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A survey of grammar forms — 

B y S. GINSBURG 

1977* 

Introduction 

In [3] the notion of a grammar form was abstracted to consider the situation 
when a master grammar1 is given and one wishes to discuss grammars which " look 

like" the master one. Since then, research into grammar forms has continued a t a 
rapid pace.2 Moreover, other researchers have picked up on the form notion and 
have written extensively on L-forms (grammar forms applied to ¿-systems), e.g. 
[LI—L10]. In the present talk, I shall restrict myself almost entirely to grammar 
forms, and give a brief overview of those portions with which I am most familiar. 

Throughout, I assume a general knowledge of language theory. 

§1. Preliminaries 

By way of motivation for "looks like" in grammar forms, consider the three 
context-free rules: 

( 1 ) £ - a^azfi, 

(2) - WiOi'vvaj?', and 

(3) r - w i a ' w 2 i ? ' w 3 , 

where the Greek letters are nonterminals, the ai are terminal symbols, and the Wj 
are terminal words. From an intuitive point of view, would you agree that rule 2 
looks like rule 1 (because the primed nonterminals correspond to the unprimed 

* The contents of this survey are a combination of two distinct talks. The first was at the 
Colloquium on Automata and Formal Languages, in Szeged, Hungary, August 30—September 2, 
1977. The second was at the 6th International Symposium on Mathematical Foundations of Com-
puter Science, in Tatranska Lomnica, Czechoslovakia, September 5—9, 1977. 

1 Unless otherwise stated, grammar is to mean context-free grammar. 
2 The pace can be determined by comparing the present survey with that given 2 £ years 

ago in [5]. 

I Acta Cybemetica III¡'4 
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nonterminals , and the terminal words correspond to the terminal symbols)? Wou ld 
you also agree tha t (3) does not look like (1) (because while /?' corresponds to ¡5, 
w>3 does no t correspond to anything to the right of /?)? If your answers were yes to 
both questions, then you should have no difficulty in agreeing with the reasonableness 
of the abstraction of when one g rammar looks like another . 

We now formalize our ideas. 

Definition. A grammar form is a grammar 3 G — (V, I , P, a), together with 
underlying infinite alphabets V„ and Zm, such tha t 1«, is infinite, 
I Q I c o , and . 

The underlying alphabets and Zm will always be unders tood. Hence we 
shall usually omit them and identify a g rammar f o r m with a grammar . T h e term 
"g rammar f o r m " will be employed when we wish to emphasize tha t the g r a m m a r 
G is conceived as a master g rammar fo r describing a family of grammars , each of 
which looks like G. The term " g r a m m a r " will be used to indicate that the g r a m m a r 
G is to be considered primarily as a device generating a set of strings, i.e., generating 
a language. 

We now specify when one g rammar is to " look l ike" another . The mechanism 
for accomplishing this is an " interpretat ion". 

Definition. A n interpretation of a grammar fo rm G = (V, I , P, a) is a 5-tuple 
I=(H, V,, Zj, Pj, Sj), where ¡i is a substi tution on V* satisfying 

(1) fi(a) is a finite subset of I t , f o r each element a in 2", ¡.i(c) is a finite subset 
of V„-Z„ for each c, in V-Z, and n(oi)f)fi{j3) = 0 for all a ^ p in V-Z. 

(2) P, g IJ n), where /i(c - vv) = {a - y/a in n(£), JV in /i(w)}. 
JlinP 

(3) S/ is in n ip) . 
(4) Vj(Zj) contains the set of all symbols (terminals) occurring in the rules 

of PJ. 
Gj — (Vj, ZJ, PJ, Sj) is called the grammar of the interpretation. 
The g rammar GT is context free and is supposed to look like the master g r a m m a r 

G. The substi tution N indicates what symbols in the original g rammar can be replaced 
by what strings, i.e., which words look like what symbols. In particular, terminals 
are to be replaced by strings of terminals, but nonterminals are only to be replaced 
by nonterminals. The condition N(a.)flAi(/O = 0 f ° r all ol^P in V—Z means 
tha t replacement of distinct variables must be by distinct variables. Condi t ion 2 
asserts tha t each rule in PI must resemble some rule in P. No te that we do n o t require 
all rules looking like those in P to appear in G,. Condit ion 3 merely says t ha t the 
start variables must correspond. Condit ion 4 is strictly technical and asserts that 
the terminals in GI come f r o m the universal variable a lphabet V^ — Z^. 

Notation. Fo r each grammar fo rm G let ^ (G) = {G,JL an interpretat ion of G} 
and let ££'{G)={L{GI)IGI in 'S(G)\ <£(G) is called the grammatical family of G. 

Thus the g rammar form G acts as a master g rammar for all grammars in ^ ( G ) . 

3 We assume the reader is familiar, to some extent, with context-free grammars. Here Z is 
the finite set of terminals, V is the finite set of both terminals and nonterminals, P is the finite set 
of rules each of the shape w, where c is a nonterminal and w is in V*, and a is in V—Z. 
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We now illustrate the above concepts with some specific grammar forms G. 
The resulting &(G) and i f (G) will turn out to be well-known families of grammars 
and languages. 

Examples. (a) Let G = ({<r, a), {a}, P, a), where P= {a-^aa, a—a). Each rule 
resembling <7—aa is of the kind £ — where e, v are variables and w is a terminal 
word. The rule a—a gives rise to rules w, where w is a terminal word. Then 

G) is the family of all right-linear grammars and i f (G) is the family of regular sets. 
(b) Let G=({ff, a, b, c}, {a,b,c}, P, a), with P= {o-+aob, <7—c}. Then 

i / (G) 'is the family of all linear grammars and i f (G) is the family of all languages. 
(c) Let G=({a, a), {a}, P, a), with P= {<T-<J<7, a^a). Then <g(G) is the 

family of all grammar in Chomsky binary normal type and i f (G) is the family of all 
context-free languages. 

Results involving just fS (G) or relations between grammars, such as "is an 
interpretation o f " , may be viewed as grammar theory. Results concerned with 
grammatical families may be either grammar theory or language theory, depending 
on the emphasis. 

Finally we have: 

Definition. Grammar forms G1 and G2' are said to be strongly equivalent if 
^ (G 1 ) = ^ (G 2 ) , and (weakly) equivalent if ¿e(G l ) = £ ' (G 2 ) . 

Thus strong equivalence is a grammar concept, while equivalence may be either 
a grammar or language concept. 

The notion of interpretation given above is the most general that has been 
seriously considered. On the other hand, there are numerous restrictions on interpreta-
tions, leading to such kinds as nondecreasing,4 length preserving,5 strict,6 etc. For 
each such kind of interpretation x, one may speak of strong x-equivalence and (weak) 
x-equivalence, meaning that f3x(G1) = fSx(G^) and i f t ( G 1 ) = i f t (G 2 ) , respectively, 

(Gx) being the family of grammars obtained f r o m x-interpretations of Gx and 
Z£x (Gj) being the family of languages {L(G)\G in <SX(G1)}. -

In presenting our survey of grammar form theory, we shall divide the results 
into five categories. These are grammar, language, decidability, complexity, and 
applications. As will be noted, some of the results fit into more than one category. 
In view of the nonmathematical nature of the applications and the mathematical 
nature of this audience, I shall not report on applications. 

§ 2. Grammar theory 

The results here are essentially of two kinds. The first involves the notion of 
"is an interpretation o f " , while the second concerns normalization theorems, i.e., ' 
results such" as : For each grammar form with properties A, B, ... there exists an 
equivalent grammar form with properties P, Q, ... 

In [3] it was shown that the relation "is an interpretation o f " is transitive. In [10] 
it was proved that modulo strong equivalence, all grammar forms under "is an 

4 For each element a in X, ft(a) is £-free. 
6 For each element a in 27, /¿(a) is a finite subset of . 
6 // is length preserving, and ft(a)r\M(b) = Q for all a^b in£. 
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interpretation o f " form a distributive lattice. Indeed, the existence of a -gib for 
two grammar forms has an interesting restatement as: For all grammar forms 
and C2 , there exists a grammar form G3 such that H =^(G 3)• In [11], 
a new operator Q on a grammar form G is defined, yielding a family of grammars. 
Specifically, £?(G)={G/// a quasi-interpretation of G}, where a quasi-interpretation 
of a grammar form G—(V, I , P, o) is a 5-tuple I—(ji, Vt, P,, S,) satisfying 

(i) n is a substitution on V* such that n{a) is a finite subset of I * for each 
element a in E and /1(£) is a finite subset of for each £ in V— I; 

(ii) P ^ n i P y , 
(iii) S/ is in fx (CT) ; and 
(iv) G f = ( K / 5 1 , , P,, 5/) is a grammar for which ^¡(I/) contains each symbol 

(terminal) occurring in P,. 
Two results [11] involving Q(G) are: For each grammar form G, rSQ(G) = 

= Q&(G), and the collection of all families 2?(G'), G' in Q(G), is finite. 
An outstanding open question is the following: Let G be a grammar form and 

¿¡PQ JS?(G) a grammatical family. Is J§? in the class {if ((?,) / /an interpretation of G}? 
In other words, do all interpretation grammars of G, when viewed as grammar forms, 
yield all grammatical subfamilies of iC(G)1 Analogous questions hold if interpreta-
tion is replaced by ^-interpretation, x some "reasonable" kind of interpretation. 

An open topic suggested by the Q operator is the following: Find different 
operators % on grammar forms G so that 

(i) °ll(G) is a family of grammars, and 
(ii) % has nice properties vis-a-vis operators already specified, e.g., with 

and Q. 
One would hope that there are a whole host of different operators yielding a 

variety of new relations and insights. Of special interest would be operators suggested 
by well-known transformations of grammars in, say compiler theory. 

Turning to normalization results we have the following, proved in [3]: Each 
grammar form has an equivalent, completely reduced7 sequential grammar form. 

Indeed, one might think of a large class of normalization problems thusly: Let 
P be a property about grammars, e.g., unambiguity. Find grammar forms G with the 
property: There exists a grammar form G' so that (G) = {L{GI)jGI in ^(G'), Gt 
has property P}. 

There are many variations to the above stated canonical type problem. Con-
sider this result [7]. If G is an unambiguous grammar form, then ¿ f s t l i c t (C) = 
= {L(Gj)/G/ in i?s,riCt(G), Gj unambiguous}. Thus, there are "sufficiently m a n y " 
unambiguous strict interpretations of an unambiguous grammar form to yield all 
strict interpretation languages. 

Finally, in [14] various kinds, x, of interpretations of a form are studied f r o m the 
viewpoint of conflict freeness (as used in compiling). For example, let G=(V, I , P, a) 
be a grammar form with the property that for each variable £ there is a non e terminal 

word w such that i i v v . Then the following three conditions occur simultaneously: 
(1) &(G) is conflict free (i.e., each grammar in $(G) is conflict free). 

' A grammar form G — (V, Z, P, a) is completely reduced if (i) G is reduced, (ii) there are 
n o variables a and fi such that a—J3 is in P, and (iii) for each variable a in V— (£U{a}) there 
exist x and y in X*, xy^e, such that <x—xoty is in P. 
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(2) ^nondecrcasingCG) is conflict free. 
(3) G is separated (that is, for each rule <!;— w in P, w is in (V—Z)*UZ*) and 

whenever a ruie q-^y is in P, with y in (V— Z) + , then y is in V— Z. 
Given a grammar form G, ^ s l r i c i(G) is conflict free if and only if G is conflict 

free. Characterization results are presented on a grammar form in order for it to 
have a strongly (x —) equivalent conflict free grammar form, where x is strict, length 
preserving, and nondecreasing, respectively. It is also shown that every grammar 
form has an equivalent conflict free grammar form. 

§ 3. Language theory 

We now review some language theory results. Since language theory itself is 
so vast, this section could easily dominate all the others. In addition, it is very easy, 
considering our experience, to phrase innumerable questions about grammar forms 
which have a language theory flavor. While one cannot stop "progress", I personally 
believe it is not in the best interests of grammar form theory to exploit grammar 
forms for the purpose of language interests. The real aim of grammar form theory 
should be to develop new ideas, insights, questions, etc. about grammar concepts. 

In § 1, examples were given to show that the regular sets, the linear languages, 
and the context-free languages are grammatical families. In [3], characterizations 
on G were given in order that i f (G) be 

(1) M, the family of regular sets, 
(2) i f , j n , the family of linear languages, and 
(3) seCP. the family of context free languages. 
For (3), the if and only if is quite interesting, namely that G be an expansive 

grammar in the classical language theory sense. From this it follows that each 
grammatical family i f (G) ^ i f C F contains only derivation bounded languages. 
Thus, the one-counter languages are not a grammatical family. This might explain 
why no "simple" type of context-free-like grammar is around to describe these 
languages. 

Whenever one has a family of languages, it makes sense to investigate its closure 
properties. For grammar forms we have the surprising result [3] that if G is non-
trivial, i.e., L(G) is infinite, then i f (G) is a full principal semi-AFL. The converse, 
of course, is not true. As mentioned above, the one-counter languages are not a 
grammatical family. Neither is the full principal semi-AFL generated by {a"Z>7w —!}• 
In connection with the above semi-AFL result there is a cluster of open questions 
concerning grammars G such that L(G) is a full generator for i f (G). For example, 
what are some necessary and sufficient conditions on G, or what are just some 
useful sufficient conditions? The reader is cautioned to be careful. There are many 
pitfalls. My favorite is this: G — ({a, a, b), {a,b}, {o-+aob, o-+ab}, a) is a form 
for which i f ( G ) = i? l j n . On the other hand, L(G)= {a"b"/n^l}, which is not a 
full generator for 

One of the major operations in language theory is that of substitution. It is 
thus natural to try to define the substitution of one grammar form into another. 
This can be done as follows: For grammar forms G and G', let Sub (G, G') be the 
form obtained by substituting the start variable of G' for every occurrence of a 
terminal in the productions of G. This yields [13] the obvious result desired, namely, if 
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G is nontrivial then for every g rammar form 8 G', & (Sub (G, G')) = Sub ( i ? (G), <£ (G% 
N o w it is known tha t if SC is a full semi-AFL, then Sub i f ) is a full A F L . Since 
the grammar fo rm with rules a-*-ao, c—a yields Si, it follows that for each g r a m m a r 
fo rm G'-(V',r,P',ff'), the form Sflb (G, G') = (V", I ' , P", a') where P" = P'\J . 
U{(T-<T'(T, CT-CT'} yields the full A F L generated by £?(G'). 

Earlier, we noted that for each nontrivial g rammar form G, £?(G) is a full 
principal semi-AFL. It remains an open problem to characterize " internal ly" those 
full semi-AFL which are grammatical families. However, we can given "ex te rna l " 
characterizations of such semi-AFL. These characterizations are similar in spirit 
to the Kleene theorem for regular sets, in that they describe the collection of a lmost 
all grammatical families in terms of a few elementary ones and composit ion under 
some basic operations. We elaborate. Fo r sets JS^ and ¿f2 of languages, let 

SeiMSe2 = { L l U L 2 / L l in in i f 2 } 
and 

£f10&i = j u LuLrJk 1, each Lu in each L2i in £f2J. 

Let ¡F be the full A F L operator , i.e., for each family ¡£ of languages let 2P(S£) 
be the smallest full A F L containing i£. Finally, for all sets i£a,S£b, S£c of languages, 
let 3~{Sea, seb, sec) = {z(L)/L = L(G), G = (F l 5 AUBUC, P, cr) is a split l inear 
grammar,9 T is a substi tution on {A\JBVjC)* such tha t T(X) is in <£a if x is in A, 
r(x) is in ieb if x is in B, and t ( x ) is in ¡£c if x is in C}. There are two characteriza-
tion results abou t the grammatical families [4]. The first is: The collection of all 
grammatical families not {0} and not S^cp is the smallest collection of sets of lan-
guages containing ¿f £={{e}} and ¿? f i n={all finite languages} and closed under 
V, o , and ST. The second is : The collection of all nontrivial grammatical families 
not S£cv is the smallest collection of sets of languages containing 0t and closed under 
V, o , sr, and 

At the beginning of this section it was mentioned tha t each grammatical family 
no t jS?Cf is a family of derivation bounded languages. As any language theorist 
knows, there is a close analogy between derivation bounded languages and non-
terminal bounded languages. Question — are the nonterminal bounded languages 
lurking in the g rammar fo rm bushes? Answer — yes, if you look for them. Let us 
call a grammar fo rm G = (V, I , P, <x) sequentially ultralinear if 

(i) it is sequential, and • 
(ii) whenever f—at;/} is in P, a and [1 in V*, then a/? is in I*. 
Call a grammatical family ultralinear if it is generated by some sequentially ultra-

linear grammar form. The following result has been established [6]. The three 
statements: 

8 For two families and of languages, Sub (J$f1; £?2) = {t(L1)/Ll in JS?,, r is a substitu-
tion on Lt such that r(a) is in .2V for every symbol a). 

9 A split linear grammar is a linear grammar G = (K 1 ,Z 1 , er,) such that there exist dis-
joint sets A, B, C with the following properties: (1) Zi~A \JBIJC. (2) Every terminal production 
is of the form c for some i in Vx and c in C. (3) Every production which is not a terminal 
one is of the form at;' for some f , in V1—E1 and a m A or i^i'b for some in 
and b in B. 
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(a) i f is a nontrivial ultralinear grammatical family; 
(b) i f is a nontrivial grammatical family of nonterminal bounded languages; 

and 
(c) i f can be built u p f r o m 31 by a finite sequence of applications of o , V, 

and [] , where [J2?] = ^ " ( « , i f , £ ) ; 
are equivalent. Thus, a relatively simple class of grammar forms gives rise to a rather 
natural class of families of languages. 

A rather popular topic in language theory is tha t of control sets. In [16, 17] 
Greibach has presented a number of results in which control sets play a leading 
role. The following is a sample. Let G be a nontrivial left derivation bounded grammar 
form with left derivation bound k. Then there is a nontrivial equivalent grammar 
form G0=(V0, S0, P0, <x0), left derivation bounded with left derivation bound k, 
such that for each finite a lphabet I , {Lf)Z*/L in i f (G)} consists of all languages 
obtained by using regular sets as control sets for lef tmost derivations over iI(Glt). 
[*r(C7o)=(^o> °O)> where T2- is the substitution on F0* defined by = {C} 
for each ^ in F0—E0 and T r(a) = .£U{e} for all a in Z 0 . ] 

§ 4 Decidability 

There are a number of different decidability results. We shall mention a fair 
sampling. 

It is solvable [3] to determine whether or not, given an arbitrary grammar G' 
and grammar form G, there is an interpretation I of G such that G' = Gt. Also, 
the strong equivalence problem is solvable. One question tha t has been open since 
the beginning of g rammar fo rm theory is the decidability of (weak) equivalence. 
That is, can one tell for arbitrary grammar forms G1 and G, whether i f ( G J = i f (G2) ? 
Even though the problem is s tandard in situations of this kind, nevertheless, its 
solution here seems to be of importance since it seems to be related to Several ques-
tions involving two or more grammatical families. For example, is ^ ( G ^ D S C i G ^ ) 
always a grammatical family? Given a context-free language L, does there exist a 
smallest grammatical family containing LI 

Research is currently underway with respect to the decidability of equivalence. 
T h e a u t h o r , i n c o n j u n c t i o n w i t h JONATHAN GOLDSTINE a n d E D W I N H . SPANIER, h a s 
reduced the problem to abou t ten inclusion problems involving the operators V, 
G, and ST. We think we have resolved all the cases (thereby settling the decid-
ability in the affirmative). However, until all the details have been written, we are 
making no claim. We hope to be able to announce the answer within three months 
(say December 1, 1977). 

A special case of the equivalence problem has been resolved affirmatively. 
In [6] it is shown tha t for any two sequentially ultralinear g rammar forms GL and 
G2 , it is solvable to determine if (GJc&(G2), and therefore if i f (G t) = i f (C2). 
The proof is quite involved, and consists of showing tha t the operations of o , [ ], 
and V applied to 3&, when suitably restricted in combination, are intimately deter-
mined by the end ultralinear grammatical family. Indeed, and this is a surprising 
fact, there is an essentially unique canonical representation of each nontrivial ultra-
linear grammatical family in terms of "semibracketed expressions", namely, certain 
combinations of M, o , V, and [] . 
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In [7], certain decidability results are established for strict interpretations of 
unambiguous grammar forms. Specifically, for each unambiguous grammar form 
and each positive integer k, it is decidable whether 

(a) an arbitrary strict interpretation grammar is ^-ambiguous; 
(b) for any k languages Lx, ..., Lk generated by10 compatible strict interpreta-

k k k 
tion grammars, (i) D is empty, (ii) p | Lt is finite, (iii) IJ L-, is 

¡=1 i = 1 ¡ = 1 
infinite; and 

(c) for any two languages Lx and L2 generated by compatible strict interpreta-
tion grammars, (i) L1QL2 and (ii) LX=L%. 

§ 5. Complexity 

While some work has been done on complexity, this essentially is an area 
which has received only modest attention. Indeed, the summary given below is 
basically the same as given in section 5 of [5], with the inclusion of some material 
f rom [7]. 

In [10], it is shown that for each grammar form G there exists an "essentially 
unique" strongly equivalent form G' with the fewest number of productions pos-
sible. Furthermore, G' can always be found with its productions a subset of those 
of G. 

Complexity of derivations is studied in [9]. Fo r each grammar form G and each 
grar.imar G' in &(G), the complexity function 4>c. is defined for each word x in 
L(G') as the number of steps in a minimal G'-derivation of x. It is proved that 
derivations may also be speeded up by any constant factor n, in the sense that for 
each positive integer n, an equivalent grammar G" in ^(G) can be found so that 

Ixl 
<PG" ( x ) = — for all large words x. 

n 
' In [10] grammar forms are compared for their efficiency in representing lan-

guages, as measured by the sizes (i.e., total number of symbols, number of variable 
occurrences, number of productions, and number of distinct variables) of interpreta-
tion grammars. Right- and left-linear forms are essentially equal in efficiency for 
every regular set. Each form for the regular sets provides at most polynomial im-
provement over right-linear form. Moreover, any polynomial improvement is attained 
by some such form, at least on certain languages. Greater improvement for some 
languages is possible with forms expressing larger classes of languages than the 
regular sets. However, there are some languages for which no improvement over 
right-linear form is possible. A similar set of results holds for forms expressing 
exactly the linear languages. On the other hand, only linear improvement can occur 
for forms expressing <S?CF. 

There is one more place where complexity has been considered. This is in 

10 Strict interpretations I t = (jtt , V. , L. , Sr.), j—\,...,k, i s 2, of a grammar form 
k k 

(V,L,P,a) are called compatible if | U //7 (.v)j f i ^ U = 0 for all x, y in V wih x^y. 
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parsing. While parsing can be regarded as an application, for the present purpose 
I shall catalogue it under complexity. The first result is f rom [1]. Let G be an arbitrary 
unambiguous grammar form. Suppose there is a function t(n), n^O, and a parsing 
procedure MG for G which, for each word co, in i(|©|) steps, parses co if in L(G) 
and rejects co if not in L(G). Then for each strict interpretation J=(fi,, Gj) of G, 
there exist a parsing procedure M, for G,=(Vj, 17, JPj, Sj) and a constant c with 
the following property: For each word w in I*, Mj, in c - / ( |w | ) steps, accepts w 
if w is in LiGj) and rejects w if it is not in L(G[). This result has been generalized 
in [7]. Specifically, let G = (V, Z, P, a) be an arbitrary grammar form and suppose 
there is a parsing method MG for G and a function t(n), n^0, such that for each 
word of length rt, Ma outputs all leftmost derivations of that word in at most t (n) 
steps. Let I—in, V 1 , I I , PI, Sj) be a strict interpretation of G. Then there exists 
a parsing procedure MI for Gj and a constant c such that for each word w in I*, 
in c • /(Iwl) steps, Mj accepts w if in L(G,) and rejects w if not in L(G,). Further-
more, if p(ri), n = 0, is such that for each word of length n in L(Gj) there are no more 
than p(n) equally rshaped derivations11 of that word, then M1 yields, in c• t(\w\} 
steps, all leftmost Gt-derivations of w. 

§ 6. Grammar forms which are not context-free 

In the present section, I shall discuss grammar forms which are not necessarily 
context-free. [The definitions of interpretation, £C(G), etc. carry through in the 
obvious way.] 

The original definition of grairunar form, as given in [3], was for arbitrary 
phrase structure grammars. Due to the scarcity of results in such a general situation, 
the investigation was quickly limited to context-free grammars and has stayed 
that way since. At present, with the exception of the first part of [3], the only results 
on arbitrary grammar forms are in [18]. The basic, original question, and it is still 
unresolved, is this: Are there any grammar-forms G such that 

( * ) y ( G ) Q £Ccf is false and i f (G) j±S£ r e , ¿fR E being the family of recursively 
enumerable sets? 

In 1972,1 mentioned this problem to my associate DR. GENE F. ROSE. He strug-
gled, with ( # ) , on and off, for several years, to no avail. [That means that the ques-
tion is difficult.] His opinion was that the answer to ( * ) was probably no. This 
opinion is also shared by the authors of [18], as is noted in their abstract. Some 
progress was made in [18], since it was shown there that the answer to ( * ) is no 
when the grammar form has exactly one nonterminal. 

Even if the answer to ( * ) turns out negative, the subject of non context-free 
grammar forms should be a fertile field of study. All interpretations need not be 
studied. One could examine appropriate subclasses. [An analogous situation arises 
with the family of context-sensitive languages. It is not discarded just because its 
closure under arbitrary homomorphism is J?RE.] In fact, a start on this aspect has 

11 Two derivations are equally shaped if their parse trees are equally shaped. Two derivation 
trees are equally shaped if each tree can be obtained from the other by relabeling nonmaximal nodes. 
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already been done in [18]. A number of different, restricted types of interpretations 
of non context-free forms are considered, and then used to characterize several 
well-known language families between i£CF and such as EOL, ETOL, matrix, 
.and scattered languages. Much remains to be done. 

§ 7. Future development 

The discussion up to now has been on grammar forms. I would like to speak 
•about the general notion of a form as a method of studying when one graphlike 
structure looks like another. 

As we all know, there is a considerable body of knowledge, under the title 
" L systems," of context-free grammars in which parallel derivation occurs, that is, 
at each step each symbol in the string is replaced. During the past two years the 
•concept of an L-form (forms applied to L-systems) has been studied [LI—L10]. 
The results themselves are of no concern to the present discussion. .What is of interest 
is that the notion of form has been carried over to this graphlike structure, with 
fruitful consequences arising. 

Recently, a study was made of pushdown acceptor forms (pda forms) [14]. 
The aim here is to get a right definition of when one pda looks like another. If one 
thinks of an input symbol to a pda as a terminal and a state of a pda as a nonterminal, 
then input symbols are replaced by finite sets of input strings and states by finite 
sets of states. In addition, distinct states go into disjoint sets of states. But how 
.should one / handle replacement of symbols on the auxiliary storage? The key is 
to regard auxiliary symbols as additional storage. Since states (which are storage) 
are replaced by finite sets of states (with the disjointness property), pushdown 
symbols should be replaced by finite sets of pushdown symbols (with the disjointness 
property). The main question considered for pda forms is what are the resulting 
families of languages? Because context-free languages coincide with pda languages, 
the obvious answer would appear to be the class of all grammatical families. And 
indeed, this is what does happen! However, the proof is quite involved. In any 
case, the coincidence of the two classes of families is an indication of the "correct-^ 7 

ness" of the abstraction mode. 
Currently, in conjunction with DR. E. F. SCHMEICHEL, I am working on "graph 

forms" and "looks like" for graphs. The idea is simple. Nodes and edges in a graph 
are like nonterminals. One must be careful to see that linkage corresponds. Specifically, 
we have: 

Definition. Let G = (N, E) be a (finite) graph. An interpretation of G is a 
triple 1= (¡.i, N , , £•/), where p is a function on N(JE such that 

(i) /¿(v) is a finite set of nodes for each v in N, with p(v1)f)n(v2)=$ for 

• (ii) N j Q U ^(v), and 
v iniV 

(iii) U /*(?)> w i t h n(v1,v2)=n(v1)Xn(v2) for each edge e = (v1,v2). 
ein E 

For each graph form G let ^ ((?) = {(//// an interpretation of G}. 
The investigation here is in its infancy and results obtained to date are scattered. 
In view of the similarity between interpretations for grammar forms, / . - forms, 
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pda forms, and graph forms, it seems highly likely that other graphlike structures 
can be treated f rom the form perspective. Situations that readily come to mind are: 
Petri nets, pattern theory, data bases,12 data types,13 security models, various types 
of acceptors. The key in each instance is to determine what "looks like" (i.e., the 
ju function) is to mean for those features of graphlike structures which are not anal-
ogous to variables in a grammar. There does not seem to be any straightforward 
way of doing this. Rather, insight and trial-and-error appear to be the main tech-
niques. The benefits to be accrued from a successful model for almost any kind of 
graphlike structure are a strong incentive. 

Abstract 

The present paper gives an overview of grammar form theory 1977. Concepts, results, and 
open questions are considered. In addition, general philosophy and future directions are expounded. 

UNIVERSITY OF SOUTHERN CALIFORNIA 
LOS ANGELES, CALIFORNIA, USA 
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On machines as living things* 

By LE H O I 

I. Introduction 

As it is known Von Neumann in [9] considered environment as tessellation 
structure. The tessellation is a mathematical system to model a behaviour and 
structure of uniformly interconnected identical finite automata, processing informa-
tion as the result of local functions acting simultaneously throughout the array on 
the states of the interconnected automata. Von Neumann [9], J. Thatcher [8] 
E. F. Codd [4], A. Smith [7] and M. A. Arbib [1—3] considered machines only 
self-reproducing in tessellation without metabolism, adaptation, evolution etc. 

Here we consider environment as modular space. 

Fig. 1 

In Figure 1 vt representing a module (in state vt £ V) of "solid sub-volume" is con-
sidered as a "molecule" of the solid sub-volume embedded in "fluid environment". 
Moreover, — representing a "raw module" is considered as a free molecule in fluid 
environment. Every module can change its state depending on its present state and 
the state of its neighbourhood. But the difference between Von Neumann's tessella-
tion and our modular space is that positions of modules in tessellation are fixed, 

* Presented at the Conference on Automata and Formal Languages, Szeged (August 30— 
September 2, 1977). 
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but modules in our modular space can move depending on their present neigh-
bourhoods. 

For one-dimensional solid volume, we denote its configuration in the environ-
ment (like in Fig. 1) by v2 vs b vs ve i;7) or shortly by the word v2 v3 v4 b vb v6 u , . 
The ring ( ) indicates raw modules surrounding the solid volume. 

II. Main problems 

We define, formalise and construct some kind of universal environments enough 
for those machines (solid volumes embedded in them), which in the environment 
not only compute all of the partial recursive functions and are self-reproducing as 
in Von Neumann's tessellation, but also have some important other characteristics 
such as growth, death, adaptation and mutation. 

III. Main notion and main results 

It is shown that the environments which can be formalized by the so-called 
"parallel exchanging system" (P. E. System) are enough for our above mentioned 
requirements. 

Definition. An RE-System is a triple S=(V, F, b) where V is a vocabulary, 
b£V is called the "blank", F is a finite non-empty set of productions of the fo rm 
(avP,y), v£V; a,P,y£V* (that means, v in the neighbourhood (cc~P) is replaced 
by y) with the following conditions 

1) If ( a v f r y J e F and (avP,y2)£F then y± = y2. 
2) If (a1vp1,y1)eF and (a2vp2, y2)£F then |«i| = |a2| and l & M & l (|a| is 

the length of a). 
3) Productions of b are only of the forms (abp, v), \v\ = l or (abfi, b") where 

or V P^b™ and n, {0, 1, 2, 3, ...}. 
m m 

When defining relations on V* "x directly generates / ' , written x\—y, "x 
k 

generates y in A>step", written .x =>_y, and "x terminally generates y" written 
x y-> productions are applied simultaneously. 

Theorem 1. The class of "stability function" h: V*^V* (y=h(x) iff x |=>>>) 

in all PE-Systems F, b) is a proper subclass of partial recursive functions 
on V*. 

We can formalise the required environments E—(A, X, F, b) as a special kind 
of PE-System S={V,F,b) where V=A\JX, b£X and 

( a v p , y ) £ F | a | ^ 2 , \p\ ^ 2, | ? | ^ 2. 

Definitions. A modular machine (M-machine) Z in an environment 
E= (A, X, F, b> has the following elements: 
— the signal to begin working a0 
— the signal to stop working * 
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— the body a containing a program 
— an input tape x, output tape y 

where a0, * , « are distinguished strings of modules in states f rom A; x, y are 
strings of modules in states f rom X. 

When beginning to work the modular machine Z has an initial configuration 
interpreted as the string of modules a0ax surrounded by raw modules. Denote 
this by (a0ax.) Each module of the machine can change its state to a determined 
state; or can either become a raw module and go off the machine, or can change 
its state and simultaneously splice (take in) one raw module 9 above it onto its 
left. The behaviour of modules defined by productions F is such that the initial' 
configuration (a0ax) can enter the "terminal static configuration" (Pb*yy) with 
P,y£A*, Z>=blank, y£X*, a0<ty, * <ty and if p\~p' (*y)\-(*y)' then fib * yy 

E E 
P'b(*y)'y. Furthermore, the machine is always surrounded by raw modules as. 

E 
a solid volume embedded in liquid environment E, and we write 

/ 
a0ax=> fib*yy. 

In this case we say the M-machine Z=a0a or Z=(a,a0, * ) in E=(A, X, F, b)-
(denoted by (a, a 0 , * ) in (A, X, F, b)) transforms x into y (or computes y = F^{x)), 
reproduces /? and modifies the program in a to the program in y, and also write 

a0ax=j>fb*yy 

if pb*yy is the first configuration of this form derived f rom a0ax. 

If product [i also is a modular-machine then we say that machine a0a is a com-
putation-organism (C-organism). If product [3 equals a0 a or * a then we say that 
machine a0a in E is self-reproducing. If | y | > | a | and a0a is also a C-organism in E 
then (a, a0, * ) in E is growing. If | y | < |a | then C-organism (a, a0, # ) in E is degen-
erating. A C-organism (a, a0, *) in (A, X, F, b) is said to die by x after computing 

z 
y = Fz(x) if a0ax=> *ab*yy but \jx'£X*: a0yx' l=> a0yx', that is Z = a0a 
is no longer active after interacting with x. 

If y is a function of y (and a) such that a0y is still an M-machine then Z=a0oc 
is said to be adaptive. If (a, a 0 , *). is a C-organism and BxgA"* such that /3 is also 
an M-machine but P^a0a. and *a then (a, a0, * ) in E is an M-machine with, 
mutation. 
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Theorem 2. There exists a universal environment Ec„ in the sense that for 
every partial recursive function / we can construct an M-machine Z in Ec u to com-
pute / . 

Corollary. The class of partial recursive functions coincides with that of paral-
lelly computable functions of modular-machines. 

Some theorems show an existence and how to construct the universal environ-
ments for growing machines, for self-reproducing, for degenerating, for going to 
death after a number of computations or for all of them. 

Notation. Let Z = ( a 0 , a 0 , * ) in ( A , X , F , b ) be an adaptive machine and 

a0a0xi =?>Pib*y1y1 

0 
02b*y2y2, •••,a0yn-iXn ===>• pnbynyn, Fb Fb 

•'l yn-1 

and a0yn be a M-machine in (A, X, F, b). Then we denote the M-machine a0y„ in 
E by Z(x1; x2, . . . , x„). 

Theorem 3. There exists a universal environment for adaptive C-organisms 
Z ' s in which every Z ( x 1 ; x 2 , . . . , xn) also is adaptive and self-reproducing if domain 
•of ^zoclxs, ...,*„) is non-empty. 

Theorem 4. There exists a universal environment for adaptive C-organism with 
z 

mutations Z ' s (i.e., Z is adaptive and also is with mutation), and if a0ax => *fib*yy 
then a„fi and a0y also are adaptive C-organisms with mutation (if their domains, 
D o m are non-empty) and /? is a function of (a, y). 

Two last theorems say that by "adaptat ion" and "muta t ion" C-organisms in 
evolution modify their programs in a depending on a and new situation y in the 
•environment and then transmit the new genetic programs in y to their offspring (I. 

IV. Conclusion 

By tessellation structure, Von Neumann, Thatcher, Codd, Smith, Arbib were 
•concerned with only self-reproducing machines. Professor Pawlak [5] introduced 
the model of stored program computer only with modification of instructions. 
René Thorn's theory of development and morphogenesis concernes the systematic 
•continuous-topological approach (cf. [6]). Here, by means of PE-System, we in-
troduced a new mathematical model of computing machines not only self-reproducing 
but with some other essential characteristics of living things, and we showed universal 
•environments for such machines. Since modules in tessellation can not move, self-
reproductions and movements in tessellation are rather of configurations, pictures 
(of machines) than of machines themselves. In our modular space, self-reproduc-
tion, adaptation, movement are of modular-machines themselves. 

DAI HOC THUONG NGHIEP 
i(Ng. th. Minh) 
HANOI, VIETNAM 
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Local and global reversibility of finite inhomogeneous 
cellular automaton* 

B y E . KATONA 

Cellular automata are highly parallel working systems, so they have high im-
portance in computational applications (for example sorting [4], matrix operations, 
etc.). It seems difficult to apply the classical infinite, homogeneous cellular automata 
to these purposes [1], [2]. For this reason the classical definitions are modified in 
this work. In point 1. we introduce the notion of finite, inhomogeneous cellular 
automaton. The1 reason of first modification (using by many authors, e.g. [7]) is 
clear: only finite automaton is realisable in practice. Further the second modifica-
tion (the inhomogeneity) makes the cellular automaton more flexible [11], without 
excluding the homogeneity in hardware [3]. 

In the theory of cellular automata there is a very important and interesting 
question, that how appear the characteristics of local maps in the global map, and 
conversely. This is the basic conception of present work too, having in the centre 
the problem of reversibility. This subject has been investigated by many authors 
(in particular by T. Toffoli [8], [9]), but always in the global sense. In this context 
the reversibility is equivalent to the bijectivity of global map. 

To the contrary, we mean the reversibility in local sense: a cellular automaton 
we shall call reversible, if its local maps may be changed so, that the new global map 
is the inverse of the original one. 

The bijectivity of global map forms necessary condition for our "strong re-
versibility". Therefore in point 2. a connection will be proved between the local 
maps and the number of eden-configurations, f rom which derives a necessary con-
dition for bijectivity (it is the generalization of results in [5]). 

In point 3. a necessary and sufficient condition is presented to the reversibility. 
With this criterion we can decide the reversibility of a given cellular automaton, 
and construct its reverse. 

The point 4. contains concrete investigations in case of one-dimensional cellular 
automaton, with the result: only very simple reversible cellular automata exist in 
this special case. 

* Presented at the Conference on Automata and Formal Languages, Szeged (August 30— 
September 2, 1977). . 
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1. Basic definitions 

(i) Inhomogeneous cellular automaton is a (C, A, N, 0) four-tuple, where 
C = { c 1 ; . . . , cm} is the finite set of cells, 
A={0, 1, . . . , s— 1} is the set of cell-states, 
N: Cj>—(c;i, . . . , c , n ) is the neighbourhood function, which assigns to each cell 

its neighbours. (The specification of neighbours may be different cell by cell, i.e. 
the cellular automaton has totally arbitrary topology.) 

<P: Cii->-fi is the function-system, which assigns to each cell an f : A"' —A 
local map. (The local maps also may be different cell by cell.) 

(ii) Configuration is a map a: C-*A, we denote it always with Greek letters. 
(iii) Neighbourhood of cell c,- in a given configuration is the «¡-tuple of states 

of its neighbours.. 
(iv) The global map of a cellular automaton is a map F: si^sé where sé 

is the set of all configurations, and F(a)=p, if for all i fi(aiv . . . , ain)=P(Ci) (where 
(fli , ..., ain ) is the neighbourhood of ct in a). 

In further we use the abbreviation CA instead of cellular automaton. 

2. Relation between the local maps and the number of eden-configurations 

We consider a CA (C, A, N, <P) with the global map F. 
The following definition is well-known f rom the literature: 
Definition. A configuration a will be called garden-of-eden configuration (in short 

eden-configuration), if there is no /?, for which F(a) = /?. 
We have a n obvious equivalence: 
F is bijective <=> there is no eden-configuration. 

Let be c a cell with n neighbours, and / its local map. Suppose, that there are 
pa different neighbourhoods of c, where the new cell-state given b y / i s a. The number 
of all possible neighbourhoods is s", consequently ^pa=s". 

Definition. We say, that the local map / is balanced, if \fa: pa=p, where 
obviously p=s"/s=sn~1. 

W h e n / i s unbalanced, the measure of this may be characterized with the quantity 
q— £ (P Pa)i and we s a y : / i s ^-unbalanced. 

a£A 
Pa^P 

Theorem. Let be (C, A, N, <P) an arbitrary CA, c a cell in it, and / its local 
map. If / i s ^-unbalanced, then the CA has a t least q - s m ~" eden-configurations 
(m is the number of cells, .v is the number of cell-sates). 

Proof. It is clear, that there are sm~" different configurations, where the neigh-
bourhood of c is a given (ax, ..., an). So there are exactly pa'Sm~" configurations, 
where the new cell-state of c is a. At the same time the number of all configurations, 
where the state of c is a, is sm~1—p-sm~n. Consequently if pa<p, then among 
these p-sm~n configurations there are (p—pa) •sm~n eden-configurations. 

We find the same situation by all state a having the property p a < p , consequently 
the C A has at least 2 ( P - P a ) ' s m ~ n eden-configurations. • 
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Corollaries, (i) If in a CA for any i the local map of c; is ^¡-unbalanced, then 
the CA has at least max ( " ) eden-configurations. l s f e » 

(ii) To the bijectivity of global map is necessary condition, that all local maps 
are balanced. 

Similar results are published in works [5], [6] on classical infinite, homogene-
ous CA. 

3. The problem of reversibility 
Algorithm for decision of reversibility, and construction of the reverse 

Definition. A CA (C, A, N, <P) with a global map F is reversible, if there exists 
another function-system such, that the CA (C, A, N, <P') generates the global 
map F - 1 . 

The first problem in this subject: to decide f rom a given CA, whether it is re-
versible. On this purpose we introduce a general algorithm, which is suitable for 
constructing the reverse, too. 

Let be (C, A, N, <P) a CA, c; a cell in it. Let's denote with N1 the neighbours 
of c;, and with TV, the neighbours of neigbours (with a bit incorrect notation 
N1 = N(ci), N2 = N(N(Ci))). It is clear, that the state of JVX at time t+1 is deter-
mined by the state of N2 at time t. If we know the local functions in JVl5 we may 
describe this transition with a table called in. following as inverse-constructing-table 
(ICT in short). In case of one-dimensional, two-state CA it is illustrated on 
figure 1. 

If the cell c; has an / / reverse local function, then this function gives back 
from any JVj-state of column t+1 of ICT the state of cl in column t. Consequently 
the existence o f f { has the following necessary condition: if two A^-states in column 
/ + 1 of ICT are equal, then the corresponding c rstates in column t also should be 
equal. Furthermore this condition is sufficient to the existence of f{ reverse function, 
because we may construct it by the ICT. 

Nr 

Ci _ 2 Ci _ i Ci Ci +1 C i 

n. 

The local maps in A^: 

f i -X •fi •fi* 1 

0 0 0 Xa • 0 0 0 0 0 0 

0 0 1 Xi o o i yi 0 0 1 

0 1 0 X2 0 1 0 yz 0 1 0 

O i l O i l y 3 O i l 

1 0 0 Xi 1 0 0 yi 1 0 0 

1 0 1 1 0 1 y 5 1 0 1 

1 1 0 * 6 1 1 0 ye 1 1 0 

111 x , 1 1 1 y- 1 1 1 

The ICT of cr. 

t t+1 t /+1 

00000 XoyoZo 10000 Xiy«za 

00001 XoyoZl 10001 Xi y0Zi 
00010 Xoyiz* 10010 XtyiZ2 

00011 x0yiz3 10011 x4y1z3 

00100 Xl y2Zi 10100 x5y2Zi 
00101 Xl y2za 10101 x5y2zs 

00110 Xiy3z6 10110 XsyaZs 
00111 Xl y3z7. 10111 x5y3z7 

01000 XzyiZo 11000 xsy4z 0 
01001 X%yi Z\ 11001 Xeyi^i 
01010 X2 Vr, z<. 11010 Xe y$z2 
01011 x2y-az3 11011 xe y^Zs 
01100 11100 
01101 X3 y&z§ 11101 X7yoZs 

oil 10 X3y7zs 11110 x7y7ze 

01111 XayiZ7 11111 x7y7z7 

Fig. 1 
The construction of ICT in case of one-dimensional two-state CA. 
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So the following in obtained: 

Proposition. A CA (C, A, N, <P) is reversible <=> for each cell c„ its 1CT satisfies: 
if two N1 -states in column f + 1 agree, then the corresponding c rstates in column 
/ must agree too. 

If this condition is satisfied, then we can construct the reverse function-system. 

4 The reversibility of one-dimensional two-state cellular automaton 

The preceding algorithm decides only about a given <P whether it is reversible, 
but does not help to find concrete reversible function-systems. It is clear, that there 
exist trivial ones, for example the identical function-system (where each cell keeps 
its state, independently of neighbours), or the shift function-system, (where each 
cell receives the state of the same neighbour). 

Nontrivial reversible function-systems have high importance in practice, but 
to construct them is very difficult. In further we give a necessary condition to the 
reversibility, of one-dimensional two-state CA, f rom which we shall see, that in 
one-dimension only very special function-systems are reversible, consequently it is 
easy to construct them. 

So in following the CA (C, A0, N0, <f>) will be investigated, where 
C = {cl5 . . . ,cm}, m s 5 is supposed (this assumption makes easier the investiga-

tion), 
4> = {0,1}, 
N0: ci*->-(ci_1,ci,ci+1), the indexes are interpreted cyclically (i.e. c1 and cm are 

neighbours). Thus we have a circle-topology. 
$ is arbitrary. 
We need the following general definition: 
Definition. In a CA (C, A, N, <i>) the cell c; depends on its neighbour Cj, if there 

are two neighbourhoods of c ; such, that they differ only in state of c.j, and the cor-
responding new states of c ; are different. 

Using this notion we take a remark to the definition of (C, A0, N0, <P): if. 4> is 
such, that Ci and cm are independent each of other, then the circle-topology we may 
replace with a section-topology. So our definition contains the section-topology too. 

Two lemmas will be proved in further. In proofs we shall use often the fact, 
that for reversibility is necessary condition that all local maps are balanced. (It 
results f rom the second corollary in point 2.) Moreover we shall use the notat ion 
a, which denotes the opposite of cell-state a. 

Lemma 1. Suppose that 4> is reversible, and its reverse is *Pr. In this case if 
ct-1 depends on by the function-system i>, then ct is independent of c^^ by <P'. 

Proof. Suppose, that ci_1 depends on c ; _ 2 , i.e. there are a, b such, that 
fi-xiO, a, b)=x, and f^Q., a, b)=x. 

Now let's consider the f u n c t i o n y j + 1 ! We have two different cases: 
(i) 3j>: \fc,d:fi+1(b,c,d) = y. 
The function / ¡ + a is balanced, therefore Mc,d: fi+1(B, c, d)=y, tha t is to 

say, c i + 1 depends only on Thus by the reverse cf depends only on c i + 1 . 
(ii) Be, d and Be', d ' : fi+1(b, c,d) = y and / i + 1 ( b , c', d') - y. 
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Let f(a, b, c)=p, f(a, b, c')—q. So the ICT of cell ct contains the follow-
ing par t : 

t i + 1 

0 a b c d x p y 
1 a b c d x p y 
0 a b c' d' x q y. 
1 a b c' d' x q y 

The four binary triples in column t +1 are different, and the reverse function 
f( constructed by the table assigns to each triple the same state b. But f{ is balanced, 
so it assigns to the other four triple the state B. By this the table of f{ is known. 
We can see f rom it, that c; is independent of • 

The second lemma needs the following definition: 
Definition. Let ct, . . . , Cj be a section of cells. We say, that it is isolated, if c,-

¡s independent of C;_1; and Cj of c J + 1 . 

Lemma 2. Suppose that $ is reversible, and its reverse is In this case if 
the section c ; , . . . , Cj is isolated by (t>, then it is isolated by too. 

Proof/Two configurations will be called equivalent (with respect to the sec-
tion c^ . . . , cj), if their sections corresponding to the c ; , . . . , Cj are equal. So a 
classification is obtained on the set sd. , 

It is easy to prove the following chain: ct, ..., Cj is isolated by <P=> the previous 
classification is F-compatible (i.e. Va, P- a ~ / ? = > F ( a ) ~ F ( f i j ) => it is F - ^ c o m p a t i b l e 
too (because F is one-to-one) => ch ...,Cj is isolated by • 

Definition. A function-system we call a shift function-system, if each cell depends 
only on its left (or only on its right) neighbour. 

Theorem. If the CA (C, A0, N0, <P) is reversible, then there exists one of the 
following two cases: 

(i) Each cell stands in an isolated section containing maximum three cells. 
(ii) <P is a shift function-system. 
Proof, (i) Suppose that there are ct and c} such, that ct is independent of its 

left neighbour, and Cj is independent of its right neighbour. The cellular automaton 
has circle-topology, consequently the section ch ...,Cj always exists. Furthermore 
this section is isolated, and — having applied the lemma 2. — it is isolated by <f>' too. 

Now let's consider an arbitrary cell ck. According to the lemma 1. either ck_x 
is independent of cfc_2, or by the reverse ck is independent of ck_x. In the first case 
the section ck_1, . . . , Cj, in the second case the section ck, ..., Cj is isolated. Apply-
ing the geometrical inverse of lemma 1. we get: either c{, ..., ck+I or c f , . . . , ck is 
isolated. The common part of two isolated sections is isolated too, so we have: 
ck stands in an isolated section containing maximum three cells. 

(ii) Suppose the negation of the previous case, that is each cell depends (for 
example) on the left neighbour. We shall prove, that in this case each cell is indepen-
dent of the right neighbour: suppose, that for any k ck+1 depends on ck+2. At the 
same time ck_1 depends on cfc_2, and f rom the lemma 1. we get, that ck is an isolated 
cell. This fact contradicts to the original assumption. 

So each cell has only two real neighbours: the left cell and itself. We may classify 
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the balanced local maps for two neighbours in three types: 

I. 0 0 a II. 0 0 a III. 0 0 a 
0 1 a 0 1 b 0 1 b 
1 0 b 1 0 a 1 0 b 
1 1 b 1 1 b 1 1 a 

• In our case each cell depends on the left neighbour, so the type II. is out of the 
question. If all functions have the type III., then Va: F(a) = F(a), thus the global 
map is not one-to-one. 

If there are functions type I. and type III. at the same time, then there exists 
a cell Ci such, that f-t has the type I., and fi+1 has the type III. Therefore the ICT 
of q contains the following par t : 

t t+\ 
a b c d e x y z 
a b c d e x y z 

These two lines exclude the reversibility. 
So we get: all local maps have the type I., i.e. is a shift function-system. 

Corollaries. 1. If (C, A0, N0, 4>) has section topology, then each reversible <P 
has the type (i). 

2. If (C, A0, N0, $) is homogeneous, then we have only the six trivial reversible 
function-systems: the identical one, and its contrary (where each cell alters its state 
independently of neighbours), the left and right shift function-systems, and their 
contrary. 

THE BUILDING COMPANY OF 
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On two modified problems of synchronization 
in cellular automata* 

B y R . VOLLMAR 

1. A modified firing squad synchronization problem 

As Moore (1964) states, the problem to synchronize a finite (but arbi t rary 
long) chain of finite au tomata was'devised about 1957 by Myhill. In the meant ime 
this problem has become well-known as the firing squad synchronization prob-
lem (fssp). 

Among other people Waksman (1966) and Balzer (1967) have given minimal-
time solutions. Moreover there exist some modifications, especially the synchroniza-
tion of two- and three-dimensional arrays (Shinahr (1974), Nguyen and Hamache r 
(1974), Grasselli (1975)) and of growing arrays (Herman et al. (1974)) have been 
investigated. In the "classical" fssp the synchronization process is started by one 
automaton, the so-called general, at the border. Moore and Langdon (1968) and 
Varshavsky et al. (1970) have renounced this assumption and they have stated 
minimal-time solutions for this modification. 

We consider a fur ther modification. Starting point is a chain of n au tomata 
where each au tomaton is directly connected with its two neighbours. In the "classi-
cal" fssp at time / = 0 all au tomata except one of the border au tomaton are in 
the quiescent state. This quiescent state is distinguished by the property tha t a n 
automaton will retain it at time ? + 1 if itself and its two neighbours have been in 
the quiescent state at t ime /. Here we will assume tha t initially k au tomata , where 
1 ̂ kSn, are allowed to be set to the "general s ta te" — all the other au tomata assume 
the quiescent state — and after tha t it is also possible tha t au tomata become generals 
at later moments . 

The problem is to specify the structure of the au tomata such tha t independently 
of the number of au tomata and generals all au tomata enter a special state, called 
"fire" state a t exactly the same time and this state may not be assumed at any earlier 
moment by any au tomaton . 

* Presented at the Conference on Automata and Formal Languages, Szeged (August 30— 
September 2, 1977). 
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This generalization is motivated by the consideration of models of neural layers 
and their interpretation as cellular automata (an example is given in Vollmar/Spreng 
(1976)): One of the layers has to detect some changes within an other layer and 
.afterwards it must give simultaneously signals to the following layer. A change is 
obtained if at least one of the automata in the layer receives a certain number of 
special signals in a certain interval. It may happen that several automata identify 
•changes and they start independently synchronization processes. 

The basis of our solution are time-optimal algorithms of the problem to syn-
chronize chains which contain one general but at an arbitrary place (see e.g. 
Moore/Langdon (1968) or Varshavsky/Marakhovsky/Peschansky (1970)): The gen-
eral sends out signals (waves) in the two directions which halve the chain, then halve 
the two new chains etc. Our concept of the age of signals is applicable to any algo-
rithm of this kind. 

Our solution is composed of two independently working procedures; they 
have been combined in such a manner that the procedure which is the first to end, 
will cause the synchronization. This is done because the two procedures have in-
comparable synchronization times. 

The synchronization time by one of the procedures, which has been described 
in Vollmar (1976), is achieved in <2.5«. 

To find a "good" solution of our problem it is necessary to decide quickly 
which of two waves coming f rom distinct generals will survive. We have chosen 
a strategy such that whenever two signals collide, the signal coming f rom the 
"elder" general will survive. This is motivated by the fact that with respect to the 
Synchronization process in some but not in all cases the elder general has "done 
more" than a younger one. However there are space-time configurations for which 
this is not valid (see fig. 1). If at the border (or nearby) a general gl originates at 
time t0 and at time i 0 + 1 a general g2 will originate nearby the center of the chain, 
.at time tc the signals transmitted f rom g2 will have passed almost the double number 
of automata than those ones transmitted f rom g1. This disadvantage of our pro-
cedure could only be repaired if it were possible to determine the age of the generals 
and their positions relative to the center. Up to now we did not succeed in doing 
this fast enough. 

First we will describe the part of the procedure which has to detect the elder 
.signal. Afterwards it will be shown how the synchronization process can be delayed 
in dependence on. the time needed for this detection. 

t o 
<D r-
G 

t e 

-»• a u t o m a t a 

Fig. I 
A "bad" space-time configuration 
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To be able to classify the signals according to their ages it is necessary that 
the signals immediately coming f rom generals "drag along" its ages: For this reason 
the state set of the automata is increased in such a way that among others the digits 
of a corresponding number system and some marks can be stored. The age or more 
precisely the number of automata which have been passed through, is represented 
in the top automaton in which the signal is arrived and possibly in some automata 
which, have been reached earlier (see fig. 2; only the information relevant for the 
age is displayed). 

Whenever two signals collide, the distances to the corresponding transmitting 
generals have to be compared. To do this the propagation of these signals stops 
and the numbers are subtracted. For this the digits of one of the numbers travel 
successively to the corresponding place of the other number, i.e. it is stored there 
in a reversal order. Simultaneously to this shifting process the two numbers are 
subtracted digit by digit, whenever this is possible. When the first digit of the 
number — especially marked — has reached the "valid position", the subtraction 
is finished, and the result is sent out in the corresponding direction to restart the 
transmission of the "elder" signal. If two signals have the same age by definition 
the left one will survive. The time needed to make such a comparison is given by 
c log n where c£N. 

But still another problem arises (see fig. 3). If the two generals gx and g2 have 
been originated at the same time, according to our agreement after the collision 
of and L2 Rx survives. After the comparison it propagates to the right 
following R2 and writes its information over that one of R2. Dependent on the 
distance between g± and g2 and the running time it is possible that the number 

f r o n t o f 

t h e w a v e 

Fig. 2 
Configuration with the age of the wave 

F'g. 3 
The problem of overtaking waves 
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representing the age of R2 is overtaken by From this time on the age of \R2 is 
incorrectly represented but as the ^ - s i g n a l following f rom the left (resp. the last 
of the following signals) is the valid one, there will be no confusion. It is impossible 
to " in form" the i?2-signal about these occurences because it propagates with unit 
speed. On the other hand during the comparison of the ages this overtaking will 
be detected and will cause an interrupt of the subtraction, and the comparison will 
be done with the following J?x-signal, etc. 

If two or more generals exist, it is possible that one of the signals transmitted 
f rom a general stops for a certain interval and the other signal moves on (in the 
opposite direction). To prevent any disturbance of the synchronization process 
at each step a signal does not propagate a delay signal is transmitted. This signal 
moves into the opposite direction of the (original) movement of the stopped signal 
and the transition of each automaton is delayed for one time unit. In fig. 4 the 
movement and the effect of a delay signal is displayed. 

It is clear that the time of the sketched algorithm depends on the number of 
generals: Since each general causes a delay of about c log n of the synchronization 
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Fig. 4 
The movement of a delay signal 
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time, an upper bound for the total synchronization time is given by 

2n + cn log n. 

The quality of this bound is illustrated by fig. 5. 

On the other hand it should be mentioned that the minimal time is obtained 
if only one general exists. Moreover there exist configurations for which the 
sketched algorithm needs a shorter synchronization time as the other procedure 
mentioned above and vice versa. Therefore we combine the ' two procedures such 
that the synchronization time will be 

< 2.5n. * 

It should be remarked that the method sketched above is also applicable for several 
generals at arbitrary positions in a rectangular array. 

2. A modification of the early bird problem 

The method described above is also applicable to a modification of the early 
bird problem. Rosenstiehl et al. (1972) have described the following problem: 
To each of the n vertices of an elementary cyclic graph there is assigned an 
automaton. 
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These automata may be "excited" at different moments (from the outside); 
for simplicity we will also say that they assume a "general state". The automata 
must be designed in such a way that the (single) automaton, which has been excited 
first, eventually will assume a distinguished state E and all the other au tomata 
will assume states I. Rosenstiehl et al. give a solution of this problem, which needs 
2n steps. They emphasize that this solution does not work if two or more excita-
tions occur at the same moment. 

We will discuss a solution of the following problem: At each time an arbitrary 
number of automata in a chain of n automata may be excited with the only restric-
tion that at time t=0 at least one automaton has to be excited and it is not allowed 
to excite automata which have leaved the quiescent state. After a certain period 
automata which have been initially excited must assume the state E, and all the 
other automata assume the state / . 

The solution is obtained by the following procedure: Each of the originating 
generals sends out age signals, as described above. If they collide with other signals 
a comparison is made. Irrespective of the states in any case the elder signal is 
transmitted. If two signals of the same age collide, both signals are reflected — 
with special marks —. 

These reflected signals are transmitted backwards, subtracting 1 at each step, 
until they are decremented to the value 0. In this case, the corresponding automata 
are marked. An automaton is an early bird (EB) if it is marked by signals f r o m 
the right and f rom the left and if the chain of automata has reached a certain age. 
The last condition is necessary to exclude "local". EBs. 

Each automaton contains information about the age of the signal and about 
the distance to the sending general. In contrast to the procedure in the foregoing 
paragraph the age is also increased at each step the signal transmission is s topped 
(because the signals have collided and the comparison takes place). 

The number representing the age has to be stored in the automata located 
between the sending automaton and the automaton where the collision occurs. 
In general this number will be greater than the number representing the distance» 
but there are no storage problems if the numbering system is appropriately chosen. 

After a collision the numbers representing the age are compared: If these 
numbers are equal, i.e. they come f rom generals of the same age, or if a signal 
reaches a border automaton, then the numbers representing the distance are re-
flected. These numbers are transmitted and a t each step the value is decremented 
by 1 until the value 0 is assumed. The corresponding automaton has sent the original 
signal. It is marked with a label indicating that a reflected signal has arrived. Another 
label is set if two reflected signals have arrived; in such cases it may be that the 
marked automaton is not an EB (see fig. 6). 

Decrementing the numbers a special consideration is necessary if the lowest 
digit of the number equals 0; but we will not discuss this here. These delays a r e 
not illustrated in fig. 6. The total time for the return of these signals depends linearly 
on the number of the automata. 

To compute the total time we have to take into account the following: the t ime 
is greater than that one in the paragraph above because the comparisons have t o 
be made with the age numbers (and not with the distances); and those numbers, 
are given as the sum of the distance numbers and the sum of the times for com-
parisons. 
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' A rough estimation of the total timé is given by 

fn/21 
n + c' 2 log (/'•«) 

¡=1 

if n> 1, where c' is a constant depending on the algorithm which performs the 
comparisons. An estimation of the term is given by 

• n -(1 + c log n). 

The age of the signals and the distances to the generals are represented in, 
a polyadic numbering system; therefore the maximum of the values is estimable 
by k-\ogBn. It is possible to give a basis B — which is independent of n — such 
that the numbers can be stored in the automata between the generals and the 
collision automata. 

o 

Fig. 6 
Space-time diagram of an Early-Bird solution 

(without the synchronization of the E- and /-signals) 
(Between the generals ( • ) there are other automata.) 

At the time all comparisons have terminated the reflected signals must go 
back to the corresponding automata. As mentioned above, this time depends linearly 
on n, and therefore we can find a constant c such that the total amount of time is 
given by « • ( l + c ' l o g n ) . 

To guarantee the synchronized transition to the states E and 7, we start at 
time t=0 — independently of the processes described above — a counting pro-
cedure which counts (using all the automata for storage) until \n • (1 +c log«)]. 
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If this value is reached, a border automaton starts a synchronization process 
{following an usual fssp algorithm) such that the states E and / are assumed 
synchronously. 

The solution to the modified EBP needs about H - ( l + l o g n ) time steps. The 
solution time does not depend on the number of excitations. 

It should be noted that this procedure does not solve the modified version 
of the original problem. As mentioned above in our procedure it is necessary to 
determine one of the automata as general to start the synchronization process; 
by reason of the homogeneity of the connections and the determinism of the auto-
mata this determination cannot be done in an elementary cyclic graph. On the other 
side our procedure does not produce either a correct non-synchronous solution 
because we must wait a certain period — and it is not possible to represent this 
time in the graph — to make the decision whether doubly marked au tomata are 
"real" EBs (see fig. 6). 

Abstract 

We will introduce the concept of the age of signals which is well-suited for the solution of 
modifications of the "firing squad synchronization problem" (fssp) and of the "early-bird prob-
lem" (ebp). 
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On «¡-products of automata 

B y B . IMREH 

The purpose of this paper is to study the «¡-products (see [1]) f r o m the point 
of view of isomorphic completeness. 'Namely, we give necessary and sufficient con-
ditions for a system of au tomata to be isomorphically complete with respect to 
the a ;-product. I t will turn out that there exists no minimal isomorphically complete 
system of au tomata with respect to «¡-product and if i s l then isomorphically 
complete systems coincide with each other with respect to different «¡-products. 
Moreover, we prove that if /< / ' then the ay-product is isomorphically more general 
than the «¡-product. 

By an au tomaton we mean a finite au tomaton without output . Let A , = 
=(xt, A,, <>,) 0 = 1 , . . . , n) be a system of automata . Moreover, let X be a finite 
nonvoid set and cp a mapping of ^ X . - . X ^ X X into i ^ X . . , X X n such that 
<p(a1; ...,an, x) = (cp1(a1, :.., a„, x), ..., (p„(a1, ...,an, x)), and each cp} (1 
is independent of states having indices greater than or equal to j+i, where i is a 
fixed nonnegative integer. We say that the au tomaton A = ( X , A, d) with 
A = A1X...XA„ and 

¿((fli, ...,fl„), x) =(5i(a1,<p1(fl-1, ...,an,x)), ..., Sn(a„, <pn(au ...,a„,x))) 

is the di-product of A , ( t = 1, . . . , n) with respect to X and cp. For this product we use 
n 

the shorter notat ion A= JJ A,(X, cp). 

Let I be a system of automata . I is called isomorphically complete with respect 
to the «¡-product if any au tomaton can be embedded isomorphically into an a r 
product of au tomata f r o m I . Furthermore, I is called minimal isomorphically 
complete system if I is isomorphically complete and for arbitrary A £ l the system 
2 \ { A } is no t isomorphically complete. 

Take a set M of au tomata , and let i be an arbitrary nonnegative integer. Let 
a¡(M) denote the class of all au tomata which can be embedded isomorphically 
into an «¡-product of au tomata f rom M. I t is said that the a,-product is isomorphically 
more general than- the a,--product^if for any se t_M of au tomata c/.j(M)Qai(M) 
and there exists a t least one set M such that aj(M) is a proper subclass of a , (M) . 

The following statement is obvious for arbitrary natural number / ^ 0 . 

3 Acta Cybernetica III/4 
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Lemma. If A can be embedded isomorphically into an «¡-product B with 
a single factor and B can be embedded isomorphically into an a r p r o d u c t C with 
a single factor, then A can be embedded isomorphically into an a,-product C with 
a single factor. 

Fo r any natural number n S l denote by Tn = (Tn,N,SN) the au tomaton 
for which iV={ l , . . . , «}, Tn is the set of all t ransformations t of N, and <5,v(y, t) = 
= t ( j ) for all j£N and t£Tn. 

The next Theorem gives necessary and sufficient conditions for a system of 
automata to be isomorphically complete with respect to a 0-product . 

Theorem 1. A system I of automata is isomorphically complete with respect 
to a 0 -product if and only if for any natural number n ^ 1, there exists an au tomaton 
A £ 1 such that T„ can be embedded isomorphically into an a 0 -product of A with 
a single factor. 

Proof. The necessity and sufficiency of these conditions will be proved in 
a similar way as that of the corresponding statement for generalized a 0 -produc t 
in [2]. 

In order to prove the necessity assume that I is isomorphically complete with 
respect to the a 0 -product . Let « > 1 be a natural number and take T„. By our 
assumption, T„ can be embedded isomorphically into an a 0 -product B = (Tn, B, <5B) = 

m 

— II A(Tn> <P) ° f automata f rom I. Assume tha t / n > 1, and let /< denote a suitable ' 
r = l 

isomorphism. Define parcitions n'j {j=\, ... ,m) on B in the following way: 
(«i, am) = {a[,..., O O j ) (a-L, ...,am), (a{, ..., a'J£B if and only if at = 
= a[, ...,aj = a'j. Now let itj (j= 1, . . . , m ) be partitions on N given as fol lows: 
for any {a1, ...,am), (a[, ...,a'm)£B we h a v e / i " 1 ^ , •••, an)=n-1(a1, ...,am){nj) if and 
only if (au ..., <zm) = (<7i, ...,a'm) (Ti'j). It is easy to prove that Uj (j=l,...,m) 
have the Substitution Property (SP). On the other hand, for T„ only the two trivial 
partitions have SP. Thus, we get that each n j has one-element blocks only, or. it 
has one block only. Among these partitions there should be at least one which 
has more than one block, since « > 1 . Let I be the least index for which nL has at 
least two bloks. Then the blocks of n, consist of single elements. Therefore, the 
number of all blocks of 7r, is n. We show that T„ can be embedded isomorphically 
into an a 0 -product A, with a single factor. Let ( a n , . . . , a im) denote the Smage of 
/ ( / = 1 , . . . , « ) under /i. F rom our assumption and the definition of iij it follows 
that aks —au if l^k^n and l ^ s S / — 1. Take the a 0 -product C = (T„, At, 8C) = 
= TIAi(T„, V) where ¥(t) = (pl(a11, / ) for all t£T„. It is easy to prove 
that mapping v:/—an (i= 1, . . . , n) is an isomorphism of T„ into C = 77A,(J'„, V). 

The case n— 1 is obvious. 
To prove the sufficiency take an automaton A = (X, A, <5A) with n states. Let 

H be an arbitrary 1 — 1 mapping of A onto N. Take the a 0 -product C = m„(X, cp) 
with a single factor, where (p(x) — t if and only if n(SA(a, x)) = t(n(aj) for any 
a£A. Then fi is an isomorphism of A into C. On the other hand, by our assumption, 
there exists an automaton B in I such, that T„ can be embedded isomorphically 
into an a 0 -product of B with a single factor. Therefore, by our L e m m a , A can be 
embedded isomorphically into an a 0-product of B, which completes the proof 
of Theorem 1. 
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Corollary. There exists no system of au tomata which is isomorphically complete 
with respect to a 0-product and minimal. 

Proof. Take a system Z of au tomata which is isomorphically complete with 
respect to a 0-product , and let A £ Z be an automaton with n states. I t is obvious' 
that A can be embedded isomorphically into an a 0 -product of Tm with a single 
factor if m^n. Take a natural number m>n. By Theorem 1, there exists a 
such that Tm can be embedded isomorphically into an a 0 -product of B with a single 
factor. Therefore, by our Lemma, A can be embedded isomorphically into an 
a 0 -product of B with a single factor. Thus, £ \ { A } is isomorphically» complete 
with respect to a 0-product , showing that Z is not minimal. 

For any natural number w S l denote by T>n = ({xpq}1SpSn, {1, . . . , «} , <5„) the 
1S8SB 

automaton for which for any /€{1, . . . , « } and . 

(k if l = s 
A ( / ' X s k ) = 1/ otherwise. 

The following Theorem holds fo r a r p r o d u c t s with / s i . 
Theorem 2. A system Z of au tomata is isomorphically complete with respect 

to a r p r o d u c t ( / = 1 ) if and only, if for any natural number 1, there exists an 
automaton A £ Z such that D„ can be embedded isomorphically into an «¡-product 
of A with a single factor. 

Proof. First we prove that D„ ( « > 1) can be embedded isomorphically into 
an a r p r o d u c t of au tomata f rom Z with a t most / factors if D„ can be embedded 
isomorphically into an a,-product of au tomata f rom Z. Indeed, assume that D„ 

k 
can be embedded isomorphically into the «¡-product B= JJ At({xpq}, <p) of auto-

<=i 
mata f rom Z with £ > / , and let fi denote the isomorphism. For any /€{1, ••• ,«} 
denote by ( a n , . . . , a , k ) the image of I under /u. We may suppose that there exist 
natural numbers r ^ s (1 such that since otherwise 'D„ can be 
embedded isomorphically into an «¡-product of au tomata f rom Z with k— 1 factors. 
Now assume that there exist natural numbers u ^ v ( l = w , c S n ) such that aut=avt 
( i = l , . . . , / ) . Then <Pi(aul, ...,aui,xlr) = (p1(aDl,-...,avi,xlr) for any xlr£ {xpq}. Thus 
in the «¡-product B the au tomaton Ax obtains the same input signal in the states 
aul and avl for any xir(i{xpq}. On the other hand since fi is an isomorphism and 
u ^ v , thus the automaton Aj f rom the state o u l goes into the state a r l and f r o m 
the state avl it goes into the state a0l for^any input signal xur (1 ^r^n). This implies 
a „ i = a r i ( l S r i n ) , which contradicts our assumption. Thus we get that the elements 
( a n , . . . , a , i ) ( ¡ ^ t ^ n ) are pairwise different. Take the following «¡-product 

i 
c = ({*pJ . C,-<5c)=/7 At({xpq}, IP) where for any j=l, ..., /, ..., o ^ i ^ X . . . XAt 
and x£ {xpq} '=1 

¡<Pj(a, j , . . . , a, j + ,-i, x) if j + i—l^k a n d t h e r e ex is t s 

| l ^ t ^ n such that a s = a,s ( s = l , ..., /,) 
i j / j ( a 1 , . . . , a,-, x) = •••>aik>x) if j + i — a n d t h e r e ex is t s 

| l ^ i ^ f j such that as = ats ( s = l , .. . , /), 
. I arbitrary input signal f rom ^ otherwise. 

3: 
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It is clear that the correspondence v:/— (an, ..., ati) is an isomorphism of 
D„ into C. 

N o w we show that if D„ ( n > l ) can be embedded isomorphically into an 
a r p r o d u c t of automata f rom I with at most i factors then there exists an au tomaton 
A £ Z such that b.< can be embedded isomorphically into an a ;-product of A 

LK"] 

with a single factor, where [ / /z ] denotes the largest integer less than or equal to 
i 
i~n. Indeed, assume that D„ can be embedded isomorphically into the a r p r o d u c t 

k t 
B = [J A,({xPi}, <p) of automata f r o m I with k^i factors. Let ¡.i denote a suitable 

»=i 
isomorphism, and for any / € { 1 , . . . , « } let (o(1, . . . , alk) be the image of I under 
/i. Since n is a 1 — 1 mapping, thus the elements (an, ..., atk) (t=1, . . . , « ) a re pair-
wise different. Therefore, there exists an s (1 Ss^k) such that the number of pair-

wise different elements among a^, a2s, ..., a„s is greater than or equal to \jfn\. Let 

aJlS, ..., aJrS denote pairwise different elements, where r g [ / ) i ] , and denote by r i 
X the set _of input signals xpq ( lS /7 , ¿¡rS[/«]) . Take the following _a r product 
C—]JAS (X, f ) with single factor, where for any aJtS£As and xuv£X 

I ( = i ^ K - . i . •••> ahk, XJtJv) i f U = t 
naj^x»,) ; , t ) o t h e r w i s e . 

i 
I t can be proved easily that the correspondence v:i—aJ t S (/ = 1, . . . , [ y « ] ) is an 
isomorphism of D ^ into C. 

The case « = 1 is again obvious. To prove the sufficiency by our Lemma, it 
is enough to show that arbitrary automaton w i t h « states can be embedded isomor-
phically into an a r p r o d u c t of D„ with a single factor. This is trivial. 

Corollary. There exists no system of automata which is isomorphically complete 
with respect to a,-product ( i £ l ) and minimal. 

In the sequel we shall study general properties of a r produc t s ( / = 0 , 1, ...). 
Fo r this we need some preparation. 

Take a set A and a system n0, ...,n„ of partitions on A. We say that this 
system of partitions is regular if the following conditions are satisfied: 

(1) 7TQ has one block only, 
(2) 7t„ has one-element blocks only, 
(3 ) 7 R 0 S 7 T 1 S . . . £ 7 T „ . 
Let n be a partition of A. Fo r any ad A, denote by n(a) the block of n contain-

ing a. Moreover, set MJta= {nj+1(b):b£A and b=a(nj)}, where a£A and 
7 = 0 , . . . , « —1. Finally, let TZj/nJ+1=max {\MJta\:a£A}. 

It holds the following. 

Theorem 3. Let / > 2 be a natural number and z ' ^ l . An au tomaton 
A—(X, A, ¿a) c a n be embedded isomorphically into an a r p r o d u c t of au tomata 
having fewer states than /, if and only if there exists a regular system n 0 , . . . , n „ 
of partitions of A such that 

(I) 7r J /7r J + 1</ for all y = 0 , . . . , « - 1 , 
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(II) a =b(nj) implies SA(a, x)=<5A(6, x) (7ty_i+1) for all / — x E X 
and a, b£A. 

Proof. Theorem 3 will be proved in a similar way as the corresponding state-
ment for generalized a,-products in [2]. 

In order to prove necessity assume that the automaton A can be embedded 
n 

isomorphically into an a r produc t JJ At{X, cp) of automata with \At|</ 
t=i 

( i = l , ...,n) and / > 2 . Let /i denote a suitable isomorphism. Define partitions 
nj (j=0, 1 , . . . , « ) on A in the following way: n0 has one block only, and 
a=a'(nj) ( I s j ^ n ) if and only if n(a) = (au ..., a„), n(a') = (a[, ... , a„) and 
a x = a i , . . . , d j = a ' j . It is obvious that 7r0, , . . . , n„ is a regular system of parti-
tions and conditions (I) and (II) are satisfied by this system. 

Conversely, assume that for an A=(X, A, S) there exists a regular system 
jz0, ...,n„ of partitions satisfying conditions (I) and (II). We construct automata 
Aj=(Xj,Aj,Sj)(j=l,...,n) with =7TJ_1/7rJ(-=:/) such that the automaton 
A can be embedded isomorphically into an a r p r o d u c t of automata Aj ( j = 1 , . . . , « ) . 

Let Aj be arbitrary abstract sets with \Aj\ = Uj_iliij and Xj—A1X---
...XAJ+t-iXX i f j + i - l ^ n a n d _ XJ = A1X...XAnXX o t h e r w i s e . N o w l e t 
Pj be a mapping of M{nj{a)\a(iA} onto Aj such that the restriction of ¡ij to 
any M j _ l i 0 is 1 — 1. Define the transition function 8j in the following way: 

(1) if j+i—l^n then for any aj £ Aj and (b1,...,bJ+i_1,x)£XJ ' 

Ilij(jtj(5(a, x))) if dj=bj and there exists an a £A 
by+i-i , x)) = { such that n,(n,(a)) = b, for all i = l , ..., i+j-1, 

(arbitrary element f rom A j otherwise, 

(2) if j+i— l > w then for any afiAj and (61; . . . , b„, x)£X} 

( Hj(7tj(d(a, x))) if aj=bj and there exists an a£A 

such that n,(nt(a))=bt for all t= 1, ..., n, 
arbitrary element f rom A j otherwise. 

First we prove that 5j is well defined. Assume that in case (1) there exists a b£A 
such that it(b)) = b, ( / = 1 , ...,j+i— 1). It is enough to show that b = a(itJ+t^1) 
since this by (II), implies that 5(b, x)=8(a, x) for any x£X. We proceed by in-
duction on t. b=a(nx) obviously holds since ^ is a 1 — 1 mapping of M1 onto 
Ax. Assume that our statement has been proved for t— 1 (1 ̂ i — 1) 
that is b = a(nt_^). Therefore, since p., is 1 — 1 on M,_Ua and /1,(71,(a)) = fi,(nt(b)) 
thus nt(b) = nt\a). Case (2) can be proved by a similar argument. n Take the a r produc t B = JJ At(X, cp) where the mapping (pj is defined in «=i 
the following way: 

(1) if j+i-l^n then for any (alt . . . , a y + i _ 1 ) e , 4 1 X . . . X / l ; + i - i and x£X 

<Pj(aly x)=(«i> ...,ay+(_1, x), 

(2) if j + i—l>n then for any (alt ...,an)£A1X...XA„ and x£X 

<pJ(a1,...,a„,x)=(a1, ...,a„,x). 
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It is easy to prove that the mapping v:#—(/i,(ti1 (a)), ..., n„(n„(a))) is an 
isomorphism of A into B, which completes the proof of Theorem 3. 

Let us denote by A 2 = ( { x , y}, {0, 1}, <52) the automaton for which <52(0, x) = 
=<52(1,;0 = 1 and <52(1, x)=<5 2 (0 ,y)=0. 

Now we prove 

Theorem 4. Automaton D„ can be embedded isomorphically into an a r product 
of A2 ( / S i ) if and only if 1^/1^2' . 

Proof. The necessity follows from Theorem 3. Indeed, if D„ can be embedded 
isomorphically into an a rproduct of A 2 , then by Theorem 3, there exists a regular 
system n0 , n1, . . . , nk of partitions of the set {1, . . . , « } such that (I) and (II) are 
satisfied. If « > 2 ' then there exists a subsystem n t l > n , t > ... >7rti of n 0 , . . . , n k 

such that n0>7i t l and n u > n k . Since n t > n k thus there" exists at least one block 
of nu which has more than one element, that is there exist I and r (1=1, r^n) with 
M r and l=r(n,.). From this, by condition (II), we get that for all xsv € { x p 4 } i S p S n 

1 SgSn 
<5„(/, xsv)=S„(r, xsp)(7r(l). This implies nQ=ntl, which contradicts the assumption 
that 7r0>7rri. 

To prove the sufficiency let n be an arbitrary natural number with 
i 

We take the arproduct B— JJ A2({xpq}, cp) of A2 , where the mapping cpj is defined 

in the following way: for any 

(au ...,at,xsr)£{0, l } x { 0 , 1 } X . . . X { 0 , l } X { x p J 

I 1 ' \x if Zat2l~'+l = s and r = Zbt2'-'+l and ay bJt 
<pj(a1,...,at,xsr)=i t=i r=i 

(y otherwise. 

It is not difficult to prove that D„ can be embedded isomorphically into the 
i 

automaton B under the isomorphism /i defined as follows: if k=^ at2'~' + 1 
«=i 

then ii(k)=(al, ..., ai) for all k= 1, . . . , n. This ends the proof of Theorem 4. 

Let C„ denote the automaton ({x}, {1, . . . , n), 5„) where for all l^k<n 
S„(k, x)=k+l and 5„(n, x)=n. 

It can easily be seen that for any natural number n ^ l C„ can be embedded 
isomorphically into an ax-product of A2. On the other hand it is not difficult to 
prove that if « > 1 then C„ cannot be embedded isomorphically into an a0-product 
of A2 . From this we obtain that the -product is isomorphically more general 
than the a0-product. 

In [3] V. M. Gluskov introduced the concept of the general product and proved 
that system {A2} is isomorphically complete with respect to the general product. 
This, by Theorem 4, implies that for any natural number / the general product 
is isomorphically more general than the «¡-product. 

Our results can be summarized by 

Theorem 5. The general product is isomorphically more general than any 
aj-product ( y = 0 , l , 2 , . . . ) and any /", j (i, {0, 1, 2, ...}) if i<j then the ay-
product is isomorphically more general than the arproduct. 
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Finally we consider that what kind automata can be embedded isomorphically 
into an «¡-product ( / = 0 , 1,2, ...) of automata f rom the given finite set of auto-
mata. For this the following is valid. 

Theorem 6. For any natural number z'(sO), automaton A arid finite set M of . 
automata it can be decided whether or not A 6a f (M) . 

Proof. Assume that automaton A = (X, A, <5A) with m states can be embedded 

isomorphically into an «¡-product B = / J A , ( X , <p) of automata f rom M under 
i=i 

the isomorphism ¡x. Let F = m a x {\At\:At£M}, and fo r all a^A (i= 1, ...,m) 
denote by ( a n , . . . , a i s) the image of under fi. We define partit ion n on the set 
of indices of the a r p r o d u c t B. Any k, I (ISA:, l^s) k = l{n) if and only if Ak=A, 
and atk=atl for all t=1, ..', m. It can easily be seen that the partition n has at 
most \M\-Vm blocks. Since n is an isomorphism, thus if atk=an ( f = l , ...,m) 
then the /c-th component of ju (<5A(a,, x)) is equal to the 7-th component of 
/¿(<5A(A> x ) ) for all / = 1 , . . . , m and x£X. By this it is not difficult to prove, that 
the automaton A can be embedded isomorphically into an a r p r o d u c t of automata 
f rom the set M with at most \M\-Vm factors. 
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Rational representation of forests by tree automata 

B y G . MARÓTI 

1. Introduction 

In this paper we give a new representation of forests which is more powerful 
than the usual one in the following sense: for this representation there exists a 
proper variety which is complete, i.e., every regular forest can be represented (in 
this new sense) by a tree automaton built on a finite algebra belonging to this variety 
(Theorem 5). This representation is a generalization of the rational one developed 
by F. Gécseg in [1]. Moreover our Theorem 5 yields immediately the result of F. 
Gécseg and G. Horváth [2]: there exists a proper variety over the type G={g, h), 
where the arities of g and h are 2 and zero, respectively, such that every context-
free language can be recognized by a finite tree-automaton belonging to this 
variety. 

2. F/-homomorphism and F/--embedding 

Let F be a nonvoid set and r a mapping of F into the set N of all nonnegative 
integers. We call the ordered pair (F, r) a type. The elements of F are the opera-
tional symbols. If / £ F and r ( f ) = n (n£N) then we say that the arity of / i s n (or / 
is an n-ary operational symbol). We will refer to the type (F, r) simply by F. The 
subset of all 0-ary operational symbols will be denoted by F°. 

Take the set X= {x0, xx, ...} and a type F. The set Tr„ of the n-ary polynomial 
symbols over F is defined by 

1) x 0 , . . . , x„_ i£T F n , 
2) if p0, ...,pm-i£ TFn and / € F is an m-ary operational symbol 0) then 

f(p0,...,pm-1)£TFi„, 
3) TF<n is the smallest set satisfying 1) and 2). • 

The set TF of all polynomial symbols over F is defined as the union of all TFt„ 

TF = Ü TF„. • . 
n = 0 

Every polynomial symbol p£TF can be represented by a tree P (by a loop-free 
connected graph) whose nodes are labelled by the elements of the set FUX in such 
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a way that if a node has the label / 6 F then there, are exactly r ( f ) edges leaving it. 
We use the terminology that P is the tree belonging to the polynomial symbol p. 

Consider the polynomial symbols p£Tr>m and p0, •••,pm-i£TF n. Then 
p(p0, ...,pm_j) denotes the following w-ary polynomial symbol over F: 

1) if P=xt ( O ^ n S w - l ) then p(p0, ...,pm-d=Pi, 
2) if p=f(q0,---,<lk-i), where f£F and r ( f ) = k , then 

P(Po, •••,Pm-l)=f{<Io(P<» •••,Pm-l)> •••> 1k-l(.Po, ' 

Next we define the mapping fr (frontier): fr is a mapping of TF into the free 
monoid generated by the set X satisfying the following conditions: 

1) M x d = x, (i = 0 ,T, ...), 
2) if h£F°, then fr(h)—e (e denotes the empty word), 
3) if P—f(Po, • ••>Pm-i)> where f£F and r ( f ) — m, then 

fr(p) =fr(Po)~fr(j>m-i)-

Let us consider now two types F and G. The mapping a:7^— TG is called 
an fr-homomorphism (frontier-homomorphism) if it satisfies the following con-
ditions : 

(i) a{xd=x, ( i = 0 , 1 , ...) 
(ii) fr(a(f(x0, ...,xn.j)) =fr(f(xQ, ...,x„.i)), where f£F and r ( f ) = n 

( » S O ) , . 
(in) a(f(p0, . . . ,p„_ 1 ) ) = a ( / ) (a (p 0 ) , ..., a(pn-J). 

Corollary 1. Fo r every polynomial symbol p£TF and for every / r -homo-
morphism a :TF-*TG we have 

fr(ct(p))=fr(p). 

Let d(p) denote the depht of the polynomial symbol p, i.e., if p is equal to xt 
or a 0-ary operational symbol then d(p)=0, and if p is of the form p =f(p0, • • •, -1) 
then d(p)= max {£/(/?;)}+1. 

i= 0 m — 1 

Corollary 2. Let a : TF— TG be an / r -homomorphism, and assume tha t for 
every f£F, d(a(f(x0, ..., xr(n_1)))^l. Then, fo r each p£TF 

d(x(p))^d(p)' 
holds. 

Proof Let p£ TF. If d(p)=0 then the assertion is trivial. Assume that Corollary 
2 is true for all polynomial symbols whose depht is less than that of p= 
=f{Po'i •••>/>m-i)-' Then' 

d(*(p)) = d(a(f(p0, ...,pm-1))) = d(a{f)(*(p0), ...J«(pm.1)) S5 

+ . max { d ( a ( p , . ) ) } s l + max {d(pfl = d(p). 
1 = 0, ..., m —1 v v ' 1=0, ..., m — 1 

If the / r -homomorphism a: TF-*TG is one-to-one then it is called fr-embedding. 
Let us denote by TF [1] the set of all polynomial symbols f rom F with depth 

less than or equal to 1 
v • • TF[\] = {p|/>(E7V and d(p) 1}: , 
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For every mapping <p: TF{\]-+TG satisfying condition (ii) there exists exactly one 
/ r -homomorphism a : T F — T G such that a\TF[\] = <p, where ocf7V[l] denotes the 
restriction of a to 3TF[1]. 

If we take two types F and G then an / r -homomorphism not necessarily exists 
between TF and TG. For example if G consists of unary operational symbols only 
and in F there exists an operational symbol with arity greater than or equal to 2 
then, obviously, there is no / r -homomorphism between TF and TG. 

Consider the type F and denote by S(F) the following set of nonnegative 
integers 1 

S(F) = {n\3f<iF with r ( f ) = n). 

The set {0, ...,m — 1} will be denoted by in for all natural number m. 

Theorem 1. Let F and G be types, S(F) = {w0, . . . , n , .^} and S(G) — 
= {m0, . . . , mj - j} . If there exists an / r -homomorphism a : TF-*TG, then for a -
suitable mapping (p: r-<-s we have 

( w 0 - l , . . ^ m ^ j - l J K n o - W o , , , . . . , n r _ 1 - m ( r _ 1 ) 9 ) . (1) 

Proof. Let a : TF~* TG be an / r-homomorphism. If Ghas an operational symbol 
with arity zero, then (1) holds for every mapping (p: r—s because of 

( m 0 - l , . . . , - 1 , . . . , m ^ j - l ) = 1. 

In the opposite case take a p£TF of depth 1, and let g=a(p). Then 

\Mg)\..= \MP)\ - nk (2) 

for some k£r. Now consider the tree Q belonging to q. In consequence of (2) Q 
has nk leaves. Delete in g a l l leaves belonging to a given subtree of Q with depth 1. 
We get a tree with nk — {mn — \) leaves, where i1£s. Continue the deletion of 
the leaves of the subtrees f rom Q with depth 1 as long, as we get a tree of depth 1. 
At each step the number of leaves of the current tree was reduced by (miv— 1) for 
some /„££. At the end of the process, the tree of depth 1 must have m} leaves, where 

In this way for suitable nonnegative integers /„, . . . , / s _ 1 we have 

nk-l0(m0-l)-...-ls_1(ms_1-\) = mj.^ . (3> 
Hence 

nk-m} = / 0 ( m 0 - l ) + ... + / s _ 1 ( m s _ 1 - l ) . (4> 

Let d be the greatest common divisor of m0— 1, . . . , 1. Then d divides the 
right side of (4). Therefore d divides nk — mj as well. 

Take the correspondence k-»j, and denote it by \j/ 

. . . (5> 

Since /?G7V[1] was arbitrary, while it runs over the set 7V[1] in (5), thus k must 
run (not necessarily once) over the numbers 0, ' . . . , r—1 and, meanwhile, for every 
k£r, ki]/ assigns a subset of s. Let cp be a choice function of the system of sets 
{kf\k£r}. Because of (4), nk—mk(p can be divided by d for every k£r. Therefore,. 
d divides their greatest common divisor, as we stated. • 
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Unfortunately, condition (1) is not sufficient. Indeed, let F consist of a single 
unary operational symbol and let C7={g} with r(g) = 2. I t is clear tha t condi-
tion (1) holds, but that in TG there is no tree with a single leaf. 

Theorem 2. Using the notat ions of the previous theorem, the necessary and 
sufficient condit ion of the existence of an / r -homomorph i sm between TF and TG 

is the validity of the following equalities 

nk = mk9 + l0(m0-l)+... + l,-1(m,-1-l) (k = 0, . . . , r - 1 ) , (6) 

where cp is a mapping of r into I and /( are nonnegative integers for / = 0 , . . . , s — 1. 

Proof. The necessity of conditions is trivial by the proof of the previous the-
orem. 

Before we are going to prove the sufficiency let us note, that if a natural number 
n is of the fo rm 

n = mi + y0(m0-\) + ...+ys_1{ms_1-\), s 

where i£s and y0, . . . , ys-x are nonnegative integers, then there exists a q in TG 

such that 

. fr(q) = x 0 . ' 

We proof this s tatement by induction on s. Fo r s = l , 

n = m0 + y0(m0-\). 

If g£G with r(g)=m0, then the polynomial symbol 
&(•••&(£(•*()> ••• > xmo~l)> Xm0' ••• ' X2mo-l)> ••• ' * n - l ) 

is appropriate . Remark, that this choice is possible since 0 implies m0=-0. 
N o w assume that our statement has been shown for s=v, i.e. for each natural 

number n' of the f o r m 

n' = ml- + } ' 0 ( m 0 - l ) + . . . + > ' „ _ 1 ( w „ _ 1 - l ) 

there exists the desired q' in and let 

n = mi + y0(m0-l) + ...+yv(mv-l) = n' + yv(mv~ 1). 

We distinguish three cases. If 1, then we can choose for q the polynomial 
symbol 

g(.,.g(q', xn., ...,x„-+mu_1)...xn_1), 

where gdG and r(g)=mv. If mv=\ then n=ri and, therefore, q' itself is suitable. 
Finally, if mv=0 and h is 0-ary operational symbol in G, then let q be the polynomial 
symbol which can be obtained f r o m q' by replacing the variables x„, xn+1, ..., xn._l 
by h. 

N o w assume that conditions (6) hold for the types F and G. In order , to show 
the sufficiency of our conditions it is enough to define a mapping a : 7V[1] — TG 
with fr(a(p))=fr(p) fo r every p£TF[ 1]. If in F there is no 0-ary operational symbol 
then for f (XJQ, •••,xJnk_1) let 

cc(f(xJo, . . . ^ x j ^ ) ) = q(xJo, •••,xJ„k_1), 
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where q£TG the polynomial symbol with fr(q) = x0...xnk_1, whose existence 
was shown above. In the opposite case in- G there must be a 0-ary operational 
symbol as well, say h. For every f£F° let a ( f ) = h. Furthermore if f£F\F° is 
of arity nk (k£r) and q£Ta is the polynomial symbol with •fr(q) = x0...x„k_1, then 
for f(yJo, . . „ y j ^ j t T M let 

«(/OV ••' yjnk-1)) = - ' ZJnk-1)' 
where 

' =\yu i f yj£x> 
Z j , r \ h . if .yj£F° (/ = 0, ..., nk— 1). 

Theorem 2 provides two necessary and sufficient conditions for the existence of 
//•-embedding a:7>— TG for every type F. 

' Theorem 3. The following three conditions are equivalent: 
1) for every type F there exists an //--homomorphism of TF into TG, 
2) in G there exist a 0-ary and an at least binary operational symbols, 
3) for every type F there exists an //--embedding TF into TG. 

Proof. Because of the previous theorem, 1) is equivalent to 2), and it is clear 
that 3) implies 2). Therefore, it is enough to prove the implication 2)=>3). 

For this let g,h£G with r(h)=0 and r(g)S2. Consider an arbitrary type 
F and take a one-to-one mapping y of F into TG, for which 

\ f r ( y ( f ) ) \ = r ( f ) 

holds for every f£F. Now we define the mapping /?: 7"F[1] — TG in the following 
manner: 

1) P(xi) = xi 
, 2) p(f)=g(h, ...,h,y(f)) if / e n ' 

3) P(f(yi0, ...,yln_j) = g (ft, ...,h,y(f){P(yi0), Where y^XUF» 
0 = 0, . . . , n—1) .and f£F\F°. 

Obviously /? is one-to-one. Moreover, for every p(LTF[\\ we have 

• HP(p)) = f r ( p ) . 

Assume that F={f0, ... ,fk-^) and take the following unary polynomial 
symbols f rom TG 

= g(xo, h> 

qj = g{qj^,h, ...,h) ( j = 0, ..., k-1). 

Finally, let us denote by a' the mapping of- 7V[1] into TG for which 

«'(p) = IAP(P)), 
where p=fj(p0, Obviously, a' can be extended to an //--homo-
morphism a : 7V— TG. We claim that a is an //--embedding. Indeed, assume that 
for the polynomial symbols p and q in TF, a.(p)=a(q). We proceed by induction 
on the depth of p. 

If p=Xi then a (p) = x ; . Moreover, 

0 = d(x^ = d(a(p)) = d(a(q)) ^ d{q) S 0 
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implies d(q) = 0, which yields q — x,. If p = fj£F° then d(p) = a ( f j ) = 
= qj{g(li, y ( / ; ) ) . Assume that 9 has the fo rm/* ( / „ , . . . , Then 

«(?) = «(AOo, - = &(g(h. •••,h,y(fk)(ci(t0), ...,«(/„_!)))). 

This and the assumption a ( />)=a(^) jointly imply 

..., h, y ( f j ) ) ) = ...,h, y(A)(a(i0), .7., « ( /„_ , ) ) ) ) . 

But this yields . / = £ . 
Finally, assume that p=fj(p0, •••,Pn-1) and that the statement has been 

shown for every p' with d(p')<d{p). Let q=fk(.q0, •••, qm-d- Then a(p)=a(q) 
implies 

qj{g(h, ...,h, y(fj)(a(p0), ..., a(pn-:i)))) = 

= <}k(g(h> •••>h> 7 ( A ) ( « ( ? o ) 3 •••, a ( ? m - i ) ) ) ) - . (7) 
But this holds only if qj = qk, which is equivalent to j=k. Thus (7) yields tha t 
«(/>;)= a(?i) '0'—Q> •••,k— 1), which makes the proof complete. 

3. Fr-representation 

Let F be a finite type and 91=(/4, F) a finite F-algebra (for terminology, 
see [3] and/or [1]). The triple 31=(91, a, A') is called an n-ary tree automaton over 
F, or shortly n-ary F-automaton, where A'QA is the set of final states and ad A" 
is the initial vector. 

According to the terminology used in the theory of tree automata the polynom-
ial symbols over F and the subsets of TF will be called F-trees and F-forests, resp-
ectively. 

Consider the w-ary F-automaton. 9 l=(9I , a, A') and let us denote by F(3I) 
the following subset of TFf„ 

T(®) = {p\pefF,„ a n d P v ( a ) £ A ' } . 

We say that the forest TQ TF „ can be recognized by 9i (or 9T represents the forest 
T) if T= 7\3I) . 

Let Tlt T2QTFi„ and O^i^n-l. The xrproduct of Tt and T2 is the forest 
which can be obtained by replacing every occurence of x, of some tree f r o m T2 
by a tree in T1. W e denote the x r p r o d u c t of 7\ and T2 by T^XIT2. Let F 0 , i = {x,} 
and xk,' = Tk~1,i[JTk~1,ixiT (k=l, 2, ...). Finally, let us denote by T*-1 the union 
of all forests TK-': 

J * , i _ ^ y ft, i 
*=0 ' 

T*'1 is called the xriteration of the' forest f . 
We say. that the forest TQ TFt„ is m-regular. if it can be obtained f r o m finitely 

many trees of TF: M by finitely many applications of union, x r produc f and x' r i tera-
tion. A forest T is called regular if it is m-regular. for some m.. 

I t is well known tha t a forest is regular if and only if it can be recognized by 
a tree au tomaton [1]. ' 
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Take a forest TQTF<n and an n-ary G-automaton 5 I = ( 2 I , a , A ' ) . We say 
that 51 fr-represents the forest T (or T can be fr-recognized by 51) if there exists an 
//•-embedding a : TF-*TG such tha t ct(T) = T(W). 

Theorem 4. A forest is regular if and only if it can be //--recognized by a tree 
automaton. 

Proof. We shall show that the image and the complete inverse image of a regular 
forest under an / r -homomorph i sm are regular as well. This yields for us the 
sufficience of our conditions. The necessity is trivial. 

Let a : TF-*TG be / r -homomorphism. From the definition of union and xr 
product of forests immediately follows tha t fo r each 7 i , T 2 Q T F t „ we have 

« ( ^ U r ^ a ^ U « ^ ) , ( 8 ) 

<TlXiT2) = a C r j x t a ( T J . (9) 

After this by induction on k it is easy to show that 

a ( 7 ? ' 0 = a W (fc = 0 , 1, . . . ) . 
From this we get 

a W ) = a f U 7?- ' ) = U cc(Ttl) = U o c ( 7 \ ) M = « ( r j * - 1 . (10) 
V*=0 > k=0 * = 0 

Consider now the regular forest TQ TF, and assume that it can be obtained 
f rom the trees p0, . . . , p k - i £ T F by finitely many application of regular operations 
(union, x r p r o d u c t , x,-iteration). Because of (8)—(10), a(T) must be obtained 
f rom a(p0), ..., oi(pk_j) by finitely many applications of the regular operations, 
namely in exactly such a manner as T is built up f rom p0, ...,pk_1. Therefore, 
ct(T) is regular as well. 

N o w take two forests T^TG<N and T'QTFI„, and assume that T'^A.~1(T) 
and that T is regular. Then for some n-ary ( / -automaton 51, T= 7X51). Take the 
F-algebra S — (B,F) such that B=A and for every f£F, f<8=x(f)m- Moreover 
consider the n-ary F-automaton S = a, A'). We claim that T(%)-T'. Indeed 
for every p€TF,m, p£T(%) if and only if pm(a)eA'. But Pm{a)=a(p)m (a)£A' is 
equivalent to a(p)£T( = T(W)). Finally, a ( p ) £ T if and only if p£a~i(T) (=T'). 
The proof is complete. 

Let K be a class of (7-algebras. We say that K is fr-complete, if for every regular 
forest T (not necessarily over the type G) there exists a finite algebra S i = ( A , F) 
in K, an a d A" and A'^A such that the tree automaton 5 l = ( 5 t , a , A ' ) fr-repre-
sents the forest T. 

Our aim is to prove the existence of a nontrivial //--complete variety. In order 
to show this, take the type G in which there exist two operational symbols g and h 
with r ( g ) = 2 and r(h)=0. Fur thermore consider the equation 

g(h, ...,h,g(h, ...,h)) = g(h, ...,h,g(h, ...,h),g(h, ...,h)). (11) 
Theorem 5. The variety defined by the equation (11) is /r-complete. 
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Proof. Let a: TG—TG be an /r-homomorphism such that: 
1) a(*) = g'(g(fc, A), 
2) cc(g(xl0, ...,xlm_J) = g(g(xi0, ...,xlm_J,h, ...,ti), 
3) on the set of all other polynomial symbols of TG with depth less than or 

equal to 1 a is the identity mapping. 
We claim that a is //--embedding. Indeed, let a{p)=a{q). If p=x, then ob-

viously q must be equal to If p=h then because of a(h)=g(g(h, ..., h), h, ..., h), 
q does not contain any operational symbols different from g and h. Therefore, if 
d(q)^ 1, then q must have the form g(p0, . . . , p m - t ) . In this way from 

g(g(/i, ...,h), h, ...,h) = g(g(a(p0), ...,a(p m - j ) ,h , ...,h) 

it follows that h=cc(j)0) which is a contradiction. Therefore, d(q)=0 and thus 
q must be equal to h. Finally, if p is 0-ary operational symbol different" from h then 
p=q obviously holds. 

Now assume that </(/>) = 1 and that our statement has been shown for every 
polynomial symbol with depth less than that of p. Moreover, let p=gi(p0, •••,pk-1) 
and q=g2(q0, •••, Then 

a(gi)(a(Po), «(Pt-i)) = a(g2)(<*(tfo). •••> a(?/-i)) (12) 

yields that a(gi) and a(g2) must begin with the same operational symbol, but this 
is possible only if g1=g2. Therefore, from (12) we get that k=l and a(pl)=a(ql) 
(i=0, ..., k—1). According to our induction hypothesis, this yields that p=q. 

Now take an arbitrary type F and an /r-embedding /?: 7V— TQ. Then y=ctp 
is an /r-embedding of TF into TG as well. For the sake of simplicity introduce the 
notations 

' tt = g(h, ...,h,g(h, ...,hj) 
and 

t2 = g(h, ...,h,g(h, ...,h),g(h, ...,h)). 
Then 

sub ( 0 H y (TF) — 0 (i = 1, 2). (13) 

Moreover, for every p€y(TF) 
f,<tsub(p) (i = 1, 2). (14) 

Let T<^TFi„ be a regular forest which can be obtained from the trees 
p0, •••,Pk-i€TFim by finitely many applications of regular operations. According 
to (14), y(p0), ..., y(pk-i) can be represented by the m-ary (7-automata 
5I0, . . . , such that on the algebras 9l0, . . . , 3 1 * t h e equation tx = t2 holds 
([1] lemma 2). 

Note that the power set of y(7>) is closed under the regular operations, that 
is if Tlt T2<g(TP) then T^Tz, Txx{T2 and T?-'Q(TF) as well. Indeed, 

T1{JT2 = y(y\TdUy1(.TJ)^y(TF), (15) 

T\X{T2 = yinrjxtriTd) g y{TF), (16) 

T*-> = № 0 g y(TF). • (17) 
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Therefore, for every forest T'^TG which can be obtained f rom y(p0), . . . , y(pk-i) 
by finitely many applications of regular operations we have 

sub ( / ; )nr = 0 (¿ = 1,2). 

By lemmas 3, 4 and 5 of [1] if for the forests T1 and To 
1) sub ( ^ 0 ^ = 0 (i, 7=1,2), and " _ 
2) and T2 can be recognized by the tree au tomata 5 ^ and 3f2»' respecti-

vely, such that on the algebras and 5I2 h = h holds, 
then the forests 7 \ U J2, Txx;T2 and T*-> can be represented by the tree au tomata 
S i , S 2 and S 3 , respectively, such that on the algebras S f (/ = 1, 2, 3) tL=t2 holds 
as well. 

From this and f rom statements (14)—(17) we get, that every forest which can 
be obtained f rom y(p0), ..., y(pk-i) by finitely many applications of regular opera-
tions (among them y(Tj) can be represented by a G-automaton belonging to the 
variety defined by the equation (11). This ends the proof of our theorem. 

F rom the above theorem we can see that the existence of a 0-ary .and an at 
least binary operational symbols in the type G is sufficient for the existence of a 
proper //--complete variety. But, by Theorem 3 it is necessary as well. Therefore, 
the simplest types over which there exist //--complete varieties are those which 
consist of exatly one 0-ary and one at least binary operational symbols. 

By the languages over the alphabet X={x0, . . . , x„_x} accepted by an n-ary 
F-automaton 51 we mean _ 

¿ ( s t ) = { M p ) \ p e m ) } . 

In [2] it was shown by F. Gécseg and G. Horváth that there exists a proper variety 
over the type G = {g, h) with r(g)=2 and r(h)=0 such that every context-free 
language can be accepted by a finite tree automaton belonging to this variety. This 
result directly follows f rom Theorem 5. 

4. Fr-equivalence of tree automata 

In [1] F. Gecseg introduced the concept of rational equivalence of tree automata. 
Namely, two tree automata 51 and S (not necessarily of the same type) are called 
rationally equivalent if for every forest T, T can be rationally represented by 51 
if and only if T can be rationally represented by 53. Now we define_the analogous 
concept for //--representation. We call two tree automata 51 and © fr-equivalent 
if the class of forests /r-representable by 51 is equal to the class of all those forests, 
which can be //--represented by 23. 

One can naturally raise the following questions: 
1) Is . the rational equivalence of tree automata decidable? In other words, 

does there exist an algorithm to decide for arbitrary two tree automata whether 
they are rationally equivalent or no t? 

2) Is the //--equivalence of tree automata decidable? 
In this section we give positive answers to each of these questions. 

4 Acta Cybernetica 111/4 
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We shall need the following two simple lemmas. . 

Lemma 1. Let a: 7>—7> be an /r-embedding and assume that there exists 
a forest T<gTF such that a(T) = T. Then for each p£T we have 

d(*(p)) = d(p). 

Proof. For every natural number n let 

T„ = {P\P£T a n d d(p) = n). 

We shaw that for every n, z(T„) = Tn. Indeed, let n0 be the least natural number 
with If q£Tno then a~x{q)^T and d(a~1(q))^n0 which implies that 
a _ 1 ( ? ) e r „ 0 . Therefore, a^iT^^T^. But a - 1 is one-to-one and T„a is finite. 
Thus the restriction of a " 1 to Tno is onto, i.e., a.~l(Tn^=Tnii. Hence a( r„ 0 ) = r„ 0 . 
Now take an arbitrary natural number n such that and assume that for 
every m<n, a(Tm) = Tm. For each qiTn we have d{a~1(q))^n. If d(arl(q))<n 
then a~1(q)£Tm for some m<n implying q£Tm, which is impossible. Therefore, 
d(<x~1(q)) = n, or equivalently <x~1(q)£T„. Finally, again f rom the finiteness of 
Tn we get that a (T^ = Tn. • 

Consider the types F and G. We call the mapping y of F onto G a projection 
if y preserves arity. If we have an / r -homomorphism a : TF— TG such that 

1 ) fo r every fdF, d(a(f))= 1, 
2) for every / £ / " , a(/) has exatly r(f ) leaves, 
3) for every g£G, g(x0, . . . , xP ( 9 )-i)€a(7V), then we can take the projection 

y: F—G for which y(f)=g if and only if a ( / ( x 0 , . . . , xr(f)_1))=g(x0, ..., x r ( / ) - i ) . 
For this we use the notation y = a\F. 

The next result is obvious. 

Lemma 2. Take three /r-embeddings a: TE-*TG, fi: TG-*TH and y: TF — TH 
such that y = /ta. Then y\F is a projection if and only if a\F and /}\G are projec-
tions as well. _ _ _ 

Consider an /"-automaton 5t and a (J-automaton ©. We say that 21 and © 
are equivalent up to the notation of their operatioml symbols if there exists a one-to-one 
projection y of f onto G such that y(7X9l))=7"(©).. Moreover, we use the 
terminology that F is reduced for 51 if for every / £ F there is a tree p in T(9I) such 
that / occurs in p. 

Theorem 6. Take an /"-automaton 91 and a CP-automaton © such that F and 
G are reduced for 91 and 93, respectively. Then the following three conditions are 
equivalent: _ 

1) 51 and © are rationally equivalent, 
2) 91 and © are /r-equivalent, 
3) 91 and S are equivalent up to the notation of their operational symbols. 

Proof. The equivalence of 1) and 3) was proved in [1]. Furthermore, it is obvious 
that 3) implies 2). Thus it is enough to show that 3) follows form 2). 

First we prove, that if for an /r-embedding a: TF-+TF there exists a q£TF 
such that a(q)—q, than for every operational symbol / occuring in q we have 
a { f ) = f Indeed, if d(q)^ 1 then this statement is trivial. Now let q = 
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=f(<lo) •••> <7t-i) and assume that for every tree q' with d(q')<d(q) our statement 
is true. From a (q) = q we get 

a(/)(«(?o). - . a f e - i ) ) =f(<lo, —,9k-i)-

But this yields that a ( / ) = / and that a.{q?) = qi ( ¡ '=0^. . . , k— 1). 
Now take an F-automaton 2i and a (/-automaton 23 such that F and G are 

reduced for 31 and 93, respectively. Assume that 21 and 23 are //--equivalent. JThen 
there_exist two //--embeddings a: TF-*TG and jS: TG-*TF such that a(T(2l)) = 
= T(23) a n d _ ^ ( r ( ® ) ) = r(2T). Therefore, for the //--embedding y = /Jx we have 
•y(T(2i))= r(2I) . Thus, by Lemma 1, y preserves the depth of trees in 7\5t) . For 
the sake of simplicity let us denote 7\2I) by T. 

Consider the trees p0, ...,pm_^T such that for every f£F there exists a j£m 
for which / occurs in pj. Let d(p0)=n0, ..., d(p„,-1) = nm-l. Therefore, pjd T„. 
(j—0, ...,m— 1). (We recall that T„. is the set of .all trees f rom T whose depth is 
rij.) Let 

yj = y*T„. ( j = 0, . . . , m — 1). 

Since Tn. is finite and ys is one-to-one thus there exist natural numbers A0, . . . , Arm_i 
such that 

ykjJ='^Tnj O' = 0, . . . , m - l ) . (18) 

Take d=k0..^km-1. From (18) it follows that 

/ K ^ 0 U - u r „ m _ 1 ) = id r n o U . . . u 7 - n r a i . 
Therefore, for the//--embedding yd: TF^TF we have 

yd(Pj) = Pj 0 = 0, . . . , m - l ) . 

Because of the choice of the trees poi ...,pm^1 the first assertion of this proof 
yields that / f F = i d f . Thus yd\F is a one-to-one projection of F onto F, but by 
Lemma 2 this is true if and only if y\F is a projection of F onto F as well. Then 
Lemma 2, y= / f a and the fact that y\F is a projection jointly imply that a\F is 
a projection of F onto G. The proof is complete. 

According to the above theorem in order to_decide_the rational equivalence 
(//•-equivalence) of arbitrary two tree automata 21 and 23 it is enough to_check 
whether there exists a one-to-one projection y between the types of 21 and 23 such 
that y(r (2l ) ) = 7"(23). But the set of all one-to-one projections between_two finite 
types is finite, and for a given one-to-one projection y the equality y(r (2I) ) = 7"(23) 
is decidable by taking the minimal tree automata recognizing y(7"(2l)) and 7X23).. 
Thus we have 

Theorem 7. The rational equivalence and the //--equivalence of tree automata 
are decidable. 
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A note on symmetric Boolean functions 

B y P . ECSEDI—TÓTH,* F . M Ó R I C Z * * a n d A . VARGA** 

TO t h e m e m o r y of P r o f e s s o r GÉZA FODOR 

Introduction 

The notion of a symmetric function can be found in any textbook on switching 
theory or logical design. It is well-known (SHANNON [1]) that the truth-value of 
a symmetric function depends only on the number of literals for which the truth-
value T R U E is substituted. More precisely, the following theorem holds. 

Theorem (Shannon). Letcp be a Boolean function of n variables. q> is a symmetric 
function if and only if there exists a set of integers {nx,n2, ..., nk} (called the Shannon 
set of (p) (Jc^n, 0 for i^/c) such that the truth-value of <p is T R U E i f f for 
exactly nf of the literals T R U E is substituted. 

The proof of this theorem gives no idea how to determine the set {«z, n2, ..., nk}. 
Since symmetric functions have nice properties, it is important to decide whether 
a given function cp is symmetric or not. As far as we know, there are only trivial 
methods (i.e., to test all possible cases) for the solution of this problem. 

In this paper we present an effective algorithm to determine the Shannon set 
of a Boolean function if it exists. The method is based on the tree-representation 
of Boolean functions used by the present authors [2] to get irredundant normal-
forms as representation of them. In particular, we associate a number — the number 
of negative literals — to each path of this tree. Then by a simple comparison of 
the endnodes of the paths and of the associated numbers, we can collect the Shannon 
set provided it exists. -

1. The tree-representation of Boolean functions 

To make the paper self-contained, we present here the tree-construction al-
gorithm, too. A more detailed explanation and the basic results can be found in [2]. 

Let a Boolean function <p be given in which at least one variable occurs. Choose 
a variable of cp according to some rule (a so-called selection function), fixed pre-
viously. First, substitute the truth-values T R U E and FALSE, respectively, for the 
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chosen variable. Then eliminate the truth-values f r o m both expressions obta ined 
by using the following t ransformat ion rules: 

<pAl <p; lAcp-—<p 

<pA0~0; 0A(p —0 

<pV 1 — 1; lV<p — 1 

<pV0-—<p; 0V(p-~<p 

<P~* l — .l 

(p -f 0 (p 

1 -+(p~cp 

0 - <p — 1 

(<p~l)~+<p; (1 ~ ( p ) ~ ( p 

(<p 0) <p; (0 ~<p)~(p 

(pA<p*->-(p 

(pA<p-~0; <pA(p->—0 

(p\/(p~-(p 

1; 1' 

(p -* (p- *l 

(<p~cp)—] 

<P*°<P 

I — 0 

0 — 1 

As a result of the elimination process we come to one of the following two 
cases: -

(i) The expression obtained contains a t least one variable. Then let us choose 
a variable in it according to our rule, and repeat the substi tution and the elimina-
t ion described above. 

(ii) The expression obtained is a single truth-value. Then the algori thm stops. 

We note that the funct ion cp, together with a selection function, determines its 
tree uniquely u p to isomorphism, and conversely, every binary tree determines 
a Boolean funct ion uniquely u p to logical equivalence. 

The following example illustrates the me thod . W e use the usual logical con-
nectives (A for conjunction, V for disjunction, — for implication, — for equivalence, 
and ~ (bar) for negation). 1 and 0 will denote the truth-values T R U E and F A L S E , 
respectively. • • 
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Example. Let the Boolean function <p be as follows: 

cp: ((A - B)A((CVB) - A)) - A. 

Let us choose the variables alphabetically. The substituted and "simplified" ex-
pressions can be arranged in a tree as indicated in Fig. 1. 

As it was proved in [2, Corollary 6], the function cp and also its sub-functions 
can be omitted since they are obtainable from, the shape of the tree, so it is enough 
to draw the simpler form as indicated in Fig. 2. 

Fig. l Fig. 2 

The concept of a complete tree was introduced also in [2]. A tree of a Boolean 
function is complete iif all paths from the root to an endnode of the tree have the 
same length, which is equal to the number of the "variables of (p. T h e reader can 
easily verify the following two assertions. ' ' 

Lemma 1. Let q> be a Boolean function of h variables. Then one'can find a Boolean 
function <p' with the same variables, the tree of which is complete, and <p'.is logically 
equivalent to (p. q>' and its complete tree are uniquely determined. 

In practice, it is very easy to get a complete tree f rom any incomplete one as 
Fig. 3 shows. 

Lemma 2. Let cp be a Boolean function of n variables and suppose that the tree 
of <p is complete. Then there exist exactly 2" paths in the tree of cp, 

Convention. In the rest of this paper we shall assume that, every tree is drawn' 
in such a way that the positive sub-expressions (those which can be obtained: b y 
substituting T R U E for ai variable) are drawn on the left-hand side, while the negative 
sub-expressions are drawn on the right-hand side of the tree. Observe thati trees 
in Fig. 1—3 correspond to this convention. 

Definition. Let cp be a Boolean function- of n. -variables. ¡Then its complete: tree 
is the tree of <p' determined by Lemma 1. v u:'J : ' I a 



324 P. Ecsedi-Toth, F. Moricz and A. Varga 

2. The sequence q 

Definition. Let us define the sequence of non-negative integers by 

¿;*=the number of 1 in the binary expansion of k— 1 (k=1,2, ...). 

Definition. Let ((k) be defined by the following recurrence: 

Ci = 0 , • 

'• (2k-l ~ Cfc» ' ' 

Lemma 3. We have for every k=1,2,... . 

Proo/. If A:= 1, then the lemma holds by definition. For every k s 2 there 
exists; exactly one non-negative integer n such that 2 n < & s 2 1 + 1 . We proceed by 
induction on n: 

Let n be. fixed. Assume. 2"<k^2"+ 1 . and that /S2" implies 
Let A:=2/ -1; Obviously, /c—1=2/—2 .¡s even and 7^2", so. 

Gt = Ci'= - i t - • 

Note .that the last equation holds, since multiplication by 2 simple means a shifting 
m the binary expansion of k—1. 
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Let k = 2 l . Obviously A:— 1 =2/— 1 is odd and 7 ^ 2 " , so 

•C* = ? a = Ci + l = « . + ! = £2, -1+1, 

where again the last equat ion holds by the shifting property mentioned above. 
W e have to prove tha t 

£21-1 + 1 — £21-

However, this readily follows by definition f r o m the fact that 21— 1 is odd and 
2 / — 1 = 2 / — 2+1 . 

The proof of Lemma 3 is complete. 

Definition. Fo r each non-negative integer n we define £ 2 " ( k ) by the follow-
ing recurrence: 

(i) C2o(l) = 0, . 
r^n(fc) if 0 < k s ? , 

(ii) = . f 2„<k^2n+1 a n d k = 2"+1. \ 

Lemma 4. We have Ck — Zz»(&) provided 0<kS2". 

Proof. I t is enough to prove tha t 

& - i ( 2 f c - i ) = 
and (1) 

&«+i_(2fc) = & . ( * ) + 1 , -

since if we assume tha t 0 < k s 2 " entails 

& = (2) 
then if / = 2 ) f c - l ( 2 " < / s 2 " + 1 ) , then 

Cl = Csk-i = C* = f~2»(/c) 

by (2); and if l=2k (2"<lti2n+1), then 

We prove (1) by induction on n. If « = 0 , then (1) trivially holds. If « ^ 0 , 
then we prove that 

£2"+2(2k— 1) = £ 2 »+i (k) 
and 

• C i - » ' ( 2 k ) = + l (fc = 1 , 2 , . . . , 2 n + 1 ) . 

In each case two subcases will be distinguished. 

1) If & is odd and 2k-IS 2", then 

¿>+2(2/C— 1) = c2n+i(2fc— 1) = C2n(fc) = €2"+I(/C). 

2) If fc is odd and 2 k - 1 >2" , then 

2 k - 1 = 2 " + / , 
where / S 2" and / is odd, thus 

2k —1 = 2"+2m—1. 



326 P. Ecsedi-Tóth, F. Móricz and A. Varga: A note on symmetric Boolean functions 

We have also for k=2"+m, 

fr-.(2lfc-l) = É r - i ( 2 " + /) = Í Í - + I ( 0 + 1 = 

= = £r+i(2—1 + m) = 

.3) If k is even and 2k^2", then 

| 8 „ + 2 ( 2 k) = £ t - i ( 2 i f c ) = + 1 = + 

4) If k is even and 2k>2", then 

<¡>+»(2 fc) = Í2»+í(2" + 0 = = + i (2m) + l = 

= ¿ > ( " 0 + 2 = ¿2n+ i(2"-1 + í í i )+1 = ¿>+i(fc) + l. 
The proof of Lemma 4 is complete. 
The sequence ^»(k) can be easily generated, so by Lemma 3 and Lemma 4 

we have a " fas t" algorithm to obtain the sequence The use of this sequence 
is shown by the following 

Theorem 5. Let cp be a Boolean function of n variables. Let us number the end-
nodes in its complete tree by k = 1, 2, . . . , 2" from the left to the right. Then £k means 
the number of the negative literals in the path, the endnode of which is numbered by k. 

Proof. Denote by n(k) the number of the negative literals in the path labelled 
by k. Actually, one can prove by induction on the number of the variables in (p that 

3. Symmetric functions 

Definition. Let T be the set of indices of those paths, whose endnodes are 
TRUE. 

Corollary 6. Let <p be an n-ary symmetric function and let m be an arbitrary 
non-negative integer such that m^kn. Then m is an element of the Shannon set of 
<p if and only if 

Proof It is quite easy by Theorem 5. 
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Truth functions and problems in graph colouring 

B y G . L Ü K Ő 

T o t h e m e m o r y o f P r o f e s s o r LÁSZLÓ KALMÁR 

Introduction 

The aim of this paper is to introduce some truth functions, which seem to 
be useful in the theory of graph colouring, and to study their basic properties and 
their interrelations. 

It can be hoped that a future article will contain a some more detailed analysis 
of these functions and some applications of the results presented now. 

Theorem 3 includes (somewhat implicitly) a purely graph-theoretical asser-
tion. In fact, a simple representation of the maximal ^-critical graphs may be given: 
these can be produced as the intersection of N graphs each of which is the comple-
ment of a partition graph1. 

§ 1. Concepts and notations for graphs 

1.1. By a graph, always a non-directed finite graph is meant without loops 
and parallel edges. Later the vertex set of any graph will be viewed to be labelled, 
a vertex will be identified with the corresponding number (except when it is emphasiz-
ed explicitly that a graph is considered abstractly, i.e., apart f rom isomorphy). 

If a natural number is denoted by a letter N, then denote by JF (the script 
form of the same latter) the set {1, 2, . . . , yV}; furthermore, we define Jf by 

J T t = {1,2, . . . , / - l , i + l , ...,JV> 

for an arbitrary / (1 ^ i s N ) . The letter J4f denotes an arbitrary set of natural 
numbers (not necessarily of form {1, 2, . . . , H}). The cardinality of a set J? is denoted 
by is the complete graph with the vertex set If j f is a subset of J f , 
then we put H e = J r - $ e . 

1 The notions occuring here will be defined later. 
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For a graph ©, is the set of vertices of © and r (©) is the set of edges of ©. 
If the number N is fixed and y((S>) for a graph ©, then we denote the comple-
ment of © (with respect to Cjr) by -

The isomorphy of graphs is denoted by %. The sign Q can express both subset 
and subgraph; we write c if the inclusion is proper. * (©) is the chromatic number 
of ©. 

A graph © is called partition graph if each connected component of © is 
complete. ^ 

Let us fix the set By S?c
x the set of all parti t ion graphs © is mean t such 

tha t y / " (©)=J f and the number of connected components of © is c. 

1.2. Let / l = m y | | be a symmetric matrix of size NX.N such that the entries 
of A a re truth values and —X^—.. . — ) . N N = I. Let the funct ion $ assign to 
A the graph &> = <P(A) with such tha t the edge i] exists in © if and 
only if l i j = $ is obviously a one-to-one mapping and the range of exhausts 
the set of all graphs on the vertex set V.2 

1.3. A n abstract graph © is called edge-critical f o r e-critical) if x ( © ' ) < * ( © ) 
for every © ' such that © ' results f r o m © by deleting one edge. 

Analogously, © is called vertex-critical (or v-critical) if x ( © ' ) < « ( © ) holds 
for any © ' such that may be obtained f rom © by deleting one vertex (and the edges 
incident to it). Any e-critical graph is evidently «-critical. 

A «-critical graph © is called maximal v-critical if x ((§>*) :(©) holds fo r 
every choice of ©* such tha t ©* is u-critical and © is a subgraph of ©*. 

If © is e-critical and x ( © ) = c , then © is called c-edge-critical. 
Let the natural numbers c, N be fixed (c*=N). Denote by Jify the set of all 

c edge-critical abstract graphs such that " f i ^ ^ j V . 
W e get the graph class % c or in a similar manner if "edge-critical" is 

replaced by "vertex-critical" or "maximal vertex-critical" (respectively) in the 
above definition. And, moreover, if | iT (©) | ^ jV is replaced by (®)|=JV, then 
the resulting graph classes are denoted by Ji^f» a r ) d (respectively, in analogy 
to how J i j f , i f f , J i ^ have been defined). 

§ 2. Introduction of truth functions defined on graphs 

2.1. Consider a number N and the vertex set "Jf, let a graph ©„ be fixed with 
V ( ^ ) = J T . Define a t ruth funct ion /©J/1] by 

ft.M= A >Hi (2.1) 
t 

where 

A is a symmetric matrix of size NXN (as in Section 1.2.),3 

the variables of A a re the entries ¿¡j of A fulfilling / < / , 

1 Cf. the first sentence of 1.1. 0(A) can be viewed as a non-directed graph because of the 
symmetry of A. 

3 Hence <P(A) is a graph whose vertex set is 
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on the right-hand side of (2.1) the conjunction is taken for all pairs (i,j) such 
that l l j—t where Ay is the entry of i> -1((S0) being in crossing of the /-th row and 
7-th column. 

An obvious consequence of the above definition is: 

Proposition 1. The value x®0[/l] is t if and only if any edge of (5„ is an edge of 
$(A), too. 

2.2. Let c be a natural number (c<N). In analogy to the above definition 
°f Z(50, we define the truth function Dc by 

DC[A]= V x M 
. . . . ©* s #c

( , 

where the-disjunction is taken for all elements (3* of the set SP'v. The meaning of 
Dc is expressed in the following evident assertion: 

Proposition 2. The following'three statements are equivalent for any matrix A: 
(i) 

(ii) & = 0(A) contains a partition graph consisting of c connected components, 
(iii) the complement of <P(A) is c-colourable (i.e., x ( ® ) S c ) . 

2.3. In the particular case when ©0 has only one edge e, the function xCo[A] 
expresses whether this edge e is present in $(A) or not. In this special case we write 

. a l s o / J ^ l ] . 
Let an abstract graph with at most N vertices be chosen. Define the func-

tion Lx by 
L*[A] = AVZ.M 

SV e 

where runs through all graphs such that • 
r ( i \ ' y a .Ar and 
iV is isomorphic to S ; 

for any choice of iV, e runs through the edges of S\'. 
The next result follows easily f rom this definition: 

Proposition3. Ls{[A] = \ if and only if no subgraph of the complement of i"(/l) 
is isomorphic to ft. 

2.4. Let the functions Ec and Fc be defined by 

E<[A]= A L*[A] 

and 
F<[A\ = A L*[A\ 

The following two assertions follow easily f rom these definitions and f rom 
, Proposition 3. r 

Proposition 4. EC[A]=\ if and only if the complement of <P(A) has no (c+ 1)-
edge-critical subgraph with at most N— 1 vertices. 

I 
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Proposition 5. F°[A} = \ if and only if the complement of <P(A) has no ( c + 1 ) 
edge-critical subgraph containing each of the N vertices. 

Proposition 6. The equality 

DC[A].= EC[A)NFC[A] 
holds for any matrix A. 

Proof Let us consider four assertions: 
(i) Ee[A]l\F°[A\=\, 

(ii) the complement of $( /1) has no (c+l)-edge-cri t ical subgraph, 
(iii) the complement of <P(A) is c-colourable, 
(iv) DC[A]=\. 
Proposit ions 4, 5 imply the equivalence of (i) and (ii). Proposit ion 2 has s ta ted 

that, (iii), (iv) are equivalent. If (ii) is false then x(<P.(A))>c, this means the falsity 
of (iii). As it was shown in [2], the falsity of (iii) implies the falsity of (ii). 

2.5. We ment ion some obvious consequences of the definitions occuring in 
this §. xe0 is an elementary conjunction. Dc was defined in a disjunctive no rma l 
form. Each of LA, Ec, Fc was introduced as the conjunct ion of functions expressed 
in disjunctive normal fo rm. All these functions are isotonic. 

In what follows we shall write e.g. Dc
y instead of Dc if we want to emphasize 

tha t graphs with the vertex set J f are considered. 

§ 3 . Results 

The most impor tant interrelation concerning the defined truth funct ions is 
•expressed by 

Theorem 1. For any matrix A we have 

. E%[A] = A D^[A]. 
i= i 

F r o m Theorem 1 we shall infer to 

Theorem 2. There is exactly one truth function AC
V[A] such that 

(i) AC^[A] is isotonic 
(ii) any matrix A fulfils the equality E^[A] = DC

X[A]VAc
r[A], 

•and 
(iii) A^[A] and DC^[A\ have no prime implicant in common. 

Remark. A'y is identically true if and only if 
|r(©)| =§ N-l. 

In the next assertion Ac
x is characterized by means of vertex-critical graphs. 

Theorem 3. Suppose that the numbers N, c are such that there is a (c + 1 
•critical graph with N vertices. = /©„[/I] is a prime implicant of if and only if 

(a) ©O<EJ//£+1 and • . 
(b) *"(©„) = 
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We are able to give for a disjunctive normal form of Fc a characterization 
which is somewhat less explicit in comparison to how Ec has been characterized 
in Theorem 2. 

Theorem 4. Let N, c be numbers as in Theorem 3. /„ = ^®0[/l] is a prime implicant 
of if and only if _ 

(a) (t)0 has no subgraph ©x such that all the vertices of ©0 are contained in ©x 

and and 
(b) whenever (5, is a subgraph of ©0 then there is a subgraph ©3 of ©2 such that 

Moreover, if y0 is a prime implicant of F^[A\, then either or ©0 contains 
a (c+l)-critical graph ©4 such that ©4 has at most N— 1 vertices. 

§ 4. Proofs 

We shall use the following well-known fact (see [1], p. 40): 

Lemma 1. An isotonic truth function has a single irredundant disjunctive normal 
form, this form consists of all its prime implicants. 

Proof of Theorem 1. Since Dcjr[A] is isotonic, we can use Lemma 1. By Pro-
position 6 and the definitions of Ec, Fc, we have 

Pejrt[A] = A U[A] 

for any i (l^i^N). If we form the conjunction of these N equalities (in such a 
manner that the conjunction of the left-hand sides and the conjunction of the 
right-hand sides is taken, with an equality sign between them), then the right-hand 
side can be simplified to E^[A], thus we get the assertion of Theorem 1. 

Proof of Theorem 2. Let us distinguish three cases. If N<c + 1, ^ - = 0 and 
so Dc is undefined. If N=c+1, then, by Proposition 4, E§ = \, as there exists 
no (c+l)-edge-critical graph with a t most c vertices. So DC[A]~FC[A] whence 
follows the existency and unicity (in the sense of the assertion) of A%[A], namely 
A%[A] = \. If N ^ - c + l , the proof runs as follows. 

Our first aim is to verify that each prime implicant / 0 of Z)^[/l] is a prime impli-
cant of Efi[A]. By Proposition 6, any implicant Xo of DC

N[A] is an implicant of 
EH[A\. Let Xo be a prime implicant of E^[A] such that %'0 is a subconjunction of / 0 . 
By the definition of Dc, there is a graph ©0(€^>-) such that 'X0

 = X%[A]- Let 
iXj, 3;2, . . . , 2 C be the connected components of ©0 (any of them is a complete-
graph). As J V > c + l , for at least one k ( l ^ f c S c ) . Fixing such a k, 
let r be an arbitrary element of ir(Zk). Let an edge e be chosen in ©0 such that 
r,e are not incident. We have x'o=Xci[A] for a suitable subgraph ©£ of © 0 . Let 
(5'or • be defined by . By Theorem 1, there is a partition graph 
© p ( € ^ r ) such that If © P ( < E ^ r ) is defined by © p = © o n d l V r , then 
we have © p Q © , ^ © p . Since ©p, © P are partition graphs on the same vertex 
set and the number of their connected components coincide, © p C © p is impossible, 
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hence © p = © „ , = © p . The (arbitrarily chosen) edge e of ©0 belongs to 
© ; ( g © 0 ) , thus xo-'Xo-

AC
N[A\ is defined as the disjunction of the prime implicants (p of E$[A\ such 

that is not a prime implicant of DC
N[A], 

Lemma 2. Let © be a graph such that T^"(©)={1,2, . . . , TV}. The following 
. three assertions are equivalent for ©: 1 ' 

(i) © is (c-\-\yvertex-critical, 
(ii) © H G ^ , is c-chromatic for any i ( l S / ^ i V ) , 

(iii) ©nC£^ i includes a partition graph with connected components. 

Remarks. © f l t t y , results f rom © by deleting the vertex i and the edges in-
cident to it. © H G ^ . is the complement of © H C ^ . with respect to (£Xi . 

Proof of Lemma 2. (i) and (ii) are equivalent in consequence of the definition 
of vertex-critical graphs. The equivalence of (ii), (iii) is obvious (cf. the statements 
(ii), (iii) in Proposition 2). 

Proof of Theorem 3. Assume that the first sentence of Theorem 3 holds for 
N, c. 

Necessity. Let. x®0[/1] be a prime implicant of A^IA^ 
First we prove that condition (ii) of Lemma 2 holds for © 0 . Let k be.an arbitrary 

element of J f . y_0 is an implicant of because of Theorem 1. So © 0 includes an 
element of SPc

Jik, say For this element thus ©„ satisfies condi-
tion (iii) of Lemma 2, and so — by the lemma — conditions (i) and (ii) too. 

Hence ©o is ( c + l)-vertex-critical (by Lemma 2). The necessity will c.ompletely 
be proved if we show the maximality of © 0 . 

Let e=ij be an arbitrary edge of ©„. Define the graphs ©x and ©2 (again on 
the vertex set {1,2, . . . , iV} such that 

the edges of ©x are the edges of ©0 and e, 
. the edges of ©2 are the edges of ©0 except e. 

It is clear that © l 5 ©2 are complements of each other, and 

(Xo = X - . M A A y . 

Let the short notation x<i be used for X2 is not an implicant of A%[A], con-
sequently there exists a such that is not an implicant of DVk[A] (by 
Theorem 1). 

If ©3 is defined by © 3 = © 2 n G / r k , it is clear that xG3[A] is not an implicant 
of D ^ A ] . 

By Proposition 2 this means that ©3 has no subgraph such that 
From Lemma 2 it follows that ©2 $ % c . As © 2 = © 0 U {c} and e is an arbitrary 
edge of ©o, 0>o is maximal «-critical indeed, which completes the necessity proof. 

Sufficiency. If conditions (a) and (b) are fulfilled-by ©„, then 
(1) X©0[/l]=Zo is an implicant of AC

N. 
This can be shown in two steps. 

(1.1) XO is an implicant of EFI. Indeed, ©0 satisfies condition (i) of Lemma 2, 
and so. also condition (iii) of this lemma. This implies that the graph ©0 f l (£lV, includes 
an element of 3>c

Xi and therefore / 0 is an implicant of Dc
x. (for every i ( £N) ) by 

Proposition 2. 1 
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Now from Theorem 1 it follows that Xo is a n implicant of E§. 
(1.2) Xo's n o t a n implicant of DC

N. By Proposition 2 this is true if and only 
if ©o includes no element of that is x ( © 0 ) > c . But this is now in consequence 
of condition (a) of our theorem. 

From (1.1) and (1.2) we conclude that (1) is true. It remains to prove that 
(2) / is a prime implicant of AC

N. 
To prove_this chose an arbitrary edge e of © 0 . Let us introduce a new graph 

®i by © 1 = © 0 U {e}. As ©o is maximal (c+l)-vertex-critical, ©L is n o t _ ( c + l ) -
vertex-critical. By Lemma 2, there exists an r(<iJf~) such that the graph ©xfl 
includes no partition graph 6 . By Proposition 2, for this r x e j / l ] is not an 
implicant o i D ^ A ] , 

By Theorem 1, x©! is not an implicant of E§[A\, thus we have proved assertion 2. 
This completes the sufficiency proof. 

Proof of Theorem 4. The first part of the assertions — the sufficient and necessary 
condition — is equivalent to Proposition 5; so it does not require any proof. To 
prove the last sentence of the theorem, let us distinguish two cases: (i) x(©0) = 
S c + 1 and (ii) jc((50)<c. In case (i) by the first par t of this theorem |K(© 0 ) |S 
^ N — 1, which is the second alternative of the assertion to be proved. In case (ii) 
there exists a graph such that © 0 2 < p and so is a subconjunction 
of x©Q. But /ip[/l] is an implicant of F^[A\ because it is an implicant of D°N[A]. 
As Xm0[A] is a prime implicant of F§, it cannot include x<pM] properly, therefore 
X%[A]=Xy[A], that is © 0 =^8, proving the second part of the theorem. Thus 
Theorem A is proved. 

* 
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