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A survey of grammar forms — 1977*

By S. GINSBURG

Introduction

In [3] the notion of a grammar form was abstracted to consider the situation
when a master grammar* is given and one wishes to discuss grammars which “look

like” the master one. Since then, research-into grammar forms has continued at a

rapid pace.? Moreover, other researchers have picked up on the form notion and

have written extensively on L-forms (grammar forms applied to L-systems), e.g.

[L1—L10). In the present talk, I shall restrict myself almost entirely to grammar

forms, and give a brief overview of those portions with which I am most famlhar
Throughout, I assume a general knowledge of language theory.

§1. Preliminaries

By way of motivation for “looks like” in grammar forms, consider the three
context-free rules: :

(1) & —agaasp,
Q) & —wa'w,f’, and
3) &~ wd'wefws,

where the Greek letters are nonterminals, the g; are terminal symbols, and the w;
are terminal words. From an intuitive point of view, would you agree that rule 2
looks like rule 1 (because the primed nonterminals correspond to the unprimed

* The contents of this survey are a combination of two distinct talks. The first was at the
Colloquium on Automata and Formal Languages, in Szeged, Hungary, August 30—September 2,
1977. The second was at the 6th International Symposium on Mathematical Foundations of Com-
puter Science, in Tatranska Lomnica, Czechoslovakia, September 5—9, 1977.

1 Unless otherwise stated, grammar is to mean context-free grammar.

2 The pace can be determined by comparing the present survey with that given 2% years
ago in [5].
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270 S. Ginsburg

nonterminals, and the terminal words correspond to the terminal symbols)? Would
you also agree that (3) does not look like (1) (because while 8’ corresponds to B,
wy does not correspond to anything to the right of §)? If your answers were yes to
both questions, then you should have no difficulty in agreeing with the reasonableness
of the abstraction of when one grammar looks like another.

We now formalize our ideas.

Definition. A grammar form is a grammar® G=(V, Z, P, 0), together with
underlying infinite alphabets ¥, and X, such that Z_ SV, V ~Z. Is infinite,
2&Z., and V-XCEV_ . —Z... .

The underlying alphabets V.. and X will always be understood. Hence we
shall usually omit them and identify a grammar form with a grammar. The term .
“grammar form” will be employed when we wish to emphasize that the grammar
G is conceived as a master grammar for describing a family of grammars, each of
which looks like G. The term “grammar” will be used to indicate that the grammar
G is to be considered primarily as a device generating a set of strings, i.e:, generanng
a language.

We now specify when one grammar is to “look like” another. The mechamsm
for accomplishing this is an “interpretation”.

Definition. An interpretation of a grammar form G=(V, X, P, ¢) is a 5-tuple
I=(u, Vi, %2, P, S;), where u is a substitution on V* satisfying
(1) u(a) is a finite subset of 2% for each element @ in X, u(¢) is a finite subset
of V..—Z. foreach&in V-2, and p(x)Nu(f)=0 forall a=p in V—2.
2 P, S U p(n), where p(~w)={a—yfain p(), y in p(w)}.

. nm

.(3) §; is in u(o).

(4) V,(Z) contains the set of all symbols (terminals) occurring in the rules
of P,.

G =y, 2y, Py, S,) is called the grammar of the mterpretatzon

The grammar G, is context free and is supposed to look like the master grammar
G. The substitution g indicates what symbols in the original grammar can be replaced
by what strings, i.e., which words look like what symbols. In particular, terminals
are to be replaced by strings of terminals, but nonterminals are only to be replaced
by nonterminals. The condition p(@)Np(f)=0 for all a=f in V—2X means
that replacement of distinct variables must be by distinct variables. Condition 2
asserts that each rule in P; must resemble some rule in P. Note that we do not require
all rules looking like those in P to appear in G,. Condition 3 merely says that the
start variables must correspond. Condition 4 is strictly technical and asserts that
the terminals in G; come from the universal variable alphabet V..—ZX..

Notation. For each grammar form G let ¥(G)={G,/I an interpretation of G}
- and let &£ (G)={L(G))/Gt in %(G)}. Z(G) is called the grammatical family of G.
Thus the grammar form G acts as a master grammar for all grammars in 4(G).

3 We assume the reader is familiar, to some extent, with context-free grammars. Here X is
the finite set of terminals, V is the finite set of both terminals and nonterminals, P is the finite set
of rules each of the shape &—w, where ¢ is a nonterminal and wis in V* and g is in V—2.
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We now illustrate the above concepts with some specific grammaf forms G.
The resulting ¢ (G) and £ (G) will turn out to be well-known families of grammars
_ and languages. :

Examples. (@) Let G=({o, a}, {a}, P, 6), where - P={o—ao, 6-~a}. Each rule
resembling o—~ao is of the kind &—wv, where &, v are variables and w is a terminal
word. The rule 6—a gives rise to rules {—w, where w is a terminal word. Then
%(G) is the family of all right-linear grammars and . (G) is the family of regular sets.

(b) Let G=({o,a,b,¢c}, {a,b,c}, P, 0), with P={o-—~ach,6—~c}. Then
%(G)“is the family of all linear grammars and £ (G) is the family of all languages.

(c) Let G=({o,a}, {a}, P, 0), with P={0—~00,0—~a}). Then 94(G) is the
family of all grammar in Chomsky binary normal type and .#(G) is the family of all

context-free languages.
~ Results involving just ¢(G) or relations  between grammars, such as “is an
interpretation of”, may be viewed as grammar theory. Results concerned with
grammatical famlhes may be either grammar theory or language theory, dependmg
on the emphasis.
- Finally we have:

13

Definition. Grammar forms G, and G, are said to be strongly equivalent if
- 9(G)=%(Gy), and (weakly) equivalent if £(G,)=2(G,).

Thus strong equivalence is a grammar concept, while equivalence may be either
a grammar or language concept.

The notion of interpretation given above is the most general that has been
seriously considered. On the other hand, there are numerous restrictions on interpreta-
tions, leading to such kinds as nondecreasing,* length preserving,? strict,® etc. For
each such kind of interpretation x, one may speak of strong x-equivalence and (weak)
x-equivalence, meaning that %,.(G)=%.(G,) and Z.(G)=2%,(G,), respectively,
%,(G)) being the family of grammars obtained from x-interpretations of G, and
%,.(G)) being the family of languages {L(G)/G in 4.(G)}. -

In presenting our survey of grammar form theory, we shall divide the results
into five categories. These are grammar, language, decidability, complexity, and -
- applications. As will be noted, some of the results fit into more than one category.
In view of the nonmathematical nature of the applications and the mathematical
nature of this audience, I shall not report on applications.

§ 2. Grammar theory

The results here are essentially of two kinds. The first involves the notion of
“is an interpretation of”, while the second concerns normalization theorems, i.e.,’
results such’' as: For each grammar form with properties A, B, ... there exists an
equivalent grammar form with propertles P, Q,.

In [3] it was shown that the relation “is an mterpretatlon of” is transitive. In [10]
it was proved that modulo strong equivalence, all grammar forms under “is an

’

4 For each element ¢ in X, ﬂ(a) is e-free.
¢ For each element a in X, u(a) is a finite subset of X .
8 u is length preserving, and uz(a) Nu(b)=0for all a=b in Z.
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interpretation of” form a distributive lattice. Indeed, the existence of a-glb for
two grammar forms has an interesting restatement as: For all grammar forms G,
and G,, there exists a grammar form G, such that 9(G)N%(G,)=%(G;). In {11],
a new operator @ on a grammar form G is defined, yielding a family of grammars.
Specifically, Q(G)={G,/I a quasi-interpretation of G}, where a quasi-interpretation
of a grammar form G=(V, %, P,o) is a 5-tuple I=(u, V;, X;, P;, S;) satisfying
() uis a substitution on ¥V* such that u(a) is a finite subset of % for each
element a in X and u(¢) is a finite subset of V..—2., foreach ¢ in V-2

(i) Pr=u(P);

(iii) S; is in u(o); and

aw) G;=W,, %y, Py, S,) is a grammar for which Vi@ ,) contains each symbol

(terminal) occurring in P;.

Two results [11] involving Q(G) are: For each grammar form G, 9Q(G)=
=0%(G), and the collection of all families ¥(G"), G’ in Q(G), -is finite.

An outstanding open question is the following: Let G be a grammar form and
ZC Z(G) a grammatical family. Is .# in the class {& (G/)/I an interpretation of G}?
In other words, do all interpretation grammars of G, when viewed as grammar forms,
yield all grammatical subfamilies of £ (G)? Analogous questions hold if interpreta-
tion is replaced by x-interpretation, x some ‘“‘reasonable” kind of interpretation.

An open topic suggested by the Q operator is the following: Find different
operators % on grammar forms G so that

(i) %(G) is a family of grammars, and

(i) % has nice properties vis-a-vis operators already specified, e.g., with ¥

and Q.

Onc would hope that there are a whole host of different operators yielding a
variety of new relations and insights. Of special interest would be operators suggested
by well-known transformations of grammars in, say compiler theory.

Turning to normalization results we have the following, proved in [3]: Each
grammar form has an equivalent, completely reduced’ sequential grammar form.

Indeed, one might think of a large class of normalization problems thusly: Let
P be a property about grammars, e.g., unambiguity. Find grammar forms G with the
property: There exists a grammar form G’ so that £ (G)={L(Gp/G; in ¥ (G ), Gy
has property P}.

There are many variations to the above stated canonical type problem. Con-
sider this result [7]. If G is an unambiguous grammar form, then % ;,(G)=
={L(G)/G; in Y;(G), G; unambiguous}. Thus, there are “sufficiently many”
unambiguous strict interpretations of an unambiguous grammar form to yield all
.strict interpretation languages.

Finally, in [14] various kinds, x, of interpretations of a form are studied from the
viewpoint of conflict freeness (as used in compiling). For example, let G=(V, Z, P, ¢)
be a grammar form with the property that for each variable £ there is a non ¢ terminal

word w such that égw. Then the following three conditions occur simultaneously:
(1) #(G) is conflict free (i.e., each grammar in 9(G) is conflict free).

7 A grammar form G=(V, X, P, o) is completely reduced if (i) G is reduced, (ii) there are
no variables « and § such that a—# is in P, and (iii) for each variable o in V—(ZU{c}) there
exist x and y in Z*, xys¢, such that a—xay js in P.
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(2) gnondecreasmg(G) 1S conﬁlCt free
(3) G is separated (that is, for each rule é—~w in P, wis in (V Z)*UZ*) and
whenever a rule ¢—7y isin P, with yin (V—Z2)+, then yisin V—2Z.

. Given a grammar form G, % (G) is conflict free if and only if G is conflict
free. Characterization results are presented on a grammar form in order for it to
have a strongly (x— ) equivalent conflict free grammar form, where x is strict, length
preserving, and nondecreasing, respectively. It is also shown that every grammar
form has an equivalent conflict free grammar form. - '

§3. Langliage theory

We now review some language theory results. Since language theory itself is
so vast, this section could easily dominate all the others. In addition, it is very easy,
considering our experience, to phrase innumerable questions about grammar forms
which have a language theory flavor. While one cannot stop “progress™, I personally
~ believe it is not in the best interests of grammar form theory to exploit grammar
forms for the purpose of language interests. The real aim of grammar form theory
should be to develop new ideas, insights, questions, etc. about grammar concepts.

In § 1, examples were given to show that the regular sets, the linear languages,
and the context-free languages are grammatical famlhes In [3], characterizations
on G were given in order that Z(G) be

(1) 2, the family of regular sets,

(2) Hin, the family of linear languages, and

(3) Zcr the family of context free languages.

For (3), the if -and only if is quite interesting, namely that G be an expansive
grammar in the classical language theory sense. From this it follows that each
grammatical family £ (G)>%. contains only derivation bounded languages.
-Thus, the one-counter languages are not a grammatical family. This might explain -
why no “simple” type of context-free-like grammar is around to describe these
languages.

"Whenever one has a family of languages, it makes sense to investigate its closure
properties. For grammar forms we have the surprising result [3] that if G is non-
trivial, i.e., L(G) is infinite, then £ (G) is a full principal semi-AFL. The converse,
of course, is not true. As mentioned above, the one-counter languages are not a
grammatical family. Neither is the full principal semi-AFL generated by {a"b"/n=1}.
In connection with the above semi-AFL result there is a cluster of open questions
concerning grammars G such that L(G) is a full generator for . (G). For example,
what are some necessary and sufficient conditions on G, or what are just some
useful sufficient conditions? The reader is cautioned to be careful. There are many
pitfalls. My favorite is this: G=({o, a, b}, {a, b}, {c—>acb, 6—~ab}, ¢) is a form
for which Z(G)=%;,. On the other hand, L(G)={a"b"/n=1}, which is not a
full generator for 31,,,

One of the major operatlons in language theory is that of substitution. It is
thus natural to try to define the substitution of one grammar form into another.
- This can be done as follows: For grammar forms -G and G, let Sib (G, G’) be the
form obtained by substituting the start variable of G” for every occurrence of a
terminal in the productions of G’ This yields [13] the obvious result desired, namely, if



274 S. Ginsburg

G is nontrivial then for every grammar form® G’, £ (Sib (G,G’))=Sib (£ (G), £ (G")).
Now it is known that if % is a full semi-AFL, then Stb (£, %) is a full AFL. Since
the grammar form with rules ¢—ao, o0—~a yields £, it follows that for each grammar
form G'=(V’, %', P’,6"), the form Sib (G, G')=(W", 2", P”,¢") where P"=P’U ..
U{o—~0'0,0~0 } yields the full AFL generated by % (G ).

Earlier, we noted that for each nontrivial grammar form G, £(G) is a full
principal semi-AFL. It remains an open problem to characterize “internally” those
full semi-AFL which are grammatical families. However, we can given ‘“‘external”
characterizations of such semi-AFL. These characterizations are similar in spirit
to the Kleene theorem for regular sets, in that they describe the collection of almost
all grammatical families in terms of a few elementary ones and composition under
some basic operations. We elaborate. For sets ., and %, of languages, let

LN, = {L,UL,/L, in %, L, in %}
and

) r
Lot = {U L,;L,/k =1, each L,; in %, each L,; in 32}
i=1 '

‘Let & be the full AFL operator, i.e., for each family % of languages let #(%)
be the smallest full AFL containing .. Finally, for all sets %,, %, , %, of languages,
let 9(%,, %, L)={(L)/[L=L(G), G=(V,,AUBUC, P,o) is a split linear
grammar,® 7 is a substitution on (AUBUC)* such that t(x) is in %, if x.is in 4,
7(x) is in %, if x is in B, and t(x) is in &, if x is in C}. There are two characteriza-
tion results about the grammatical families [4]. The first is: The collection of all
grammatical families not {0} and not %y is the smallest collection of sets of lan-
guages containing %,={{e}} and %,={all finite languages} and closed under
V, 0, and 4. The second is: The collection of all nontrivial grammatical families
not ZLcr 1S the smallest collection of sets of languages containing £ and closed under

"V, 0,9, and .

At the begmnmg of this section it was mentioned that each grammatical family
not Zcp is a family. of derivation bounded languages. As any language theorist
knows, there is a close analogy between derivation bounded languages and non-
terminal bounded languages. Question — are the nonterminal bounded languages
lurking in the grammarform bushes? Answer — yes, if you look for them. Let us
call a grammar form G=(V, X, P, 6) sequentially ultralinear if

(i) it is sequential, and

(ii) whenever &—aéf isin P o and Bin V*, then af is in X*.

Call a grammatical family ultralinear if it is generated by some sequentially ultra-
linear grammar form. The following result has been established [6]. The three
statements:

8 For two families %, and %, of languages, Sib (&, L) ={t(L)/L, in &,, 7 is a substitu-
tion on L; such that 7(a) is in ,?2 for every symbol a}.

® A split linear grammar is a linear grammar G=(V;,Z,, Pi,0,) such that there exist dis-
joint sets A, B, C with the followmg properties: (l) Zi1=AUBUC. (2) Every terminal production
is of the form é_:’ —c¢ forsome ¢ in V;—X; and ¢ inC. (3) Every production which is not a terminal
one is of the form C—-af’ forsomeé, & in V1 —ZX, andaind or £€~+¢b forsomel, & in VX,
and b in B.
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(a) & is a nontrivial ultralinear grammatical family;

(b) & is a nontrivial grammatlcal family of nontermmal bounded languages;

and

(¢) & can be built up from 2 by a finite sequence of applications of o vV,

and [], where [L]|=9(Z, &L, R#);
are equivalent. Thus, a relatively simple class of grammar forms gives rise to a rather
natural class of families of languages.

A rather popular topic in language theory is that of control sets. In [16, 17]
Greibach has presented a number of results in which control sets play a leading
role. The following is a sample. Let G be a nontrivial left derivation bounded grammar
form with left derivation bound k. Then there is a nontrivial equivalent grammar
form Gy=(Vy, Zy, Py, 0,); left derivation bounded with left derivation bound k,
such-that for each finite alphabet X, {LNX*/L in £ (G)} consists of all languages
obtained by using regular sets as control sets for leftmost derivations over t5(G,). -
[1:(Go)=( Vo, Z, 5(Py), 0,), Where 5 is the substitution on V¢ defined by r;(é) {&}
for each ¢ in Vy,—2, and 1y(@)=ZU{e} for all @ in %,.]

© §4 Decidability

There are a number of different decidability results. We shall mention a fair
sampling. '
It is solvable [3] to determine whether or not, given an arbltrary grammar G’
and grammar form G, there is an interpretation I of G such that G’=G;. Also,
the strong equivalence problem is solvable. One question that has been open since
the beginning of grammar form theory is the decidability of (weak) equivalence.
That is, can one tell for arbitrary grammar forms G, and G, whether £ (G,)=2(G,)?
Even though the problem is standard in situations of this kind, nevertheless, its
solution here seems to be of importance since it seems to be related to several ques-
tions involving two or more grammatical families. For example, is £ (G NZ (G,)
always -a grammatical family? Given a context-free language L, does there exist a
smallest grammatlcal family containing L?
Research is currently underway with respect to the decidability of equwalence
The author, in conjunction with JONATHAN GOLDSTINE and EDwIN H. SPANIER, has
reduced the problem to about ten inclusion problems involving the operators V,
©, #, and J. We think we have resolved all the cases (thereby settling the decid-
ability in the affirmative). However, until @/l the details have been written, we are
making no claim. We hope to be able to announce the answer within three months
(say December 1, 1977). '
A spemal case of the equivalence problem has been resolved affirmatively.
“In [6] it is shown that for any two sequentially ultralinear grammar forms G, and
G,, it is solvable to determine if £ (G,)c % (G,), and therefore if £ (G)=%(G,).
The proof is quite involved, and consists of showing that the operations of ©, [],
and V applied to 2, when suitably restricted in combination, are intimately deter-
mined by the end ultralinear grammatical family. Indeed, and this is a surprising
fact, there is an essentially unique canonical representation of each nontrivial ultra-
linear grammatical family in terms of “semibracketed expressions”, namely, certain
combinations of #, ©, V, and []. .
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In [7], certain decidability results are established for strict interpretations of
unambiguous grammar forms. Specifically, for each unambiguous grammar form
and each positive integer k, it is decidable whether -

(a) an arbitrary strict interpretation grammar is k-ambiguous;

(b) for any k languages L,, ..., L, generated by!® compatible strict interpreta-

k k

k
tion grammars, (i) (-L; is empty, (i) () L; is finite, (ii)) |J L; is
i=1 i=1 i=1

infinite; and
(c) for any two languages L, and L, generated by compatible strict interpreta-
tion grammars, (i) L, S L, and (ii) L,=L,.

§ 5. Complexity

While some work has been done on complexity, this essentially is an area
which has received only modest attention. Indeed, the summary given below is
basically the same as given in section 5 of [5], with the inclusion of some material
from [7].

In [10], it is shown that for each grammar form G there exists an “essentially

unique” strongly equivalent form G’ with the fewest number of productions pos-
sible. Furthermore, G’ can always be found with its productions a subset of those
of G.

Complexity of derivations is studied in [9]. For each grammar form G and each
graramar G’ in ¢(G), the complexity function @;. is defined for each word x in
L(G") as the number of steps in a minimal G’-derivation of x. It is proved that
derivations may also be speeded up by any constant factor n, in the sense that for
each positive integer n, an equivalent grammar G” in %(G) can be found so that

D (x)< x| for all large words x.

In [10] gramimar forms are compared for their efficiency in representmg lan-
guages, as measured by the sizes (i.e., total number of symbols, number of variable
occurrences, number of productions, and number of distinct variables) of interpreta-
tion grammars. Right- and left-linear forms are essentially equal in efficiency for
every regular set. Each form for the regular sets provides at most polynomlal im-
provement over right-linear form. Moreover, any polynomial improvement is attained
by some such form, at least on certain languages. Greater improvement for some
languages is possible with forms expressing larger classes of languages than the
regular sets. However, there are some languages for which no improvement over
right-linear form is possible. A similar set of results holds for forms expressing
exactly the linear languages. On the other hand, only linear improvement can occur
for forms expressmg Zcr-

There is one more place where complexity has been considered. Thls is in

10 Strict interpretations IJ:(;;,_,V Sy ), j=1,...,k, k=2, of a grammar form
J

k
(V,Z, P, o) are called compatible if ( U1 ,u[.(x)]n( U1 ul.(y))=0 for all x, y in V wih xsy.
j= J i= i
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parsing. While parsing can be regarded as an application, for the present purpose
I shall catalogue it under complexity. The first result is from [1]. Let G be an arbitrary
unambiguous grammar form. Suppose there is a function #(n), n=0, and a parsing
procedure M for G which, for each word w, in ¢(Jw|) steps, parses w if in L(G)
and rejects w if not in L(G). Then for each strict interpretation I=(u;, G;) of G,
there exist a parsing procedure M; for G,=(V;, 2, P;, S;) and a constant ¢ with
the following property: For each word w in X7, M/, in c¢-¢(|w]) steps, accepts w
if wis in L(G;) and rejects w if it is not in L(G,). This result has been generalized
in [7]. Specifically, let G=(V, Z, P, 6) be an arbitrary grammar form and suppose
there is a parsing method M for G and a function ¢(n), n=0, such that for each .
word of length n, M outputs all leftmost derivations of that word in at most ¢(n)
steps. Let I=(u, V;, Z;, Py, S;) be a strict interpretation of G. Then there exists
a parsing procedure M, for G; and a constant ¢ such that for each word w in X},
in c¢-t(jw|) steps, M; accepts w if in L(G,) and rejects w if not in L(G;). Further-
more, if p(n), n=0, is such that for each word of length n in L(G;) there are no more
than p(n) equally-shaped derivations of that word, then M, yields, in c¢-¢(jw|)
steps, all leftmost G,-derivations of w.

§ 6. Grammar forms which are not context-free

In the present section, I shall discuss grammar forms which are not necessarlly
context-free.” [The deﬁnltlons of interpretation, % (G), etc. carry through in the
obvious way.]

The original definition of grammar form, as given in [3], was for arbitrary
phrase structure grammars. Due to the scarcity of results in such a general situation,
the investigation was quickly limited to context-free grammars and has stayed
that way since. At present, with the exception of the first part of [3], the only results.
on arbitrary grammar forms are in [18]. The basic, original question, and it is stiil
unresolved, is this: Are there any grammar-forms G such that

(¥) Z(G)E Zr is false and &L (G) # Lrp, Lre being the famlly of recursively
enumerable sets?

In 1972, I mentioned this problem to my associate DR. GENE F. Rose. He strug-
gled.with (#), on and off, for several years, to no avail. [That means that the ques-
tion is difficult.}] His opinion was that the answer to (%) was probably no. This
opinion is also shared by the authors of [18], as is noted in their abstract. Some
progress was made in [18], since it was shown there that the answer to (%) is no
‘when the grammar form has exactly one nonterminal.

Even if the answer to (%) turns out negative, the subject of non context-free
grammar forms should be a fertile field of study. All interpretations need not be
studied. One could examine appropriate subclasses. [An analogous situation arises
with the family of context-sensitive languages. It is not discarded just because its
closure under arbitrary homomorphism is %g.] In fact, a start on this aspect has

1t Two derivations are equally shaped if their parse trees are equally shaped. Two derivation
trees are equally shaped if each tree can be obtained from the other by relabeling nonmaximal nodes.
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.already been done in [18]. A number of different, restricted types of interpretations
. .of non context-free forms are considered, and then used to characterize several
well-known language families between %y and %, such as EOL, ETOL, matrix,
.and scattered languages. Much remains to be done.

§ 7. Future development

The discussion up to now has been on grammar forms. I would like to speak
:about the general notion of a form as a method of studying when one graphlike
structure looks like another. '

-As we all know, there is a considerable body of knowledge, under the title
“L systems,” of context-free grammars in which parallel derivation occurs, that is,
.at each step each symbol in the string is replaced. During the past two years the
-concept of an L-form (forms applied to L-systems) has been studied [L1—L10].
‘The results themselves are of no concern to the present discussion.. What is of interest
is that the notion of form has been carried over to this graphlike structure, with
fruitful consequences arising.

Recently, a study was made of pushdown acceptor forms (pda forms) [14].
‘The aim here is to get a right definition of when one pda looks like another. If one
‘thinks of an input symbol to a pda as a terminal and a state of a pda as a nonterminal,
‘then input symbols are replaced by finite sets of input strings and states by finite
sets of states. In-addition, distinct states go into disjoint sets of states. But how
.should one handle replacement of symbols on the auxiliary storage? The key is
to regard auxiliary symbols as additional storage. Since states (which are storage)
.are replaced by finite sets. of states (with the disjointness property), pushdown
.symbols should be replaced by finite sets of pushdown symbols (with the disjointness
property). The main question considered for pda forms is what are the resulting
families of languages? Because context-free languages coincide with pda languages,
the obvious answer would appear to be the class of all grammatical families. And
indeed, this is what does happen! However, the proof is quite involved. In any
cage, the coincidence of the two classes of families is an indication of the “‘correct-
ness” of the abstraction mode.

Currently, in conjunction with DRr. E. F. SCHMEICHEL, I am working on “graph
forms” and “looks like” for graphs. The idea is simple. Nodes and edges in a graph
are like nonterminals. One must be careful to see that linkage corresponds. Specifically,
we have:

Definition. Let G=(N, E) be a (finite) graph. An interpretation of G is a
triple I=(u, Ny, E;), where u is a function on NUE such that :
(i) p(v) is a finite set of nodes for each v in N, with u(v))Nu(v)=0 for
Vi#E Vs,
(i) NS U u(v), and

vinN

(i) £, U nle), with p(vy, v)=p(v)Xpu(vy) for each edge e=(vy, vy).
einE .

‘ For each graph form G let ¥(G)={G,/I an interpretation of G}.

The investigation here is in its infancy and results obtained to date are scattered.

In view of the similarity between interpretations for grammar forms, L-forms,
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pda forms, and graph forms, it seems highly likely that other graphlike structures
can be treated from the form perspective. Situations that readily come to mind are:
Petri nets, pattern theory, data bases,'? data types,'? security models, various types
of acceptors. The key in each instance is to determine what “looks like” (i.e., the
4 function) is to mean for those features of graphlike structures which are not anal-
ogous to variables in a grammar. There does not seem to be any straightforward
way of doing this. Rather, insight and trial-and-error appear to be the main tech- -
niques. The benefits to be accrued from a successful model for almost any kind of
graphlike structure are a strong incentive.

_ Abstract

The present paper gives an overview of grammar form theory 1977. Concepts, results, and
open questions are considered. In addition, general philosophy and future directions are expounded.
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On machines as living things*

By L Hot

L Introductioh

As it is known Von Neumann in [9] considered environment as tessellation
structure. The tessellation is a mathematical system to model a behaviour and
structure of uniformly interconnected identical finite automata, processing informa-
tion as the result of local functions acting simultaneously throughout the array on
the states of -the interconnected automata. Von Neumann [9], J. Thatcher [§8] -
E. F. Codd [4], A. Smith [7] and M. A. Arbib [1—3] considered machines only
self-reproducing in tessellation without metabolism, adaptation, evolution etc.

Here we consider environment as modular space.

Fig. 1

 In Figure 1 u; representing a module (in state v;€ V) of “seolid sub-volume™ is con-
sidered as a “molecule” of the solid sub-volume embedded in “fluid environment”.
Moreover, — representing a “‘raw module” is considered as a free molecule in fluid
environment. Every module can change its state depending on its present state and
the state of its neighbourhood. But the difference bétween Von Neumann’s tessella-
tion and our modular space is that positions of modules in tessellation are fixed,

~

* Presented at the Conference on Automata and. Formal Languages, Szeged (August 30—
September 2, 1977).
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but modules in our modular space can move depending on their present neigh-
bourhoods.
‘For one-dimensional solid volume, we denote its configuration in the environ-

ment (like in Fig. 1) by (v; v, v; v4 b v; vg v;) or shortly by the word v, v, v vy b v; V5 ;.
The ring ( ) indicates raw modules surrounding the solid volume.

II. Main problems

We define, formalise and construct some kind of universal environments enough
for those machines (solid volumes embedded in them), which in the environment
not only compute all of the partial recursive functions and are self-reproducing as
in Von Neumann’s tessellation, but also have some important other characteristics
such as growth, death, adaptation and mutation.

III. Main notion and main results

It is shown that the environments which can be formalized by the so-cailed
“‘paralle] exchanging system” (P. E. System) are enough for our above mentioned
requirements. ' :

Definition. An RE-System is a triple S=(V, F,b) where V is a vocabulary,
beV is called the “blank™, F is a finite non-empty set of productions of the form
(adf, ), vEV; a, B, yEV* (that means, v in the neighbourhood (¢~ f) is replaced
by y) with the followmg conditions

1) If (atB, y)€F and (avf, y,)€F then y;=7,.

2) If (o, 0By, y)EF and (a20Ps, y2)EF then |ots| =ote| @nd - Iﬁll—lﬁ2| (I“] is

the length of «).

3) Productions of & are only of the forms (abﬁ v), lvj=1 or («bp, b") where

Wx#b”‘ or Vﬂ#b”' and n,me{0,1,2,3,.

When defining re]atlons on V* “x directly generates y”, written Xy, “x

generates y in k-step”, written x=> ¥y, and “x terminally generates y”’ written
X |:> y, productions are applied smultaneously

Theorem 1. The class of “stability function” h: V*—V* (y=h(x) iff x |:> y)

in all PE-Systems S= {V, F, b) is a proper subclass of partial recursive functlons
on V* :
We can formalise the required environments E=(A4, X, F, b) as a spec1a1 kmd
of PE-System S=(V, F,b) where V=AUX, b€X and

@B, Y)EF o] =2, |B]=2, Py|=2.

Definitions. A modular machine (M-machine) Z in an environment
E=(A, X; F, b) has the following elements:
— the signal to begin working aq,

— the signal to stop working #*
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— the body « containing a program
— an input tape x, output tape y
~where a,, *, o are distinguished strings of modules in states from A4; x, y are:
strings of modules in states from X.

When beginning to work the modular machine Z has an initial configuration
interpreted as the string of modules g,ax surrounded by raw modules. Denote-
this by (apax.)” Each module of the machine can change its state to a determined
state; or can either become a raw module and go off the machine, or can change
its state and simultaneously splice (take in) one raw module © above it onto its.
left. The behaviour of modules defined by productions F is such that the initial
configuration (gyxx) can enter the “terminal static configuration” (Bbxyy) with
B, y€A*, b=blank, y€X* a,d¢y, * ¢y and if BB (# (%) then pbxyy
= B’b(* ) y. Furthermore, the machine is always surrounded by raw modules as.

a solid volume embedded in liquid environment E, and we write
N ' Ve

ao0x = Bbx7y.

In this case we say the M-machine Z=aya or Z={«, a,, *) in E=(A, X, F, by
(denoted by (o, a,, *) in (4, X, F, b)) transforms x into y (or computes y=F?(x)),
reproduces f and modifies the program in « to the program in y, and also write -

Agax == Bbxyy

if Bbx yy is the first configuration of this form derived from ayox. .

" tape-area

N

Fig.2 .
M-machine Z in E

If product f also is a modular-machine then we say that machine gy« is a com-
putation-organism (C-organism). If product § equals gy or %« then we say that
machine gy in E is self-reproducing. If |y|>|«| and aya is also a C-organism in E'
, then (o, ay, *) in E is growing. If |y|<|x| then C-organism (o, @, * ) in E is degen-
“erating. A C-organism (&, a,, *) in {4, X, F, b) is said to die by x after computing

y= Fb(x) if aoozx=Z> xabxyy but Vx €X*: ayyx’ 1= aqyyx’, that is Z = ayu
_is no longer active after interacting with x. :

If y is a function of y (and @) such that a,y is still an M-machine then Z=gyu
is said to be adaptive. If (&, a,, * ). is a C-organism and 3x<¢X™* such that B is also
an M-machine but f=a,a and S o then (a, a5, *) in E is an M-machine with
mutation. -
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Theorem 2. There exists a universal environment E,., in the sense that for
every partial recursive function f we can construct an M-machme Zin E_, to com-

pute f.

Corollary. The class of partial recursive functions coincides with that of paral-
lelly computable functions of modular-machines.

Some theorems show an existence and how to construct the universal environ-
ments for growing machines, for self-reproducing, for degeneratlng, for going to
death after a number of computations or for all of them.

Notation. Let Z={(xy, ay, *) in (4, X, F,b) be an adaptive machine and

Ap%p X = Brb* iy
[

o

agy1Xs == Bob* V2o, ..o, QgVp-1 X, === B, by, Vn>
. R
.and a,y, be a M-machlne in {4, X, F b). Then we denote the M-machine a7y, i
E by Z(Xl, Xoy ooy n)
Theorem 3. There exists a umversal environment for adaptive C-organisms
" Z’s in which every Z(x,, X,,..., x,) also is adaptive and self-reproducing if domain
Of Flxy xgr. %, 18 non—empty

Theorem 4. There exists a universal environment for adaptive C—orgamsm wnth

mutations Z’s (i.e., Z is adaptive and also is with mutation), and if aqox Z x Bbek Yy
then a,f and 4,y also are adaptlve C-organisms with mutation (if their domams
Dom FZ, are non-empty) and § is a function of (x, y).

Two last theorems say that by “adaptation” and “mutation” C-orgamsms in
evolution modify their programs in o depending on o and new situation y in the
environment and then transmit the new genetic programs in y to their offspring f.

IV_ Conclusion

By tessellation structure, Von Neumann, Thatcher, Codd, Smith, Arbib were
.concerned with only self-reproducing machines. Professor Pawlak [5] introduced
the model of stored program computer only with modification of instructions.
René Thom’s theory of development and morphogenesis concernes the systematic
.continuous-topological approach (cf. [6]). Here, by means of PE-System, we in-
troduced a new mathematical model of computing machines not only self-reproducing
but with some other essential characteristics of living things, and we showed universal
environments for such machines. Since modules in tessellation can not move, self- -
reproductions and movements in tessellation are rather of configurations, pictures
«(of machines) than of machines themselves. In our modular space, self-reproduc-
tion, adaptation, movement are of modular-machines themselves.

DAI HOC THUONG NGHIEP
(Ng. th. Minh) .
HANOI, VIETNAM
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~Local and global reversibility of finite 1nhomogeneous
cellular automaton®

By E. KaTONA

Cellular automata are highly parallel working systems, so they have high im- .
portance in computational applications (for example sorting [4], matrix operations,
etc.). It seems difficult to apply the classical infinite, homogeneous cellular automata
to these purposes [1], [2]. For this reason the classical definitions are modified in
this work. In point 1. we introduce the notion of finite, inhomogeneous cellular
automaton. The' reason of first modification (using by many authors, e.g. [7]) is
clear: only finite automaton is realisable in practice. Further the second modifica-
“tion (the inhomogeneity) makes the cellular automaton more flexible {11], without
excluding the homogeneity in hardware [3].

In the theory of cellular automata there is a very 1mportant and 1nterest1ng
question, that how appear the characteristics of local maps in the global map, and
conversely. This is the basic conception of present work too, having in the centre -
the problem of reversibility. This subject has been investigated by many authors
(in particular by T. Toffoli [8], [9]), but always in the global sense. In this context
the reversibility is equivalent to the bijectivity of global map. ,

To the contrary, we mean the reversibility in Jocal sense: a cellular automaton
we shall call reversible, if its local maps may be changed so, that the new global map
is the inverse of the original one.-

The bijectivity of global map forms necessary condition for our strong re- .
versibility”. Therefore in point 2. a connection will be proved between the local
maps and the number of eden-configurations, from which derives a necessary con-
dition for bijectivity (it is-the generalization of results in [5]). -

In point 3. a necessary and sufficient condition is presented to the reversibility.
With this criterion we can decide the reversibility of a given cellular automaton,
and construct its reverse.

The point 4. contains concrete investigations in case of one-dimensional cellular’
automaton, with the result: only very simple reversible cellular automata exist in
‘this special case.

* Presented at the Conference on Automata and Formal Languages Szeged (August 30—
September 2, 1977). .

2%
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1. Basic definitions

(i) Inhomogeneous cellular automaton is a (C, A, N, ®) four-tuple, where
C={cy, ..., ¢} is the finite set of cells, :

A={0, 1, ...,s—1} is the set of cell-states,

N: c,r—»(c,l, s G ‘) is the meighbourhood function, which assigns to each cell

its neighbours. (The specification of neighbours may be different cell by cell, i.e..
the cellular automaton has totally arbitrary: topology)

®: cp—f; is the function-system, which assigns to each cell an f;: A"—~4
local map. (The local maps also may be different cell by cell.)

(ii) Configuration is a map o: C—+A, we denote it always with Greek letters. -

(iii) Neighbourhood of cell ¢; in a given configuration is the n-tuple of states
of its neighbours..

(iv) The global map of a cellular automaton is a map F: o/~ where o
is the set of all configurations, and F(a)=p, if for all i fi(a;, ..., a;,)=p(c) (where

(@5 - a”i) is the neighbourhood of ¢; in ).
In further we use the abbreviation CA instead of cellular automaton.

2. Relation between the local maps and the number of eden-configurations

We consider a CA (C, 4, N, ®) with the global map F.

The following definition is well-known from the literature:

Definition. A conﬁguratlon o will be called garden-of-eden configuration (in short
eden-configuration), if there is no f, for which F(x)=p.

We have an obvious equivalence:

F is bijective < there is no eden-configuration.

Let be ¢ a cell with # neighbours, and f its local map. Suppose, that there are
p, different neighbourhoods of ¢, where the new cell-state given by f'is a. The number
of all possible neighbourhoods is s%, consequently > p,=s".

ac4d

Definition. We say, that the local map f is balanced, if Vva: pa =p, where

- obviously p=s"/s=s""1.
When fis unbalanced, the measure of this may be characterized with the quantity

= 2 (p—p,), and we say: fis g-unbalanced.

Pa<P

Theorem. Let be (C, 4, N, @) an arbitrary CA, ¢ a cell in it, and f its local
map. If fis g-unbalanced, then the CA has at least g-s™" eden-conﬁguratlons
(m is the number of cells, s is the number of cell-sates).

Proof. 1t is clear, that there are s™~" different configurations, where the neigh-
bourhood of ¢ is a given (ay, ..., a,). So there are exactly p,-s™~" configurations,
where the new cell-state of ¢ is a. At the same time the number of .all configurations,
where the state of ¢ is a, is s™ 1=p-.s"~" Consequently if p,<p, then among
these p-s™~" configurations there are (p—p,)+s™~" eden-configurations.

We find the same situation by all state a having the property p,<p, consequently
the CA has at least > (p—p,)-s™~" eden-configurations. 0O

Pa=p



Local and global reversibility of finite inhomogeneous cellular automaton 289

i

Corollaries. (i) If in a CA for any i the local map of ¢ is cj;-unbalanced, then
the CA has at least max. (g;-s™") eden-configurations.

(i1) To the leect1v1ty of global map is necessary condition, that all local maps
are balanced.

Similar results are pubhshed in works [5], [6] on classical mﬁnlte homogene-
ous CA. .

3. The problem of reversibility
Algorlthm for decision of reversibility, and construction of the reverse

Definition. A CA (C, A, N, 9) with a global map F is reversible, if there exists
another function-system ¢’ such, that the CA (C, 4, N, 9°) generates the global
map F~L

The ﬁrst problem in this subject: to decide from a given CA, whether it is re-
versible. On this purpose we introduce a genera] algorithm, which is suitable for
constructing the reverse, too.

) Let be (C, A, N, &) a CA, ¢; a cell in it. Let’s denote with N, the neighbours
of ¢;, and with N, the neighbours of neigbours (with a bit incorrect notation
N,=N(c), N;=N(N(c))). It is clear, that the state of N, at time r+1 is deter-
mined by the state of N, at time ¢. If we know the local functions in N;, we may
describe this transition with a table called in following as inverse-constructing-table

~ (ICT in short). In case of one-dimensional, two-state CA it is illustrated on
figure 1. :

If the cell ¢; has an f; reverse local function, then this function gives back
from any N;-state of column t+1 of ICT the state of ¢; in column ¢. Consequently
the existence of f;” has the following necessary condition: if two N,-states in column
t+1 of ICT are equal, then the corresponding ¢;i-states in column ¢ also.should be
equal. Furthermore this condition is sufficient to the existence of f;" reverse function,
because we may construct it by the ICT.

N, o The ICT of ¢t

/_—— .
St 41 t t+1

| Ci_g ' Ciy | Ci | Ciz1} Ciye -
- : o 00000 | xo¥0zo 10000 | X, 2,
N 00001 | xg¥oz, 10001 | x3 302,
z - 00010 | xoy, 2, 10010 | X, 3, 2,
- R
: . X1YaZy X5Y224
The local maps in N, : . 00101 | X, ya 25 10101 | x yuz,
fo A o010 xs o110
- X1Y3Z7, X5V3Zy
000 | x, - 000 | yo - 000 zo 01000 | x5 y42¢ 11000 | x4y 2o
001 | x4 001 )y, 001 | z, 01001 | xoy42; 11001 | xgys2,
010 [ x, 010 | y, 010 z, . 01010 | x5 y5 2, 11010 | x4 y5 2,
011 {x; Oll |y, 011 | z4 “01011 | xyp525 11011 | x4 y5 25
100 | x, 100 | y4 100 | z4 01100 | x3y5zy . 11100 | x,¥62,
101 | x5 101 | ys 101 | z5. 01101 | x3y525 11101 [ x;y625
110 | x4 110}y, 110} zg 01110 | x3p;2zs 11110 x;¥- 26
1H | x, 1111y, 111 |z, 0111 | x3y:2, 11111 | x,p52,

‘ Fig. 1

The construction of ICT in case of one-dimensional two-state CA.’
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So the following in obtained:

Proposition. A CA (C, 4, N, @) is reversible < for each cell ¢;, its ICT satisfies:
if two N,-states in column ¢+1 agree, then the corresponding c;-states in column
t must agree too.

If this condition is sattsﬁed then we' can construct the reverse function- system

4 The reversibility of one-dimensional two-state cellular automaton

The preceding algorithm decides only about a given @ whether it is reversible,
but does not help to find concrete reversible function-systems. It is clear, that there
exist trivial ones, for example the identical function-system (where each cell keeps
its state, 1ndependently of neighbours), or the shift function-system, (where each
cell receives the state of the same neighbour).

Nontrivial reversible function-systems have high importance in practice, but
to construct them is very difficult. In further we give a necessary condition to the
reversibility. of one-dimensional two-state CA, from which we shall see, that in
one-dimension only very special functlon-systems are reversible, consequently 1t is
easy to construct them.

So in following the CA (C, Ay, Ny, @) will be investigated, where .

C={c,, ..., Ccn}, m=5 is supposed (this assumption makes easier the investiga-
tion),

4, =1{0,1}, ' :

Nyt ep>(c;_15 €5 €;11), the indexes are mterpreted cyclically (i.e. ¢, and ¢, are
nelghbours) Thus we have a circle- topology

@ is arbitrary.

-We need the following general definition:

Definition. In a CA (C, 4, N, ®) the cell ¢; depends on its neighbour c;, if there
" are two neighbourhoods of ¢; such, that they differ only in state of ¢;, and the cor-
responding new states of ¢; are different.

Using this notion we take a remark to the definition of (C, 4,, N,, #): if & is
such, that ¢; and ¢, are independent each of other, then the circle-topology we may
replace with a section-topology. So our definition contains the section-topology too.

Two lemmas will be proved in further. In proofs we shall use often the fact,
that for reversibility is necessary condition that all local maps are balanced. (It
results from the second corollary in point 2.) Moreover we shall use the notation
a, which denotes the opposite of cell-state a.

Lemma 1. Suppose that & is reversible, and its reverse is @’. In this case if
¢;_, depends on ¢;_, by the function-system &, then ¢; is independent of ¢;_, by &".

Proof. Suppose, that ¢;_, depends on c;_,, i.e. there are.q, b such, that
ﬁ-—l(ox a, b):xa and ﬁ-l(la a, b)=f ]

Now let’s consider the function Jfi+1! We have two different cases:

(@) Jy: Ve, d: fira(b, e, d) =

The function f;,, is balanced therefore Ve, d: fi.1(b, ¢, d)=7y, that is to
say, ¢;+; depends only on ¢;. Thus by the reverse ¢; depends only on c,+1

(i) 3¢.d and 3¢, d’: fi (b, c,d)=y and fi. (b, c,d) =
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Let fi(a, b, 0)=p, fia, b, )= q So the ICT of cell ¢; contains the follow-
ing part:

t t+1
O a b c dlx py
1 a b ¢c dlx p vy
0 a b d|ix q 7.
1l a b cd|x gy

The four binary triples in column f+1 are different, and the reverse function
f¢ constructed by the table assigns to each triple the same state b. But /" is balanced,
so it assigns to the other four triple the state b. By this the table-of f, is known.
We can see from it, that ¢; is independent of ¢;_,. O

The second lemma needs the following definition:
Definition. Let ¢, ..., c; be a section of cells. We say, that it is zsolated 1f ¢
is independent of ¢;_,, and c of ¢j41-

Lemma 2, Suppose that & is reversible, and its reverse is &’. In this case 1f
the SCCthIl ¢, ..., ¢; is isolated by @, then it is isolated by &’ too.

Proof. Two conﬁguratlons will be called equivalent (w1th respect to the sec-
tion ¢, ..., ¢;), if their sections corresponding to the ¢, ..., ¢; are equal So a
classiﬁcation 1s obtained on the set 2/.

It is easy to prove the following chain: ¢, ..., ¢; is 1solated by ¢= the previous
classification is F-compatible (ie. Vo, B: a~ B=>F(oz) F(B) = itis F~ 1-compatlble
too (because 'F is one-to-one) = ¢;, .., ¢; is isolated by @. O]

. Definition. A function-system we call a shift function-system, if each cell depends ]
only on its left (or only on its right) neighbour.

Theorem. If the CA (C, A,, NO, D) is reversxble then ‘there ex1sts one of the
following two cases:
(i) Each cell stands in-an 1solated section contalmng maximum three cells.
(ii) @ is a shift function-system. -
, Proof. (i) Suppose that there are ¢; and ¢; such, that ¢; is 1ndependent of its
left neighbour, and c; is independent of its right nelghbour The cellular automaton
has circle-topology, consequently the section ¢, ..., ¢; always exists. Furthermore
this section is isolated, and — having applied the lemma 2. — it is isolated by &’ too.
, Now let’s consider an arbitrary cell ¢,. According to the lemma 1. either ¢,_,
is independent of ¢,_,, or by the reverse ¢ is independent of ¢, _ - In the first case:
the section ¢,_,, ..., ¢;, in the second case the section ¢, ..., ¢; is isolated. Apply-
ing the geometrical inverse of lemma 1. we get: either ¢, ..., c,(+1 OF Cjy ..., G IS
isolated. The common part of two isolated sections is isolated too, s0 we have
¢, stands in an isolated section containing maximum three cells.

(ii) Suppose the negation of the previous case, that is each cell depends (for
example) on the left neighbour. We shall prove, that in this case each cell is indepen-
dent of the right neighbour: suppose, that for any k£ ¢,., depends on Crra- At the
same time c¢,_, depends on ¢, -,, and from the lemma 1. we get, that ¢, is anisolated
cell. This fact contradicts to the original assumption.

So each cell has only two real nelghbours the left cell and itself. We may clas51fy
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the balanced local maps for two neighbours in three types:

L. 0 0ja T 00fa I 00|a
0 1|a 0 1|b 0 1!b
1 0fb- 1 0|a 1 0|5
1 1lb 1 1]|b I 1]a

. In our case each cell depends on the left neighbour, so the type IL. is out of the
question. If all functions have the type 111, then Va: F(x)=F(&), thus the global
map is not one-to-one.

If there are functions type 1. and type 1lI. at the same time, then there exists
a cell ¢; such, that f; has the type 1., and f;,; has the type 11I. Therefore the 1ICT
of ¢; contains the following part:
' t t+1
a b c d e|x y z
a b ¢t de|lx y z

These two lines exclude the reversibility.
So we get: all local maps have the type 1., i.e. @ is a shift function-system.

Corollaries. 1. If (C, 4,, Ny, @) has section topology, then each reversible @
_has the type (i).

2. If (C, 4y, Ny, @) is homogeneous, then we have only the six trivial reversible
function-systems: the identical one, and its contrary (where each cell alters its state
indepéndently of neighbours), the left and right shift function-systems, and their
contrary. '

THE BUILDING COMPANY OF
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On two modified problems of synchronization
“in cellular automata*

By R. VoLLMAR

1. A modified firing squad synchronization problem

" As Moore (1964) states, the problem to synchronize a finite (but arbitrary
long) chain of finite automata was’devised about 1957 by Myhill. In the meantime
this problem has become well-known as the firing squad synchronization prob-
lem (fssp). ' : '

Among other people Waksman (1966) and Balzer (1967) have given minimal-
time solutions. Moreover there exist some modifications, especially the synchroniza-
tion of two- and three-dimensional arrays (Shinahr (1974), Nguyen and Hamacher
(1974), Grasselli (1975)) and of growing arrays (Herman et al. (1974)) have been
investigated. In the “classical” fssp the synchronization process is started by one
automaton, the so-called general, at the border. Moore and Langdon (1968) and
" Varshavsky ct al. (1970) have renounced this assumption and they have stated
minimal-time solutions for this modification. '

We consider a further modification. Starting point is a chain of » automata
where each automaton is directly connected with its two neighbours. In the “classi-
cal” fssp at time #=0 all automata except one of the border automaton are in
the quiescent state. This quiescent state is distinguished by the property that an
automaton will retain it at time 741 if itself and its two neighbours have been in
the quiescent state at time ¢. Here we will assume that initially k& automata, where
1=k=n, are allowed to be set to the “general state” — all the other automata assume
the quiescent state — and after that it is also possible that automata become generals
at later moments. v

The problem is to specify the structure of the automata such that independently
of the number of automata and generals all automata enter a special state, called
“fire” state at exactly the same time and this state may not be assumed at any earlier
moment by any automaton.

* Presented at the Conference on Automata and Formal Languages, Szeged (August 30—
September 2, 1977). ’ :



294 R. Vollmar

This generalization is motivated by the consideration of models of neural layers
and their interpretation as cellular automata (an example is given in Vollmar/Spreng
(1976)) One of the layers has to detect some changes within an other layer and
.afterwards it must give simultaneously signals to the following layer. A change is
.obtained if at least one of the automata in the layer receives a certain number of
special signals in a certain interval. It may happen that several automata 1dent1fy
.changes and they start independently synchronization processes.

The basis of our solution are time-optimal algorithms of the problem to syn-
chronize chains which contain one general but at an arbitrary place (see e.g.
Moore/Langdon (1968) or Varshavsky/Marakhovsky/Peschansky (1970)): The gen-
.eral sends out signals (waves) in the two directions which halve the chain, then.halve

" the two new chains etc. Our concept of the age of signals is applicable to any algo-
rithm of this kind.

Our solution is composed of two independently working procedures; they
have been combined in such a manner that the procedure which is the first to end,
will cause the synchronization. This is done because the two procedures have in-
.comparable synchronization times.

The synchromzatxon time by one of the procedures, Wthh has been described
in Vollmar (1976), is achieved in <2.5n.

To find a “good” solution of our problem it is necessary to decide qulckly
‘which of two waves coming from distinct generals will survive. We have chosen
.a strategy such that whenever two signals collide, the signal coming from the
“elder” general will survive. This is motivated by the fact that with respect to the
Isynchronization process in some but not in all cases the elder general has “done
more”’ than a younger one. However there are space-time configurations for which
this is not valid (see fig. 1). If at the border (or nearby) a general g, originates at
time £, and at time 7,41 a general g, will originate nearby the centér of the chain,
.at time £, the signals transmitted from g, will have passed almost the double number
of automata than those ones transmitted from g,. This disadvantage of our pro-
.cedure could only be repaired if it were possible to determine the age of the generals
.and their positions relative to the center. Up to now we did not succeed in doing
this fast enough.

First we will describe the part of the procedure which has to detect the elder
signal. Afterwards it-will be shown how the synchronization process can be delayed
in dependence on._the time needed for this detection.

— automata

time

Fig. 1
A “bad’ space-time configuration
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To be able to classify the signals according to their ages it is necessary that
the signals immediately coming from generals “drag along” its ages: For this reason
the state set of the automata is increased in such a way that among others the digits
of a corresponding number system and some marks can be stored. The age or more
precisely the number of automata which have been passed through, is represented -
in the top automaton in which the signal is arrived and possibly in some automata
which. have been reached earlier (see ﬁg 2; only the information relevant for the
age is displayed).

= T E= 2D 3 =
*
1 .
front of
‘the wave
Fig.2

Configuration with the age of the wave

time

Fig.3 .
The problem of overtaking waves

- Whenever two signals collide, the distances to the corresponding transmitting
generals have to be compared. To do this the propagation of these signals stops
and the numbers are subtracted. For this the digits of one of the numbers travel
successively to the corresponding place of the other number, i.e. it is stored there
in a reversal order. Simultaneously to this shifting process the two numbers are
subtracted digit by digit, whenever this is possible. When the first digit of the
number — especially marked — has reached the “valid position”, the subtraction
is finished, and the result is sent out in the corresponding direction to restart the
transmission of the “elder” signal. If two signals have the same age by definition
the left one will survive. The time needed to make such a comparison is given by
clog n where cEN.

But still another problem arises (see fig. 3). If the two generals g; and g, have
been originated at the same time, according to our agreement after the collision
of R, and L, R, survives. After the comparison it propagates to the right
following R, and writes its information over that one of R,. Dependent on the
distance between g, and g, and the running time it is possible that the number

’
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representing the ‘age of ‘R, is overtaken by R,. From this time on the age of R, is
incorrectly represented but as the R,-signal following from the left (resp. the last
of the following signals) is the valid one, there will be no confusion. It is impossible
to “inform” the R,-signal about these occurences because it propagates with unit
speed. On the other hand during the comparison of the ages this overtaking will
be detected and will cause an interrupt of the Subtractlon and the comparison will
be done with the following R1-51gnal etc.

If two or more generals exist, it is possible that one of the signals transmitted
from a general stops for a certain interval and the other signal moves on (in the
opposite direction). To prevent any disturbance of the synchronization process
at each step a signal does not propagate a delay signal is transmitted. This signal
moves into the opposite direction of the (original) movement of the stopped signal
and the transition of each automaton is delayed for one time unit. In fig. 4 the
movement and the effect of a delay signal is displayed.

It is clear that the time of the sketched algorithm depends on the number of
generals: Since each general causes a delay of about ¢ log n of the synchronization

=1 t 1 =1
Z] Z3 Z3 b
t
Z4
- ]
-~ =
=
_t+1 i+l 1 i
21 2 Z3 Z4
11
Z:
- |
2 _t+1 —t+1 _t+1
Zy %) Z3 Z4
_1+2
L2
————e
_t+2 12 12 12
£y Z3 Z3 Z4
_t+3
£
b sl
_i+3 _1+3 I+ 3 113 \
<1 ) Z3 Zy

Fig. 4
The movement of a delay signal
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tirne_,' an upper bound for the total synchronization time is given by
2n+cnlogn. A

The quality of this bound is illustrated by fig.- 5.

Fig. 5 : :
Space-time diagram of a strongly delayed synchronization
(Between the génerals (@) there are other automata.)

On the other hand it should be mentioned that the minimal time is obtained
if only one general exists. Moreover there exist configurations for which the
_ sketched algorithm needs a shorter synchronization time as the other procedure
mentioned. above and vice versa. Therefore we combine the'two procedures such
that the synchromzatlon time will be

< 2 5n : -

It should be remarked that the method sketched above is also applicable for several
generals at arbitrary positions-in a rectangular array.

2. A modification of the early bird problem

The method described above is also applicable to a modification of the early
bird problem. Rosenstiehl et al. (1972) have described the following problem:
To each of the n vertices of an elementary cyclic graph there is assigned an
automaton. '
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These automata may be “excited” at different moments (from the outside);
for simplicity we will also say that they assume a ‘““general state”. The automata
must be designed in such a way that the (sinigle) automaton, which has:been excited
first, eventually will assume a distinguished state £ and all the other automata
will assume states 1. Rosenstiehl et al. give a solution of this problem, which needs
2n steps. They emphasize that this solution does not work if two or more excita-
tions occur at the same moment.

We will discuss a solution of the following problem: At each time an arbitrary
number of automata in a chain of #» automata may be excited with the only restric-
tion that at time #=0 at least one automaton has to be excited and it is not allowed
to excite automata which have leaved the quiescent state. After a certain period
automata which have been initially excited must assume the state E, and all the
other automata assumé the state 7. '

The solution is obtained by the following procedure: Each of the originating
generals sends out age signals, as described above. If they collide with other signals
a comparison is made. Irrespective of the states in any case the elder signal is
“transmitted. If two signals of the same age collide, both signals are reflected —
with special marks —.

These reflected signals are-transmitted backwards subtractmg 1 at each step,
until they are decremented to the value 0. In this case, the corresponding automata
are marked. An automaton is an early bird (EB) if it is marked by signals from
the right and from the left and if the chain of automata has reached a certain age.
The last condition is necessary to exclude ‘‘local”. EBs.

Each automaton contains information about the age of the signal and about
the distance to the sending general. In contrast to the procedure in the foregoing
paragraph the age is also increased at each step the signal transmission is stopped
(because the signals have collided and the comparison takes place).

'~ The number representing the age has to be stored in the automata located
between the sending automaton and the automaton where the collision occurs.
-In general this number will be greater than the number representing the distance,
but there are no storage problems if the numbering system is appropriately chosen.

"After a collision the numbers representing the age are compared: If these
numbers are equal, i.e. they come from generals of the same age, or if a signal
reaches a border automaton, then the numbers representing the distance are re-
flected. These numbers are transmitted and at each step the value is decremented
by 1 until the value 0 is assumed. The corresponding automaton has sent the original
signal. It is marked with a label indicating that a reflected signal has arrived. Another
label is set if two reflected signals have arrived; in such cases it may be that the
marked automaton is not an EB (see fig. 6).

Decrementing the numbers a special consideration is necessary if the lowest
digit of the number equals 0; but we will not discuss this here. These delays are
not illustrated in fig. 6. The total time for the return of these signals depends linearly
on the number of the automata.

To compute the total time we have to take into account the followmg the time
is greater than that one in the paragraph above because the comparisons have to
be made with the age numbers (and not with the distances); and those numbers.
are given as the sum of the distance numbers and the sum of the times for com-
parisons. o -
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A rough estimation of the total time is given by

n/21
- ntc > log(i-n)
i=1

if n=>1, where ¢’ is a constant depending on the algorithm which performs the
comparisons. An estimation of the term is given by

“n-(14+¢logn).

. The age of the signals and the distances to the generals are represented in

a polyadic numbermg system; therefore the maximum of the values is estimable.
by k-logg n. It is possible to give a basis B — which is independent of n — such
that the numbers can be stored in the automata between the generals and the
collision automata. .

_ Fig. 6
) Space-time diagram of an Early-Bird solution .
(without the synchronization of the E- and I-signals)
(Between the generals (@) there are other automata )

At the time all comparisons. have terminated the reflected signals must go
back to the corresponding automata. As mentioned above, this time depends linearly
on n, and therefore we can find a constant ¢ such that the total amount of time is
_ given by n.(1+4clogn).

To guarantee the synchronized transition to the states £ and I, we start at
time =0 — independently of the processes described above — a counting pro-
cedure which counts (using all the automata for storage) until [z-(1+clogn)].
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If this value is reached, a border automaton starts a synchronization process
{following an usual fssp algorlthm) such that the states E and 7 are assumed
synchronously.

The solution to the modified EBP needs about n-(1+log n) time steps. The
solution time does not depend on the number of excitations.

It should be noted that this procedure does not solve the modified version
of the original problem. As mentioned above in our procedure it is necessary to
.determine one of the automata as general to start the synchronization process;
by reason of the homogeneity of the connections and the determinism of the auto-
mata this determination cannot be done in an elementary cyclic graph. On the other
side our procedure does not produce either a correct non-synchronous solution
because we must wait a certain period — and it is not possible to represent this
time in the graph — to make the decision whether doubly marked automata are
“real” EBs (see fig. 6).

Abstract

‘We will introduce the concept of the age of signals which is well-suited for the solution of
modifications of the “firing squad synchronization problem” (fssp) and of the “early-bird prob-
lem” (ebp). - .

TECHN. UNIV. BRAUNSCHWEIG
D-3300 BRAUNSCHWEIG, FRG
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On «-products of automata

By B. IMREH

The purpose of this paper is to study the a;-products (see [1]) from the point
of view of isomorphic completeness.” Namely, we give necessary and sufficient con-
ditions for a system of automata to be isomorphically complete with respect to
the o;-product. It will turn out that there exists no minimal isomorphically complete
system of automata with respect to o;-product and if /=1 then isomorphically
. complete systems coincide with each other with respect to different o;-products.
Moreover, we prove that if i<j then the «; -product is 1somorph1cally more general
than the «;-product.

By an automaton we mean a finite automaton without output. Let A,=
=(x,, 4, 8,) (t=1,...,n) be a system of automata. Moreover, let X be a ﬁnxte
nonvoid set and go a mapping of A;X...XA4,XX into X X...XX, such that
(0(01, cers dps x) ((pl(als cees 4y, X), AR ¢n(a1’ oo Ay, x)) and each (P, (1 S.]<n)
is independent of states having indices greater than or equal to j+/, where i is a
fixed nonnegative integer. We say that the automaton A=(X, 4,d) with
A=A4,X...XA4, and : '

5((a1, ...,a,,),»x) = (51(a1,- 91(&-1, iy X)), oy O4(ay, @u(ay, ..., a,, X))

is the cx,-product of Ay (t=1, ...; n) withrespect to X and ¢. For this product we use
the shorter notation A= ]] A, (X, ).

Let X be a system of automata Zis called Isomorphrcally complete with respect
to the o-product if any automaton can be embedded isomorphically into an o;-
product of automata from X. Furthermore, X is called minimal isomorphically
complete system if 2 is isomorphically complete and for arbltrary A€X the system
IN\{A} is not isomorphically complete.

Take a set M of automata, and let i be an arbrtrary nonnegative integer. Let
o;(M) denote the class of all automata which can be embedded isomorphically
into an «;-product of automata from M. It is said that the o;-product is isomorphically
more general than the o;-product if for any set M of automata o;(M)S (M)
and there exists at least one set M such that o;(M) is a proper subclass of o;(M).

The following statement is obvious for arbltrary natural number i=0.

3 Acta Cybernetica I1[1/4
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Lemma. If A can be embedded isomorphically into an o-product B with
a single factor and B can be embedded isomorphically into an o-product C with
a single factor, then A can be embedded isomorphically into an «;-product C with
a single factor.

For any natural number n=1 denote by T,=(7,, N, dy) the automaton
for which N={l, ..., n}, T, is the set of all transformations t of N, and 6,(}j, t)=
=t(j) for all jJEN and t€T,.

The next Theorem gives necessary and sufficient conditions for a system of
automata . to be isomorphically complete with respect to «,-product.

Theorem 1. A system Z of automata is isomorphically complete with respect
to a,-product if and only if for any natural number n=1, there exists an automaton
AcX such that T, can be embedded isomorphically into an «,-product of A with
a single factor.

Proof. The necessity and sufficiency of these conditions will be proved in
a similar way as that of the corresponding statement for generalized «,-product
in [2]. : v

In order to prove the necessity assume that Z is isomorphically complete with
respect to the «,-product. Let n=>1 be a natural number and take T,. By our
assumption, T, can be embedded isomorphically into an a,-product B=(T,, B, dg)=

= ]I A(T,, ¢) of automata from X. Assume that m=1, and let u denote a suitable ’
=1

isomorphism. Define pardtions 7 (j=1,...,m) on B in the following way:
(ar, ..., a,) = (a3, ..., a)(n}) (a, ..., a,), (a1, ...,a,)éB if and only if a; =
=aj, ...,a;=d;. Now let n; (j=1,...,m) be partitions on N given as follows:
forany (a,, ..., a,), (ai, ..., ap)€ Bwe have u~Y(ay, ..., a,)=p"2 (4}, ..., a,)(n;) ifand
only if (ay,...,a,)=(ai, ..., a,) (7). Tt is easy to prove that n; (j=1,...,m)
have the Substitution Property (SP). On the other hand, for T, only the two trivial
partitions have SP. Thus, we get that each n; has one-element blocks only, or it
has one block only. Among these partitions there should be at least one which
has more than one block, since #>1. Let / be the least index for which =, has at
least two bloks. Then the blocks of =, consist of single elements. Therefore, the
number of all blocks of n, is n. We show that T, can be embedded isomorphically
into ‘an «,-product A, with a single factor. Let (a;, ..., @;,) denote the Ymage of
i (i=1,...,n) under u. From our assumption and the definition of z; it follows
that a,; =a; if 1=k=n and 1=s=/-1. Take the og-product C=(T,, 4,, 5c)=
=MA(T,, ¥) where Y(t)=¢,(a;, ...,ay-1,1) for all t€T,. It is easy to prove
that mapping v:i—a, (i=1, ..., n) is an isomorphism of T, into C=IA/(T,, V).

The case n=1 is obvious. :

To prove the sufficiency take an automaton A=(X, A4, 6,) with n states. Let
ut be an arbitrary 1—1 mapping of 4 onto N. Take the oy-product C=IIT,(X, ¢)
with a single factor, where ¢(x)=¢ if and only if u(da(a, x))=t(u(a)) for any
ac A. Then p is an isomorphism of A into C. On the other hand, by our assumption,
there exists an automaton B in 2 such, that T, can be embedded isomorphically
into an «,-product of B with a single factor. Therefore, by our Lemma, A can be
embedded isomorphically "into an «,-product of B, which completes the proof
of Theorem 1. :
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Corollary. There exists no system of automata which is iéomorphically complete
with respect to oy-product and minimal.

Proof. Take a system X of automata which is isomorphically complete with
respect to o,-product, and let A€X be an automaton with » states. It is obvious’
that A can be embedded isomorphically into an oq4-product of T, with a single
factor if m=n. Take a natural number m=n. By Theorem 1, there exists a B€X
such that T,, can be embedded isomorphically into an a,-product of B with a single
factor. Therefore, by our Lemma, A can be embedded isomorphically into an
¢o-product of B with a single factor. Thus, £\ {A} is "isomorphically: complete
with respect to «,-product, showing that X is not minimal. )

For any natural number n=1 denote by D,=({x,;h1=p=n, {I, ..., n}, J,) the

. lsqsn
automaton for which for any /€{l, . n} and x4 €{x,,} .
| ' {k lf. l=s
WX =\ otherwise.

The following Theorem holds for o;-products with i=1.

Theorem 2. A system X of automata is isomorphically complete with respect
“to a;-product (i=1) if and only, if for any natural number n=1,. there exists an
automaton A€ZX such that D, can be embedded isomorphically into an o;-product
of A with a single factor.

Proof. First we prove that D, (n=>1) can be embedded isomorphically into
a;-product of automata from Z with at most i factors if D, can be embedded
isomorphically into an o;product of automata from X. Indeed assume that D,

can be embedded isomorphically into the o;-product B= ]] A, ({x,.}, ) of auto-

mata from X with k=i, and let p denote the 1somorphlsm For any Ie{l, . n}
denote by (ay, ..., ay) the image of / under u. We may suppose that there exnst
natural numbers r#s (1=r,5=n) such that a, 7#a, since otherwise: D, can be
embedded isomorphically into an &;-product of automata from Z with k—l factors.
Now assume that there exist natural numbers usv (1=u, v=n) such that a,=a,,
(r=1,...,7). Then @y(au; - s @us X1) =@1(Qu15 -, Qi X;;) for any x;, € {x,4}. Thus
in the a-product B the automaton A, obtains the same mput signal in the states
a, and a, for any x,€{x,}. On the other hand since u is an isomorphism and
u#v, thus the automaton A, from the state g,; goes into the state @,; and from
the state a,; it goes into the state a,, for*any input signal x,, (1 =r=n). This implies
a,=a, (1=r=n), which contradicts our assumption. Thus we get that the elements
(an, ..., ay) (1 <t<n) are pairwise different. Take ‘the following «;-product

C=({x,,}, Cs8)= []A,({qu} ¥) where for any j=1,...,i,(a;, ..., a)€A, X ... X 4;
and xe{x :
{(pj(a,l, oy Ayjyioq, x) if j+i—1=k and there exists
1=¢=n such that a;=a, (s=1,...,1,)
1//;(a1, v Uy X) =‘<qoj(a,1, ves Ay X) if j+i—1=k and there exists
. 1=t=n such that a,=a,, (s=1,...,1i),
-larbitrary input signal from X; otherwise.

3*
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It is clear that the correspondence v: I—»(a,l, ..., a;) is an isomorphism of
D, into C.

Now we show that if D, (n=1) can be embedded isomorphically into an
o;-product of automata from X w1th at most i factors then there exists an automaton
AEZ such that D[h can be embedded isomorphically into an o;-product of A

. .
with a single factor, where [ﬂ denotes the largest integer less than or equal to
1/_ Indeed assume that D, can be embedded isomorphically into the a-product
B= ]I A ({x,,q} @) of automata from X with k=i factors. Let u denote a suitable

lSOIIlOl'phlSm and for any I¢{l,...,n} let (ay, ..., ay) be the image of / under
u. Since u is a 1—1 mapping, thus the elements (a,l, .y ay) (t=1,...,n) are pair-
wise different. Therefore, there exists an s (1=s=k) such that the number of pair-

wise different elements among a;;, ay,, ..., a,s is greater than or equal to [V—] Let
aj,s ..., a;,s denote pairwise different elements where r>[}/—] and denote by

X the set of input signals Xpg (1=p, <[V_]) Take the following " o;-product
C=]JTA; (X, ¥) with single factor, where for any a; €A, and x,€X

0s(aj,15 -5 > Xj,5,) 1.f u=t

©s(j15 .o0s Qjx, Xj,5,) Otherwise.

lp(aj;s’ Xup) = {

i
It can be proved easily that the correspondence v:t—a;, (t=1, .., [Vn]) is an-

isomorphism of D[ o into C. :
The case n=1 is again obvious. To prove the sufficiency by our Lemma it
is enough to show that arbitrary automaton with » states can be embedded isomor-

phically into an o;-product of D, with a single factor. This is trivial.

Corollary. There exists no system of automata which is 1somorphlcally complete
with respect to o;-product (i=1) ‘and minimal.

In the sequel we shall study general properties of oz-products (i=0,1, ...).
For this we need some preparation.

Take a set 4 and a system ng, ..., m, of partitions on A.- We say that this
system of partitions is regular if the followmg conditions are satisfied:

(1) m, has one block only,

2) =, has one-element blocks only,

B) ngz=my=...=n,,.

Let = be a partition-of A. For any a€ 4, denote by n(a) the block of n contain-
ing a. Moreover, set M; ,={n;,,(b):b€4 and a(nl)} where aeA and
j=0, ...,n—1. Finally, let n,/nJH—max {IM; | :ac 4}.

It holds the following.

Theorem 3. Let /=2 be a natural number and i=1. An automaton
A=(X, A, 6,) can be embedded isomorphically into an «-product of automata
having fewer states than /, if and only 1f there exists a regular system =g, ..., 7,
of partitions of A such that

(D) 7;/m; <! forall j=0,...,n—1,



On a,~products of automata éOS

(I) a=b(n;) implies Ja(a, X)=06a(b, x) (m;_;41) for all i—1=j=n, x€X
and a, b€ A.

Proof. Theorem 3 will be proved in a similar way as the corresponding state-
ment for generalized o;-products in [2].

In order to prove necessity assume that the automaton A can be embedded

isomorphically intoe an e-product [T A,(X, ¢) of automata with [4,| <1
=1

"(t=1,...,n) and />=2. Let u denote a suitable isomorphism. Define partitions
n; (j=0,1,...,n) on A in the following ‘way: m, has one block only, and
a=d'(n;) (1=j=n) if and only if p(@=(a,...,a,), p@)=(;,...,a) and
a,=ay, ..., a;=dj. It is obvious that =y, n;, ..., m, is a regular system of parti-
tions and conditions (I) and (I) are satisfied by this system.

Conversely, assume that for an A=(X, 4, ) there exists a regular system
Ty, --., M, Of partitions satisfying conditions (I) and (II). We construct automata
Aj=(X;, 4;,0) (j=1,...,n) with |4;|=n;_,/n;(<I) such that the automaton
A can be embedded isomorphically into an o;-product of automata A, (j=1, ..., n).

Let A4; be arbitrary abstract sets with |4;=n;_,/n; and X;=4,X...
XAy XX if j+i—1=n and X;=4,X...X4,XX otherwise. Now let
p; be a mapping of M;={n;(a):acA} onto A; such that the restriction of u; to
any M;_, , is 1—1. Define the transition function §; in the following way:

(1) if j+i—1=n then for any a;cA4; and (b,, ..., b;1;_1, X)EX]

. : {uj(n,(é(a, x))) if a;=b; and there exists an ac4
d;(aj, (bys -os bypicg, X)) = * such that g,(m,(a))=b, for all t=1, ..., i+j—1,
larbitrary element from A4; otherwise,
(@ if j+i—1>n then for any a;€A4; and (b, ..., b,, X)€X;
#;(n;(5(a, x))) if a;=b; and there exists an a€A4
6,(a;, (by, ..., b,, %)) = such that g, (m,(a))=b, for all t=1, ..., n,
arbitrary element from 4; otherwise.

First we prove that §; is well defined. Assume that in case (1) there exists a b€ A4

~ - such that w(m (B)=b, (1=1,...,j+i—1). Itis enough to show that b=a(mj-0)

since this by (II), implies that 6(b, x)=0d(a, x) for any x€X. We proceed by in-
duction on t. b=a(n,) obviously holds since y, is a 1 —1 mapping of M, onto
A;. Assume that our statement has been proved for r—1 (I=r—1<j+i—1)
that is b=a(r,_,). Therefore, since g, is 1—1 on M,_; , and p,(m,(a))= p,(, (b))
thus =, (b)=m,(a). Case (2) can-be proved by a similar argument.
Take the o-product B= J] A,(X, ¢) where the mapping ¢; is defined in
t=1
the following way: oo N
(1) if j+i—1=n then for any (a,,...,8;4;-)€4;X...X4;;;-, and x€X
) (P](al’ v Qypi-1s x)=(a,, R TETES B x),

2) ifj+i—l>ﬁ then for any (a;,...,4,)€4,X... X4, and x€ X -

¢j(a19 ...,a,,,x)=(a1, ey Ay, x)'
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It is easy to prove that the mapping v:a—(u,(n,(a), ..., p,(n,(@)) is an
isomorphism of A into B, which completes the proof of Theorem 3

Let us denote by A,=({x, y}, {0, 1},8,) the automaton for which J,(0, x)=
=6,(1, y)=1 and 6,(1, x)=3,(0, y)=0.

Now we prove

Theorem 4. Automaton D, can be embedded isomorphically into an a;-product
of A, (i=1) if and only if 1=n=2'

Proof. The necessity follows from Theorem 3. Indeed, if D, can be embedded
isomorphically into an o;-product of A,, then by Theorem 3, there exists a regular
system mg, 7y, ..., m, of partitions of the set {1, ..., n} such that (I) and (II) are
satisfied. If n>2' then there exists a subsystem =, >m, >..>mn, of &y, ..., m,
such that my>m, and m, >m,. Since T, > T thus there exists at least one block
of m,, which has more than one element, that is there exist / and r (1=/,r=n) with
I#r and I=r(n,). From this, by condition (II), we get that for all x,, € {X,}1=p=n

léqsn

8,(, x,) =6,(r, Xs,)(n,). This implies my=m,, which contradicts the assumption
that o>y, .

To prove the sufficiency let n be an arbltrary natural number with 1=n=2!

We take the a;-product B= ]] As({x,), 9) of A,, where the mapping ¢; is defined

_ in the followmg way: for any
(@5 -5 a5, x5)€{0, 1} {0, 1} X ... X {0, 1} X {x,.}

i i
!x if Za,2"'+1 =sand r= > b2"~'+1 and a; # b;,
q’j(als (A ] ai’xsr) = r=1
y otherwise.

It is not difficult to prove that D, can be embedded 1somorph1cally into the
automaton B under the isomorphism p defined as follows: if k= Za 2=t 41
t=1
then pu(k)=(ay, ..., q;) for all k=1, ..., n. This ends the proof of Theorem 4.

Let C, denote the automaton ({x}, {l,...,n},d,) where for all 1=k<n
é,(k, x)=k+1 and 4,(n, x)=n.

It can easily be seen that for any natural number n=1 C, can be embedded
isomorphically into an «,-product of A,. On the other hand it is not difficult to
prove that if n>1 then C, cannot be embedded 1somorph1cally into an op-product
of A,. From this we obtam that the a,-product is isomorphically more general
than the o,-product.

In [3] V. M. Gluskov introduced the concept of the general product and proved
that system {A,} is isomorphically complete with respect to the general product.
This, by Theorem 4, implies that for any natural number i the general product
is isomorphically more general than the o;-product.

Our results can be summarized by

Theorem 5. The general product is isomorphically more general than any
a;-product (j=0,1,2,..) and any i, j (G, j€{0,1,2,...}) if i<j then the a;-
product is isomorphically more general than the oi-product.
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Finally we consider that what kind automata can be embedded isomorphically
into an ogproduct (i=0, 1,2, ...) of automata from the given finite set of auto-
mata. For this the following is vahd

_ Theorem 6. For-any natural number i(=0), automaton A and finite set M of .
automata it can be decided whether or not A€w;(M).

" Proof. Assume that automaton A= (X A, 6,) with m states can be embedded
isomorphlcally into an o;-product B= ]] A (X, p) of automata from M under

the isomorphism u. Let ¥V =max {|A| A €M}, and for all g€d (=1, ...,m)
denote by (a;y;, .. , a;s) the image of a; under p. We define partition = on the set
of indices of the oz-product B. Any k, l (I=k, I=s) k=l(n). if and only if A=A
and ay=a, for all t=1,..., m. It can easily be seen that the partition n has at
most |[M|-¥™ blocks. Since u is an’ isomorphism thus if ag=ay (t=1,...,m)
then the k-th component of u(da(a,, x)) is equal to the I-th’ component of
u(da(a, x)) for all r=1,...,m and x€X. By this it is not-difficult to prove, that _

the automaton A can be embedded isomorphically into an «;-product of automata
« V™. factors. '
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. Rational representation of forests by tree automata

By G. MAROTI ¢

1. Introduction .

In this paper we give a new representation of forests which is more powerful
than the usual one in the followmg sense: for this representation there exists a
proper variety which is complete, i.e., every regular forest can be represented (in
this new sense) by a tree automaton built on a finite algebra belonging to this variety
(Theorem 5). This representation is a generalization of the rational one developed
by F. Gécseg in [1]. Moreover our Theorem 5 yields immediately the result of F.
Gécseg and G. Horvéth [2]: there exists a proper variety over the type G={g, h},
where the arities of g and 4 are 2 and zero, respectively, such that every context-
free language can be recognized by a finite tree-automaton belonging to this
variety.

2. Fr-homomorphism and Fr-embedding

Let F be a nonvoid set and r a mapping of F into the set N of all nonnegative
integers. We call the ordered pair (F, r} a type. The elements of F.are thé opera-
tional symbols. If f¢ F and r(f)=n (n€N) then we say that the arity of fis n'(or f
is an n-ary operational symbol). We will refer to the type (F, r) simply by F. The
subset of all O-ary operational symbols will be denoted by F®.

Take the set X=1{x,, X, ...} and a type .F. The set Ty , of the n-ary polynomial
symbols over F is defined by ' ' :

1) X5 +ees Xp— IETF ns

2)if py, ..., Pu-1€TF, , and f€F is an m-ary operat10nal symbol (m=0) then

f(Po’ coos Pm— I)ETF ns
*3) Tr., is the smallest set satlsfymg 1) and 2).

The set Tp of all polynomial symbols over F is defined as the union of all T,

\

. Every polynomial symbol p€ Ty can be represented by a tree P (by a'loop-free :
connected graph) whose nodes are labelled by the elements of the set FU X in such
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a way that if a node has the label f¢ F then there are exactly r(f) edges leaving it.
We use the terminology that P is the tree belonging to the polynomial symbol p.

Consider the polynomial symbols p€T¢,, and py,...,pP,-1€Tf,. Then
2(py, ---» Pm_1) denotes the following n-ary polynomial symbol over F:

1) if =X (Oéiém_l) then P(p03 "',pm—]_)=pi:

Dif p=f(q,, ..., gi—1), where f€F and r(f)=k, then

P(Po, ---:pm—1)=f(q0(p0a 3pm—1)a ~--v, qk-—l(po’ "'&pm—'l))'

Next we define the mapping fr (frontier): fr is a mapping of Ty into the free
monoid generated by the set X satisfying the following cornditions:

1) fr(xp=x; (1=0,1,..),

2) if heFO, then fr(h) ¢ (e denotes the empty word),

3 if p=f(pgs ... Pm-1), Where fEF and r(f)=m, then

Jr(p) =fr(po) ... fr(Pm-1-

Let us consider now two types F and G. The mapping «:TF—T¢ is called
an fr- homomorplnsm (frontier-homomorphism) if it satisfies the following con-
ditions:

® alx)=x; (i=0,1, - _
(]l) {r(a(f(xi)a ceey Xy 1))) fr(f(x()a LERE xn-l))s where fEF and r(f)=n

(i) a(f(@o, --» Pa=)=0()(@(po); .-, 2(Pn-1)).

Corollary 1. For ‘every polynomial symbol pET F and for every fr- homo-
morphism a: Tr—~T; we have

1

fr(a(p) = fr(p).

Let d(p) dénote'the depht of the polynomial symbol p, i.e., if p is equél to X;
or a 0-ary operational symbol then d(p)=0, and if p is of the form p=f(py, ..., Prn-1)
then d(p)= _max {d(pp}+1. : .

" Corollary 2. Let a: T r—~Tg be an ﬁ-homomorphism, and- assume that for
every f€F, d(a(f(xo, ..-» Xpsy-1))=1. Then. for each peTy

d(x(p)) = d(p)

holds.

Proof. Let pc Ty If d(p)=0 then the assertion is trivial. Assume that Corollary
2 is true for all polynomial symbols whose depht is less than that of p=

_‘f(pOa . :pm 1) ThCIl
B d(a(p)) = d(a(f(POs "'9'pm—1))) = d(a(.f)(a(PO)’ '--:a(pm—l)) =
o2t max {d@@))=1+,_max {d@)}=d().

If the fr-homomorphism a:7y— T is one-to-one then it is called fr-embedding.
Let us denote by T [1] the set of all polynomJaI symbols from F w1th depth

less than orequal to 1 -
TF[l] = {P|P€TF and d(p) = }

\
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For every mapping ¢:Tg[l]—T; satisfying condition (ii) there exists exactly one
Jr-homomorphism «:Tp—~T; such that «tT([l]=0, where atT¢[1] denotes the
restriction of o to T¢[1].

If we take two types F and G then an fr-homomorphism not necessarily exists
between Tp and T;. For example if G consists of unary operational symbols only -
and in F there exists an operational symbol with arity greater than or equal to 2
then, obviously, there is no fr-homomorphism between 7 and 7j.

Consider the type F and denote by S(F) the following set of nonnegatwe
integers

: S(F) = {n|3f€ F with r(f) = n}.

The set._ {0, ..., m—1} will be denoted by s for all natural number m.

Theorem 1. Let F and G be types, S(F):{no,...;n,_l} and S‘(G):
={mg, ..., my_}. If there exists an fr-homomorphism a«: Tp—Tg, then for a-
suitable mapping ¢: F—~3§ we have

(mo_.la () ms'—1_1)|(n0'_ qu)., rees nr—l_m(r—l)qp)' ‘ R (1)

‘Proof. Let o: TF»TG.be an fr-homomorphism. If G has an operational symbol
with arity zero, then (1) holds for every mapping ¢: F—~§ because of :

(mo—1, ey =1, cocymg_y—1) = 1.

In the opposite case take a p€ T of depth 1, and let g=a(p). Then ‘
fr(@)].= 1fr )] = me | @

for some k¢7. Now consider the tree Q belonging to g. In consequence of (2) Q
has n, leaves. Delete in @ all leaves-belonging to a.given subtree of Q with depth 1.
We ‘get a tree with m,—(m;,—1) leaves, where i;€5. Continue the deletion of
the leaves of-the subtrees from Q with depth 1 as long as we get a tree of depth 1.
At each step the number of leaves of the current tree was reduced by (m; —1) for
.some i,€5. At the end of the process, the tree of depth 1 must have m; leaves where:
j€5. In this way for-suitable nonnegative integers I, ..., /,_, we have

nk_lo(mofl)_---—ls—l(ms—'l_l) =m;. N E)

Hence : ’ _ ) ‘
o k—m; =1 (mo~1)+ et Lo (myy = 1) 4y
Let d be the greatest common lelSOI‘ of my—1,...,my_;—1. Then d divides the

right side of (4). Therefore d divides m~—m; as well.
Take the correspondence k —j, and denote it by ]

W=j R )

Since peTF[l] was arbltrary, while it runs over the set TF[I] in (5), thus k must
run (not necessarily once) over the numbers 0, ..., r—1 and, meanwhile, for every

k€F, ky assigns a subset of §. Let ¢ be a choice function of the system of sets .
{ky | keF}. Because of (4), n,—my, can be divided by d for every k¢r. Therefore
d divides their greatest common divisor, as we stated. = [J
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Unfortunately, condition (1) is not sufficient. Indeed, let F consist of a single
unary operational symbol and let G={g} with r(g)=2. It is clear that condi-
tion (1) holds, but that in T there is no tree with a single leaf.

_ Theorem 2. Using the notations of the previous theorem, the necessary and
sufficient condition of the existence of an fr- homomorphrsm ‘between Tr and Tg
is the validity of the following equalities .

n = m,+lh(mg—D+...+1_(m_—1) (k=0,..,r=1), (6)
where ¢ is a mapping of 7 into § and /; are nonnegative integers for /=0, ..., s—1.

Proof. The necessity of conditions is trivial by the proof of the previous the-
orem,.

Before we are going to prove the sufﬁcrency let us note, that ifa natural number
n is of the form

h = mi+y0(m0—1)+"'+ys—l(ms—1— )s . )
where i€§ and y,, ..., y,_, are nonnegative integers, then there exists a ¢ in 7
such that
- @) =xo Xy 7

We proof this statement by induction on s. For s=1,
n = mo+ yo(me—1).
If gcG with r(g)=m,, then the polynomial symbol

g(g(g(x()’ sees xmo—l)’ xmoa' s x2mo—l)a LR ] xn—l)

is appropriate. Remark, that this choice is possible since n=>0 implies my=0.
Now assume that our statement has been shown for s=v, i.e. for each natural
number #n’ of the form

n’ = m+yome—D+... +y,-1(m, 1 —1)
there exists the desired ¢” in T and let ' '
n=m+y(me—N+...+y,(m,—1) = n’+y,(m,—1).

We distinguish three cases. If m,=>1, then we can choose for ¢ the polynomial
symbol

g(-,--g(q’, Xps ooes xn’+m,,-—1) xn—l):
where g€G and r(g)=m,. If m,=1 then n=n" and, therefore, ¢’ itself is suitable.
Finally, if m,=0 and 4 is O-ary operational symbol in G, then let ¢ be the polynomial -
symbol Wthh can be obtained from ¢” by replacing the variables x,, x,., ..., x,, -1
by A.
i Now assume that conditions (6) hold for the types F and G. In order to show
the sufficiency of our conditions it is enough to define a mapping o: Te[1]-T;

with fr(x (p)) = fr(p) for every pETE[1]. If in F there is no O-ary operational symbol
then for f(x;q, ... _p let

ot(f( Xjo» ++ Jnk—l)) Xjo> ""'xfnk-l),
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. where ¢g€7; the polynomial symbol with . fr(g)=x,...x,,_;, Wwhose existence
was shown above. In the opposite case in. G there must be a 0-ary operational.
symbol as well, say 4. For every f€ F® let o(f)=h. Furthermore if f€ F\F° is
of arity n, (k€F) and g€7T; is the polynomial symbol with - fr(¢)=x,... X, 1, then
for f(¥ip ---» yj"k_l) €Te[1] let :

(B e yjnk—l)) = q(Zjg> -+ Zink—l)’
where )
' _ {yfi if yiieX’
Ji h . if  y;€F° (i=0,..n~1).

Z. =
Theorem 2 provides two necessary and sufficient condltlons for the existence of
fr-embedding o:Tz—~T; for every type F.

Theorem 3. The following three condltlons are equxvalent

1) for every type F there exists an fr-homomorphism of T into T,
2) in G there exist a O-ary and an at least binary operational symbols,
3) for every type F there exists an fr-embedding 7 into T§. '

Proof. Because of the previous theorem, 1) is equivalent to 2), and it is clear
that 3) implies 2). Therefore, it is enough to prove the implication 2)=3).

For this let g, h¢G with r(h)=0 and r(g)=2. Consider an arbitrary type
F and take a one-to-one mapping y of F'into T, for which

vl ' : [fr(y (D) = r(f)

holds for every f¢ F. Now we define the mapping f: Tz[l]-T; in the followmg
manner:
) Bex)=x, | |
2) BN =g(h, ... h, y(f) if FEFO,
3) ﬂ(f(y,o, v ) =g(h, . h v(f)(ﬂ(y.o s B(yi,_)))s where y; € XU F°
]—0 n—1) .and fEF ,
Obviously g is one -to-one. Moreover for every p€T,[1] we have

fr(B(®) = fr(p). .
Assume that F={f;, ..., fi-1} and take the following unary polynomial
symbols from T : .
' q0=g(x0, ---,h)
= g(qj 1, > h) (.] =0,...,k=-1).
Finally, let us denote by o’ the mappmg of Te[1] into TG for which

o«'(p) = q;(B(p)),

where p=f;(py, ..., Pa—1) € T¢[1]. Obviously, « can be extended to an fr-homo-
morphism «:Tp—~T;. We claim that « is an fr-embedding. Indeed, assume that
for the polynomial symbols p and ¢ in T, a(p)=u(g). We proceed by mductlon
on the depth of p.

If p=x; then a(p)=x;. Moreover

0 =d(x) = d(a(p)) = d(x(q)) = d(q) =0
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implies d(g) = 0, which yields g =x;. If p=f;€F° then dip) =a(f) =
=q;(gCh, ..., b, y(f)) Assume that g has the form Je(tos -5 1,,—1). Then

a(q) - a(fk(tO:v LERR ] m—l)) - qk(g(h’ LA ] h: ')’(fk)(“(to), LR a(tm—l))))'
This and the assumption «(p)=a(g) jointly imply

qj(g(h5 ey h’ y(f]))) = qk(g(hs LA ] hs 'Y(fk)(“(to); ’ tx(tm—l))))'

But this yields j=k.
Finally, assume that p=f;(p,, ..., p,-1) and that the statement has been
shown for every p’ with d(p)<d(p). Let g=f(qo, .-, gm-1)- Then oa(p)=a(q)

implies . .
) q}(g(h’ s ha—'}’(fj)(a(Po): --'za(pn-—l)))) =
= qk(g(hs rees h’ Y(fk)(“(%), “ees a(qm—l)))) . . (7)

- But this holds only if qj'-=q,‘, which i$ equivalent to j=k. Thus (7) yields that -
a(py=alg) (=0, ..., k—1), which makes -the proof complete.

- 3. Fr-representation-

Let F be a finite type and U={4, F) a finite F-algebra .(for terminology,
see [3] and/or [1]). The triple A=(U, g, 4°) is called an n-ary tree automaton over
F, or shortly n-ary F-automaton, where A’S A is the set of final states and a€ A"
is the initial vector. i ,

According to the terminology used in the theory of tree automata the polynom-
ial symbols over F and the subsets of Ty will be called F-trees and F-forests, resp-
ectively.

Consider the n-ary F-automaton. UA=(2, a, A) and let us denote by T(A)
the following subset of T ,

T@) = {p|p€Ts,, and pm(a)E-A}

We say that the forest TS T, can be recognized by U (or U represents the forest
T)if T=T(). ‘

Let Ty, T, & TF,, and 0=i=n—1. The x;product of T and T, is the forest -
which can be obtained by replacing every occurence of x; of some tree from 7,
by a tree in T;. We denote the x;-product of 7, and T, by T3x;T,. Let T%'={x;}
and Thi=Tk-LiYT*Vix, T (k=1,2,..). Finally, let us denote by 7% the union
of all forests T%: ) ‘

T*gi —. G Tk,.-i.

T*i is called the xiteration of the forest T

We say. that the forest TS Ty, is m-regular if it can be obtamed from ﬁmtely
many trees of TF m by finitely many apphcatrons of union, x; rproduct and x,-xtera-
tion. A forest T is called regular if it is m-regylar.for some m..

It is well known that a forest is regular 1f and only if 1t can be recognlzed by
a tree automaton [1]. "
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Take a forest TS Ty, and an n-ary G-automaton A=(2,a, 4"). We say
that W fr-represents the forest T (or T can be fr-recognized by ) if there exists an
fr-embedding a: Tp—Tg such that a(7)=T(A).

Theorem 4. A forest is regular if and only if it can be fr-recognized by a tree
automaton.

Proof. We shall show that the image and the complete inverse image of a regular
forest under an fr-homomorphism are regular as well. This yields for us the
sufficience of our conditions. The necessity is trivial.

Let a: Tg—~T; be fr-homomorphism. From the definition of union and x;-
product of forests immediately follows that for each Ty, T,& Ty, we have

(T UTy) = a(TyUa(Ty), - ®
(T x,T3) = a(TYx;a(T). &)
After this by induction on k it is easy to show that

a(Th) = a(TY* (k=0,1,..).
From this we get

arry =a(J70) = O aty = Qe =am. (10)

Consider now the regular forest TS Ty, and assume that it can be obtained
from the trees p,, ..., py—1€ Tr by finitely many application of regular operations
(union, x;-product, x;iteration). Because of (8)—(10), «(7) must be obtained
from a(po),. ., a(py_y) by finitely many applications of the regular operations,
namely in exactly such a manner as T is built up from Pos -+ Pr-1- Therefore,
o{T) is regular as well.

Now take two forests T ETG.n and T’ STy, and assume that 7"=a~1(T)
and that T is regular. Then for some n-ary G-automaton M, T=T(,). Take the
F-algebra B=(B, F) such that B=A and for every f€F, fm o(f)a. Moreover
consider the n-ary F-automaton B=(B, a, 4’). We claim that T(B)=7". Indeed
for every p€Ty ., p€T(B) if and only if py(a@)€4’. But pg(a)=a(p)u (@)€4’ is
equivalent to cx(p)ET( T(W)). Finally, oc(p)eT if and only if p€a="(T) (=T).
. The proof is complete.

Let K be a class of G-algebras. We say that K is fr-complete, if for every regular
forest T (not necessarily over the type G) there exists a finite algebra U=(4, F)
in K, an ga€4" and A"E A4 such that the tree automaton A=(U, g, 4°) fr-repre-
sents the forest T. ‘

Our aim is t6 prove the existence of a nontrivial fr-complete variety. In order
to show this, take the type G in which there exist two operational symbols g and A
with r(g)=2 and r(h)=0. Furthermore consider the equation

glh, ....,h, gh, ..., ) =g(h, ..., h, g(h, ..., h), g(h, ..., b)). an
Theorem S. The variety defined by the equation (11) is fr-complete.
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Proof. Let a: Tg—~T; be an fr-homomorphism such that:

1) a(t)=g(g(h, ..., ), b .., h),

2) a(g(igs - Xp, ) = B(&8Ktgs s K)o B -

3) on the set of all other polynom1a1 symbols of TG with depth less than or
equal to 1 « is the 1dent1ty mapping.

We claim that « is fr-embedding. Indeed, let a(p)= a(q) If p=x; then ob-
viously ¢ must be equal to x;. If p=h then because of a(h)=g(g(h, ..., h), h, ..., h),
g does not contain any operational symbols different from g and h. Therefore, if
d(@)=1, then ¢ must have the form g(p,, ..., pn-). In this way from

g(gh, ... h), by ..., h) = g(g(a(Po), --.» ¥(Pm=1))s b, ..., )

it follows that h=a(p,) which is a contradiction. Therefore, d(g)=0 and thus
g must be equal to A. Finally, if p is O-ary operational symbol different from 4 then
p=gq obviously holds.

Now assume that d(p)=1 and that our statement has been shown for every
polynomial symbol with depth less than that of p. Moreover, let p=g,(pg, ... Px-1)
and g=g,(q,, ---» ¢;—1). Then

a(g)(@(po); ---» 2(Pe-1) = 2 (g (2(o); .- 2(gi-1)) (12)

yields that a(g,) and «(g,) must begin with the same operational symbol, but this
is possible only if g,=g,. Therefore, from (12) we get that k=/ and «a(p)=a(q)
(i=0, ..., k—1). According to our induction hypothesis, this yields that p=gq.

Now take an arbitrary type F and an fr-embedding f: Tp—~T;. Then y=af
is an fr-embedding of Ty into T as well. For the sake of simplicity introduce the

notations
ty=g(h,....h, g(h, ..., h))
to=g(h,....h, g(h, ..., h), g(h, ..., h)).
sub(B)Ny(Tp) =0 (=1,2). (13)
Moreover, for every pc€y(Ty)

and

Then

t,¢sub(p) (i=1,2). ‘ (14)

Let TSTr, be a regular forest which can be obtained from the trees
Dos ++s Pk-1ETp,m by finitely many applications of regular operations. According
to (14), 7y(po)s -.., y(px-1) can be represented by the m-ary G-automata

s Wy g such that on the algebras U,, ..., ,_, the equation r#,=¢, holds
([1] lemma 2).

Note that the power set of y(TF) is closed under the regular operations, that
“isif Ty, T.S(Tg) then T \UT,, Tyx;T, and T{'C(Ty) as well. Indeed,

T,UT, = (@) URT) € 7(Tp), (15)
Tux, T, = y(F A x7 (1) € ¥(To), (16)
T = y(F @) S 7T, a7
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Therefore, for every forest 7"E T; which can be obtained from y(po), ..., y(Pr-1)
_ by finitely many applications of regular operations we have .

Csub()NT =0 (i=1,2).

By lemmas 3, 4 and 5 of [1] if for the forests 7; and T, -

1) sub (t,)ﬂT =0 @, j=1,2), and

2) T; and T2 can be recognized by the tree automata 2, and ‘l[z, respectl-

vely, such that on the algebras A; and A, 1,=1, holds
then the forests T,UT,, Tyx; T, and 75~ can be represented by the tree automata
B,; B, and B, respectively, such that on the algebras B; (i=1,2,3) t,= t2 holds
as well.

From this and from statements (14)—(17) we get, that every forest Wthh can
be obtained from y(py); ..., 7(Pr—1) by finitely many applications of regular opera-
tions (among them y(T)) can be represented by a G-automaton belonging to the
variety defined by the equation (11). This ends the proof of our theorem.

From the above theorem we can see that the existgnce of a O-ary<and an at
least binary operational symbols in the type G is sufficient for the existence of a
proper fr-complete variety. But, by Theorem 3 it is necessary as well. Therefore,
the simplest types over which there exist fr-complete varieties are those which
consist of exatly one 0-ary and one at least binary operational symbols.

By the languages over the alphabet X={xq, ..., x,—,} accepted by an n-ary

F-automaton A we mean _
LAY = {fr(p)|peTW)}.

In [2] it was shown by F. Gécseg and G. Horvéth that there exists a proper variety

over the type G={g, h} with r(g)=2 and r(h)=0 such-that every context-free ~

language can be accepted by a finite tree automaton belonging to this variety. This
_result directly follows from Theorem. 5.

4. Fr—equivalence of tree automata

In [1] F. Gécseg introduced the concept of rational equivalence of tree automata.
Namely, two tree automata A and B (not necessarily of the same type) are called
rationally equivalent if for every forest T, T can be rationally represented by it
. if and only if T can be rationally represented by B. Now we define the analogous
concept for fr-representation. We call two tree automata W and B fr-equivalent
if the class of forests fr-representable by A is equal to the class of all those forests,
which can be fr-represented by B.

One can naturally raise the following -questions: _

1) Is .the rational equivalence of tree automata decidable? In other words,
does there exist an algorithm to decide for arbitrary two tree automata whether
they are rationally equivalent or not?

2) Is the fr-equivalence of tree automata decidable?

In this section we give positive answers to each of these questions.

L
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We shall need the following two simple lemmas. |

Lemma 1. Let «: T F;» T: be an fr-embedding and assume that there exists
a forest TS Ty such that a(T)=T. Then for each p€T we have

d(a(p)) = d(p).
Proof. For every natural number #'let
| T, = {plp€T and d(p) = n}.

We shaw that for every n, «(T,)=T,. Indeed, let n, be the least natural number
with T, #=0. If g€T, then a '(q)€T and d(x"'(g))=n, which implies that
a~1(q)€T,,. Therefore, a~Y(T,)ST,,. But a~! is one-to-one and T,, is finite:
Thus the restriction of o~! to T,, is onto, i.e., o~ (7,)=T,,. Hence a(T,)=T,,.
Now take an arbitrary natural number » such that 7,0 and assume that for
every m<n, a(T,)=T,. For each q¢T, we have d(z"(g))=n. If d(«=*(g))<n
then a~1(g)€¢ T, for some m<n implying g€ T,,, which is impossible. Therefore,
d(a'(g))=n, or equivalently a~'(q)€T,. Finally, again from the finiteness of
T, we get that o(7,)=T,.- O

Consider the types F and G. We call the mapping y of F onto G a projection
if y preserves arity. If we have an fr-homomorphism «: Tp—T; such that

1) for every f€F, d(a(f))=1,

2) for every f€F, a(f) has exatly r(f) leaves,

3) for every g€G, g(xo, ..., Xpg-)€x(TF), then we can take the projection
y: F~G for which y(f)=g if and only if a(f(x,, ..., X,(5)-1) =8(Xos ---» Xrery—1)-
For this we use the notation y=u}F.

The next result is obvious.

Lemma 2. Take three fr-embeddings o: Tp—Tg, B: Tg—~Ty and y: Tp—>Ty
such that y=pfo«. Then ytF is a projection if and only if «}F and B:G are projec-
tions as well. . :

Consider an F-automaton U and a G-automaton B. We say that U and B
are equivalent up to the notation of their operational symbols if there exists a one-to-one
projection y of F onto G such that y(T(AW)=T(B).. Moreover, we use the
terminology that F is reduced for N if for every f€ F there is a tree p in T(A) such
that f occurs in p. '

Theorem 6. Take an F-automaton A and a G-automaton B such that F and
G are reduced for A and B, respectively. Then the following three conditions are
equivalent: _

1) A and B are rationally equivalent,

2) A and B are fr-equivalent, » .

3) A and B are equivalent up to the notation of their operational symbols.

Proof. The equivalence of 1) and 3) was proved in [1]. Furthermore, it is obvious
that 3) implies 2). Thus it is enough to show that-3) follows form -2).

First we prove, that if for an fr-embedding «: 7x—Tf there exists a g€ Ty
such that «(g)=g, than for every operational symbol f occuring in g we have
a(f)=f. Indeed, if d(g)=1 then this statement is trivial. Now let g=
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=f(go} ---» gu—,) and assume that for every tree ¢’ with d(¢’)=<d(g) our statement
is true. From «(g)=g we get

() (@(G0)s -, 6(Gmn)) = f Gos > G-

But this yields that «(f)=f and that o(g)=¢g; (i=0,...,k—1). B

" Now take an F-automaton A and a G-automaton B such that F and G are
reduced for A and B, respectively. Assume that A and B are fr-equivalent. Then
there exist two fr-embeddings o: Tp—T; and f: Tg— Ty such that oT(W))=
=T(B) and_ B(T(B))=T(A). Therefore, for the fr-embedding y=pfo we have -
y(T(W)=T(A). Thus, by Lemma [, y preserves the depth of trees in T(A). For
the sake of simplicity let us denote T'(%) by T. :

" Consider the trees pq, ..., p.—1 €T such that for every f€ F there exists a j&m
for which f occurs in p;. Let d(py)=ny, ..., d(py-1) =nw_,. Therefore, p;cT,
(j=0,...,m—1). (We recall that T, is the set of all trees from 7" whose depth is
n;.) Let :

=1, (=0, ..,m=1).

Since T, is finite and y; is one-to-one thus there exist natural numbers K, ..., k,,_1
such that ' ) ‘
vy =idr,  (j=0,..,m=1). (18)
Take d=k, .. k,_;. From (18) it follows that '

P (T,U.. U, ) =idr, u..ur, .

Therefore, for the fr-embedding y¢: Tp— T we have
. Yp)=p; (=0,..,m=1).

Because of the choice of the trees py; ..., p,,—, the first assertion of this proof
yields that y*tF=idp. Thus y% F is a one-to-one projection of F onto F, but by
Lemma 2 this is true if and only if y} F is a projection of F onto F as well. Then
Lemma 2, y=pa and the fact that y} F is a projection jointly imply that a} F is
a projection of F-onto G. The proof is complete.

According to the above theorem in order to decide the rational equivalence
(fr-equivalence) of arbitrary two tree automata U and B it is enough to check
whether there exists a one-to-on€ projection y between the types of & and B such
that p(7(A))=T(B). But the set of all one-to-one projections between two finite
types is finite, and for a given one-to-one projection y the equality y(7())=T(B)
is decidable by taking the minimal tree automata recognizing y(7()) and T(B)..
Thus we have :

Theorem 7. The rational equivalence and the fr-equivalence of tree automata
are decidable.
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A note on symmetric Boolean functions

By P. Ecsepi—TOTH,* F. MORICZ** and A. VARGA**

To the memory of Professor GEZA Fopor

Introduction

The notion of a symmetric function can be found in any textbook on switching
theory or logical design. It is well-known (SHANNON [1]) that the truth-value of
a symmetric function depends only on the number of literals for which the truth-
value TRUE is substituted. More precisely, the following theorem holds.

" Theorem (Shannon). Let ¢ be a Boolean function of n variables. ¢ is a symimetric
function if and only if there exists a set of integers {n, ns, ..., m} (called the Shannon
set of @) (k=n, 0=n;=n for i=k) such that the truth-value of ¢ is TRUE iff for
exactly n; of the literals TRUE is substituted.

The proof of this theorem gives no idea.how to determine the set {n,, n5, ..., n,}.
- Since symmetric functions have nice properties, it is important to decide whether

a given function ¢ is symmetric or not. As far as we know, there are only trivial
methods (i.e., to test all possible cases) for the solution of this problem.

In this paper we present an effective algorithm to determine the Shannon set
of a Boolean function if it exists. The method is based on the tree-representation
of Boolean functions .used by the present authors [2] to get irredundant normal-
forms as representation of them. In particular, we associate a number — the number
of negative literals — to each path of this tree. Then by a simple comparison of
the endnodes of the paths and of the associated numbers, we can collect the Shannon
set provided it exists. - o

1. The tree-representation of Boolean functions
3
To make the paper self-contained, we ' present here the tree-construction -al-
gorithm, too. A more detailed explanation and the basic results can be found in [2].
. Let a Boolean function ¢ be given in which at least one variable occurs. Choose
a variable of ¢ according to some rule (a so-called selection function), fixed pre-
viously. First, substitute the truth-values TRUE and FALSE, respectively, for the
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chosen variable. Then eliminate the truth-values from both expressions obtained
by using the following transformation rules:
PNl —@; INp o
¢A0O —0; 0N —0
oV1—1; Vo —1
oNVO—p;  OVo—o
¢—>11
¢—-0-9
S
0—-p+1
@—D)=p; (=)o
(p=0~—~¢; O—9)—¢
ohNe o
PAG0;  FAe—0
PN@ ¢
VP —1; Vo1
-1
(o)1
P
T-0
01
As a result of the elimination process we come to one of the followmg two‘
cases: - . . .

(i) The expression obtained contains at least one variable. Then let us choose
a variable in it according to our rule, and repeat the substitution and the elimina-

tion described above.
(ii) The expression obtained is a single truth-value. Then the algorithm stops.

We note that the function ¢, together with a seléction function, determines its
tree uniquely up to isomorphism, and conversely, every binary tree determmes
a Boolean-function uniquely up to logical equivalence.

The following example illustrates the method. We use the usual loglcal con-.
nectives (A for conjunction, V for disjunction, — for implication, < for equivalence,
and ~ (bar) for negatlon) 1 and 0 w1ll denote the truth-values TRUE and FALSE’

respectively. -
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Example. Let the Boolean function ¢ be as follows:
¢: (A~ B)A((CVB) — A))«»

Let us choose the variables alphabetically. The substituted and “simplified” ex-
pressions can be arranged in a tree as indicated in Fig. 1. .

As it was proved in [2, Corollary 6], the function ¢ and also its sub-functions
can be omitted since they are obtainable from the shape of the tree, so it is enough
to draw the simpler form as indicated in Fig. 2.

[ (A=B A (EVB)— ANwa

The concept of a complete tree was introduced also in [2]. A tree of a Boolean
function is complete iff all paths from the root to ‘an endnode of the tree have the
~ same length, which .is equal to the number of the varlables of . The reader can
easily verify the following two assertions. :

Lemma 1. Let @ bea Boolean Junction of n'variables. T hen oné’can ﬁnd d Boolean
Sunction ¢’ with the same variables, the tree: of which is complete. and ¢”.is. logically
equivalent to @. ¢’ and its complete tree are uniquely determined. .

In practice, it is very easy to get a complete tree from any mcomplete one as
Fig. 3 shows. :

Lemma 2. Let ¢ be a Boolean function of n variables.and suppose: that the tree
of ¢ is_complete. Then there exzst exactly 2" paths in the tree of go

Conventwn In the rest of this. paper we shall assume that every tree is’ drawna
in such a way that the positive sub-expressions (those which can be obtained: by
substituting TRUE for a variable) are drawn on the léft-hand side, while the niegative
sub-expressions-are drawn on the right-hand.side of the tree. Observe . that.trees
in Fig. 1—3 correspond to . this con_\{entipn. oo

Definition. Let @ be a Boolean function: of . varlables Then 1ts complete tree
is the tree of ¢’ determined by Lemma 1. e L e kg T d
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Fig. 3

) 2. The s_équenée &
Definition: Let us definé the sequence of non-negative integers ({) by
4 ék—the number of 1 in the bmary expansmn of k——l (k—l 2 )
: Deﬁmtwn Let (C,,) be deﬁned by the followmg recurrence:

G =0,
Cor-1= s
$or = L+ L.

Lemma 3. We have &=L for every k=1,2,.

Proof. If k=1, then the lemma holds by deﬁmtlon For every k=2 there
exists: exactly one non-negatwe mteger n such that 2"<k=21*1 We proceed by
induction on n.’

Let n be fixed. Assume 2"<k52"+1 and that 152" 1mp11es é,—C,

-~ Let k=2l—1. Obviously, k—1=2I—-2 s even and /=2", sa.

L=li=&=¢.

Note: that the last- equatlon holds, since multlphcatlon by 2 S1mple means a shlftmg
in the bmary expansion of k—1.
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Let k=2l vaviously k—1=2I—1 is odd.and ‘[=2" so
L = oy = Cz‘*‘l = C1+1 =& 1+1

where again the last equatlon holds by the shlftmg property mentloned above.
We have to prove that 4

ot =y

However, this readily follows by definition from the fact that 2/—1-is ‘odd and
2]—1=2]-2+1.
The proof of Lemma 3is complete

Definition. For each non-negatlve integer n we deﬁne fzn(k) by the follow-
ing recurrence: ,

M) &e()=0, L
. En(k) if O0<k=2", 1
v(ll) éz'w»l(k) = { n "+1 _ An ’ '
v En(D) . if 2"k =2 and k=2"4+1
Lemma 4. We have Li=CEan(K) provzded O<k=2"
Proof It is enough to prove that

: , ézn+1(2k )= Czn(k) . -
and _ o €))
Eamea(2k) = En(K)+1,

since if we assume that 0<k=2" entails :

- N - @
then if /=2k—1 (2"<l=2"*Y), then ‘ '
R 6= Lot = L= En()
by (2); and if [=2k (2"<I=2n+1), then

| G=tu= b1 = En(R)+1.

We prove (1) by induction on n. If n= O then (1) trivially holds. If n;éO
then we prove that :

A . 62n+2(2k—1) = égn+1(k) ’

g2n+z(2k) = Egnra(k)+1 (k =1,2,..,2"",
In each case two subcases will be dlStlngUIShed
1) If k is odd and 2k—1=2" then ‘
Earra(2k—1) = Erra(2k—1) = Epn(k) = Eomra(K).
HIfkis odd and 2k-—1>2" then -
2k—1= = 2741,

and

L4

where ./=2" and /is odd, thus _
- 2k—1=2"4+2m—1.-
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We have also for k=2"+m,
Conr2(2k—1) = Eone2(R"+]) = Lnr(D+1 =
= Epn(m)+1 = &1 4 m) = Exnes(K).
.3) If k is even and 2k =2" then
Conv2(2k) = Lone1(2k) = Ean(k) +1 = Eaner (k) + 1.
4) If k is even and 2k=2" then .
Conv2(2k) = Eone2(2+1) = Loner(D+1 = Epra(Cm) +1 =
=Con(m)+2 = Lnna "1+ m)+ 1 = Epnna(k) + 1.
The proof of Lemma 4 is complete. '

The sequence &yn(k) can be easily generated so by Lemma 3 and Lemma 4
we have a “fast” algorithm to obtain the sequence {£,). The use of this sequence
is shown by the following

Theorem S. Let ¢ be a Boolean function of n variables. Let us number the end-
nodes in its complete tree by k=1,2, ...,2" from the left to the right. Then £, means
the number of the negative literals in the path, the endnode of which is numbered by k

Proof. Denote by n(k) the number of the negative literals in the path labelled
by k. Actually, one can prove by induction on the number of the variables in ¢. that

n(k) =¢

3. Symmetric functions
Definition. Let T be the set of indices of those paths whose endnodes are
TRUE.

Corollary 6. Let ¢ be an n-ary symmetric function and let m be an arbitrary
non-negative integer such that m=n. Then m is an element of the Shannon set of
@ if and only if

Jk|n— ék m}ET.

Proof. 1t is qu1te easy by Theorem 5.
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Truth functions.and problems in graph colouring

By G. LUk

To the memory of Professor LAszLO KALMAR

Introduction

The aim of this paper is to introduce some truth functions, which seem to
be useful in the theory of graph colourmg, and to study their basic propertles and
their interrelations.

It can be hoped that a future article will contam a some more detailed analysis
of these functions and some applications of the results presented now.

Theorem 3 includes (somewhat implicitly) a purely graph-theoretical asser-
tion. In fact, a simple representation of the maximal v-critical graphs ’may be given:
these can be produced as the intersection of N graphs each of which is the comple-
ment of a partition graph1

‘§ 1. Concepts and notations for graphs

1.1. By a graph, always a non-directed finite graph is meant without loops
and parallel edges. Later the vertex set of any graph will be viewed to be labelled,
a vertex will be identified with the corresponding number (except when it is emphasiz-
ed explicitly that a graph is considered abstractly, i.e., apart from isomorphy).

If a natural number is denoted by a letter N, then denote by A (the script
form of the same latter) the set {l, 2, ..., N}; furthermore, we define 4] by '

Hi={1,2,..,i-Li+1, .., N}
for an arbitrary i (1=i=N). The letter # denotes an arbitrary set of natural
numbers (not necessarily of form {l, 2, ..., H}). The cardinality of a set 5 is denoted -

by [#]. € is the complete graph with- the vertex set #. If 5 is a subset of A,
then we put H=A"—#7.

T The notions ‘occuring here will be defined later. )
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For a graph G, ¥(®) is the set of vertices of ® and I' (®) is the set of edges of G.
If the number N is ﬁxed and ¥ ((5) C 4 for a graph ©, then we denote the comple-
-ment of ® (with respect to C. ,,) by &

The isomorphy of graphs is denoted by ~. The sign € can express both subset
and subgraph; we write C if the inclusion is proper. x(®) is the chromatic number
of &. :

A graph ® is called partition graph if each connected component of (5 is
complete.

Let us fix the set 5. By 2% the set of all partition graphs ® is meant such
that ¥ (@)—Jf and the number of connected components of ® is c.

1.2. Let A—||,1, ;jll be a symmetric matrix of size NXN such that the entries
of A are truth values and A,;=A4,=...=Ayy=1}. Let the function & assign to
A the graph G= di(A) with V(®)=A" such that the edge ij exists in ® if and
only if A;;=t. @ is obviously a one-to-one mapping and the range of & exhausts
the set of all graphs on the vertex set V.2

1.3. An abstract graph ® is called edge-critical (or e-critical) if »x(®")<3x(®)
for every ®’ such that &’ results from ® by deleting one edge.

Analogously, & is called vertex-critical (or v-critical) if »#(6")<x(®) holds
for any ®’ such that may be obtained from & by deleting one vertex (and the edges
incident to it). Any e-critical graph is evidently v-critical..

A wv-critical graph ® is called maximal v-critical if »(6*)=>x%(®) holds for
every choice of ®* such that &* is v-critical and @ is a subgraph of G*.

If ® is e-critical and »(®)=c, then ® is called c-edge-critical.

Let the natural numbers ¢, N be fixed (c<N). Denote by Ay the set of all
c-edge-critical abstract graphs such that ¥ (G)=4 ’ _

“We get the graph class ¥4° or 5 in a similar manner if * edge-cntlcal” is
-replaced by “vertex-critical” or “maximal vertex-critical” (respectively) in the
above definition. And, moreover, if |¥ (@)]<N is replaced by |7 (®)|=N, then

the resulting graph classes are denoted by Ji”N , "V ¢ and .//lN (respectively, in analogy
to how Xy, ¥4°, 4§ have been defined).

§ 2. Introduction of truth functions defined on graphs

2.1. Consider a number N and the vertex set '#; let a graph G, be fixed with
V(@o) A. Define a truth function Xs,[4] by

tho[A] /\ }H'j : 2.1

. R J. i= t
where

A is a symmetric matrix of size NXN (as in Section 1.2)),3
.the variables of A are the entries 4;; of A fulfilling i<j,

2 Cf. the first sentence of - l 1. @&(A) can be viewed as a non-directed graph because of the
© symmetry of A. _
3 Hence &(A) is a graph whose vertex set is A~
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‘on’ the right-hand side of (2.1) the conjunction is taken for all pdirs (i, j) such.
that A{;=t where 1Y, is the entry of ®~(®,) being in crossing of the i-th row and
Jj-th column .

An obvious consequence of the above definition is:

Proposition 1. The value XGO[A] is t if and only if any edge of § is an edge of
& (A), too.

2.2. Let ¢ be a natural number (c<N) In analogy to the above - definition
of ye,, we define the truth function D¢ by -

D= V yeldl

G*e.fr"

where the- dlsjunctlon is taken for all elements ®* of the set The meaning of
D¢ is expressed in the following evident assertlon

Proposmon 2. The followzng three statements are equwalent Jor any matrix A:
(@) D[A]=1,

(ii) ®=D(A) contains a partition graph consisting of ¢ connected components,

(iii) the complement of ®(A) is c-colourable (i.e., »(®)=c).

2.3. In the particular case when ®, has only one edge e, the function yg [4]
expresses whether this edge e is present in @(A) or not. In this special case we write
. also y[4].

Let an abstract graph & with at most-N vertices be chosen. Define the func-

-tion Lg by’
o Laldl = AV z.l4]

where R’ runs through all graphs such that
¥ (R YEA and -
K’ is isomorphic to K;

for any choice of K, e runs through the edges of K.
The next result follows easily from this definition:

Proposition 3. La[A]=1 if and only if no subgraph ‘of the complement of ®(A)
is isomorphic to K.

2.4. Let the functions £¢ and F* be defined by
O E= A Lald]

Rexsty
and _
FelA]= A La[A]

.Rexf‘“

- . The: following two assertions follow eas:ly from these definitions and from
Proposition 3. : :

T

Proposmon 4. E°[A]=14 if and only if the complement of ®(A) has no (c+ 1)-
edge-critical subgraph with at most N—1 vertices.
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Proposition 5. F¢[A]=1% if and only if the complement of tD(A) has no (c+1)
-edge-critical subgraph containing each of the N vertices. A

Proposition 6. The equality

’ De[A).= E°[A]A Fe[A]
holds for any matrix A.

Proof. Let us consider four assertions:

(i) E[A]AFe[A])=t,

(i) the complement of @(A) has no (c+1)- edge critical subgraph,

(iii) the complement of ®(A) is c-colourable,

(iv) De[A]=1.

Propositions 4, 5 imply the equivalence of (i) and (ii). Proposition 2 has stated
that (iii), (iv) are equivalent. If (ii) is false then s(®(A))>c, this means the falsity
of (iii). As it was shown in [2], the falsity of (iii) implies the falsity of (ii).

2.5. We mention some obvious consequences of the definitions occuring in
this §. xs, is an elementary conjunction. D¢ was defined in a disjunctive normal
form. Each of Lq, E€, F° was introduced as the conjunction of functions expressed
in disjunctive normal form. All these functions are isotonic. -

In what follows we shall write e.g. D} instead of D¢ if we want to cmphasnze
that graphs with the vertex set A are con31dered

§ 3. Results

The most important mterrelatlon concerning the defined truth functlons is
expressed by

Theorem 1. For any matrix A we have

N
ES[A] = A D, (A].
From Theorem 1 we shall infer to
Theorem 2. There is- exactly one truth Sfunction AS.[A] such that
(i) A5 [A] is isotonic
(ii) any matrix A fulﬁls the equallty ES[A]= D/V[A]VA‘A[A],
and
(iii) A;,[A] and D¢, [A] have no prime implicant in common.

Remark. A% is identically true if and only if
' Gty = |¥(6) = N-L
_In the next assertion A5 is char;;cterized by means of vertex-critical graphs.
Theorem 3. Suppose that t/ze'humbérs N, ¢ are such that there is a (¢ + 1)-v-
«critical graph with N vertices. y,= y@O[A] isa pnme Impllcant of AS[A] if and only if

(a) (50@{1”1 and -
) ¥ ([®,) =
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We are able to give for a disjunctive normal form of F¢ a characterization
which is somewhat less explicit in comparlson to how E° has been- characterlzed
in Theorem 2. : .

Theorem 4. Let N, ¢ be numbers as in Theorem 3. y,=ye,[A] is'a prime implicant
of F5[A] if and only if
: (a) ®, has no subgraph ®, such that all the vertrces of B, are contamed in ®,
and G,€ A¢+t and
(b) whenever 632 isa subgraph of (60 then rhere is a subgraph 63 of 62 such that

63 E c+1
Moreover if x; is a prime implicant of F<[A), then either (ﬁoeﬂy or (50 contains
a (c+ 1)-critical graph ®, such that ®, has at most N—1 vertices. . -

§ 4. Proofs

We shall use the fdllowing well-known fact (see [1], p. 40):

Lemma 1. An isotonic truth function has a single irredundant dlSjunctwe normal
form this form consists of -all its prime implicants, :

- Proof of Theorem 1. Since Df, < [A] is isotonic, we can use Lemma 1 By Pro-
posmon 6 and the definitions of E¢, F¢, we have -

Dy [A]= A La [A]

ﬁeo{”

for any i (1=i=N). If we form the conjunction of these N equalities (in such a
manner that the conjunction of the left-hand sides and the conjunction of the
right-hand sides is taken, with an equality sign between them), then the right-hand
side can be simplified to Ef§[A], thus we get the assertion of Theorem 1.

Proof of Theorem 2. Let us distinguish three cases. If N<c+1, ;=0 and
so D¢ is undefined. If N=c+1, then, by Proposition 4, E§=t, as there exists
no. (c+ 1)-edge-critical graph with at most ¢ vertices. So D°[A]=F°[A] whence
follows the. existency and unicity (in the sense of the assertion). of AN[A], namely
A4[A]l=t. If N=>c+1, the proof runs as follows.

. Our first aim is to verify that each prime implicant y, of D§[A] is a prime impli-
cant of E§[A]. By Proposition 6, any implicant y, of D{[A4] is an implicant of
Ef[A]. Let g be a prime implicant of E§[A] such that y; is a subconjunction of x,.
By the definition of D¢, there is a graph ®y(€2) such that y,=ye,[4]. Let
T,,%3,, ..., T, be the connected components of &, (any of them is a complete
graph). As N=>c+1, |7 (Z)|=1 for at least one k (1=k=c). Fixing such a k,
let r be an arbitrary element of ¥'(X,). Let an edge e be chosen in ®, such that -
r, e are not incident. We have y;=yxg;[4] for a suitable subgraph ®; of ®,. Let
V(B,,, be defined by ©,,= (f)oﬂ(EN By Theorem 1, there is a partition graph’
Gp(€2) such that ;S 6,,. If Gp(c2y) is defined by Gp=6,NCy_, then
we -have GprS 6., S G,. Since Gp, Gp are partition graphs on the same vertex
set and the number of their connected components coincide, Gp G, -is impossible,
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hence Gp=6.,= (5,, The (arbitrarily chosen) edge e of G, belongs' _to
6p(E6,), thus /0—‘/0

AN[A] is defined as the disjunction of the prime implicants ¢ of EN[A] such
that-¢.is not a prime implicant of Dg[A]. :

. Lemma 2. Let & be a graph such that ¥ ((6) {1, 2 N}.' The .folloiving
. three assertions are equivalent for ®&: - o ‘
(i) ® is (c+1)-vertex-critical,
(i) ®NE,, is c-chromatic for any i (l<zSN),
(iii) ®NC,, inclides a partition graph with connected components.

‘Remarks. ®NE #, Tesults from & by deleting the vertex i and the edges in-
cident to it. ®NCE,, is the complement of GNE,, “with respect to €.

Proof of Lemma 2. (i) and (ii) are equivalent in consequence of the definition
of vertex-critical graphs. The equivalence of (ii), (iii) is obvious (cf. the statements
(i), (iii) in Proposition 2).

Proof of Theorem 3. Assume that the first sentence of Theorem 3 holds for
N, c.

Necessity. Let. ye,[4] be a prime implicant of Af[A].

First we prove that condition (ii) of Lemma 2 holds for &,. Let k be.an arbltrary
element of . y, is an implicant of D¢, %, because of Theorem 1. So ®, includes an
element of #5 ,.say P,. For this elemient PB.S 6,NE, «,, thus G, satisfies condi-
tion (iii) of Lemma 2, and so — by the lemma — conditions (i) and (ii) too.

Hence ®, is (c+ 1)-vertex-critical (by Lemma 2). The necessity will completely
be proved if we show the maximality of &,.

, Let e=ij be an arbltrary edge of ®,. Deﬁne the graphs &, and U (agam on
the vertex set {l,2, ..., N} such that

the edges of ®, are the edges of &, and e,

. the edges of ®, are the edges of 6, except e.
It is clear that ®,, ®, are complements of each other, and

 (to =) 16, [4] = 16,[AIN A5,

Let the short notation y, be used for yg,[4]. X2 is not an implicant of A§[A], con-
sequently there exists a k(€A such that X2 is not an implicant of Dy [A] (by
Theorem 1)

If ®, is defined by 6;=6,NCy,, it is clear that ,(GS[A] is not an implicant
of D/k [A] :

By Proposition 2 this means that Q’)a has no subgraph P such that Pec2;, .
From Lemma 2 it follows that @ZQV . As ©,=6,U{e} and e is an arbitrary
edge of ®,, B, is maximal v-critical indeed, which completes the necessity proof.

Suﬁ?czency If conditions (a) and (b) are fulfilled -by ®,, then

(1) xe,[4]=1x, is an implicant of Af.

This can be shown in two steps. - _ :

- (1.1) 3 is an implicant of E§. Indeed, ®, satisfies condition (i) of Lemma 2,
and so.also condition (iii) of this lemma. This implies that the graph B,NCy, includes
an element P of 25, and therefore y, is an implicant of DS, . (for every I(EN)) by
Proposition 2.
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Now from Theorem 1 it follows that y, is an implicant of Ef.
(1.2) 3, is not an implicant of D§. By Proposition 2 this is true if and only

if ®, includes no element of #5, that is %(&,)>c. But thls iS now in consequence
of condition (a) of our theorem.

From (1.1) and (1.2) we conclude that (1) is true. It remains to prove that

‘() x is a prime implicant of A%.

To prove this chose an arbitrary edge e of ®,. Let us introduce a new graph
6, by 6,=6,U{e}. As G, is maximal (c+ 1)-vertex-critical, ®, is not (c+1)-
vertex-critical. By Lemma 2, there exists an r(€.4") such that the graph &,NC,,
includes no partition graph € Py, . By Proposition 2, for this r ye,[4] is not an
implicant of DS, [A]. -

By Theorem 1, ¥, is not an implicant of E§[A], thus we have proved assertion 2.
This completes the sufficiency proof.

‘Proof of Theorem 4. The first part of the assertions — the sufficient and necessary
condition — is equivalent to Proposition 5; so it does not require any proof. To
prove the last sentence of the theorem, let us distinguish two cases: (i) »(By)=
zc+1 and (ii) #(®y)<c. In case (i) by the first part of this theorem |V (B,)|=
=N-—1, which is the second alternative of the assertion to be proved. In case (ii)
there exists a graph P€PS such that G,2P and so ygp[A] is a subconjunction
of ys,. But xgp[A] is an implicant of Fg§[4] because it is an implicant of D§[A].
As yg,[A] is a.prime implicant of F§, it cannot include yg[A] properly, therefore
xo,[A]=xg[A4], that is ®,=%P, proving the second part of the theorem. Thus
Theorem 4 is proved. :

¥
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