimes, in spite of scann-
ing a part of R, the method of (1) can be more immediate than making use of the 
explicit function (p: J] Ta — JJ Tb which describes the functional dependency 

a(A biB 

A-^B, since such a function <p can be given by another table in general. 
(3) One can have A - ^ - B without having A - ^ - B . 
(4) The user can need only at least one value of attributes in B (without knowing 

which one is correct). E.g., this can occur when he is interested in C, B is an inter-
mediate step, and B-~*C holds in an other relationship Q. 

For a given relationship R over Q let 

= {04, B): A c Q, B Q Q, A-^B) 
and 

9r = {(A, B): AQQ, BQ Q, A 5}. 

2Fr and S)R are called the full family of functional dependencies of R and the full 
family of ¿-dependencies of R, respectively. In [1] W . W . ARMSTRONG has given an 
abstract characterization of full families of functional dependencies. Our main 
goal here is to give an abstract characterization for full families of ¿-dependencies. 
Due to duality between the concept of functional dependency and that of d-
dependency, a considerable part of Armstrong's paper [1] is dualized and used in 
the present paper. 

II. Abstract characterization of d-dependencies 

Let Q be a finite non-empty set and let P(Q) denote the set of all subsets of Q. 
We define a partial order ^ over P(Q)xP(Q) by (A, D) iff AQC and 
B ^ D . We recall a definition from Armstrong's paper [1]: 

A subset J* of P ( Q ) X P ( 0 ) is called an abstract full family of functional de-
pendencies over Q if the following four axioms hold for any elements A, B, C and 
D in P(Q): 

(Fl) (A,A)£P.-
(F2) (A, and (B, C i m p l y (A, C)€Jz r . 
(F3) If (A,B)e^ and (A, B)^(C, D) then 
(F4) If (A,B)£^ and (C, £>)€P then (A\JC,B\JD)£F. 

Now Armstrong's abstract characterization of functional dependencies is the 
following: 

A subset 37 of P(Q)xP(Q) is of the form for some relationship R 
over Q iff is an abstract full family of functional dependencies. 

To formulate our main result the following definition is needed. 

4* 
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DEFINITION. A subset Qi of P(Q)XP(£2) is called an abstract full family of 
d-dependencies if the following live axioms hold for any elements A, B, C and D 
in P(Q). (The notation Y will be used instead of (X, 

(Dl) A-~A. 
• (D2) If A - ^ B and B - ^ C then A - ^ C . 

(D3) If A-+B and (C, D)^(A, B) then C - - D . 
(D4) If A-+B and C - - D then AKJC-^BUD. 
(D5) If A-^0 then A=0. 

In the main theorem below an abstract characterization of ¿/-dependencies 
is given. 

Theorem. Let Q be an arbitrary non-empty set of attribute names. Then, for 
any non-empty relationship R over Q, 3>R is an abstract full family of d-dependencies. 
Conversely, for any abstract full family 3> of d-dependencies over Q there exists 
a nonempty relationship R over Q such that !3=3>R. 

REMARK. The case R=0 is excluded from the Theorem. However this fact 
does not mean the loss of generality, since trivially can be characterized by 
@q=P(Q)XP(Q). 

HI. The proof of the Theorem 

It is a straightforward consequence of definitions that &R is an abstract full 
family of (/-dependencies. 

To prove the converse several lemmas will be needed. In what follows all 
concepts and statements concern a fixed set C2={a1, ..., a„} of attribute names. 
For an abstract full family 3> of ¿/-dependencies let us denote the set of 
maximal elements of 

Claim 1. Let us denote (A, B)£Ji3 by A/B. Then Jla has the following four 
properties: 

(Ml) For any AeP(Q) there exist X and Y in P(Q) such that (A, A)i£(X, Y) 
and X/Y\ 

(M2) \ f A / B , C/D and (A,B)^(C,D), then ( A , B ) = ( C , D ) ; 
(M3) If A/B, B^LC and C/D, then AQC; 
(M4) If A/0 then A = 0; 

where A, B, C and D are universally quantified over P(Q). 

Proof. Ml , M2 and M4 are trivially satisfied. Suppose we have A/B, B^C 

and C/D. Then B-^C (i.e., (B, C)e@) follows from D l and D3, whence A—^D 
follows by D2. Now D4 yields AUC-^D. The maximality of (C, D) in 3) implies 
AUCQC, whence we obtain the required inclusion AQC. • 

Let a subset Jl of P(Q)XP(Q) be called an m-family if it satisfies the axioms 
Ml , M2, M3 and M4. 
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Claim 2. For any m-family Jt the set 

3>M = {(A, B)£P(Q)XP(Q)\ there exists (C, D)dJt such that (A, B) ^ (C, Z>)} 

is an abstract full family of ¿-dependencies. 

Proof. It is trivial that 3M satisfies D l , D3 and D5. To check D2, let (A, B) 
and (B, C) belong to 3M. Then (A, BJ and (B, C)^(B2, C2) hold 
for some (A1; B^ and (B2, C2)£Jl. From B1'^BQB2 and M3 we obtain A1QB2. 
Now (A, C)£3M follows from (A, C)^(B2, C2). 

As for D4, suppose (A, B) and (C, D) are in 3)M. Let (A1, B{) and (C l 5 Dx) 
be taken from Jt such that (A, B)^(A1, BJ and (C, £>)2i(Cl5 DJ. Now M l 
yields the existence of an (U, V) in Jt with the property (BX\}DX, B^JDJ^f U, V). 
Since B t Q U and D ^ U , M3 applies. We obtain A ^ U and C ^ U . Thus the 
required (AUC, BUD)£3Jt follows from (A\JC,B\JD)(A^U Q, . ^ UD±) 

• 

Lemma 1. For any abstract full family 3 of ¿-dependencies the family Jla 
of maximal elements of 3 is an m-family. Conversely, any /«-family Jt is the family 
of maximal elements of exactly one abstract full family 

3>M = {(A, B)eP(Q)xP(Q): (A, B) : (C, D) for some (C, D)£jl) 

of ¿-dependencies. 

Proof. D3 yields that any abstract full family 3 of ¿-dependencies is uniquely 
determined by Jl9. The rest has already been proved in Claims 1 and 2. • 

Now we could deal with m-families instead of abstract full families by Lemma 1• 
However, the concept of m-families is still complicated to our purposes. Surprisingly^ 
certain semilattices will be suitable to characterize both abstract full families and 
m-families. For the sake of brevity, 0—1 subsemilattices of P(Q) will be called 
d-semilattices. I.e., y is a ¿-semilattice over Q iff it is a subset of P(Q) containing 
0, Q and the intersection of any two of its elements. The following statements will 
show the significance of ¿-semilattices. First, for an m-family Jt, the semi-
lattice according to Jl, is defined by 

¥M = {A: AQQ and (A, B)£Jt for some B). 

Similarly, for an abstract full family 3, £fa is defined by SpmS). 

Claim 3. SfM and are ¿-semilattices for any abstract full family 3 of in-
dependencies and m-family J(.- ' H 

Proof. It is enough to check that f f M is a ¿-semilattice. From Ml we conclude 
"that Qdifji. M l and M4 yields that Suppose A and B are in SfM, and let 
C, D be chosen so that (A, C)£Jt and (B, D)£Jt. By Ml a pair (U, V)£Jt is ob-
tained such that (AC\B,A^B)^{U,V). Since VQA and V<=B, M3 applies 
and we obtain UQA and UQB. Hence Af)B=U implies AC\Bc£fj{. • 
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Claim 4. For any ¿-semilattice y over Q the family 

Sy = {(A, B)£P(Q)XP(Q): for any X^Sf BQX implies A g X ) 

is an abstract full family of ¿-dependencies. 
The proof is straightforward and so it will be omitted. 

Lemma 2. For any abstract full family & of ¿-dependencies •9'3 is a ¿-semilattice. 
Conversely, any ¿-semilattice coincides with Sf a for exactly one abstract full 
family Q) of ¿-dependencies, namely for 

Proof. We have already proved that Sly is an abstract full family of d-
dependencies and S f a is a ¿-semilattice. First we show that Suppose 
A£Sf and choose BeP(Q), B^A, such that B is minimal with respect to the prop-
erty (A,B)£&y. In order to show that (A, B) is a maximal element in Sy, we 
assume that (A, B)<(C, D)eSy. Then AcC because of the coice of B, and 
we have (A, 2?)<(C, B)^(C, D). Hence we obtain (C, B)£&y. Now B^AiSf 
and the definition of 3>y yield CQA, which is a contradiction. Therefore (A, B) 
is maximal in S y and so 

To show the converse inclusion, suppose A . Then (A, B) is maximal 
in 2iy for some B. Let J f denote the set {X: X£P((2) and AczX}. Since (X , B)i@y 
(XfEJt?), we can assign an element UxC£f such that BQUx and X%Ux. Since 
¡f is a finite semilattice, H= D {Ux: Xe^f} belongs to Now BQH and 
(A,B)eSf implies AQH. If we had He J? then H%UH would contradict 
H=f]{Ux: I ^ } g t / H . Consequently, A<£H and so A = H T h e equality 

has been shown. 
For the uniqueness of 3) we assume that ¡P= = £ f Q i . We denote JtSl 

by Jit. Suppose (A,B) belongs to We can choose elements (Ah Bt) f rom Jti 
( / = 1 , 2 ) such that (A, B)^(AU B^ and (B, B)^(A2, B2). Since A2£^, 
( A 2 , C ) e ^ i for a suitable C. Now M3 yields A1QA2, which implies (A, B)^ 
S(A2, B2). By D3 we obtain (A, B)£&2. We have shown the inclusion 
while ^ Q ® ! follows similarly. • 

A map <p: P(Q)-+P(Q) is called a closure operator (on Q) if for any 
X, Y£P(Q), XQ Y, 

X^X<p = (X(p)q> 
and 

Xcp Q Yep , 

hold. For any ¿-semilattice i f we define a closure operator <py by the following way: 

Xcpy = f l { r : YeSf and XQY}. 

It is easy to see that, for any X£P(Q), Xcpy^. Moreover XeSf iff X=X(py 

Lemma 3. Let a ¿-semilattice and XeP(Q). Then Xcpy={a: ({a}, X)eSy}. 

Proof. Let U denote the right-hand side of the above equality, and let 2)=3y. 
D1 and D3 yield XQU and (X, U)£S. We have (U,X)eS> by D4. Let A be a 
minimal (with respect to Q ) subset of X for which (U, A)eSl. We claim that 
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(U, A)£M3. TO show this let the opposite case, (U, A)<(V, be assumed. 
By the choice of A we have UaV and (U, A)<(V, B). We obtain 

(F, A)£® by D3, 
(A, X)£@> by D1 and D3, 

(V, X)d® by D2. 
Now ({0}, X)£2! for any V by D3. This means VQU, which contradicts Uc.V. 
Thus we have shown (U, A)£Jia. Therefore U(i£fa, whence U^Hf by Lemma 2. 

Now X ^ Q U follows from X Q U and U££f. To make the proof complete 
we have to show that if XQC£SP then U ^ C . Suppose X ^ C ^ y and choose 
an element D£P(Q) such that (C, D) is a maximal element in Since ((/, A) is 
also a maximal element in 3 and A § XQ C, we obtain UQC from M3. • 

A 
COROLLARY. Let y be a rf-semilattice and let X£P(Q). Then X£Sf iff ({a}, X)£@<r 

for a£X only. 
The concept of ¿-semilattices is already simple and worth being connected with 

relationships. A natural connection is given in the following definition. 

DEFINITION. Let R be a relationship. We define ¿fR, the ¿-semilattice associated 
with R, t o be SF3R. 

Now, by Lemma 2, we have only to prove that for any ¿-semilattice Sf there 
exists a relationship R such that ¿f The simplest case is settled in the 
following 

Claim 5. Let y = {0,£2}. Then ¡P=yR for any one-element relationship R' 

The proof, which is trivial by definitions, will be omitted. 

For A£P(Q) we define an at most three-element ¿-semilattice9~A to be {0, A, £2}. 
A relatively simple case is handled in the following 

Lemma 4. Let A£P(Q), A^0 and A^Q. Then where R={g,h} 
is a two-element relationship defined by 

g(a)=l for all a£Q, 
h{a)=2 for a£A, 
h(a)=l for a£Q\A. 

Proof. The relationship R can be visualized by the following table: 

Since ({*}, A)$@ r for x$A, we have A£SfR by the Corollary. Hence Now 
suppose X£P(Q), X^A, X^0, X^i2. If / 4 \ X is non-empty, say u£A\X, then 
({«}, X)£@r. Hence u£X<pyR\X. If A\X is empty, i.e. AaXczQ, then 
({»}, X)d@R and v£X(pyR\X for any v£Q\X. In both cases X^X(pyR, whence 
X ^ y R . Therefore 3TA=£fR. • 

and 

A 
a b . 

QjA 
c d 

g 1 1 

h 2 2 
1 1 

* 1 1 



56 G. Czedli 

For ¿-semilattices (ie/) we define the sum of to be the smallest 

d-semilattice containing ¡fx for all iel. It is easy to check that : 

Claim 6. Let (ie I, I finite) be ¿/-semilattices over Q. Then the following 
equality holds: 

= M X } -
, ¡a •€/ 

Now we introduce an addition concept for relationships, which will be in 
a close connection with the addition of ¿-semilattices. 

DEFINITION. Let J?F (iel, I finite) be non-empty relationships over Q, where 
IJTb. i - For iO and f£Rt we define f e ff ({¿}xTbJ) by f ( b ) = (i, f(b)) 

(be Q). Set R[= { / ' : feRi). Then % Rt, the sum of Rh is defined to be (J Ri-
ta HI 

Roughly saying, we obtain 2 Rt if we make Rt (¿e I) pairwise disjoint by in-
¡6/ 

dices and take their disjoint union. 
A crucial step of our proof is 

Lemma 5. Let Rt (ieh I finite) be arbitrary relationships over Q. Let 2 Ri 
¡6/ 

be denoted by R. Then SPR= 2 SFR.. 
»6/ 

Proof. Let S)R, 3>R., SPR and i f R . ( i e l ) be denoted by y and re-
spectively. First we show that for any (A, B)eP(@)XP(Q) • 

(A,B)e@ iff (A,B)eS>i for all iel. (1) 

Suppose (A, B)eS. Let g, heRi such that g(a)=h(a) for some a£A. Then g'(a) = 
=h'(a) as well, whence gi(b)=hi(b) and so g(b)=h(b) for some beB. I.e., 
(A, B)e@i. Conversely, let (A, B)e2'i for all iel- Suppose g\ hJeR and gi(a)=hJ(a). 
Then (i, g(s))=(j, h(a)) implies i=j and g(a)=h(a) in Rt. Therefore there 
exists beB such that g(b)=h(b), from which we obtain g'(b)=(i, g(bj)=(j, h(b))= 
=hJ(b). Thus (1) has been shown. 

Now let us assume that AeSf. We compute by Lemma 3, Corollary 1 and (1) 
as follows: 

A = Ay? = {a: ({a}, A)e®} = {a: ({a},'AK@i for iel} = 

= fl{«: ({a},A)e®] = n ^ r ier mi 

Therefore Ae Z ^ by Claim 6. We have obtained that i f c To prove 
izi mi 

the converse inclusion let AeS^i and suppose Then there exists an ae i2 such 
that aeA<py\A. We have ({a}, A)e@ by Lemma 3 and ({a},A)e@i by (1). But 
({a}, A)e2>i implies aeA<py=A, which is a contradiction. Hence Ae£f and there-
fore V. Finally, &'iQ£/'(iei) implies 2 = ^ which completes the proof. i i l 

Now we can prove 
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Lemma 6. F o r any ¿-semilattice y there exists a relat ionship R such 
that 

) 
Proof. If SP has a t least three elements then L e m m a s 4 and 5 together w i th 

the equali ty 
sr= 2 AZS? 

imply our s ta tement . T h e rest is included in Cla im 5. • 

Finally, L e m m a s 2 and 6 complete the p roof of Theorem. 
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Synthesis of abstract algorithms 

B y L . VARGA 

1. Introduction 

In the second half of the sixties the programming methodology evolved on 
the basis of the recognation that the correctness of a program, corresponding to 
a given specification can be proven, and during the last ten years, the programming 
methodology has become one of the most important branches of computer science. 

The programming methodology has been changed radically and it now in-
cludes broad research areas that deal with both practical and theoretical questions 
of program development and management. The current research directions in pro-
gramming methodology is summarized in [14] and a more detailed description of 
its principal subareas can be found in the books [13], [15]. 

Within the scope of programming methodology important research has been 
concentrated on studying the correctness of programs. In recent years there has 
been increasing activity in this field. There are two different approaches to achieving 
program correctness. 

1. The engineering approach has been aiming at turning the art of programming 
into an engineering science. Its aim is to develop more efficient software tools and 
specify standard that can be used in the process of development of programs as 
a means to improve the relaibility and reduce the software cost. Complete systems 
called automated software evaluation systems, for different phase of software life 
cycle have been developed such a system includes automatic tools for requirement 
and design analysis, testing, maintenance etc. A comprehensive survey of the soft-
ware tools and automated software evaluation systems can be found in [12]. 

Altough the engineering approach generally is not capable of demonstrating 
the correctness of a program, this approach seems to be an effective approach to 
the validation of programs in practice. 

2. The analytic approach uses program verification methods to ensure that 
the desired program conformes to its correctness specifications. The role of soft-
ware verification, the proof techniques and various verification systems are dis-
cussed in the survey papers [5], [7]. 

As far as the analytic approach is concerned, in the beginning the attention 
was focused on a posteriori verification of programs. That is, the problem of the 
program correctness proof was approached in the following way. Given a program 
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and a specification, it is to be proven, that the program realizes exactly the mapping 
stated in the specification. 

Later on, however it turned out, that different programs, which realize the 
same mapping may be essentially different from the point of view of the correctness 
proof. The difficulty of a proof depends on the complexity of the program. 

This led to the conclusion, that the correctness of a program has to be established 
during its construction. Programs have to'be designed such'a way, that the proof 
of their correctness should be simple. In fact, first a correctness proof has to be 
constructed and than a corresponding program to this proof should be given. This 
is the constructive approach to achieving program correctness, which represents 
one of the most significant advance in programming methodology. This approach 
has produced various program design and construction methods ([1], [3], [10], [17]). 
This methods require as input a specification of what is to be achieved and produce 
as output a program text which is a specification of how is to be achieved. 

The methods initiated by the constructive approach have made a fundamental 
contribution to the synthesis of programs in extracting principles for deriving pro-
grams systematically from their specifications. These principles are formulated pre-
cisely enough to be carried out by an automatic synthesis system in [8], [9]. 

The main steps of an automatic program synthesis system are. 
1. The system accepts specifications, which describe some function to be real-

ized by means of primitives of a well defined system. Generally these primitives 
are the statements of a programming language. 

The basic approach is to transform the specifications step by step according 
to certain transformation rules, which are guided by two kinds of strategic controls: 

2. Some transformations attempt to transform the specifications into equivalent 
specifications or replace them by stronger assertions about the states of the desired 
programs. The aim is to produce an appropriate form for applying programming 
strategies. 

3. Other transformations attempt to transform the specification into the de-
sired program text, decomposing a given program description into subprogram 
descriptions. 

These new descriptions are transformed into newer ones repeatedly until a pro-
gram text of a source programming language is obtained. 

In this paper we concentrate on the third problem, and programming strategies 
are formulated for developing the desired abstract programs step by step using the 
Hoare's deductive system [3]. The levels of abstraction are used with the Vienna 
Definition Language [16]. This language permits concentration on logical solutions 
to problems, rather than the form and contraints within that the solution must be 
stated. The language helps the programmers to think in terms of hierarchy of macro 
statements and express structured programming logic in stepwise refinement of 
a program and its data structure. 

We are influenced by the strategies formulated by N. Dershowitz and Z. 
Manna [2]. The essence of our paper is the presentation of similar strategies 
applied to VDL-programs. 

The programming strategies are based on the Hoare's deductive system. Ex-
tending the Hoare's methods to VDL-statements of similar structure to the state-
ments of usual programming languages is relatively simple. However the inde-
terminism — which means, that the VDL-language allows programs to be written 
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in that the execution order of the statements is not predefined — presents a special 
problem. The programming strategies of such structures can be formulated by 
using the results of correctness proof of parallel programs [4]. A detailed treatment 
of correctness proofs of parallel programs can be found in Gries and Owicky's 
papers [11]. 

The next section presents the b a ^ strategies for developing VDL-programs 
from appropriate forms of specificatiOTS. 

In Section 3 the VDL-graph is defined as an abstraction of a class of data 
structures. The VDL-graph specify a connected graph which has one entry node 
at least, but may have several terminal nodes and there must be a path from one 
entry node at least to a terminal node through every node in the graph. 

In Section 4 the deductive technique is illustrated by the example of an abstract 
graph walk algorithm. Sections 5 and 6 demonstrate the application of VDL-graph 
to specifying a linkage editor and an inverse assembler model, respectively. 

2. Strategies for stepwise refinement 

In this section the main strategies are formulated for developing a VDL-
program from its specification. 

The following notation will be used 

№ p № 

where Q and R are logical statements about states of the abstract machine (VDL-
machine) and P is a VDL-program (program-tree). This may be interpreted as 
follows: If Q is true before execution of a VDL-program P, and if the execution 
terminates, then R will hold after executing P. This notation expresses the partial 
correctness of a VDL-program P with respect to its input specification Q and out-
put specification R. 

Our initial goal is to synthesize a program of the general form 

{*(£)} stmt(Xl, x2, ..., xn) {Q(c0)f\xx = / I ( £ „ ) A X 2 = / 2 ( £ O ) A . . . A X „ = / „ ( £ „ ) } 

where C0 is the initial state of the abstract machine and / l s / 2 , . . . , f„ are given func-
tions. We require that the output state c of the desired program stmt satisfy the 
given specification R(J;), provided the initial state c0 satisfies the given input speci-
fication 0). 

In order to synthesize the program this top-level goal may be transformed 
into equivalent goal or it may be replaced by a stronger goal, which can be achieved 
by an assignement (value returning) instruction or reduced to subgoals by using 
the following strategies. 

2.1. The strategy of assignment. Given the goal of the form 

< s - q : e'j), ..., (s—cn: e^»)} e'0: stmt (x1 ; ...,xk) {Q(x 1( ...,xk\ £)} 

where the selectors s—cl,s—ci,...,s—cn are independent, and 

e'i = xk; £), ' = 0> " 
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then this goal can be achieved by the following value returning instruction 

PASS: e0(xi, ..., xk; 0 
s-ct: e1(x1, ...,xk; 0 

2.2. The conditional strategy. A goal of the form 

{q1Vq2V...Vqn} stmt {p} 

can be reduced by the conditional instruction 

stmt = 
Pi — stmt! 
p2 " stmt2 

T — stmtn 
to the subgoals 

{ f t } stmt! {pAPi}, {q2} Stmt2 {pA~\p1Ap2}, ..., {qa} stmt„ {pA 1 pjA... A 1 
Any control tree can be constructed by using only the following two macro 

definitions: 
stmt ~ 

stmti, 
stmt2 

and 
stmt — 

null; 
stmtl5 

stmtn 

The strategies for these basic forms will now be given. 

2.3. The strategy of composition. A goal 

{r} stmt {p} 

can be decomposed by the instruction 

stmt = 
stmti, 

stmt2 
to the subgoals ' 

{q} stmt2 {p} and {?} stmt1 {q}. 

2.4. The strategy of indeterminism. Given a conjunctive goal of the form 

{q1Aq2A...Aq„} stmt fo A ft A... Ap„} 
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then it can be reduced by the instruction 

stmt = 
null; 

stmt1, 
stmt2, 

stmt„ 
to the following subgoals 

{<¡1} stmt! {P!>, {q2} stmt2 {p2},..., {qn} stmtn {p„} 

provided these theorems are interference-free. This property of the theorems is 
defined as follows: 

Definition 2.1. Given a control tree t with the theorem 

M * to (0 

and the value returning instruction stmt with some precondition pre (stmt). If the; 
execution of stmt after t does not alter the validity of q, that is 

{q} stmt {pre (stmt)A q} 

and the execution of stmt before any st within t does not alter the validity of the 
precondition of st, that is 

\ 

{pre (si)} stmt {pre (stmt) A pie (s/)} 

then we say that stmt does not interfere with theorem (i). 

Definition 2.2. Given the theorems 

{?i} stmt! { p j , {q2} stmt2 {p2},..., {qn} stmt„ {/?„} (ii) 

and let sti be a value returning instruction within stmt^. If for all i, i= 1, 2, ...,n 
sti does not interfere with 

{qj} stmtj {pj}; j = 1, 2, ..., n, j ^ i 

then the theorems (ii) are interference-free. 
Accordingly, in applying the strategy of indeterminism, we must ensure the 

interference-free. If qi,q2,...,qn are statements about different components of 
the state £ and similarly pi,p2,...,p„ do not contain common variables and the 
macros stmtx,stmt2,...,stmt„ operate on independent components of £ then the 
interference-freeness obviously satisfies. 

The conditional strategy has an important special case: 

2.5. The strategy of iteration. A goal of the form 

{9} stmt {/>} 
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•can be decomposed by the iteration 

stmt = 
px — stmt2 
T - stmt; 

stmti 
t o the subgoals « 

{p} stmt! {pA ~1 Pi} and {q} stmt2 {pA px} 

provided the iteration terminates. 
Here the conjunctive goal pApv is achieved by forming an iteration so that 

the predicate p remains invariant during the iteration until the predicate pt is 
found false. 

In the special case of q=pApl} the instruction 

stmt = 
Pi — null 
T - stmt; 

stmti 

can be used for reducing our goal to the subgoal 

{p} stmti {pAlPi} . 

At last a rule will be given here, which can be used for proving the termination 
of an iteration. 

2.6. The rule of termination. Let the iteration 

stmt = 
Pi — null 
T — stmt; 

stmti 
with the precondition 

pre {stmt) = p 
be given. 

Let u be an integer function of the appropriate variables. If 

a) p u ^ O 

b) pA*lpx z> u > 0 

c) {«' < u} stmti { p A l p J (u' is the value of u after stmtj) 

d) and any assignment statement, that can be executed parallel with the 
statement stmt does not interfere with the theorem c; 

then the iteration terminates. 
For example, the termination of the iteration 

process (t) = 
length (list)=0—null 
T-»process (tail (/)); 

proc (head (t)) 
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is guarantee!, because for the function 

u(i) = length (0 
with the precondition 

is-pred-list (t) 
all the criterions a)—d) hold. 

3. The VDL-graph 

The graph, that can be walked from its entry nodes, plays an important role 
in programming. In this section the definition of the VDL-graph is given, which 
can be viewed as an abstraction of graph data structures. 

Let 
is-node-set=({(s: is-node)|is-select (s)}) 

is-node=((.?-value: is-pred), (s-desc: is-select-list)) 

where "is-select" and "is-pred" represent arbitrary predicates. Such an object is 
shown in Figure 3.1, where 

ad {x|is-pred (x)} 
and 

s, s;6 {s'|is-select (s')} 
Let 

is-node-set ( / ) = T 
The notation t£f is used if 

( 3 s, is-select (s) = T ) ( s ( f ) = t). 

Definition 3.1. Let t£f and «€/. The node n refers to t if and only if 

( 3 /, l á i á length (s-desc («))) (elem (t')(s-desc («))(/) = t). 

Notationally, we shall use the form 

Definition 3.2. The node tk is reachable from node t1, or there exists a reference 
path from t1 to tk if and only if 

« 

t1=>t2=* ...=>tk, (t^f i = 1 ,2, ..., k). 

We shall use the following notation for the reference path 

h=>*tk. 

Definition 3.3. The set of VDL-graph is 

{g|is-pred-graph (g)} 
where 

is-pred-graph = is-node-set 

and there exists a non-empty subset M(g) of the nodes of g distinquished with the 
property that any node n£g and n$M(g) can be reached from at least one 
element of M(g). 

S Acta Cybernetica V/l 

© 
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The elements of M{g) are called directly reachable nodes. - • 
Consequently each node of a -VDL-graph can be reached from at least one 

directly reachable node. 

Definition 3.4. Let root (/) be the function, for which 

next (i)(n) - (elem (i) (s-desc (n))(g), 1 ^ i ^ length (s-desc (n)). 

These functions can be used as selectors; for example 

value.next (2).next (1).root (3)(g)=value (next (2)(next (l)(root (3)(g)))). 

Using the functions defined above, the structure of a VDL-graph can be visual-
ized by a graph. For example, the VDL-graph, denoted by the following relations 

g = /¿ 0«root( l ) : «!>, (root (2): n2>, (s3: n3), <s4: n4), (s-D: n5>), 
= /¿0((s-value: a), (s-desc: (s3, s4)>). 

H, = ¿¡0((s-value: b), (s-desc: (s4))), 
«3 = /i0((s-value: c), (s-desc: ( >)), 
«4 = ^o(<s-value: d), (s-desc: (s5, s2))), 
«5 = >o((s-value: e), (i-desc: ( » ) , 

if 

and' let 

root (/) = s¡, i = 1, 2, ..., n 

M(g) = {Si(g), s2(g), ...,s„(g)} 

value (n) = s-value (n), 

., n 

can be represented by the graph shown in Figure 3.2. 

root(l) root (2) 

I 
next(l) next(2) next(l) next(2) 

a 

elem(i') 

I next(l) 

Fig. 3.1 
A node set 

Fig. 3.2 
A VDL-graph 

The nodes of the graph in the Fig. 3.2 are circles and the values yielded by the 
nodes are put in the circles. The relationships between the nodes are represented 
by arrows and the arrows are named by the function next (/). 
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t 

The figure of a VDL-graph reflects its structure in this way, but the formula 
of a VDL-graph does not do it directly. However it is not difficult to construct 
a formula that also satisfies this requirement. This problem is not dealt here. 

In Definition 3.4 selection operations are defined on the VDL-graph. Con-
struction operations can also defined on it, but we intend to deal with statical VDL-
graph only, hence construction operations' are not defined. 

4. The synthesis of the graph walk algorithm 

The graph walk is a fundamental operation. Most of the selection and con-
struction operations of a graph can be established on it. 

A graph walk can be carried out according to different strategies. In a graph 
walk algorithm each node of the graph is processed one after the other. The walk 
strategy determines the order of the nodes to be processed. In the following, we 
present a systematic development of a general graph walk algorithm, where the 
walk strategy and the operations over the nodes are not specified. In this way an 
abstraction of the graph walk algorithms is given from which concrete graph walks 
can be deduce by the specification of the walk strategy and the operation over 
the nodes. 

Our top level goal is 

Goal 1. 

{is-target-graph (g')} g': walk (g) {is-source-graph (g)} 

where the map trans: {jt|is-source (x)} — {>|is-target (>•)} 

is not specified. Therefore the function trans will be used as a parameter of the 
desired algorithm: 

walk (g; trans). 

Let the set of states of the abstract machine be ' 

{ijis-state (£)} where 

is-state=«s-graph: is-pred-graph), (¿--table: is-table), (¿-control:is-control)). 

The component ¿-graph (c) is the graph g to be walked. The component 
¿-table (c) is used to mark which nodes of the graph g have been processed. Therefore 

is-table=({(s: is-value)|is-select (5)}) 
where 

is-value = {Y, N} 
so that 

s(s-table (c)) = Y 

if and only if the s-value (s(g)) has been maped to a target value. . 

5* 
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We do not intend to specify the walk strategy. Therefore we introduce the 
function • 

next-selector 
as follows: . 

Definition 4.1. The function next-selector is a function over the set 

{f|is-table (0} 
and the range of the function is 

is-selectU {i2} 
so that if 

( 3 s, is-select (s) = T)(s(t) = F) 

then next-selector provides a selector s with the property 

s(t) = N 
else 

next-selector (t) — Q. 

Informally, the function next-selector (t) provides one of the selectors of the 
table t as s(t)=N, if such an J exists and the object Q otherwise. 

It is supposed that if the function next-selector is applied to the same table 
t several times the result is the same. 

The function next-selector will also be used as a formal parameter of the desired 
algorithm and the formal parameter g will be omitted, because it is a component 
of the state £: 

walk (; next-selector, trans) 

and it is not a value returning macro. 

We can now define the initial state c0 of the abstract machine as follows 

<j;0 = /i0((s-graph: g), (s-table: t0), (s-control -.walk (; next-selector, trans))) 

where is-source-graph (g) = T 
and 

/„ = »<>({(*•• N)\s(gKM(g)}). 

Hence the input specification is 

<H£o): s-table (^0) =/i0({<s: N)\s(g)eM(g)})A is-source-graph (g)Ag = s-graph (g), 

and our goal is 

Goal 2. 
{is-target-graph (s-graph (£))} walk (; next-selector, trans) {<p (iu)} 

where the formal specifications of the formal parameters next-selector and trans 
are disregarded. 

In order to synthesize the program, we must find a sequence of transformations 
to yield an equivalent description of the specification, that can be reduced by apply-



Synthesis of abstract algorithms 69: 

ing one of the strategies given in Section 2. First let us intend to prepare the applica-
tion of the strategy of iteration. 

To produce an appropriate form of the output specification, let us specify 
the invariable properties of the data structures. 

Let 
a(s, c) = s(s-table (c)). . . 

Our graph walk strategy could be the following: Each node s'(g) with the 
property 

a(s', Q) = Q 

must be reachable from at least one node s(g) that waits for being processed with 
the property 

• Hence, the formal specification of the data components of £ is 

&(£): R^i, g)AR2(c, g)AR3(Z, g)ARi(L g)AR5(g)Ag = s-graph (£), 
where 

R,(Q, g): (Vs, a(s, 0 * Q)(s(g) * i2)Ais-table (s-table (0), 
R2(q, g): ('is, cc(s, 0 = y)(is-target (s-value (s(g)))), 
R3(Z, g): (YG, is-target (s-value (s(g))))(a(s, 0 = Y), 

g): (Vi ' , s'(g) * QAa(s\ 0 = £2)((3s, a(s, 0 = N)(s(g) => *s'(g))), 
(g) '• is-mixed-graph (g) A is-mixed = is-sourceVis-target. • i 

Theorem 4.1. v 

QiC&zxptf «)• 
Theorem 4.2. 

8i(0 A next-selector (¿-table (c)) = Qz) is-target-graph (s-graph©). 

Hence our goal may be 

Goal 3. 

{2i (i) A next-selector (¿-table (c)) = £>} walk (; next-selector, trans) {2i (£)}• 

This suggests achieving Goal 3 with a recursive call applied to the macro walk 
as follows: 

walk (; next-selector, trans) == 
next-selector (s-table (£))=i2—««// . 
T-^walk (; next-selector, trans); 

process (; next-selector, trans) 

which reduces Goal 3 to the subgoal 

Goal 4. 

{Qi(0} process (; next-selector, trans) {Qx (<;) A next-selector (s-table (£)) ̂  . 

a 
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Furthermore we must ensure the termination of the iteration. To achieve the 
termination, we could require that the number of the nodes s(g) with the property 

«(s, 0 = Y 
be strictly increased with each iteration. Let £/(£) be the number of nodes with 
the above property, then our goal is 

Goal 5. 
{21(?)A£/(<;) > a} process (; next-selector, trans) 

{ Q i 0 0 A n e x t - s e l e c t o r ( s - t a b l e (£))?* Q A U(C)=A}. 

Using the strategy of composition this can be achieved by the macro 
process (; next-selector, trans) = 

process-node (s; trans); 
s: produce-selector (; next-selector) 

reducing Goal 5 to two subgoals 

Goal 6. 

{2i(0Aa(s , 0 = Y A 1/(0 =a +1} process-node (s; trans) 

and 

Goal 7. 

{6i(0Aa(s , c) = NAU(c) = a} s: produce-selector(; next-selector) 

{Qi(OAnext-selector (¿-table (C,))^QAU(C)=a}. 

Goal 7 can.be achieved by the strategy of assignment: 
produce-selector (; next-selector) = 

PASS: next-selector (s-table (£)). 

In order to find a strategy for reducing Goal 5, let us isolate the effect of selector 
s on predicate Predicate Qx has five components. The predicate 

« ( s , f ) = rV«(s ,- i ) = JV 

is of no effect on the first component of Qt. 
Let us consider the components R2 and R3. 

Theorem 4.3. 

Kit, g)AR3(Z, g) = Xei(Z, g, S)AR31(Q, g, s)AQ21(£, g, s), 
where 

^21 g, s): (Vs', a(s', £) = YAs' * s)(is-target (s-value (s'(g)))X 
R3i(Z, g, s): (Vs', is-target (s-value (s'(g)))As' ^ s)(a(s', 0 = Y), 
621 (£> g. s): a(s, 0 = YA is-target (s-value (s(g))). 

Let 'us see the component R4. We have different cases: 
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1- H3" *s'(s) (s'(g) is not reachable from s(g)), 
2. s(g) => s*(g) => * s'(g) and . a(sV 0 * O, 
3. s (g)=>s*(g)=**s ' (g ) and a(s*, c) = i3, 

4. s(g) => s'(g). 

Obviously, we have hot to bother with the first two cases. Hence 

Theorem 4.4. 
w , g) = R,^, g, s ) A e M ( i , r , g, S) 

where 

g, s): (Vs-, s'(g) * QAa(s', c) = i2A l ( ( s (g ) s*(g) => *s'(g)A 

a(s*, 0 = G)Vs(g) => s '(g)))(3s, a(s, £) = JVA5 * s)(s(g) =>*s'(g)), 1 

fis«(i. g, s): (Vs', s(g) - s*(g) => s'(g)Aa(s*, 0 = «(«', i ) = 0)(«(s*, §0 = AO A 

(Vs', s(g) - s '(g)Aa(s' , 0 = 0)(a(s ' , O = N). 
Theorem 4.5. 

ei(OA«(s, <T) = rAtftf') = a + l = s ) A g 2 1 ( f , g, s)AQ22(£, g, s) 
, where 

S) = ^ ( c ' , g ) A * 2 1 ( f , g, s)AR3l(Z\ g, s)ARil(Q', g, s)ARs(g)A 
J g = s-graph (<f). 

Theorem 4.6. 
s)Aa(s, 0 = iVz)-fi1({)Aa(s,.{) = iV. 

Hence our goal is 

Goal 8. 

(Q2(C/, s)AQ21(C, g, s)Ag2(£, g, s)} process-node (s(s-graph ({)); s; trans) 
{Q2(Jl> s)Aa(s, £) = N}. 

We try to achieve it with the strategy of irideterminism of the form 

process-node (n, s; t rans)= 
process-value (trans (s-value (n)), s), 
process-desc (s-desc («)) 

reducing Goal 8 to the siibgoals "' 

Goal 9. 
S)AQ21(£, g, s)}process-value (v, s) 

{QziZ, s)Aa(s, c) = NAv = trans (s-value (s(g)))} 

and 

Goal 10. 

{g2Of, s)AfiM({' , g, s)} process-desc (list) {Q2(£, s)Alist = s-desc (s(gj)} 

provided these are interference-free. 
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Goal 8 can be achieved by using the strategy of assignment: 

process-value (v, s) = • 
s-graph: /¿(s-graph (i) ; (s-value0s: v» 
s-table : //(s-table (£); <s: y » . 

Let us consider Goal 10. The significant part of the specification is Q22. In 
order to try to achieve it by iteration, we attempt to apply the following transfor-
mation: 

Theorem 4.7. 

Ô22 (<T, <--> g, s) = Q22l (Wi, W2) A length (w2) = 0, 
where 

' ô m f a ; (Vs', s(g) =• s*(g) => s'(g)Ax(s*, 0 = a(s', ç) = QAs*6w1) 

(a(s*, O = 7V)A(Vs', s(g) => s'(g)Aa(s', 0 = QAs'£Wl) 

(<x(s\ ç') = N)A WjW2 = s-desc (s(g)). 

We can now achieve our goal by creating an iteration whose exit is length (w2)=0 
and whose invariant assertion is Q2AQ221. The desired program is 

process-desc (w) = 
length (w) = 0 — null 
T — process-desc (tail (vv)) ; 

set (head (w)) 

which reduces Goal 10 to the subgoal 

Goal 11. 

s)a42I(w1<s*>, tail (w2))} set (s*) 

{Q2(Ç, S)AQ221(W1, W2)AS*= head (wa) A length (w2) ^ 0}. 

Obviously, the termination is now ensured. 
Goal 11 can be achieved by the conditional strategy: 

set (s) = ' 
s (s-table ( 0 ) ^ Q - null 
T - link (s) 

which reduces Goal 11 to thé subgoal 

Goal 12. 
{a(s, ç) = N} link (s) {a(s, ç) = Î2}. 

Goal 12 can be achieved by a simple assignment: 

link (s) = 
s-table: \i(s-table (£); <s:iV>). 
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Theorem 4.8. The theorems in Goal 9 and Goal 10 are interference-free. The 
complete program is 

walk (; next-selector, trans) = 
next-selector (¿-table (¿;)) = i2 — null 
T—walk (; next-selector, trans); 

process (; next-selector, trans) 

process (; next-selector, trans) = 
process-node (s(s-graph (c)), s; trans); 

s: produce-selector (; next-selector) 

produce-selector (; next-selector) = 
PASS: next-selector (¿-table (£)) 

process-node (n, s; trans) = 
process-value (trans (s-value («)), s), 
process-desc (s-desc (n)) 

process-value (v, s) = 
¿-graph:/¿(¿-graph ( | ) ; ( ¿-value, s: v)) 
s-table: ju(s-table (£); {s: Y)) 

process-desc (list) = 
length (list) = 0—««// 
T-* process-desc (tail (list)); 

set (head (list)) 

set (¿) = 
s(s-table(0)^Q-null 
T—link (:s) 

link (s) = 
j - table: / i (s- table(0; (s:N)). 

5. An abstract linkage editor 

Let us consider a programming system where the segments refer to each other 
only by the segments name. Then the graph walk algorithm can be applied fo r 
defining- a linkage editor of this system as follows: 

Let 
is-r /¿-program=is-segment-code-graph 

and 
is-select = is-segment-name. 

In detail: 
i s-r/6-program=({< s: is-node)|is-segment-name (s)}), 

is-node=((¿-value: is-segment-code), (j-desc: is-segment-name-list)). 

Let 
editor (r) 
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be a function that maps a segment-code to an appropriate form as needed for link-
ing. The actual mapping is not relevant here. 

Then an abstract linkage editor can be characterized by the VDL-machine 
with the initial state: 

c0=/<0((s-input: p), table: /„}, (s-ccntrol: walk (; next-selector, editor))) 

where 
is-r/^-program (p) = T. 

A linkage editor model of the system in which the segments may refer to each 
•other by entry names different from the segment name, can be defined by a general-
ization of the VDL-graph and the graph walk algorithm. 

6. An inverse assembler model 

Semantics of a class of inverse assemblers can also be defined by the graph 
walk algorithm. 

First of all, let us define the machine code program. A machine code program 
is an ordered set of codes, where a code according to its function, may be an instruc-
tion or a data. That is, those programs are considered where the instructions and 
•the data are not separated. 

Definition 6.1. The set of machine code program is given by 
(p|is-code-list (p)} 

where 
is-code = is-dataVis-simi. 

It is assumed that the program does not alter the instruction code at all .and 
•each instruction code contains the address of the next instruction explicitly that 
•should be executed. 

The instruction code part of a machine code program is called an actual 
program. It is assumed, that an actual program has a finite set of entries, and for 
any instruction at least one entry can be found where starting the program results 
in the execution of the instruction, that is the flow graph of an actual program is 
a VDL-graph: 

Definition 6.2. The set of actual program is given by 
{/|is-instr-graph (f)} 

that is ' 
is-instr-graph = ({(s: is-stmt)\is-select (s)}), 

is-sfmr = «s-value: is-instr), (s-desc: is-select-list)) 

where the predicate "is-iimf" is used instead of "is-node" in the definition of the 
VDL-graph. 

Definition 6.3. Let 
is-code-list (p) = T 

and 
is-instr-graph (i) = T. 
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The actual program Ms a part of the program p if and only if 

(Vs, s(t) * Q)((3 i)(elem (i)(p) = s(tj). 

Definition 6.4. Let 

{a|is-ass-instr (a)} 

be the set of assembly form of instructions be considered. Let the function 

translator: {y|is-instr (t>)} — {«|is-ass-instr (a)} 
be given. Then the abstract inverse assembler is specified by the initial state of 
abstract machine 

£o = ^o«s-input: p), (s-table: /0), (s-control: walk (; next-selector, translator))) 

where 
is-code-list (p). 

7. Conclusions and remarks 

This paper can be viewed as a contribution towards the solution of. some actual 
problem of program synthesis. The specifications used in this paper, describe the 
invariable properties of states of an abstract machine rather than the input-output 
relationship which is expected to be realized by the desired program. The same 
techniques can be applied to specify programs, which are never intended to 
terminate. 

Our example demonstrates the application of deductive techniques for deriving 
program that manipulates the structure of complex data structures like list 
and graphs. 

We have concerned with some aspect of transformation rules for achieving 
more than one goal simultaneously by checking the protection condition of inter-
ference-free. 

Abstract 

Our purpose in this paper is to illustrate a deductive technique for developing abstract pro-
grams systematically from given specifications using the Vienna Definition Language. 

The role and the importance of program synthesis within the scope of programming methodology 
is emphasized. The basic principles and the main steps of a deductive technique for deriving pro-
grams systematically from their specifications is summarized. 

Programming strategies are formulated for attempting to transform the specifications into 
a desired VDL-program and the technique is illustrated by the example of an abstract graph walk 
algorithm. The example includes the definition of an abstract data graph too. 

An abstract linkage editor and a general inverse assembler model are given by specifying the 
graph walk. 

KEYWORDS: Abstract data structures, derivation of programs, program veri-
fication, program synthesis, programming methodology, Vienna Definition Language. 
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On optimal performance in self-organizing paging algorithms 
B y R . I . PHELPS* a n d L . C . THOMAS** 

Introduction 

A large body of literature has grown up concerned with paging algorithms 
[e.g. 1, 3, 4, 6, 10]. In the terminology of Arato [2] a program's address space is 
divided into equal size blocks called page. There are two levels of memory: the 
first level is a fast access device and the second level is a larger, slower backing store. 
These levels are each divided into page frames. If a program references a page in 
the second level a page fault is said to occur. In this case the referenced page is 
brought into the first level and to make room for it another page is selected by the 
paging algorithm to be removed from the first to the second level. 

The objective of the algorithm is to minimize the expected number of page 
faults. Most authors. have considered this problem when either the probability 
distribution of the string of program references is known or when the algorithm 
stores information on the number of times each page has been referenced in order 
to estimate the distribution [1, 2, 3, 4, 10]. 

Interest has recently been shown in a different type of paging algorithm, when 
the distribution is unknown and no information on page references is collected 
[6, 7]. The page references are assumed to form an independent sequence. These 
are self-organizing algorithms. Since no information about the reference probabilities 
is available they can only select the page to be removed from first level memory 
on the basis of its position in the memory. The advantages of this approach are 
that no prior knowledge of reference probabilities is required, and no memory needs 
to be used in collecting information on these probabilities Changing, the algorithm 
will automatically adjust to the new distribution. 

The problem of finding the optimal self-organizing paging algorithm is re-
lated to another problem that has recently received much attention: there is a linear 
array of n storage positions 1, . . . ,« , containing n pages Iy , T2, . . . , / „ , together with 
a self-organizing algorithm T. T acts so that if the page referenced was in position 
j it is moved to position t ( j ) . If t ( j ) < / then the pages in positions j— 1 to x ( j ) 
are all moved back one position each to make room for the page moved from j 
to x(j). If x(/)>/, then the pages in positions j+1 to x ( j ) all move forward 
one position each. No other pages are moved. 
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The objective of the algorithm is to minimize the cost, which is the asymptotic 
expected position of the next page referenced. This is known as the library problem. 

In this context the algorithm r (y) = l, l ^ j ^ n , known as the "move to the 
front" algorithm, has been studied by several authors [5, 8, 11, 12, 13]. McCabe [13] 
found an expression for the cost and for its variance. Hendricks [8] gives the station-
ary distribution of arrangements of pages in the store and Burville and Kingman [5] 
show that the cost is less than 2m — 1, where m is the cost if the reference distribution 
is known and the pages arranged optimally. Letac [12] considers the extension of 
this system in an infinite set of storage positions. Hendricks [9] gives stationary 
distributions for the algorithms t(j)=k, 

McCabe [13] suggested that the algorithm t(j)=j—\, t ( l ) = l , the 
'transposition' algorithm, would have a cost less than that of the move to the front 
algorithm. Rivest [14] gives the stationary distribution of the transposition algorithm 
and shows that the cost of the transposition is always less than or equal to the cost 
of move to the front. He suggested that transposition is optimal for all reference 
distributions and supports this with simulation results. Thomas [15] proves that 
if such an optimal algorithm exists, it must be the transposition. 

Returning to the-specific paging algorithm setting with, two levels of memory, 
we take the first level to have a , capacity of M pages and the second level to have 
capacity N—M pages. The page frames in the first level are numbered 1 to M and 
those in the second level M + 1 to n. We can only consider paging algorithms of 
form T(Z')^M, i > M . ' 

To minimize the number of page faults we take the following cost structure. 
A cost of 1 is incurred whenever a 'page in any of the positions M+1 to N is ref-
erenced. The cost is 0 otherwise. From among the possible paging algorithms, the 
closest to the transposition algorithm is the paging algorithm 'CLIMB' for which 

T(J) = 

M, J > M 

j-1, 2-S j SM 
1, j = 1 

Franaszek and Wagner [6] suggest that CLIMB is the optimal self-organizing paging 
algorithm for all reference distributions. 

The purpose of this paper is to provide supporting analytical evidence for these 
suggestions by showing that in the special case of any reference distribution of 
form pi = ka,p2 =...=/>„=«, where pt is the reference probability of page / , , 
transposition and CLIMB are indeed optimal for their respective cost functions. 

1. Optimality for the special case of library problem 

The intuitive justification for self-organizing algorithms is that when a page 
is referenced its posterior reference probability will increase. Since it. is clear that 
it is optimal to have the pages with higher probability in the first positions, it 
follows that when a page has been referenced it should be moved forward. In this 
way the pages which are referenced most will tend to be moved into the first positions. 

Because of this we restrict attention to algorithms for which T 1 = 7 = « , 
and initially, we will consider only 'forward moving' algorithms, that is T( . / )</ , 
1 ̂ j ^ n . (The results can easily be.extended to . t (y) —j, as will be indicated later.) 
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With the reference distribution p1=ka,p2 = ...=p„=a, pages I2 , . . . , / „ have 
the same probability of reference and hence are equivalent as far as the self-organis-
ing system is concerned, and it only has n different states, depending on the position 
of page I1 . Any algorithm x then gives rise to a Markov chain with n states, state 
i corresponding to being in the z',h position. Let Pz be the one step transition 
matrix for this algorithm, whose elements pjj are the probabilities that referencing 
one page and applying T changes the systém from state i to state - / The limiting 
"steady-state" probabilities for each state under x are ..., x'„) where 
n'=nTPr, provided this exists. Thus the average expected position of the next 
page referenced is 

" i l 
' a à n l [ 2 n (« + l) + i(a- 4 

We will show that the transposition algorithm, which we denote as T, where 
r ( l ) = l, T(j)=j— 1, minimises this expected position among all algo-
rithms t , where x(j)<j, and t(1) = 1. 

For any algorithm x of «4-1 positions, define an algorithm Dx on n positions by 

Z)T(0 = { J 

r ( i + l ) - l if 
if 

T ( I + 1 ) ^ 1 , 

T(i+1) = 1. 

As an example, suppose x is defined on four positions with r ( l ) = 1, t (2 )= 1, t(3) = 
T ( 4 ) = 3 . If the probability of referencing J1 is ka and of referencing the others is a„ 
then 

Pz = 

ka + a 
ka 
ka 
0 

2 a 
2 a 
0 
0 

0 0 
a 0 

2 a a 
ka. 3a, 

The corresponding algorithm Dx on 3 positions satisfied Dx(\)=\, Z ) T ( 2 ) = 1,. 

Z ) T ( 3 ) = 2 , and if the probabilities of referencing 7 1 ; /£, 7 3 are ka', a', a' respectively^ 
then 

ka' + a' a' 0~ ' 
ka' a' a' 
0 ka' 2a' 

pDz __ 

It can be shown (Appendix 1) that 

7TT = ( l -7ri)K?-l , i = 2, ..., n + 1 , ... (1> 

Lemma 1. For any forward moving algorithm x on n positions with px = ka, 

if k s l, 

(ii) k ^ - ^ ^ k ' - ' if N 1 . 

(2> 

(3> 
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Proof. Appendix. 

Lemma 2. With the conditions of lemma 1, n î ^ n } , l ^ i ^ n . 

• Proof. Appendix. 

Theorem 1. For any reference distribution on pages Ix , . . . , l n of the form 
j>l=ka, pz=...=p„=a, then amongst all algorithms t of the form r ( l ) = 1 , i(/)</, 
the transposition algorithm minimises the expected position of the next page 
referenced. 

Proof. We proceed by induction on the number of positions. The result is 
t rue if there are only two positions, as T is the only forward moving algorithm. 
So suppose the theorem is true for «-positions and consider a forward moving algo-
r i thm on n + l positions. The expected position under algorithm x is 

1 n+l 
T ( n + l ) ( n + 2 ) a + a ( f c - l ) 2 

Thus we want to show 

and 

n+l n+l 
TT 2 H ^ 2 if fc ^ 1 

¡=1 i= 1 

n + l n + l 
TT 2 ™J s 2 ^ k = 1 

¡=1 i=l 

fo r any algorithm x. Using (1) we have 

"2 W = ¿(1 - r c i K ^ i = 7Ti+(i -ni) 2 *?'+(! - * D 2 
i= 1 ¡=2 1=1 i=l 

= l iTT? ' . . (4) 
i = 1 

n n 
Assume k s 1, then by the induction hypothesis 2 ' K ? T — 2 i n ? T ' since DT 

i = l ¡=1 
is in fact transportation on «—1 items. Also from lemma 2, Hence the 
induction is completed. 

2. Optimal paging algorithm for the special case 

We can now use these results to prove the optimality of CLIMB as a paging 
algorithm. We consider a 2-level memory with M page frames in level 1 and n—M 
page frames in level 2. We denote the algorithm CLIMB by C. 

Lemma 3. n^nj, L S / ^ n , for all x of form T(1) = 1, T(I)</ , 2 ^ / ^ M ; 
7 i ( i ) = M , ; M < « . 

Proof. Appendix 4. 
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Theorem 2. For any reference distribution p^ka, p2= ...=pn=a, with M 
page frames in first-level memory, M<w, the algorithm CLIMB asymptotically 
minimizes the number of paging faults among all algorithms of form r ( l ) = l, 

Proof. We use induction on n. If n=2, then independent of whether M = 1 
or 2, CLIMB is the only policy in the class we are dealing with. Moreover, for 
any n, if M= 1, then again CLIMB is the only possible policy. Assume the results 
holds for n positions, and look at the case with n + 1 positions and first level memory 
of M+1 items, M=> 1. For any algorithm T in this class, Dx is an algorithm on 
n items with a first level memory of M items. The expected paging cost using algo-
rithm r is 

M+l n+l n+l 

2 n\(n-M)a+ 2 nJ(n-M+k-l)a =(n-M)a+(k-l)a 2 
¡ = 1 I= AI + 2 i-M+2 

Hence we need to show that 

By (1) 

n + l n + l 

2 ^ 2 i=M+2 i=M + 2 

"2 7Zj = (\~7Zl) 2 
i=M + 2 i=M +1 

The induction hypothesis implies that 2 71 fC — 2 n?V' a r | d lemma 3 gives 
i = M +1 i=M +1 

n + l n + l 
jtf^TTi, so 2 2 

i = M + l i=M + 2 

Other algorithms. Two other paging algorithms which can be run in a self 
organizing manner are [6] namely: 

Least Recently Used — where the page which is moved from first-level memory 
is the one least recently referenced. This corresponds to an algorithm t ( j ' ) = 1, 
1 =jSn, which is forward moving and hence inferior to CLIMB at least for this 
reference distribution. 

First In, First Out — where the one to leave is the one which arrived first, 
of those presently in the first level. This is an algorithm where 

T ( / ) = 1 , i=l,...,M, T ( J ) = 1 , 

This algorithm does not seem to be covered by the theorem. However, all the above 
results can be extended to include the cases where x(7)—7- The difficulty is that 
one can then have algorithms which give rise to a Markov chain in which it is not 
possible to get from some states to others. Thus the 'steady state' probabilities 
depend on the initial ordering of the pages. However, if we assume that the initial 
ordering is equally likely to be any of the possible orderings, the above results 
still hold. This is because any set of connected states corresponds to the page with 
reference probability ka being in a set of consecutive positions, and an overall 
transposition algorithm is better than one which is a transposition algorithm on 

6 Acta Cybernetica V/l 



82 . R. I. Phelps and L. C. Thomas 

each set individually. Thus Theorems 1 and 2 can be extended to allow algorithms 
where 

A P P E N D I X 1. Proof of 7RF=(1 — n^nfl^, i=2, ..., n+1. 
For a forward moving T, let S(/|T)— |{r | r>/ , R(/-)̂ /'}|, where \A\ denotes 

the cardinality of the set A. Let 

r(«|T) = {r|r > /7 t ( r ) = i}. 

The / + l l h component of the equation nz—n^Pz then reads 

*f+i = (fca 2 N ; ) + 7ti+1(l-kfl-flS(I+l |T)) + 7rfflS(I|T), IA= 1. (1.1) rem+i|o 

This follows because as z is forward moving a page will only move if it is referenced 
or if the referenced page moves from behind it to in front of it. Thus 7X is in the 
i'+ l 'h position, because either it was in the r'h position previously and was referenced, 
where z ( r ) = i + l , or it was in the / +1 t h position and the page referenced did not 
move it, or was in the zth position and the page referenced moved in front of it. 
Thus 1.1 becomes 

S(i\x)ni+ JTF+1(FC+S(/+L|T))-K 2 TF- (1.2) 
rer(i+i|t) 

Applying the same procedure to the z'lh component of n D = n D z P D \ when the 
probabilities of referencing the pages are (ka', a', ..., a') gives 

S(i-UDz)nfc1 = nft(k+S(ilDr))-k 2 ' — 2- (1.3) 
r€r(i|Dt) 

By the definition of D it is obvious that 

r(i|/>x) = 0'-I |j€7*Ci + I | T ) } , S(i\Dx) = 5 ( i + l | z ) , i = 2, ..., n. (1.4) 

Thus if we identified nflj^ with nj, equations 1.2 and 1.3 would be the same. 
Consider 1.2 for the case i—n. The right hand side of the equation can only 

contain terms in nT
n+1 since z is forward moving and so T ( « + l | z ) is empty, while 

S(«|z) is 1. We thus have a linear equation nz„=Knnl+1 for some constant Kn. 
Since 1.3 is identical with 1.2 except that n f l 1 replaces n] throughout, in the corre-
sponding case it becomes n^lx=K„n%x. 

Now consider 1.2 with i=n — 1. The right hand side can now only contain 
terms in Til a n d nz

n+1. We can substitute K„n„+1 for nT„ and so obtain another linear 
equation n'n_1=K„_ ] TT„+1, for some Kn_x . The same argument implies that 1.3 
will give N°I2=K„_1N°Z. Repeating the procedure gives 

Thus 

and 

Ki-l ni _ v ; , 
~ —T~ - 1 ~

 2 > "n "n + 1 
(1.5) 

i = l \i=2 J 
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s o 7Ii+i = (l ~ a n d hence 

rii =(l-7rD7T?_1, i = 2, ..., n+l. (1,6) 

A p p e n d i x 2. Proof of Lemma 1 . 

Proof. Proceed by induction on n. The result is true when n=2 for the only 
algorithm satisfying the requirements is the transposition algorithm T where 7X1) = 
= 7(2) = 1, and n i l n l = a . Assume the bounds hold for forward moving algo-
rithms on n items, and look at x, a forward moving algorithm o n - n + l items. Since 
Dx is a forward moving algorithm on n items, (1) gives 

nj __ 0 —nl)nfll nP_! 
( l - ^ i ) ^ 

and so, because of the induction hypothesis, 

i — 2, ..., n (2.1:) 

k s i — - s k"-«'-« = i f f c a l , i = 2, ..., n. (2.2) 
K+1 . 

nr 

Thus we only have to prove that k s ^ k". 
7tn +1 

Consider the first component of the equation nT=nTP. Since 7(1 |T) is the 
set of positions that are mapped on the first position by x, page Ix can only be in 
the first position if it was in one of the positions of 7(1 |x) and was referenced, or 
if it was in the first position and the page referenced was not in the set T(l|x). 
Then 

n{=(ka Z 0 + Tri( l-« |7(l |x) | ) (2.3) 
r€r(Ht) 

where |7(1|t)| denotes the number of positions in the set {j|x(j') = 1, j > 1}. Thus 

* , 2 *zrK+i-If k^l, (2.2) already gives 
^i+i |7(l |x)| remit) K+\ 

nT 

^ k r + 1 _ 2 . Thus kn^ —— gfc for k & l . The induction is complete and a similar 
<+x 

proof works for k < l . 

A p p e n d i x 3. Proof of Lemma 2. 

Proof Assume A:Si (the coresponding result for k < 1 follows similarly), 
and assume that n [ ^ n j for algorithms acting on n positions. The result is trivially 
true for n = 2, and so we proceed by induction. For « + 1 positions, using (2.3) 
and (1) gives 

Ki = (fc 2 7 iW(i |T) | = (k 2 ^ : i ( i - ^ ) ) / | 7 ( i | x ) | . (3.1) 

By the inductive hypothesis, so 

Tri ^ a7rfT(l-7ri). (3.2) 
n? 

Rivest's result [4] is that —Y=k"~1, so n\=kn\, while (1) gives n\=7t?T(l — ri[). 

6* 
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Thus 
nI = ki$T(l-n[). C3.3) 

Thus we have 
* R 

1 - n J " l - n j 
and so 

^ ^ N L ( 3 . 4 ) 

For itj, i '=2, (1) gives 

nj = T t f J . d - n i ) s ^ ( 1 -Ki ) = x r r ^ t ) • (3-5) 

So it is sufficient to show that 

l - j i f ~ 
Writing TTj—/rf7ri+x as before, we get 

= (l + 2 • 
Thus 

• + i ( - ) l + 

i-*i= 2 n = ^+1M+ 2 K\ = ~ir (3-6> 

i=l 
n 

l + m a x Ki 
^ —N • (3-7) 

l+/c+ m a x £ K, 
i=2 

The inequality follows since (3.6) is a maximum when is as small as it can be, 
which is k f rom Lemma 1, and the sum of the rest of the Kt are as large as they 
can be. 

Using the inequalities of Lemma 1 

l + m a x 2 1 + k " ~ l 

1=2 ¡=2 

1 + fc+max 2K; 1 +fc + 2 ki • kn + k2-k-1 
¡=2 i=2 

k" — 1 
From Rivest's result ( 1 ~ 7 r i ) = . ^ n + 1 _ 1 , s o w e have (1 — rc^-M1 — JT[), since 

k" — l k(k" — l) " for k positive. This completes the induction 
fc".+ /c2 —fc — 1 ~(kn+1-l) 

APPENDIX 4 . Proof of Lemma 3 . 

Proof. The lemma is trivially true for n—2. Assume that it is true for up to 
n positions, and consider C and another such algorithm t on n + 1 positions. Since 
C acts as the transposition algorithm T, on the first M+1 positions, it follows that 
n%=kn$ just as nf=knZ. Thus ( 3 . 2 ) , ( 3 . 3 ) , ( 3 . 4 ) follow as in Appendix 3 , replacing 



On optimal performance in self-organizing paging algorithms 85' 

T by C, giving jriS7tf. For i=2, ...,n-\-\, we have 

nt = nPlAl-nl) 711 ^ (1 -*!) 
1 — nz 

It is sufficient to show As C is a forward moving algorithm the in-
1 — 71 x 

duction of theorem 1 gives n ^ n ^ and so 
1 ^ 1 

l-nl - 1 — Trf ' 
So 

< < b-
l-7tf = l-7t{~ 

Abstract 

A brief survey is given of developments in the study of self organizing paging algorithms and 
the associated library problem. It has been conjectured that two related algorithms, transposition 
and climb, are optimal in these fields and we establish this optimality for a specific distribution 
of page references. 
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Dominant schedules of a steady job-flow pair* 

B y J . TANKO 

A specific approach to some non-finite deterministic scheduling problems is 
the scheduling of a steady job-flow pair model. Its non-preemptive scheduling prob-
lem was discussed earlier [4]. The more general preemptive scheduling is discussed 
below. A very simple scheduling discipline leads to the dominant set of the so-
called consistent economical schedules (CESs). The proof of dominance is the main 
goal of this article. An algorithm to evaluate the dominant schedules and choose 
an optimal one is given as well. 

1. Introduction 

In an earlier article [4] we defined the general scheduling model of steady job-
flow pairs as a new approach to some non-finite deterministic scheduling problems. 
There we referred to the study [2] and to the dissertation [3] of the author dealing 
with this problem and to other works dealing with scheduling problems related 
to our problem. Some practical cases the model may be applicable in are men-
tioned there. 

Some statements below bear some resemblance to those of non-preemptive 
scheduling [4] but, for example the cardinal of the dominant set, is not bounded 
as in the non-preemptive case. The task of determining the optimal schedule under 
the restriction of non-preemption is simpler than without this restriction. In a non-
preemptive case the dominant set of the so-called consistent natural schedules have 
six elements maximum. These elements can be evaluated at once, e.g., by the method 
of reduction [4]. The general problem of determining or producing an optimal 
schedule (preemptive if necessary) for any steady job-flow pair is not completely 
solved until now. 

We reduce below the set of feasible schedules to a dominant set of consistent 
economical schedules containing optimal schedules and give an algorithm to choose 
an optimal schedule by evaluation of the whole set if it is finite. 

* This article reports on some results of a study of the author supported by the Computer and 
Automation Institute of the Hungarian Academy of Sciences. 
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2. Definitions 

The scheduling problem of steady job-flow pairs is to schedule three pro-
cessors 3?=(PA, PB1, PB2) to service, without conflicts, pairs Q=(Q(1), Q[2)) of 
steady job-flows Q(i>= {Cu, 7=1, 2, ...} consisting of task-pairs Cij—(Aij, B^) 
with service demands fj; and 9f on processor PA and PBh respectively. The order 
of servicing the tasks is strictly serial within job-flows but it is not restricted among 
job-flows. Conflicts might only be on the processor PA and the efficiency of a schedul-
ing R is measured by the utilization of the processor PA. Define P¿-utilization of 
a section from time t1 to time t2 of a scheduling R by /.(t1, t2)/(t2 — h) with PA-usage 
X(tlt t2) as the sum of activity durations of PA in the while from tt to / , . Let X(t) — 
=A(0, /). The efficiency of a scheduling R is defined by the limit 

y = y(R) = ton M . (1) 
r-̂ oo J 

The efficiency of any scheduling cannot be greater than 1 or the sum y(1 '+)i(2) of 
the PA -utilizations of the job-flows Q(1> and Q(2) which are given by y(i) = ^/T;, 
i = 1,2. We use the notations 

= + ¿ = 1.2, tl = h+>l2, 3 = S 1 + 3 2 . 
The scheduling procedure is a decision process determining for all moment 

i ^ O and state of processors and job-flows the way of continuation of the servicing 
process. The plan or result of a scheduling procedure is a schedule R as an ordered 
set of situations a. The situation a characterises the state of processors, the state 
of demand cycles under service, if any, of both job-flows and the duration of these 
states in a given phase of the scheduling. 

Two components of a are the functions /?(i)(0> ¿=1,2 , / ^ 0 , the value of 
/3(i)(i) being the demand not served yet from the demand cycle started but not 
finished (active), if it exists, of the job-flow Q(i\ and 0 otherwise. 

A schedule is consistent if the scheduling decision is the same when the situa-
tion a has the same value. A schedule is tight if processor is never idle when demand 
it could serve exists. A schedule is non-preemptive if the service of every task finishes 
without breaks after its beginning. The specific class of non-preemptive schedules 
is discussed in [4]. Here now we allow the service of a task to be preempted and 
resumed later on the same processor. 

The instance of a scheduling problem is fully determined by the values 
Q=(t]1; SiJ rj2; 32) of the service demands of tasks type A1, B1, A2, B2, respec-
tively. rjy, t]2, 92 are called parameters and the quaternaries Q are called con-
figurations. The non-negative sixteenth 2. of the four-dimensional Cartesian space 
constitutes the configuration space. The goal of the study of the model defined is 
to find a method for choosing a schedule R* for every configuration Q£2. for which 
y(R*) exists and has the maximum value among all the feasible schedules. This 
schedule is called an optimal schedule. Simple method for finding optimal schedule 
for all Q£J2 i.e. an optimal scheduling strategy is not found yet. 

Two schedules R and R' are essentially-the-same and denoted by R % R' if 
they are congruent after some finite initial sections of them. y(R) = y(R') if R^tR'. 
The schedule R' dominates the schedule R if for the efficiency values y(R') and y(R) 
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defined by (1) the relation y(R')^y(R) is true. The set Si' of schedules is a dominant 
set if for every feasible schedule R there exists an R'£0t' dominating it. 

Looking for an optimal schedule the investigation of a dominant set 3k' is 
enough for. We obtain a dominant set of schedules by means of the concept of 
the dominant decision. 

The scheduling decision s' dominates s in a situation a if the minimal next 
following cycle-finishes of both job-flows are not later by s' than by s. A decision 
s is economical if decision s' dominating it does not exist (see Fig. 2 below). A schedule 
R is an economical schedule (ES) if the scheduling decisions in its every situation are 
economical. Let 3k(Q) denote the class of all economical schedules for the con-
figuration Let 3A = IJ 0t(Q). We will show that 3k is a dominant set of 
schedules. 

3. Economical schedules 

The importance of the economical schedules (ESs) lies in. their dominance 
which we show below. , _ 

Theorem 1. The class of economical schedules constitutes a dominant set. 

Proof. Let R be any feasible schedule having scheduling decisions not economical.. 
Let j be a not economical decision in the situation a of R. There exists an economical 
decision s' in a dominating j because s would be economical decision otherwise. 
By exchanging for s' both the next following cycle-ends could come forward and 
this eventually makes possible to anticipate all cycle-ends. This transformation 
does not diminish the function /.(/) and, consequently, y in (1). The new schedule 
R' obtained by this transformation dominates R as a result. Starting from t = 0 
and initial situation <J = G0, we can construct a dominating ES R' for any feasible 
schedule R. This was to be proven. • 

The class 3k is a true part of the set of all feasible schedules but it can be very 
big to choose an optimal schedule by direct evaluations. To show this and to look 
for further reduction of the dominant set we investigate the characteristics of the ESs. 

It is easy to be seen that the economical decision is unique in all situations a 
except an enumerable set of situations for every ES. The exceptional situations 
are called critical situations. The economical decisions made in this situations are 
defined as critical decisions. The initial situation o0 of every schedule and the initial 
decision Si, i= 1, 2, for servicing the task Aa first, are always critical but we mean 
by first critical situation of an ES the next one if it exists. Fig. 1 shows the types 
of critical situations and the possible alternative critical decisions. These and their 
conditions are the following: 

Type Decisions Conditions 

s1, s2 r > ( 0 = /? (2 )(0 = 0 
s0' J5(0(O = 0, 93_ - i - ^ ' H t ) ¿ = 1,2 

Fig. 2 illustrates the dominance of scheduling decisions. The graphs (a) and 
(b) illustrate that the idleness of a processor cannot be a dominating decision if 
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Critical situations and decisions 

•demand waiting for service does exist. The graphs (c)—(d) show that the decisions 
si causing preemption for not a complete service of the preempting task are not 
dominant as well. The graph (e) shows the non-dominance of the preemption of 
a preempting task. 

It follows that the ESs are tight, usually preemptive schedules but have no 
superfluous preemptions. Only cycle-ends /] can be critical situations and they 
really are if the processor PA is busy or demanded simultaneously by the other 

1 M//////M 
— 2, m 

<r:s„ A /2 <7:s0 

8 
/2 A /2 /1 

Cn 1 :s, / l = / 2 /2 /1 

WŒ 
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M 
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(e) 
Fig. 2 

Dominating decisions 



Dominant schedules of a steady job-flow pair 
10?" 

job-flow. Preemption can only occur in critical situations and every critical decision 
causes a delay of the service of the job-flow not preferred by the decision. Delay 
is not caused by decisions other than critical. Between critical situations the sections 
of any ES are uniquely determined by the initial situation and decision. These 
sections are, therefore, called determined sections. The infinite section starting with 
the last critical situation if it exists, is the last determined section. 

All ESs start with the service of the task An without preemption in the interval 
(0, t]i) in accordance with the initial decision st, / = 1 , 2 . Accordingly, the class 
31 bursts into two subclasses £%(i), / = 1 , 2, consisting of ESs with the initial deci-
sions Si, / = 1 , 2 , respectively. The initial decision s t uniquely determines the first 
determined section together with the closing critical situation — the first — if it 
exists. It follows that all elements of have the same first determined sections 
and critical situations if the latters exist at all. Let T[ be the length of the first 
determined section. There is no preemption and delay on the first determined sec-
tion except the initial delay of 2 ( 3 _ , ) in the interval (0, r^). Use the notation cr(i) 

for the situation Of schedules R£0t ( i ) in the point 
The concepts of critical situation and decision were introduced for the natural 

schedules defined in [4] as well. The types of critical situations were <r0 and o-i 0, 
/ = 1 , 2 , and the conditions for a0 were the same as here. The conditions of a i 0 
there and the Fig. 1 show that a situation type <t ; i in ESs is always preceded by 
a situation type <T3_'i;0 being critical situation of a natural schedule but not of an 
economical one. This simultaneousness of er3_; o and <7г>1 has a particular importance 
at the first determined sections playing a central role in the discussion of ECs 
(see Theorem 2). Out of types c 0 , cri 0 and <тг>1 the natural and economical deci-
sions are the same for every situation and cause no preemptions or delays. The 
first determined sections for the ESs are, therefore, almost the same as for the 
natural schedules. The differences are only in the last subsections of the ESs starting 
with (T3_i о and ending with a i f l . The processor PA is busy throughout the subsec-
tions. If the first critical situation does not exist, the set ?A(i) consists of a single 
schedule Ri0 being natural schedule, simultaneously. 

The connection between the first critical situations of the natural and economical 
schedules allow us to simply prove an important theorem concerning typical situa-
tions by reference. Typical situations of an ES are defined as its critical situations 
and the ^¡-situations which are not <r(i) situations directly following critical situations 
[4]. Pi-situation is a situation in which an Л ¡-task finishes and an /i3_;-task starts 
at the same moment. Let a* denote the first typical situation of the ESs of & ( i>(Q) 
if it exists. The possible first typical situations are illustrated in Fig. 3; We also use 
the wording characteristic situations for the critical and every ^¡-situations. 

Theorem 2. In one and the same cases all elements of &(a)(Q) have a first typical 
situation a* i f f the simultaneous inequalities 

have a solution, where coa — (Ba, Aa) are integers and Aa=Baza — AaT3_a, a=l,2. 
When (2) has no solution, 3?(a>(Q) consists of the single (non-preemptive and 

consistent) schedule Ra0. This occurs in the cases 

O s ^ . s i / , c o a ^ ( 1,0) (2) 

t] = 0, and Э2
 are rationally independent (3) 
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First typical situations and their conditions (¿¡Î =BÎ TX — A*T2) 

and 
T3_a = 0. (4) 

When (2) has a solution, the type (and place) of o* is determined by the error 
A* of the least solution oj* = (B*, A*) of (2) according to the table 

* Conditions 

Pa ¿t = 0 < Va 

Ps — a à*a = n >>/„, o 
00 A a = na or K=n^t!a b u t V « = 0 

1 la < < 1 
0 < At < r,a 

Proof The assertions of the theorem follow from Theorem 4 of the article [4] 
and the comments made above. • 

The problem of finding the least solution of (2) is a coincidence problem [2]. 
If ff(a) is not a critical situation, it is always a /?„-situation. It follows that ¡ia 

returns periodically and a'a does not exist if a*=Pa. If ot = Ps- a then the first 
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Fig. 4 
The cyclic graph C0 of the first determined sections 

determined section of 9)}a)(Q) from its ¡}3_a-situation on is congruent with the first 
determined section of &(3~a>(Q) from its <7(3~a)=/?3_0-situation on. 

The assertions of Theorem 2 are. well illustrated by the cyclical graph G0 of 
Fig. 4 showing the possible characteristic situations of the first determined sections 
of ESs. The vertices of the graph represent situations and the (directed) arcs succes-
sions or identities. The arcs are labeled by critical decisions after critical situations 
and by conditions for J * and the parameters after other vertices. The vertices framed 
by circles or squares can be the situations of âë(1> and âi (2), respectively, until the 
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The partitioning of the graph G0 

first typical situations. The graph G0 
represents all the possible cases for the 
whole configuration space 2. For every 
Q€2 only one arc going from a not 
critical situation is right. The graph can 
be partitioned into four subgraphs by 
Fig. 5. On the graphs the results of 
the decisions in the first critical situa-
tions are drawn by broken arcs. 

• Before we investigate further 
characteristic situations of the ESs, we 
show an example by Fig. 6. The part 
(a) shows the Gantt-chart of an 
R i M ^ i Q ) , the part (b) is the graph 
G0(Q) and the part (c) illustrates 
the graph G(Q) of the ESs of 
m[Q). 

EXAMPLE. Q=(4.5; 3.5; 1; 2), T1 = 8; T2=3, >? = 5.5, 9 = 5.5. 

a>* = (1,. 1), /d? = 5£(4.5; 5.5) and so = 

CL>2 = ( 1 , 0), A%=36(1; 5.5) and so <T% = a 2 1 . 

It is seen that always the characteristic situation a(3~a)€G0 occurs after the 
critical decision 50 in a critical situation type aa l . This means that new characteristic 
situation value can only be generated by decision in a situation type <x; x . The type 
of the generated critical situation can be either of ajyl, j= 1, 2, <r0 and fij, j= 1, 2. 
The situations except type are not new and lead back into the subgraph G0. 
But the generated critical situation value must be new if its type is ajA, j= 1, 2. 
This is the consequence of the fact that determined sections are determined by their 
closing critical situations as well. Returning of an earlier a J A value after would 
contradict this fact. 

All the possibilities of the ES elements R£3t can well be illustrated by G0 
and the further critical situations according to the graph G on Fig. 7. The vertices 
£7j j all illustrate different values of critical situations of type i and c 2 j l independ-
ently of each other. The graph G is composed from five subgraphs by Fig. 7/b. 
(7[a), a= 1,2, are the branches of G. The number of different vertices of G is in-
finite as we show below. 

For any given configuration 062, the elements R£.9t{Q) can similarly be illus-
trated by a graph G(Q) which is the subgraph of G (see Fig. 6/c). The dotted arcs 
on Fig. 7/a, b may be present only of a branch of G(Q) is finite or missing. From 
the arcs going out from G^a) at most one can be present in any G(Q). The number 
of vertices of G(Q) can be infinite. Examples for infinity are the configurations with 

i]a93_a—0, and T3_„ rationally independent (5) 

(see Fig. 8/b, c). The general conditions of the infinite vertices of G(Q) is an open 
question. Perhaps, the above conditions are necessary. 
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a™ , a<2> 

(b) Graphs G0(Q) 

5o 
I 

(c)' Graph G(Q) 
Fig. 6 

Graphical illustrations of the ESs for the configuration Q = (4.5; 3.5; 1; 2) 

For any every R£l%(Q) can well be illustrated by a subgraph G(R) o f 
G(Q). The configurations Q£2. and the schedules R£M(Q) can be classified e.g. 
by some significant characteristics of their graphs as well. Such characteristics can 
be the existence and number (one or two) of the branches G[a)(R), the finiteness, 
the number of loops in G(R), etc. We will use some classifications below. 

Let R£0l(Q) be an ES and G(R) the graph representing it. G(R) may have 
finite or infinite vertices. Let us call the tour of R the passage along the arcs and 
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So 
<T ( 2 ) <7; , 5 a, i — Si— aitl -Si — 

(b) (c) 

Fig- 7 
The graph G of the elements of 3A and its partitions 

vertices of G(R) in accordance with all the characteristic situations of R. The passage 
of R may be finite ending in a vertex Ri0 or infinite with finite or infinite number 
of loops. A simple loop in any graph is a loop having no other loops as its part. 
For any loop in G(Q) there is at least one path from the vertex <x0 to the loop with-
out any other loop. The first vertex of the loop reached by the path from cr0 to the 
loop is called a root of the loop. 

For some reasons it may be necessary to allow demands of tasks to be zeros. 
The job-flow Q(l> is defective if one of t]i and is zero and is degenerate if both are 
zeros. For degenerate configurations (for which T j=0 or t 2 = 0 ) we can impose 
specific restrictions to better model practical cases in which demands of one job-
flow are negligible with respect to others. In such cases our methods could lead 
to optimal schedule not reasonable with regard to other optimal schedules. A re-
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^1,2 — *1.0 

0, and 32 are rationally independent 

^ 1 , 2 — 

32 = 0, and r¡2 are rationally independent 
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Fig. 8 
Examples for CESs not periodic and having infinitely many different 

critical situation values 

striction may be the prohibition of servicing repeatedly the cycles of the same de-
generate job-flow alone [2, 3]. Such restrictions further complicate the discussion 
of the schedules. In degenerate cases the ESs are non-preemptive and are discussed 
in the course of non-preemptive scheduling of steady job-flow pairs [3]. 

4. Consistent economical schedules 

After the preparations made in the previous paragraph, we are near to be able 
to prove our most important assertion: the class of consistent economical schedules 
is a dominant set. 

An ES is a consistent economical schedule (CES) if its critical decisions are 
consistent: they are the same in every occurrence of the same critical situation 
values. Note that two situations of the same type, a i t l say, may well have different 
values by having different values of PM(T) or /?(2)(r), for instance. Let á?(g)cá?(Q) 
be the class of CESs for Q and 3k= U 

_ QtS 
The graphs G(R') of CESs have specific characteristics. It can only 

have one out-arc from any vertex except the vertex Rm, /=1 , 2, if it is in G(R'). 
Ri0 has no out-arc. Any vertex has only one in-arc except eventually the vertex a0 
and one more. a0 has no in-arc if Ri0 is in G(R') or G(R') is infinite. In case 
of a finite number of vertices and without Ri0, G(R') has exactly one simple loop 
with root ff0 if <T0 has an in-arc or with another root which has two in-arcs then. 
The CES R' is said constructed from this loop. For any simple loop of G{Q) there 
is at least one G{R') composed from the loop and a path leading from a0 to. the root 
of the loop. The tour of R' is the path from tr0 to the root and infinitely many rep-
etitions of the loop after. The efficiency of the CES so constructed is the PA-

7 Acta Cybernetica V/t 
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utilization of the constituent loop. This CES is periodic with periods represented 
by the loop. If G(Q) is infinite, let Ra„ denote the CES with a tour from aQ through 
<r(o) and vertices to the infinity without any loop. 

Theorem 3. The class Si of the consistent economical schedules is a dominant set. 

Proof. Let be any ES with efficiency y(R). We will show a CES R'e<% 
dominating R. The dominance follows if R is CES or is essentially-the-same as 
a CES R'. 

If the graph G(Q) does not have loops, all ESs are consistent and R may not 
be other as well. If the PA-utilizations of the simple loops of G(Q) have a maximum, 
the R' constructed from a simple loop with maximal ^-uti l izat ion will dominate 
every other ESs except eventually those which are essentially-the-same as Ri0 
or Rla>, i = l, 2. 

The only crucial G(Q) is that in which the PA -utilizations of simple loops 
have no maximum. But if the G(R)<zG(Q) has a simple loop with PA-utilization 
not less than y(J?), the CES R' constructed from this loop will dominate R. Thus 
the dominatedness of R with finite G(R) by CESs is proved. If G(R) is infinite 
but with a finite' number of simple loops, the tour of R cannot have a loop after 
a finite initial section and is essentially-the-same as an i?i oo. 

The only crucial G(R) is, therefore, that which has infinitely many simple loops 
without one having maximum PA -utilization. Whether such a G(R) does or does 
not exist is an open but irrelevant question now. The length of loops cannot be 
bounded in this case. The schedule R is composed from two kinds of simple loops 
represented by Fig. 9. 

A Pt "2,1 Pi 
1 I 2 » W///A 1 

» 
WWMM 

Fig. 9 
The two possibilities of simple loops 
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By definition (1) of y(R) we can choose a sequence Zt, Z2, ..., Zn, ... of initial 
sections of R which are ending with simple loops and for which 

where k(Z„) and t(Z„) are the -usage and length, respectively, of the section 
Zn. But 

t(£n) 

is the weighted mean of the PA -utilizations of the finite many simple loops composing 
Zn. Let AZlt AZ2, ... a sequence of simple loops carved out of Z1,Z2, . . . , respec-
tively, with maximal PA -utilizations. By assumptions 

y(z„) * y(Jz„) < y(R) 

and so the convergence y(AZ„)—y(R) is true. The sequence AZ1, A Z2, ... must 
have a subsequence with monotonically increasing length and PA -utilization because 
the contrary would lead to contradiction with the assumptions y(A Z„)-<-y(R) and 
no finite loop with y(AZ„)^y(R) exists. Let AZ1,AZ2, ... be this subsequence 
already. Clearly y(AZ„)->-y(R). Every AZ„ could be composed either from an ini-
tial section I'n of an i?i oo, i= 1, 2, and a section A'„ of bounded length or from an 
initial section Z<1} of Rlt„, an initial section Z(

n
2) of a section A™ and a sec-

tion A(
n
2> of bounded lengths, as in Fig. 9. Because of boundedness of sections 

A'„, A™ and A(
n
2) they do not influence the limit of y(AZ„) and 

lim y(AZn) = lim 
oo n-*oo 

allowing one of Z*1' and to be missing. In the sequence AZ1, AZ2, ... at least 
one of ZW and Zj,2> tends to Rly„ or R2,„, respectively. y(AZ„) cannot be greater 
in limit than the maximum of limits of yCZ^) and y(X£2)). Therefore, the maximum 
of y(-/?!,«) and y(R2,~) will not be less than y(R) and the corresponding CES /J1)CO 
dominates R. This concludes our proof. • 

The set of CESs can have fairly many — if not infinite — elements in 
general. Methods for reducing further the dominant set or a simple algorithm to 
choose an optimal schedule from 01 (Q) are not known. A direct method to determine 
the optimal schedule is to survey the whole set 01 and compare the efficiencies of 
the elements. In some cases this is a feasible arrangement. To judge better the 
amount of work on this way we can use the number NL(Q) of simple loops in G(Q) 
and the number N(Q) of elements of 52(g). To determine these we need the graph 
6 ( 0 or at least some data of it. 

Let us define the following data (see Fig. 6 and Fig. 7 as illustration): 

n0 is the number of Ri0 vertices in G(Q) 
naJ is the number of vertices ajA of the branch G[a)(Q) ^ 

7* 
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for a — 1,2, j = 1, 2 

{1 if the last arc of G(a) leads to vertex <t0) 

0 otherwise ( 7 ) 

for a= 1,2 j = 0, 1, 2 and <r(0) = a0. 

Use the notations 
na = noi+na2> a = 1,2. (8) 

na is the number of vertices in the branch G{a) (g). All the data can be read from 
two schedule-sections I ( o ) , a =1 ,2 , constructed in the following way. For Z M 

schedule Q economically with critical decisions s(0)=so and s(aitl)=si, / = 1 , 2, 
until the first typical situation other than a i A occurs. This procedure is finite iff 
G(Q) is finite. From these two schedule-sections we can read the PA -usages 1(AZ) 
and lengths t(AI) of determined sections A I which are necessary to evaluate the 
CESs of Q. These two schedule-sections enable us to draw simply the graph G(Q) 
and determine the data (6)—(8). To illustrate this method, Fig. 12 below can be 
considered. The way to use the data to determine NL(Q) and N(Q) is stated by the 
following lemma. 

Lemma 1. The number NL of the simple loops of G(Q) and the number N of the 
elements of can be expressed as 

NL = ON + ¿10 + ¿12) («22 + ¿20 + ¿21) + ("12 + ¿10 + <$11) + (" 21 + ¿20 + ¿22) — ¿10 ¿20 (9) 

N = («11 + ¿12) (N2 + ¿20 + ¿21 + ¿22) + («22 + ¿21) («1 + ¿10 + ¿11 + ¿12) + 

+ ("12 + ¿10 + ¿LL) + («21 + ¿20 + ¿22) + «0 (10) 
where nj,naJ and 5aj are defined by (6)—(8). 

Proof. Consider Fig. 7 as illustration. We count the number of simple loops 
of the graph G(Q) and the number of different paths from tr0 to the loop without 
other loops. 

The number N[aa) of loops not leading out from the subgraph GM is the number 
of vertices <r3_ail plus one if the last arc of G(a) leads to the vertex tr(a). This gives 
Nkaa)=nar3..a + 'daa. The root <r(o) of these loops can be reached directly from a0 
or through <7(3_a) if arcs connect G ( 3 - a ) to <r(a). The number of the latter arcs is the 
number of vertices in G(3~a) plus one if the last arc of G(3~a) leads to o<a). This 
gives the number of paths from <r0 to as l+n3_a 3_a+53_a a and the number 
N(aa) of the CESs as Niaa)=(nat3_a+Saa)(\+n3_ai3_a'+53_a,a). Further loops arise 
from arcs leading from Gm to cr(2) and back from G(2i to om. The number of arcs 
leading from G(a) to CT(3-o) is the number of vertices o a l in the branch G^ plus 
one if the last arc of G(a) leads to o<3~a) as well. This gives the number N[0) of simple 
loops as N[0) = (nn+(512) (n22+¿21)- Any of these loops_can be reached directly 
through tr(1) or ff(21 giving the number of CESs as A f (0 )=2 +<512) (n22+<521). 
There are loops between a0 and G(o) if the last arc in G(a) leads to a0. Because the 
vertex cr0 is the component of the loop, one or other of the paths <70—cr(1) and 
a0—a-(2> is an arc of the loop and determine the possible loops. The arc cr0^a(a> 
is the part of only one loop if ¿ a 0 =l - The arc cr0—<7(3~0) is the part of loops 



Dominant schedules of a steady job-flow pair 
10?" 

ff0—ff3_fl)3_0—<T(a)->cr0 the number of which is n 3 _ a : 3 _ a + d 3 _ a a . These 
give the number of loops =(1 +«з-< I,з- (,+¿з-a,a)¿ í lo• Each loop is the con-
stituent of exactly one CES and this fact gives the number N(a)=(l +n3_a 3_a + 
+ ¿3-0,<¿¿<.0-

Adding up the numbers for a = l and a = 2 , we have 

NL = + JV[22) + JV[°> + NP + JV[2) = 
= «12 + ¿11 + «21 + ¿22 + («11 + ¿12> («22 + ¿2l) + (1 + «11 + ¿12) ¿20 + (1 + «22 + ¿2l) ¿10 

and _ _ _ _ _ _ 
jV'=iV (11)+iV (a2) +N<-°> + N W +iV ( 2 )=(n1 2 + <5n) (1 + «22 + ¿21) + 

+ («21 + ¿ 2 2 ) (1 + «II+<512) + 2 («U 4- <512) (N 2 2 + <521) + (1+M U+<5 1 2)<5 2 0 + (1 + N 2 2 + <S21)<510. 

If G^(Q) contains the vertex RA0, the subgraph G^A) in Fig. 7/b has no out-arc 
and cannot take part in any cycle but represents a CES the path of which ends in 
vertex RA0. This means that the value N' obtained above must be corrected by 
adding n0 to the number of CESs generated by loops. The identity of the so ob-
tained expressions of NL and N'+n0 with (9) and (10) is obvious. . • 

For the example of Fig. 6 we get 

»11 = 1. «12 = 0, ¿10 = 0, <5U = 0, <512 = 1 

«21 = 0, «22 — 4, (520 - 1, ¿21 = ¿22 = 0. 

From these data the numbers are 

NL=U a n d N = 19. 

If G(Q) has no branches, i.e. nai=0, a=1, 2, / = 1 , 2, then the particular for-
mulae are 

NL(Q) = (¿10+¿12)(<520+¿21)+(S10+8U)+(S20+¿22) - ¿10 ¿20 S 2 (9') 

N(Q) = 2. (10') 

The relations can be proved simply by taking the possible values of n0 and 
every 3aJ. 

The CESs having the same simple loop as their constituent (period) are essen-
tially-the-same. The number of essentially different CESs is NL and 8%(Q) represents 
at most NL different efficiency values. 

Except the trivial cases of existence of a vertex RA0 in G0(Q) — which can only 
be in the defective cases (3) and (4) — the relations 

¿ ^ + ¿ ^ + ¿ „ 2 = 1. a = 1.2, no = 0 (11) 
are always true and the expressions (9) and (10) can be written in the simpler forms 

N l = («11+1 - ¿11) (»22 + 1 - ¿22)+(«12+1 - ¿12)+(«2i + 1 - ¿21) - ¿10 ¿20 (9") 
N = (nU + ¿12) («2 + 1) + («22 + ¿21)(«1 + 1) + («12+ 1 -¿1 2 ) +(«21+ 1 ¿21)• (10") 

The expressions (9) and (9") show how the number NL of the possible CESs 
representing different values of efficiency depends on the numbers naJ, a, j = 1 , 2 , 
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of the vertices in the branches of (7 (0 . NL is finite if all naj are finite and if nu=« 
but /ij,3_i, «a^i.i are finite and fls^/.s-i+^a-i.o+^s-M1^ (provided that this 
last case is possible for some configuration Q). 

For the sake of reference, we have to identify the elements of £%(Q). In view 
of evaluation, the identification of the simple loops is enough: We introduce a sym-
bolism for this purpose. 

We identify the vertices of the branches G{a),a= 1,2, by numbering them 
serially with 1, 2, . . . , na in the order of.occurrences in G{a). Let the vertex <r(a> have 
the serial number 0 and the vertex of G(Q) the last arc of G(a)(Q) leads to the serial 
number na+1. This last vertex can be either a0 or am or <r(2). The serial numbers 
of vertices of G(1) and G(2 ' of our example in Fig. 6 will be 0, 1, 2 and 0, 1,2, 3, 4, 5, 
respectively. The last number of G(1) represents the vertex,<r(2) and the last number 
of G(2) represents the vertex a 0 . Every simple loop is composed from one or two 
sections belonging to subgraphs G(1) and G(2), respectively. Every loop-section of 
G(a) starts with the vertex o-(o), goes through some further vertices of G'ia) if they 
exist, and finishes in a0, o(1> or.er(2). A loop-section of a given G(a>(Q) can be identi-
fied by the maximum of serial numbers of its vertices. The character of a loop-
section can well be given by a code (abc) constructed from the number " a " of the 
subgraph it belongs to, from the maximal serial number "b" of its vertices and 
from the code "c " of its last vertex by the coding: 

/ type (To <r(2) 

c-code 0 1 2 

The code (ac) identifies the shape of the loop-section which can be symbolized in 
the following way: 

N. C 
a N. 0 1 2- (T0^<T(a> 

1 e n t \ 
2 I r : ^ / 

The simple loops are composed from one or two sections directly. of by means of 
a section o0-~<r(1) or <70—<r(2> symbolized by \ and 

To identify a simple loop we can. use the ¿-codes of its component loop-
sectidns. The loop identified with (b1 b2) has vertices from G(1 ' and G.(2) with maximum 
serial number bx and b2, respectively. If a loop has no vertex from G^"', the com-
ponent ba is zero. 

The, elements R of Si can be characterized by the code of its simple, loop. 
The CESs Ra0 for degenerate configurations (3) and (4) will be characterized' by 
the code (00): The code (bxb2) of a CES is called its type. The code (¿^¿^represents 
an essentially-the-same class of Sk{Q), the number of which was counted in_the proof 
of Lemma 1. 

' Not every code (^¿>2) can represent an existing loop in G(Q). In Table 1 we 
marked by. sign + or .— that a loop of code (bxb2) composed from the existing 

1 
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loop-section pair ( 1 ^ ^ ) , (2b2c2) did or did not exist, respectively. The code (00) 
is possible if at least one vertex Ra0 6f G(Q) exists (and na =0, of course). In this 
case the only possible value of ba is 0. The other (¿>i62) entries of Table 1 for given 
(abc) codes can be easily made. We put sign — in every entries of rows with c, = 1 
and of columns with c2 = 2 except their first entries. In row ¿^ = 0 we put — in 
entries with heading c 2 = l and in column b2=0 we put — in entries with heading 
c1 = 2. If an entry with ci = c2 = 0 existed, we put — in it. In the remaining entries 
we put signs + . 

Table 1. The existing codes of simple loops-

b2 0 ... ¿>2 ••• n2 + l 

bi 

№ 0) 

0 №0) ( + ) 

C D * 

t 2 

0 
a 1 

t 2 

2 1 
[ f 

0 2 1 

+ 

+ 

- + 

Example of Fig. 6 

\ 
b2 0 1 2 3 4 5 

\ C2 
\ - 1 1 1 1 0 

b C \ 
0 _ e 
1 2 - e + + + + 
2 2 - e + + + + 

Table 1 says which loops have to be evaluated for determining the optimal 
one. The possibilities for some specific types of CESs are represented by Fig. 10/a. 

The set M(Q) always contains exactly two non-preemptive schedules R, a, 0> 
a= 1, 2, which are the two tight consistent natural schedules defined in [4]. These 
are the non-preemptive priority ^schedules, at the same time [2]. Two other remark -

' able elements of are the priority schedules i? f l j3_0, a= 1, 2. R a t 3 - a is defined 
as the CES in which the job-flow Q<a) has absolute priority against Q(3~"> which 
means that every task Aaj, j= 1, 2, . . . , is serviced by PA at the moment it is ready 
for service, independently of the state of PA. The priority schedules are schedules 
of great practical importance. With the help of Table 1 it is easy to determine the 
types (b'ib'2) of the priority schedules Ra0 and R0iS^a, a= 1,2, by their definitions. 

J?a>0 is determined by the restriction that no preemption is allowed and j ( 0 ) = j a . 
This means that Ra 0 = Ra0 and has type (00) if the vertex Ra0 exists. Otherwise, 

i=3 — a when ¿ 3 - „ = l , and c = 3—a when b'a=l, f>3_a=0, except if 
b'a=0, moreover. 

Ra,z-a is determined by the fact that any task type A3_a must and any task 
type Aa must not be preempted in conflicting situations <ri(1, ¿=1,2. This means 
that s (a a l ) = s a and •?(c3_ a i l)=J0 . The possibilities are illustrated by Fig. 10/b. 
If the vertex Ra0 exists, then Ra,z-a—Ra,o=Rao with type (00). Otherwise, b'a cf 
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r № 

R(10) 

M 
= 0 

S 

à 
Rw 

-^2,1 — -^2,0 

*<M>, (b > 1) 
I - I - - V 
I < 1 6 - 1 

I r J J 
¿11 = 1 

Ji<w, (b > 1) 

b-1 
* "n ••• t I 1 I J I 

£ _ i I 

-Kl,2 = ^1,0 = i?io ( c a s e s (3) a n d (4)) 

I 

Î 
' 1 = 1 11Z1Z 
î t , t _ _ Rl,2 — Rl.0 

-A-* — 

< 

/?lf2 = Rl,0 ^2,1 — Ri.O ~ -^1,2 — -^1,0 
~ i?l,0 ~ -^2,0 

_ J 

t - I- V 

! L f c T ^ D 
I I TL i i 
I t - Jt J 

¿ 1 0 = 1 

< 1 
J. i 4- — 

I I_JL 
¿12= 1 (a) «a > 0 

&1.0 ~ "^2,0 

I - . - -V 
I I < 1 
î î — 

-I Ï—L 
t t i . 

"12 > 0 

Rl,2 

N ^ 
I T-
I 

B l = 0, « ! = 0, c _ | ' I f — j I J _ 
« ¿ i o = l I L _t _ ± _ 

(10) ¿11 = 1 ' «12 > o 
(10) (60) 

J=0(00) 

Y I , »1, 

m 
«12 = 0, ¿12 = 1, 
«22 + ¿21 > 0 
(nib) 

r - 1 
1 " 2 

-"T*T*j 

(b) 

«12 = 0, ¿12 = 1 
«22 = 0, ¿20 = 1 
(«1 «2) 

r 
I 

I A 
«12 = 0, ¿10 = 1 
("lO) 

1 «2 

«12 = 0, ¿12 = 1 
«22 = 0, ¿22 = 1 
(Oils) 

10 
Special types R(t>ih) and types of Rlt 
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is the serial number of the first vertex type ff3_0il in the branch C{a), if it 
exists (wfl,3_„>0) and b'a=na+1 or b'a=0 otherwise (when n a , 3 _ o =0) . b'a=na+1 
if ¿o ,3- a = 0 or ¿ a , 3 _ a = l and «3_ a ,3_ a + 1 - ¿ s - o . s - ^ O . b'a=0 if <5a.3_a=l 
and n3- o ,3 - o +l-<53-o ,3- a =0- The value of b'3_a of R0y3_a is 0 when nai3_a+ 
+ 1 — 5 a . 3 _„>0, the serial number of the first vertex ¿ 3_ f l j l in the branch G{3_l i ), 
if it exists (n3_0 3_ac=~0) and « 3 _ a + l , otherwise, when n„ , 3 _ a +1 — <5Dj3_fl=0. 

In the completed Table 1 we can pick out the types of Ra>0 and i?a,3_a as follows. 
Ra o is represented by the sign + encounters first in counter-clockwise for a = 1 
and clockwise for a—2 in the left upper 2 x 2 subtable and RBi3-a is represented 
by the first + encounters on the border of the whole table counter-clockwise for 
a= 1 and clockwise for a=2 starting from the entry (00). If Table 1 consists only 
from one row then ^1,0 = ^1,2 = ^10 and if it consists only from one. column then 
R 2,0 = -^2,1 —-^20- -> 

Let &0(Q)= {R1I2, ^2,1} be the pair of priority schedules. This is a subset 
ofä(Q). If « ( ß ) = « 0 ( ß ) t h e n ^ 0 ( 6 ) is a dominant set. In this case RA,3-A=RA,0, 
a= 1,2. An example for this is the configuration ß = ( 1; 4; 2; 5) with RLY2(Q) 
optimal. If ^ ( 0 t ^ O ( 0 ) > the set ^ 0 ( ß ) is n o t necessarily dominant. Trivial 
examples for this are the configurations ß with $ ¡ < ^ - ¡ < 2 9 , - , / = 1 , 2 . For these 
configurations the CESs a r e optimal with efficiency 7 = 1. A non-
trivial example is the configuration ß = (4.5; 3.5; 1; 2) in Fig. 6 as we will see 
in the next paragraph. 

Though the priority schedules are not dominant, they are interesting on their 
own, because they are often used in practice and can be produced by simple rules. 
They are investigated in the study [2]. The evaluation of 2 and R21 is not a trivial 
task at all. The priority schedules were investigated also for the stochastic version 
of job-flow pairs [1, 5]. 

5. Evaluation of the CESs 

Though the cardinal of the dominant set 0t{Q) of the consistent economical 
schedules is not necessarily finite, we give an algorithm for the direct evaluation 
of the CESs. This is applicable only when ¿%(Q) is finite. iM(Q) is finite exactly 
then when the graph G(Q) is finite. For some cases the automatic application of 
the given algorithm can be superfluously complicate. Four such cases will be men-
tioned below as cases (i)—(iv). These cases contain the configurations we know 
as having G(Q) with infinite vertices. By general case non-defective configurations 
are meant. The special cases (i)—:(iv) are illustrated by Fig. 11. 

Case (i). Tj T2=0, degenerate configurations (see (4)). The CESs are the Ra 0, 
a= 1,2, and ya > 0=0. If the number of cycles of the same degenerate job-flow 
scheduled directly after each other is restricted, the maximal efficiency +y ( 2 ) 

can be achieved. 

Case (ii). /7 = 0, 3132>0. i?a>0, a= 1, 2, are the only CESs with y=0. Ra 0=Ra0 
and has no typical situations for the configurations (3). 

Case (iii). t j x 2 > 0 , ^ > 0 but ß is defective. If >/ a93_ a=0 then i?a 3__a has the 
maximum efficiency of y=y<3_0> (see Fig. 8). The shape of the graph G(Q) depends 
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Case (i). t lT2 = 0 

5 2 > 0 

Case (ii). n = 0, > 0 

< < ̂  
9. > 0 9 = 0 

< 4 
9 9 

irrational - rp rational 
9« 9o 

Case (iii). r1r2 > 0, rj > 0, = 0 

9 = 0 

I 

.Lt 

•l-r -, a* = O 
\_l -I = - f /2 y w V-i -i — '/2 
V - L - r ¿ î = o 

frf - l x « • 1. _i -i 

> 0, 92 = 0, -¡r— rational //j = 0, 9 , > 0 , solution o f ( * ) exists 
9-2 

Case (iv). % > 92 > 0, jj2 > 9i > 0 
t jJW(î) < 

1 
1 « 

1 

ßi ffi.i 
Sl 

i 
W Z M M T W R N 

"l.l ßs 02,1 

Fig. 11 
Trivial cases for optimal schedule 

So s i 

on the existence and relations of the least non-trivial non-negative integer solutions 
(A^*, X*) of the equations 

Aa = Xa9a—X3-aTs = l 0 
. l i i f a -

a = 1 , 2 

but this fact is irrelevant from the point of view of optimality. There is no solution 
o j ( * ) in cases (5). 

Case (iv). 0, / = 1 , 2 . The maximal efficiency of the CESs is y = 1 
and any R£St(Q) with decisions s (c^ if only j S ( 3 - i ) ( i ) — i s optimal. 
E.g. also the Ra 0, a—1,2, are optimal with ya ,o=l-

Before we give an algorithm for the general case, we show the evaluation of 
the CESs of the example configuration Q—(4.5; 3.5; 1; 2). 
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Pi Pz <T2,1 Pi 
m 

j i i 
AZ[» A Z^ AZ<*> A{V 

I 
I d ) 

P2 02,1/02,1 02,1 °2,1 00 1 

A[V dp A*> LU 
A? 

i_i u J 
J¿2) J I<2> A Z?> A Z<2> A I<2> 

1 1 
1(2) 

i f 

•^2,1 

(C) 

Pi 02,1 02,lPl01,l P2 

' ' 2 ^ 2 1 1 1 2 ) 
, 4 2 ) 

. I f « z<2> 

R* 

(à) 

J t 1 
A<V 

< W y f A l f AZp dZ<» AZf A Z'52) ¿P < 

A Z™ A Z? G ( 0 

A{« ^ 

Fig. 12 
The sections Z(a), a— 1,2, the priority and the optimal schedules of the example 

g = (4.5; 3.5; 1; 2) 
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In Fig. 12/a, b we show the Gantt-charts of the two schedule sections J a ) 

and J ( 2 ) expanded here to provide R 1 2 and J?2,i at the same time. It can be realized 
that every loop-section is composed from consecutive subsections AZW ,j= 1, ..., b, 
of X(a) and a section Aia) of full PA-utilization as Z(

b
a) U Aia). This fact is illustrated 

by Fig. 12/d. The lengths and PA -usages of the subsections can be read from £ ( 1 ) 

and T(2) and are given in Table 2. The data (lengths and PA -usages) of loop-sections are 

K X ^ H ^ and + 
with b 

ZP=\JAS<-\ b = 1,2,..., na+l, a = 1,2. 
j=i 

These data are given in Table 2 as well. 

Table 2. The data of loop-sections of the example of Fig. 12 

a b Type of sect. c t(*Z) A /(2T-M) 

0 a'1' 4.5 __ 
1 1 2 1.5 3.5 0.5 2 4 

2 0.(2) . 2 6 8 0 7.6 11.5 

0 aw 1 
1 1 2 2 2.5 4.5 4.5 

o 2 02,1 1 3 3 0.5 5.5 5.5 
" 3 02, l 1 3.5 6 3.5 12 14.5 

4 <32,1 1 3 3 1.5 13 15.5 
5 Oo 0 3.5 6 0 15 20 

Table 3. The simple loops and their characteristics for the example of Fig. 12 

No. (M2) G(R) Composition ).(Z) t(£) y(L) Rmk. 

0.762 R l t l 

0.765 R^o^Rz.o 

0.789 R* 

0.757 

0.769 

0.754 

0.750 Rlt 

0.765 

0.750 

0.759 

0.750 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

(0,5) 

(1,1) 

(1,2) 

(1.3) 

( 1 . 4 ) 

( 1 . 5 ) 

(2,1) 

(2,2) 

(2.3) 

(2.4) 

(2.5) 

g 

• Z^'LMS" 16 21 

¿ ^ ' L M ^ ' U ^ ' l M Î 2 ' 6.5 8.5 

X P ' l M P u r P ' l M l " 7.5 9.5 

- r ^ ' l M ^ ' U ^ ' l M ^ 14 18.5 

i ^ ' l M ^ ' U X f ' l M l 2 ' 15 19.5 

3 r P ' U ^ ' U ^ ' U ^ S 1 1 21.5 28.5 

I ^ ' U ^ ' l M i 2 ! 12 16 

r ^ ' U X ^ ' L M ^ 13 17 

i ^ ' U X ^ ' U ^ 2 ' 19.5 26 

' ¿•^»UXÎ^U^i2 ' 20.5 27 

D I P ' U I ^ U ^ S " 27 36 



Dominant schedules of a steady job-flow pair 10?" 

The c-codes of the loop-sections are easy to determine from the fact that the 
result of the decision s ( a u i ) = s 0 is < 7 ( 3 - I ) , / = 1 , 2 , and the vertex the last arc of 
G(fl) leads to can be obtained as the last typical situation of Z(a) with fii=o(i), / = 1 , 2. 

From the possible (abc) codes Table 1 of the possible types b2) of the simple 
loops can be completed. The data of the simple loops can be obtained from those 
loop-sections which are shown in Table 3. The last datum is y(S), the efficiency 
of the corresponding simple loop. Comparing these data we can choose the max-
imum value as 0.789. The type of the optimal schedule R* is (1, 2) and its Gantt : 
chart can be seen in Fig. 12/c. 

The table 

R ( ¿ A ) R 100 y/y* 

R* 0 , 2 ) 0.789 100 
(1,1) 0.765 96.9 

^2,0 (1,1) 0.765 96.9 
^1,2 (2, 1) 0.750 95.0 
^2,1 (0,5) 0.762 96.5 

shows that the priority schedules are not optimal. The efficiency y* of the optimal 
schedule is 88% of the sum y'1>+y<2>=4.5/8+1/3 = 0.896 and the efficiency of 
every priority schedule is. less than y*. y1>2 is the minimum of the efficiency values 
of the CESs. This is 95% of the value y*. To find a good estimation for the 
min y(R)/y* is an open question. A trivial estimation is clearly max y(i>/(y(1> + y(2))-

Ri0l(Q) l = 1-2 

In the example y2>1 is not minimal but there are 8 other CESs with greater effici-
ency. Also R j 0^^2,0 have better efficiency. 

Fig. 12/c shows that the economic decisions in the optimal schedule are chosen 
such that the delay d caused by the decision be minimal. This heuristic scheduling 
strategy can often give a not bad schedule but not optimal in general. One can argue 
that a unit delay of the job-flow with a higher /^-utilization y(I)=/7,/Ti is worse 
than a unit delay of the other job-flow. Therefore, we can expect better schedule 
by the strategy which decides such that the loss of utilization Dj — y^dt by the 
delay dt of 0(i> be minimum. For our example the critical situations of R*, the 
delays dit the losses Z>; and the decisions s* are from the Fig. 12/c as follows:: 

a' dx ; Di d2 D2 s* 

1 0.56 4.5 1.50 «2 
02,1 1 0.56 2.5 0.83 S2 

02,1 1 0.56 0.5 0.17 So 
01,1 0.5 0.28 4.5 1.50 s0 

The table shows that the optimal decisions correspond to the strategy of minimizing 
local losses of utilization. This strategy is not optimal in every cases either. We-
show this by the example configuration Q = ( 1; 3.5; 2; 1.5) in Fig. 13. The graph. 
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<G(Q) with the data X(AZ), t{AI) and A is the part (d). The data ( 6 ) — ( 1 0 ) are* 

"o = 0, n u = 0, «12 = 0, ¿10.= 1, ¿n = 0, ¿i2 = 0, = 0, 

«21 = 0, «22 = 1. ¿20 = 0, ¿21 = 1, ¿22 = 0, /12 = 1, 

NL = 3 , N = 3 . 

The possible three CESs are /? l i 2=/? ] 0, / ? 2 1 and I?2,o BY Fig. 13/a, b, c. The 
•efficiency values are 71,2=71,0=0.667, y2 1 = 0 . 7 4 3 , y 2 > 0 = 0 . 7 2 7 . -R*=/?2,i is the 

go 

(a) 
1 

i j j 
WH 

A 

^1.1 = ^ , 0 , y = j y = 0.667 

y -
13 

17.5 = 0.743 

(c) 

go ft ff2,l 
•4 

PI g0 ft 
2 1 a 2 ^ 1' 2 ^ 2 1 P) 

« S 1 1 1 / 
WM7V/M1V//M2 ^ B" 

J J ^2,o. V = Yf = 0.727 

0 . 5 Q) . 

V A 
2 / C D Q 

.^¡(Qjjp 

Fig. 13 
Example configuration for no optimal minimum local losses strategy g=(1; 3.5; 2; 1.5) 
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optimal -schedule. The delays, losses and optimal decisions are the following 
(y<*>=0.222, yW=0.571): 

a' di Dx d2 D2 s* 

0o 2 0.444 1 0.571 sa 

02,1 2 0.444 0.5 0.285 S2 

The preemption i(o-2 , i)=i2 causes a greater delay (2) and local loss (0.444) than 
the decision s(a2,i)=so would but it is, nevertheless, optimal. The decision 
J(CT2j1)=5'0 results in i ? 2 0 which is not an optimal schedule (see Fig. 13/c). This 
example shows that the "locally optimal" decisions are not "totally optimal". 
An evident problem is the ratio y/y* of the efficiency of the schedule with minimal 
local losses and the efficiency of the optimal schedule. , . 

After the examples we give, now, an algorithm to determine an optimal schedule 
by direct evaluation and comparison of the CESs in finite cases. Formally we 
divide the algorithm into two parts and formulate the parts as the ¿-algorithm and 
the ^-algorithm. 

The ¿"-algorithm produce the series of vectors 

Zab = (4f>> {ab> Cab)> b = 1, 2, . . . , «„+ 1, 0 = 1 ,2 
with components 

Xab = X(Z^) + Ai"\ tab = t(ZP) + Aj,°\ cab 

as PA-usage, length and c-code of the loop-section with code (ab). An auxiliary 
variable is in the algorithm X= (/., t, A) as PA-usage, length of subsections of 
Z(a) and the length of_a next section which will be inspected afterwards. Another 
auxiliary variable is Y=(X, t) the cumulated PA -usages and lengths of the sub-
sections. The algorithm supplies also the data naJ, 6aJ defined by (6)—(7) and used 
in (9)—(10). 

S-algorithm. Input data: Q = (i^; 91; t]2; 92); 

Output data: na, naJ, j= 1, 2, 8aJ, j=0,1,2, a= 1,2, Zab=(),ab, tab, cab), 
6=1, ..., na+\, a=\, 2; 

Step 0: r i ^ / h + Si; r2:=ri2 + 92; a : = 1; «: = 1; i:= 2; 
Step 1: X : = ( 0 , 0 , 9 a ) ; F : = ( 0 , 0 ) ; 
Step 2: / : = [ J / T J ; A':=A-ht-, 
Step 3: If A'^rji then X: = ( A + ( / + 1 ) ^ , t+A, %i-A'), i: = 3-i and 

go to Step 2; 
If A'=tif then Y:=(X+X+(l+l)t]i, t + t + A), Za„:=(X, t, i), ¿ a i : = l and 
go to Step 4; _ 
If A'=Q then Y:=(X+X+lt]h t+t+A), Zan:=(X, I, 0), <5a0: = l and 
go to Step 4; 
¥'.=(!+l+lr\i+A', l+t+A)\ A:=ni~A'; Zan:=(X+A, t+A, i); 
«a,3-a:="«,3-«+lL!:=3_i' k:=[A/9J; A'\=A-k9i, 
If 0 then Y:=(X + Thl + rt), Z„„+ j:=(X + A-j9i,i + A -j9t, 3 - /), 
j=l, ...,k and nai:=nai+k; 
n:=n+k; 
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If A'=0 then Y : = ( I + T f , i+T f); Zan:=(l, i, 3-i); nai:=nai-l; 
n:=n—1; <5a>3_j: = l and go to Step 4; 
n:=n +1; 
If then X - . ^ f a + A ' , T ^ & s - t + A ' - S i ) and 
go to Step 2; 
X: = (rit+A',ti,+A'+9s-„9,-V,-A'); i: = 3 — i; go to Step 2; 

Step 4: If a=2 then n2:=n and go to End; 
nx:=n~, n: = 1; a: = 2; i: = l; go to Step 1; 

End. 

The output data of the S-algorithm corresponds to the data of Table 2 and 
the data (6)—(7). From these data the efficiency values of the possible simple loops 
can be determined by the ¿-algorithm. The flow-chart of the S-algorithm is shown 
in Fig. 14. 

The ¿-algorithm uses the output data n0,a = 1, 2, and Zaba, ba= 1, ..., na+l, 
a=1,2, of the S-algorithm and determines the efficiency values y of the simple 
loops and provides the type (b*b2) and efficiency y* of a simple loop with maximum 
efficiency. The order of evaluation of the simple loops will determine which of the 
possibly more than one simple loops with maximum efficiency will be chosen. 
This order can be seen in Table 1: the + entries of the first column with increasing 
blt the + entries of the first row with increasing b2 and the other + entries by 
rows after. 

E-algorithm. Input data: , rj2, nx, n2, Zab = (XAB, tab, cab), b = \,2, ...,na+\, 
a= 1, 2; 

Output data: bx,bt,y*l 

Definition of operation F: If y>y* then b*:=b1, b2:=b2 and y*: = y; 

Begin: bt:=bt:=y*:=b2:=0; 

For bx: = 1 step 1 until n„ + l do if clbl=l then y:—/-lbJtlbi and F; 
If clfcl = 0' then y . H ^ + niWut + rii) and F; ¿ i : = 0 ; 
For b2: = l step 1 until n2+1 do if c2bi =2 then y'=k2bJt2bi and F; 
If e2b2=0 then y . ^ ^ + n M ^ + l i ) and F; 
For b-y\ = \ step 1 until nx+\ do if clbl = 2 then 
begin For b2: = l step 1 until n 2 + l do 

if c2H= 1 then y:=(Mbl + hM)l{tlbi+t2bi) and F; 
If c2b= 0 then y: = (/.lbl + /.2i), + r]x)l(tlbl + t2bl + and F; 
end; 
If c i» ,=0 then for b2. = \ step 1 until H2+1 do 

if c2b„= 1 then y: = (/.^j + ).2bi + rj^)/(tlbl + t2b2 + >;2) and F; 
End. 

Fig. 15 shows the flow-chart of the ¿-algorithm. This clarifies the meaning of 
the "for-step-until-do" cycles used in the algoritm. 

The verification of the S-algorithm is easy e.g. by following its operations 
graphically on the Gantt-charts of some configurations as of 2 = ( 4 . 5 ; 3.5; 1; 2) 
in Fig. 12. The ¿-algorithm does not need further verification. 
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Î1== li + S^ 
a:= 1; n := ;• i := 2 

Ó 
X : = ( 0 , 0 , 9„); ?:= (0, 0) 

X:={7.+(1+ 1)IJ„ i + A, T¡ — A')\ 
i := 3-i 

r ^ í + A + O + l H , i + t + A);-
Z„„ • - (} . , ! , 0 ; ¿OI:= 1 - - 0 

yes T:=(X+?. + ln¡, i + t+Á); 
Z„:=(X,t, 0); 5M:= 1 l. 

Y:= (7.+?.+ li¡t+A', t + t + A); A:=r¡¡-A'; 
Z„„ := (X + A, t + ¿1, i); "«.s-« := "».3-. + 1 

| i := 3 — i ; fc:= [i/9,1; , d ' : = ¿ - * 9 ¡ 

F : = ( Í + t „ Î+T,); Z„„:= y , i, 3 - i ) ; 
«„¡-1; <5«,3-¡:= 1 ; ii := n — 1 i := 3 - ¡ 

Q 
:= n; ii := 1 ; a := 2; i := 1 

The flow-chart of the S-algorithm 

8 Acia Cybernetics V/l 
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Fig. 15 
The flow-chart of the £-algorithm 

6. Summary 

No simple rule to produce nor any simple method to choose an optimal 
schedule R*(Q) of any job-flow pair configuration Q is known. The dominance 
of the class of the consistent economical schedules (CESs) is proven here. We in-
vestigated the structure of the CESs and gave a classification for them. This is 
based upon the graph G(Q) of the typical, (critical) situations of two schedule sec-
tions I(a), a= 1,2. The information necessary to obtain G(Q) and its data can be 
got by the S-algorithm if only G(Q) is finite. In this case the ¿-algorithm supplies 
an optimal schedule and its efficiency. The discussion has shown the importance 
of some' open problems which require further investigation. Such problems are: 
necessary and sufficient conditions for G(Q) to be finite; estimations for the ratio 
of the efficiency values of CESs to the maximum value; detailed information about 
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some heur is t ic strategies such as pr ior i ty schedules a n d the schedule wi th m i n i m u m , 
local losses. 

KEYWORDS: s teady job- f low pai rs , p reempt ive schedul ing, economic schedules, , 
dominance . 
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