— N
5 d '7/,\5— ¢
Tomus 4. Fasciculus 1.
el BN
/
(5 %)
= o h[?“ ‘:
\v /
\\ o

ACTA
CYBERNETICA

IN MEMORIAM LADISLAI KALMAR

FORUM CENTRALE PUBLICATIONUM
CYBERNETICARUM HUNGARICUM

FUNDAVIT: L. KALMAR
REDIGIT: F. GECSEG

COMMISSIO REDACTORUM

A. ADAM F. OBAL
S. CSIBI F. PAPP
By sl et
o FREYO J. SZENTAGOTHAI
B KREE S. SZEKELY
K. LISSAK). SZEP
D. MUSZKA L. VARGA
ZS. NARAY T. VAMOS
SECRETARIUS COMMISSIONIS
I. BERECZKI
Szeged, 1978

Curat: Universitas Szegediensis de Attila J6zsef nominata

4. kotet 1. fiizet

, ACTA
- CYBERNETICA

A HAZAI KIBERNETIKAI KUTATASOK
.KOZPONTI PUBLIKACIOS FORUMA

ALAPITOTTA: KALMAR LASZLO
FGSZERKESZT6: GECSEG FERENC

A SZERKESZTO BIZOTTSAG TAGIJAI

ADAM ANDRAS OBAL FERENC

CSIBI SANDOR PAP’P FERENC
DOMOLKI BALINT PREKOPA ANDRAS

SZELEZSAN JANOS

FREY ,TAIYIAS SZENTAGOTHAI JANOS
KREKO BELA SZEKELY SANDOR
LISSAK KALMAN SZEP JENO

MUSZKA DANIEL VARGA LASZLO
NARAY ZSOLT VAMOS TIBOR

A SZERKESZTO BIZOTTSAG TITKARA
BERECZKI ILONA

Szeged, 1978. december
A Szegedi Jozsef Attila Tudoményegyetem gondoz4saban

LASZLO KALMAR
1905—1976

The generalised completeness of Horn predicate-logic
as a programming language*

By H. ANDREKA and 1. NEMETI

To the memory of Professor Laszlé Kalmar

Here we prove the “generalised” completeness of ““Prolog-like” languages [1],
[2] or “Horn-predicate logic as a programming language” [3], [4], [5], [6). :

More precisely we prove the following. Let Fr be an arbitrary Herbrand-universe
(in other words, Fr is a word algebra of an arbitrary finite type generated by the
constant symbols). For any f: Fr"—Fr Turing-computable partial function over
Fr, there is a finite set C, of Horn clauses over Fr (that is there are no other func-
tion or constant symbols in C, but only those which occur in Fr) and a relation
symbol F, such that C, defines f over Fr, more precisely:

(Va, peif@ =4 it CsE=Fe(& B)]

where & is a vector of elements from Fr.

This means, that if we are given an arbitrary Herbrand-universe Fr and an
arbitrary computable task over Fr, then we can write a Prolog program which
solves this task and which does not contain other function or constant symbols
but only those which occur in Fr. This is somehow a statement about the ad-
equateness of Horn logic as a programming language Any computable problem
can be formulated in Horn logic without using auxiliary function symbols. That
is without “coding” the data to be processed.

A special case of this theorem was proved by Robert Hill (unpublished, personal
communication). He proved the above statement for the case when Fr is the set
of natural numbers together with the successor function and constant 0. The proof
stated here is a generalisation of his one. In generalising any proof from the natural
numbers to arbitrary Herbrand universes Fr the difficulty originates from the un-
fortunate fact,’that-— as far as we know — there is very little work done on the
“nice” characterisation of the computable functions over Fr. :

Another related result has recently been proved by Téarnlund, c.f. “Sten Ake
Tarnlund: Logic Information ‘Processing”, University of Stockholm, report

*Part of the research for this paper was done during the author’s stay in the Department of
Artificial Intelligence, University of Edinburgh. S

1*

4 H. Andréka and 1. Németi

T-RITA——IBADB—%OZM, 1975—11—24. He proves that if we are given an arbitrary
Herbrand-universe Fr together with a computable function f over it, then there
exists a set of binary Horn-clauses C, defining f. However in Tédrnlund’s paper
C, is defined over a Herbrand-universe which is definitely larger than Fr. (In defining
C, he makes extensive use of auxiliary function symbols.)*

The main result proved in this paper is that C, can be defined over Fr itself;
in other words, that we can dispense with the auxiliary function symbols.

Remark. We believe that an alternative (perhaps more natural) proof can be
given by starting from Emden’s work [7] and investigating the generalisation of
Kleene’s recursion equations to arbitrary word algebras. To this end first it should
be proved that any Turing-complitable partial function f over an arbitrary word-
algebra Fr can be defined by-such a finite system of Emden’s modified recursion
equations (see [7]), in which system all the constant functions belong to Fr.

Theorem. Let Fr be an arbitrary Herbrand-universe (that is a word-algebra of
arbitrary finite type generated by the empty set, in other words: generated by the
constant symbols of the type).

Now, for any finitary Turing-computable partial function f over Fr
(f: Fr”— Fr) there is a finite set C, of Horn clauses over Fr (thatis all the function
symbols occuring in C, also occur in Fr), and a relation symbol F, such that

(V& peFn[f@=p iff C = F,@&, p)
where & .is a vector of elements of Fr.
Moreover, C, can be effectively computed from the Turing-definition of f.
Proof. Let @ denote the set of natural numbers. The idea of the proof is the
. following: .
g First we define a one-one function
¢) o from Fr onto w, such that ¢ as well
-1 as ¢~' are Turing-computable. Now
QT l Q if f: Fr*—Fr is Turing-computable,
: ; — Fr then g=pofop~!is a Turing-comput-
. f able function on w, and f=p logog.
‘ But every Turing-computable function
Fig. 1 on w is recursive. Thus every Turing-
computable function f over Fr is the
image by ¢ of some recursive function g over w (f= g 'ogog). By this it is enough
to prove for any recursive function g over w, that the function ¢-'ogog is Horn-
definable over Fr (see figure).

Let the type ¢ be denoted as: t;{(fj‘, iy:i=k, j=m;}. In other words: there
are numbers k and m; (for every i=k) such that f; is the j-th i-ary function symbo!
for k=i, j=m;. Note that {f}: j=m} is the set of constant symbols.

Now we define the function g. To this end we first define the auxiliary func-
tions F and Sz by a simultaneous recursion.

* Thus Tédrnlund’s result is different from Hill’s one in two respects:

1. Tarnlund says more than Hill by allowing arbitrary Herbrand-universes and using only
binary Horn-clauses. ‘

2. On the other hand Tarnlund says less than Hill, since he says nothing about the number
of auxiliary functions symbols.

The generalised completeness of Horn predicate-logic as a programming language 5

The intuition behind the following definitions of F and Sz is explained later
in the proof of the first lemma.

The only important property of F is that F enumerates the word algebra Fr.
Any other recursively defined function with this property could be substituted for
F without changing the rest of the proof. The function Sz is only an auxiliary func-
tion in the definition of F. That is, we use Sz only to define F.

We define F by a definition scheme which can be translated into a definition
for any given type, that is for any fixed numbers & and m;. In this scheme the
text: “for i=k, j=m,, O<p=i:f...”” is written in a metalanguage and can be
translated by copying ““ f...” as many times as i’s, j’s and p’s are possible.

FOy=f2

Fn+1)=
for i=k,j=m; and O<p=i: .
S F(ny, ..., F(n,+1), F0), ..., F(0)) if F(n)=fi(F(n),..., F(n))and
(Vp=<z=i)Sz(n,+ N=Sz(n)
and Sz(n,+1)<Sz(n)
for i=k,j<mg: \
{f}H(F(O), s F(O) if F(n)=f{F(ny,..., F(n)) and
(VO<z=)Sz(n,+1)=Sz(n)

q

for i<k: .
fEHY(FQ), ..., F(0) if F(n)=f.(F(ny,..., F(n))and
(VO0<z=i)Sz(n,+1)=Sz(n)
L ' _ it F(n)=fk (F(ny),...,F(ny))and
(V0<z=k)Sz(n,+1)=Sz(n)
Sz(0)=0,
. Sz(n)+1, if F(n) =fk(F(ny, ..., F(ny)) and
Sz(n+1)= V1 =z<k)Sz(n,+1) = Sz(n),
Sz(n), otherwise. '

1t is easy to see that the above simultaneously recursive definition is correct,
that is it really defines the functions F and Sz.

In the following definitions we use the recursion theoretic y-operator. Remember
that px(R(x)) is the smallest number x for which R(x) is true.

True, if (Vj < n) F(j) # F(n),
En —{
False, if otherwise

S@ = F(un(uk(F(k) = 1) < n & E(n),
£(0) = F(0),
En+1) = S(Em),
0@)=pn(¢(n) =).

6 H. Andréka and L. Németi

" Lemma. a) ¢o: Fr—~w 1is one-one and onto,
b) o and ¢~! are Turing computable.
Proof. ad a) Note, that any total function f with domain @ can be con-
sidered as a “listing” or an enumeration of the range of f.
“*Now, we define a system of subsets H; (I€w).

A= SO}

HH1 {filty, ooy Wity o GEH, i = k, j = my).

For each i€w, on the set H; a linear ordering can be defined in a natural way:
For H_,: f?</f} iff i<j. To define the ordering on H,,,, suppose, that the order-
ing on H; has been defined.

.- Now for any two elements of H,;:

f}(-rl, v <SRGl oty ff (LT, L) < (S T s T

according to the lexicographic ordering obtained from the ordermg on natural
numbers and the ordering < defined on H,.

It is easy to check, by the definition of F, that the function F first enumerates
H, in accordance with the above defined ordering on H,, then enumerates similarly

H,, then H,... etc. Since |J H;=Fr, the function F enumerates the whole Fr.
Lo i=1

However, unfortunately, F might enumerate an_element of Fr more than once,
in other words, the function F is not one-one. To deal with this, the relation E
marks those places in @ where an element occurs (is listed) first. The function &
picks out only those occurrences (of elements of Fr) which are marked by E. Thus
¢ is already one-one, while since F is onto, £ is also onto.

ad b) From the fact that £ is one-one it follows that ¢=¢-1, and from their
definition it is easy to see that both ¢ and ¢ are Turing-computable. (For, from
their definition it is easy to construct a computer program which computes ¢ and £.)
And by this the temma is proved.

Lemma. To every partial recursive function g over o g: 0" —~w, the function
f— ~logop is'Horn:definable over Fr, that is there is a set of Horn-clauses C,
and a relation symbol F, such that

(V&,ﬁEFi')[Q‘logOQ @=p iff CrEF @& P

Proof. By the definition of recursive functions, it suffices to prove the above
statement for the:

. d
zero function Z(x) =0;
. d
the successor function S(x) = x+1;
. . . . d
the projection functions 77(xy, ..., X)) = Xp,,

The generalised completeness of Horn predicate-logic as a programming language 7

and to prove that if the above statement holds for the functions A, g, g, ..., &,
then it also holds for the functions obtained from these by

substitution f(x)=h(g, (%), ..., ga())
recursion f(x,0) < g(x)
S0, nt)= h(x, n, £(x,)

the p-operator f(x); uy(gx, y) = 0).

Note, that u has already been defined in the definition of the function g. In writing
* Horn-clauses we use the notation of Kowalski [3].

a) the zero function:

0 'oZog is Horn definable:

C. = {F.(x.f)~}

It is easy to see that C, defines exactly the function g~'oZop. Here we give
the detailed proof of this statement, but we shall omit the proofs of the following
statements about the successor function, etc. because they are mechamcal analogues
of the present one. -

Now we prove that -C, = F,(z, 6) iff o=f.

1. for all ¢ Fr, we immediately have C,= F,(1, /o).

2. To prove the implication in the other direction.

Let oxf?, and 1,0¢Fr,

In this case C,# F,(t, 0), because we can construct a model of C, in which
F,(z, o) fails. Let on the Herbrand -universe Fr the interpretation of the relation

symbol F, be the relation R {(z, f2): t€ Fr}. In. the mode! obtained this way
C.is valid while F, (7, 0) is clearly false. Thus C,¥= F, (1, 0).
b) the successor function:
oSog is Horn definable:

Thls is the only more laborious step: Here we need an explicit and constructive
description of the function 9. We shall, not do anything but translate the definition
of ¢ into Horn-clausal form. To this end however we first have to ‘code’ the natural
numbers by elements of Fr. For any number n€w, the symbol 7 stands for the code
of n in Fr. We define the code recursively:

O>/0, and Agl—=fi(R).. . -
Remark. If my=—1 then let i be the smallest number such that m;=0.
Now ntl=fi (i, f2, ..., fO). : :
C={=(x, %) -
=(x,)~ =(fix, y),"
<k~ =@y

~

{F(f, [V

8 . H. Andréka and 1. Németi

(FUBYSirs s Xpmrs 0o s fO) = FOSjhs s A A FO XA
/\Sz(foyz WIASZ(WA A =, WA

z=p+1
(W’ Wp)/\ F(foy, l))
ik j=m, 0<p=ijU

{F(f()l))sf_;+1(f(?: ey (?)) e F(y’f}(xls ety xi))/\zi\l F(yz’ x:)A

/_\ Sz(foyz z)/\SZ(y’ W)/\ /_\1 = (W, wz)
=k, j<m}U

{(FUB S5 (S o) F(3.Fiu 15 -)N A, FO20 XN
| A S22, wIASZG WA A = (v, w,)
ti < kU) _
.] k
{F(f(}y>f(()))'— F(y!frﬁk(xla"'axk))/\z/=\1F(y:axz)/\ ’
A S23ps wIASZ0s WA A = O, 0}
U. “ .
SEURVSEW) = FOfh G rs 5IN A FOw 2IA A, Sz a0 wIASZ0, WA
k
| A < 0o w)
U | .
{=UM -~ 205 YU
7 (f_;:(x19 cevy xi)’f};(yla :yi’)) e <ls] # <l,’J’>}U

#= (fixys ooy X fE (15 oovs W)~ #Zx,,y)i=kj=m,0<p=i}U
{NE(y,f0) ~
NE(y, fow) < NE(y, wIA # (x, 0)A F(y, X)A F(w, v),
E(y) ~ NE(y, y)}U
{TEW) - < (2, »AF(z, WA F(y, w),

N(x,f3) <

N(x, foy) ~ N(x, A # (w,)AF(y, w),

M(x, y) — N(x, A F(y, %),

The generalised completeness of Horn predicate-logic as a programming language 9

N (3, f3) ~

N1 (y, f3 2) = Ni(y, 2)A = (2, y),

M, f32) ~ Ny(y, DA TE(),
S(x, w) — M(x, 2)AM,(z, YA F(y, w)}.

¢) the projection function:
o~ tolog is Horn definable:

d
C1={Fl(x17 ...,x,,,x,,,) - }

Now for the following steps suppose that C,, C,, Cgy, ..., C,, define
o lohop, o~ ogog, ... respectively.
d) substitution:

f; o~ YoSu(h, gy, ..., g,)o0 is Horn definable; where Su(h, g;, ..., g,) is the func-
tion defined by substitution from 4, g, ..., &,- ' ‘

C,;{Ff(x,y) — F(1s e es Vs DA Fp (x5, yDA LA Fy (%,) U
C,UC,U...UC,,.
To prove that C, really defines f, note that
0 1o Su(h, g1, ..., g 00(X) = @7 (h(g1(e (X)), .-, ga(e(®)) =
= Q‘lohog(g‘logog(f), cees Q'log"og()'c')).

(Similar remarks will \be omitted in the following.)
e) recursion: '

f < o 'oR(g, h)og is Horn definable, where R(g, h) is the function defined by
recursion from g and A.

d - —_—
Cf= {Ff(x’f(?9 y) h Fg(xa y),
Ff(is w, y) - Fs(Z’ w)/\Fj(x, 2z, yl)/\F‘h(f’ Zy Y15 y)}U
C,UC,UC,.

Remember that C, defines the function g¢~*oSog, where S is the successor func-
tion on w.
f) the p-operator:

f < o0 loMygop is Horn definable, where Myg is the function defined by the
p-operator from g.

CrE N —, Nw) = S(z WA NDAE, s 2 WAS(y, 1),
F[(’_C’ y) e N(y)/\ Fg(’—é’ Ys 00)}U CgUCs'

10 - H. Andréka and I. Németi

Abstract

The adequacy of Horn clauses as a programming tanguage is demonstrated by proving that
any computable problem can be formulated in Horn logic without' using auxiliary function
symbols.

MATHEMATICAL INSTITUTE OF THE
HUNGARIAN ACADEMY OF SCIENCES
REALTANODA U. 13—I15.

BUDAPEST, HUNGARY

H—1053

References

[1] WARREN, D. WARPLAN, A system for generating plans, DCL Memo, No. 76, 1974.

(2] BarTani, G., H. MeLoNI, Interpreteur du language de programmation PROLOG, Unlversrte
d’Aix Marsellle 1973.

131 KowaLski, R., Predicate logic as programming language DCL Memo, No. 70, University of
Edinburg, 1973, and Proc. IFIP Congr. 1974,

[4] KowaLskl, R., Logic for problem solving. DCL Memo, No. 75, University of Edinburg, 1974.

(5] Van EMbDEN, M., First-order predicate logic as.a high-level program language. School of Al,
University of Edinburg, MIP—R—106, 1974.

[6] VAN EMDEN, M., R. KowaLsKl, The semantics of predicate logic as a programming language,
DCL Memo, No. 73, University of Edinburg, 1974.

[7]1 VaN EMDEN, M., Recursion equations as predicate-logic programs, to be published.

(Received Jan. 13, 1978)

Tree transformations and the semantics of loop-free programs

By M. A. ArBiB* and E. G. MANEs**
In memory.of Laszlé Kalmar

Alagié¢ [1975] gave a category-theoretic treatment of natural state transforma-
tions which generalized the work of Thatcher [1970], and so, in particular, gave
an elegantly general perspective on tree transformations. Arbib and Manes [1977]
modified Alagi¢’s approach to provide a somewhat more concrete category-
theoretic approach to.what they called process transformations, which they showed
to embrace recursion theory, bottom-up tree transformations and linear systems.
Section | of the present note specializes the theory of process transformations to
show how pure bottom-up tree transformations may be expressed in category-
theoretic form. Section 2 then shows how this formulation may provide insight
into the semantics of loop-free programs. Later papers will consider the effect
of loops. Necessary category-theoretic background may be found in Arbib and
Manes [1975], especially Chapter 7 and Section 10.1.

1. Bottom-up tree transformations: A category-theoretic characterization

We first recall the ‘machines in a category’ approach to tree automata (i.e.
Q-algebras).

1. Definition. An operator domain Q is a sequence (Q,{n€N) of (possibly
empty) disjoint sets. An Q-algebra is a pair (Q, 5) where Q is a set and 6=(d,)
is a sequence of maps 9,: Q"X Q,—~Q. We write §, for 6(—,w): 9"—Q for
wER,. O is the carrier of the algebra.

Given Q, we define a functor X,,: Set ~Set by

0X,=U Q0"xQ, ')

n=0
while, for h: 0 -0’ K
h‘XQ(qIS"'7qn’w)=(hq1’ ""hqn’w)’ . (3)

We now observe that an X,-dynamics in the sense of Arbib and Manes [1974]
— ie. a map QX,—~Q — is just an Q-algebra, and that an X,-dynamorphism

12 M. A. Arbib and E. G. Manes

is just an Q-homomorphism, since the equation 6’ -hX,=h-6 which characterizes
a map/i: Q—~Q° as a dynamorphism A: (Q, 6)—~(Q’, 8") unpacks to

h(sm(qla ey qn) = 5:0(hq13 RRAS] hqn) fOI‘ wEQ,,, (ql’ vty ‘I,.)EQ"
Moreover, X, is a recursion process (which is the same as an input process:

in the sense of Arbib—Manes), which means that there exists an Q-algebra

(AXQ@, App) equipped with an inclusion of generators An: A—»AXQ@ such that for
any Q-algebra (Q,) we may extend each map t: A—Q uniquely to a homo-

morphism r: (AXQ@, Apg)—(0, 9). AXQ@ is the carrier of the well-known free Q-
algebra generated by A4, and may be defined by the usual inductive definition
(Birkhoff [1935]): '

Ac Ax2
@ - @
If weQ,, t,...,t,€AX,, then wt,...1,€4X, . 4)

Thus the elements of AXQ@ may be regarded as finite rooted trees, with nodes of
outdegree n labelled by elements of ©2,, save that some leaves (nodes of outdegree 0)

may be labelled by elements of 4. We abbreviate X, 9@ to To. We may define

An: A - ATy, a—a

. &)
Aﬂo: AT_QXQ—’ATQ: (tl, ...,I,,,(.O)r—»wll..).t,,. :
If (Q, 6) is any Q-algebra and «z: A—;Q is any map
A"l A 0
A _arx,
lr s ern . (©6)
T : ,
Q 0X,
then the unique dynamorphic extension r: ATo—~Q of © is given by .
r(a) = t(a) v
)
r(wty...1,) = 0,(rty, ..., rt,). .

Note that this reduces to the dynamics §: QX X,—~Q of a sequential machine if
we take Q,=X, while Q,=0 for n>1. _
Suppose that 2 and Z are two operator domains. We consider ‘bottom up’
(i.e. working from the leaves to the root) transformations of trees in ATy, into trees
in BT;: (The following transformations are ‘pure’ in that no internal state is used
in processing the trees. The more general definition is given in Arbib and
Manes [1979].) ' S

Tree transformations and the semantics of loop-free programs 13

8. Definition. Given operator domains Q and X, and sets 4 and B, a bottom-up
iree transformation (4, @Q)—~(B, X) is given by a map a: A—B, together with a
sequence f=(f,) of maps

B.: @, —{l,...,n}Tx. 9)
‘The response of (a, B) is y: ATo—~BTy defined inductively by:
Basis step:
, y(a) = o(a) (10)
Induction step: To define ‘ -
pot...t), let y(1) =s;, an
and let
B(w) = A
Then I n

The following result in the style of the Yoneda Lemma (Mac Lane [1971])
:allows us to view B as a natural transformation. (For an exposition of the concept
of a natural transformation of functors, see Arbib and Manes [1975, Secuon 7.31)
“This theorem is generalized in (Arbib and Manes [1977]).

12. Theorem. Let Q be an operator domain, and let Y be any functor Set —Set.
"Then there exists a canonical bijection :

X,, —”-Y

(13)

‘between natural transformations f and sequences (/3,,) of functions. Mutually in-
‘verse passages are given by

B, = Q,,_i~nX9"—B* nY where k(w)=(1,...,n,0) (14)
AB: AXy —~ AY, (a,,...,a,, w)—(ay,...,a,)Y- B, (w). (15

"Toexplain the notation in (15), (e, ..., a,) is a function g: n—A4. Thus (a;, ..., a,) Y
is a function gY:nY—-AY. :

Proof. To see that (15) describes a natural transformation, we must verify

AB

AX, AY
hXq | | ny
BYX, BY

for arbitrary h: A—B. But starting from (g, @)€A4"XQ,, the upper path yields
4Y -gY (B,(w)) and the lower path yields (fg)Y -B,(w) and these are equal since
Y 1s a functor.

14 M. A. Arbib and E. G. Manes

We now verify that (14) and (15) are inverse. -
Now if (B,)—p—(B,), we have

B.(w) = npQl, ...,n, ®)
=np(d,, w) for id,en"
= ldnY 'ﬁn(w) = ﬁn(w)

Conversely, if p—p,—PB, then for g€ A" we have the naturality square

nXg np *nr
gXo gY
ax, 2B 4y
so that
(4B) (g, ®) = (gY)(B.(w))
= (gY)(np(id,, »))
= (4B)g Xo(id,, ®)
= (4B)(g, w). DO

We thus conclude

16. Observation. A bottom-up tree transformation from Q-trees to Z-trees
s equivalently given by a natural transformation -

B: Xog—Ts

together with a map a: A—~B. The response y: AT,—~BT; is uniquely defined
by the diagram

2 A Q
A2 4T, o AT X
oz! ly lyXQ : ‘ - (17)
B BT; 5 BT BT X, :

Byt s g7 BT.B

Proof. The left-hand square provides the basis step of the inductive definition
of t glven in Definition (8), while the right-hand square expresses the way in which
y(wty...1,) depends on y(¢;) for 1=j=n. O

-

» 2. Transforming loop-free flow diagrams

In this section, we capture the essential ideas of Reynolds’ [1977] “Semantics.
of the domain of flow diagrams™ by giving a succinct account of the relation
between general flow diagrams and linear flow diagrams which provides the para-
digm for the other relations discussed in that paper. We fix a set P of predicate:
symbols and a set F of function symbols A general flow diagram may be represe nted

by a Z-tree where. . . -
XO=F, X =0, Z,=PU{;} F (18)

Tree transformations and the semantics of loop-free programs 15

and we interpret the following element of 8T
/N
; p (19)
NN
h fg f
as “If the p-test yields true, execute /1 then f; whereas if the test yields false, carry
out the p’-test, executing g if the outcome is true, f if the outcome is false.”
A linear flow diagram is one in which we cannot compose arbitrary opera-

tions using *‘;”, but instead apply one f at a time. They correspond to Q-trees

where .
Qy= FX{0}, @, =Fx{l}, Q=P (20)

and (19) corresponds to the following element of 07,
P
N
h p° . @n
N
f g f

" We now show that that transformation from linear flow diagrams (as represent-
ed by Q-trees) to general flow dlagrams (as represented by X-trees) is given by the
tree transformation” B,:Q,—{l, ..., n} Ty where

By(f,0)=f
ﬁl(g’ 1) =
N
g 1 . (22)
B.(p)=p
1 2

The response §To—~075 does indeed transform @1 into (19), and the reader may
see that it-also ylelds the following typical transformation: ,

OO
T AA

| ,
p h k pg h) - (23)

16 . M. A. Arbib and E. G. Manes

Now Reynolds provides for each direct (resp., continuation)-semantics for general
flow diagrams a corresponding semantics for linear flow diagrams. But each se-
.. —mantics for a general (respectively linear) flow diagram is nothing more nor less
than a 2- (respectively Q-) algebra. Any particular choice of a transformation of
semantics which “preserves meaning” with respect to a particular transformation
of flow diagrams is subsumed in the following result (which works just as well.
when T; and T, are replaced by arbitrary algebraic theories 7, and T,, see Manes
[1976 Section 3.2]):

24, Proposition. Let 2 and X be operator domains, and let ¢: RX;——R be
a given Z-algebra. Further let the family of maps

ﬁ,,: Q, — {1, s} T

define a tree transformation. Theh there exists an Q-élgebra 0: RXq—R such that
the result of running § on any Q-tree equals the result of running £ on the trans-
formed Z-tree. ' '

Proof. By (13), B, is equivalent to a natural transformation
o B: Xq~T;
yielding, in particular, the map ‘) :

Now we define the run map ¢@: RT;~R df, (R, &) by the diagram (compare (6))

Ru}
R e B ek
N

§
R RX:
and we may then define an Q-algebra (5, R) by
@
3=RX, 2L RT, =R . @7

To show that & has the claimed property, we must look at the response y: RT,, - RTy
of the tree transformation with A=B=R and a=idg. Then (17) becomes:

° Ry |
Rt R RT.X,
Ry |7 | #Xa (28)
“RTpr RT: T RT:Xo

Tree transformations and the semantics of loop-free programs - 17

’ @
We have to show that 6@ =RT, Q—’;RT ZE——R to complete the proof of the pro-

position. But this is immediate from the following diagram:

R Q R Q_
R—L RT,« L RT.X.

—~RT; el
P II Xa
R\ l RT; g

Ru*
N O RT~—L—RT,T; RT: X, |

idx 1 g@l Y -§@ T, V §@Xg (29
§e R |
R RT:L RXQ
VI

)

where I and II are just (28), III and IV extend (26), V is a naturality square for 8,

and VI is the definition of . Thus £@ .y satisfies the diagram which defines 6@
uniquely. O

* COMPUTER AND INFORMATION SCIENCE ** MATHEMATICS DEPARTMENT

UNIVERSITY OF MASSACHUSETTS UNIVERSITY OF MASSACHUSETTS
AMHERST, MASSACHUSETTS 01003, USA AMHERST, MASSACHUSETTS 01003, USA
References

[1] ALAGIC, S., Natural state transformations, J. Comput. System Sci., v. 10, 1975, pp. 266—307.

[2] ArBIB, M. ‘A and E. G. MANES, Machines in a category, an expository introduction, SIAM
Rev., v. 16, 1974, pp. 163—192,

{31 ARBIB M. A. and E. G. MANES, Arrows, structures, and functors: The categorical imperative,
Academic Press, New York, 1975.

[4] ArBmB, M. A. and E. G. MANEs, Intertwined recursion, tree transformations and linear systems,
Informanon and Control, 1979, In Press.

5] BIRKHOFF, G., On the structure of abstract algebras, Proc. Cambridge Philo. Soc., v. 31 1935,
pp. 433—454.

(6] Mac LANE, S., Categories for the working mathematician, Springec-Verlag, 1971.

{71 MaANEs, E. G Algebra:c theories, Springer-Verlag, 1976.

{8] REYNOLDS, J. C Semantics of the domain of flow diagrams, J. Assoc. Comput. Mach., v. 24,
1977, pp. 484—503

[9] THATCHER, J. W., Generalized® sequential machine maps, J. Comput. System Sci., v. 4, 1970,
pp. 339—367.

(Received April 5, 1978)

2 Acta Cybernetica IV/(1

Mixed computation in the class of recursive program schemata

By A. P. ErsHov

To the memory of Professor Laszlé Kalmar

Let some class A of algorithms be prescribed by a set # of programs P, a
domain Z of input data X, a domain % of results Y and a computation V being
a universal process which is defined for any P and X and is either infinite or
resultless (yielding an aborr) or yields some Y as a function of P and X: Y=V (P, X).
Mixed computation [1] in 2 is a universal process M which is defined for any
P, X and a parameter u (specifically characterizing the process). The process is
either infinite or resultless or it generates some residual program Mg (P, M, 1)
and vyields partial results Mc(P, X, 1). A mixed computation is correct if for
any P, X and p the following functional identity holds

V(P: X) = V(MG(P, X’”)a MC(Ps X’ﬂ))

It has been shown [2] that mixed computation and such related concepts as
partial evaluation [3], computation over incomplete information [4], “progonka”
[5] may be a basis for solution of many programming problems where efficiency
has to be traded off with universality.

It is natural to seek a correct formalism of mixed computation for the most
common abstract models of program. The correctness of mixed computation for
ALGOL-like programs has been shown in [6]. In this note a correct procedure
of mixed computation in the class of recursive program schemata is presented. This
class reflects such properties of algorithmic languages as recursion and proceduring.

We shall introduce some notations. If .# is a set of elements m then M" is
an n-tuple of elements from .#. The length of a tuple used as an argument of a
functional symbol f is always equal to its arity g(f). [B] is a term 7 constructed
over a set B of basic symbols, 1(4) is a term t for which its arguments (variables
or constants) 4 are shown.

According to [7] a recursive program schema is specified as a system of equalities
(function declarations)

fi(XiQ(fi)) = Ti[Xi’ C’ {fl’ “'5fk}3 ”’ ¢] (’ =]9 CERE} k)’

2%

20 A. P. Ershov

where f; are defined functions. & and ¥ are countable sets of variables x and con-
stants ¢, IT and & are finite sets of predicate and functional symbols, respectively,
of fixed arities.

Predicate terms 7 are used to define conditional terms {m|t,|t,} where ¢, and
t, are functional or conditional terms. Terms t; are arbitrary terms (function bodies)
over specified sets of symbols.

Let an interpretation of the basic symbols (constants, functions and pre-
dicates) converting a schema into a recursive program be given. A system of func-
tions ¢,, ..., ¢, is called a fixed point of a recursive program if, having been com-
bined w1th the system of basic functions IT and @, it makes (after substltutmg o;
for each’ f;) the function declarations identities.

We say that a function ¢, covers a function ¢, if the graph of ¢, contains that
of ¢,. Under natural assumptions on basic functions and their regions of definiteness
each recursive program has a single so called lowest fixed point (LFP) covered by
any other fixed point of the program {7]. _

Let T and C be tuples of terms and constants respectively. A call is a term in
the form f(T'); a bound call is a term in the form f(C); a semi-bound call is a
term in the form f(C", T™) where n+m=9(f) a transitively bound call is a
call having no variables.

Let one function declaration f(X)=t in a program be treated as a leading
declaration and C be a tuple of ¢(f) constants. A (sequential) computation V over
a program P is a step-wise process of constructing a sequence of terms t°=f(C),
71,72, ... which either is developed infinitely or ends by an (resultless) abort or
(sucessfully) by a constant which is taken as the value ¢ (C) of the function ¢(X)
computed over the .given program for its leading declaration.

Each step of the construction of '** from t* consists of two parts.

1. Rewriting. In 7" somehow a call f;(T) is chosen. This call is replaced by
a term t. The latter is obtained from the function body 7; of the declaration
fi(X;)=1; by replacement of variables from X; by correspondmg components
of the tuple T. Let 7° be the rewritten term.

2. Simplification. Inductively, all such subterms in 7 are evaluated which
contain only constants and basic functions and predicates. The evaluated func-
tional terms are replaced by their value, conditional terms are replaced by their
if- or else-part depending on the value of the predicate. If the simplification yields
either an abort or a constant ¢ then the process in terminated yielding either the
abort or ¢ as a successful result. Otherwise, the simplified term is taken as ti+!.

Similarly, a partial computation is defined which allows 7° to be an arbitrary
term with variables. Partial computation is terminated when the simplified term
contains no available transitively bound calls.

A variety of computations is determined by the method of selection of sub-
terms subjected to rewriting. In the general case a computation provides with a
function covered by the LFP of a given recursive program. A computation which
guarantees LFP is called safe. An example of safe computation is the execution
of the ““left outermost” call that corresponds to the “call by name”. An unsafe
computation is the execution of the “left innermost™ call (call by value).

Let the first function declaration f,(X;)=t, of a recursive program P be
leading and let a partition u of variables X; (X;=X"UX) and a semi-bound call

Mixed computation in the class of recursive program schemata 21

fi(B, X) be given. Let a computation V provide the leading declaration with a func-
tion @(X’, X). A correct mixed computation M of the program P for the given
partition u and tuple of constans B is an arbitrary process of transformation of
the program P into a program Py with a leading declaration f,(X)=1, such that
the function @z(X) provided by V for the program Pj satisfies the identity ¢ (B, X)=
=@p(X).

We shall describe a transformation of P which we call an execution of the
semi-bound call f,(B, X). Let us take a copy of the term 7, and replace in it all
occurences of variables from X’ by the corresponding constants from B with all
subsequent simplifications; we will obtain a term 7, as a result. Then we take a
new functional symbol f; of a defined function f;(X) and replace, in all terms
Tgy T1s ov-» Tx, all semi-bound calls in the form £, (B, T) by the calls f,(T), thus
obtaining the terms 7,1}, ...,7;. Let us denote by P* the program which is
obtained from P by attaching to it the equality fi(X)—ro as leadrng declaratron
and by replacing the bodies 1y, ..., 7, by the terms 17, ..., 75.

. Lemma 1. Let ¢,(X’, X); @, ..., ¢x and Yo, ¥y, ..., ¥, ‘be LFP of the prog-
rams P and P*, respectively. Then ¢;=¢; (i=1,...,k) and ¥,(X)=0,(B, X):
The proof is based on Kleene’s theorem on recursion [8]: it can be shown that
subsequent approximations of P and P* to their LFPs satisfy the lemma at each step.
Let us introduce a reachabzlzty relation over the defined functions .f, ..., f;
of a recursive program: f; is reachable from f; if the body of f; contains calls
for f;. We will also consider the transitive closure of the reachabrhty
:We shall formulate two obvious lemmas. :

Lemma 2. Deleting from a program P the declaration of a function. which
is transitively unreachable from the function of the leadmg declaration preserves
the 1st component of the LFP of P.

Lemma 3. Replacing in P a call f(T) for the function with a declaratlon
f (X)=t(X) by the term t(T) preserves the Ist component of the LFP of P.

- Now we can describe a correct mixed computation with respect to some com-
putatlon V.

Initial step. A semi-bound call f{(B, X) is grven 1t is declared to be the start
of the first cyclic step.

Cyclic step (transformatron of P into P) Let a start f (B X) be glven ‘The
corresponding declaration in P is considered as the leading one. P is transformed
into P* with the leading declaration f,(X)=1, according.to the rules of executlon .
of a semi-bound call. A partial’ computauon V with 7, as the initial term and
as the result (1f any) is undertaken. P* is then transformed 1nto P’ by replacmg To
by the term 7Ty, in the’ declaratron fO(X)=1y-

After each cyclic step’ we look at’ty whether it contains a semi-bound call
f(C, T). If so then the term f(C, Y), where Y are variables from the declaration
of f which correspond the terms 7, is taken as a start for the next cyclic step.
Otherwise the mixed computation is terminated yielding the program after the last
step with the leading declaration from the first cyclic step as the residual program,
Afterwards, the residual program may be simplified according to lemmas 2 and 3,

Example A. (Power function x")
pow (x, n) = {n = 0|1|{n is even |[pow?(x, n/2)|x><pow (x, n— l)}}

22 i A. P. Ershov

Let pow (x, N)=N(x). The residual program for pow (x, 5) before simpli-
fication

5(x) = xX4(x);
4(x) = QM)
2(x) = (1(x))%;
1(x) = xX0(x);
0(x) =1;
pow (x, 1) ={n = 0[1|{n is even|pow?(x, n/2)|xX pow (x, n— 1)}}.
The residual program after simplification:

5(x) = xX((xx 1)?)>

_Let pow (5, ny=exp (n). The residual program pow (5,n) after simplifi-

cation:

exp (n) = {n = 0|1|{n is even|exp®(n/2)|5Xexp (n— l)}}.
Example B. (Akkerman function)
AQx,y) ={x=0ly+1|{y =0]d(x—1, D|4(x—1, A(x, y—1))}}.
Let A(Q,y) =exp(y); AQ,y) = mult(y); A(l, y) = add (y), A(m, n) = amn.
The rtesidual program for A(3, y) after simplification:
exp () = {y = 0la21|mult (exp (y— 1))};
mult (y) = {y = Olal1jadd (mult (y — 1))}
add (y) = {y = 0[a0l]|add (y —1)+1}.
Let A(x, N)=aN(x). The residual program for 4(x, 3) before simplification:
a3(x) = {x = 0}4|4(x—1, a2(x))};
a2(x) = {x = 0]3|A(x—1, al (x))};
al(x) = {x = 0]2|4(x—1, a0(x))};
a0(x) = {x = 0]l|al (x—1)};
A(x,y) ={x =0ly+1|{y = Olal (x—1)|4(x—1, A(x, y— D)}
Notice, that elimination of non-recursive declarations can be made in different

ways due to the mutual recursion of ¢0 and al. Eliminating a0 and a2 we obtain
(exploiting the logical dependencies):

a3(x) = {x = 0l4|4(x—1, A(x—1,al(x)))};

al(x) = {x =0)2[4(x—1,al (x—1))};

AQx,y) ={x=0ly+1{{y =0lal (x—D]4(x—1, A(x, y—))}}.
COMPUTING CENTRE

SIBERIAN BRANCH OF THE USSR AC. SCI.
NOVOSIBIRSK 630090, USSR

Mixed computation in the class of recursive program schemata 23

References

[1] ErsHov, A. P., OO0 ORHOM TEOPETHYECKOM MPHHLUHIE CHCTEMHOIO MNPOrPaMMUPOBAHUA
Dokl. Akad. Nauk SSSR, v. 223, No. 2, 1977, pp. 272—275.

[2] Epuros, A. I1., O CylHOCTH TPAHCIIALMAM, HpoepaAmupoeanue, No. 5, 1977, pp. 21—39.

3] BECKMAN, L., A HARALDsON, (). OSKARSSON, E. SANDEWALL., A partlal evaluator, and its
use as a programming tool, Artificial Intelligence, v. 7, No. 4, 1976 pp. 319—357.

[4] Ba6uy, I'. X,, JI. ®. HITepHGepr, T. K. }OraHOBa, Anropmmmecmﬁ A3BIK MHKOJI Anis
BBHIOMHEHHA BLIMMCIICHHIT ¢ HenOMHOH uupopmauueit, [Mpozpasmuposanue, No. 4, 1976, pp.
24-32.

{5] Typuun, B. ®@., DxkBuBaneHTHBIC NpeoOpa3oBaHus nporpamMm Ha Pedane, ABTOMaTH3UPOBaH-
Hasl CUCTEMA YIIPABJIEHUA CTPOUTENLCTBOM, Tpydst THUITHACC, Moscow, No. 6, 1974, p. 36.

6] ErsHov, A. P. and V. E. ItkiN, Correctness of mixed computation in Algol-like programs,
Lecture Notes in Computer Science, v. 53, 1977, pp. 59—77.

7] MANNA, Z., S. Ngess, J. VUILLEMIN, Inductive methods for proving properties of programs,
Comm. ACM, v. 16, No. 8, 1973, pp. 491—502.

[8] KLEENE, S. C., Introduction to metamathematics, Amsterdam—Groningen, 1952.

(Received August 1, 1978)

[P

Certain operatlons w1th the sets of dlscrete states

By M. A. GAVRILOV

»In memory of Laszlé Kalméar

N .

Discrete devices are nowadays widely used in various fields. Since the con-
temporary discrete devices are very complex, multipurpose and high-dimensional,
considerable changes in conventional design techniques which rest upon the so-
called “finite automaton model [1] are necessary.

The basic disadvantage of the existing techniques for the description of control
discrete devices, viz., flow tables (for sequential machines) and state tables (for
combinational automata) is that each input, internal and output state should be
dealt with separately, which limits signiﬁcantly the dimensionality of the problems.:

A way to increase the dimensionality is to use functions which are characteristic
of sets of states with some special properties such as having the same distance
between states, the same value of certain variables, etc.

Some operations with characteristic functions of the sets of states are described
below. Dévelopment of thése operations was necessary for the design®of computer-
aided logical design of discrete devices.

1 Proximity of functions

Let two Boolean functlons F; and F; be given as thelr sets of permit (one
meaning) M* and forbid (zero meamng) M states M=M!NM}; M;=M}NM}
characterized by the functions F}, F?, F}, FJ ** .

Let us distinguish the following sets of states M}, the subset of permit states
identical for both.M; and M;; M}?, the subset of forbid states identical for both

ij»

* A permit (fOI'bld) state is the state in which the function is equal to one (zero). Besides,
there are “don’t care” states (M ™) which are mdlﬂ'erent to the value of the function (it may equa]
either 1 or 0).

Sets of states: M, M°and M ~ are nonmtersect in panrs and MUM°UM”~ .18 equal to the
set of all states, i.e., 1ts power is 2", where n is the number of varibles of the functlons F; and F,.

** Statement “function F (A) characterized sets of states M *** means that:

i FA) {1 if AEM*
- 0 if A¢M*

’

26 M. A. Gavrilov

M; and M;; M}, the subset of permit states only for M; not contained in M;;
Mo, the subset of forbid states only for M; not contained in M;, M{*, the subset

of permit states only for M; not contained in M;; M, the subset of forbid states
only for M; not contained in M;; M, the subset of permit states in M; contained

M, M,
| M M .
Ml M M} | M
M My
e M
Mo My Mp | My
o R
- 4 Lmmee e o
. Fig. 1 .

in the forbid states set in M; (M[*=M]%); M/, the subset of forbid states in M;
contained in the permit states set in M; (Mf°o=M}") that is (fig. 1):

M3 = MINM}Y; M = MY\ M?;
Mi=MINM[; Mo = MPOM; s M = MINM ;' Mpr = M{N M,
MP = Mp = MY MY Mpo = My = MY M}.

If the functions F; and F; are given by the sets of their permit and forbid states
then the sets of states of classes: s, ¢ and r are characterized by the functions:

F} = FIF}; Fyp = FF};
Fr=FIF] = FAF}F); Fo= RF] = FRF}RY; M
Fp = F}F, = FJF\RY Fp = FF, = FIREY;
F = Fp = F F}; Fi* = F* = F' F}.

Let us present the sets of states F! and F° as the join of the above subsets of
states. The function will then be represented as (fig. 1):

M; = [M}, M]] = (M3 UMPUMP), (M3UMPUMP)]

)]
M; =M}, MY = [(M3UMPUMY), (M3UMPU M)

Certain operations with the sets of discrete states 27

The proximity of the functions its measured as the power of the subsets of
states M". If M, M[°, M[*, Mo, are empty M} =M;? are empty the functions
F; and F; after introduction of the additional don’t care states may be realized
by the same structure (fig. 2) but in the second case the output of one of the
functions was taken from an additional invertor (fig. 3). Assume the proximity of

M M,
My My ||

MiL_MI_ A M M
AM7=M’A'HAM% M

~
S—

e

M?‘ i J i i
M3 Mi]
oM LM
Fig. 2
M, M;

[M M|
i ABME= A [SEM= 7 o
L M"l AJ]’:]
(A My
Moyl M7 My |t M)
{AM,"—M,’-‘ AM = M} ’
M7 7
| J | MRS A 4

Fig. 3 .

the functions F; and F; is absolute (the distance is zero) with the corresponding
functions completely connected in the first case, and maximal, with the correspond-
ing functions inverse-completely connected in the second case.

‘The concept of the proximity of functions made use of in defining optimal
or near-optimal architecture ‘of realizing functions in multioutput structures. The
design technique for such a realization builds the so-called “connectivity nodes”
of the structure, viz., a set of functions “completely” or ‘‘inverse-completely”
connected. ' '

28 M. A. Gavrilov

For functions which do not enter the connectivity nodes the distance to one
of these nodes is to be found and the question answered whether the realization
of these functions is connected with a connective node or a separate one.

To define these structures the operations of union intersection and comple-
mentation of subsets of states are used. If one has two sets of states M; and M;
written in the form (2), one may write for the operations of union, intersection
and complementation:

MUM; = [(MPUM)), MPNMY] = [(MzUMPUMP)U
U (M3 UMPUM), (M3 UMPUMNMPUMPUM9)].

The intersection of subsets of states M/° and M]° is empty subsets M{° contains
in subsets M, and subsets Mj® contains in subsets M;”. Therefore we shall have:

M,UM, = [(MPUMD), (M3 UMPUMD)] (3a)

Similarly, .
MOM; = [(MINM3), (MPUMP)] = (MU UMBUMD), (MPUM®] (3b)
M, = [((MD), (M?))] = [(MD), (MD)] (3¢)

2. Determination of the power of the state sets

In the above technique (as well as in determining some other criteria for the
realization of these functions) the power of some subsets of states is to be found.
The characteristic functions of these subsets can be described in an arbitrary form.

For this purpose [2] offers techniques for the transformation of an arbitrary
Boolean expressron into.some ‘“canonical” form enabling the computations of
powers of various state subsets as a sum and product of the powers of the state
subsets which correspond to separate parts of the function analyzed, thus sig-
nrﬁcantly simplifying the computations. The use of the analytical form of the func-
tions permits one to take full account of the information: contained in the state
table which corresponds to the ana]yzed function wrth no need to construct the
table itself.

Let us enumerate the parentheses denoting by 1 the outer parentheses of the
parenthetic expression of the Boolean function and increasing the index with the
rank of the parenthesis. The subfunction in the i-th parenthesis will be referred to
as the i-th disjunctive or conjunctive term depending on the outer logical operation
of this subfunction (i.e., depending on the s1gn of the (i+1) st terms contained in
the expression). Invers1on over the expressrons will be denoted by square paren-
thesis and similarly enumerated. .

A canonical parenthetrc form which may be used to find the number of states
is the form where any pair of terms included into a disjunctive term is orthogonal
and all the terms of a conjunctive term should contain no coinciding variables.

" The transfer to the canonical parenthetic form is done by means. of the. de-
composition .of a given parenthetic expression by variables using Shannon’s rule.
It-is obvious that for the disjunctive term i of the canonical form the number of
states equals the sum of the numbers of states of the (i+1) conjunctive terms con=

Certain operations with the sets of discrete states 29

tained in this disjunctive term. The number of states of the conjunctive term will
be a;=2""%B,B,...8, where n is the total number of variables, k£ is the number
of variables contained in the conjunctive term, f,, fs, ..., B is the sum of the
numbers of states of the disjunctive terms contained in the conjunctive term. A term
with square parenthesis (inversion) has the number of states defined as

B; =2 —B;
where r is the total number of variables contained in this inversion term and S} is
the number of states of this term.

This follows from the fact that the power of the sets of states, characterized
by the inversion function is equal to addition up to 2" (r — is the number of the
variables of this function) from the power of the sets of states, characterized by
function, wich is under the symbol of inversion.

Let the function
F= [xix]-\/fjxkx,,].
be given. ‘ -

The number of states, characterised by the function, which is inside of square
parenthesis (under symbol of inversion) is: B*=6. The number of variables of
this function is: r=4. Therefore the number of states, characterized by the given
function is: Np=2*—6=10.

. Let us have a certain function specified by its permit (F') and don’t care (F7)
sstates
P = x VX xsxe VX (K5 X6V X0 X5 X6 X190 X11) V Ko X (R VE VXV XV E),

F™ = x3x,VXg%,.
Obviouély the functions, characterized by the sets of permit and forbid states with-
out the don’t care ones (F'~ and F°7) will be described as
F'™ = FII*T=(x5VilxsxGVxl()?sxs\/xzf;-,fsxmxu)\/
Vx2x1(5€'3V5€'4Vf7\/)Tszs))[x3x4sti’9],
F7 = F1F" =[xV X, Xg X6V X, (¥5 %5V X3 X5 X X10 %11) V
Vx5, (%3V X4V %7V X5V Xo)] [203 X, V X Xo].-

Transform these expressions to canonical form using Shannon’s rule in order
variable: x;, X,, X3, x,.* Denoting the upper index of parenthésis by the number
of states in the form 2"=*8,B, ... B,, and the lower index by rank of parenthesis, we
shall have: '

Fl = 1(2(28351 Xy Xy Xy [F* X Xpl§ 2)aV o(¥ Xy Xo X3 [*°Xg Tola)3 3V e (233‘1 Taa(®'x;5V
VX5 x0)t 2 5(%sV X3 X5 5[X -’_69]3)20'27\/ 2(2821 LV E; x5 23(X5V
VX3 X052 5[Xs f9]3)§1'28)1
FO = (37001 %, [° X5V X5 x5 o(X3V X3 X)37 2[R Folg)i 2V o(°% [x5V
VEsx6ls o(X3V X5 X052 5[X ’79]3)51'9)1 .
* For determining the order of v;ariables, which give the 4 expression, approaching the

smallest amount of letters, it is useful to apply the heuristic criterion (5) or (6) (see page 7 and 8),
as statistical experiments show.

30 : M. A. Gavrilov -

Thus the powers of the sets of permit and forbid states for the given function
will be
‘ N1 =22.3428.3420.27421.27 = 117
N©®=20.9421.9 =27,

3. Decomposition of Boolean functions

Realization of a given Boolean function in given elements is essentially a
problem of decomposing this function into subfunctions in accord with the logical
properties of the element. Obtaining the accurate solution for a problem of mini-
mizing a Boolean function, or transformation to the form with the smallest
number of operations and letters is a complex problem of combinatorial search
[3, 4]. With the number of input variables as high as 20 or 30 the problem becomes
hardly solvable even on computers. Therefore presently minimization of Boolean
functions is achieved by means of heuristic methods with local optimization which
we call the “directional search”.

One of the first attempts to eliminate combinatorial search was introduced
in [5] and widely used afterwards. This was the procedure of finding additional
letters of the terms which describe the function in a contradictory way (the so-
called “insufficient minterms’). Further in [6] a method of directional search was
suggested for the case when a Boolean function was given by its table of states.
The method contained criteria for selecting the so-called “‘inessential” variables®
and finding minimal terms of the kernel as well as the minimal set of insufficient
minterms.** .

The fact that the function should be specified by its table of states significantly
limits, however, the dimensionality of such problems. Ref. [7] suggested a technique
in which minimization procedure rests upon the record of the given function and
all its intermediate forms obtained in the course of minimization in an arbitrary
analytical form thus considerably increasing the dimensions of the problems.

A more general technique was developed afterwards for realization of a func-
tion or a system of functions using ‘“‘arbitrary” elements, or those whose logical
properties are described by arbitrary Boolean functions [8].

The first stage of this technique implies elimination of the so-called “‘inessential’”
variables i.e. such whose elimination from F! and F° does not change the values
of the function.

To determine inessential variables, a notion of Boolean ‘“‘derivative’ is used,
introduced in Ref. [9]. The derivative of the given function with respect to an in-
essential variable is equal to zero. '

dF

dx = F(lxk=1)F?xk=0)VF(lxk=0) F(Oxk=1) 4)
Xk

* An inessential variable is a variable for which no pair of permit and forbid states exist
differing only by the value of this variable. Elimination of this variable does not change the value
of the functions. If a pair of permit and forbid states differs by the value of one variable, the values
of this variable in these states are called obligatory letters.

** Minterm of the kernel is the conjunction of obligatory letters which describe only a subset
of permit states or only a subset of forbid ones. Such terms should be included into alld-n. f. versions
of a given function.

Certain operations with the sets of discrete states 31

To obtain optimal realization* the order of elimination of inessential variables
is important. A heuristic criterion is used for this purpose which estimates the
proximity between the variable and the constant

_ 1 0 1,0
Ry = nixnox+np i g &)

where nf , and n§ , are the number of permit states in the function in which the
variable x; takes on the values of 1 and 0, respectively, and n{, and n§, is the
-same for borbid states.

This criterion gives exact results in utmost cases, when the variable x, is con-
stant or a given function equal to the Ietter X, Or Xi.

In the ﬁrst case ng ,=ng, k—O or nj,=n k—O and therefore R= O In the
second case nj ,=n3 k—O or nj,=nj k—O It is possible to show that in these
cases R=max.

First an inessential Varlable is ehmmated for which we have the least value
of the criterion R. After the variable is eliminated from the function F, the values
of R are recomputed and the next variable is eliminated until all the variables left
are essential. ‘

Let us assign as the inputs y;, ¥, ..., ¥, of the output element ¢ a certain
set of input variables x;, x;, ..., x,. At the output of the element we shall have
then the functions. 2 and g.** ’

Then it is clear that if

Fii=0 Fg=0

the function can be realized by a single element with a given assignment of vari-
ables as inputs of this element. If these expressions are not equal zero, the realiza-
tion-of the function wilt be contradictory, i.e., for some states from M?! “0” will
appear at the output of ¢ the element, and for.-some states, from M?, “1”.

Two problems arise here:

a) find a set of variables assigned as the inputs of the output element such
that the functions /1 and g be as proximate as possible to the functlons F' and F 0,
that provides optimization of the entire structure, and

b) design the ‘‘additional” functions with the minimal necessary number of
states assigned as inputs of the output element for elimination of contradictions.

The first problem is solved by the calculation of the value of the heuristic
criterion for every variable x,

1 il
_ ny,x nU,k (6)

k=™ N1 O NO

where: ni , and n§, — have the same sense, as in criterion (5); N?' is the power
of the set M* and N° is the power of the set M°. If b, is positive then x, is without

* By an optimal realisation we understand the obtaining of a function, nearing to such one,
which has a minimal number of variables.
** The functions 4 and g specify the states which in the function realized by the element are
permit and forbid states, respectively.

32 ’ M. A. Gavrilov

the sign of inversion. If b, is negativ then x, is with the sign of inversion. The
variable x, is selected with the maximal value of b,.

The second problem is solved by determination of the sets of permit and:
forbid states of the so-called ‘““additional” function, i.e., such function by the re-
placement of which variable x,, will remove or decrease contradiction in realiza-
tion of the given function.

Design of these functions for an arbitrary element is a rather bard task achiev-
ing which illustrate well the problem of isolating, from the sets of states of the
given function, certain subsets with given properties, which was mentioned at the
beginning of this paper.

Let us examine in a more detailed manner what states have to be permit and
forbid for this function.

Let us introduce notion of “partial” derivative and “‘ranks” of partial deriva-
tive variables.

The partial derivatives of first rank for the variable x; are:

oM (F),, = F(lxk=1)F?xk=0) (7a)
and
M F)z, = Fl—0yFlx =1y ‘ (7v)

Expression (7a) characterizes the set of permit states in which variable x,=1
and x, is essential. Accordingly in the set of forbid states x,=0 and x, is also
essential.

Expression (7b) characterizes the set of permit states in which the variable
x,=0 and x, is essential. Accordingly in the set of forbid states x,=1 and x;
is essential. ‘

In these cases, for every state from M and M° there will be found accordingly
exactly one state in M°and M?! which differs by the significance of the variable x;
from the given state.

Let us consider that in these cases these states are in distance ‘‘one”

Let us understand as derivatives of rank of *j>* (97 (F),, and &/ (F)z, ‘functions
which characterise the states from F* or F?° havmg in ratio to given state j variables
(including x,), which have opposite significance. Let us consider, that in these
cases these states are in distance “‘j.

For the analysis of states included in additional functions the expressions

S = V P E),, (82)
and -
S = V¥ (P, (85)

will be useful.
These expressions characterise disjunctions of states for the partial derivatives
of all ranks, without the first. , ,
' To obtain the expressions S(F') and S(F° one should consider:those for
each rank of partial derivatives and then join them up.

Certain operations with the sets of discrete states 33

Let us consider a technique of finding second rank partial derivatives. First
find the functions D*(F') and D!'(F°) describing the ‘“‘remaining” states in M!
and MO after elimination of the states included in the first rank partial derivatives.

D'(F) = F'7*(¢")

D'(F%) = F°7°(o%
2(0) = ZG0 @)V EFI @)
(@) = Z(7:0* (0),)VE(7:0(9Y)5)-

The second rank partial derivatives are those of the first rank for D'(F') and
D'(F% over y;,y; with respect to t!(p!) and (9.

Higher rank partial derivatives are determined in a similar way.

Let functions F! and F°® which characterise permit and forbid states M and
M?® for some function F be given. Let an element ¢ be also given, having ¢ in-
puts: y;, ¥z, ..., ¥,. Permit and forbid states of this element are characterized by
functions: @'=r(yy, s, ..., ¥,) and @°=s(yy, yo, ..., ¥,)- In addition, let the
set of variables: x,;, x;, ..., x;, be determined as assigned by inputs of element ¢,
which result realisation of functions: h(x;, x;,"..., x,) and g(x;, x;, ..., x;) on the
output of this element, accordingly with permit and forbid of given function F,
but realize it contradictory.

In [10] the following formulas are given characterlsmg permit (f;}) and forbid
(fy)) states of additional function on input y; of element

= PEMNVS@)VFP@GNSHE))
12 = PO)V S,V PO,V Sh),). (9b)

Let us show, that these formulas reflect category of states including in addi- ~
tional function correct and completely. To the set of permit states belong follows:

a) The states in which x,=1 or x,=0 and the given function is realized
correctly at the output of the element, and the change of the value x, changes the
output value which becomes contradictory. It is clear that these values should
be preserved in the additional function which provide for the replacement of the
variable x;.

b) The states in which x, also is either ““1”” or “0” but the function F is realised
at the output of the element contradictory and the change of the value x, leads .
to elimination of the contradiction. Here as in the previous case the letter x, is
an obligatory letter and in order to eliminate the contradiction the state should
be replaced with the one from the opposite set of states. '

Functions characterising states of categories of a) and b) will be expressed
therefore in the following form

AL(f2) = F13\(h), \ FO0 (h)y,.

If the states of the element ¢, leading to contradictory realisation, belong only
to categories a) and b), then the function 4'(f}) completely eliminates the con-
tradictions.

where

and

3 Acta Cybernetica 1V/1

34 . M. A. Gavrilov

¢) If the state under consideration differs from those of the opposite set of
the table by values of several variables, the change of the values x, via additional
function is still helpful, since it decreases the ‘“‘distance” between the given state
and the one which correctly realises .the given function thus simplifying the realiza-
tion of additional functions at the other inputs of the element.

The function, characterising these states, will be expressed in following form

A ”(.f;,-) = Fl S(g)i.v FO S(h);’('

a) The states, in which correct realisation of permit states of a given func-
tion F is provided write help of other variables and therefore the change of the
value of given variable don’t change the significance of the output of the element,
belong to don’t care states. of additional function.

The disjunction: A’(f;)VA”(f}) gives formula (9a). The correctness and
completeness of formula (9b) prove analogous.

Successive application of formulas (9a) and (9b) for all mputs of element ¢
and for received additional functions give the convergent process of ellmmatlon
of contradictory in the realization of the given function F.

4. Algebraic model of a discrete device

A number of problems in the analysis of discrete devices (revealing statistical
and. dynamic races, reliability analysis, determination of check and diagnosis tests,
etc) are very difficult because of the lack of adequate models which would describe
in a compact way the internal structure of the device as well as its operating
algorithm,

The model without this defect [10] uses the fact that introduction of each in-
ternal variable (a function of the same input variables) doubles the number of states
of the function and exactly one half of them should belong to the states of M ~.
Indeed, if we have some element for the function

@; =fi(x1,x2a Teey xn)

where x;, X, ..., X, are the input variables, then the function 4;=¢, f;(x,, x5, ..., x,)V
V@ fi(x1, X3, ..., x,)=0 i.e. it describes the subset of states M ~.

Additional internal variables associated with outputs of the elements are in-
troduced for each /-th output of the structure of a discrete device by eliminating
from M! and M?° the states characterised by the functions 4;.

Similarly as above, let us denote the functions characterizing the subsets of
states M! and M?° at the /-th output of the structure containing £ elements may
be described as follows

Fo* = Fl (%1, Xay oo X)¥

Flo’k = Eo(xl’ x2, vt n)lp
where :

.
Y= _/=\1 (@ fiCers Xas oo s XDV @i Ge1, X ey X)),

INSTITUTE OF CONTROL SCIENCES
MOSCOW, USSR

Certain operations with the sets of discrete states 35

References

[1] Knuun, C. K., Ilpencrasnenne COOBITAN B HEPBHBIX CETAX H KOHEUHBIX aBromartax, C6. Ap-
ToMmartsl. U3n. inoctp. nutep., 1956.

[2] Konbinenko B. M., CuHTe3 CTPYKTYP peneiiHbIX YCTPOHCTB NMPH 3aJaHHM MCXOLBIX JIOTH-
Yyeckux QyHKUMI B TPOM3BONILHOM ckobounoii dopme, C6. [TpoekTHpoBaHKe MHGOPMALIMOHHO-
JIOTHMYECKHX YCTpO#cTB s uppurawmw, Uza. UJIUM, 1973.

[3] QuINE, W., The problem of simplifying truth function, Amer. Math. Monthly, v. 59, No. 8,
1952,

[4] Mc CLUSKEY J., Minimization of Boolean functions, Bell System Tech. J., v. 35, No. 6, 1956,
pp. 1417—1444.

[5] TaBpunos, M. A., Munnmu3sanusi 6yieBsix (GyHKUMI, XapakTepU3yIOIINX peneiiHble Lemnu,
Aemomamura u meaemexanuxa, v. 20, No. 9, 1959,

[6] TaBpunos, M. A., B. M. Konsinenko, Merox MUHUMH3AUNH CTPYKTYP OECKOHTAKTHBIX
peNedHBIX YCTPONCTB Ha ¢(YHKUMOHAJIBHO-MONHBIX Habopax snemenToB, CO6. Teopus auck-
peTHBIX aBTomaroB, Y3n. 3unarthe, Pura, 1967.

[7]1 GavriLov, M. A., Development of the finite automata theory in the discrete circuit design,
Problems of Control and Information Theory, (Jubilee Number) v. 4, 1975, pp. 77—96.

[8] TaBpunos, M. A., Jlekommo3ulus KoMOMHAUMOHHBIX aBrOoMaToB, CO. Martematuueckue
CTPYKTYDPBI, BHIYHCIKTENLHAA MaTeMaTHKa, MaTeMaThieckoe Mopemuposanue, Codus, 1975,
pp. 37—56.

[9] AKERS, S., On a theory of Boolean function, J. Soc. Indust. Appl. Math., v. 7, No. 4, 1959,

[10]) Bazap6aena, T.T., 3. 1. BocrpoBa, B. M. Konnuienko, B. M. Sixkytun, ITpoexTHpOBaHHE
CTPYKTYDP peNe#HBIX YCTPOHCTB ¢ YYETOM HMX HAHNEKHOCTH M HEKOTOPBIX OCOOEHHOCTEH TEXHH-
yeckoi peanuzanni, JJMcKpeTHBIE CyCTEMBI, MeXyHapOAHBI CHMIIO3UYM, V. 2, V3n. 3unaTye,
Pura, pp. 7—15.

/) (Received March 9, 1978)

3* i

Minimal ascending tree automata

By F. GECSEG and M. STEINBY
To the memory of Professor Laszlé Kalmar

Here an ‘ascending tree recognizer’ is a finite, deterministic automaton that
reads trees starting at the root proceeding then towards the leaves along all branches.
It accepts or rejects the tree depending on the states at which it arrives at the leaves.
In the literature they have also been called ‘climbing automata’, ‘top-down tree
recognizers’ and ‘root-to-frontier automata’. They were first studied by MAGIDOR
and MORAN [5]. Although various forms of ascending tree transducers have been
studied (cf. [3], for example) the ascending tree recognizers have received little
attention. A brief discussion can be found in THATCHER’s [7] survey paper.

The minimization of (frontier-to-root) tree recognizers was first considered
by BRAINERD [2]. Another formulation was given by ARBIB and Give’on [1]. It tur-
ned out that Nerodes theorem (cf. [6]) and the classical minimization algorithms
can be extended to them. .

In this paper the minimization problem of ascending tree recognizers is stu-
died. First we define some basic algebraic concepts for them (such as homo-
morphisms). In order to be able to generalize the results and procedures from the
case of ordinary recognizers we have to restrict ourselves to ‘normalized’ ascending
tree recognizers. However, every ascending tree recognizer is equivalent to such
a normalized recognizer. From a connected normalized ascending tree recognizer
a minimal recognizer can be obtained as a quotient recognizer. Also, it turns out
that any two equivalent normalized minimal ascending tree recognizers are iso-
morphic. All steps involved in the process of transforming a given ascending tree
recognizer into a minimal one are effective so a minimization algorithm results.

1. Trees and ascending tree recognizers

We shall define trees as polynomial symbols in the sense of GRATZER {4]. In
this paper
F=U(F,m=1)
will be a finite set of operational symbols. For any m=1, F,, is the set of m-ary

operational symbols and the sets F,, {(m=1) are assumed to be palrwxse disjoint.
Note that we exclude here O-ary operatlonal symbols.

38 F. Gécseg and M. Steinby

For every n=1,
X, = {x1, ... x,}

is a fixed set of variables and the set Ty , of n-ary F-trees is defined as the smallest
set U such that

() X, U and

) f(pys .-y p) €U whenever py, ..., p,€U and f€F, for some m=0.

Definitions and proofs concerning trees will usually follow the inductive pattern
of this definition.

An n-ary (deterministic) ascending F-recognizer (n=0) is a system

A = (4, F, ay, a),
where
(1) 4 is the finite nonempty set of states
(2) a,€ A the initial state,
3) a=(4,, ..., A4,)€QRY" the final state vector and
(4).every f€F, (m=0) is realized as a mapping

f¥: A~ A"

Henceforth ¥ and B will be the n-ary ascending F-recognizers (4, F, a,, a) and
(B, F, by, b), respectively. Here b=(B,, ..., B,). Since F and n are always given
(although arbltrary) we shall often speak about ascending tree recogmzers or
simply about recognizers.

The operation of. U can be described as follows. The recognizer begins the
examination of a given tree p€T% , at the ‘root’ in its initial state. If the root is
labelled by f€F,, then it has m direct successors which are the roots of the corre-
sponding subtrees and it will continue its operation by examining these subtrees
starting in the states a, ..., a,,, respectively, where (a,, ..., a,)=f"(a,). The proc-
ess is repeated until 20 has reached the ‘leaves’ along every branch of the tree.
Every leaf is labelled by a variable. If a given leaf is labelled by x; then A should.
reach it in a state be longmg to 'A;. The tree p is accepted if thlS condmon is sat-
isfied for every leaf. It is easier to formalize this procédure by tracing it from the
leaves back to the root. To this end we define a map

. Olgy: TF," - 24
as follows:

(1) au(x)=4;, for all x;€X,, and

(2) au(p)={acd|fM(@€au(p)X... Xau(pn)}, if p=f(py, ..., pm) with m=0,
feFm and D1s '-'smeTF,n'

The forest- recognized by U can now be defined as

T(¥W) = {p€Ty, lac€ au(p)}.

The recognizers U and B are equivalent if T(U)=T(B). Furthermore, A
is called minimal if |B|=|4| whenever B is a recognizer equivalent to 2.

Minimal ascending tree automata 39

2. Some algebraic concepts

We shall now adapt some central algebraic notions for n-ary ascending tree
automata.

A homomorphism of U onto B is a mapping ¢: A—~B onto B such that

(1) for ali m=0, fcF, and acAd, f2(ap)=(a,0, ..., a,Q),
where (ays ..., a,,,):f”(a),

“(2) ago=>b, and

3) for all i=l,...,n, Ajp=B; and B;p~1=4,.

Ifoisa homomorphlsm of A onto B, we write @ W—B and call SB a homo-
morphic image of A. If ¢ is also bijective, then it is called an isomorphism. We say
that A and B are zsomorphzc and write A=B if there exists an isomorphism
@: A—~B. Obviously, = is a reflexive, symmetric and transitive relation among
n-ary. F-recognizers. :

Let ¢ be an equivalence relation on a set S. 'Then

() s/e 1s the g-class determined by a given element s¢ S,

(i) s/fo=0(51/0, ..., 8,/0), if s=(s1,...,5)€S" (n=1),

(i) Ulo={u/olucU}, if USS and »

(iv) Ule=(Uj/o, ..., U,Jo), If U= (Ul, s UYEES"

A congruence relation of the recognizer U is now defined as an equ1valence
relation ¢ on A such that

(1) for all m=0, f€F, and a,a’€A, alo= a/g implies f”(a)/g—f‘"(a)/g, and

(2) for all i=1,...,n and a€A,acA; implies a/o& A4,;.

Ifoisa congruence relatlon of 2, then the quotzent recognizer of A determined
by @ 1s the n-ary F-recognizer ,

W/o = (A/e, F, a/e, a/0)
where, for all m=0, f¢F,, and ac4,
fHe(ale) = f*(a)le.

It is easy to see that /g is well-defined. As indicated in the next theorem
the three concepts defined above are related to each other the same way. their
counterparts in algebra are. The straightforward proof is omitted.

Theorem 1. Let U and B be n-ary ascending F-recognizers.

a) If ¢ is a congruence of A, then A/p is a homomorphic image of A.

b) If ¢: U—+B is a homomorphism of A onto B, then the kernel g=gpp™!
of ¢ i1s a congruence relation of A and B=N/p.

The following observation will be used later.
J
Theorem 2. If B is a homomorphic image of A, then T(A)=T(B).

Proof. Let ¢: A—~B be a homomorphism of A onto B. We show by induc-
tion on trees that for any acA, acou(p) iff ap€ag(p).

(1) If p=x;€X,, then it holds since ou(p)=4;, ag(p)=25B; and am(p)<p— '
=ag(p), as(p) ¢ ' =au(p).

(2) Let p=f(py, .-:; Pm) € TF,, be such that ocs(p.)—am(p.)co and ag(p)o?
=ay(p) (i=1,...,m). -

40 ’ F. Gécseg and M. Steinby

Suppose acag(p). If f¥(@)=(a,...,a,), then a,€au(p,), ..., an€ou(p,)-
Hence a,@€ag(p,), ..., a,@€ag(p,) which implies

fgta(p) = (al(pr ters am(p)Eam(pl)_X Xag(pm)'

Thus a@€ag(p).
Suppose now that ag€ag(p) and let f%(a) be (a, ..., a,,). Then a,@€ag(p,), ...
ooy @@ €ag(p,). This implies that

aIEa‘ll(pl)9 cees amea‘u(pm)'
Hence, a€ay(p). .
Now peT(2) iff a,€aa(p)
iff ayp=by€as(p)
iff p€T(B)
which completes the proof.

3. Normalized, connected and reduced recognizers

For any state a of the n-ary ascending F-recognizer U we put

T(U,a) = {PETF.nIaEdm(P)}-

The state a is called a O-state if T(, a)=0.

We say that U is normalized if, for all a€ A, m=0 and f€F,,, either all of the
components of f¥(a) are O-states or none of them is a O-state.

For any U we define an n-ary ascending F-recognizer

W* = (A4, F, a,, 2)
as follows:
“(a) if U has no O-state, then A=A and
(b) if A has O-states choose one of them, say d, and define for all ac 4, m=0
and fc¢F,
d,..,d) (€¢4™, if f¥(a) -contains a O-state

f¥(a) otherwise.

@ =1

Theorem 3. If A is any n-ary ascending F-recognizer, then A* is normalized
and T(UH=T(). '
Proof. We show by tree induction that
e (p) = aax(p), ' - (%)

for all p€Ty,,.
() If p=x;€X,, then (%) holds since

an(p) = 4; = ou(p).

Minimal ascending tree automata 41

() Let p=f(py, ..., pm), Where (%) holds for pl, ves D Consider any a€A.
We have two p0551ble cases:

@) f U(a) contains no -O-state. Then f W(a)=fY (a) and, by the inductive
assumption,

acau(p) iff f*(@)€oa(p)X ... Xou(p,)
iff f*(a)€oar(p) X ... Xowr(py)

(ii) If f¥(a) contains a O-state, then it is easily seen that neither a€ay(p) nor
acag«(p) is possible.

The claim T(A*)=T(A) follows immediately from (#). Also, (%) implies
that no new O-states were introduced in the construction of U* and hence that
A* is normalized by its deﬁnition 0

We call two states a and a’ of U equivalent and write a=b(gy) if T A, a)=
=T, a).

Clearly, g4 is an equivalence relation on 4, and we call QI reduced if gy 1s the
identity relation on A.

Theorem 4. If A is normalized then gy is a congruence relatlon and QI/Q;,
is reduced.

Proof. First we show that gy is a congruence relation.
(1) Consider any m=0, f¢F, and a,a’€A4. Let

f‘ll(a) = (a19 --~:am)

fA@)=(a, ..., a,)
and suppose that a=a’ (gu). Consider any i (1=i=m) and suppose p;cT(¥Y, a;).
Then g; is not a O-state and therefore none of the states a, ..., a,, is a O-state and
there exist trees

€T, ay), ..., pi— € T(Y, ai—ll)s Pir1€T(W, a;41), .. Pu€T (A, a,).

Then :
f(pla --',ph ’pm)ET(QI a) = T(Q[a,)

1mp]1es i€ T(U, a)). Similarly, p;¢ T(U, a]) implies p,ET(QI a;). Hence aq; =
=a; (ou)

(2) If acd; and a=a' (gu), for some i=1,...,n and a,a’€A4, then
. X €T, a)=T(U,a’) implies- a’€ A4;.
' Since gg is a congruence the quotient recognizer /gy can be defined. It is
reduced as

and

alon = a’[ou (Qusey) (a,a’€A)
implies) '
) afou = a’[oau
since, by Theorem 2,

T(¥, a) = T(W/eu, afon) = T(U/eu, a’[en) = T(W,a’). O ’

Let a; a’ € A. We write a=gya’ if there exist an m=0 and an f¢ F,, such that
a’ appears in f¥(aq). The reflexive, transitive closure of the relation =4 is denoted

42 F. Gécseg and M. Steinby

by =&. If a=5a’, then we say that o’ is reachable from a. The recognizer U
is said to be connected if every state is reachable from the initial state.
The connected component

A = (49, F, a,, 2°)

of U is the n-ary ascending F-recognizer defined as follows:
(i) A4°={acA|ay=ha),
(i) a°=(4,N A", ..., A,NA) and
(i) for all m>0 and fE€F,, f* is defined as the restriction of f¥ to A
Clearly, the operations of ‘IIC are completely defined. - -

"Lemma 5. Let A be any n-ary ascending F—recogmzer Then
(1) U is connected, .
(2) A=Uc iff A is connected,
(3) TAU)=T(W) and

(4) if A is normalized, then so is "I‘ . ' - s ..
Lemma 6. Let U and B be normahzed, ‘acA, beB, rh>0, f€F,, fY(a)=

=(a,...,a, and f3(b)= (bl, et b,,,). If T(, a)=T(% 'b) then T(, a)=
=T(B, b) forall i=1, R
The stralghtforward proofs of these lemmas are omitted.

Theorem 7. Let 2 and B be connected, normalized n-ary ascending. F-recog—
nizers. Then T(W=T(B) iff A/ou==B/ox. :

Proof. If /oy and B/gs are isomorphic, then T(W)=T(A/gx) =T(B/gw)=
=T(B) by Theorems 1 and 2.’ .
Assume now that T(A)=T7T(B). We define a-mapping

@: Alou —~ Bles _
(a/ew)p = bles if T a)=T(B,b)
(a€A, bEB). The following steps (1)——(v) show that ¢ gives the requnred isomorphism.

(i) (a/ox)¢ is defined for all a/pu€A/ou. Since U is connected there exists
for every a€ A an integer k=0 and states a,, a;, ..., ;€A such that

by

Ay =l =g ... Dl =ualdy = 4.

By induction on the length of the shortest such ‘derivation’ of a it can easily be
shown using Lemma 6 that there exists for every acA a beB such that TN, a)=
=T(B, b).

(i) ¢ is well-defined. If 7°(, a) T(B, b) 7(B, b) for some acd and
b, b’¢B, then b/og=b"/¢gs. :

(iii) ¢ is mJectlve Obvious.

(iv) ¢ is surjective. Repeating the argument used in (i) with the roles of A
and B reversed we see that there exists for every b€ B an a€ 4 such that T(¥, a)=
=T(8, b).

(v) ¢ is a homomorphism. That ¢ preserves operations follows from Lemma 6.
If afou€ Aifou (1=i=m) and (a/ou) ¢ =b/¢s, then x;€T(A, a)=T(B, b) lmphes
blos€ Bi/os. Likewise, (a/ou)p=0b/os€ B;/os implies a/ou€Ai/ou. O

Minimal ascending tree automata 43

4. Minimal recognizers and minimization

- Suppose U is minimal. From Lemma 5 it follows that o is connected and:
from Theorem 3 that we may assume that U is normalized. Then T("I/og,) VAR

by Theorems 2 and 4. Hence, U is reduced. ’

Conversely, if 2 is connected, normalized and reduced, then it is mlnlmal and -
every normalized minimal recognizer equivalent to it is also isomorphic to it
(Theorem 7.

These facts imply that the following three steps yleld for any U an equlvalent :
minimal recognizer B. Moreover, this B is normalized and it depends, up to iso-
morphism, on T(A) only. . . :

Step 1. Form 2A*,

Step 2. Form U*e. '

Step 3. Form gope and put B =A*/ggxe.

We shall now verify that these steps are effectively realizable and thus con-
stitute a minimization algorithm for ascending tree recognizers.

Let us define the sets H, & A4,k=0,1, ..., as follows:

(i) Hy={a} '
and, for all £=0,1, ...,

(i) Hyp=H,U{acA|a'=ya, for some a’¢ H}. Clearly,

H,S HEH &
and
A¢ = U (H |k = 0).

Since H,,,=H, implies H,=H,,;, for all j=0, A°can be obtained as H ;.
For any ascending tree recognizer 2 an equivalent (frontier-to-root) tree

recognizer can be constructed (cf. [5] or [7], for example). Thus the questions

“T(U, a)=07" and “T(U,a)=T(U, a")?”’ are decidable. (This could easily be

shown directly without any reference to frontier-io-root tree automata.) Hence the

O-states can be found and gy can be formed. Thus Steps 1 and 3 are also effective.
These results are summed up in the following theorem.

Theorem 8. A normalized ascending tree recognizer is minimal iff it is con-
nected and reduced. For any ascending tree recognizer there exists an equivalent
normalized minimal ascending tree recognizer. This is unique up to isomorphism
and it can effectively be constructed.

The reduction of an ascending tree automaton can also be done the same way
as ordinary finite recognizers (and tree recognizers in [2]) are reduced. Given U
we define a sequence of equivalence relations gg, ¢4, ..., on A as follows: for any
a,a’ €4 '
(i) a=a'(gy) if ac€A;=a’c€A4;, for all i=1,...,n, and for k=0,1, ...,
(i) a=a'(oc+)) Iff a=d'(o) and f*(@)/o,=f*(a")/o. for all m=0, fEF,.
It is easy to see that go=g,, for some k<4

'UNIVERSITY bF SZEGED UNIVERSITY OF TURKU
DEPARTMENT OF COMPUTER SCIENCE DEPARTMENT OF MATHEMATICS
6720 SZEGED. HUNGARY 20500 TURKU 50, FINLAND

44 F. Gécseg and M. Steinby: Minimal ascending tree automata

References

(1] ArBIB, M. A. and Y. GIVE'ON, Algebra automata 1: Parallel programming as a prolegomena
to the categorical approach lnfarmauon and Control, v. 12, 1968, pp. 331—345.

[2] BRAINERD, W. S., The minimization of tree-avtomata, Information and Control, v. 13, 1968,
pD. 484—491

[3] ENGELFRIET, J., Bottom-up and top-down tree transformations, A comparison, Math. Systems
Theory, v. 9, 1975 pp. 198—231.

[4] GRATZER, G., Universal algebra, Van Nostrand, Princeton, N. J., 1968.

[5] MaGIDOR, M. and G. MoRAN, Finite automata over finite trees, Tech Rep. Hebrew Umu Jeru-
salem, No 30, 1969.

[6] RABIN, M. O. and ScotT, D., Finite automata and their decision problems, /IBM J. Res. Develop.,
v. 3, No. 2, 1959, pp. 114—125,

{7] THATCHER, J. W., Tree automata: an informal survey, Currents in the theory of computing
(A. V. Aho, ed.), Englewood Cliffs, 1973, pp. 143—172.

(Received Jan. 3, 1978)

On the incompleteness of proving partial correctness

By T. GERGELY and M. Sz6Ts

To the memory of Professor Laszlé6 Kalmar

1. Introduction

Our paper deals with the question, whether there exists complete calculus to
- prove partial correctness of programs. The first really important result in program
verification was.the method of inductive assertions introduced by R. W. Floyd [1].
(Later the method was reformulated by Hoare [2] so we call it Floyd—Hoare method.)

Also nowadays this is the most widespread method used in program verifica-
tion and it proves partial correctness, so the question of completeness raised by
us is not without importance. Z. Manna formalized this method in strict classical
logic [3]. Several papers can be found in the relevant literature claiming the Floyd—
Hoare method being complete (e.g.: [4] p. 237 Prob. 3—19, [5], [6]). We shall show
that in the proofs of completeness some model theorétical questions were neglected.
We investigate this method in model theoretical point of view, and prove that
_ there is no complete method for proving partial correctness, and show the causes
why the Floyd—Hoare method can be incomplete.

2. General principles

The existing programing languages have two features relevant to proving
program properties:
* — Only their syntax is formally defined, their semantics are informal.
-+ — Statements about program properties can not be expressed in the pro-
gramming language itself.
However in program verification one deals with semantic properties of pro-
grams in a formal way. In the followings we outline the way how we ensure the
.ability to do so.

(i) We select a language to express program properties. Since we want to
handle these properties by mathematical tools we choose language in the form
L=(L, M;, =) where L is a formal syntax, M, is the class of models, = is the
validity relation (see e.g. [7]).

46 T. Gergely and M. Széts

(ii) We interpret the programs in the models of L. Let P be the formal syntax
of the programming language. Every program p€ P is a static description. We define
some mathematical objects on the models of L expressing the dynamics and con-
sider it as the formal meaning of the program. Since L speaks about programs this
meaning has to be describable by formulas of L. In favourable cases it can be
defined, but weaker specification can be enough for some purposes.

Having defined the formal meaning of programs we can introduce an inter-
preting function k. To every model A€M, and program p€ P k renders the mean-
ing of p in AUA. So we get a programming language with mathematical semantics:

P=(P, M., k).

(i) The intuitive semantics of programming languages speak not only about
the way of execution of the commands, but contain also constraits on the systems
which the programs can be executed on. In our way of handling programs the
models of L stand for these systems, so the constraits fix a subclass M, of M, as
the model class of P. M, is said to be called the class of intended models So the
programming language is: P=(P, M,, k), and the language speaking about pro-
grams: L,=(L, M,, =). Since L is ‘the language speaking about programs, it is
expedient it M, can be spec1ﬁed by the expressions of L. (It is the case if the con-
straints can be expressed in L.)

(iv) Our aim is not only to express but also to handle formally program prop-
erties, that is to prove them. In (ii) we stipulate that the meaning (executions) of
a program can be expressed in the formulas of L. If we succeed to formalize pro-
gram properties in L and L has a calculus, the program properties can be proved
by this calculus. So a calculus for program verification consists of two con-
stituents:

a) An. algorithm to construct a formula of L for the program property in
question.

b) The calculus of L. .

If we have the algorithm of a), the completeness of program verifying calculus
depends on the completeness of L,=(L, M,, =).

In this paper we work out these steps for the case when L is the language of
first order classical logic. Our aim is to examine the provability of partial correctness
of programs. We use [8] as standard reference for the logical notions used here.

3. Interpreting programs in relational structures

Let t=(t’,t”) be a similarity type. We introduce the notion of “t-type pro-
gramming language”. (The type ¢ determines the function and relation symbols
occuring in the language.) Accordmg to it L will be the t-type first order classical
language.’ :

For the definitions of logic see [8].

Definition 1. We define the syntax of the t-type programming language P).
(i) Symbols of the language:

a) Set of the program variable symbols: Y = {y,, y1, ..., Vi» ... Jicw

b) Function and relation symbols: -Do(¢’) and Do(t") - .

¢) Logical connectives of classical logic: {1, A} :

On the incompleteness of-proving partial correctness 47

“d) Set of labels: I={ly, ..., L, ... }ico

e) Special symbols: {«,IF, THEN (), ; ,,,}
The above mentioned sets are pairwise disjoint.
(ii) Set of commands: C=C,UC,, where

a) C, is the set of assignement commands:

= {.Yi ‘—'f(y,-l, e Vi) Vi yl:l, ces Vi €Y, fEDo(t”) (f) =n}
b) C is the set of control commands _
C. ='{IF o(Viy» ...,y,-n) ‘THEN ii: Lel,
Virs s Vin €Y, 0(Jiy, ..., ¥;,).is a quantifier-free formula of L,}.

(iii) The expressions of the programming language are the finite sequences
of labelled commands

Po={ly:Ugs 12Uy o 1, Uy Ly by, LLED UO,Ul, ..., U,€eC,
Vi,j<n l;#1;if i #j}.

These sequences are called z-type programs. [0

Let peP,. The set of variable symbols occuring in p is designated as Y,, the
set of labels labelling the commands of p as I;, the set of labels occuring 1in it’s
control commands as I,. Let [, the first label not in I, then I,=1,UI;U{l}.

Example 1. Let ¢ be the type of arithmetic, /=w. Then
D Ye+0;

Pyl

: IFy2=y1 THEN 6;
SRR 2 o

C V3 YVs Ve

: IF y,=y,. THEN 2;

is a program. If we demgnate this program by p, then

UnbhwWN—O

Yp: {}"1’)’2,)’3}, 11:: {0’ 132’ 334’ 5}, 1;2 {2’ 6}, ly=6
SO

={0,1,2,3,4,5,6}. O

The intuitive meaning of the commands is the usual. We stipulate that the
execution of a program starts from the first command (/,: U,), the variables of the
" program get their input values before the execution of it. The execution of the
program stops when control is given to a label not occuring in 7, and the values
" of the program variables at this state will be called the output of the program. All
- these notions will be soon defined precisely.

The language P is minimal in some respect: some kind of as51gnment and
control commands areé needed to build programs. We neglected input-output
commands, and do not speak about subroutines. "The reason of it'is not that if

48 T. Gergely and M. Sz6ts

<
we could not carry on.the same investigation having these kind of commands,
but that the result would be the same.

Now in accordance with our principles laid down in the preceding section
we shall interpret programs in the model class of classical logic, that is in the class
of relational structures. Our definition will reflect the intuition that the meaning
of a program is it’s execution.

Definition 2. Let A€M, bea model, p=1,:Uy; §,:Us; ...5 Iy U,,,,GP be a pro-
gram and k;:Y,—~A4 be an assngnment function for every j (A is the universe of 9[)
A trace of program p in mode! A is a sequence of pairs of a label and an assign-
ment function, if the following rules (i)—(iii) are satisfied.

@ s0;<[0, ko), that is the sequence starts with a pair having the label of the
first command in the program (i.e. the execution of the program starts at the first
command). Here k, is arbitrary, the values of k, are called the inpur values of the
program variables. _

(i) Let s;=(, k;) and L;€L,. Then the next trace element (s;,,) will be
constructed by the following way, dependmg on U; (the command labelled by /).

a) If U;eC,, that is U=y, ~f(y,. ..., ¥,), then: s-“—(l,l\,-;l), where

J

L., if i<m
12{1

y if i=m

ki(yy if hs=k ,
fQI(k (y(1)1 Teey kj(yl,.)) lf h =k

(Note that f‘”(k (Vi) -..» k; (1)) is the value of the term f(y;,, ..., ;) inaccording
to the k; assignment function,)

b) If U;€C, that is U;=IFg(y,,, ..., y;) THEN [, then: s;,,=(/, k,), where

ki1 —{

l_{li+1 if Wk oy, -oes Vi) K]
U, i A 0)KL

(i) Let s;=(/, k;) and [;¢1,. In this case there is no s;,, element, so the
length of the sequence is j+1. The values of k; are called the ouspur values of the
program variables.

So if s is a trace, then s€ |J M(I,XY»4), j+1is called the length of the trace,

0<N=o

the elements of I,X*r4 are called trace elements. O

The rules of the definition will be refered later as rules 2(i), 2(ii), 2(iii) respectively.

It can be seen that Definition 2 formalizes the intuitive meaning we circum-
scribed after the definition of syntax. Rule 2(ii) determine the correct meaning of
the commands, rules 2(i) and 2(iii) the start and stop of execution. Rule 2(iii) deter-
mines whether a trace is finite or not. In the first case the execution terminates.

We shall use the following notation: instead of the assignment function k we
sometimes write the values of & (as a vector: b). Since the domain of k is ordered,
. this notation does not give place to misunderstanding: k(y)=b; (i€ w).

On the incompleteness of proving partial correctness 49 -

Example 2. Let p be the program ‘shown in Example 1, ®t be the standard
model of arithmetic. In this case s is a trace of p in' N:

s ={0,3, 1, 1D), {1, [3,0, 1)), (2,[3,0, 1]),
(3,13,0, 1), (4,3, 1, 1, (5, [3, 1, 1, (2,13, 1, 1]),
(3 3,1, 1]> (4 [3, 2, 1], (5 (3,2, 2)), (2 [3, 2, 2]}
(3 [3, 2, 2]) (4,[3, 3, 2D, (6, [3 3, 6], (2 [3, 3, 6])
(6,3, 3, 61

We say that with the input {3, 1, 1] p terminates in 9 and gives [3, 3, 6] as
output. O
For the following 1nvest1gat10ns we need some aux11ary definitions:

Definition 3. Let pcP,. Then a partial end-trace of p is a sequence of trace
elements satisfying rules 2(ii), 2(iii). (Intuitively: the execution of p may start at
any command in p.) ’

Let 2(ii)’ be a modified form of 2(ii). In 2(ii)" the condmon of 2(ii) reads:

“If s;=(k, k;), and s; is not the last element in s, ...

A pamal trace of p is a sequence of trace elements satisfying 2(ii), and 2(iii).
(That is the length of a partial trace in not determined by 2(iii).) O

Having interpreted programs in the models of L we can define our programm-
ing language:

Definition 4. The programming language is a triple:
P,=(P,M, k),
where P, is defined in Definition 1, M,S M,, k is the interpteting function:
Dor(/.c) = M,XP, k@ALp)={s:s is a tra(':e‘ of pin A}. O

It is one of the interesting questions how to determine M,. In the literature
two cases are discussed (see e.g. [4] chapter 4). The first is when M,=M,, that is
the programs can be interpreted in any relational structure. In this case they are
called program schemes. The second is when M,={}, WE M,, that is the programs
are interpreted in.one specific model. Intuitively that 1s what we mean by programs,
e.g. if ¢ is the type of arithmetic, the programs are.intended to be executed in the
standard model of arithmetic. However the question arises, how to characterise
the choosen model. It can be done in model theoretic way (using some metalanguage)
or by the second order classical language, but usually first order language has no
power enough — saved the case of finite models. If we want to use the first order
logic as semantic describing language we have to stick to its usage characterizing
M,. So we have to give a first order theory T, and M, will be the class of models
of T: M,=Mod (T). Then the formulas of T will be the non- log1ca1 axioms of
the programmmg language As we said in the previous section, wanting a complete
calculus for proving program properties the language (L, Mod (T), =) has to
have a complete one. It is equivalent with the condition that T should be axiomatized,

4 Acta Cybernetica IV/1

50 .. T. Gergely and M. Széts

that is there should be a recursive set of formulas (4x;) which all the formulas of
T can be deduced from. So usually we define M, as Mod (4xy). .

According to the principles laid down in the prev1ous section we have to ﬁnd
a first order description of the traces which we used in the interpretation of pro-
grams. This will be done in the next section.

4. Description of semantics in first order logic

The power of first order classical logic does not ensure the description of the
mathematical object (set of traces) which we have introduced above to handle
meaning of programs. This is a natural consequence of the contradiction between
the dynamics of programs and the static nature of classical logic. So we have to
look for mathematical objects characterizing traces and being describable by classi-
cal language. :

Definition 5. Let p€P,, A€M, and s be a trace of p in U, /€], then the
l-volume of s is:

s|i={b: there is trace element in s of the form {/,b)} O

It is evident that the volume of a trace is a relation defined on the universe
of a model, so it can be expressed by the classical language. For the following
study let us fix a program p with n program variables. To examine this program we
extend L, with new relational symbols Q; for every /;€1, ”(QJ) 2-n.

(About the extension of a language see [8]). Our 1ntentlon is that this new
symbols should describe the /;-volume of the traces of the program, where the in-
vidual traces will be denoted by their input values (therefore the 2 -n arity).

Formally:

Definition 6. Let 2 be a model, QF be a 2-n-ary relation on 4 such that, if
(ys .oy y_y,s boy oooy by ey by 1) EQF then a;=b; for every 0=i<n. (So Q, may be
the /;-volume of a trace of p in A). Then we define 2.p-ary relations on A4 for
every L;€L,: (@, ..., y-1,bo, ..., b;_1)€QF ; iff the following conditions are sat-
isfied:

(i) <b09 seey bn-1’ bp’ cey bn—-1>EQ(Q)I’ .

(ii) (ao,. .» @,_y) is an element of the [;-volume of the trace with input
(bos +-vs By_y)-

The Q relations (defined by the executions of the program) are called the
minimal relatwns Jor Q, in A. O

So_ we want to construct such first order formulas, those whose satisfaction
can assure that the relations corresponding to symbols Q; are the minimal re-
-lations corresponding to Q. Now we define axiom schemes formalizing the rules
-of traces in Definition 2.

Deﬁnltlon 7. Let us define axiom schemes in the following way:
(i) At the begmmg of the execution the program variables get their 1nput
values: . .

o1 VXQo(%, X).

On the incompleteness of proving partial correctness 51

(ii) The effect of the commands:
a, assignment command: /:y,~f (y)

Oi,i+1+ Vk‘5 i[Qz(ya)_C) _’Qi+1(yla "-ayk—lyf(.v)a Yi+1s o+ Vns 3?)] ’
b, control command: -;: IF ¢(y) THEN I; o

Giiv1: VX VIO 7, DA T2 (P) = Qi41(3, O]
0,;: VX, 7[0:(y, D)Ae(y) - Q;(7, %] O

Comiparing Definition 2 with Definition 7, we can see that:

1. The rule 2(i) is not totally formalized, the axiom VxQO(x X) ensures only
the identity of input.

2. The effect of the statements (rule 2(11)) is totally formalized.

3. Rule 2(iii) is formalized indirectly by the fact that there is no axiom scheme

of the form: Q;(y, X)—... if 1;¢1,.
The proposition below says that the axiom scheme for the commands formahze
exactly rule 2(ii). It follows immediatly from Definitions 2 and 7:

Proposition 1. For every i, jeI,, A€M, and relations QF, Q¥, if there exists
the ¢; ; axiom then the following statements are equivalent: ‘

(@) (¥, 0%, OV =, ;

(1) For every (a d)EQ‘u if there is a partial trace of the form ((1 ay, {j, b)),
then (b,dycQ¥. O

Let us apply the relevant axiom scheme for every command of program p. The
set of formulas got in this way will be considered the description of the program

p, we denote it by Z,.
Example 3. Let p be the program shown in Example 1. Then:
2, = {VXQ,(X, %),
VX, 7[Qo (¥, X) ~ Q1 (1, 0, y2, X)],
VX, 7[Q1(7, X).~ Qo (11, ys, 1, X)),
VX, 7lQ:(y, X)Aye = y1 —~ Qs(, X)),
VX, 7[Qs(F, X) ~ Qu(¥y, y2+1, ys, X)),
VX, 7[Qa(¥, X) = Qs (31, Ya» 3+ Y2s 0],
VX, ¥[Qs (¥, DAy = y1 —~ Q2(¥, X)),
VX, 7[Q:(7, DA y: = 31 =~ Q6(7 X)),
VX, 7[Qs (7, Ay # 31 — Qs (7, X)}. D
In the following we analyse what extent X, describes program p to.

Theorem 1. Let A€ M,
(i) For arbitrary minimal relations:

<QI’ Q(%I’ [ERT) le,i, .>P= Ep R

4+

52 . T. Gergely and M. Széts

(ii) If for a given (Qicr, (U, OF, ..., ..ye=Z,; then QF, S QF.
For the proof of the theorem we need the followmg

Lemma. The following statements are equivalent:

(l) <Q[Q . !Ql s . >I¢El =

(ii) For every partlal trace ((I, @)y s (i E» if (@, d)cQ¥ then for every
trace element {i;, ¢) occuring in the partlal trace in question we have (¢,d)cQ%

Proof of lemma. (i) Let us suppose that (2, OF, ..., 0%, ...)=X,. We shall
prove the lemma by induction on the length of the partial traces.

a. For two element traces lemma says the same as Proposition 1.

b. Let us suppose that the proposition of the lemma stands for every partial trace
with length shorter then n. Let s={s’, {{;, b)), where the length of s" is n—1.
If (/, ¢y is a trace element from s’, the proposition stands for it because of the
inductive hypothesis. Let (I,,c) the last element of s’, so (¢,d)€QX. Let us
apply Proposition 1 to the partial trace ((/,,¢),{/;,b)) and we get that
(b, d)cQ¥.

(i) It is enough to consider the two element partial traces and then Proposi-
tion 1 is got. O

Proof of theorem. (i) (ii) of the lemma stands also for the minimal relations.
Thus, by the lemma, (A, QF, ..., Q¥,, ..), e, =2,

(ii) Let us suppose that (2, Q¥, .. .)l==Z So also (i) of the lemma
stands for every trace having d as 1nput it (3 E)EQO For this case (ii) of theorem
is equivalent to (11) of lemma. O

If we could have proved that a family of relations (Q¥) ¢, satisfies Z, iff
it consists of volumes of traces, we could say that X, describes totally the program
p- This theorem shows that it is not the case. The next proposition shows the power
of Z,.

(The proposition is an immadiate consequence of the above lemma.)

Proposition 2. If a family of relations (Q¥), ¢, satisfies X, all the relations
are volumes of partlal end-traces. O

This proposition shows clearly that our fallure describing programs totally
in first order logic comes from the fact that we could not formulize rule 2(i). In-
tuitively Proposition 2 says, that X, allows to start the execution of a program
at a command different from the first one. This failure is not due to our inadequency,
later we prove that the volumes of traces (the minimal relations) can not be defined
by first order formulas.

However the power of X, is enough to prove properties of programs. The key
of complete proof procedures is our ability ‘to express the programs properties
in our semantic description language, that is in the first order classical language.
So to make a program property provable we have to find first order formula which
describes this property. Succeeding with this we can prove the program property
in question by provmg this formula from Ax;UZ, by a calculus of first order loglc
We show an example in the following. - . :

Definition 8. A program p is totally correct in a model ‘9 with re'spect to (w.r.t.)
the input condition ¢ (x) and output condition " (¥, X) iff for every input (a) sat-

On the incompleteness of proving partial correctness 53

isfying @ (X) the appropriate trace in 2 terminates and the output (b) satisfies
y(y,x). O

Theorem 2. A program p is totally correct in every modell of Ax; w.r.t. ¢ (%)
and ¥ (7, x) iff

AxgUZ, I—vi[Qo(f,f)/\q’(f)—>3i(¢(ﬁ,-\)/\(V Q(y,X)))]

The proof of this theorem is not difficult using Theorem 1. For soundness use
(i) of the theorem, for completeness (ii). O

5. Provability of partial correctness

Definition 9. A program p is partially correct in a model 2« w.r.t. ¢(X) and
Y (9, X) iff for every input (@) satisfying ¢ (X) the output of the appropriate trace
satisfies ¥ (¥, X). (So we do not demand the trace to terminate for every input
statifying ¢ (%), but if it does for some of them the output must be correct.) We
shall use a shorthand for partial correctness: (¢, p,¥). O

Let us substitute ¢ (X)Ay=x for Qu(¥y,X) and Y (3, x) for every ‘Q,-(j/, X)
when [;€I,\J,, in X, The obtained set of formulas is denoted by Z,(¢,¥).

Theorem 3. A program is partially correct in every model of Axy w.rt. ¢(%)
and lp(.)_}9)?) iff AxT’: 3Q1= LR Qh Zp((p> l//)'

Proof. In the proof we use the following equivalence: Ax =30, ..., 0, ...

, Z,(p,) iff every model of Ax; can be extend so that (¥, [(p(x)/\y X1,
Ql, s OF, W (G, O =X, (Here if 7(¥) is a formula, then [x(¥)]¥ is the rel-
ation on A of all vectors a satlsfymg 2().)

(i) Let us suppose that the program is partially correct in every model of
Axy. By (i) of Theorem 1:

(W, [@pFAy =X, 08, - Q8is) E 2,

Since the program is partially correct w.r.t. ¢ and ¥: O3 ;S[Y(y, X)]* for
every j€I\J,. By Proposition 2:

<QI= [(P(i)/\j; = E]Ql’ Q?)l,la ‘--sQ?!l,ia L] [lp(ya i)]m> I= ZP

So we have found appropriate family of relations to extend any model of Ax}.
(ii) Let us suppose that there are QOF, ..., QF, ... satisfying X,:

W [eAy =5 0%, .., OF, ... (G, O = 2,

By (ii) of Theorem 1 for every j€l,, O ;S Ql Thus for all jeI\/,, O%;S
CY(y, X)]¥ that is the program is partially correct. [

Notice that the theorem could formalize the notion of partial correctness only
by a second order formula (Q,, ..., Q;, ... stay here for relational variable symbols).
So this theorem failed to give a complete calculus to prove partial correctness. The
question has arised whether it is possible to give any. Before giving an answer let

54 . . T. Gergely and M. Sz6ts.

us analyse the question itself, that is the notion of completeness. For a given type
t and class of intended models M, we say that for the programming language
P,=(P,, M,, k) there is a complete calculus to prove partial correctnes, if we have
a calculus Wthh proves (@, p, ¥) iff p is partially correct w.r.t. ¢, in every model
AeM,. So the question can be raised only with respect to the similarity type and
the model class of the language. We give some propositions and theorems dealing
with different cases. '

It is evident that if # and M, are such that the second order language (L?, M,,}=)
has complete calculus, then for (P, M,, k) there is complete calculus to prove
(@, p, ¥).

In the following we give some negative results. The first of them is concerned
with program schemes, and is based on the well known theorem that there are
no complete calculus to prove that a program does not terminate for any input
in any model (see e.g. [4] p. 264 theorem 4—2). Since non-terminating can be ex-
pressed by partial correctness using unsatisfiable formula as’ output condition,
the following proposition stands:

Proposition 3. Let ¢t be a type containing denumerable infinitely many func-
tion and relation symbols for every arity, and M,=M,, then there are no complete
calculus for (P,, My, k) to prove (¢, p, V). []

" The following two theorems are our main ones. We select the type of arith-
metic as the.type of the programming language. The negative result for this case
shows that in the practically important cases we have no complete calcuius.

Theorem 4. Let ¢ be the type of arithmetic, and -9t is the standard model of
arithmetic. There are no complete calculus for (P, {3t}, k) to prove (o, p,¥).

Proof. We use the result that the problem of existence of solution for Dio-
phantine equations is undecidable (see e.g. [9]). For the solution of each Dio-
phantine equation 7,(X¥)=1,(X) we write a program P q,:

0:y,-0;
1.: y: = 0;
n:— 1: y, < 0;
n: IF 1,(j) =1,(y) THEN m+1;
17:1: IF y, = y; THEN n;
where the command between the ones labeled by #» and m compute the lexico-

graphical successor of j.

, The executlon of these programs gives a complete calculus for the problem
whether a Diophantine equation has solution. If we had a complete calculus to prove
partial correctness, it would give an algorithm to enumerate the Diophantine equa-
tions having no solution. So the problem of Diophantine equation would be de-
cidable. Therefore there are no complete calculus to prove partial correctness of
programs interpreted in the standard model of arithmetic. O

On the incompleteness of proving partial correctness 55

Theorem 5. Let ¢ be the type of arithmetic, and PA be the Peano axiom system.
There are no complete calculus for (P, Mod (PA), k) to prove (¢, p, Y.

- Proof. Let us notice that the traces of program P<,1,,2>' defined above, in any
model of P4 will be the same as the one in the standard model. (It is due to the
fact that input values does not effect the execution.) So the same argument is
applicable as in the proof of Theorem 4. O

Notice that the negative result is not due to the choice of first order language
for L. Theorem 4 shows the impossibility of complete calculus for any language
having the model class {Jt}.

Similar proofs can be created us1ng any undecidable problem.

In the following part of our paper we analyse the Floyd—Hoare method. First
we define a calculus equivalent to this method.

" Definition 10. Let Axr a decidable axiom system, p=I,: Uy; ...; [,:U,; €P,,

o, YL o
A Floyd—Hoare derivation of (@, p,{) consist of:
a. A mapping &:I,~L; such that

@) ®(y) = DAy =%, ,

i) o) =y, x if Lel\I,.

b. First order derivations listed below:

(i) To each labelled command /,: y,<f(¥) occurmg in p a derivation of the

form
Axp = @(1,) ~ 2,) ilf (D]

is assigned ([y./f(¥)] means that each free occurence of y, is substituted by f(¥)
in a collapsion free way).
(ii) To each labelled command /,,: IF g(¥) THEN I, occuring in p two deriva-
tions of the form
Axy = (N0 (B) ~ (),

Axr = @(LINTe (@) ~ DUy
are corresponded.
' Our notation for Floyd—Hoare derivability is: Axy }— (¢, p,¥). O

Note that the definition of the calculus is in accordance with (iv) of Section 2.
Theorem 6. The Floyd—Hoare calculus is sound, that is if AxT o (q) p,)

then the p program is partially correct w.r.t. ¢, ¥ in every model of AxT
Proof. Let us notice that the first order formulas whose derivation is required
in Definition 10 are the axioms for the appropriate command as defined in Defini-

tion 2 substituting @(/;) for Q;. Having a Floyd—Hoare derivation, we have rela-
tions [®([)]* for every AcMod (4xy) so that:

Q@) F 5,

Therefore by Theorem 3 the progrém p is partially correct w.r.t. ¢, in every
model of Mod (4xr). 0O

56 T. Gergely and M. Széts

By Theorem 5 the following proposition is evident:

Proposition 4. If the similarity type includes the type of arithmetic and Axy
is a recursive expansion of Peano axioms,.the Floyd—Hoare calculus is not
complete. [J

We emphasize this last proposition because claim can be found in the literature
that the Floyd—Hoare method is complete (see e.g. [4] p. 237 Prob. 3—19, [5}, [6)).
. Now we analyse what causes its’ incompleteness and which points are neglected
by those who claims completeness.

Axr is recursive, so (L}, Mod (4x;), =) has complete calculus. This fact
shows that if we have @ so that relations [®(/;)]* satisfy Z,, then (o, p,¥) can
be proved. '

So the Floyd—Hoare method would be complete if for every /;,€/,\{/,} some
of the relations Q¥ satisfying X, could have been defined by first order formulas.
Since the mlmmal relations satlsfy Z,, the following stands:

Proposition 5. If the programmmg language is in the form (P,, Mod (AxT), k)
where ¢ includes arithmetic and Axy is a recursive expansion of Peano axioms, then
the volumes of traces (the minimal relations) can not be defined. O

This is the point, where the refered publications fail to prove completeness
in spite of their claim. They prove the existence of relations statisfying X ,, refering
to the minimal relations. (So they prove theorems equivalent to our Theorem 3.)
Some of them (e.g. [6]) neglect the question whether these relations can be expressed
by first order formulas. J. W. de’Bakker in [5] introduces a language speaking about
relations and using this language constructs the minimal relations for any given
program.

However his construction can not be transformed to first order language,
only to infinitary one permitting infinite “or””. So he proved that the minimal rela-
tions can be defined by infinitary logic, but such logic has no complete calculus.

Independently from us M. Wand proved Proposition 5 in [10] for a type not
including arithmetic.

Finally we investigate the traditional case — interpreting programs in one
specific model. We discuss the case M,={9}, N is the standard model of arith-
metic. From Theorem 4 we known that Floyd—Hoare calculus can not be complete
neither for this case. It is well know that in the standard model of arithmetic
every recursive function can be represented (see e.g. [11] chapter 6), so:

Proposition 6. In the standard model of arithmetic the minimal relations can
be defined. O

Proposition 6 is important because it can show the nature of incompleteness
of Floyd—Hoare system to prove partial correctness — this is the same as the in-
completeness of any first order calculus to prove theorems of arithmetic. Indeed,
Theorem 4 can be veiwed as a version of the Goédel incompleteness theorem for
first order logic extended with formulas (¢, p, ¥). Theorem 4 and Proposition 6
jointly say that for programming language (P,, {)t}, k) there are first order formula
expressing (¢, p,), but we have no universal algorithm to enumerate the axioms
usable in its proof. This fact shows that the incompleteness theorems for proving
partial correctness does not prevent us from proving partial correctness as the
Godel incompleteness theorem does not prevent mathematicians proving theorems

On the incompleteness of proving partial correctness 57

of arithmetic. It is true that fully automatized algorithm to prove partial correctness
in every case can not exist, but with human intuition every program can be proved.
Speaking about the mechanisation of program verification this argument underlies
the necessity of interactive systems.

Abstract

First the paper shows generally the way how languages of mathematical logic can be used to
describe semantics of programming languages and to prove theorem about programs. It is worked
out for the case of first order classical logic, emphasis is laid on the model theoretical point of
view. Provability of partial correctness is investigated. We show that if the programming language
includes arithmetic, there are no complete calculus to prove partial correctness. The method of induc-
tive assertions is discussed, and we analyse why several publication claimed its completeness.

RESEARCH INSTITUT FOR APPLIED
COMPUTER SCIENCE

H-—1536 BUDAPEST, HUNGARY

P. 0. BOX 227.

References-

{1} Froyp, R. W., Assigning meanings to programs, Proceeding of Symposium on Applied Mathe-
mathics, 19, 1967.
{21 Hoarg, C. A. R., An axiomatic basis for computer programming, Comm. ACM, v. 12, No. 10,
1969.
[3] MANNA, Z., The correctness of programs, J. Comput. System Sci., v. 3, No. 2, 1969.
[4] MANNA, Z., Mathematical theory of computation, McGraw-Hill, 1974,
[5] BAKKER, J. W. de and L. G. L. T. MEERTENS, On the completeness of the inductive assertions
method, J. Comput. System Sci. ,v. 11, No. 3, 1975.
[6] EMDEN, M. H. vaN, Verification conditions as programs, Automata, Languages and Programm-
ing, Third International Colloguium at the University of Edinburg. ed. by S. Michaelson and
R. Miner Edinburgh University Press, 1976.
{7) ANDREKA, H., T. GERGELY and I. NEMETI, Easily comprehensible mathematical logic and it’s
model theory, KFKI, No. 24, 1975.
[8] CHANG, C. C. and H. J. KEisLEr, Model theory, North Holland Publishing Co., 1973.
[9] DaAvis, M., Hilbert’s tenth problem is unsolvable, Amer. Math. Monthly, March 1973.
[10] WAND, M., A new incompleteness result for Hoare’s system, J. Assoc. Comput. Mach., v. 25,
No. 1, 1978.
[11] SCHOENFIELD, J. R., Mathematical logic, Reading, Addison—Wesley, 1967.

(Received May 29, 1978)

A simple shading for computer displayed surfaces

. ByG. T..HERMAN and H. K. Liu
To the memory of Professor Ldszlo Kalmar

‘Introduction

In order to achieve a visually realistic representation of the surface of a three-
dimensional object on a cathode-ray tube, one has to solve the problems of remov-
ing the hidden parts of the surface and shading-its visible parts. A commonly used
approach which allows efficient solutions to both these problems is to approximate
the surface so that it is composed of planar polygons [2]. Lack of continuity in the
shading across polygonal boundaries causes undesirable artifacts which can be
removed by continuous shading procedures such as the one suggested by Gouraud [2].

In this note we discuss an extremely simple and efficient alternative method
for removing the artifact mentioned above. In the application area which is our
main concern our method is not only two orders of magnitude faster than that of
Gouraud’s, but it also produces superior displays. In this application area the sur-
face is approximated by a composition of squares, each one of which is parallel
to one of three mutually perpendicular planes. In the next section we describe the
nature of our application area. '

Three-dimensional reconstruction from projections

The problem of reconstructing a three-dimensional object from a set of its
two-dimensional projected images has arisen in fields ranging from electron micro-
scopy to holographic interferometry. For example, in medicine we use an x-ray
source to project the body onto the two-dimensional surface of a film. From a sub-
set of all possible projections of a body, reconstruction algorithms [1] produce
a three-dimensional array of numbers in which each number is an estimate of the
average density of the body in one of a set of equal, non-overlapping cubes, called
voxels (volume elements).:

In order to see the shape of a particular organ,-a three-dimensional boundary
detection algorithm has been devised [3]. This detects the organ’s boundary surface
and generates the description of the surface in terms of the square faces of the
voxels.

60 G. T. Herman and H. K. Liu

An example

For a demonstration of our ideas we use a plastic cast of an isolated canine
left ventricle with some beads inserted on the surface. Figure 1 shows a television
image of this cast, blurred so as to make the resolution similar to that obtained
in the reconstruction process.

A variant of the Algebraic Reconstruction Technique [1] has produced from
34 x-ray projections of our cast a 64X64%28 density array, with the edge of
each voxel being 1.041.04x1.68 mm. (Based on such a reconstruction variations
in the surface smaller than a voxel could not possibly be displayed. For a fair
evaluation of the efficacy of our display procedure its output should be compared
to an image of the original which has been blurred as in Figure 1 to remove features

Fig. 1
A television image of the plastic cast of a canine left ventricle

Fig. 2
Computer-generated display of the cast which was determined
from 28 reconstructed cross-sectional levels of the cast

A simple shading for computer displayed surfaces 61

smaller than the resolution of the reconstruction procedure.) A surface detection
algorithm [3] has been applied to the reconstructed array and it produced an estimat-
ed surface of the cast consisting of a connected collection of faces of voxels. This
collection is displayed in Figure 2 using a shading which is uniform within each
face and whose value depends on the angle the face makes with an assumed direc-
tion of light and on the distance of the face from an assumed light source (War-
nock’s shading rule as given on page 624 of [2]). As can be seen, approximating
the curved surfaces with small square surfaces generates an undesirable visual
effect, caused mainly by having only three directions in which surface elements
lie. Similar, though less disturbing artifacts are observable whenever a curved
surface is displayed as a collection of planar polygons.

Gouraud’s shading procedure

Gouraud [2] suggested a way to get rid of the artifact apparent in Figure 2.
This approach is to modify the computation of the shading on each surface so that
continuity exists across surface boundaries. This continuity can be achieved by
assigning as normal at a vertex the average of the normals to each surface associated
with this particular vertex. Each surface has a different shading for each of its
vertices and the shading at any particular point inside the surface has to be com-
puted as a continuous function of the shading at the vertices of the surface.

Fig. 3
Computer-generated display of the cast by use
of Gouraud’s shading procedure

Due to the large number of the surfaces in the objects we are interested in
(typically 10,000), this approach is prohibitively time consuming. Also, the results
are far from acceptable, because the surfaces are either parallel or perpendicular
to each other. Figure 3 shows a display produced by Gouraud’s method applied
to the surface of the cast shown in Figure 2.

62 G. T. Herman and H. K. Liu

A simple smoothing procedure

In this section, we describe an alternative approach to this problem. Instead
of smoothing the surfaces in object-space, we smooth the intensities in image-space.

Let G, ..., G, denote the shading intensities in a screen dot and its eight neigh-
bors before smoothing, as indicated by the diagram below.

Gs| Gy | G,
G3 Gl G4
Gs G5 Gg

After smoothing, the new intensity of the center dot will be

5 9
G +Wx D fi*G+W?2% Zf,* G;
i=2 i=6

G;‘ew = 5 9
1+ W 3 fi+W?2x 2 f;
i=2 i=6
If the dot labelled by 1 is on an edge and does not have a neighbor labelled by i,

then f; is assumed to be zero, otherwise f; equals one. W is a user adjustable
weighting factor.

Fig. 4
Computer-generated display of the cast by the use
of the proposed shading procedure

This simple smoothing method gives surprisingly good results. Figure 4 shows
the display shown in Figure 2 after our smoothing procedure with w=0.8. The
time required for this smoothing procedure is under eight seconds (CDC 3500)
while our implementation of Gouraud’s method needed 985 seconds to produce
the smoothing shown in Figure 3. (Note that the time required by our procedure

A simple shading for computer displayed surfaces 63

is dependent only on the number of picture elements in the display, while the
time required by Gouraud’s method depends on the number of polygons from
which the surface is made up.) Also, in our opinion, the true image (Figure 1) is
better approximated by the display produced by our method (Figure 4) then it
is by the display produced by Gouraud’s method (Figure 3).

Fig. 5
Computer-generated display of a canine heart which was determined
from 30 reconstructed cross-sectional levels of the heart

Fig. 6
Computer-generated display of a part of a
canine left lung which was determined from 64
reconstructed cross-sectional levels of the intact

thorax of a dead dog

64 G. T. Herman and H. K. Liu: A simple shading for computer displayed surfaces

Further examples

We demonstrate our display method on reconstiructions of two - further bio-
logical objects.

In Figure 5, we display the surface of an isolated canine heart whose 64X 64 X 30
reconstruction has been produced from 50 x-ray projections.

In Figure 6, we display the surface of a part of the left lung of a dog. Thirty-
five x-ray projections of an intact dead dog have been taken and the thorax and
contents of the dog were reconstructed as a 64X64X64 array. The input to the
surface detection algorithm was a 28X 64X 64 subarray containing most but not
the whole of the left lung. The surface detection algorithm [3] was applied to detect
the surface of the lung in the thorax and the result is displayed in Figure 6. The
imprints in the lung of the heart and of the major airway above it are clearly
visible.

Conclusion

We have proposed.a display smoothing algorithm which is very efficient if
the surface to be displayed consists of many polygonal surface elements. Efficiency
is due to the smoothing being done on the image and not on the surface. In the
display of organ surfaces obtained by three-dimensional reconstruction, our algo-
rithm produces results visually superior to Gouraud’s smoothing procedure in
a small fraction of the time required by that procedure.

Acknowledgements. The authors wish to thank Dr. James F. Greenleaf for
valuable discussions and Drs. Lowell D. Harris, Erik L. Ritman and Richard A.
Robb for providing test data. The authors are indebted to Ms. Jean Frank and her
coworkers for secretarial and typing assistance.

The research of the authors is supported by the United States Public Health
Service, under grants HL 18968, HL 4664 and RR7.

Abstract

This note proposeses a simple way of removing the artifact caused by approximating curved
surfaces with polygons in computer-generated three-dimensional display. The method is com-
pared with Gouraud’s continuous shading method.

DEPT. UF COMPUTER SCIENCE :
STATE UNIVERSITY OF NEW YORK
AT BUFFALLO

4226 RIDGE LEA ROAD

AMHERST, NEW YORK 14226°

References

[1]1 GorpoN, R., G. T. HERMAN and S. A. JOHNSON, Image reconstructlon from projections, Sci-
entific Amertcan,v 233, 1975, pp. 56—68.

{2} Gouraup, H., Contmuous shadmg of curved surfaces, IEEE Trans. Computers, v. C—20,
1971, pp. 623—629

[3] Ly, H K., Two- and three-dimensional boundary detection, Camputer Graphics and Image
Processmg, v. 6, 1977, pp. 123—134. :

(Received May 29, 1978)

Normal-form transformations of context-free grammars

By G. Hotz
To the memory of Professor Laszlo Kalmar

Introduction

Each context-free grammar G can be transformed into a Chomsky-normalform
(CNF) and-into a Greibach-normalform (GNF) without changing the languages
generated by the grammars. Our interest does not concern the invariance of the
languages under such transformations but the ambiguity of the grammars, the
multiplicity of words relative to the grammars and relations between pairs of gram-
- mars. Syntactical transformations of languages are induced by the grammars. There-
fore, it should be of interest, if certain syntactical transformations between languages
transform in a natural manner with the normal form transformations. The role
of monoid homomorphisms in connection with rational transformation is played
by functors between the syntactical catéegories of grammars in connection with
tree transformations.

In this paper we define three different transformations 7., Ts and 7, of grammars
in CNF into GNF. 7, produces productions with one terminal and at most two
non-terminals in the range of the productions. 7, and 7; generate productions p
with maximally two resp. three non-terminals and one termlnal on each side of
the range (p).

. 7, has been considered for the first time in a technical report 1967 by S. Grei-
bach. One finds it again in [GR] (1975). Implicitely the construction is contamed in
[Ho 2] (1974) too. 7, and 7, seem to be studied here the first time. _

Geller, Harrison and Havel showed in [GE—HA], that for each LR(k) lan-
guage there exist a LR(k") grammar in GNF thh k’=k for k=1 and that there
exist LR(0) languages for which one has always k’=1. But they did not use the
simple transformation ;.

We show that 7,, 7, and 7, preserve unambiguity and do not increase multi-
plicities. But there exist grammars for which the multiplicity decreases. Non LR(k)
grammars may be transformed into LR(k) grammars.

We show that functors between the syntactical categories of the grammars
G, and G, are transformed into functors between the syntactical categories between
the grammars t,(G,) and 7,(G,).

5 Acta Cybernetica IV/1 '

66 G. Hotz

With the same methods we show in a following paper, that t,' preserves LL (k)
for all k and LR(k) for k=1 and that LR(0) is transformed into LR(1). The proofs
for both properties are nearly identical. From this paper we use the unambiguity
lemma for the existence of well formed decompositions of morphisms (classes of
derivations) in products of (f, 1)-prime derivations. 7, and 7, may destroy the LR
and LL properties. This means that transformations inverse to t, and 7, may eventu-
ally transform non LR(k) grammars into such grammars.

Because until now we do not know much about transformations which trans-
form certain grammars of LR(k) languages into LR(k) grammars the relations
771, 737! may be of interest.

For certain transformations from general context-free grammars into: CNF
the LR-invariance has been showed by [Bg] (1976) and [ScH] (1973)

We use the notation of x-categories or syntactical categories as defined in
{[Ho—CL]. An introduction in related questions the reader may find in {A—ULL]
or [Sa].

Definitions and preliminaries

. In the following T is the terminal and Z the variable alphabet, and S is the
axiom of the context-free grammar G. We assume that the set P of productlons
of G is in Chomsky normal form. This means that for f¢P we have

f=(z2z2z) or f=(z1),

where, as always in this paper, z, z;, z, aré in-Z and ¢ in 7. We assign to G the
free x-category F(G); that means that we wish to calculate with derivations of ‘G,
or — more precisely formulated — we wish to calculate with the classes of in-
essentially “different derivations of G. We write

wtu and D(fy=w, C(f)=u

if f is a derivation class from w.to u. w is the domain and u the codomam of f

From

_w—f-u and” w 2.y

we from
ww’ IX8 ,

the class of derlvatlons we get from f and g by domg the derivations f and g

in parallel. .

We form
/

Normal-form transformations of context-free grammars 67

by executing first f and then g if C(f) D(g). - : S -
For F(G) we also write F(P) where P is the production set: of G and we wrrte

W—P"U

if there exists f€ F(P) such that
. wlep
holds. _)) ‘ X
Now we study as in [Ho 2] special derivations which-are Telated to canonical
derivations of words uw with u€T* and weZ*. These special derlvatlons w1ll be
used to construct the productions in our normal form grammars S

Definition. A derivation: f in Chomsky normalform

: z—f»uwv,uéT*,vET*,wEZ*- :

is called (u, v)-prime if from
it follows that g=1,,.
_ This means that f is (u, v)-prime if f is a shortest derivation ‘which generates
from z a word which begins with the terminal symbols « and ends with the termmal
symbols v and has only nonterminal symbols (possibly none) between.:
As we will see later, of special interest are the cases
u=1, veT,
2. ueT, v=1,
3. ueT, veT.
Let

~

. B(z,u,0) = {weZ*| there exists. z-L- uwv, f (u, v)-prime).

In [Ho 2] we showed that B(z,u, 1) is a regular set for all u¢ T*. By ‘symmetry
arguments it follows that B(z, 1,v), too, is a regular set for v¢ T*
‘For f (u, v)-prime u, v€T we have a decomposition °

f=X1,Xg)oh, weZ*
such that h is (u,1)-prime and.g is (1, v)-prime.
On the other hand f is (u, v)-prime for all (u, 1)- prrme h and {, v) prrme g.
We define for LCZ* and x€Z* -
L,.= {weZ*wxeL}
and
L = {weZ*|xwel}). - : . s
With this notation we have

. B(z,t,r) = N Bz, t, 1)L,B(y_, 1,r) for {,_rET.

Now, the relation wl_wzoLwl_sz is the well known syntactlcal congruence
(i.e., left invariant equivalence -relation): For regular sets'L there are only a finite

5%

68 G. Hotz

number of these congruence classes where each class is also a regular set. From
this we conclude that [B(z, ¢, 1)], is a regular set and thus that B(z, ¢, r) is regular
for all ¢, reTU{1}.

Lemma 1. The set
B = {[B(z, t,r)},|z€Z, xcZ*, yeZ*}

is a finite set of regular sets for all 7, reT U{1}.

Proof. We know from the above discussion that B(z, ¢, r) is regular. We know
also that
= {[B(z, t,r)),|yeZ*, z¢Z}-

is a finite set of regular sets.
Now as one sees 1mmed1ately

[qu]s = yL§q7 . s[qu] = pqu

Therefore we conclude from the finiteness of the set 4, that B is also finite and
from the regularity of the elements of A, that the elements of B are regular. This
finishes our proof.

Lemma 2. For :
u, v€ET*, z€Z and ¢t,reT
it follows that
B(z, ut, rv) = _EEB(x, t, D[B(z, u,v)],B(y,1,r)
X,y

U \—n-Z/B(x t,r).

x€B(zu,v)
B(z;ut, rv), then is regular.

Proof. Let f be a (ut, rv)-prime derlvatlon with D(f)=z. Then f can be
decomposed into
. f = (luxgxlb)oh)
such that 4 is (u, v)-prime.
Now we discuss the two cases correspondmg to D(g)EZ'" for m=2 and
D(g)€Z; these are the. only two possibilities, since G is in Chomsky normal form
1. For this case g can be decomposed into

g= glx l\ng"
Here g, is (¢, 1)-prime and g, is (1, r)-prime. Otherwise f would not be (ut, rv)
prime. Let D(g,)=x, D(g,)=y. Then we have
.C(h) = uxwyv, where xwy€B(z, u, v).

Further, let C(gl)—tw1 and C(ga) wyr. Then we have wleB(x t,1),w,€B(y,1,r) .
and for C(= utwrv the following holds:

e W= wywwe€B(x, ¢, l) x[B(z u, v)),- B(y, l,r)

Normal-form transformations of context-free grammars 69

2. For this case g can be decomposed into

g=(1,X1,,Xgyog

with g,(z, 1)-prime and g,(1, r)-prime. Then for C(g))=tw,y, C(g)=w,r, C(f)=
=utwrv and C(h)=uxv we have for yeZ

w = wy-w,€[B(x, t, 1)],- B(y, 1,7) € B(x, 1, r).

From case 1 and case 2 we conclude that the left part of the equation in our
lemma is contained in the right part. This completes the proof in one direction.
The inclusion in the other direction follows directly from the following facts. ~
For g, (¢, 1)-prime and g,(1, r)-prime and /(u, v)-prime, then if the product -

f = (lqulxlegZXIu)oh

is defined where w€ Z*, f is (ut, rv)-prime. This means that each B(x, ¢, 1) [B(z, u, v)),
B(y, 1, r) is contained in B(z, ut, rv). For x¢B(z, u, v) it is clear that B(x,t r)c
CB(z, ut, rv). This completes the proof of the lemma

This lemma nearly gives us a recursive equation for calculating the sets
B(z, u, v). The importance of these sets follows from the obvious

Theorem 1. -
w=u-vEL < 1¢B(S,u,v).

“This means that the word problem wé L can be reduced to the problem of wheth-
er 1 is in a regular set. We are here not interested in developing this direction fur-
ther, however. For our purposes of constructing a normal form grammar we do
not need a complete recursive definition of the B(z, u, v).

To construct the productions of our normal form grammars we will use the
(u, v)-prime derivations of the free x-category F(G) for the special case that u,veT
rather than T*. If, for example, S-L-uwv is sucha (u, v)-prime derlvanon we could
include a production of the form S—uRv in one of our normal form production
systems, P, where R=B(S, u,v). Then for any such new varlable R we would
also have to introduce productlons of the form . et

-R—~1t-B(R,t,¥)-r

into P representing the class of all (z,)) prime denvat]ons from the set RcZ*
in P. Here B(R, t,r) is a simple extension of the definition of B(z, 1, r)

B(R, 1, 7) = {wlw = twr is (¢, ¥)-prime and we R}.

To see that this process of constructing productions for P can be continued with
the B(R, t, r) sets we give the following lemma which one can easily prove.

Lemma 3. For 1, r¢Tand RcCZ*.
~ . B(R,t,7) = ~— B(x, 1, 1)[R],B(y, 1, 1)
x,y€Z .

U——B(x,t,7).

xERNZ

a0 -~ G. Hotz

This lemma gives us a way to factor the set B(R,t,r) into the regular sets
we introducad earlier. Thus we are now able to generatP all codomam sets of
derivations f€ F(G), where each such f is a productin “o” and “ X of prime deriv-
ations, from the domain sets

JAB(z, 6, P, treTU(L), tor =1

where length (p)—length(q) for p,q€Z* From Lemma 1 it follows that
AB(z, t,r)], is a hnite set of regular sets. More precisely formulated, from Lemma 3
we can.select the following classes of derivations from F(P) for all p, qEZ* length
(p)—length(q) and r,yEZ u, v€T, and 1, rETU{l} t-r=l:

. S—~t- -B(S,t,1r)-r, '_ (P'1) -
AB(z-t,), —u-B(x,u, 1), [B(z, {,7)],,- B(y, 1, 0)-0, (P’2)
Bz 1)), —u-B(x,u, v) ‘v, X€[B(z,t,1r)],NZ. (P’3)

Each of the classes (P’1), (P’2) and (P’3) represents an entire set of derivations
generated from the choices of p, g, r, t,u, v, w, x, and y. Clearly, many of these
choices will lead to empty sets. However, it is evident that each of these classes
is finite (since B(z,t,r) is a regular set, the congruence relation established by
Bz, 1, 1), for all p, g€ Z* is of finite mdex) T'.erefore, we can use these deriva-
tions as the basis for constructing the productions P of our normal form grammars.
Before constructing such a normal form production system, however, we must
convince ourselves-that every derivation class in F(P) can be decomposed as above.

Well formed decompositions of derivations .

Now we consider normal forms of derivations for any context-free grammar
G in Chomsky normal form using the x-categorical expressions which define deri-
vations. We show that each class f of derivations has exactly one normal form
derivation which we will call well formed (w.f.).

Definition. A decomposition f=f,o...c f; with D(f)€Z and
fi=fiaX X fim for i=1..n
is well formed if conditions (W1), (W2) and (W3) hold.
See Fig. 1 for (W1) and Fig. 2 for (#'2).

(W1) D(f;0eZUT.
If. D(f;,)=t<T then f,_l
If D(f;)€Z then f;, is (1, r)-prime with t,lETU{[} and ¢-r=l.

(W2) Let
finrofi= FiX ... XF,,

be the uniquely determined decomposition with D(F)€ZUT for i=1, , m;, and
= (HyX ... X Hy X HX G X ... X G o fi |

Normal-form transformations of context-free grammars

f
fﬂ/f’7 S Sn N\ S f°5

// Uik \\\'”\"\ '

"1_1”3 fZD_]n’ . .
far (ty, D-prime; foy (1, 70)-prime, fo3 (fa3, 1'23)-prlme

Fig. 1

ﬁ ﬁ,l v e f;,[o ﬁ.’”i
ot | .. O B ST Jistgi—tf oo

to be short in indices we write for this

¢ e oo H] “es f[mH Gm--- G,l

" with H=1 for ji,.,—j,=0(2)
' ’ Fig. 2

72 G. Hotz

be the uniquely defined decomposition with D(H)€ZUT, D(G)¢ZUT, D(H)eZU
U{1} and f,(t;, ry)-prime. Then it follows that H,=1,, G,=1,, for 1,, € TU{1},
t-r#1 and

H; is (4, 1)-prime, €T,

G, is (l,r,-)-prime rieT

for i=2,...,m, and H=1 for length (C(£.) even; for length (C(f,) odd
He¢P (the set of productions of the underlying grammar) with C(H)¢T*, or H
1S (Imt1s Fmer)-PIIME With 44, Fpya €T,

(W3) f1€P and f is terminal, or f1 is (¢, r)-prime with ¢, r¢T.

Lemma 4. Let F(P) be the free x-category generated by the context-free pro-
duction system P in Chomsky normal form. For each f¢ F(P) there exists exactly
one (w.f.)-decomposition of f if D(f)EZ and C(f)eT+.

Proof Let A

z;f»\v, z€Z, weT+,

If feP, then f is terminal and f is a unique (w.f.)-decomposition of itself.
Now assume f¢ P. Then we can write w=tw’'r with ¢, r¢T and w’ uniquely
determined by ¢ and r. Therefore there exists a unique decomposition

f = xXhX1)of,

such that f; is (z, r)-prime. We decompose
h_ng XHkXHXGkX XG2

such that D(H)€Z, D(G)EZ and H=1 or D(H)EZ for k=2.
Again this decomposition is uniqué, if it is p0551ble If it is not possible to
decompose /4 in this way then A=1 and f=f;; that is, one has

. f=f=(g1Xg)ogs
with . v
' 28,22, 7381, 2z, By
productions in P, and our lemma holds in this case.

Now with A decomposed as shown, :
’ . z'iﬂ‘wia yi—'uia Wi, U,-ET+
for i=2,...,k and _
x-H. u, uerl+*
for H=1.
For i=2,...,k we can decompose the derivations uniquely as

H; = (l,l.Xh,-)O 2,i>
Grioi = (gix L))o fo i

Normal-form transformations of context-free grammars 73

in the case that H=1. Here f;; is (#;, 1)-prime and f; ;; is (1, r;)-prime. In the
case H#1 we have the same decomposition for H,, ..., H, but

=(1txh,><1r')of2,k+1! t s T ET
and
Griz—i = (@X1,) 0 fohs14i
for i=2,...,k, where f5 ;4 is (t r’)-prime and fp ;.14 s (1, ry)- prlme _
We now iterate this construction by applying it to the /;, g; and A’ in the same
way as we did to A, and so on.

After a finite number of steps we get the unlquely determmed (w.f.)-decomposi-
tion of f.

The first normal form transformation

Using the result of lemma 4 we now derive a productlon system from the
relations (P’1), (P’2) and (P’3).
Weé write
- B - BI

for B, B’c(ZUT)* iff for each we B’ there exists a u€ B such that u—w in the
usual sense holds. It follows directly that

B — {u}
for u€B. For simplicity we identify » with {u#}. Using this relation and the transi-
tive closure property of derivations one has

p[B(Z, Z r)]q e
for x€,[B(z,t,r)], and x-s.
Let V’ be an alphabet and v a mappmg into ¥V’ which is defined on
U={(z.t,r,p,q)|z€Z; t,reTU{1}, t-r % 1,\p, g€Z*, length (p) = length ()}

such that
v(z, t,r,p,q) =0, t" v, p,q")
JAB(z t, 1], = B, ¢,)]y -

From lemma 1 we know that such an alphabet ¥’ and such a mapping v can
be constructed effectively and that ¥ is finite. Let ¥=¥’"U{S} be the nonterminal
alphabet of our normal form For v(z, t,r, 1, 1) we write simply v(z, ¢, r).

iff

Using (P, 1) we construct the productions (P, 1) as
(P, 1) S—u for ucTUT? and S*u.

S—t-v(S, t,r)-r 'for‘ B(S,t,r) = 0.
We define (P, 2) as follows.
(P,21) wv(z, t,r,p q) ~u-v(x,u, 1)-v(z, t,7, px, yq) - v(y, 1, w)-w
for B(x,u,)NZ* %0, B(y,1,wNZ*+* =0, ,[B(ztr),,NZT =0,

74 : G. Hotz

(P,22) v(z, t,r,p,q) —u-v(x, u, 1)-o(y, 1, W) w

for 1€,[B(z,1,r),, Blx,u, DNZ*+ =0, By, 1,w)NZ+ =0,
(P,23) v(z, t,r,p,q) — u-v(z, t,r, px, yq) -v(y, I, w)-w

for 1€B(x,u, 1), W [B(z, t,r)),,NZ* %0, By, 1,wNZt =0,
(P,24) v(z, t,r,p,q) = u-v(x,u,1)-v(z, 1,1, px, vg)-w '

for lEB(y,.l, w), B(x,u, DNZ* 0, ,[B(z1t r)]thZ"' = 0,
(13, 25) v(z, t,r,p,q) ~u-v(x,u, 1)-w o . A

for 1€, [B(z,t,r)l,;- B(y,1,w), B(x,u, N)NZ* =9,
(P,26) v(z,t,r,p,q) —u-v(zt,r px, yq)-w.

for 1€B(x,u,1)-B(y,1,w), ,[B(zt,r),,NZ* =0,
(B,27) v(z, t,r,u,v) ~u-v(y,1,w)-w

for 1€B(x,u,1)-,.[B(z, 1,r)l,,, B, 1,w)NZ* =0,
(P,28) v(z, t,r,p,q) ~u-w

for 1€B(x,u,)., [B(z, t,7)],,-B(y, 1, w). _

We set
(B,2) = 51 (B, 20).
We now define the productions (P, 3).

(P,3) wv(z,t,r,p,q)—u-v(x,u,w)-w

for x€,[B(z t,r),NZ and B(x,u, wyNZ* 5 0,

v(z, t,r,p,q) ~u-v

for x¢,[B(z,t,r)],NZ, 1€B(x,u,w),

v(z, t,r,p,q) —~u

for x€,[B(z,t,r)),NZ, (x,u)€P.

We define . _ _
P=(P, DUP YU, 3)
and 5
G=WUT, T, P, 5).
We write
G = 1,(G).

1, is our first normal form transformation.

Let -

L=L(G), L=LG)

be the languages generated by the grammars G and G, respectively.

Normal-form transformations of context-free grammars 75

- Lemma 5, .
LclL.

Proof. We construct a functor from the free F.\'-category F(P) into the monoidal
category of the relations '
b ' B-~B for B, B c(ZUT)*

which are induced by the production set P. :
Let A be the power set of (ZU T)*; then we define the monoid homomorphism

¢ VUT)* - U
by setting
0.(t) = {t} for t€T,
- 0u(S) = {S},
@(v(z 7, p, q)) = IB(z 1, 1)),
for v(z, t,r,p,q)€ V.
‘We will write ¢ for {f} and S for {S}. For each f¢ P we define

@:(f) = (2,(D(f)), 0:(C(N))-
‘One can easily check that for fcP

@:(D(f)) = ¢:(C(f))

We extend (¢,, @;) to the functor @=(¢,, ¢,) which is determined uniquely
by (¢,, ¢3). We have then for SLow, weT*

S = 0y(S) 2L g, (w) = w, h

:aand therefore from the definition of B—B’ for sets we have

S—-w
in the usual sense. 5 _
This means that wéL for all wel, and thus Lc L.
: Len{ma 6.

LclL.

This lemma will be proved in two parts.

* Part 1. A derivation step f;: Z +—»(Z UT)* is cailed a w.f. derivation step
iff fi=HyX..XH,XHXG,X...XG, is a decomposition of f; into prime deriva-
tions in the usual sense (e.g. see (W2)). How, let w,...w,€B(p, t,r) for w;, pcZ
and t,r€TU{l} such that ¢-r=%1, and let f; be a wf derivation step with
D(f)=w,...w,. Then we can constructf with D(f)=v(p, t,7) such that

N B(C) = o(C(SY)

where ¢ and ¢ are two homomorphisms which forget the nonterminals in a strmg
and are constant on terminals.

76 G. Hotz

To show this we must examine the two cases for n even and n odd. For n even
we have

Wi Wy = Xy Xy Voo Yy

where m=n/2, x;=w;, yi=W,_;41, and n=2. For n odd we have similarly
for m=1 '
Wi Wy = X1.. X2V V1 -

“Since the proof for these two cases is similar, we will show the result only
for the case that »n is odd.
Here we have for w,...w,€B(p, t,r)

So=HyX...XH XHXG,X...XG,

Wieoe W =X ... X2V oo V1
hXxy... X1, -+ Ly Xy ...x,,,nmt,,ﬁuz1 o ZiTmt1Vmy o+ Ymy Tm - Y1p - Yy -

We then construct f; as shown below for v(p, ¢, r), the variable corresponding
to B(p, t,r), using the rules P.

v(p, t,

. Fs
tlv(xla tls 1)”(1’, 119"'19 X1 yl)v(y19 1’ rl)rl -

tlv(xl’ tl: 1) th(-xm’ tms I)U(P, tla Fi5X1 - Xms Yy - yl)

fs m+1

U(ym9 1, rm)r U(yh 1 rl)rl
Ho(xy, t, 1) 8,0, by D102, tsts Py) Tna
U(ym’ 1’rm)rm-"v(y1’ 1,7’1)1‘1.

Now, set fi=fqm+10fomo---0fi1.

Clearly 3(C(f.)= (p(C(f)). Further, for each string of “isolated” nontermi-
nals in C(f;) (a string of nonterminals w1th a terminal on both ends) there is a.
correspondmg v variable in C(f,) in the same location. For example, for LXp e

<X in C(f), wWhere X, ;... x¢ n €B(Xy, 1, 1), we have n,v(x,,#,1) in C(fs)-
in the same location in terms of the terminal symbols in C(f,) and C(f)).

If one of the x;, z, or y; — for example x; — is rewritten to a single terminal
followed by no nonterminal string, this corresponds to the fact the 1€B(x;, t;, 1)
and thus that the corresponding v variable also does not appear in C(f,). Therefore
the isolated nonterminal strings and the v variables correspond exactly. Using these
tesults the lemma can now be easily proved.

Part 2. For weL and S-Lw with fEF(P)-, let

f=f,0...0f

be the umque (w.f.)-decomposition of f. Then we can construct fEF(P) such:
that S-Lw. -

Normal-form transformations of context-free grammars 77

We will prove this inductively by showing that for each f;, f;, ..., f, we can
find f, f2, ..., fy such that @(C(f))=@(C(f)) for.all i, where f=fo0...0f],
and such that the isolated variable strings in C(f;) correspond exactly to the v
variables in C(f}). ,

For f; we have

S
S txy . X, T
and '

Sﬁ» (S, t, r)r,

which clearly satisfies our conditions (if x;...x, is empty in C(fy), v(S, t,r) does
not appear in C(fy)). .

Assume that this is true for fio...of; and fi0...0fi for n=>k>=1 to show
for the case k+1, we look at the partlal derivation f; 4,0 f;0...0f;. We know
from the induction hypothesis that 3(C(f))=0(C(f)) and further that the
isolated nonterminal strings in C(f;) correspond exactly with the v variables in C(£,).

From what we proved in Part 1, then, the result should be clear. To each
terminal in C(f;) we apply an identity ‘derivation; to each string of isolated non-
terminals in C(f;) we apply a w.f. derivation step f;. The “X” product of these
identity'derivations and w.f. derivation steps forms f; ., as one can easily see from
the proof of Lemma 4 and ﬁgure 1.

Let

fk+1 =& X X8

be this product. Then we construct

f;c+1 =&1X...X&n °

where g; is the 1dent1ty derlvatlon if g; is the identity, and g; is the correspondmg
fs derivation if g; is a “type f,” derivation. Clearly, then, the conditions of our
assumptions hold, and we have-that C(f)=C(f) and thus that LcL.

Our proof gives a sharper result than stated in the lemma. f—~f is a mapping.
If this mapping is surjective, then the multiplicity of each element w¢L relative
to G will not be greater relative to G

Analysing the proof of Lemma 5, one also sees that glven feF(P) one can
find a g€ F(P) such that §=f. .

From Lemma 5 and Lemma 6 and the above remark we have

Theorem 2. For each language L generated by a context-free grammar G our
transformation 7; produces a context-free grammar G=t,(G) which generates
L and in which the productions are of the form

zZ—1tpr or z—v

where pcZUZ2UZ3, ve TUT? and t,r€T, z€Z. 1, does not increase the multl-
phc1ty of words.

Corollary Ty transforms’ unambiguous grammars into unamblguous grammars.
. We now deﬁne two -more transformations 7; and 12 for which the same
theorems hold, :

78 ' G. Hotz

1, is the transformation’into. Greibach normal form.from Chomsky normal
form with at most two nonterminals.in thé right hand side of each production.
1, transforms each G in Chomsky’ normal form into a grammar G in which the
productions are of the form -
zZ—1qr Oor zZ -y

with g€ ZUZ?, veTUT? 2€Z,1,F€T.

We will only give the relations corresponding to (P’, 1), (P’,2) and (P’, 3)’
From this the definitions of 7, and t, and the proofs of the corresponding theorems
will be obvious to the reader.

The transformation T,

Now we apply the methods which led us to the just proved normal form
theorem to the recursive equation of theorem 2 in [Ho 2]. :

B(s, ut, 1) :,U B(z t,.1).[B(s, u, 1)].

z€Z
Again, we can try to construct product1ons from these B sets of the form:
B(s,v, 1) = tB(s, vt, 1)
for s€Z,veT™*, t€T. Factoring the right. hand side, we have
B(s,v,1) - ¢t-B(z,t,1)- [B(s, v, 1)]

for teT, zcZ, vET s€Z.
We introduce as before variables x(z, t, p) which we assign to [B(z, ¢, 1)].
~ Here we get a production system i

x(s,v,p) - t-x(z, 1, 1) x(s v, pz)
for B(z,1,1)#0, ,.[B(s, v, D] =0, and B(z,t,1) and pz[B(s 0, 1)]#{1} and
x(s,v p) ~t-x(z,1,1),
x(s, v, p) —t+x(s, v, pz)
for’ 1€,.[B(s, v, 1)] or 1€B(z, t, 1), respectively.
We define the first and the terminal productions as follows:
S—1t-x(S,t,1) for B(S,t,1) =0,
S —1t for (S,t)epP;
x(z,t,p) —r for 'yep[B‘(z, t,)] and (y,r)eP.’
This grammar we call G and the transformation from G to G is the desired

transformation T, .
As in the case of 7; one proves

Theorem 3. The transformation 7, transforms context-free grammars G in
Chomsky normal form into grammars G=rt, (G) which are in Greibach normal
form. The productions of G contain on ‘the right hand side not more than two
variables. The transformation 1, does not increase the multiplicity of words.

Normal-form transformations, of context-free grammars 79

The transformation 7,

Let
R ={.[B(z, 1, M|z€Z, teTU{1}, reTU(1}, t-r # 1, u€Z*, veZ*}.o
As 'we ha\;é seen R is a finite set. We derived from relations of the form
\R — R, Ry Ryr

and
S - tRr o

a cubic- normal form for ‘the context-free languages.
Now from relations of a similar form .

[R, 2]—’tB(Z 1) [R1R2] By, Lr)-r
we can derive a quadratic normal form from the fact that
R, R, = AR [R], U (Ry) - [R,Ua(R) - IRy,

where .
@ for 1€R

o(R) ={{1} for 1€R.
If we now write

Ry=B(z,1,1), R, =R], Ri=[R)],, Ry=B(,1,1),
Ri=o(R)-.[R), Ry=c(R)-[R], -
then we have the relations -
[Ry Ro] ~ 1+ [Ry R - [R3 R] - 7,
: [R,R;] — t" (R, El] “[Rs] -7,
[R,R,] — t-[Ry)*[R, Ry 1.

R, the set.of all valid R sets, is. closed under left and right divisions by construc-
tion, and from R finite it follows that RUR-R .is also finite.

If we now choose variables v(R,) and v(R,, R,) for R;, R,¢R just as we did
in developing our cubic normal form we get a productlon system P of the type

Yy > ixzr,
y — txr,
Ly — 1,
y=b

or y, x, z nonterminals and ¢, r terminals.
This is the transformation t,.
As in the cubic case we have the following

30 G. Hotz

Theorem 4. The normal form transformation

o~

2.6

defined for grammars in Chomsky normal form has the property L(G)=L(G).
The transformation does not increase the multiplicity of the words weL.

The proof is completely analogous to the proof of theorem 2 and is therefore
left to the reader.

Functorial properties of the normal form transformations .

Let F(P)=((Z,UT)*, M, D, C) for i=1,2 be two x-categories generated
by the context-free production systems P, and P, in Chomsky normal form. Further
let ¢=(p,, ps) be an x-functor from F(P,) to F(P,).

This means that .

@11 (ZUTY ~(Z,UT)*

is a monoid homomorphism and that
@s: M, — M,
@:(fog) = @2(f) 09:(2)
?2(fX8) = 02(f) X 92(g)-

Also for identities 1,, we have

fulfills

if fog is defined, and

02(1,) = (pl(w)
We restrict ourselves to the case gol(T)CT and gol(Zf)CZ*. From this follows
length (W) = length (qol(w)) for weT*.
We have no derivation |
- u

for us1. Because we are in Chomsky normal form we have no superfluous vari-
ables. This means for each z€ Z there exists

z-Lew, weT+:

therefore ¢,(z)=1 would be a contradiction. From this and the fact that ¢, is
length preserving on T* it also follows that ¢,(Z,)cZ,. Thus, since we are using
Chomsky normal form, we have :
¢1(Py) C P,.
Now let
z-L tur
be a (¢, r)-prime derivation. Then

?1 (z) 901(t)§01 OIAGE

Normal-form transformations of context-free grammars 81

is (¢1(t), @1 (r))-prime. Therefore

@1(B(z, 1, 1)) € B(01(2), 9:(2), ¢1(r))-
For RcCZ*, x,y€Z the identity

. ’ (21 (x[R]y) <p1(x)[(P1 (R)]¢1(y)
holds since ¢,(Z)CZ,.

. Let R, be the set of our sets [B(z, 2, r)],#0 belonging to G, and G, respectively.
Then for the variables v(z, t,r, p, g) we can write v(R) for certain R€R;. Then
we have for the set Z; of varlables of G,

Z,={v(RIRER}, i=1,2.

Now ¢, induces a mapping
. 012 Ry —~ mz

Using this we can define the monoid homomorphism

@y (21UT)* - (ZzuT))_k
by setting

¢ ¢,(t)=1 for (€T
@, (v(R)) = v(p,(R)) for ReR,.

It is clear, then, that the following diagram commutes '

O(F(Py) - O(F(Pz))

1:| Ir

O(F (Pl)) -0 (F (Py)

for t=r1;, 15, 73, Where 0 is the object set of the given categorles
We can now define the function @; which maps the productions of P, to pro-
ductions in P, by setting

and

_ 03z 9) = ($:(2), $2(9))
for (z, q)€P;. ‘ -
Extending (&, ¢3) to the x-functor (@, $§,) we have proved the following

Theorem 5. Let T be one of our normal form transformations t,, t,, 7; and
let @=(¢;, @,) be a functor from F(P,) to F(P,), where P, and P, are in Chomsky
normal form with ¢,(T)cT and ¢,(Zf)cZ;. Then there exists a natural
transformation of ¢ to a functor ¢ from F(t(Py) to F(t(Py)).

The theorem states in other words that the diagramm

FP)2-)
F(P)- -~ F(P)

has a solution @. This means that the t; induce a functor between the functor
categories of the x—categones F(P), P in Chomsky normal form, and the functor
categories F(P) with P in one of the three normal forms 1,2 or 3.

6 Acta Cybernetica I[V/1

82 G. Hotz

Transformations of linear languages

We have seen that the transformations t; do not increase the multiplicity of
words. Therefore the question arises whether an LR(k)-grammar G is transformed
into LR(k")-grammar G by our transformations t;. We are not able to solve this
problem here, but we show that t, transforms one sided linear grammars into
minimal]inear grammars. This means that in this case 7; transforms non-LR (k)-
grammars into LR(0)-grammars. 7, here corresponds to the reduction of finite

automata.
Let P be a left-linear grammar where productions are of the type

z—-2z'«t, z—>t
for z,2’€Z and t€T, where Z is the variable alphabet, and T is the terminal
alphabet. We transform these productions into Chomsky normal form by intro-
ducing the variable alphabet X={(x, ¢)|t€T} where x is a fixed symbol.
We define
Pc={(z, 2’ - (x,))|(z, 2’ -)€ P}
U {((x, 1),)lte T}U{(z, D|(z,)€ P}
P., then, is in Chomsky normal form and the grammars G=(ZUT, T, P, S)
and G'=(ZUXUT,T, P., S) generate the same language L.
Now we apply our transformation 1, to Pc. We have for z€Z and (x, r)€X
B(z,1,)c X*
B((x, 1), u, 1) c-{1}.

AB(y, 1, D] =0
for z€Z and y€ZUX. N
Therefore our relations which define P; have the form

AB(Y, 1, D] —u- ,[B(y', 1, 1)]

for peX*, y=(x,u)€X, and y'cZ.
Now let

and

From this follows

@: X*-T*
be the monoid isomorphism defined by .
o(x, 1) =1t
Then .
e([B(y,t, D)), y€Z, 1€T, pex*

defines the syntactical congruence classes of L (i.e. the left invariant equivalence
relations). This means that t, transforms P into a minimal grammar for L.
We therefore have the following

Normal-form transformations of context-free grammars 83

Theorem 6. 7, transforms left linear grammars — represented in Chomsky
normal form as shown — into minimal right linear grammars.

Corollary. 7, transforms certain non-LR(k)-grammars into LR(0)-grammars.
There exist grammars such that under the transformation 7, the multiplicity of
words decreases properly.

One can easily prove similar results for the transformations 1, and 3.

From our theorem about the multiplicity of words it follows that the trans-
formations 1; transform an LR(k)-grammar G into an unambiguous grammar G.
7, and 1, do not preserve the LL(k) and LR(k) property of grammars, but ¢, does
preserve it as we can show [Ho 3].

A normal form for the Chomsky—Schiitzenberger theorem

Using our normal form transformations t, and t; one easily derives a normal
form for the theorem of Chomsky—Schiitzenberger.
Let
X = {X3, oo X X7 o x0 1}

where x;, x;! are bracket pairs and D, the corresponding Dyck language over X,.
The well known theorem states that for each context-free language Lc T* there
exists an alphabet X,, a standard regular event R, and a homomorphism ¢: X} —~T*
with @(X,)cTU{1} such that '

: L = o(D,NR).

Using our normal forms and following the well known proof of this theorem
one finds the normal form of

Theorem 7. For each context-free language LcT* one can find X, ¢, and
R such that L=¢(D,MNR) and from ¢ (w)€T and the existence of u, v such that
uwv€ R it follows length (w)=3.

From this theorem we arrive at the theorem of S. Greibach [Gr] about a hardest
context-free language as it was proved in [Ho 1].

Abstract

We discuss three normal form transformations 7,, 7. and 7; of grammars G which are in
Chomsky normal form into grammars G,, G, and G; respectively. G, is in Greibach normal form
with nonterminal productions restricted to z—fp such that 7€ T and p€Z* and length (p)=2. The
nonterminal productions of G, and G; are of the form z—tpr such that 7, r€ T and p€Z+, length
(p)=2 or length (p)=3, respectively. It is shown that these transformations do not increase the
multiplicity of words in the generated languages. Furthermore we show that certain functorial
relations between languages are preserved under these transformations. The restriction of 7, to one
sided linear grammars produces the minimal grammars. 7, and 7, do not preserve the LR(k) pro-
perty of grammars. 7, preserves LL(k) for k=0 and LR(k) for k=1, LR(0) may be transformed
into LR(1) as we show in the following paper.

UNIVERSITAT DES SAARLANDES
D-66 SAARBRUCKEN

6*

84 G. Hotz: Normal-form transformations of context-free grammars

References

[A—ULL] AHo, V. and J. D. ULLMAN, The theory of parsing, translation, compiling, vol. 1.
[BE]} BENsON, D. B., Some properties of normal form grammars, Comp. Sc. Dept. Washington State
Univ., TR CS'75 24, July 1976. .
[CH—SCH]CHOMSKY N. and M. P. SCHUTZENBERGER, The algebraic theory of contexi-free languages,
computer programming and formal systems, North-Holland Publ., 1970, pp. 116—161. -
[GE—HA] GELLER, M. M., M. A. HARRISON, 1. M. HAVEL, Normal forms of deterministic grammars,
Discrete Math.

[GR] GREIBACH, S. A., The hardest context-free language, SIAM J. Computing, v. 2, 1973, pp.
304—310.

— Erasable context-free languages, Information and Control, v. 4, 1975, pp. 301-—326.

[Ho 1] Hotz, G., The theorem of Chomsky—Schiitzenberger and the hardest context-free language
of S. Greibach, Astérisque, v. 38—39, 1976, pp. 105—115.

[Ho 2] Hotz, G., Sequentielle Analyse kontextfreier Sprachen, Acta Informatica, v. 4, 1974, pp.
55—75. -

[Ho 3] Horz, G., LL(k) und LR(k)-Invarianz von kontextfrenen Grammatiken unter einer Trans-
formation. auf Greibach-Normalform, EIK, No. 1-—2, 1979.

[Ho—CL] Hotz, G., V. CLauUs, Automatentheorie und formale Sprachen 111, BI-Informatik, Hoch-
schulskripten, Mannheim, 1972.

{KN] KNUTH, D. E., On the translation of languages from left to right, Information and Control,
v. 8, 1965, pp. 607—639.

[Mau] MAURER, H. A., Theoretische Grundlagen der Programmiersprachen, BI-Informatik, Hoch-
schulskripten, Mannheim, 1969.

[SA] SALOMAA, A., Formal languages, Academic Press, N. Y and London, 1973.

[ScH] SCHAUERTE, R., Transformationen von LR(k)-Grammatiken, Diplomarbeit, Goéttingen, 1973.

(Received March 22, 1978)

Processing of random sequences with priority

By ‘A. IvAnyl and 1. KATAI
To the memory of Professor Laszlé Kalmar

Introduction

This paper is devoted to study of processing random sequences with priority.
At first we formulate the general problem (§ 1.), later we show: the state sequence
characterizing the course. of the processing — as processing of independent homo-
geneous Markov-chains — is also a homogeneous Markov-chain (§ 2.). -

We deal with characterizing the processing speed (§ 3.). Since the stationary
initial distribution plays a main role, therefore we give a simple algorithm to deter-
mine it: when the transition probability matrix is the simplest (§ 4.) and for two
sequences (§ 5.).

Finally we investigate the asymptotic behaviour of the speed (§6.).

Our work has practical importance e.g. in computer performance analysis,
more precisely in modelling of multiprogrammed computers with one processor
and interleavéd memory [1]. In this case the programs are modelled by sequences
(the program with the greatest priority by the first sequence etc.), the chosen
measure of the speed corresponds to the average number of the executed operations
in a time unit, the transition probability matrix with the same elements corresponds
to the random program behaviour model and the asymptotic problem is connected
with the great number of memory moduls. ‘

§ 1. Formulation of the problem
Let oy denote the set {1,2,..., N}, and

10, f0, .
f(r) i, ..

r infinite sequences consisting of the elements of &/y. We process the elements in’
the sequences according to the .following rules:
: 1. Processing proceeds -in the points of time 1,2, ...; let i be equal to 1.

(1.1)

86 A. Ivédnyi and I. Kétai

2. Let k, denote the greatest positive integer for which the elements £V, ..., <D
are mutually distinct. If k,, ..., k,_, have been defined, then let k, (t=2,...,r)
denote the greatest nonnegative integer for which

U {fu) . ’)}ﬁ{f(') (r)}_g (1.2)

holds.

3. In the i-th point of time we process the first k, elements of the +-th (r=1, ..., r)
sequence. We omit the processed elements from the sequences, and reduce the
lower index of the remaining elements by %, in the ¢th (¢=1, ..., r) sequence.

4. We add 1 to i and continue the processing from the rule 2.

For a more precise characterizing of the processing we register the first and
last processed and the first nonprocessed elements for every point of time. Therefore
the processing in the first point of time is characterized by the array

fl(l) o S 1A
f“’ s 0 1 (1.3)

O, e O NS |
If k =0 holds for a given 7, then we have *,[f{" in the ¢-th line of (1.3). The
star shows that none of the elements has been processed. For the sake of brevity let

A=A LGN or Ar=(x, 1A, (1.4)

resp. By using this notation, the processing in the first point of time is characteriz-
ed by
9=(4,, ..., 4,).) (1.5)

Let 2, denote the set of all possible 3’s. In other words &, is the set of all
s that are representable in form (1.3) giving suitable values to the elements f".
It is clear, that (4,, ..., 4,) belongs to @, if and only if the following conditions
hold:

1. Al—(:1,|12,...,ik,||j>; iys cousiy, J€ESN; iy, ..., I, are mutually distinct,

JE{ll, - ‘
2. Let Al, ..es A;_; be defined, then

Ay = {51, [Sas iy Sm 1Dy 51400y Sy 1€y,

and
t—1
a) {Sl""ssm}nU A"=Q,
n=1
b) s4,83,...,5, are mutually distinct,
t—1
c) lefsy, ..., s,,,}U[U A,,]
n=1
or .

t—1
A, ={*,|l), and lel 4,.
- n=1

Processing of random sequences with priority 87

After this the processing of a given array of type (1.1) can be described by the
state sequence
TR (OB O R

99¢D, (s=1,2,..).

It is obvious that there are pairs C;, C,€%, that cannot occur as consecutive
states, i.e. for which 9©=C,, §¢+V=C,. ‘

(1.6)

Let
96 = (499, ..., AD), (1.7)
where
AP =GR 1 1 5 159) , (1.8)
or
A = (x, [|j). » 1.9
Let in 99 and fin 9 denote the initial and final elements of 3¢, i.e..
in 90 = (i), ..., i{N; fin 99 = (GO, ..., O, (1.10)

remarking that if A(S)—(* I](s)) then in in 3¢ we put *j(® instead of i{s). It
is clear, that the transition $® - 36+ js realisable if and only if fin 3 =in 8““)
holds. Deciding about this equality we do not take into account whether the com-
ponents of in 3¢+ contain stars or not.

§ 2. Processing of independent Markov-chains .

Let ¢ (I=1,...,r; i=1,2,...) be.random variables with values from &/
for which the following conditions hold: -

1. The sequences & (i=1,2,...) for every / form a homogeneous Markov-
chain with an initial distribution =; and transition probability matrix II;, i.e.

n(p(1, D, ..., p(N,), where p(k,I) = PP = k)
and . .
I, =[p(x,, D], where p(x,y, 1) = PER: = x[EP =).

2. The sequences ¢ (i=1,2,...) are mutually independent.
3. The elements of the matrices I, are positive.
“Qur job is to process the array of random variables

v, &, .

.1
é"’ &n, ...
by using the algorithm defined in § 1.
Let
: .93(1), .@(2), s B
o 2.2)

BICD, (s=1,2,..)

denote the state sequence of type (1.5).
We prove the following

88 A. Tvényi and L. Katai

Theorem 1. Under the previous conditions the sequence (2.2) represents a
homogeneous Markov-chain.

Proof. Let us compute the probabilities
p(@(l) = 9(1)) = q(9(1)),
P(B6+D = g+D|gM = g, __‘,' B = 9).
We shall use the notations (1.8) and (1.9).

Let
1(4®) = p(if; O p(E, i 1) .. PGP, D 5 1), 23)
if AM has the form (1.8) and

t(4®) = p(j®; 1), ' (2.4)
if A®D has. the form (1.9).
It is clear, that

r

q(8®) = JT 7, (4).

Let V‘=1 . o
2(AP) = p(i%; i 1) ... p(J; iDy5 1), (2.5)
if A® has the form (1.8) and let
‘ L4 =1, (2.6)
if A has the form (1.9). Further let
00 = [[4(4P). @7

- Since the sequences ¢ form homogeneous Markov-chains, therefore
P(BD =90, F6+D = g+ = g(9W)Q(99)... Q(§¢+D),

if 9W, ., 36+ js a realisable sequence. It is clear, that for a nonrealisable

sequence
P(BW =90, Pe+D = gb+D) =,

So we have proved that (2.2) is a homogeneous Markov-chain with initial

distribution (2.4) and with the following transition probabilities:

AN P(g(s+1) = 9(s+1)[g(s) - g(s), e B0 = 9(1)) —
{Q(9<s+1>),' if in 96D = fin9® e
= lo, it in 96+D 5 fin 9O

. Now we shall prove, that under a suitable positive k& all of the conditional
probabilities . S :
. p(g(sﬂc) = C2|.93(‘) =C)

are positive for every C;, C,€2,.

Processing of random sequences with priority 89

Since Q(C) are positive for every C€Z,, thus we have to show that there
exists a realisable sequence

C,=9,,%,...,9%.:,=Cs.

Let finCi=(j1,..-» Jo=Pp1, in Co=(1, iy, ..., i,)=05, where a, may have
stars. It is clear that there is a realisable sequence starting with C, and ending
with $,_,, where fin3,_;=u,. Since the number of possible states is finite, we
can find a bound d with u=d. Let k=d, .and

il’ !i2, reto ira “ il ’
*

9(5) —) 3 . " 12 (s —

*, i,
In this case the subsequence 9®, 9%+D js realisable.
Hence immediately follows the following

Theorem 2. Under the conditions of Theorem 1 the sequence (2.2) is an er-
godic Markov-chain.

§ 3. Determination of the processing speed

Let /(3) (interpreted for every $€2,) be an arbitrary function having com-
plex values.
Since any given array (l.1) determines uniquely the sequence (1.5), therefore

the sequence
1(3W), 1(3®), ... : 3.1

is determined too. We are interested in such functions / that characterize the speed
of the processing. Assuming that the conditions stated for £V in § 2. are satisfied,
we shall show that the mean values and other moments of the random variables

n(l) = 2 (@9 (32)

can be computed by using known theorems. : .
Let (Q, o, 2) be a probability space, ¢,, 02, ... a homogeneous Markov-chain
with a finite set of possible states {I,2,...,n}. Let

M= (P1> s Pn) , (3.3).
denote the initial distribution and ’ ‘

. H [pl]]l,_l =1,.. ot . (34)
the matrlx of transition probabllmes

Let - . ¢
PP = Pei=) lo, = D=1, 2 9.
.- .« The following wellknown assertion;is,‘due to Markov.

90 A. Ivanyi and 1. Katai

Lemma 1. Let us suppose that there exist j and k such that p{P’=0 for
i=1,...,n. Then

lim pi =x;, x;=1, (3.5)
j=1

further
pP—x;| =C- ¢, (3.6)

where C=0 and ¢ (0<@<1) are suitable constants.

Let f be a function having complex values defined on the set {1, ..., n}. Let
M, f(g,) denote the mean value of f(g,) supposing that g, has an initial distribu-
tion n. Let 6, 0,, ... be a stationary Markov-chain on the set {l,...,n} with a
transition probabllxty matrix (3.4). Therefore the Markov-chain 6,, 9), ... has an
initial distribution x=(x, ..., x,). As an immediate consequence of Lemma 1

we get . .
IM,. f(o)— M, f(8)] = C,¢, : 3.7
where €;>0, O<@<1 are constants. Since 6,,0,, ... is stationary, therefore
M, f(8) = M, f(6), (3-8)

and from (3.7) it follows that

m.(21@)) = 0.500) 00 (39

Theorem 2 guarantees the fulfilment of Lemma 1 for the sequence (2.2). The
approximate determination of Mpn, (/) is simple, if the stationary initial dlstrlbutlon
belonging to the chain (2.2) is known.

The explicite calculation of the stationary values is in general a cumbersome
matter, since the number of elements in 2, is about #® even for r=1.

Now we give a simple algorithm to compute it in a special case.

§ 4. Algorithm for the computation of the stationary distribution

Let the random variable sequences (2.1) be mutually independent w1th the
distribution

PED =k) = _]1_/_ d=1..,rk=1,..,N;i=12,.). ., (41

Let 3=(4,, ..., 4,) denote the processing in the first point of time, and
b(4;) denote the number of processed elements of the chain £ (at this time), and
b(9) denote :

b(9) = (b(4Y, ..., b(4)). “4.2)

For given integers k=1, k;=0 (i=2,...,r) let p(ky, ..., k,) denote the prob-
ability of the event b($)=(ky, ..., k,), ie.

plky, ... k) = P(b(® = (ky, ..., k). ' : 4.3)

Processing of random sequences with priority 91

Let 5,=0, s,=k,+...+k, (t_l .., r). Itisclear that p(k,, ..., k,)=0 unless

=k, =N, 0=k, =N-1, ;=N (t=2,...,r) 4.4)
Let '
! v
v, N)=][[1 "N] 4.5)
. v=1

and let VX denote the number of k-variations of m elements.
It follows from simple combinatorial considerations that in the cases (4.4)

1 '
p(kl,...,k,.) N +rV I/z"\(’g—sl"'VI’\;'—S,._l.SISQ"'Sr=
' (4.6)
N 518z . - S2 S,
= =syt e 6L N5 NN N

From this representation we can easily get the limit distributions of s’s as
N— <o for a fixed r. We are going to devote an other paper to compute the distribu-
tion and moments of k,’s under various conditions.

§ 5. Processing of two sequences

Let r=2. Suppose that the conditions stated for £{4) in the previous paragraph
are fulfilled. We wish to determine the mean speed of the processing. Using the
notations (2.2) the speed is determined by the sequence of random vectors

1(BD), (BD), ..., [(BD),
Due to the independence of &)’s

P = e = o) =+
By using notations (2.5), (2.6) and (2.7) we get

Q(39) = N4k, s

So 099 depends only on 1(9). It is clear, that the condition for the realisability
of 3(s) 96+ s fin (3(:))—,n(9(s+1))
For given i=(iy, iy) [or *i, 1nstead of i), j=(Ji, Jo), k=(ky, kz) let

&G, j, k) = U 4 (5.2)

ind=i
fin8=j
1(8)=k

Let & be the set of all elements Z(, j, k).

92 A. Ivanyi and 1. Kétai

The sequences (2.1) and (2.2) determine the sequence
Ay, 0, ..., €8 (j=1,2,..) (5.3)

uniquely, where «; (j=1,2,...) denotes that element of & for which #YV¢aq;

(J=L2,.
It is c]ear that the sequence (5. 3) is a homogeneous Markov-chain with an
initial distribution

. 1 .. ;
P(al = '@(l:.’a k)) = W v(lf Js k)’ (54)

where v(x) or v(i, j, k) denotes the number of elements of &, belonging to «.
It is clear that
1 , .
m V(I: Js k)’

if C,#B is realisable (-3}
0, otherwise.

P(as+1 = g(i’j, k)las = C) =

For the computation of v(j,J, k) we have to distinguish the fobllowing cases:

<l>: ko 0, then iy %j,, iy # i), J;

—<1 1. 1> Jz # iys J1s g

. 12y =0y

1.1):j, # i S
(LD jy# b= ~1.1.3): j, = J,
(1.1.4): j, = i,

N —<1.21>.j2¢ iza il
1.2):j;=i;—=<1.2.2): j, = i,
—(1.2.3)1j, = iy

~(2.1.1): ju # j1s iy
Q@ jy# i —[«2.1.2): jp =,

(2):ky =0, then i,=xj,

(2.1.3Y: j, = iy
, 221y, # iy

2.2):
221 = |<222) Ja=ig

We summarize the types, the number of possible different pairs of i’s and j s
the corresponding v(i, j, k) and G(type (., .,.)) values in the following table, where

G(type (., >)= ae Nklﬁkz v, j, k),

and we summarize for the #’s of given type. - -~ ;. ar e d et N aal

Processing of random sequences with priority 93

Type v, Jj,) p;f;‘:ib‘;:‘;‘;er‘; ‘;f] G(type (....))
(111 %}%(kl—l)(kﬁhQ) NW-DWV-v-3) | T Ee IIESD:

| (N=3)!

’ 112 Wk —or D N(N—1)(N=2) yles+ ke, N —1) .

| 13 5. (1.1.2) 5. (1.1.2) 5. (1.1.2)

| 14 s. <1.1.2) s (11.2) s. (1.1.2)

| (N=3)!

| 20 | Gy Gtk 5. (1.1.2) y (ks +koy NY (ki + ks —2)

(1.2.2) ‘ ?N(_Lk?% NW-1) y(ky -+ ks, N)
{1.2.3) s. (1.2.2) s. (1.2.2) s. (1.2.2)

(N=3) :
Q.11 oo k=2 N(N—1)(N—2) y (ks N) Gy —1) (ks = 2)
-2 _

| @12 i D NWV-1) ylhkn, NY(ky—1)

| @13 5. (2.1.2) 5. (2.1.2) 5. (2.1.2)

| 2 5. (2.1.2) 5. (2.1.2) 5. {2.1.2)

1 22 - N Y

. N—k)!

We have got the values in this table by using simple combinatorial considerations®
Let us consider e.g. the case (1.1.1). Let ky, ks, iy, is, j1, jo be fixed, iy, is, Ji, jo be
mutually distinct.
We need to enumerate the number of arrays

Itis clear, that j, € {u,, ..
Let us consider the subcase j,€ {us, ..

[1’1, lug, ..

iy, |Ua, ..

'7uk19|[.

(] vkz’ ”)

., U, }. On the other hand j, € {u,, ..
., U,}. We can arrange the elements j; and

YU A{v,, -

o5 Uy}

Jsamong u,, ..., 4, in (k;—1)(k;—2) different ways. Then we choose the remain-

.ing (k;—3) w'sin

(N — 4)!

(N—4)!

(N—4—(k;~3))! (N—k;—1)!

ways. The sequences v, ...

s ng

and i, Uy, ..., U4, I have no common elements, otherwise they are arbitrary. There-

ifore we can choose the sequence v,, ..

ways. Therefore

(N —4)!
(N—ky—ky)!

(N —ky— 1)!

_ (N=ky—1)!

., U In

(N=ky—1—(ky— 1)) (N—ky—ky)!
different processing states belong to this subcase.

94 A. Ivanyi and 1. Katai

Let now j,€ {v,, ..., t,}. The set {u,, ..., u,} contains Jj1, but it does not con-
tain i,, #,, j». Therefore we can choose this set in ’ :
(ki—1) (N-! (N—4)!
! (N—4—(k,—2)) (N—k,—2)!
ways. The set {v,, ..., v,,} contains j,, but it doesn’t contain the different elements
Iy, Iy, U, ..., Uy, therefore the number of such sets is :
(N—k,-2)! (N—k,—2)!
_ =)
(ke—1) (N—ky—2— (k,—~2))! (ke—1) (N—ky—ky)!

= (kl_ 1)

Therefore

= 1)k~ 1) ey o

different processing states belong to the second subcase. From here

v@ﬂm=%r00rnvé%£%ﬁ'

The proof of the remaining cases is a bit easier.

Due to Lemma 1 the stationary distribution is constructable for the Markov-
chain (5.3). Let u(x) denote it. ‘

Let us introduce the notation

Fx,y)= 2 u(@. (5.6}

fina=(x,y)
a€Es

Due to the symmetry

F {F(l,2), if x#y 57
N =\ra,1), if x=y. .7
Let
Gxy=_ 3 u@. (58
. in a;;(g, »
For the stationary distribution we have
%’8 P(aslay)u(ay) = u(a), (5.9»
where ' ' .
Du()=1. (5.10)

a€s
Introducing the notation

o) =ZZ€' Q#) (x€8)
we get
Q(a2)’ lf in Ay = ﬁfl Xy,
Plogle) = {0, otherwise.

Processing of random sequences with priority 95

Then due to (5.9)

u(a) = Q(otz)ﬁ 2 () = Q@) Flinay). (5.11)
Let x and y be arbitrary integers (1=x,y=N), and fina,=(x,y). Then
1= X Ply) = 2 Q). (5.12)

€8 inag=(x,y)

Hence, by using (5.11) and (5.12) we get
| Gx,)= 2)u(a)'—‘F(x, y) 2 Q@)= F(,y) (5.13)

ina=(x,y ina=(x,y) -

Let

A=F(1,2), p=F(Q1,1). (5.19
If A and p are known, then the stationary distribution can be computed easily

by using (5.11). :
From (5.10) we have

_ N(N-1)A+Np=1. (5.15)

To determine A and p we shall give another relation between them.
Let
& ={alina=(h,h), (h=1,2, ..., N)}, (5.16)

&y = EN\GBs. ' (5.17)
Itis clea/r that

p=FO,D= 3 u@=i 3 Q@+x 3 0@ =ia+pup.
fina=(1,1) ﬁn:é:éal,l) ﬁn:;gl,l)

Let us observe that the «’s having the form

[h, oy [1, GOl
s, =117 u

are belonging to &,. These o’s are belonging to ¢2.2.2). Therefore

. .
ﬂ=%k.=2;v(k—l,N)- ' (5.18)

Let us consider the sum a. We classify the o’s in & according to ino=(x, y),
where x=y: ,
Class 1: y=1, then xs1. This is the case (2.1.2}.
Class 2: x=1, then ys1. Thisis the case (1.2.2).
Class 3: x=1, y=1. This is the case (1.1.3). Let a;, oy, a3 denote the corre-
sponding sums and let R :
o= oyt op .

96 A. Ivanyi and I. Kétai .

From the table we can see easily that

1 Mo . 1 Mot 123142
a1=_—2 ?(I’N)I’ dz=d1, a3=_2 Y(t’N)'——y
t=1 N,=1 2
(5.19)
1 NSt t2+t+2
=52 1eN—5—
From the system of linear equations

N(N-DA+Nu=1

{ (N-1) [(5.20)

Jat+u(f—1)=0

we can compute /£ and pu.

Let now f() be a function depending only on the length of processing (number
of processed elements). Let us compute M, f(x), i.e. supposmg the statlonarlty
of (5.3).

Then we get :
M, f() =2 ,EZ;f(a)Q(aH# é’f(a)Q(ot) (5.21)

acé; a€é6y .

)

belong to the elements a€&,, for which iy =j,, i,= %1, i.e. the cases (2.1.3), (2.2.2).

Those processing states

From here
N
ang f@)Q(@) = k2=1f(k1, 0) - ky -y (ky, N), (5.22)
N
aé’ f(@)Q(») =k§1f(k1, 0) ky (ky—1)y(ky, N)+
(5.23)
N=1 N—k,
+k21 kZ *Flleys Koy (ky k) y (ky Koy N).
Substituting (5.22) and (5.23) into (5.21) we get
| N—1 N-k
M, f() =)':.—2;1 kZ='1 S(ky, ko) ky (kg + ko) y (kg + ko, N)+

Y (5.24)

+ 3 fl, O, N[yt = D+ .

Processing of random sequences with priority 97

§ 6. Asymptotic behaviour of the speed

We compute the asymptotic value of the expression (5.24) as N—< for
Sk, k)=s,. Let M denote the left hand side of (5.24). Then

N N
M=) 23 sisiylse, N)+24 5 si(si—Dy(s, N)+u 2 sty(si, N), (6.1)

1ss <sp=N 5 =1 5;=1

where 2, p is the solution of

NN-DA+Nu=1
{ 6.2)
‘ al+(F—-Dp =0
and o and f§ are defined by
1 NS 24142
a= ']V’=0 2 y(’: N)5 (63)
] N1
B= Z 7). (6.4)
=0

6.1) is easily computable approximately from the original expression. We shall
give M as a simple function of N. Let

N-1
=2 t*y(t,N), (k=1,2,3,49 (6.5)
=
and
N-1 . : :
;=2 v&N) (j=01,..,4). (6.6)
. t=j
It is clear that
0L = Qo_ls
1 i
0= 00— 1-(1-57) = s=2-,
' 6.7)

1 2 4 2
on=e(1-) (1 -F) = 03 -5 7

_ -(1 ~L] (] _i] [1 _i) — o4 10 _13 6
01 = @3 N N AR Ry iy Tk
Now we compute 7,’s as functions of g, ..., gx. Because of the definition of
y(t, N) we have

' r+1 » ‘
. y(+1, N)=1y(, N) [1——N—] tr=0,1,..),
1.e.
y(+1, N)N =y, N)[N—-(@+1], ¢=0,1,..). (6.8)
Hence
y(t, Nyt = (N—=1Dy({, N)—Ny(+1, N) . (6.9)

7 Acta Cybernetica [V/1

98 . A. Ivanyi and 1. Katai

and therefore, by using y(k, N)=0 (if k=N), we get
T = (N_I)QO_NQI'

Let us compute now the polynomial * as the sum of the basic functions

polt, M) =1 (& N) = [T (N=(+h) (=1,9).
‘By simple operations we get
12 = po(t, N)— 2N=3)p(t, NY+(N—1)po(t, N), (6.10)
£ = —py(t, N)+BN—=6)py(t, N) = (BN —9IN+T)p,(t, N)+(N—1)po(t, N), (6.11)
1* = pu(t, N)+Ep,(t, N)+ Fp,(t, N)+Gp,(t, N)+ Hp,(t, N), (6.12)
where E=—4N+10, F=6N?—24N+25, ‘
G =—4NS+18N*—28N+15, H = (N—1). (6.13)
On the other hand because of (6.8)
7(t, N)p(t, N) = N*y(t+k, N), (k=0,...,4). (6.14) -
So we haQe ‘ '
y(t, N)- 12 = N2y(t+2, N)—QN—=3)Ny(t+1, N)+(N—=D¥(t, N),
vt N) -3 =—N3y(t+3, N)+BN—6)y(t+2, N)—BN2~9N+T)Ny(t+1, N) +
HN-1P2(t, V), ,
y(t, N)-1* = N*y(t+4, N)+ E- N3y(t+3, N)+ FN2y(t+2, N) +

+GNy(t+1, N)+ Hy(t, N),
and hence

Ty = N?0,—~(2N—-3)No,+(N—1)*gy = (N+1) go—2N,

1.3 =—4]\/3Q?:%(31Y—6)N292—(3N2—9N+7)er‘(]Y—1)3Q0 = 6.15)
= (2N2+3N)—(4N+1)g,, .

74 = N9+ EN®0y+ FN?0,+GN, 9, +Hgy = BN2+11N) gy —(11N2+-4N).

Now it follows from (6.3) and 6.4)

1 1 I 1 1
f=gor t=oy@iatle=(3ty]a—s (616

Processing of random sequences with priority 99

By substituting (6.16) into (6.2) we get

= i = (N+2)Qo—
= NN~ GV =3IV +@N— N2,

6.17)

and
1-8 _ 2N—2¢0,
No+N(N—=1)(1—-B) (2N3-3N3)+(4N—N?%g,"

Let us observe that

A=

(6.18)

)% (53, NY 11 5 > SG-DyG N+

sp=2 2 5=

- e
M=AZ’S2(S2 1

N 1 1

+u 3 st M) = 2[5 G|t = 2 Gt) - . 619
Substltutmg (6. 15), (6.17) and (6. 18) 1nt0 (6.19) we get M as a flll']CthIl of N

and g,:

b NCe=9)= N*Cb—110y+9)~ NCab+To)+50 &
2N3— N2(go+3)+4Ng, AT
To estimate this expression we need the following
Lemma 2. ‘
y(t N) = V—+0(1) (N -~ oo) - (6.21)
Proof. Since l—xée"‘, we get o
4 ' v _1 Zt' v _f;
y(t, N) = H(I_TV_] =e Nv=1 < N, (6.22)
v=1
Therefore '
N
2 N 2 1 B S
S yt.N< Je N < [Nd=—V2N [e?idi<
H=t<N t=H © H-1 2 (H-1)% .
IV
V__ - N -~ (6.23)
_ —_— -2)} — - 2N .
2' H-1 (H_fme P=p=Te
. 2N ’
On the other hand
12 H 2 1
’Z’;e W o< [e 2th - V2N = > [e 12 d) = C, Y N. (6.24)
= 0

It is clear that ;
o= 206N+ > 0 N) = £,4+Z5. (6.25)

=N Sct= N

7‘

100 A. Ivanyi and L. Katai

Because of (6.23)
1 2
Iy =GN e 3 = o(1). (6.26)

On the other hand by using Stirling-formula for y(¢, N) in the interval 1<tS
=N we get

1 N 1]
Since
N NY ¢, 2 (t)“]
log N7 = log(] T)—W+2—Ng-+0[v) |’ (6.28)
therefore
logy(t, N) = ——- +0[’+’3] (6.29)
gy, - 2N N N2 k4 e
and so
. 1 3 .
Tu=F e N 1+0[t] = =2 € 2”+i0(2c)+ 50 (25),(6.30)
tsNO:6 N N2 t=NO
where) -
To= t-e 2V, (6.31)
t=NOS) .
Ip= Be W, (6.32)
t=NO,8
Since
0o _r oo a+1 oo a—l
e 2“' rre 2th— 2N L ® e hd) =
Zre ™ < f (@2N) f
(6.33)
a+1
therefore .
2c=0(N), Z,=0(N?, (6.34)
and so .
12 o _ 1%
o= 3 e Np0o()= e N+0(1). - (6.35)
1sstsN 6 t=1
Since ¢ 2¥ is a monoton decreasing function of t, therefore
o _ 12 £ o
[e 2th<2'e.2N<fe o gy, (6.36)
- ° t=1

and so
,2

j e Ndi+0(). (6.37)

Processing of random sequences with priority 101

Since

oo 12] b

- _ V2 [1] — V? —
2N — —A 12 g1 — _ — —
6[e dt = > V2N ‘;/ e /N3 d7) r 3 VN > }/N, (6.38)
therefore B
00 = V% VN +0(1). (6.39)

By substituting (6.39) into (6.20) we get the following
Teorem 3. Let f(ky, ko)=k;+ks. Then under the assumptions of § 5. we have

. . 31/ =
-0,5 —
"\III_I’I’LN M, f(2) = 3 l/ 3 (6.40)

In a previous paper [2] we have proved that the similar limit is I/ % for the

processing speed of one sequence. Comparing the results we get that the process-
ing speed of the second sequence is half of the speed of the first one.

DEPT. OF COMPUTER SCIENCE
OF L. EOTVOS UNIVERSITY
MUZEUM KRT. 6—8.
BUDAPEST, HUNGARY

H—1088

References

[1] BUrRNETT, G. J. and E. G. CorrmaN, Combinatorial problem related to interleaved memory
systems, J. Assoc. Comput. Mach., v. 20, 1973, pp. 39—46.

[2] IvANYIL, A. and]. KATAl, Estimates for speed of computers with interleaved memory systems,
Ann, Univ. Sci. Budapest. Eotvos Sect. Mat., v. 19, 1976, pp. 159—164.

(Received August 7, 1978)

Uber das Rechnen mit den Elementen abstrakt prisentierter
Halbgruppen

Von H. JURGENSEN
Herrn Professor Laszlé Kalmér zum Gedéchtnis

X =0 sei eine endliche Menge, X+ die von X erzeugte freie Halbgruppe R set
eine endliche Menge von Gleichungen (Relationen) iiber X *. o, g, sei die von R
erzeugte Kongruenz auf X' *. Dann ist Sy, R)—X t/owx. ry dle durch (X, R) prisen-
tierte Halbgruppe. In der vorhegenden Arbeit geht es darum, eine Klasse 9t von
endlichen ,,normierten* Prisentationen anzugeben, fiir die gilt:

(1) N wird ,,modulo Gruppen‘‘ formal beschrieben.

(2) Jede endliche Halbgruppe besitzt in N eine Prisentation.

(3) Fir (X, R)€%t ist die durch (X, R) prisentierte Halbgruppe endlich. .

(4) Aus der Beschreibung von N 14Bt sich ,,modulo Gruppenelementen® eine
formale Beschreibung ,,normierter Worter” angeben, so daB fiir jede Prédsentation
(X, R)EMN jede g(x gy-Klasse ein normiertes Wort enthilt.

(5) Zu jeder endllchen Halbgruppe gibt es eine Prasentation (X, R)€N, so dal
jede ox, r)-Klasse genau ein normiertes Wort enthilt.

(6) Aus der Beschreibung von % und der normierten Worter 14Bt sich ein
,,modulo Gruppenelementen* leicht programmierbarer, recht effizienter Algo-
rithmus zum Normieren von Wértern und damit zum Rechnen mit den normierten
Wortern angeben.

Wie schon in diesen Forderungen formulieren wir die meisten Aussagen und
den Algorithmus zunidchst nur ,,modulo Gruppen®, d.h. unter Verwendung von
Orakeln fiir das Rechnen mit Gruppen. Im Abschnitt 3 geben wir dann einige Hin-
weise auf Realisierungsméglichkeiten unter der Voraussetzung spezieller Gruppen-
prisentationen. .

1. Normierte Prisentationen und normierte Worter

1.1. Definition. (X, R) sei eine Halbgruppenprésentation. (X, R) ist eine nor-
mierte Prdsentation, wenn giit:
(1) (X, R) ist endlich.
(2) X besitzt eine Partition in Mengen X,, Xy, ..., X, mit Xi={c"} oder Xi=
={d}, ..., a,, b}, ..., bl }WE fir i=1(1)n und X,={a}; ..., a},, 0, e bt

wE, mit kg, my, k;, meNU{0}=N, und E,, E;#0. Sei X'= U X;.

104 H. Jirgensen

(3) R enthilt genau die folgenden Relationen (jeweils fiir alle Indizes, fiir die die
Symbole erklért sind):

(a) Mengen S; von Relationen uiber E;*, so daBB (£;, S;) Halbgruppenprisenta-

tion einer endlichen Gruppe G; ist. e¢'€ E;* sei das Einselement von G;.

(b) ai = ¢ = bi.

(c) e =al.

(d) €'bi = b,

(e) biaj = phe EFXU(XI-Y)* fir (j,1) = (0, 0).

() xy = g, €(X™rGNY+ fiar xeX;, yeX;, i#].

(g) cic' = rie(Xi-Y)*.

Mit 9t sei die Klasse aller normierten Prisentationen bezeichnet. Die offenbar
uberflissigen a, b} dienen nur zur Vermeidung von Fallunterscheidungen.

1.2. Lemma. Sei (X, R)eN, 0=0x,r)- Jede o-Klasse von X * enthilt ein Wort
der Form ¢ oder aig'bf mit g'c E;*.

Beweis. w=x;...x, sei ein Wort mit x;, ..., x,€X. Sei zundchst v=1. Falls
wxcl ist, gilt

w = a’oake’ b}
oder .
w = bioaje'b}
oder
w = glpeigleloalg’bl mit g'cE,.

Sei also jetzt v=1. a(w) sei das Maximum der oberen Indizes der Symbole in w,
B(w) das Minimum. y(w) sei die Anzahl der Symbole in w mit oberem Index o (w).
Wir unterscheiden zwei Fille:

a(w)>~B(w): Dann gibt es in w x;, x;1; mit x;€ X, X; 11§ X, oder um-
gekehrt. Anwendung von (f),.d. h. Ersetzen von x;x;,, durch g, . ergibt ein
zu w g-aquivalentes Wort w’ mit a(w)=a(w’), y(w)=y(Ww')}=1 oder a(w)=a{w’).
Mit endlich vielen Anwendungen von (f) erhilt man daher so ein zu w g-iquivalentes.
Wort w” mit a(w”)=BWw")=p(Ww).

a(w)y=PB(w): Falls X,,={c*™"} ist, ist w wegen (g) zu

w = prexw) o2
N — ——— o ——
v—2 mal

¢-dquivalent; dabei ist fir v=2 a(w)=a(w)W) und fir v=2 a(w)<a(w).
Durch endlich viele Anwendungen von (f) und (g) erhilt man also ein zu w p-dqui-
valentes Wort w’ mit a(w’)=pg(w’) und X, {7} oder |w'|=1. Wir kén-
nen dies also schon fiir w voraussetzen. Durch endlich viele Anwendungen von (b)
bis (e), ndmlich durch Ersetzen ,

'von biaj fir (j,1)#(0,0) durch pi,

von bjaj durch ¢,

von h'a; durch ipj;, von bik durch piph' fiir W€ E;, j=0,

-von a%aj durch aipf; fiir /50 und durch &} fir /=0,

von bibj durch pi,bj fiir j=0 und durch b} fir j=0,

Uber das Rechnen mit den Elementen abstrakt prisentierter Halbgruppen 105

erhilt man ein zu w g- aquivalente's Wort w’ mit f(w')<a(w’) oder w €E* oder
w'€abEY oder wEEh, oder wEdiEb]. Im ersten Falle schlieBt man fir w’
statt w wie oben weiter. In den ubrlgen Fillen hat ajw’bi, w’' b}, aiw’, bzw. w’ die’
gewiinschte Form und ist zu w g-dquivalent wegen (b). O

13 Lemma. Fir. (X, R)€N hat S, g, hochstens die Ordnung
3(X, R) = ¢+ |G| (ki+ 1) (m;+ 1),

wobei die Summation lber die i mit |X;|s¢1 durchgefiihrt wird und ¢ die Anzahl
der i mit |X;j=1 ist.

Beweis. Es gibt hochstens ¢ ‘Wérter der Form ¢, und wegen 1.1. (3a) gibt es
zu festen j, / héchstens |G;| paarweise nicht- aqu1valente Worter der Form a'g'b}
mit g'€ E;. Damit gibt es hochstens 6(X, R) paarweise nicht-Aquivalente Worter
dieser Formen und aus 1.2 folgt die Behauptung. O

1.4. Definition. Sei (X, R)€N. Zu jedem vorkommenden Paar (E;, S;) sei ein
Reprisentantensystem {s'} der ¢, s;)-Klassen beliebig, aber fest gewahlt Die Wér-
ter der Form ¢ und as'b} heilen normiert. -

Zusammenfassend erhilt man:

1.5. Satz. Die durch (X, R)¢9 préasentierte Halbgruppe ist endlich. Sie hat
genau dann die Ordnung 4(X, R), wenn jede g, r,-Klasse genau ein normiertes
Wort enthalt.

Aus dem Beweis von 1.2 folgt weiter, indem man ein Orakel fiir das Rechnen
mit Gruppenelementen voraussetzt:

1.6. Satz. Sei (X, R)e9 und (X, R)=|S(, k)| Es gibt ,,modulo Gruppen‘
einen Algorithmus, der zu jedem Wort das g, r,-quivalente normierte Wort be-
rechnet.

Einen allgemeinen Beweis der Entscheidbarkeit des Wortproblems ,,modulo
Gruppen‘ fiir beliebige normierte Halbgruppenprisentationen (d. h. ohne die For-
derung 6(X, R)=|Sx)|) erhdit man wegen 1.5 aus [5], wo wir das Todd—Coxeter-
Verfahren auf Halbgruppen iibertragen haben. Der daraus resultierende Algorithmus
fiir das Wortproblem ist jedoch sehr aufwendig.

Die Umkehrung von 1.5 erhidlt man mit Hilfe bekannter Struktursdtze fir
endliche Halbgruppen [z. B. 1j:

1.7. Satz. Jede endliche Halbgruppe S besitzt eine normierte Prisentation (X, R)
mit §(X, R)=|S|.

Beweis. S sei eine endliche Halbgruppe. S hat eine Kompositionsreihe

SRS

N
N

Z,=5,
wobei ¥, einfach und X,,,/%; O-einfach oder 0 von der Ordnung 2 ist. Die Behaup-
tung wird durch Induktion nach n bewiesen.

n=0: §=2Z, ist als endliche einfache Halbgruppe vollstdndig einfach und daher
Rechteckhalbgruppe isomorpher Gruppen H;; mit j=0(1)k,, I=0(1)m,. (E;, So)

106 H. Jirgensen

sei eine endliche Halbgruppenprisentation von Hyy=G,, und e°€ E;* sei das Eins-.
element von G,. Sei a)=e®=b) und ajcH,,, b)c H, beliebig fir j, /=1. Sei

Xo={a}, a, ..., ad,} w {b3, b3, ..., B W E,.

Die so gewihlten Elemente erfiillen die Bedingungen aus 1.1 fiir X=X,: (3a), (3b)
gelten nach Wahl von X,. Es ist a}Hy=H;, und daher aSg=a} fiir ein g€ Hy,,

- also

0,0 _ ,0 0 __ 0 — 0
aje’ = ajge’ = a}g = aj

und daher (3c). Analog folgt (d). Wegen Hy H; o=Hoo folgt (e), wenn man fiir p,J
das Produkt b{a% wihlt. (f) und (g) sind leer. S ist daher homomorphes Bild der
durch (X, R) mlt

J=0()k,
R = S,Uqad = €® = b}, a%e® =-a, by = bY, bla) = p}; |1 =0(1)m,
(J, D=(0,0)

prisentierten Halbgruppe Six zy. Wegen

IS = [Hgol(ko+ 1)(mo+1) = 6(X, R)’

ist $2=8x gy

Die Behauptung sei nun fiir alle Halbgruppen mit Kompositionsketten der
Linge =n—1 fiir n=1 bewiesen. S sei eine endliche Halbgruppe mit Komposi-
tionskette der Linge
. n=l: Fir Z,_, sei eine normierte Présentation (X', R") gegeben. Wir unter-
scheiden zwei Fille:

2. JZ._q ist Nullhalbgruppe: c"€X,/X,_, sei das von O verschiedene Element,
X,={c"}, X=X"UX,,

R=RU{c"c"=r", xc" =q, , "X =g JxeX"}.

Dabei sind r", g, -, g, . Darstellungen der entsprechenden Produkte in S, die
in X'*=(X""1* gewdhlt werden kénnen, weil sie in X,_,. liegen. Damit ist
(X, R)eM mit (X, R)=|S|. Weil R in S gilt, wird S durch (X, R) prisentiert.

Z,JZ,._1 ist O-einfach: Mit j=0(1k,, I=0(1)m, seien die Z%-Klassen und
Z-Klassenvon Z,/%,_, o.B.d. A.soindiziert, daBl die 5#-Klasse H,, eine Gruppe
ist. (E, s Sa) sei eine endliche Halbgruppenprasentatlon der Gruppe G,=H,,, und
" sei eine Darstellung ihres Einselementes. Sei

Xn = {ag, ag, cees aﬁn}U{bZ, b'lls ,b:'""}UE

wo a}€H;,, bjcHy beliebig und aj=bj=¢" gewidhlt werden. (3c) und (3d) gel-
ten wie oben. Fiir (/,j)#(0,0) liegt das Produkt b7a}in Hy, oderin X,_,, kann
also als

pi€ES U(X™ 1)+

Uber das Rechnen mit den Elementen abstrakt prisentierter Halbgruppen 107

dargestellt werden. Damit gilt (3e). Die ¢, mit x€X, oder y€X, konnen in
(X"-1)+ gewihlt werden, weil die entsprechenden Produkte in XZ,_, liegen. Also
gilt auch (f). (g) ist leer. S ist daher homomorphes Bild der durch (X, R) mit
X=X'UX, und

j=0(1)ko
R =R Uja} = ¢" = b}, aje" = aj, e"b} = b;!, b;'a;! = pf; I=0(1)m,
U, h=,0)

Ufxy = g, [0, EXX XON(X X X,)}
prasentierten Halbgruppe Sy, ;. Wegen
IS| = [Za-1]+1Za/Z0-a| -1
= 5(X", R')+ | Hoo| (K + 1) (m, + 1)

=3(X,R)
gilt S=Six g O

Die normierten Présentationen bestimmen also genau die endlichen Halb-
gruppen, und jede endliche Halbgruppe besitzt sogar eine solche normierte Prisenta-
tion, bei der jedes Element durch genau ein normiertes Wort dargestellt wird. Dieser
Fall ist unter algorithmischen Gesichtspunkten besonders interessant, weil sich dann
samtliche Rechenoperationen mit den Elementen der Halbgruppe auf das Bestim-
men der zugehdrigen normierten Worter zurickfiihren lassen. Einer normierten
Prasentation (X, R) kann man es jedoch im allgemeinen nicht ansehen, ob S, g,
die Ordnung (X, R) hat. Einige Kriterien ergeben sich aus Sdtzen liber Idealer-
weiterungen von Halbgruppen [z. B. 9]. Algorithmisch 4Bt sich diese Frage ,,modulo
Gruppen** z. B. mit dem Programm aus [5] 16sen.

Es ist noch — insbesondere hinsichtlich der im weiteren zu behandelnden
algorithmischen Fragen — zu bemerken, daB in 1.6 vorausgesetzt wird, dafl von
der Prisentation (X, R) nicht nur die Normiertheit, sondern auch die Partition
in die X; und E; bekannt ist. Dies ist wegen des folgenden Satzes wichtig:

1.8. Satz. Es ist unentscheibdar, ob eine endliche Halbgruppenprisentation
normiert ist. Setzt man ein Orakel zur Entscheidung der Frage ,,definiert eine
endliche Halbgruppenprisentation eine endliche "Gruppe?“ voraus, so wird die
Normiertheit fiir endliche Halbgruppenprisentationen entscheidbar.

Beweis. Bekanntlich ist die Endlichkeit prasentierter Halbgruppen oder Grup-
pen unentscheidbar. Sei also (X, R") eine beliebige endliche Gruppenprisentation,
Durch Hinzunahme der Inversen erhilt man in kanonischer Weise eine Halbgruppen-
prisentation derselben Gruppe. Mit dem Beweis von 1.7 konstruiert man daraus
eine Prisentation (X, R) dieser Gruppe, die genau dann normiert ist, wenn die
Gruppe endlich ist. Damit ist die Normiertheit unentscheidbar. Setzt man jedoch
ein Orakel fiir die genannte Frage voraus, so kann man die Normiertheit einer
Prisentation folgendermaBen entscheiden: Fiir jede Partition von X gemiB 1.1 (2)
prife man

108 H. Jiirgensen

(a) 1.1 (3b) bis (3g),

(b) ob die tibrigen Relationen sich zu Mengen S; iiber den E.* aufteilen lassen,

(c) ob die (E;, ;) endliche Gruppen présentieren,

(d) ob das durch (a) gegebene ¢'¢ E£;* Einselement der entsprechenden Gruppe.
1st.

Davon sind (a) und (b) formal zu entscheiden, (c) erhilt man vom Orakel, (d) ist
entscheidbar (z. B. mit [5]), wenn (c) bejaht wird. 0O

Selbstverstandlich kann man das Orakel von 1.8 durch geeignete formale Vor-
aussetzungen iiber die Présentationen der Gruppen vermeiden. Auf diese Frage
kommen wir im Abschnitt 3 zurtick. :

\
2. Der Muiltiplikationsalgorithmus

Sei (X, R)€M zusammen mit der Partition von X gemiB 1.1 gegeben, und sei

o(X, R)—[S(X ryl- Wir formulieren ,,modulo Gruppen‘ einen Aligorithmus, der zu

zwei normierten Wortern u, v€X* das zu ihrem Produkt uv g g,-dquivalente
normierte Wort berechnet.

Wegen 1.2 kann man ,,modulo Gruppen* die zu den pj;, Gx,ys ré o(x R)-aqul—
valenten normierten Worter berechnen. Indem man in R die pj;, ¢, ,, r’ durch die
entsprechenden normierten ersetzt, erhilt man — ,,modulo Gruppen eﬂ“ektlv —
eine normierte Prasentation fir Sy gy, in der die rechten Seiten zu 1.1 (3e—g)
normiert sind. Mann kann also, und dies soll im folgenden geschehen, o. B. d. A.
voraussetzen, dal3 R selbst schon diese Gestalt hat. Durch diese theoretisch irrele-
vante Forderung wird die L6sung der obigen Aufgabe sehr vereinfacht. ‘

Zu weX™* sei w das ocx, R)-aqulvalente normierte Wort und t(w) der Index 7
mit WEX;F. Fir |X,,)|=1 ist somit w=c"); andernfalls hat w die Form

a5 i .. gi0, i)

mlt gt(W)EEt w

Die Besc(hrelbung des Mult1p11katlonsalgorlthmus MULT erfolgt in einer leicht
programmierbaren und (hoffentlich) aus sich verstindlichen Weise. Er besteht neben
wenigen elementaren -Anweisungen aus zahlreichen Aufrufen von Unterprogram-
men und Verteilerspriingen auf Marken, die in der Form

(Name)[{Parameterliste)} ((Argumentenliste})
bzw.
{Name)[(Parameterliste)]

geschrieben werden. Die zunédchst wohl kiinstlich anmutende Unterscheidung zwi-
schen Parametern und Argumenten dient dazu, Programmverzweigungen, die nach
Kenntnis der Prédsentation unabhéngig von den zu multiplizierenden Elementen
feststehen, und solche, die von den jeweils zu multiplizierenden Elementen abhin-
gen, zu trennen. Damit bereiten wir die spétere zweistufige Programmrealisierung
von MULT vor, bei der ahnlich [2, 3, 6, 7, 8] aus (X, R) in einem Vorbereitungs-
schritt das eigentliche Multiplikationsprogramm erst berechnet wird. Aus diesem
Grunde verzichten wir auch auf formale Vereinfachungen und Zusammenfassungen,
die fiir diese Realisierung nur hinderlich wiren. Es folgt die Definition des Algo-
rithmus:

Uber das Rechnen mit den Elcmenten abstrakt prisentierter Halbgruppen

MULT (u, v): Voraussetzung: u, v normiert.
Wirkung: uv berechnen.
VERTEILERSPRUNG AUF M[z(u), t(v)].
MIi, j1: Fiir i, j=0()n.
Fall 1: \X|=1, i=].
RUCKSPRUNG MIT ri.
Fall 2: [X)|=|X;|=1, i#).
RUCKSPRUNG MIT Gei i
Fall 3: |X;|=1=|X]|.
v:=Cl[i, j](v)
RUCKSPRUNG MIT v.
Fall 4: | X;|#1.
v:=Bli, j](v (), v)
v: —E[’](gu“(u)y v)

vi=E[i)(gl, v)
vi=A[i](2. (1), v)
RUCKSPRUNG MIT .

B[i, j1{, v): Fir i, j=0(1)n mit |X;]=1.
Voraussetzung v normiert, v€X i
Wirkung: biv berechnen.
Fall I: |X;|=1.
RUCKSPRUNG MIT g,
Fall 2: |X;|#1, i=j.
IST 1=/’.(v)=0‘.f_ '
WENN JA: RUCKSPRUNG MIT v
SONST: VERTEILERSPRUNG AUF BA[i, [, j, 2(v)].
Fall 3: |X;|#]1, i#].
VERTEILERSPRUNG AUF BAli, 1, j, 2 (v)]. !
BA[i, 1, j, k]: Fiir i,j=0(1)n mit |X;|=1=|X;] und fir /=0(1)m;,
k=0(1)k; und (I, k)#(0, 0) bei i=j.
Fall 1: i=j, x x=pi€a E;"* bO
=GF[i, g, (g - &)
&= GFi, 8%, ., -.1(8)

=GF{i, gt1(g)
RUCKSPRUNG MIT aogbv(v)

Fall 2: i=j, —p,k ¢ab E;*bi oder i#j, x= q,,‘
Fall 2a: lXt(x)[
v: —'CS[T(x)’]](g gl},,(.,) \(v))
RUCKSPRUNG "MIT
Fall 26: Xl #1.
v! “BS [T(x)’ V(x) -]](gbl giu(u)b-\l'(l)))
vi=EF[1(x), 8551 (0) \

ct

Xp(x)

109

110 " H. Jirgensen

v:=EF[t(x), g71(v)
v:i=AF[t(x), A (x)] (v)
RUCKSPRUNG MIT o.

2

BS[i, 1, j]1(v): Fiir i, j=0(1)n, |X;|#1#(X;], I=0(1)m,.
Voraussetzung: v=g}, .. g,,“(v)bv(v) mit g(v)=1 ist
Postfix eines normierten Wortes.
Wirkung: bjv berechnen.
Fall 1: i=j, 1=0.
RUCKSPRUNG MIT ajv. .
Fall 2: i=j, [0, x=pi,ca\E;*b}.
g:=GFTi gx“(,)] (ghy -8,
g =GF[i, gk,..,_.]1(8)

=GFIi, gt)(g)

RUCKSPRUNG MIT ajgbi,,-
Fall 3: i=j, 1#0, x=pi,¢ a) E;*b}.
Fall 3a: | X =1

v:=CS[1(x), /] (v)

RUCKSPRUNG MIT v.

Fall 3b: |X;5]#1.

v:=BS[t(x), v(x), j1(v)

v: —EF [z(x), g2 1(®)

v: —EF [t(x), 8551(v)

v:=AF[t(x), A (X)] (v)

RUCKSPRUNG MIT v.

Fall 4: i#j

VERTEILERSPRUNG AUF BSS|i, 1, , gm]

BSSTi, 1,J, g]: Fiir i, j=0(1)n, IXil;él#!X,'-l, i), 1=0(1)m;, g€ E;.

-Sei x=qb:'g.
Fall 1: |X,)=1.
IST p(v)=1?

WENN JA: RUCKSPRUNG MIT G2, b3,
SO“NST v. —CS[T(X) .]](g gv,‘(u) v(v))
RUCKSPRUNG MIT v.

Fall 2: lXt(x)I:#l
IST u(v)=1?

WENN JA: v: —BB[t(x) v(x),]](v(v)) WEITER BEI *°
SONST: vi=BS[t(x), v(x),j1(g}, ... 2}, ., b3») T ,
¢ o=EF[(), g52)0) -

: ——EF[T(X) ()
vi=AF[1(x), 2(0)] ()
RUCKSPRUNG MIT v.

Uber das Rechnen mit den Elementen abstrakt prisentierter Halbgruppen

BBli, I, j1(k): Fir i,j=0()n, |X;|=1#|X;|, I=0(1)m;.
Wirkung: bjb| berechnen.
Fa”] _.Ia xX= Pms er(x)l—'l
RUCKSPRUNG MIT Goeto) -
Fall 2: i=j, x=pi, IX,(,‘)I#L
v:=BB[t(x), v(x), j1(k)
v:=EF [t(x), 8552 1(v)

v:=EF[t(%), 291 (v)
vi=AF[t(x), /l(x)](u)
RUCKSPRUNG MIT v.
 Fall 3: i#].
RUCKSPRUNG MIT i, bj -

E[i1(g, v): Fir i=0(n, |X;|=1.
Voraussetzung: g€ E;, v normiert.
Wirkung: gv berechnen.
VERTEILERSPRUNG- AUF EFE[i, g].

EFIi, g](v): ' " Fir z—O(l)n X #1, geE
Voraussetzung und Wirkung wie E[i](g, v).
EFFli, gl: o :
IST |X,(,)|=1?

WENNJA: RUCKSPRUNG MIT g
SONST: VERTEILERSPRUNG AUF "EF1[i, 2:1(v), A()].

| EFili,), 1): Fir i, j=0()n, |X|=15|X)l, g€E,, [=0()k;.

Fall 1: i=j, 1=0.
h:=GFi, g}(g,.--85,.,)
RUCKSPRUNG MIT djhbiyy,.
Fall 2: i=j, I1#0, x=pl ca, E;}b}.

h:=GFli, gx (,)](gvl gvu(v))
h:=GF[i, gk, (h)

h:= GFli, gk 1(h)
h:=GFl[i, gl(h)
RUCKSPRUNG MIT a{hbi,,.

Fall 3: i=j, 1%0, x=ph¢alE* bo, Xenl=1.
v:=CS{t(x),/1(gl, .. guy(v,bv(u))
v:=EF[i, gl(v) |
RUCKSPRUNG MIT v.

Fall 4: i=j, 120, x=ply€abE} b}, |X (x]|#1.
vi=BS [t(x), v(3), /1 (gh - &0, bl
vi=EF[z(x), g0 ()

v _EF[r(x) g=71(v)
v:=AF[t(x), A(x)](v)
v:=EFIi, g](v)

111

112 H. Jirgensen

RUCKSPRUNG MIT v.
Fall 5: i#j, x= 9g,af> 1 X0l = 1.
U, —CS[T(Y) j](glu g"u(v) ‘(v))
RUCKSPRUNG MIT v. :
Fall 6: i#], x=q o> |Xe(m|#1.
v:=BS[t(x), v(x), j1(gi, .- &1, 0, blco) ' g
vi=EF[r(x), £57)0)

vi=EF[1(x), g571(0)
vi=AF[1(x), A(x)](v)
RUCKSPRUNG MIT v.

Alil(k, v): Fir i=0()n, |Xi|=1.
Voraussetzung: v normiert.

Wirkung: aiv berechnen.
VERTEILERSPRUNG AUF AFFIi, k.

AFTi, k](v): Fiir i=0()n, |X;|1, k=0(1)k;.
Voraussetzung und Wirkung wie A[i](k, v).
AFF[i, k]:
IST |X,)|=1?

WENN'JA: RUCKSPRUNG MIT ui o
SONST: VERTEILERSPRUNG AUF AF1[;, k, t(v), 2(0)).
AF1[i, k, j, 1]: Fiir i,j=0()n, [X;|#12|X;, k=0(Dk;, I= 0(1)m;.

Fall 1: i=j, 1=0.

RUCKSPRUNG MIT aigl, .. g,,“(v)b‘(v)
Fall 2: i=j, 10, x=pi,€a,E;* b,

g:=GFli, gx,(x,](gol 8oy

g =GF[i, gk,.,-.1(8) .

—GF [i, gk.1(g)
RUCKSPRUNG MIT akgbv(,,
Fall 3: i=j, 120, x—po,efa(,E by, |Ximl=1.
v ——CS[T(X)]](gvl gl),,(v) v(v))
v: ——-AF[I kl(v)
RUCKSPRUNG MIT v.
Fall 4: i=j, 10, x—po,({aoE bi, [X,(t)|¢l
v —BS[T(X9 V()C) j][gul gvu(.,) v(v))
vi=EF[x(3), g521)
v: "EF [t(x), 8571 (v)
vi=AF [t(x), 2(0](0)
vi=AF[i, k}(v) A
RUCKSPRUNG MIT v.
Fall 5: i#j, x= q,,k al> 'Xt(x)l—l

vi= CS[T (x)a]] (gvl oo gvu(.,) v(v))

Uber das Rechnen mit den Elementen abstrakt prisentierter Halbgruppen

RUCKSPRUNG MIT v. -

Fall 6: i), X=q, o1 |Xr(x)|f'l
v: —BS[T(X), V(X),_]](g gv,,(u) ('-’))
v: —EF[r(,\) g5 1(v)
v: —EF[T(A) g)
v:=AF[1(x), / (V)](v)
RUCKSPRUNG MIT v.

Cli, j1(0): Fiir 7, j=0(D)n, |X;|=1#[X;|.
, Voraussetzung vEXS normlert
Wirkung: c'v berechnen.
VERTEILERSPRUNG AUF CA4[i, j, A(v)].
CAli, j, k): Fir i, j=0(Dn, |Xi|=1#|X;|, k=0(1)k;.
Sei X=gc,al.
Fall 1: |X,,|=1.

v: _CS[T(X) J](gv1 gv“(,,) v(v))
RUCKSPRUNG MIT v.

Fall 2: | X | #1.
v —BS[T(X) \’(X) J](gzu gu“(u) v(v))
v:=EF[1(x), 8,1 ()

2 O Xpu(x)

v: —EF[T(\), g1 (v)

vi=AF[t(x), A()](v) ,

RUCKSPRUNG MIT v.
CS[i, j1(v): Fiir i, j=0(1)n, [X[~l¢| il

113

Voraussetzung: v=gf ...g} bl €X} mit p(v)=1 ist

Postfix eines normierten Wortes.

Wirkung: v berechnen.
VERTEILERSPRUNG AUF CSS[i,/, gl].

CSSli, j, gl Fir i, j=0(1)n, |Xi|=1[X,|, g€E;.
Sei x=q. 4.
Fall I IX.,(\)IZI-
IST u(v)y=1?

WENN JA: RUCKSPRUNG MIT g, b,

SONST: v—CS[r(x),j](g & Do)

RUCKSPRUNG MIT v.

Fall 2: X, #1.

IST pu(v)=1?

WENN JA: v:=BB[t(x), v(x), j](v(v)) WEITER BEI #

SONST: v:=BS[t(x), v(x),j1(gl,. . &}, 0l
* v:=EF[t(x), &,]0)

o: _EF[T()‘), 2:91(v)

v:=AF[t(x),)(x)](v)

RUCKSPRUNG MIT v.

8 Acta Cybernetica IV/|l

114 . H. Jirgensen .

GFli, gl(h): - Fir i=0(1)n, |X;|1, g€E;.
Voraussetzung: h€ E; in G; normiert.
Wirkung: gh in G; normiert berechnen.
ORAKEL (Zur Realisierung vgl. Abschnitt 3).

3. Programmierung und Einsatz von MULT

Fiir den beschriebenen Algorithmus MULT gilt in verstirktem MaBe das fiir

das Rechnen mit den Elementen abstrakt prisentierter Gruppen in {2, 3, 6, 7, 8}
Gesagte: Durch die wiederholten Abfragen der fiir das Rechnen innerhalb einer
Halbgruppe konstanten Relationen wird der Algorithmus extrem langsam. So bietet
sich auch im vorliegenden Fall an, MULT zweistufig zu realisieren, indem alle von
den jeweiligen zu multiplizierenden Elementen unabhingigen Entscheidungen in einer
Vorbereitungsphase V getroffen werden. Entsprechende Programme V wurden fiir
speziell geformte Prisentationen auflésbarer ‘Gruppen in [2, 3, 6, 7, 8] dokumentiert.
Unsere — zur Vereinfachung allerdings in LISP durchgefiihrte — Implementation
von V fiir MULT basiert auf der wegen ihrer Portabilitit besonders glinstigen Ver-
sion Vy aus [2). Hier wie dort besteht das durch V generierte eigentliche Multiplika-
tionsprogramm MULT[X, R] aus einer Folge von Unterprogrammen, die jedes selbst
wieder im wesentlichen nur aus vereinzelten Befehlen zum Holen von Konstanten
usw. und aus zahlreichen Unterprogrammaufrufen bestehen — ihre jeweilige Gestalt
ist fir die entsprechenden Parameterwerte und Fille durch den Algorithmus des
vorigen Abschnitts vorgegeben. Die Beschleunigung von MULT[X, R} gegen MULT
ist im allgemeinen sehr groB, und die Erfahrungen lassen bei aller Problematik eines
Vergleichs erkennen, dal MULTI[X, R] von der Geschwindigkeit her mit Multiplika-
tionsprogrammen fiir andere Darstellungen von Sy r, gut konkurrieren kann.
- Der typische Einsatz von MULT ist analog den Gruppenprogrammen aus
[2, 3,6, 7, 8] folgendermalBen: Zur Lésung der Aufgabe, Eigenschaften der durch
die normierte Prisentation (X, R) gegebenen Halbgruppe zu berechnen, wird zunéchst-
mit dem Programm aus [5] nachgepriift, ob 6(X, R)=|Sx,)| gilt. Falls nein, ver-
sucht man, die Prisentation geeignet zu modifizieren; hiufig kann man dabei Zwi-
schenergebnisse dieses Programmes ausnutzen. Falls die Bedingung erfiillt ist, wird
mit ¥ das Programm MULT[X, R] generiert, welches dann vom eigentlichen Rechen-
programm (wie z. B. [4]) fir die einzelnen Multiplikationen aufgerufen wird.

Die bisherigen Uberlegungen erfolgten samtlich unter der Voraussetzung
geeigneter Orakel fiir das Rechnen mit den Elementen der durch die Halbgruppen-
prisentationen (E;, S;) gegebenen Gruppen G;. Die Realisierungsméglichkeit und
Realisierungsweise dieser Orakel GFTi, g](#) hingt stark von der Form der Prisenta-
tionen (£;, S;) ab. So kann man als einen Extremfall etwa E;=G; und §; als die
volle Cayleytafel von G; wihlen; dadurch erhilt man mit den normierten Présenta-
tionen simtliche endlichen Halbgruppen, und die Orakel werden triviale Programme;;
der erforderliche Speicheraufwand wird jedoch schon fiir miBig grofe Halbgruppen
unertraglich groB. Giinstiger wird es z. B., wenn man voraussetzt, daB die Prisenta-
tionen. (£}, S;) als Halbgruppenprésentationen von Gruppen durch die iiblichen
Umformungen aus ,,AG-Systemen** [3] (pc-presentation [2]) (E/, S;) hervorgehen.
Als Orakel GF[i, g)(h) kann man dann die entsprechenden Teile des mit ¥V aus
(E{, S{) gewonnen eigentlichen Multiplikationsprogrammes fiir G;verwendén. Die

Uber das Rechnen mit den Elementen abstrakt prisentierter Halbgruppen 115

Beschrinkung auf die Klasse 9t,, der normierten Prisentationen, in denen die (E;, S))
kanonisch aus pc-Pridsentationen gewonnen werden, hat noch weitere Vorteile:
Ersetzt man 1.1 (3a) durch die pc-Forderungen aus [2] und die Umformungsregeln,
so erhdlt man aus 1.1 fiir N, eine formale, entscheidbare Charakterisierung. Unter
der Voraussetzung (X, R)EM,. kann man daher auf die Angabe der Partition von
X verzichten, weil diese fiir 8(X, R)=|S(x, r)] bis auf die Indizierung eindeutig
mit 1.8 bestimmt werden kann. Algebraisch bedeutet die Beschridnkung auf 9.,
daB nur und genau die endlichen Halbgruppen mit ausschlieflich aufilésbaren Unter-
gruppen betrachtet werden, eine praktisch auch noch bei médBig grofen Halbgruppen
fast unbedeutende Einschriankung.

INSTITUT FUR THEORETISCHE INFORMATIK
TECHNISCHE HOCHSCHULE DARMSTADT
MAGDALENEN STR. 11

D—6100 DARMSTADT

Literatur

[1] CrirForD, A. H., und G. B. PREsTON, The algebraic theory of semigroups, I. (2. Aufil.) Providence,
Rh. 1., 1964.

[2] FELscH, V., A machine independent implementation of a collection algorithm for the multip-
lication of group elements, Proceedings SYMSAC 76, New York, 1976.

[3]} JURGENSEN, H., Calculation with the elements of a finite group given by generators and defining
relations, In: J. Leech (Hrsg.), Computational problems in abstract algebra, Proceedings of
a conference (Oxford, 1967) Oxford, 1970.

{4] JUrGENSEN, H. und P. Wick, Bestimmung der Unterhalbgruppenverbinde fiir zwei Klassen
endlicher Halbgruppen, Computing, v. 11, 1973, pp. 337—351.

[5] JUrGENSEN, H., Transformationendarstellungen endlicher abstrakt prasentierter Halbgruppen,
Bericht, No. 7605, Inst. f. Informatik u. Prakt. Math., Universitat Kiel, 1976.

[6) LINDENBERG, W,. Uber die Darstellung von Gruppenelementen in digitalen Rechenautomaten,
Numer. Math.. v. 4, 1962, pp. 151—153.

[7] LiNDENBERG, W., Die Struktur eines Ubersetzungsprogramimes zur Multiplikation von Gruppen-
elementen in digitalen Rechenautomaten, Mitt. Rh.—Westf. Inst. fiir Instrum. Math., Bonn,
v. 2, 1963, pp. 1—38. :

[8] NeuBUsER, J., Bestimmung der Untergruppenverbinde endlicher p-Gruppen auf einer prog-
rammgesteuerten elektronischen Dualmaschine, Numer. Math., v. 3, 1961, pp. 271—278.

[91 PETRICH, M., Introduction to semigroups, Columbus, Ohio, 1973.

(Eingegangen am 8. Mdrz 1977)

8*

" Zur Synthese von DOL-Systemen
VYon W. KXMMERER
Herrn Professor Laszlé Kalméar zum Gedéchtnis

Ein determiniertes von Wechselw1rkungen freies Lindenmayer-System (DOL—
System) {1, 2, 3] wird durch ein Tripel

S=(V, P, wy)
definiert. Darin ist

V={a,, a,, ..., a,} eine Menge von Symbolen, das Alphabét,
P eine quadratische Matrix von Rang n, die Produktionsmatrix und

0 (13 0

We=a1'ds'...a; ein iber V gebildetes Wort, das Startwort, wobei «f angibt

wievielmal das Symbol g; in dem Wort w, vorkommt.
Die Worte der von diesem System bestimmten Sprache werden ausgehend von dem
Startwort schrittweise durch einen Ableitungsproze3 gewonnen, der bei jedem Schritt
auf alle Symbole des jeweiligen Worts parallel durchgefiihrt wird.

Von besonderem Interesse im Rahmen biologischer Fragen, wobei die einzelnen

Symbole als spezifische Zellen interpretiert werden, ist die Lange des nach ¢ Ablei-
tungsschritten erreichten Worts w,, die durch die Wachstumsfunktion

= Sd
i=1
definiert ist.

Fiir das Syntheseproblem, zu einer vorgegebenen Funktion ein DOL-System
zu finden, das diese Funktion als Wachstumsfunktion besitzt, ist vorauszusetzen,
daB die vorgelegte Funktion von polynomialem, oder exponentialem oder gemisch-
tem Typa ist. In diesem Fall ist der Ubergang von der Wachstumsfunktion zu einer
Differenzengleichung, die diese Funktion als Losung besitzt, stets méglich. Damit
ist dann auch die charakteristische Glelchung gewonnen. Die Schwierigkeiten liegen
nun in dem erforderlichen Ubergang zu einer Matrix, die diese Glelchung als ihre
charakteristische Gleichung bes1tzt und dabei Produktlonsmatrlx eines DOL-
Systems ist.

Nur in einfachsten Féllen gehngt eine direkte Losung durch Aufldsung der
resultierenden Gleichungen nach ganzzahligen nichtnegativen Elementen der Matrix.

118 W. Kimmerer

Fiir rein polynomiale Wachstumsfunktionen ist ein Weg zur Durchfithrung der
Synthese 1971 von A. L. Szilard [4] Giber die Erzeugungsfunktion angegeben worden.

Im folgenden soll ein Verfahren aufgezeigt werden, das fiir eine bestimmte
Klasse von Wachstumsfunktionen eine duBerst einfache Konstruktion eines geeigne-
ten DOL-Systems ermdglicht.

Das Wort w,_; mit der Liange f,_, trdgtin dem Auftreten der n Symbole
a,, a,, ..., a, Informationen iiber die n Werte der Wachstumsfunktion f;, f1, ..., f,_1
in Form von Linearkombinationen dieser Werte.

Es liegt nahe, die Klasse von Wachstumsfunktionen zu betrachten, fiir die sich
diese Informationen direkt aus dem Differenzenschema ergeben.

o

Mit dem Ansatz
Wp—1 = af® afeafr...afn-1
und folglich
w, = afotdogfrgde, gin-1
ergibt sich tiber die vorgelegte Differenzengleichung
fatGu-sfort A afitafo=0
fr=Jot 4o

fz =fo+Ao+A1

mit

forr1=fotdo+a4+ ...+ 4,
fn =f0+A0+Al+"‘+An—2+An—l

eine Gleichung fiir 4, _,
4,1 = Orfot Qoo+ ... +0,4, -,
wobei als Abkiirzungen

O =—(1;I'qn—1+qn—2+---+41+40)
Oy=~(+¢q,_1+Gu_s+...+q)

Qn = _(1 +qn—1)
stehen.

Zur Synthese von DOL-Systemen 119

Damit erhilt man fiir das Auftreten der einzelnen Symbole in den aufeinander-
folgenden Wértern w,_,; und w, das folgende Schema:

a, a, as -1 | a,
Wn-1 So 4o 4, 4,3 4,
w, Sfot4o 4 4, 4, Q1 o+ Q240 +...+ 004, -

Daraus lassen sich die folgenden Produktionsregeln gewinnen:

Damit diese realisierbar sind, miissen neben den Einlaufwerten £, A4y, 44, ..., 4,_.
auch die GréBen Q,, Q,, ..., Q, nichtnegative ganze Zahlen sein.

Ein Beispiel erldutere das duBerst einfache Konstruktionsverfahren.

Die Wachstumsfunktion sei durch die Differenzengleichung

Ja—6fs+5fo~fi+fo =0
gegeben. Aus den Koeffizienten erhilt man liber

1 1 1 1

6 -6 —6 —6
5 5 5

-1 -1
1
0 —1 —

0,=00,=10;,=00,=5

120 W. Kammerer

und damit die. Produktionsregeln eines moglichen DOL-Systems.

a —a,

a, ~a,; a,
az — as
a, — a;, aj

Zur Uberprﬁfung betrachte man die Produktionsmatrix.

' 1000
1001
P=1010of ¥
0015
Diese liefert als 45:_harakteristische Gleichuri'g_
! =1 0 0 0.
-1 2 0-1
0-1 4 0 =0
' 0 0 -1 i-=5

also
A—613+52—7+1 = 0.

Damit ergibt sich die geforderte Differenzengleichung.
Sind als Einlaufwerte z. B. fy=1, fi=2, f,=4, =8 gefordert, so ergibt sich
iiber die Differenzengleichung
@

5@
4@
NE
fir wy : .
Wy = a,d;asa}
mit f;=8. Von den dafaus ableitbaren Wértern seien hier nur
w, = alalajad
wg = ajasadlal®
mit f;=136 angegeben. Diese Werte stehen ebenfalls mit der Differenzengleichung
in Ubereinstimmung.
Soll die geforderte Folge schon mit ihren Einlaufwerten ableitbar sein, so sind
die (n—1) vorhergehenden Funktionswerte aus der Differenzengleichung zu bestim-

men. Ergeben sich dabei fiir das Differenzenschema nicht realisierbare Werte, so
kann man das Produktionssystem geeignet erweitern.

Zur Synthese von DOL-Systemen 121

Im vorliegenden Beispiel durch
X—-yu
y—-zu®

z > aa,atas

u—~0.
Damit ergibt sich
Wy = X mit fo=1
w; = Jyu fi=2
wy = zu? fo=4
und
Wy = a,d. a3 a3 fs =8.

Der angefiigte Teil des Produktionssystems lieBe sich etwa als ,,embryonales* Ent-
wicklungssystem interpretieren.

Literaturverzeichnis

[1j HERMAN G. T., G. RozeNBERG and A. LINDENMAYER, Developmental systems and Ianguages
Amsterdam—Oxford North-Holland Publishing Company, 1975.

[2] LINDENMAYER, A., Mathematical models for cellular interactions in development, Parts I and II,
J. Theoret. Biol., v. 18, 1968, pp. 280—315.

[3] ROZENBERG, G. and A. SALOMAA (eds), L-systems, Springer Lecture Notes in Computer Science,
No. 15, Berlin—Heidelberg—New York, Springer-Verlag. 1974.

[4] SzILARD, A. L., Growth functions of LINDENMAYER systems, Universita of Western Ontario,
Computer Science Department, Technical Report No. 4, 1971.

[5] KAMMERER, W., Eine Einfiihrung in L-Systeme und L-Sprachen, Nova acta Leopoldina, Vor-
triage anlidflich des Symposiums ,,Naturwissenschaftliche Linguistik* vom 25. bis 29. Juli 1976,
zu Halle (Saale), z. Z. im Druck.

(Eingegangen am 9. Marz. 1978)

Differentiability properties of computable functions — a summary

By M. B. Pour-EL and I. RICHARDS
To the memory of Professor Laszlo Kalmar

Contemporary computing machinery includes many analog devices — machines
which, by a direct process, produce continuous functions of a real variable as their
output. These functions appear to be computable by virtue of the fact that there
are real existing devices which generate them. One might attempt to understand
these functions by means of traditional computer — oriented techniques. For example,
one might begin with an effectively generable set of functions each of which is “ob-
viously computable”. One might then consider the class of functions obtained from
this set by finite programs (=interpreted schemes=flow charts=finite algorithms), -
[3]. However, as Shepherdson has pointed out [8], no procedure of this kind can
encompass all the computable functions of a real variable. Fortunately the literature
of recursion theory provides a precise definition of this concept — Grzegorczyk [1].
We give this definition below.

. Our paper is concerned with the differentiability properties of computable func-
tions of a real variable. Unless stated otherwise, we restrict our attention to func-
tions defined on compact intervals. Grzegorczyk raised the question [1, p.201]
whether differentiation and integration are computable processes. The indefinite
integral of a computable function is computable ([4], [7]). Lacombe [5] stated a
negative result for differentiation, although he gave no proof. He made no mention
of higher derivatives. In 1971, Myhill {6] showed that the derivative of a computable
continuously differentiable function need not be computable. He suggested in a
footnote that the same should hold for infinitely differentiable functions. This seems
at first glance to follow fromr a modification of his construction — a modification
so obvious that it need not be written down. However, the result turns out to be
false. We prove that if f(x) is infinitely differentiable and computable, then all of
its derivatives are computable. This follows from the stronger statement:

- Proposition. If f(x) is computable and of class C2 (twice continuously differen-
tiable) on a compact interval [—M, M] (with M a positive integer), then f'(x) is
computable. :

" This proposition is best possible. For by modifying Myhill’s counterexample
[6] slightly, we can construct a computable function which is twice differentiable

124 M. B. Pour-El and L. Richards

(but not continuously), and whose derivative is not computable. Using a completely
different construction we can show:

Example. There is a computable continuously differentiable function f(x) on
{0, 1] whose derivative f'(x) is not computable, but such that f’(x) is “Banach—Mazur
computable” (definition below).

As an immediate consequence of the proposition we have:

Corollary. If f(x) is computable and C* (infinitely differentiable) on a compact
interval [—M, M] (M a positive integer), then the a-th derivative /™ (x) is comput-
able for each n. .

We now give Grzegorczyk’s definition of a computable function of a real vari-
able. The fundamental definition is phrased in terms of general recursive functionals.
In [2], Grzegorczyk presented seven definitions all of which were proved equivalent
to the fundamental definition. In this paper we find it convenient to use one of these
other definitions. First we need:

Definition 1. A sequence of reals {x,} is computable if there exist recursxve func-
tions a(n, k), b(n, k), and s(n k) such that

yan, k) | 1
b(n, k) k-{-l

xn—(_ l)S(" k

for all n k (w1th b(n, k)=0).
Roughly, this means that there is a recursive double sequence of ratlonals Tk
which converge effectively to x, as k—oe.

Definition 2. A function f(x) from a'compact intervai of R into R is comput-
able if:

(i) f maps every computable sequence of reals. into a computable sequence of
reals (the Banach—Mazur property);-

(i) f is “‘effectively uniformly contmuous , 1.e. there is a recursive function
g(n)=0 such that

. 1 .
— —_— - -
b=yl < o) lmph’eS_ | fC)—f ()] 'n+1

.(This is Grzegorczyk’s definition reduced to thecase of a compact interval. Grze-
gorczyk considered functions from: R.to R, and used a more complicated version
of condition ii) to-take account of the noncompactness-of the domain.)

Two further results follow from our work. 1) The example above shows that
there exists a computable continuously differentiable function-f(x) whose derivative
satisfies condition i) of definition 2 (the Banach—Mazur condition), but not con-
dition ii). By contrast, there is no case where f(x) is computable and f’(x) satisfies
ii) but not i).

2) An attempt to extend the corollary leads to the following counterexample.
There is a computable -infinitely differentiable function f(x) on [0, 1] such that the
sequence of n-th derivatives is not uniformly computable as a function of n. In
other words, although by the corollary each derivative is computable, the sequence
of derlvatlves need not be.

Differentiability properties of computable functions —a summary 125

We now consider the proofs. The proposition is fairly easy, and so we shall
give a sketch. However, the counterexamples are rather intricate. For the sake of
brevity we omit an account of the constructions involved.

To prove the proposition we proceed as follows: Since f”(x) is continuous
on a compact set, it is bounded. Thus |f”(x)|=K, an integer. Now by the mean
value theorem, for any x, y€[—M, M] with x<y, there exists a £ with x<&<y

such that:
S WM—fx)=f—x).

Hence f'(x) is effectively uniformly continuous — in fact, | f'(y)—f'(x)|=K|y—x]|.
Now applying the mean value theorem again (this time to fand f’) we have:
For ali x, y€[—M, M] with x<y, there exists a ¢ with x<&<y such that:

_ 0@

y—X

7@

The difference quotient [f(y)—f(x))/(y—x) is computable since f is. And the
effective uniform continuity of f” means that f(£) converges effectively to f'(x) as
E->x. O

The result proved above does not hold for functions defined on noncompact
intervals such as the real line. (Here we return to Grzegorczyk’s original definition
{1}, with its more complicated condition (ii).) By modifying Myhill’s counterexample
in an obvious way, we can show that: There is a computable infinitely differentiable
function on the real line whose first derivative is not computable.

A detailed account of the results discussed in this note is planned for a forth-
coming paper.

SCHOOL OF MATHEMATICS
UNIVERSITY OF MINNESOTA
MINNEAPOLIS, MINNESOTA 55455

Bibliography

{1} GrzEGORCZYK, A., Computable functionals, Fund. Math., v. 42, 1955, pp. 168—202.)

12) GRZEGORCZYK, A., On the definitions of computable real continuous functions, Fund. Math.,
v. 44, 1957, pp. 61--71.

{31 HErMAN, G. and S. Isarp, Computability over arbitrary fields, J. London Marh. Soc., v. 2,
1970, pp. 73—79.

[4] Lacomge, D., Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs
variables reelles IIl., C. R. Acad. Sci. Paris, v. 241, 1955, pp. 151—153.

{5] LacomBE, D., Quelques proprietés d’analyse récursive, C. R. Acad. Sci. Paris, v. 244, 1957,
pp. 996—997. .

- {6] MyBILL, J., A recursive function defined on a compact interval and having a continuous deriv-
ative that is not recursive, Michigan Math. J., v. 18, 1971, pp. 97—98.

{7] Pour-EL, M. B. and J. CALDWELL, On a simple definition of computable function of a real
variable — with applications to functions of a complex variable, Z. Math. Logik Grundlagen
Math., v. 21, 1975, pp. 1—19.

{81 SHEPHERDSON, J. C., On the definition of computable function of a real variable, Z. Marh.
Logik Grundlagen Math., v. 22, 1976, pp. 391—402.

(Received March 22, 1978)

’

Equality sets for homomorphisms of free monoids

By A. SAaLoMAA
To the memory of Liszlé Kalmar?

1. Introduction

Some of the very basic questions concerning homomorphisms have recently
turned out to be of crucial importance for some of the most interesting decision
problems in language theory. Although homomorphisms of free monoids are very
simple and, at least from the mathematical point of view, the most natural opera-
tions defined for languages, some of these very basic questions remain still unan-
swered.

The basic set-up in this paper is as follows. We are given two homomorphisms
k, and k, mapping the free monoid X* generated by an alphabet X into XY, where
X, is a possibly different alphabet. We study the language E(#,, h,) consisting of
all words w over X* such that A (W)y=h,(w). This language E(hy, h,) is referred
to as the equality set or equality language for the pair (hy, h,). This paper investigates
properties of equality languages, especially with respect to certain decision problems.

A brief outline of the contents of the paper follows. After the basic definitions -
and some preliminary results presented in Section 2, we investigate in Section 3
the case where the equality language is regular. This is a very desirable state of
affairs from the point of view of decision problems. We show, for instance, that the
equality language is regular if and only if it can be expressed in terms of so-called
bounded balance. This situation occurs always when we are dealing with the “ele-
mentary homomorphisms” of [5]. In Section 4, we show that every recursively enumer-
able language is obtained from an equality language by a deterministic gsr mapping.
Equality languages are context-sensitive star languages (where ‘‘star language” is
a “star event™ in the sense of [1]). If the homomorphisms #; and /4, are into the monoid
generated by one letter, then E(h,, hy) is context-free but not necessarily regular.

1 The author had the pleasure of spending a longer time with Laci bacsi during the summer
1976. 1 was then in Szeged with my wife, son and Mr. and Mrs. Esko Teravidinen. We were all
impressed by Laci bacsi’s generous hospitality and friendliness. For instance, he was always ready
to carry the two biggest suitcases. In August 1976, Laci bacsi was supposed to present a paper
at the XVII Scandinavian Congress of Mathematicians in Turku. He was working also on this
during our stay in Szeged.

128 A. Salomaa

The final Section 5 deals with some decidability results, and also points out some
open problems. :

We assume the reader to be familiar with basic formal language theory. For
all unexplained notions we refer to [9].

2. Definitions and preliminary results

Consider the free monoid X* generated by a finite alphabet Z. The identity
element of X* (i.e., the empty word) is denoted by 4, and the length of a word we¢2*
by lg (w). Consrder further two homomorphisms h; and h, mapping Z* into X},
where X, is another (possrbly the same) alphabet. We denote by E(4,, h,) the collec-
tion of all words w¢€Z* such that

By (W) = hy(w).

The set E(h,, h,) is referred to as the equality set or equality language of h, and h,.
(In [6], equality sets are denoted by MID (#,,#,).) The family of all languages L
such that L=FE(h,, h,), for some homomorphisms A; and h,, is denoted by Fg.

It is clear that E(h,, h,) remains unchanged under a renaming of Z,. Moreover,
it is immediately seen by standard coding techniques that any language L over X
in Fg can be given as L=E(h,, h;), where h, and h, map X* into {g, b} ie., X,
consists of two letters only, A further reduction to a one-letter alphabet is not possrble
as will be explicitly shown in Sections 3 and 4.

We now repeat two definitions given in [4]. Consider a language L over X,
and two homomorphisms A, and h, defined on 2*. We say that &, and h, are compatible
(resp. equivalent) on:L iff for some weL (resp. for all wéL). h (w)y=h,(w) holds.
* The following theorem is immediate from the definitions. It shows how the
decision problems investigated in [4] can be considered as inclusion problems involv-
lng E (h17 2)

Theorem 2.1. Two homomorphrsms h, and A, are equrvalent (resp compat1ble)
on a langvage L if and only if L is contained in E(h,,) (resp. L is not contained in
the complement of E(hy, hy)).

In most cases we are able to decide whether a given language is contained in
a given regular language. Thus, Theorem 2.1 shows that, as regards the homomor-
phism compatibility and equivalence problems, it is a very desirable situation that
E(hy, h;) is regular. More explicitly, we can express this as the following

Theorem 2.2. Assume that K is a family of (effectively given) languages such

that the equation
LNR=¢ ' (1)

is decidable for L in K and R in the family of regular languages. Assume, further,
that H is a family of homomorphisms such that E(#A;, h,) is regular for all 4, and
h, in H. Then it is decidable whether two homomorphisms 4, and &, from H are
equivalent on a language L in K.

Proof. The assertion is obvious if we can effectively construct the regular
language E(h,, hy): we just check the validity of (1) for R being the complement

Equality sets for homomorphisms of free monoids 129

of E(h,, hy). Otherwise, we run concurrently two semialgorithms, one for equiv-
alence and, the other, for nonequivalence. The latter semialgorithm is obvious:
we just consider an effective enumeration wy, w,, w,, ... for L and check whether
hy(w)=hy(w;). For the semialgorithm A for equivalence, let Ry, R;, R, ... be
an effective enumeration of regular languages. In the (i+1) st step of 4, we consider
R; and check whether &, and A, are equivalent on R;. (This can be done by a result
in [4], the result being easy enough to verify also directly.) If the answer is positive,
we check the validity of (1) for R being the complement of R;. The correctness and
termination of this algorithm are now obvious. (A similar argument was used already
in[31) O

Under the additional assumption that E(hy, h,) can be found effectively, we
can extend Theorem 2.2 to the compatibility problem: it is decidable whether two
homomorphisms /; and 4, from H are compatible on a language L in K.

A very interesting and important class of homomorphisms for which E(/,, hy)
is always regular consists of the elementary homomorphisms introduced in [5] and
studied further in [6]. By definition, a homomorphism #h: Z* 2y is elementary
if there is no alphabet X, of smaller cardinality than X such that s can be represented
as h=hyh,, where

hy: Z*-ZXy and h,: Xy - 7.

The following theorem is established in [6). A modified version of it will be
established also in Section 3 below.

Theorem 2.3. For elementary homomorphisms /, and h,, E(h,, hy) is regular.

One of the most famous problems in formal language theory during recent
years has been the DOL equivalence problem: given two homomorphisms #, and
h, mapping 2* into 2* and a word w in X*, decide whether or not

hi(w) = hi(w)

holds for all i=0. A decision method was given in [2] and [3]. The notion of an
elementary homomorphism seems to capture the essense of the problem and, con-
sequently, the solution given in [6] avoids many of the difficulties present in the
earlier solution. As regards the DOL equivalence problem, the reader is referred
also to [7] and [8)]. Clearly, the DOL equivalence problem amounts to deciding
whether or not the DOL language consisting of all words Ai(w), where i=0, is
contained in E(hy, h,).

The notion of balance, defined originally in [2], turns out to be very useful in
discussing the regularity of E(h,, h,).

Consider two homomorphism 4, and /i, defined on Z* and a word w in X*
Then the balance of w is defined by

| B(w) = lg (hy(w))—1g (hy(W)).

(Thus, B(w) is an integer depending, apart from w, also on &, and h,. We write it
simply B(w) because the homomorphisms, as well as their ordering, will always be
clear from the context.) This definition is in accordance with [4], the notion of balance
defined in [2] equals |f(w)| in our notation.

9 Acta Cybernetica 1V/1

130 - - A.Salomaa

It is immediate that ,B isa homomorphlsm of Z* into the additive monoid of
all mtegers Consequently, we can write

B(wywy) = B(w)+B(wy)

which shows that the balance of a word w depends only on the Parikh vector of w. °
We say that the pair (4, /1) has k-bounded balance on a given language L if k&
is an integer. =0 and ’
‘ B =k

holds for. all.initial subwords w of the words in L.

The property of havmg bounded balance gwes a method of deciding homomor-
phism equivalence, a point exploned in detail in [4).

For k=0, we denote by E,(h,, h,) the largest subset of E(hy, hy) such that
the pair (#,, A,) has k-bounded balance on E,(h,, h,). Clearly, for all &,

. Ec(hy, hy) S Egyy(hy, o)
and

1

E(h, h) = U E(hy, ho). @

The following theorem was established in [8], essentially the same result being
contained also in [2].

- Theorem 2.4. For each k=0 and arbitrary homomorphisms hy, and hq, the lan-
guage E,(hy, h,) is-regular.

The relation (2) and Theorem 2.4 show that E (hy, h,) can always be approxl-
mated by a sequence of regular languages. Note also that Ey(hy, hy)={2} or X’*,
where 2’ is the subset of X consisting of all letters a for which h;(a)=rh,(a).

We conclude this section by showing that all languages in Fj possess a special
property. Indeed, consider any language E(h,, #,)=L. By definition, whenever
w, and w, are in L then so is w, w,. This implies that L=L*, i.e., Lis a star language
(a star event in the sense of [1]). The minimal star root of L, i.e., the smallest lan-
guage M sansfymg L=M?*, consists of all words w of L such that no proper initial
subword of w is in L. Same results hold true also with respect to languages E; (hy, h,).
These results are summarized in the following

Theorem 2.5. Every language L in Fg is a star language. The subset M of L,
consisting of all words w such that no proper initial subword of w is in L, is the

smallest language satisfying)
M* =L

For each k, Iy, hy, E (I, hy) is a star language.

Theorem 2.5 shows, for instance, that Fg contains no finite languages with
the exception of ¢*={i}. Since, for any language L and homomorphism /, we
have h(L*)=(h(L))*, it shows also that even-if we take morphic images of the
languages of F, we get only star languages However, it will be seen in Section 4
thatevery recurswely enumerable lan guage 1s obtamed by a deterministic gsm mapping
from a language in Fg.

Equality sets for homomorphisms of free monoids 131

On the other hand, it is clear that‘only star languages of a special type are in
Fg: Fg does not even contain all star languages with a finite star root. This follows
by the next theorem, the proof of which is obvious.

Theorem 2.6. Whenever a language L in F g contains the words w, and w1 Wy,
then it contains also the word w,. , . - .

3. Regular equality sets

We begin this section with two examblles. Consider first two homomorphisms
hy and h, mapping {a, b}* into {a}*, defined by

hy(a) = hy(b) = a, hy(a) = kiy(b) = aa.

It is immediately verified that E(h,, h,) consists of all words w-such that the number
of occurrences of a in w equals that of b in w. Thus, we have here a simple example
of a context-free nonregular equality-set.

Consider, next, the two homomorphisms g, and g, defined by

s@=ab, g(b)=b, &) =a,
cogy(@)=a, gy(b)=0b, gi(c)=ba.

Clearly, E(g,, g,) is now denoted by the regular expression (ab*cUb)*. In this
case, £(gy, g,) is a regular language possessing no finite star root.

We now return to the équatlon (2) and show that E(h,, h,) is regular exactly m_
case the right side can be. replaced by a finite union, i.e. E(hl, hs) equals one of
the sets E,(hy, hy). :

Theorem 3.1. The set E(/zl, 112) is regular 1f and only if, for some k,
E(hlahz)_Ek(hly hy). N)

Proof. The “if”-part follows by Theorem 2.4. ‘To prove the “‘only if”’-part,
assume that E(/, h,)=L is regular. Thus, the homomorphlsms hy and h, are
equivalent on the regular language L. This 1mphes that the pair (4, /1,) has k-bounded
balance on L, for some k*and, thus, (3) holds true. (The 1mpllcat10n is established
in [4]. It follows from the observatlon that if a word w causes a loop in the minimal
finite automaton accepting L, then . 8(w)=0. Thus, an upper bound for the balance
of initial subwords of the words in L can be computed by considering such words
only which cause a transition from the initial state to one of the final states without
loops. If n is the number of states in the automaton and

L= max{|f(a)] la in 2}
then ’ i
k = t[(n—1)2].

One can show by examples that this estimate is the best possible in the general
case.) [
By Theorems 2.3 and 3.1, we obtain now the following

o*

132 A. Salomaa

Theorem 3.2. If /4, and /, are elementary homomorphisms then there exists a
k such that
E(hy, hy) = Ey(hy, hy).

Remark. Theorem 3.1 shows the importance of the notion of balance in char-
acterizing the regular sets E(h,, h,). We want to point out that we are dealing here
with a property typical for equality sets which cannot be deduced from (2) and
properties of star languages. More specifically, there are regular star languages L7,
i=0, satisfying

L ¢ L},,, for all i,
and

ULf=L*
i=0

and, furthermore, L*s L] for all i, although L* is regular. An example is given by
L, = Uabic.

j=i
Thus, Theorem 3.1 .cannot be deduced from (2) and properties of star languages.
We want to emphasize that E(h,, h,) may be regular although k;, and 4, are
not elementary, i.e., the converse of Theorem 2.3 is not valid. For instance, define

* (@) = a, hy(b) = hy(c) = b,
hy(a) = a, hy(b) = hy(c) = c.

Then E(h,, hy)=a* although neither &, nor 4, is elementary.

Apart from the sequence E,(h,, h,), k=0, 1, ..., there seems to exist no other
approximating sequence for E(h,, h,) with similar properties (in particular, Theo-
rem 3.1).

This section is concluded by a result exhibiting a special case in which the lan-
guage E(hy, hy) is always context-free. We point out that it will be shown in Section 5
that the general problem of determining whether a given language in Fg is regular
(resp. context-free) is undecidable.

:

Theorem 3.3. Assume that /4, and A, are homomorphisms mapping X* into
{a}*. Then the language E(h,, h,) is context-freé but not necessarily regular.

Proof. The second assertion follows by the example given at the beginning
~of this section. To show that E(h,,/))=L is context-free, we assume that
Z={ay, ..., a} and

hy(a) =a™, hy(a)=a", i=1,..,k

We denote d;=m;—n;. By a suitable renumbering of the alphabet X, we may
assume the existence of numbers wiand v, 0=u=v=k, such that

0 for I=i=u,
is{ positive for u+1=i=v,

negative for v+1=i=k.

d.

Equality sets for homomorphisms of free monoids 133

Consider now the language L1=Lﬂafa§"...a,’f. L, consists of all words w such
that (i) the letters of the alphabet X occur in w in the “right” alphabetical order,
and (ii)

du+1xu+1+---+duxy =(—dys) Xpirt . H(—d) X, C)

where x; denotes the number of occurrences of a; in w. (Note that all the coefficients
of x; in (4) are positive.) But the validity of (4) can be checked by a deterministic
one-counter machine M. Indeed, when reading a letter a; with u+l=isv, M
pushes d; copies of the counter symbol, and when reading a letter q; with v+41=
=j=k, M pops d; copies of the counter symbol. Hence, L, is a deterministic one-
counter language.

On the other hand, L=C(L,), where C denotes the “commutative variant”
of the language, i.e., C(L,) is the language obtained from L, by taking all permuta-
tions of its words. Because it is easy to see that C(L,) is context-free, we have
concluded the proof. O

4. More general equality sets, their scope

We now turn to the discussion of the general question of the “‘size” and typical
features of the family F. We show that every recursively enumerable language can
be obtained by a deterministic gsm mappmg from a language in Fg. By the remark
made after Theorem 2.5, homomorphism is not sufficient for this purpose; all
recursxvely enumerable lan guages cannot be obtained as morphic i images of languages
in Fg. However, we shall establish the following weaker result: if L, is a recursively
enumerable language, then the language (C (LO))* is a morphic image of a lan-
guage in Fg. Here C denotes the commutative variant dlscussed in the proof of

. Theorem 3.3.

To understand the technical details in this section, familiarity with the proof
of Theorem VIIL2.1 in [9] is required on part of the reader. In the examples and
arguments below, we try to follow the notation of this proof as much as possible.

We begin with the following simple result.

Theorem 4.1. Every language in Fj is context-sensitive.

Proof. Consider an arbitrary L=E(h,, h,). Let m be the maximum length
among the words /1, (@) and h,(a), where a ranges over Z. Then L is accepted by a
. linear bounded automaton M whose work tape is at most m times the length of the
input w. Indeed, M first writes 4, (w) and /,(w) on two tracks and makes then the
comparison on its final run. O

We now give an example of a language in Fr which is not context-free. The
example also serves the purpose of providing some intuitive background for the
proof of Theorem 4.2.

The alphabet X in the example consists of the letters 1,2, ..., 18. (Thus, two-
digit numbers are viewed as single letters.) The target alphabet X, will become
apparent in the following definition of /; and /,. In the definition, letters a of Z
are listed in the first row, and the values /1;(a) (resp. hy(a)) in the second (resp.
third) row.

134 A. Salomaa

B c ¢’ c'E S S, S, S’ S7

10 il 12 13 14 15 16. 17 18
S, SiS'S; 2) 58S, 12 2
s s s S, S, s’ s’ S S;

>~

To show that E(h,, hy)=L is not context-free, we argue as follows. Our ex-
ample is constructed according to the proof of Theorem VIIL 2 1 in [9] from the
grammar G with the productions

S~ 5,55, S;~4 S,—21 S-—i

Note that the Szilard language of G is not context-free (cf. [9, p. 185]). This implies
that L cannot be context-free because the Szilard language of G is obtained from L
by a suitable homomorphism. Indeed, it suffices to erase all letters not ““representing”
applications of productions. (We can also get from L the language {a"b"c"|=1} by
taking first the intersection with a regular language and then a. morphic image.
The intuitive idea behind this is to apply the four productions in the order they are
listed above.) O

We want to emphasize that if we just want an example of a non-context-free
language in Fg then the example given above is unnecessarily complicated. (For
instance, the distinction between primed and non-primed letters is superfluous from
this point of view. It is, however, quite essential in other arguments because we do
not want a solution to the Post Correspondence Problem starting from the “middle”.)
The above example serves the additional purpose of making the reader familiar
with the idea behind the proof of the following theorem,

Theorem 4.2. For every recursively enumerable language L,, one can effec-
tively construct a language L in Fy and a deterministic generalized sequential machine
M such that Ly=M(L).

Proof. Following the notation of [9), we assume that L, is generated by the
type-0 grammar G=(Vy, Vr, @, F), where

V =VNUVT= {al,...,a,}, F= {P‘»Q'uglén}’
VT:{asa”-’ar}, I<S‘§ r. ’

Denote V’'={a’|lacV}. Thus, for any word Q over ¥, we can consider the “primed
version” Q' obtained from Q by replacing every letter a with a’.

Without loss of generality, we assume that a;~a, is one of the productions
in F. (This is done because of the same reason as in the proof of Theorem VIIL.2.1
in [9]: to get the right parity for the length of a derivation. Note, however, that we
do not have to eliminate the i-productions over F as we did in [9].)

Equality sets for homomorphisms of free monoids 135

‘We now introduce two homomorphisms /4, and 4, mapping Z* into X}, where
> ={1,2,..,2r+2n+4, a,, ...,a,},
2, =VUV'U{B,c '}

Again, the homomorphisms are given by the following table listlng hy (@) and hy(a)
below a. In the table, i (resp. j) ranges through the numbers 1, ..., r (resp. 1, ..., n),
and x through the letters a, ..., q,. .

x 1 2 3 4 44i 44r+i 442r+j 442r4n+j
A Ba,c ¢ c A aj a; Q; : 0;

X B c ¢ ¢’ a; aj P
Consider the language L=E(h;, h,). We denote
Sr={ag,,a,}, Ty=1{1,2,3,5..,2r+2n+4}.

(Thus Zyand Xy are subalphabets of X. The former consists of all'“letters” and,
the latter, of all “numbers™ except 4.)

Let now M be the deterministic generalized sequential machlne -which, when
reading an input word w over 2, checks whether w is of the following form: a non-
empty word over Xy, followed-by exactly one occurrence of the letter 4, followed
by a (possibly empty) word w” over Z;. In the positive case, the output is w’, in the
negative case no output is produced.

Comparing the construction with the proof of Theorem VIIL.2.1 in [9], it is
now easy to see that L,=M (L) holds true. Indeed, the above construction differs
from that in [9) only with respect to the letters 4 and a, ..., a,. But the machine
M makes sure that the effect of these letters is the same as that of o, and B, in [9].
Thus, M outputs exactly the words of the or1g1nal language L,. Note, in particular,
that we have 1 as an output exactly in case Aisin L. L, as every equallty language
contams / but M does not accept it as an input. [J

‘Remark 1. Let / be the homomorphism mapping the letters of Py 1nto them-
selves and erasing the other letters of X. By the proof above we get the represen-
tation . o

Lo = h(LﬂZ+ 427). .

(By an easy modification, 4 can be el1m1nated) Thus, every type -0 language is obtamed
" from a language L in Fg by intersecting L with a regular language and.then taking
a morphic image (under a very simple morphism) of the result. This representa-
tion theorem has been obtained by another method by G. Rozenberg (personal
communication).

Remark 2. We have already pointed out why there are recursively enumerable
(in fact, even finite) languages L, not representable in the form Ly=h(L), where
his a morph1sm and L is in Fg. Clearly, by Theorem 4.1, the operation of takmg
intersections with regular languages alone is not sufficient for such a representation
of recursively enumerable languages in terms of equality languages As regards
homomorphisms, the following theorem gives a weaker result.

136 A. Salomaa

Theorem 4.3. For every recursively enumerable language L,, one can effectively
construct a language L in Fy and a homomorphism /# mapping every letter either

to itself or to / such that
(CULy))* = h(L). &)

Proof. The language L is constructed exactly as in the proof of Theorem 4.2.
The only additional requirement we have now is that in the original grammar G
terminal letters occur in productions of the form B—b, where B is a nonterminal
and b a terminal, only. The homomorphism 4 is defined as in Remark 1 above.

To prove (5), note first that the right side is included in the left side. This follows
because if we take one of the letters x=a,, ..., a, “too early” to a word in L, then
the terminal letter x has already been derived according to G. The reverse inclusion
is obtained by noting that any word w=b,...b, in L, can be derived by deriving
first the corresponding nonterminal word B,...B,. From the latter, the terminal
letters b; can be introduced in any order and, hence, any permutation of w is in
h(L). Clearly, h(L)=(h(L))*. O

The following result is now immediate from Theorem 4.3.

Theorem 4.4. For every recursively enumerable star language L, over a one-
letter alphabet {a}, one can effectively construct a language L in Fr and a homomor-
phism /s, mapping a into itself and erasing other letters, such that Ly=#h(L).

It is an open problem whether or not Theorem 4.4 holds true for arbitrary
recursively enumerable star languages, i.e., whether or not (5) in Theorem 4.3 can
be replaced by the equation

' Ly = h(L).

) S. Decidability

In this final section we consider some decision problems for F, as well as some
applications to other decision problems, in particular, problems concerning homo-
morphism equivalence.

Clearly, membership is decidable for languages in F¢. Such a language is never
empty because it always contains .. An arbitrary Post Correspondence Problem
PCP defines a language Lpcp in Fi such that Lpcp is infinite if and only if PCP has
a solution. Hence, infinity is undecidable for languages in Fj. Since {} belongs
to Fg, we see in the same way that the equivalence problem is undecidable for Fp,
_ i.e., there is no algorithm for determining of two given languages in F whether or
not they are the same.

These results are summarized in the following

Theorem 5.1. Membership problem is decidable for languages in Fr. Emptiness
problem is trivial but infinity problem undecidable for languages in F;. Given a
language L in Fg, it is undecidable whether L={2}. Hence, equivalence problem is
undecidable for Fg.

" Note that it is decidable whether a language L in Fg equals X*.

We have already pointed out that in some investigations it is very desirable
that E(h,, h,) is regular. However, the following theorem shows that this property
is undecidable. :

Equality sets for homomorphisms of free monoids 137

Theorem 5.2. It is undecidable whether a language in Fy is (i) regular, (ii)
context-free.

Proof. We consider the following modified Post Correspondence Problems PCP
over an alphabet V' .
(“1’ ...,(X,,), (ﬁla --'sﬁn)’ (6)

o, = BA, ﬂ1=B, a =C, ﬁzzA,

where

and every solution to PCP must begin with the indices 1, 2. Furthermore, it is assumed
that B and A4 do not occur in any of the words a, ..., a,, B, ..., B,. Clearly, there
is no algorithm to solve such modified PCP’s.

We argue now indirectly and assume that either (i) or (ii) is decidable. We show
that we can then solve also the modified PCP. Let (6) be an arbitrary given instance.
We construct new words

(an+1’ ey dn+m)’ (ﬂn+la ""’ ﬂn+m)A (7)

over an alphabet consisting of C and letters not in V' such that (i) the PCP (7) has

no solution, and (ii) the language L over the alphabet {n-+1],...,n+m} consisting

of words /;...4, such that ’
Coy oo, = B, ... B, C

is not context-free. Such a construction is possible along the lines of the example
given in Section 4. Condition (i) is taken care of by making sure that, for no pair
of words (%;, B;), i=n+1,...,n+m, one of the words is an initial subword of
the other.

Let /1 be the homomorphlsm defined on the monoid {1, ...,n+m}* by

A

h(i)=4 for i=n, h(i)=i for i=n.
‘Furthermore, let i, and 5, be homomorphisms defined by
hiiy)=a;, h(D)=p§, i=1,...,n+m.

Consider the language E(h,, f1,).

Assume first that our original given PCP (6) has no solution. Then it is immediate
by the definition of (7) that E(hy, hy)={%}, i.e., E(, h,) is regular.

Assume, next, that the PCP (6) has a soluuon In this case, E(h,, h,) consists
of A and of all words over 1, ...,n+m of the form

lw2w’,

where 12w’ is a solution of (6) and w is in L. Hence, h(E(hy, h))=L. (Note that
Jis in L.) This implies that E(h,, ,) is not context-free.

Thus, if either (i) or (ii) in the statement of Theorem 5.2 were decidable, we
would be solving the modified PCP (6), a contradiction. O

138 A. Salomaa

Although it is undecidable whether a language in Fg is regular we conjecture
that the converse is decidable, i.e., it is decidable whether a given regular language
1s in Fg. The proof of this conjecture requires results stronger than Theorems 2.5
and-2.6. (Note that some other similar results can be easily established. For instance,
whenever a word w', i>1, is in a language L in Fg, then also wis in L.)

We have already pointed out the significance of E(h;, h,) in some decision
problems, notably the problem of homomorphism equivalence. It was conjectured
in [4] that homomorphism equivalence is decidable for indexed languages. By Theo-
rems 2.2 and 2.3, we get the following partial result.

Theorem 5.3 It is decidable whether two given elementary homomorphisms
are equivalent on a given indexed language.

The fact that E(h,, h,) is.context-free (in situations like the one “exhibited in
Theorem3 3) is not so easily applrcable to decision problems The reason is that
inclusion of a given language in a context-free language is, in general, a difficult
problem. Of course, results corresponding to Theorem 2.2 can be formulated also
in this case.

In [4], the following generalization (referred to as the DTOL sequence equiv-
alence) of the DOL equivalence problem was investigated: given two parrs of homo-
~ morphisms (g;, g») and. (4,, ;) and a word w, decide whether

L8, (W) = hy by, (W)

holds for all words i,...7, over the alphabet {I, 2}. It was shown in [4] that more
general DTOL equivalence problems can be reduced to this problem.

Since the equation (1) is decidable for DTOL languages L, we get the follow-
ing partial result by an argument similar to the one used in the proof of Theorem 2.2.

Theorem 5.4. The DTOL sequence equivalence problem is decidable for elemen-
tary homomorphisms g,, g,, #,, h,. It is also decidable whether two given elemen-
tary homomorphisms are equivalent on an arbitrary given DTOL language.

The second sentence of Theorem 5.4 follows also by Theorem 5.3. That Theo-
rem 5.4 cannot be used to solve the DTOL sequence equivalence problem (in the
same way as the DOL equivalence problem was solved in [6]) is due to the fact
that the analogous decomposition technique is not valid for DTOL systems.

6. Conclusion

Apart from their importance in certain decision problems, the languages E(h,, h,)
seem to be rather interesting also from other points of view. We have established
some of their basic properties. However, there are many open problems. Many
aspects (such as closure properties) of these interesting languages were not discussed
at all in this paper.

MATHEMATICS DEPARTMENT
UNIVERSITY OF TURKU
FINLAND

\

Equality sets for homomorphisms of free monoids 139

References

[1] BRzozowskl, J. A., Roots of star events, J. Assoc. Comput. Mach., v. 14, 1967, pp. 466—477.

2] CuLik, K. II. On the decidability of the sequence equivalence problem for DOL-systems,
Theoretical Computer Science, v. 3, 1971, pp. 75—84.

[3] CuLik, K. IT and I. Fris, The decidability of the equivalence problem for DOL-systems, In-
formation and Control, v. 35, 1977, pp. 20—39.

[4] CuLik, K. IT and A. SALoMAA, On the decidability of homomorphism equivalence for languages,
J. Comput. System Sci., to appear.

[5] EHRENFEUCHT, A. and G. ROZzENBERG, Simplifications of homomorphisms, Information and
Control, to appear.

[6] EHRENFEUCHT, A. and G. ROZENBERG, Elementary homomorphisms and a solution of the DOL
sequence equivalence problem, Theoretical Computer Science, to appear.

[7] ROZENBERG, G. and A. SALOMAA, The mathematical theory of L systems, Advances in Informa-
tion Systems Science, Vol. 6, J. Tou (ed.) Plenum Press, New York, 1976, pp. 161—206.

[8] SaLoMAA, A., DOL equivalence: the problem of iterated morphisms, Bulletin of the EATCS,
to appear.

[9] SALOMAA, A., Formal languages, Academic Press, New York, 1973.

(Received Jan. 23, 1978)

Ein Ansatz zum Entscheidungsverfahren fiir eine
Formelklasse der Pridikatenlogik mit Identit:it

Von K. SCHUTTE
Herrn Professor Laszlo Kalmar zum Gedéchtnis

Das Entscheidungsproblem der Priddikatenlogik ohne Identitét ist fiir prinexe
Formelklassen vollstindig gel6st, nachdem in [6] die Klasse der . v3VY-Formeln
als unentscheidbar nachgewiesen wurde. Dabei stellte sich als starkste entscheidbare
Formelklasse diejenige Formelklasse heraus, fiir die von L. Kalmar [3] im Jahre
1933 ein Entscheidungsverfahren gegeben wurde.

Fiir die Pridikatenlogik mit Identitit ist jedoch die Entscheidbarkeit der ent-
sprechenden Formelklasse ein bisher noch ungeléstes Problem. (In [2] und [4] war
irrtimlich erkldrt, daB die dort angegebenen Verfahren auch bei Hinzunahme des
Gleichheitszeichens zum Ziel fiihren.) -

Im folgenden wird ein Ansatz zur Behandlung des Entscheidungsproblems fiir
die problematische Klasse der V ¥ 3-Formeln mit Identitit entwickelt, aus dem her-
vorgeht, welche Schwierigkeiten hierbei auftreten und was zu beweisen wire, falls
die betreffende Formelklasse entscheidbar ist. '

Wir gehen aus von einer prinexen Formel

YxVy3dzA(a,,...,a,, X, Y, 2) Y

der Pridikatenlogik mit Identitdit, in der keine anderen freien Objektvariablen
als ay,...,a, (m=1) auftreten. Als Primformeln, aus denen sich die Formel
A(ay, ..., a,.5) mittels aussagenlogischer Junktoren zusammensetzt, diirfen fol-
gende vier Arten auftreten: ‘

1. Die Konstanten T (verum) und 1 (falsum),

2. Aussagenvariablen,

3. Priadikaten-Primformeln der Gestalt

Pra;...a;, (k=)

wobei P! eine k-stellige Pradikatenvariable ist,

4. Gleichungen a;=a;.

W sei die Menge der Aussagenvariablen, die in der Formel (1) auftreten,
{W,, ..., W} die Menge aller Teilmengen von W. Fiir i=1, ..., tsei 4;(ay, ..., Gyp+3)

142 K. Schiitte

diejenige Formel, die sich aus A(a,, ..., @,45) ergibt, wenn jede Aussagenvariable
der Menge W; durch T und jede andere Aussagenvariable durch | ersetzt wird.
Ferner sei

C=T, C,= A a;#a; fir l<n=m.
W
Die Formel (1) ist genau dann erfiillbar, wenn es eine positive ganze Zahl
n=m und eine Abbildung f von {l,...,m} auf {1,...,n} gibt, so daB eine der
Formeln
VxVszA (aﬂ,.. af,,,,x y,z)/\C (l— l)

erfiillbar ist. Es genugt daher em Entscheldungsverfahren fur dxe Erfullbarkelt von
Formeln der Gestait

YxVy3dzA* (al,. ey, X, y,z)/\C (nzl) 2)

zu entwickeln, wobei A*(ay, ..., a,, x,y,2) eine quantorenfrele Formel ist, die
keine Aussagenvariablen und keme anderen Objektvariablen als a,, ..., qa,, x, y, z
enthilt.

' B*(ay,...,;a,,x,¥)
sei die Formel _

. . : o - n - S

A*(ay, ..., a,, %, ¥, OVA™(ay, ..., s x, ¥, V) k_/lA*(al, s @3 X, Y, Q).
Fir i=1,...,n definieren wir a

Fi*(ali "'" Ay, X, Z) = A*(ala [EEE anaaix X, Z)

A*(ala aman X, X) \/ A ((11, ‘.,a,,,q,,-,rx, ak)

_Gf(ala-ﬂaan’x) .
- 1

Fray,...,a,x, 2):= A¥a,, ..., a,, %, a;, 2)
G:+i(a1"'°9an7-x) = A*(ala an,x5 anx) \/ A (ah .,Cl,,, x:-ai, ak)
=1

Fiii(ay, .., a,,x,2) = A%(@ay, ..., a,, x, X, 2)

n .
Gini1(ay, ...y a,,x):= A% (a,, ..., a,, x, x, x)kV A*(ay, ..., a,, x, X, a,)
=1 *

Fir i,j=1, ...,n definieren wir

Hii1yns i@y, ..., a,, 2) = A%(ay, ..., a,, a;, a,,;)

n
KGicvyns i@y, -5 a,) = k\/l A*(ay, ..., a,, a;, a;, a).

Zur Abkiirzung setzen wir r:=2n+ 1 und s:=n® Inden Formeln 4*(ay, ..., a,.),
B*(al,...,a,,+2), F,'*(al,..., n+2),G;~k(ql,'...,an+1)(i=1,...,I‘)undH,-*(al, ,a"+1)
K (ay, ..., a,) (i=1, ..., s) ersetzen wir jede Gleichung a;=a; durch T und jede
Gleichung a;=a; (j#k) durch L. Hierdurch ergeben sich Formeln A(a,, ..., a,.3),

Ein Ansatz zum Entscheidungsverfahren fiir eine Formelklasse der Pradikatenlogik 143

~B(ala R an+2)= Fi(ala LR an+2)’ Gi(aly sevs an+1)_,AHi(al,""g an+1) U]’]d Ki(als KRR a}-)a
in denen keine Gleichung auftritt. Wir schreiben kurz 4 (x, y, z), B(x, y), F;(x, z),
Gi(x), H,(2) und K, fir A(a,, ..., a,, x, ¥, 2), Ba,, ..., a,, x,), Fi(a,, ..., a,, x, 2),
G(ay, ...,a,,x), H(a,, ..., a,, z) und Ki(a,, ..., a,). Ferner definieren wir

U,(x) =

N
> =
X.!
A

S

Die Formel (2) ist dann dquivalent mit der Formel
, Vx\/y{U AU, (DAx # y — 3z[A(x, ¥, 2)AU,(2)Ax = zANy = z]V B(x, y)}

‘v’x{U,,(\) - Jz[Fi(x, 4)/\ U,(2)Ax # Z]VG)} 3)

/\ {3z [H(7)/\U(z)]v1<}/\c

- Im folgenden sei Feine Formel der Gestalt (3) Dabei sind die A(A ‘Y, Z), B(x),
F; (A 2), G;(x), H;(z) und K; quantorenfreie Formeln, die keine Aussagenvariablen,
keine Gleichungen und auBer den angegebenen Objektvarlablen héchstens die
Objektvariablen qy, ..., a, enthalten. n, r und s sind positive ganze Zahlen.

P sei eine nichtleere'endliche Menge von Pridikatenvariablen, die alle in F
auftretenden Pradikatenvariablen enthilt. Ist ¥ eine nichtleere endliche Menge von
Objektvariablen, so verstehen wir unter einer vollstindigen V-Konjunktion eine wider-
spruchsfreie Konjunktion aus Primformeln und-negierten Primformeln, in der Jede
Priadikaten-Primformel, die sich aus den Pridikatenvariabien der. Menge P mit
den Objekivariablen der Menge V bilden 14Bt, genau einmal (negiert oder nicht-
negiert) auftritt und in der kein anderes Konjunktionsglied vorkommt. Unter einer
V-Normalform verstehen wir dann eine Disjunktion

V 4 (m=z=0)
i=1

\

aus paarweise indquivalenten vollstindigen V-Konjunktionen A4,, ..., 4,,, wobei es
sich im Fall m=0 um die Formel 1 handeln soli.

Zu den in 3) auftretenden Formeln A(x, y, z), B(x,y), Fi(x, z), G i{(x), Hi(2)
lassen sich nun eine dquivalente {ay, ..., a,, v, y, z}- Normalform

nig -
V A4;(x, y, 2),
j=1
eine dquivalente {a, ..., a,, x, y}-Normalform
‘ .
\/ Bj(x’ y)’
j=1
aquivalente {a,, ..., a,, x, z}-Normalformen

\/i Ej(xr Z) (l = 15 seey r)’
j=1

144 K. Schiitte

iquivalente {a, ..., a,, x}-Normalformen

{'/‘ Gi;(x) (i=1,...,m,
i=1 7

aquivalente {ay, ..., a,, z}-Normalformen

i/'lﬂ,.,.(z) (i=1,..,5)

und dquivalente {a,, ..., a,}-Normalformen

A
V K; (i=1,...,9)
j=1
bilden. .
Es 14aBt sich entscheiden, ob die Formel F in einem Bereich von héchstens n+E
Elementen erfiillbar ist. Wir setzen im folgenden voraus, daB sie in keinem Bereich
von weniger als n+2 Elementen erfiillbar ist. Sie ist dann unerfiillbar, wenn eine
der Zahlen m;+n; (=0, ...,r) oder p;+¢q; (i=1, ..., s) gleich 0 ist. Wir nehmen.
nun an, daf} alle diese Zahlen positiv sind.
Unter einem Indexsystem der Formel F verstehen wir dann ein System

={(My,....,.M,, Ny, ..., N,, Py, ..., P, OQ1,..., 00

von Teilmengen M, {l, ..., m}, N, {1, ...,n;}, P,c{l, ..., p;} und Q,c{l, ..., q;}.
von denen keine der Mengen M;UN; (i=0, ...,r) und P,UQ; (i=1,...,s5) leer
ist. Beziiglich eines solchen Indexsystems fithren wir folgende Bezeichnungen ein:

Als M-Hauptglieder bezeichnen wir die Formeln A4;(x, y, 2) (j€M,).

Als M-Doppelglieder bezeichnen wir die Formeln® B;(x,y), B; (y, x), (JEN,),.

Fij(x,y), Fij(y,x) (i=1, ..., r; j¢ M) und alle Formeln, d1e sich aus einer der For-
meln 4, (x v,2), 4, %z,), 4 i x,2), Aj(y,2,X), A;(z, x,), A;(z,y, %) (JEM)
ergeben wenn alle Kon)uktlonsgheder in denen die Vanable z auftrltt gestrichen
werden.

Als M—Emzelglzeder bezeichnen wir die Formeln G,I(x) (i=1,...,r; jJEN),

Hi;(x) (i=1, ...,s; jeP;) sowie jede Formel, die sich aus einem M- Doppelglied
D(x y) erglbt wenn alle Konjunktionsglieder, in denen die Variable y auftrltt
gestrichen werden.

Als M-Grundglieder bezeichnen wir die Formeln K;; (i=1, ..., s; j€Q;) sowie
jede Formel, die sich aus einem M-Einzelglied E(x) erglbt wenn alle Konjunktlons—
glieder, in denen die Variable x auftritt, gestrichen werden.

E\(x), ..., E,(x) sel nun eine maximale Folge von paarweise maquwalenten
M- Emze]glledern Mit F,, bezeichnen wir dann die Formel

{VxVy{U (AU, (y)/\x Zy— V Az[A;(x, y, DAU,(Ax#zAy # z] \V B;(x,)}
JEM, JENG .

A Vx{U,(x) ~ 46\/‘4~ 3z[F;(x, DAUL(DNAx # 2] ‘V Gi; (0} 0

[/:\ (Y, 3:,NLE) Ky) /\ 3Ix[E,(x)A U, (0IAC,.

Ein Ansatz zum Entscheidungsverfahren fir eine Formelklasse der Pridikatenlogik 145

Fiir quantorenfreie Formeln, 4, B gebrauchen wir folgende Bezeichnungen:

AC B bedeute, daB A mit einer Teilkonjunktion von B dquivalent ist.

A~ B bedeute, daB 4 und B miteinander dquivalent sind.

Die Formel Fy, heille eine Normalformel, wenn folgende Bedingungen (I)—(IV)
erfiillt sind:

(I) Zu jedem M-Doppelglied D(x, y) gibtes j€eM, mit D(x, y)TA;(x,y, 2)
oder jEN, mit D(x,y)~B;(x,y).

(II) Zu je zwei indquivalenten M-Einzelgliedern E(x) und E*(x) gibt es ein
M-Doppelglied D(x, y) mit E(x)AE*(y)cD(x, y).

- (II1) Zu jedem M-Einzelglied E(x) und jeder Zahl ic{l, ..., r} gibt es jEM,

mit E(x)C F;;(x,z) oder jEN; mit E(x)~G;;(x).

(IV) Alle M-Grundformeln sind miteinander dquivalent.

Ist eine Formel F,, erfiillbar, so ist offenbar auch die Formel F erfiillbar. Um-
gekehrt gilt: Liegt ein Modell der Formel F vor, so erhidlt man eine Normalformel
Fyy durch dasjenige maximale Indexsystem

M= (Mqy,....M,,No, ..., N,, Py, .., P, Oy, ..., O
der Formel F, fiir das alle Formeln) .
Exﬂyﬂz[Aj(dx, ¥ DANU(ANU,(MAU(DDAx = yAx = zAy = 2] (jJEM,),
- Jx3y[Bi(x, VAU AU, (DAx = y] (JEN,),
AxAy[Fia DAU,QAU,(Ax = y] (=1, ...,r; jeM),
Ax[Gi()AU,(x)) (i=1,..,r; jEN),
Ax[H;)AU(x)] (i=1,..,s; jEP)

und K;; (i=1,...,5; j¢Q;) in dem betreffenden Modell erfiillt sind. Hiermit
ergibt sich:

Satz 1. Die Formel F ist. genau dann erfillbar, wenn es ein Indexsystem M
von F gibt, so daB3 Fy, eine erfiillbare Normalformel ist. " .

Es gibt nur endlich viele Indexsysteme von F, und man kann fiir jedes Index-
system M entscheiden, ob Fj, eine Normalformel ist. Es kommt also nur darauf
an, von einer Normalformel zu entscheiden, ob sie erfiillbar ist.

Im folgenden sei (4) eine Normalformel F,,. Ein M-Einzelglied E(x) heile
reguldr, wenn es ein M-Doppelglied D(x, y) mit

E(X)ANE(y) < D(x,y)
gibt. Jedes andere M-Einzelglied heiBle singuldr.

1. Fall. Jedes M-Einzelglied sei regulir.

In diesem Fall sind die Eigenschaften (I)—(IV) der Normalformel F,, bereits
hinreichend fiir die Erfiillbarkeit der Formel F,,. Es ist leicht zu erkennen, daf3 die
Formel Fy, in diesem Fall im Unendlichen erfiillbar ist. Man kann aber auch dhnlich
wie in der Priadikatenlogik ohne Identitit beweisen, daB die Formel F,; dann eben-
falls in einem geeigneten endlichen Bereich erfiillbar ist.

2. Fall. Mindestens ein M-Einzelglied sei singulir.

10 Acta Cybernetica IV/1

146 ' ‘ K. Schiitte

Wir wihlen dann eine maximale Folge
R(x); s Re(®) (2= 0)
von paarweise indquivalenten reguliren M-Einzelgliedern und eine maximale Folge
S, ... S,(x) (=1)

von paarweise indquivalenten singuldren M- Emze]ghedern aus.

Es 14Bt sich entscheiden, ob die Formel F,, in einem Bereich von hochstens
n+o-+1 Elementen erfiillbar ist. Wir setzen im folgenden voraus, daB sie in keinem
Bereich von weniger als n-+6+2- Elementen erfiillbar ist. Sie ist dann unerfiillbar,
falls jedes M-Einzelglied singulir ist. Wir nehmen nun an, daBl es mindestens ein
regulédres M—Emzelglled gibt, also ¢=1 ist. Dann definieren wir folgende For-
meln: . . .

R= AR, S= A Saye)

Ay)= A 3, DARCARMAREAS

B, p=[V V 4, i ¥ a,4) V B;(x, D]AR)AR()AS

JEMy u=1

Fu,(x: Z)ZE Aj(an+ln X, Z)/\R(X)AR(Z)/\S

JEM,

Gl/l(x): [\/ V A ((I,H_",X, n+v) \/ B (an-(-u,x)]/\R(x)/\S

161\/!0(0 1)
vEU
u=1, ...,_a)

Foou(,2)= V Aj(x,a,,, DARXAR(DAS
jeM,

‘G¢’1+u(x): [V V A4; (X, n+u’ n+v) V B(x3 n+u)]/\R(x)AS

JEMy v=1 Jj€Np

Faosilx, 2):= V Fy(x, Z)/\R(X)/\R(Z)/\S

JEM,;

Giosi()=[V V Filx, 4,00 V G(x)]ARMX)AS
JEM, u=1 JEN;
Wir setzen r’:=26+r und s’:=(g]+r-a+s. H{(z) (i=1,...,5") seien der
Relhe nach folgende Formeln: .
V A @psys Qpiys DAR(DAS (u,v.=1,...,0; u v)
JeMo . . .

Fij(@psus DARDAS (i =1, .,r;u=1,..,0)

161\],

H;(2)AR(2AS (i=1,...,59)..

J'Epi

Ein Ansatz zum Entscheidungsverfahren fiir eine Formelklasse der Pradikatenlogik 147

K{ (i=1, ..., s") seien der Reihe nach folgende Formeln:

. .
[\/ \/ Aj(an+u9 an+ua_ an+w) \/ Bj(an+u’ an+v)]/\S (ua U=]s O U FE l))
JEMy w=1 JEN,

(uzwstv)

[V V Ej(an+u’ an+v) '6\/\/ Gij(an+u)]/\S (l = 1’ e Py U= 1, seey 0')
Je; :

[\/ </ Hij(an+u) 'yQ KU]/\S (l = 1, ieey S).

Jj€P;u=1
Mit F’ bezeichnen wir dann die Formel

(Y VY {Up 10 A Ups g ()AXy =~ I2[4'(x, y, DA U, (DAX 2Ry 5% 2V B'(x, 1)}
A 501000~ 32005, DA U (XY G (0} ®)

i=1

J

\

| (B2lH (D AUy o DIV KSR IXIRGIAUp o (IASACoso.
l .

Satz 2. Ist F); eine Normalformel, die genau ¢ paarweise indquivalente sin-
guldre M-Einzelglicder und mindestens ein regulidres M-Einzelglied hat und in kei-
nem Bereich von weniger als n+o¢+2 Elementen erfiillbar ist, so ist F,, genau
dann erfiillbar, wenn die Formel F’ erfiillbar ist.

Falls eine Normalformel F,, nicht den Voraussetzungen des Satzes 2 geniigt,
148t sich in einfacher Weise entscheiden, ob F, erfiillbar ist. Andernfalls wird durch
Satz 2 ein Reduktionsverfahren gegeben, das der Normalformel F,, eine ,,Redu-
zierte*“ F’ zuordnet, die jedoch ldnger als F), ist. Es ist daher problematisch, ob das
Reduktionsverfahren abbricht. _

Falls das angegebene Reduktionsverfahren fiir jede Formel (1) abbricht, ist jede
derartige Formel, wenn sie liberhaupt erfiillbar ist, bereits im Endlichen erfiillbar.
In diesem Fall ist die betrachtete Formelklasse entscheidbar.

Falls das Reduktionsverfahren fiir eine Formel (1) nicht abbricht, ist diese
Formel nur im Unendlichen erfiillbar. Es ist jedoch problematisch, ob sich fiir
jede Formel der betrachteten Formelklasse entweder das Abbrechen des Reduk-
tionsverfahrens nachweisen oder effektiv eine unendliche Reduktionskette auge-
ben 1a6t.

Fir gewisse Teilklassen K und Sy der prinexen Formelklassen 3™ y23”
der Prédikatenlogik mit Identitit konnte M. Wirsing [7] beweisen, daB das hier
angegebene Reduktionsverfahren jeweils nach endlich vielen Schritten abbricht, so
daB jede erfiillbare Formel der betreffenden Klassen bereits im Endlichen erfiill-
bar ist.

MATHEMATISCHES INSTITUT
DER UNIVERSITAT MUNCHEN
D—8 MUNCHEN
THERESIENSTR. 39

10*

148) K. Schiitte

Literatur

'[1) GopEL, K., Ein Spezialfall des Entscheidungsproblems der theoretischen Logik, Ergebn. malh.
Kolloqmum 2, 1932, p. 27.

(2] GopEL, K., Zum Entscheidungsproblem des logischen Funktionenkalkiils, Monatsh. Math.
Phys., v. 40 1933, pp. 433—443.

(3] KALMAR, L., Uber die Erfiillbarkeit derjenigen Zihlausdriicke, welche in der Normalform zwei
benachbarte Allzeichen enthalten, Math. Ann., v. 108, 1933, pp. 466—484.

[4] ScHUTTE, K., Untersuchungen zum Entscheldungsproblem der mathematischen Logik, Math
Ann, v. 109 1934, pp. 572—603.

[5] ScHUTTE, K., Uber die Erfiillbarkeit einer Klasse von logischen Formeln, Math. Ann., v. 110
1934, pp. l6l—194

[6] KAHR, A. S., E. F. MoorE, and H. WaNG, Entscheidungsproblem reduced to the AEA Case,
Proc. Nat. Acad. Sci. U.S.A., v. 48, 1962, pp. 365—377.

{7] WIRSING, M., Das Entscheidungsproblem der Pradikatenlogik 1. Stufe mit Identitat und Funkiions-
zeichen in Herbrandformeln, Dissertation, Munchen, /976.

(Eingegangen am 22. Madrz 1978)

o

IN MEMORIAM LASZLO KALMAR
INDEX — TARTALOM

o —;‘

H Andreka and 1. Németi: The generalised completeness of Horn predicate-logic as a programm-

I IANGUABE . ..ttt ittt e e e e 3
M. A. Arbib and E. G. Manes: Tree transformations and the semantics of loop -free programs 11
A. P. Ershov: Mixed computation in the class of recursive program schemata 19
M. A. Gavrilov: Certain operations with the sets of discrete states 25
F. Gécseg and M. Steinby: Minimal ascending tree automatacoivuneen..n. 37
T. Gergely and M. Széts: On the incompleteness of proving partial correctness 45
G. T. Herman and H. K. Liu: A simple shading for computer displayed surfaces 59
G. Hotz: Normal-form transformations of context-free grammarscccuvueunen... 65
A. Ivdnyi and I. Kdtai: Processing of random sequences with priority 85
H. Jiirgensen: Uber das Rechnen mit den Elementen abstrakt prisentierter Halbgruppen 103
W. Kdammerer: Zur Synthese von DOL-Systement iiiiiiiiiiinennn, 117
M. B, Pour-El and I. Richards: Differentiability properties of computable functions — a sum-

130T 3 2 123
A. Salomaa: Equality sets for. homomorphisms of free monoids 127
K. Schiitte: Ein Ansatz zum Entscheidungsverfahren fiir eine Formelklasse der Pradikatenlogik

90} A (s /=] 11 ¢ 1 OO O N 141

| 1SSN 0324—721 X |

FelelSs szerkesztd és kiadd: Gécseg Ferenc
A kézirat a nyomdéba érkezett: 1978. szeptember hé
Megjelenés: 1978, december hé
Példanyszdm: 1025. Terjedelem: 13, (A/5) iv
Késziilt mondszedéssel, ives magasnyomassal
az MSZ 5601 és az MSZ 5602 —55 szabvany szerint

78-4411 — Szegedi Nyomda — F. v.: Dobd Jézsef igazgat6

