
SS^'Lbi

Tomus 3. Fasciculus 1.

ACTA
CYBERNETICA

F O R U M C E N T R A L E P U B L I C A T I O N U M C Y B E R N E T I C f l R U M H U N G A R I C U M

R E D I G I T : L. KALMÁR

COMMISSIO REDACTORUM

A. Á D Á M F. O B Á L
F. C S Á K I F . P A P P
S. C S I B I A. P R É K O P A
B. D Ö M Ö L K I J. S Z E L E Z S Á N
T. F R E Y J. S Z E N T Á G O T H A I
B. K R E K Ó S. S Z É K E L Y
K. L I S S Á K J. S Z É P
D. M U S Z K A L. V A R G A
ZS. N Á R A Y T. V Á M O S

SECRETARIUS COMMISSIONIS

I . B E R E C Z K I

Szeged, 1976
Curat: Universitas Szegediensis de Attila József nominata

3. kötet 1. füzet

ACTA
CYBERNETICA

II H A Z A I K I B E R N E T I K A I K U I A I Á S O K K Ö Z P O N T I P U B L I K Á C I Ó S F Ó R U M A

F Ő S Z E R K E S Z T Ő : KALMÁR LÁSZLÓ

A SZERKESZTŐ BIZOTTSÁG TAGJAI

Á D Á M A N D R Á S
C S Á K I F R I G Y E S
C S I B I S Á N D O R
D Ö M Ö L K I B Á L I N T
F R E Y T A M Á S
K R E K Ó BÉLA
L I S S Á K K Á L M Á N
M U S Z K A D Á N I E L
N Á R A Y Z S O L T

O B Á L F E R E N C
P A P P F E R E N C
P R É K O P A A N D R Á S
S Z E L E Z S Á N J Á N O S "
S Z E N T Á G O T H A I J Á N O S
S Z É K E L Y S Á N D O R
S Z É P J E N Ő
V A R G A L Á S Z L Ó
V Á M O S T I B O R

A SZERKESZTŐ BIZOTTSÁG TITKÁRA

B E R E C Z K I I L O N A

Szeged, 1976. december
A Szegedi József Attila Tudományegyetem gondozásában

LÁSZLÓ KALMÁR
1905—1976

The Editors of the Acta Cybernetica announce with deep sorrow that the
Acta's Editor-in-Chief, Professor László Kalmár, ordinary member of the Hungarian
Academy of Sciences, has unexpectedly deceased on 2nd August 1976.

The sudden death of Professor Kalmár, overcoming him in his full creative
energy, is an irreplaceable loss of the mathematical and cybernetical investigations
in Hungary. He was an outstanding researcher of mathematical logic and computer
science; the main areas he dealt with were the decision problem, the topics of complete-
ness and incompleteness theorems in logic, the theory of programming languages
and the planning of formula-controlled computers. In addition to his achievements
as an eminent scientist, he exerted a fatigueless effort through personal connections,
both as a teacher of young colleagues and as the main organizer of the labour con-
cerning the theory and employment of computers in Hungary.

In our country, every specialist of computer science and a large circle of mathe-
maticians lost in him an inspiring educator and a master of admirably comprehensive
knowledge.

1 Acta Cybernetica UI/1

On graphs satisfying some conditions for cycles, I.
B y A . Á D Á M

To the memory of my friend Professor Andor Kertész

Introduction

The aim of the present paper is to give a structural description of the finite
directed graphs satisfying the conditions that

to any edge e the number of cycles containing e is 1 or 2, and
there exists a vertex contained in every cycle of the graph.

It is obvious that a graph fulfilling these requirements can have at most one cut vertex.
We rely upon some results of the earlier paper [1]. In §§ 2—3 we give some con-

structions and prove that they produce the graphs that possess the properties men-
tioned above and having no cut vertex. The description is extended in § 4 to graphs
in which a cut vertex occurs.

§ 1.

By a graph, we mean always a finite directed graph with at least two vertices.
We suppose that it is connected and contains neither loops nor parallel edges with
the same orientation.

It is assumed that §§ 2—3 of the preceding paper [1] are known to the reader. •
The terminology introduced in § 2 of [1] is mostly further applied (but the notations
34(G) and 51(C) do not occur in this paper). We say that e.g. Z(A)^1 is universally1

satisfied in G if it is true for every vertex A of the graph G. In accordance with [1],
we denote by C1 the class of connected directed finite graphs in which Z(A)^2 and
Z (e) ^ l are universally valid. Construction I, Theorems 1 and 2 of [1] will be refer-
red to as Construction I*, Theorems 1* and 2*, respectively.

The sum of the indegree and outdegree of a vertex A is called the total degree of A.
A vertex A of a graph G is called pancyclic if A is contained in each cycle of G.

1 In [1] the word "identically" was applied for expressing the universal quantification.

1*

4 A. Ádám

Let us consider three conditions (imposed upon a graph G):
(a) 1 s=Z(e)s=2 is universally satisfied in G,
(¿3) G has a pancyclic vertex,
(y) G has no cut vertex.

We define the class C5 as the collection of finite directed graphs fulfilling (a) & (fi) & (y)
and we denote by C6 the set of finite directed graphs in which (oe) & (fi) is satisfied.2

It is clear that C5QCe. The condition (a) implies the universal validity of Z(A)>0
in G.

The vertices of degree (1, 1) are called simple vertices. Let c be a path of positive
length in the graph G, denote the vertices of c by A0, Ax,..., A„ (as they follow in c)
(« S i) ; c is called an arc (or more precisely, an (A0, A„)-arc) if its inner vertices
Ax, A2,..., /4„_i are simple vertices (in G).

§ 2 .

We describe four constructions. In any construction, the arcs are supposed
to have no edge and no inner vertex in common. The lengths of the arcs are arbitrary
positive integers.

CONSTRUCTION I. Let A: (s 4) be an even number. Take k + 1 vertices A, B1, B2,...,
Bk and the following 2k arcs:

an (A, Bt)-arc for each odd number i (l^i^k — l),
a (Bh A)-arc for each even number i (2^i^k),
a (Bh Bt-J-arc for each odd number i — 1),
a (B h £ i + 1)-arc for each odd number i (1 si^k— 1),
a Bn)-arc.

(It is clear that, in a graph G resulted by Construc-
tion I, A, Bly B2, ..., Bk and the inner vertices of the arcs
are the vertices of G, and the edges of the arcs are the
edges of G.)

Fig. 1. A I-constructible
graph (¿=6)

CONSTRUCTIONIl/a. Let k(= 2) be an integer. Take the k + \ vertices A, Blt B2,...,
. Bk and the following 2k +1 arcs:

an (A, Bj)-arc,
B, B, B, a (B1, A)-arc,

an (A, Bi)-arc for each odd number i 1),
a (Bi, ,4)-arc for each even number / 1),
a (B^ -B,_i)-arc for each odd number i (3 ^ i ^ k) ,
a (Bi, 51+1)-arc for each odd number / (1 S i S k — 1),
an (A, Bk)-arc,
a (Bk, ^4)-arc.

/\
\

Fig. 2. A II/a-constructible
graph (k = 3)

2 We do not use the notations C2» C3, C4 which occur in [1] but they Ere not referred to in
this paper.

On graphs satisfying some conditions for cycles, I. 5-

CONSTRUCTION IL/b. Let k(^2) be an integer. Take the k + 1 vertices A,B1,B2, ...,
Bk and the following 2A:+1 arcs:

an (A, £])-arc,
a (B1, A)-arc,
a (2?,-, A)-arc for each odd number i 1),
an (A, Bi)-arc for each even number i (2 si^k— 1),
a (Bi, arc for each even number i (2 ^ s i s k) ,
a {Bt, Bi+1)rare for each even number i — 1),
an (A, Bk)-arc,
a (Bk, A)-arc.

CONSTRUCTION III. Take the vertices A,B, two (A, 5)-arcs c1, c2 and two
(B, /4)-arcs c3, c4 such that / i + / 2 = 3 and / 3 +/ 4 &3 where /,• is the length of Cj
(j can be 1, 2, 3, 4).

If a graph G can be built up by Construction I, then it
is said that G is I-constructible. The II/a-constructible,
II/b-constructible, III-constructible and I*-constructible
graphs are meant analogously. G is said to be II-constructible
if it is either II/a-constructible of II/b-constructible. A Il/a- Fig. 3.
constructible graph is said to be II/a/o-constructible or A III-constructible graph
II/a/e-constructible if it results with an odd or an even k,
respectively (by Construction Il/a). The II/b/o-constructible and II/b/e-constructible
graphs are understood in a similar manner.

Proposition 1. A graph is II\a\e-constructible if and only if it is Iljble-construct-
ible.

Proof. Let k be even. If the notation of the vertices B1, B2, ..., Bk is replaced by
Bk, Bk_!,..., B1 (respectively), then the definitions of II/a/e-constructibility and
II/b/e-constructibility are interchanged.

Proposition 2. The sets of
I*-constructible graphs,
I-constructible graphs,
II/a\o-constructible graphs,
II/ale-constructible graphs,
II\blo-constructible graphs and
III-constructible graphs

are pairwise disjoint.

Proof It is clear that the total degree of a vertex of a I*-constructible graph is
^ 4 and equality holds precisely in case of cut vertices. On the other hand, the total
degree of the vertex A is ^ 4 in case of any of the constructions described above,
although A is not a cut vertex. (Indeed, the total degree of A is k for Construction I,
k+2 for Constructions Il/a and Il/b, it is 4 for Construction III.) Therefore a I*-
constructible graphs cannot belong to any other type mentioned in the proposition.

A III-constructible graph has two vertices (namely A and B) whose total degree
is 4. If a graph is I-constructible or II-constructible, then all vertices C (^ A) of it have
a total degree ^ 3 . Hence a III-constructible graph is neither I-constructible nor
II-constructible.

6 A. Ádám

Let G be a Il-constructible graph. The (A, BJ-arc and the (Bi, ^)-arc connect
the same vertices A and B (with opposite orientations). The lack of a pair of arcs
of this nature in any I-constructible graph implies that G cannot be I-constructible.

To any graph G denote by z (G) the pair (v, if) where v is the number of vertices
of degree (2, 1) and w is the number of vertices having degree (1, 2). We have

, k—\ k + 1
r(G) = r(G) =

k k) f f c + 1 k—\
2'2 a n d T (G) =

if G is II/a/o-constructible, II/a/e-constructible or II/b/o-constructible, respectively.
Consequently, any graph is contained in at most one of these three types.

Proposition 3. If a graph G is I-constructible or Il-constructible or III-construct-
ible, then 1 holds for any edge e of G.

Proof. Let G be I-constructible. Each cycle c of G can be characterized by the
sequence of that vertices of G whose degree differs from (1, 1). In this manner, the
sequences

(A, Bit B^^ where 1 and i is odd,
(A, Bi, Bl+1) where l^i^k — 1 and i is odd,

04,
characterize cycles in G, and it is obvious that all the cycles of G have thus been
exhausted. This survey of cycles guarantees l ^ Z (e) ^ 2 .

, If G is II/a-constructible, then the inference is similar, namely the cycles are
determined by the sequences

(A, BJ
(A, Bi, Bi-!) where 3 ^ i ^ k and i is odd,
(A, Bi, Bi+1) where l^i^k—1 and i is odd,
(A, Bk).
When G is II/b/o-constructible, then the sequences determining the cycles of G

are the following ones:

(A, B^ Bi_J

(.A,Bi,Bi+i) where 2^i^k — \ and i is even.

(A, Bk)

The II/b/e-constructible graphs do not require a further treatment (by Proposition 1).
It is evident that in any III-constructible graph there are precisely four cycles and

Z(e)—2 is universally satisfied.'
Proposition A. If a graph G is I-constructible or Il-constructible or III-con-

structible, then G£Cb.

Proof. The universal validity of 1 S Z («) S 2 was stated in Proposition 3. It is
clear from the constructions that G has no cut vertex and the vertex A (in any con-
struction) is pancyclic.

On graphs satisfying some conditions for cycles, I. 7-

§ 3 .

Proposition 5. Assume that one of the next five conditions (a)—(e) is true for
the graph G:

(a) G is a cycle,
(b) G is I*-constructive, it has exactly two cycles and it has no cut vertex,3

(c) G is I-constructible,
(d) G is II-constructible, *
(e) G is III-constructible. i ^ .

/ : \
Choose two different vertices C, D in G. Take a new (C, D)-arc I j
to G, denote the resulting graph by G*. Suppose that either \ : f
there is no edge from C to D (in G) or the new arc has at
least two edges. Then G* satisfies one of the following three 11'
statements: Fig A graph satisfy-

(1) G* fulfils one of (b), (c), (d), (e), ing the condition (b)
(2) G* has an edge e such that Z(e) >2, (occurring m Proposi-a . 4 tion 5 and Theorem 1) (3) G has no pancyclic vertex.

Proposition 6. Let Glt G2 be two graphs such that each of them fulfils one
the requirements (a)—(e) exposed in Proposition 5. Let At be a pancyclic vertex in
Gj (i is 1 or 2). Form the union G of Gt and G2 such that the vertices Ax and A2
are identified with each other (and this vertex is denoted by A). Choose a vertex
C^Ax) in Gl and a vertex D(7±A2) in C2. Take a new (C, D)-arc to G, denote
the resulting graph by G*. Then G* satisfies one of the statements (1), (2) occurring
in Proposition 5.

Since the proofs of Propositions 5 and 6 are lengthy and of technical character,
they will be given at the end of the paper as Appendix I and Appendix II, respectively.

Lemma. Let G' be a subgraph of the graph G such that G' has a cycle. If G' has
no pancyclic vertex, then the same holds for G.

Proof. Let A be an arbitrary vertex of G. If A belongs to G', then G' has a cycle a
which does not contain A (since A is not pancyclic in G'). If A is not a vertex of G',
then no cycle of G' can contain A. We have got that A is not pancyclic in G.

Proposition 7. If G£CS, then one of the requirements (a)—(e), occurring in
Proposition 5, is true for G.

Proof. Denote by x the number of cycles of G. We use induction on x.
If x = 1, then (a) is true; if x=2, then (b) is valid (because of Theorem 2* and (y)).
Consider the case when Let us select an edge e0 such that Z(e0) is minimal

in G. Delete e0 and those vertices C and edges e which satisfy Z (C) = 0 and Z (e) = 0
(resp.) in the graph obtained by removing e0. Denote the remaining graph by G'.
G' exists since Z(e0)<3. It is clear that 1 holds universally in G'. If a vertex
A has been pancyclic in G, then A is (contained and) pancyclic in G', too.

3 In other words: G has been formed by Construction I* from the tree with only one edge,
such that V'9^0 (i.e. Step 3 has really been applied).

4 The assertions (2) and (3) do not exclude each other.

10 A. Ádám

Our next aim is to show that whenever a vertex C of G does not occur in G', then
Cis simple. Indeed, any cycle containing Ccontains also e0, therefore (by 1 s z (e 0) s 2
in G) the indegree and outdegree of C may be 1 or 2. If e.g. the indegree of C is 2,
then Z(e0)—2 and Z(e')=Z(e") = \ (where e' and e" are the edges of G terminating
at C), contradicting the minimality of Z(e0). Thus the indegree of Cis 1, the outdegree
of C is also 1 (by similar reason).

Consequently, G can be represented as an edge-disjoint union of G' and certain
arcs a2, ..., a, (?S l) such that the inner vertices of any arc a((l^i^t) occur
neither in G' nor in ax, ai+1, ..., a,, furthermore, the beginning vertex and
end vertex of any af belong to G'.

Define the graphs
G 0 , Glt Go, ...,Gt 1)

successively such that G 0 =G ' and G, proceeds from Gi_1 (where l ^ / ' ^ i) by adding
the edges and inner vertices of ah We have Gt—G. The further proof splits to two
cases.

Case 1. G' has no cut vertex. Then, by the induction hypothesis, one of (a)—(e)
is valid for G'=G„. We are going to prove that the same holds also for G l 5 G2, ..., Gt.
Suppose that i is the smallest subscript such that each of (a)—(e) is false for Gi
(l ^ z ' s /). By applying Proposition 5 for G ^ and the arc aiy we get then that either
Z (e) s 3 is satisfiable in Gt (thus in G, too) or G; (hence, by the Lemma, also G)
has no pancyclic vertex. Consequently, C5, this contradicts the assumption.

Case 2. G' has a cut vertex. It is then obvious that the pancyclic vertex A (in G)
is cut vertex of G', and G' does not possess any other pancyclic or cut vertex. Fur-
thermore, there exists a number w such that the (single) cut vertex of
G0, Gj, G2, ..., Gw is A but none of G w + 1 , G w + 2 , ..., G, has a cut vertex. Moreover,
the number of blocks (separated by A) of G; (1 ̂ i^t) is either the same as the num-
ber of blocks of G ;_! or less by one, dependingly on the situation of at.

Since G0=G' satisfies (a), the induction hypothesis guarantees the validity of one
of (a)—(e) for any block of G0. Similarly to Case 1, we can show that the same holds
for the blocks of each G; (by applying Proposition 5 or Proposition 6 according
as the addition of o; does not or does diminish the number of blocks of G ^) .

Theorem 1. Let G be a finite directed connected graph. G belongs to the class C5
if and only if one of the following five conditions is satisfied:

(a) G is a cycle,
(b) G is I*-constructible, it has exactly two cycles and it has no cut vertex,
(c) G is I-constructible,
(d) G is II-constructible,
(e) G is III-constructible.

Moreover, (a), (b), (c), (d) and (e) pairwise exclude each other.

Proof. It follows from Proposition 2 that G can satisfy at most one of (b)—(e).
It is obvious that a graph, obtained by any of the constructions, cannot be a single
cycle.

The sufficiency of (a) is trivial, that of (c), (d), (e) has been stated in Proposition
4. It is easy to see that (b) is also sufficient.

The necessity part of the theorem coincides with Proposition 7.

On graphs satisfying some conditions for cycles, I. 9-

§4.

C O N S T R U C T I O N I V . L e t

G1, G2, ..., Gt (t s 2)

be (pairwise disjoint) graphs contained in the class C5 . Let us choose a pancyclic
vertex5 At in any Gt. Let us form a graph G such that the vertices A1, A2, ..., A,
are identified with each other, denote this new vertex by A.

Construction IV is completed. The graphs originating by it will be called IV-
constructible graphs.

Let us recall the well-known fact that, in any graph, the relation "the edges e1
and e2 are computable to a circuit" is an equivalence relation and the subgraphs,
determined by the equivalence classes are precisely the blocks separated from each
other by the cut vertices of the graph (see e.g. Section 5.4 in [3] or Chapter 3 in [2]).

We have the following immediate consequence of Construction IV:

Proposition 8. Let the graph G result by Construction IV. Then A is a cut vertex
of G and G has no other cut vertex. The blocks of G, separated by A, are the graphs
G\, G2, ..., Gt. Whenever c is a circuit (or, particularly, a cycle) of G, then all the"
edges of c belong to the same Gt (l^i^t).

Proposition 9. If a graph G is IV-constructible, then G£CS.

Proof Let G be produced by Construction IV. It is obvious that G is connected,
holds in G because of the last sentence of Proposition 8 and the validity

of these inequalities in every G ;. It follows from the construction (more precisely,,
from the choice of the A/s) that A is pancyclic.

Proposition 10. If a graph G belongs to the difference set Cs—C5, then G is IV-
constructible.

Proof Since G(£C6—C5) satisfies (ft), we can choose a pancyclic vertex A in it.
Our next aim is to show that no vertex C(^ A) of G can be a cut vertex. In the contrary
case, some part G' of G (separated by C) does not contain A, consequently, A does,
not occur in the cycles consisting of edges of G' what is impossible by (/?).

Since G belongs to C6 but does not belong to C5 , it must have a cut vertex.
Therefore A is the single cut vertex of G. The blocks

G l5 G2, ..., G, (t S 2)

of G, separated by A, are contained in the class C5. It is evident that G arises from'
these subgraphs by Construction IV.

By Propositions 9, 10 and Theorem 1, we have reached to a complete description
of the graphs belonging to C6. Our results can be summarized in the following asser-
tion :

6 This requirement means (by Theorem 1 and the constructions mentioned in it) that
A, is an arbitrary vertex if Gi satisfies (a),
A(is a vertex fulfilling Z(A{)=2 if (b) is valid for Gt,
At is the vertex denoted as A in the corresponding construction if (c) or (d) holds for G„ and:
At is either A or B (with the notation used in Construction III) if Gt fulfils (e).

10 A. Ádám

Theorem 2. A finite directed graph G is contained in the class C6 if and only if
either one of the five conditions (a), (b), (c), (d), (e) (occurring in Theorem 1) is true

Jor G or
(f) G is IV-constructible.

Furthermore, these six conditions pairwise exclude each other.

Appendix I.

In this section we verify Proposition 5.
The assumption on the length of the (C, £>)-arc guarantees the non-existence

-of parallel edges with coinciding orientation in G*.
We write Z(e) or Z*(e) according as the number of cycles (containing e) is

•considered in G or in G*.
Instead of (3) we shall sometimes show the assertion
(3') there are two cycles in G* having no vertex in common.

It is obvious that (3') implies (3).
We use the short expression "(F, H; G)-path" instead of "a path from F to

H in G". Let a be an (F, H; G)-path and let b be an (F\ H'; G)-path such that
. b is a subpath of a. If at most one of the equalities F' = F and H'=H holds, then we
say that b is a proper subpath of a. If F' ^F and H ' j ^ H , then b is called a strongly

_proper subpath of a.
If a graph G is I-constructible or II-constructible, then we denote by n(G) the

value of the numerical parameter k (occurring in Constructions I, II) yielding G.

Case 1. G satisfies (a). Then (b) is obviously fulfilled by G*.

Case 2. (b) holds for G. Denote by A and B the (uniquely determined) vertices
whose degree is (2, 1) and (1, 2) (resp.) in G; it is clear that all other vertices of G
are simple. Evidently, either the (C, D; G)-path or the (Z), C; G)-path (or both)

i s uniquely determined by C and D.

Case 2/a. There exists only one (C, D; .G)-path and this is a proper subpath of
-a (B, A; (J)-path. Then Z * (e) = 3 for each edge e of the (single) (A, B; G)-path.

Case 2/b. There exists only one (D, C; G)-path and this is a strongly proper
rsubpath of a (B, A; G)-path. Then G* satisfies the statement (3').

Case 2/c. There exists only one (D, C; G)-path, this is a subpath of a (B, A ; G)
-path and exactly one of the equalities A-C and B~D holds. It is then evident that
G* is II-constructible (with n{G*) = 2).

Case 2/d. There exists only one (C, D; G)-path and this is a proper subpath of
the (single) (A, B\ G)-path. Then Z*(e)=4 for each edge e of the (A, B; G)-path
which is not contained in the (C, D; G)-path.

Case 2/e. There exists only one (D, C; G)-path and this is a subpath of the
•(A, B; G)-path. Then Z*(e) = 3 for the edges of the (D, C; G)-path.

Case 2/f. A = C and B=D. Then G * is III-constructible.

On graphs satisfying some conditions for cycles, I. 11-

Case 2/g. C is an inner vertex of the (A, B; G)-path and D is an inner vertex
of the (B, A; G)-path. Then the edges of the (A, C; G)-path fulfil Z*(e) = 3.

Case 2/h. C is an inner vertex of a (B, A; G)-path and D is an inner vertex
of the (A, B\ G)-path. Then Z*(e) = 3 for the edges of the (D, B; G)-path.

Case 2/i. C and D are inner vertices of the two (B, A; G)-paths (resp.). Then
Z*(e)=3 for the edges of the (A, B; G)-path.

It can be checked that every possible subcase of Case 2 has been exhausted.

C a s e 3. (c) or (d) holds for G. It follows from Constructions I, II that the number
of the (A, C; G)-paths and the number of the (D, A; G)-paths is 1 or 2. Denote by c
an (A, C; G)-path, by d a {D, A; G)-path and by c* the new (C, D)-arc (in G*).

Case 3/a. c and d have no vertex in common6 but A. Let ex, e2 be the edges of c, d
(resp.) incident to A. One of e1, e2 exists.

Case 3/a/a. One of Z(et), Z(e2) equals 2. Then the paths c*, c and d form
together a cycle in G*, therefore Z*(e1) or Z*(e2) is S3 .

Case 3/a/jS. Z(e1)=Z(e2) = l. This is possible only if G is Il-constructible with
an even k, ei is the first edge of the (A, Bk)-arc and e2 is the last edge of the (B1, A)
-arc (we have here used the notation of Construction Il/a, cf. Proposition 1). It is
easy to see that either Z* (e)>2 is satisfiable or G* is I-constructible (with n(G*) =
=t t (G)+2) .

Case 3/a/y. Z(e,) = l and e;i_; does not exist (where i is 1 or 2). Then we can
ascertain that either Z * (e) > 2 for some edge or G* is Il-constructible (with TZ(G*) =

=n(G) + l). \

Case 3/b. c and d have at least two vertices in common. Then A^C, A^D and
either C or D is a common vertex of c and d. Let a be a cycle (of G *) got by taking
the union of c* and the part a' of c or d from D to C. a does not contain A. Let T
be the set of cycles b of G such that a and b have a vertex in common. It is clear that
1 ^ | r | ^ 3 . Let us recall the survey of cycles of G given in the proof of Proposition 3.

Case 3/b/a. G is I-constructible. G has 4). cycles, hence some cycle b'of G
is disjoint to a, thus (3') is true.

Case 3/b//?. G is Il-constructible with n(G)^3. The number of cycles of G is
k + l (s 4) , this implies again (3')-

Case 3/b/Y. G is II/a-constructible with TT(G)=2 and C=B2, D=B1. (3) is
obviously fulfilled.

Case 3/b/(5. G is II/a-constructible with n(G) = 2 and a' is a proper subpath
of either the (Blt A)-arc or the (Bl, Z?2)-arc or the (A, B2)-arc. Then (3') holds.

6 It may happen that either C or D equals A (but not both).

12 A. Ádám

Case 3/b/e. G is II/a-constructible with n(G)=2 and either C is an inner vertex
of the (B2, A)-arc or D is an inner vertex of the (A, Bx)-arc. Then Z * (e) > 2 holds
clearly for the first or last edge of a'.

Case 4. G satisfies (e). Since Z(e)—2 is universally valid in a III-constructible
graph G and G has a path from D to C (however C and D may be chosen) it is evident
that Z*(e)>2 is satisfiable in G*.

Appendix II.

Now we are going to prove Proposition 6.
Similarly to Appendix I (Case 3), let c denote an (At, C; G,)-path and let d

denote a (D, A2\ (?2)-path. Let ex be the first edge of c and e2 be the last edge of d.
We use the notations Z l 5 Z2 , Z* according to the function Z is understood in Glr
G2, G* (resp.). 7z(G) has the same meaning as in Appendix I.

Case 1. Either Z1(e1) = 2 or Z2(e2) = 2. Then7 the conclusion (2) is evidently
satisfied.

In the subsequent cases we shall always assume that Zx(ex) = Z2(e2) = 1. (Therefore
Gx may satisfy (b) only if the degree of A1 is (1, 2) in Gx, G2 may fulfil (b) only if the
degree of A2 is (2, 1) in G2.)

C ase 2. Gx and G2 fulfil (a). It is obvious that G * is II-constructible (and n (G *) =
= 2).

Case 3. Gx is a cycle and G2 satisfies (b). Then either G* is II-constructible
(with n(G *) = 3) or Z 1 (e 1)=3 (accordingly to that Z2(Z)) is 1 or 2).

Case 4. G2 satisfies (b) and G1 is a cycle. The inference is analogous to Case 3
(a distinction is made dependingly on the value of Z1(C)).

Case 5. Gy is a cycle and G2 satisfies (d). This case can be treated by the method
of Case 3 (with some improvements); G* may be II-constructible with n(G*)=
= 7R(G2) + 2.

Case 6. Gx satisfies (d) and G2 is a cycle. The treatment of this case is an im-
proved version of Case 4 (likely to the interrelation of Cases 5 and 3).

Case 7. (b) holds for G1 and (d) holds for G2. Either G* is II-constructible
(with iz(G*) = n(G2) + 3); or one of Z*(ex), Z*(e2) equals 3.

Case 8. (d) is true for Gx and (b) is true for G2. The treatment is symmetrical to
Case 7.

Case 9. Gx and G2 satisfy (d). If Z1(C)=Z2(D) = 1, then G* is II-constructible
(with n(G*)=n(G1) + n(G2)+2); otherwise either Z*(ex) or Z*(e2) equals 3.

7 We can perceive that Case 1 comprises a large collection of possible situations; among
others, the possibilities when (c) or (e) is valid for G! or G2 are entirely included.

On graphs satisfying some conditions for cycles, I. 13-

О графах удовлетворяющих некоторым условиям для циклов, I.

Цель настоящей работы — дать структурное описание конечных ориентированных гра-
д о в удовлетворяющих условиям:

для всякого ребра е, число циклов содержающих е равняется 1 или 2,
существует вершина содержаемая в каждом цикле графа.
Ясно, что граф выполняющий эти требования может иметь не больше чем одну точку

•сочленения.
Опираемся на результаты предыдущей стати [1]. В §§ 2—3 даём некоторые конструкции

и доказываем, что они представляют все графы обладающие вышеупомянутыми свойствами
и не имеющими точку сочленения. В § 4 описание распространяется на графы в которых
•бывает точка сочленения.

MATHEMATICS DEPARTMENT OF THE
ARTS AND SCIENCE UNIVERSITY
RANGOON, BURMA
(IN THE TIME OF PREPARING THIS PAPER)

References

11] ÁDÁM, A., On some generalizations of cyclic networks, Acta Cybernet, v. 1, 1971, pp. 105—119.
12] HARARY, F., Graph theory. Addison—Wesley, Reading, 1969.
12a] Харари, Ф., Теория графов, Мир, Москва, 1973.
13] ORE, О., Theory of graphs, Amer. Math. Soc. Coll. Publ. v. 38, Providence, 1962.

(Received Feb. 17, 1975)

MATHEMATICAL INSTITUTE OF THE
HUNGARIAN ACADEMY OF SCIENCES
H-1053 BUDAPEST, HUNGARY
REÁLTANODA U. 13—15. J
PERMANENTLY)

Zur Theorie kommutativer Automaten
V o n J . DUSKE

1. Ein Automat ist ein Tripel sd = (A, F, ¡5). Hierbei ist A eine endliche Menge,,
die Zustandsmenge von st, F ein Monoid mit Einselement e und ő:AXF—A eine
Abbildung, für die gilt:

Va£A, \/fi,f2(:F: ö(a, f1f2)=d(ö(a,f1),f2)
und

Va£A : ő(a, é) = a

Für ö(a,f) schreibt man kurz af. st = (A, F, S) heißt kommutatív in a£A,,
wenn ö/i fi—ofz /1 für alle f u f2£F gilt, st heißt kommutatív, wenn st in allen
af_A kommutatív ist.

st heißt zyklisch, wenn es ein a£A mit A — {af\f^F) gibt. Ein solches adA
heißt ein erzeugendes Element von st.

Eine Äquivalenzrelation o auf A heißt Relation mit S.E. (Substitutionseigen-
schaft), falls gilt:

Vßi, a2^A\{ax, a2)£Q^>-\/ ftF-.iciif, a2f)£g

Die zugehörende Partition Ag= {Ae(a)\a£A} von A heißt dann Partition j n i t
S.E. bzgl. s£. Hierbei ist Ae{a) = {a'\{a, O.')£Q}. Die Menge aller Relationen mit
S.E. bzgl. st bildet einen Verband R(st) mit den in üblicher Weise für Relationen
erklärten Verbandsoperationen A , v .

Eine Relation q mit S.E. bzgl. s í heißt kommutatív, wenn Ma^A, V/i, f2£F~
gilt: (a/1/2, af2 f^dg. Die Menge aller Relationen auf A mit S.E. bzgl. st, die kom-
mutatív sind, bildet einen Teilverband Rk(st) von R(st). Qk sei das kleinste Element,
von Rk(st). Mit Ak={A0k(a)\a£A} werde die zugehörende Partition bezeichnet.
Der Quotientenautomat stek=stk=(Ak, F, ök) mit ök(Aßk(a), f)=Aeit(S(a,f)) ist.
kommutativ und heißt maximaler kommutativer Quotient von st.

Ist speziell F=X* das freie, von der endlichen Menge X erzeugte Monoid, dann,
wird st angegeben durch st—(A,X, ö), wobei <5 eine Funktion von AXXnach A ist.
Durch 5(a, e)=a und ö(a, wx)=ö(ő(a, w), x) für alle a£A, x£X und w€X* wird.
S zu einer Funktion von A XX* nach A erweitert. st=(A, X, 5) ist genau dann
kommutativ, wenn ax1x2=ax2x1 für alle a£A und alle x1, x2£X gilt. stk läßt sich
in diesem Fall folgendermaßen berechnen:

46 J. Duske

Man bilde für alle Paare (x1; x2)€XXX, x1^x2, und für alle adA die Paare
{ax1x2, ax2xl), und bestimme die kleinste Relation g mit S.E. bzgl. st, die alle diese
Paare enthält. Es ist dann Q = Qk.

1.1. Beispiel. st=(A, X, ö) sei gegeben durch (vgl. [8]):

1 2 3 4 5 6

y
2 3
6 4

A={\, 2, 3, 4, 5, 6}
X={x, y}

ist nicht- kommutativ. Es gilt z.B. \xy = 5 und 1 yx=6. Mit a = { l , 2, 3} und ß=
= {4, 5, 6} wird stk durch folgende Tafel gegeben:

oc ß
X ß a
y a ß

Mit t]k werde die Projektion von st auf stk bezeichnet. Für die im folgenden
-verwendeten Begriffe Homomorphismus, Isomorphismus, Automorphismus und
Automorphismengruppe vgl. man [4]. stk besitzt folgende universelle Eigenschaft:

1.2. Satz. â8=(B, F, (5X) sei ein kommutativer Automat und <p:st -+3 ein Homo-
morphismus von si nach &H. Dann gibt es genau einen Homomorphismus ¿p:stk—ÛS,
so daß folgendes Diagramm kommutativ wird :

Äi

%
v

A

- »
JT

1.3. Lemma. st=(A, F, ö) sei ein Automat, G(st) die Automorphismengruppe
von sä und a£(j(,$/). Dann gilt:

Vßi, a2£A: (a1; a2)£ßk => (a(tfi), a(a2))£gk

Beweis. Es gibt genau ein ä£G(stk), so daß folgendes Diagramm kommutativ
wird:

"l* "U (I)

Aus (a l9 a2)egk folgt dann t]k(a(aL)) = >]k(a(a2)), also (a(a1), o c (a ^ Q k .

1.4. Lemma, st sei ein Automat. Die Abbildung, die jedem tx£G(st) das ein-
deutig bestimmte öi£G(stk) zuordnet, für das (I) kommutativ wird, ist ein Homo-
morphismus von G(sä) nach G(s/k).

Zur Theorie kommutativer Automaten 17

Dieser Homomorphismus wird im folgenden mit n bezeichnet, sä heißt streng
zusammenhängend, wenn jedes a £A ein erzeugendes Element von sä ist. Für den im
folgenden verwendeten Begriff der Halbgruppe eines Automaten vgl. man [4], S. 239.

1.5. Satz. sä—(A, F, ö) sei streng zusammenhängend. H sei der Kern von n,
und K die Kommutatorgruppe von G(sä). Dann gilt K<iH, d.h., AT ist Normalteiler
von H.

Beweis. säk ist streng zusammenhängend und kommutativ. Die Halbgruppe
S(jäk) von säk (vgl. [4]) ist kommutativ und isomorph zu G(säk) (vgl. [3]). Also ist
G(jä)/H kommutativ, und daher K<i H.

Ist a£H und a£A, dann gilt:

1k (< * (a)) = * («) 1k (ö) = 1k (a) , also (a (a) , ä) £ Q k .

Auf Grund dieser Bemerkung ergibt sich:

1.6. Korollar. sä=(A, F,8) sei streng zusammenhängend. Für alle a, ß£G(sä)
und alle a£A gilt:

(zß(a), ßx(a))$Qk

Beweis. Der Kommutator a~1ß~1aß liegt in H. Daher gilt (a'1 ß~1aß(a), a)£gk
für alle a£A.

2. In den folgenden Abschnitten wird F—X* angenommen, sä=(A, X, <5) sei
zyklisch und a£A ein erzeugendes Element. Man definiere folgende Rechtskongruenz
auf F: '

V/uA^F: CA, f^Qa ~ ö/i = af2

Ba sei die zu QA gehörende Menge von Blöcken von F. ^a=(Ba, X, 5a) mit Öa(Ba(f),
/ i)= .B a (# i) ist isomorph zu sä. Ein Isomorphismus wird gegeben durch y_(aL) =
- B a (f) mit ax=af. (^a)k ist isomorph zu säk.

Zur Beschreibung von definiere man zunächst folgende Kongruenz x
auf F:

V/, h£F: (/ , /*)£x •«=>/ = xx ...x„ und

h = xtl ...xin, wobei 4 , ... i'„

eine Permutation von 1, ..., n ist.

Ein solches h soll Kommutant von / genannt werden, und mit k(f) wird die
Menge aller Kommutanten von / bezeichnet.

Sei nun T eine beliebige Rechtskongruenz mit endlichem Index auf F und Bz
die ziugehörende Partition von F. ßr

T=(BT, F, 8t) wird in natürlicher Weise definiert.
Die obere Grenze der Rechtskongruenzen x und T, XVT, bestimmt eine Relation
tj auf Bz mit S.E. bzgl. durch

für alle A,MF.

Der Quotientenautomat von nach t] ist isomorph zu
t] ist kommutativ bzgl. 2FZ. Seien dazu h1, h2£F und Bn(Bz(f)) beliebig ausge-

wählt. Es gilt dann Bn(Bz(fj)h1h2=Bn(Bz(f)h1h2)=Bq(Bz(f/i1h2)). Weiter ist
(fhh2, /Ä2//i)€T v x also gilt (Bz(fhLh2), BT(fh2h1))f^t].

2 Acta Cybernetica III/l

46
J. Duske

Bezeichnet man wieder mit gk die kleinste kommutative Relation auf Bz mit
S.E. bzgl. dann ist also Qk = ri- Es gilt auch die umgekehrte Inklusion:

(BX(A), BT(f2))^ o (A, f2)£T v *

Bho,^, ...,hn£F mit f1 = h0,h„=f2 und

(hi_ 1 :hi)£x oder T für I'6[1:H]

Gilt (h,-!, hdtx, dann ist Bx(h$)={Bx(e)A,_lf Bt(e)h,)eQk. Gil
dann ist Bx(hi^1) = Bx(hi). Daraus folgt (5 t(/i)> Bx(f2))£gk, und damit

ek=1> also ist isomorph zu i^v*-
In &r

x=(Bx, F, öz) werde Bx(e) als Anfangszustand und weiter eine Menge SQBt
als Menge von Endzuständen ausgezeichnet. Der so bestimmte erkennende Automat
erkennt die Wortmenge

E = { / | 2 > t (/) € S } .

In 3*zyx=(Bzyx, F, özvx) zeichne man Bx\/X(e) als Anfangszustand und Sk=
= {Bxvx(f)\f£E} als Menge von Endzuständen aus. Dieser Automat erkennt dann
die Wortmenge

E' = {h\BzWx(h)£Sk} = {hWiE mit (h, f)£x v x).

Ek={h\3f£E und hek(f)} sei die kommutative Hülle von E. Es ist E<gEk(=E',
und es gilt:

= U Bzyx(f) = U B x (f)
f t E f i E

~ 3 (/ l 5 / 2) 6 t mit MEk und f2£Ek

Vh£Fgilt:'aus mit f ^ k (f) für ein

/ 6 £ f o l g t : B / € £ mit h£k(f)

Man gehe nun von einer beliebigen Wortmenge EQX* aus. E ist genau dann
regulär, wenn E Vereinigung von Äquivalenzklassen einer Rechtskongruenz T mit
endlichem Index auf F=X* ist. Für t kann man dann z.B. dei Myhill-Kongruenz
oder die Nerode-Rechtskongruenz wählen (vgl. [7]). E' ist dann sicher regulär, und
man erhält z.B.:

2.1. Satz. EQX* = F sei regulär. Falls für alle h aus F und für alle f£Ek gilt:

{Vw£F:hw£Eofw£E}=> h£Ek,
dann ist Ek regulär.

EQX* = F sei eine reguläre Menge, und j ? / (E) die Menge aller endlichen er-
kennenden Automaten, die E erkennen, und deren Anfangszustand ein erzeugendes
Element ist. k(jtf(E)) sei die Menge aller maximalen kommutativen Quotienten von
Automaten aus st (E). Es gilt:

2.2. Satz. E sei regulär. Ek ist genau dann regulär, wenn Ek von einem Automa-
ten aus k{st (E)) erkannt wird.

Zur Theorie kommutativer Automaten 19

Beweis. Ek sei regulär, a sei die Myhill-Kongruenz von E und y die Myhill-
Kongruenz von Ek. x=a A y besitzt einen endlichen Index. E ist Vereinigung von
Äquivalenzklassen bzgl. r. Es ist also 3?z=(Bx, F, 5z)£st (E). (Als Anfangszustand
ist wieder Bx(e) und als Menge von Endzuständen ist {Bz(f)\f£ E) gewählt). (^z)k =
— (Bzyx, F, ¿ t v J ist aus k (st (£)) und erkennt

E'= U BtWx(f) i E« = U B x (f) .
f í E f£E

Es ist y = yvx, also x^y. Da auch zSy gilt, folgt r v z S y , und damit

E'= U B z y x (f) g Ek, also E' = Ek. /iE
Es gilt weiter:

2.3. Satz. EQX* = F sei regulär. Ek ist genau dann regulär, wenn es eine
Rechtskongruenz x mit endlichen Index auf i 7 gibt, für die gilt:

(a) E ist Vereinigung von Äquivalenzklassen bzgl. %
(b) \fheF, Vf£Ek gilt: (/>,/)€T => h£Ek

Beweis. Ek sei regulär. Wähle dann T wie im vorangehenden Beweis. Es möge
umgekehrt ein x existieren, das die Bedingungen des Satzes erfüllt. Dann wird Ek

von (Bz, F, <5T) erkannt.

3..G(st) sei die-Automorphismengruppe von st — (A, F, ö). Für Untergruppen
3 von G (st) ist dann ein Quotientenautomat st/J von st definiert. Die Zustände
von sä¡J sind gerade die Transitivitätsklassen von A bzgl. J (vgl. [4]). st¡G(st) ist
genau dann kommutatív, wenn jeder Block bzgl. gk in einer Transitivitätsklasse'
bzgl. G(st) enthalten ist. Hierbei ist gk wieder die kleinste kommutative Relation
auf A mit S.E. bzgl. st.

st sei zyklisch und a£A ein erzeugendes Element von st. Ist (a1; a2)Zgk, dann
gibt es Zustände z 1 = a 1 , z 2 , ..., z¡-a2 und glt g2, ...,g,eF mit z¡=agi für i '€[l : /]
und gi+1^k(gi) für i£ [l : /—1]. Es ist also st/G(st) genau dann kommutatív, wenn
es für alle f£F und g £ k (f) ein ct£G(si) mit « (a f) = x(a)f=ag gibt. Ist st transitiv
(vgl. [4]), dann ist diese Bedingung sicher erfüllt. Ist B(ä) die Transitivitätsklasse
bzgl. G(st), in der a liegt, dann kann man diese Bedingung auch folgendermaßen
formulieren:

Für a l le /€ .Fund g £ k (f) gibt es ein a^Bfa) mit af=a1g.
H sei wie in 1. der Kern des Homomorphismus n: G(st) — G(stk). Die Tran-

sitivitätsklassen von A bzgl. H sind ganz in den Blöcken bzgl. gk enthalten. Es gilt:

3.1. Satz, st sei streng zusammenhängend und st/G(st) kommutatív. Dann
ist stk = st¡H.

Beweis. Die Blöcke bzgl. gk sind in diesem Fall gerade die Transitivitätsklassen
von A bzgl. H. Seien dazu (ax, a2)£gk. Es gibt ein a^G(st) mit a(a1) = a2. Es genügt
jetzt zu zeigen, daß a aus Hist. Da st streng zusammenhängend ist, ist axein erzeugen-
des Element von st. B=r¡k(a1) ist dann ein erzeugendes Element von stk. Für ä =
= 7r(a)gilt:_

a (B)—a (r]k (Ű,)) = r¡k (a (ŰJ)) = r¡k (a2)=B, und daher ist a die identische Abbil-
dung von stk.

2*

46
J. Duske

H besitzt folgende ausgezeichnete Stellung unter allen Untergruppen J von
G(st), für die stjJ kommutatív ist. Es gilt (vgl. [1]):

3.2. Satz, st sei streng zusammenhängend und transitiv. J sei eine Untergruppe
von G(st), und stjJ sei kommutatív. Dann ist H eine Untergruppe von J.

4. Ist S ein Monoid und a eine Kongruenz auf S, dann heißt er genau dann
kommutatív, wenn S/cr ein kommutatives Monoid ist, d.h., genau dann, wenn
(íxjg, für alle S2£S gilt. Der Durchschnitt g aller kommutativen Kon-
gruenzen auf S ist kommutatív. Sk=S/g heißt maximales kommutatives Bild von S.
Mit nk werde die Projektion von S auf Sk bezeichnet. Sk besitzt folgende universelle
Eigenschaft (vgl. [2]):

Ist (p: S-+S ein Homomorphismus auf ein kommutatives Monoid S, dann gibt
es genau einen Homomorphismus <p: Sk — S, so daß folgendes Diagramm kommu-
tatív wird:

S H » S

Tít Z 1

;; y A

Sk

Mit und S(stk) bezeichne man die Halbgruppen von sä und sék. S(stfk)
ist homomorphes Bild von S(st). Mit Sk{srf) bezeichne man das maximale homo-
morphe kommutative Bild von S(sá). S (stk) ist homomorphes Bild von Sk(sá),
im allgemeinen sind diese Halbgruppen jedoch nicht isomorph, wie das folgende
Beispiel zeigt.

4.1. Beispiel, sé sei gegeben durch:

st a b
0 a a
1 b b

st ist nicht kommutativ, und stk besitzt genau einen Zustand. Die Halbgruppe S{st)
von st ergibt sich zu:

S(st) e 0 1
e e Ö T
0 Ö 0 1
1 1 0 1

Die Teilmengen D= {0, 1} und E= {e} bestimmen eine Kongruenz g auf S(st).
S(st)/g ist kommutativ und gleich Sk (st).

Sk(st) E D
E E D
D D D

In diesem Fall ist also Sk(st) nicht isomorph zu S(stk).

Zur Theorie kommutativer Automaten 21

sä heißt transitiv, wenn es f ü r j e zwei Zustände ax, a2£ A ein ol^G (sä) mit a(a1) =
= a2 gibt. Ist sä transitiv, dann ist auch säk transitiv. Seien dazu ^ (a j) und t]k(a2)
zwei Zustände von säk und a(öj) = a2 für ein a£G(sä) . Dann gilt:

ä (rik (%)) = hk(a (öi)) = 1k (<h) mit ä=n (a) € G(säk)

4.2. Satz. Ist sä zyklisch und transitiv, dann ist Sk(sä) isomorph zu S(säk).

Beweis. a£A sei ein erzeugendes Element von sä und x = Qa.sä ist isomorph zu
1FZ, es genügt daher zu zeigen, daß Sk(J^) isomorph zu S(J ist. und
sind transitiv und damit zustandsunabhängig (vgl. [4]). Also ist S (^ = Fjx und
^(•^Vx) — Fjz v x. Die kleinste kommutative Kongruenz auf F/x werde mit Q bezeich-
net. Dann ist Sk(^z) — (F/x)jQ. Mann zeigt leicht (vgl. den Beginn von 2.), daß (F/x) /g
isomorph zu F/x v x ist, womit der Satz bewiesen ist.

4.3. Beispiel, sé aus 1.1. erfüllt die Voraussetzungen des vorangehenden Satzes.
Für S(sä) ergibt sich die symmetrische Gruppe ®3 (vgl. [8]).

S(sä) e y X yy yx y2x

e e y X yy yx y2x

y y yy yx e y2x X
X X e yx yy y -

yy yy e y~x y X yx
yx y* X y y2x e yy
y2x y2x yx yy X y e

Die Kommutatorgruppe der <23 ist {e, y, yy}. Die Faktorgruppe nach der Kom-
mutatorgruppe wird dann gegeben durch:

Sk(sä)
E
G

E G
E G
G E

mit E= {e, y, yy] und G= {x, yx, }'2x}. Für die Halbgruppe S(säk) ergibt sich

S(säk) "
e
x

x
x
e

S(säk) ist also isomorph zu Sk(sä).
5. Für die im folgenden verwendeten Begriffe (reduzierter) Mealyautomat und

Automatenabbildung vgl. man [4]. Ji = (A,X, Y, 3, /.) sei ein Mealyautomat und
sä = (A,X,i5) der zugehörende (Zustands-) Automat. (A braucht nicht notwendig
endlich zu sein. X und Y sollen jedoch immer endliche Alphabete sein.) X wird auf
AXX* durch).(a, wx) = /.(d(a, w), x) für alle a£A, x£X und wfX* erweitert. Hierbei
ist X*=X*-{e).

46
J. Duske

5.1. Definition. Jí = {A, X, Y, <5, A) heißt fast-kommutativ, wenn /.(a, x1x2f) =
= A (a, x2xl /) für alle xí,x2dX,fdX* und ad A gilt.

Wenn Ji fast kommutatív ist, dann gilt natürlich auch A (a, pxl x2 /) =
=A (a, px2 /) für alle pdX* und für alle a, xx, x2 u n d / wie oben. Der durch folgende
Tafel gegebene Mealyautomat ist z.B. fast-kommutativ:

Ji a b
0 (a,x) (a, x)
1 0b,y) (b,-y)

5.2. Satz. Ji = (A, X, Y, <5, ;.) sei fast-kommutativ, und J/r=(Ar, X, Y,Sr,?.r)
sei der zu Ji gehörende reduzierte Mealyautomat. Dann ist str = (Ar, X, Sr) kommu-
tatív.

Beweis, h sei die Projektion von Ji auf Jlr. Falls nicht kommutatív ist,
dann gilt:

3 z 6 Ar und 3 xx, x2 6 X mit <5, (z, x2) ^ 5r (z, x2 xx).

Man wähle ein z£A mit h(z)=z aus. Es sei -

Zj = S(z,x1x2) und • h(z1) = zx = 5r(z, XjX,)
und

z2 = S(z, x2xj) und /j(z2) = z2 = ör(z, x2xx)

Da Jir reduziert und zxjíz2 ist, gibt es ein fdX* mit Ar(z t, f)^lr{z2, /) , woraus
sich A (z1, f)^/.(z2, f) oder A(z, x\x2 f) ^ / . (z , x2xi f) ergibt, im Widerspruch zur
Voraussetzung über Ji.

Mit Hilfe dieses Satzes ergibt sich sofort:

5.3. Korollar. Ji = (A, X, Y, ő, A) sei fast-kommutativ. Dann gilt:

Vp,q£X*, \/r£X*, VatA:?.(a,pqr) = k(a,qpr)

Ist ein Mealyautomat Ji = (A, X, Y, ö, A) gegeben, dann definiere man für jeden
Zustand a~A eine Abbildung),a: X"^ Y* durch

Xa(e) = e
und

MudX*, yxeX:ÄJux) = ;.a(u)/.(ö(a, u),x).

A„ ist eine Automatenabbildung (vgl. [4]), und jede Automatenabbildung a : X* — Y*
kann als Aa für einen geeigneten Mealyautomaten Ji und ein geeignetes ad A dar-
gestellt werden. Man sagt dann, .daß a£A die Abbildung a induziert. Für w£X*
sei im folgenden w der letzte Buchstabe von w (e = e).

Ist a : X*— Y* eine Automatenabbildung, dann kann man für jedes pdX* eine
Automatenabbildung ap: X*-rY* durch a(pu) = a(p)ap(u) für alle udX* definieren.
Setzt man Ax= {xp\p£X*}, ö(ctp, x)=apx und A(ap, x) = ct(px) für alle ap£Aa und
x£X, dann ist J?X=(AX, X, Y, 3, A) ein reduzierter Mealyautomat, und ae=ad/1a
induziert a.

5.4. Definition. Eine Automatenabbildung a: X*~+ Y* heißt fast-kommutativ,
wenn &{px1x2f) = ai(px2xif) für alle x2dX,fdX* und pdX* gilt.

Zur Theorie kommutativer Automaten 23

Ist a fast-kommutativ, dann ist der oben definierte Mealyautomat Jl^ fast-
kommutativ, denn es gilt:

X(ctp, x1x2f) =).(5{ap, x.xs),/) = X(<x„XlXi, f) =

= a(px1x2f) = a(px2xif) =).{ap, x 2 x j)

j/x—idx, X, ő) ist also kommutatív.
Zustände von fast-kommutativen Mealyautomaten induzieren fast-kommutative

Automatenabbildungen. Es gilt also:
5.5. Satz. Die Automatenabbildung a: X* — Y* ist genau dann fast-kommutativ,

wenn sie durch einen Zustand eines fast-kommutativen Mealyautomaten J (=
=(A, X, Y, 5, "/.) induziert wird, für den s/=(A, X, <5) kommutatív ist.

Summary

To every finite automaton si—(A, F, S) we shall define a minimal commutative congruence
Qk and a maximal commutative quotient-automaton s/k—(Ak, F, Sk). After investigating some
properties of Qk and Ak we shall give conditions for the regularity of the commutative closure of
a regular event. Connections between S(si) and S{stk), the semigroups of stand stk, will be studied.
Finally some remarks are made concerning quasi-commutativity of Mealy-automata and automaton-
mappings.

INSTITUT FÜR INFORMATIK
DER TU HANNOVER
D-3 HANNOVER
WELFENGARTEN 1

Literatur

[1] BAYER, R., Automorphism groups and quotients of strongly connected automata and monadic
algebras, IEEE Conf. Ree. on Switching and Automata Theory, 1966, pp. 282—297.

[2] CLIFFORD, A. H. & G. B. PRESTON, The algebraic theory of semigroups, Amer. Math. Soc.,
Providence, R. I., v. 1, 1961.

[3] FLECK, A. C., Isomorphism groups of automata, J. Assoc. Comput. Mach., v. 9, 1962, pp. 469—
476 .

[4] GÉCSEG, F. & I. PEAK, Algebraic theory of automata, Akadémiai Kiadó, Budapest, 1972.
[5] HARTMANIS, J. & R. E. STEARNS, Algebraic structure theory of sequential machines, Englewood

Cliffs, N. J., Prentice Hall, 1966.
[6] OEHMKE, R. H., On the structure of an automaton and its input semigroup, J. Assoc. Comput.

Mach., v. 10, 1963, pp. 521—525.
[7] RABIN, M. O. & D. SCOTT, Finite automata and their decision problems, IBM J. Res. Develop.,

v. 3, 1959, pp. 114—125.
[8] TRAUTH, CH. A., Group-type automata, J. Assoc. Comput. Mach., v. 13, 1966, pp. 170—175.'

(Eingegangen am 20. Jan. 1976)

A note on optimal performance of page storage
B y M . ARATO

Introduction

In my earlier papers (see Arató [1], [2]) I have shown that on the basis of the-
Bayesian approach it is possible to prove that a simple algorithm exists which yields-
optimal page fault probability rate when the sequence of page references, the so
called reference string, forms an independent random sequence with unknown proba-
bilities. With the help of the Bellman equations it was proved that the replacement
of the pages depends only on their posterior probabilities. Using this algorithm the
expected number of page faults would be minimal.

Benczúr, Krámli and Pergel (see their paper [4] in this volume) pointed out to-
me that the posterior probabilities depend only on the frequencies of the page ref-
erences. By the help of their ingenious remark we can prove that under very weak
conditions the least frequently used (LFU) algorithm is the optimal one when the
reference string is an independent sequence of random variables.

In this paper in a special case I give an elementary proof of the statement of
Benczúr, Krámli and Pergel, on the basis of my previous work. The proof will show
that the LFU algorithm, which is used in most cases, is the best one. The algorithm,
means that page should be put on the second level which has the minimal frequency.

The mathematical model I shall use to describe and evaluate the replacement
problem of pages is a statistical one on the basis of Bayesian approach. This de-
scription seems adequate as it may be used in computer praxis, but we need a proof
on the optimality of LFU algorithm without the Bayesian assumption. That this
is possible I recall the well known example in the statistical literature, the Wald
theorem in the sequential analysis, where the optimality of the likelihood ratio test,
can be easily proved under the Bayesian conditions (see e.g. Shiryaev [11], De Groot.
[6]). We have to remark that the "two-armed bandit problem" is meaningless without,
the Bayesian assumption (see Feldman [8]), but in our case the reference string is
independent of the decisions and so the non-Bayesian approach is also allowed and
has meaning.

The replacement problems arise in computer system management whenewer
the executable memory space available is insufficient to contain all date and programs.

.26 M. Arató

that may be accessed during the execution. An example of this kind of problem is
page replacement in virtual memory computers.

In my earlier papers I discussed the problem using the terminology of storage
.allocation problems. It should be stressed that I consider the problem as being of
broader interest (see Easton [7], Casey and Osman [5]). We remember that in virtual
memory computer systems a program's address space is divided into equal size
blocks called pages. In this paper I consider two-level hierarchies. The first level
•denotes the faster device, and the backing store represents the larger but slower
memory. The first level memory space is divided into page frames each of which
may contain a page of some programs. At a given instant of time, not all of a pro-
gram's pages need reside in the first level memory so that when the program references
a page not in the first level, a page fault occurs. Supposing that a program's set
of pages is (Aj , A2, ..., A„) and that exactly k of them can be kept in the first level
then, if each time a page fault occurs that page is brought into main memory
which was demanded and one must be removed from the main memory (demand
paging). The purpose of the replacement algorithm is to minimize the average number
of page faults. We take as a cost criterion the average number of page faults generated
during execution.

In this paper we shall discuss a replacement algorithm in which the main memory
is considered full of it contains k— 1 pages and a new page from the second level is
•delivered to the /c-th place and after delivering the contents of it a page must be
•removed to the second level.

Any theoretical evaluation of a page replacement algorithm requires a mathe-
matical model of the reference string. Here I shall use for the sequence of requests
,r\1, f/2, ... the independent identically distributed model

P(m = 0 = Pt,
•where the probability distribution { p j is unknown. As a first step solving the problem
I assume that pv ^p2 5s... ^pn are known values but the relation is not known between
these probabilities and the pages Alt ..., An. After solving this problem we shall see
lha t the solution, in fact, does not depend on the exact values of the pt -s.

In all the earlier papers (see Belady [3], Gelenbe [9], Ingargiola and Korsh [10])
the authors assumed that the probability distribution of the reference string was
known and given. The proposed algorithms are depending on the distribution and
they are not the exact solutions of the practical problems as the distribution has to be
•estimated.

Here I do not give propositions for the case when the reference string is a
Markov chain with unknown probabilities.

1. A theorem for the case of two pages

In the most elementary case in a program given are two pages Ax, A2 with
request probabilities p±>-p2 (= 1 ~Pi), but it is not known which probability is
related with the first page. The computer is a multiprogrammed one and in the first
level memory one page may be kept constantly. In case of a page fault the page of the
second level is taken to the main memory and the replacement of one page to the

27 M. Arató: A note on optimal performance of page storage

second level occurs after delivering the contents of the demanded page. A sequence
•of N references is to be made and at each stage either Ax or A2 is on the second level,
the loss being 1 if a page fault occurs, 0 otherwise. Let £ denote the a priori probabil-
ity that A-l has the less request probability, p2.

Let r i , (t=1,2 , ...) denote the reference string, r j ,=i (/=1, 2) if the i-th page (AJ
was referenced. Let Xt (7=1,2, ...) denote the random variable which gives that at
time moment t which level was referenced

{1 page on the first level was referenced,

0 page on the second level was referenced.

Let d, (t=0, 1, 2, ...) denote the decision which page has to be removed to level 2

if page A1 goes to level 2,

if page A 2 goes to level 2.
d-

It is obvious that

Z M t - !) = i 1

1 o

if
if n, = dt.

We introduce the non observable random variable w, which gives the relation between
the request probabilities (p1,p2) and pages Alt A2

pages (A1} A2) having reference probabilities (p2,p,),
w — -

- i ; 2 pages (Al9 A2) having reference probabilities (pi, p2).

The distribution of w is
P (h > = 1) = £ , P(w = 2) = 1 - 5 .

We seek among all Markov decision rules 8=(d0,d1, ..., £/jV-i) (see Shiryaev [11]),
where d, depends only on rjt, . . . , t i l t such a <5* = (<5o, ..., for which

m a x £ (A ' W + .. . + = E (X f ^ + ... (1)
«5

Simple calculations give that

E(X^)=p2i+Pl(1 - 0 ,
and so

E(Xn - E(X[*) = (p2 - P l) (1 - 2£). (2)

From (2) we get that the difference is greater than 0 if £>1/2 (it does not depend on
Pi), this means d0= 1 if £>1/2 and d0=2 if £<1/2. Now we prove the following
lemma.

Lemma 1. Let £ = 1/2 and £(i) denote the a^posteriori probabilities, then

£ (0 = P (w = l | , 1 , . . . , ^ = ^ f ^ p > (3)

where k denotes the number of occurrences of page A2 (i.e. tjs = 2, 1 ^s^t).

28 M. Arató

Proof. On the basis of Bayes' theorem we get

P(r,1\w=l)P(w= 1)
c(l) = P(n,\w = 1)P(w = l) + P(ri1\w = 2)P(w = 2)

PiQ
PiZ+PzV - ?)

P2Z

if r\x = 2,

if ^ = 1,

and from here in case c = l/2

P2Z+PAI-Ö

Pi if m = 2
p2 if ni = 1-

In the same way we get (¿ = 1/2)

if //! = 2, rj2 = 2, Pi
PÍ+PÍ

1/2
Pi

PÍ+PÍ

if /?! = 2, rj2 = 1 or Vi = 1 , t]2 = 2,

if fh = 1 ,)?2 = 1.

By induction the lemma can be easily proved. By the same method as in (2) we can
prove that after the first observation r]1 the best decision

¿1
1 if £ (1) = M i . e . m = 2),

2 if ¿ (l) = />2(i .e . í í l= 1).

We prove the following
Theorem. Let px> 1/2, £ = 1/2 and N fixed. Let the reference string rjt be an

independent, identically distributed sequence of random variables with two states.
Then the optimal sequential procedure 8*, which minimizes the expected number
of page faults (see (1)), puts at each stage that page to the second level which has the
less request frequency.

Proof In my paper (Arato [2], Theorem 1) it was proved that the optimal
procedure 3 * has the following form (a similar result is known in the "two-armed
bandit" problem)

1 if £(/) > 1/2,

2 if ¿ (0 < 1/2.

Comparing (3) and (4) we get (using again the fact p1 > 1 /2)

dU = { (4)

d* — "t-l

and the theorem is proved.

1 if

2 if k ^ j ,

29 M. Arató: A note on optimal performance of page storage

2. Some generalizations

In the general case when the number of pages « > 2 , their number on the first
level 1 and the a priori distribution £=(£i , ..., £„,) of the known probabilities
p ^ p 2 = ... =p„ are given, the optimal sequential procedure has the same construction
as in §1 (see Benczúr, Krámli, Pergel [1]). The proof of their theorem, which is
a natural generalization of the "many-armed bandit" problem, is not elementary.
Here I recall that there may be two types of the replacement algorithms (see
Arató [1]). The first type means that the main memory contains k— 1 pages of the
program and there is one place for the content of a page demanded from the second
level. After delivering the content of the new page a page must be removed to the
second level. The second type algorithm means that the main memory is full when it
contains k pages of the program and if a page is requested from the second level
then one page from first level has to be sent to the second level (two pages are chang-
ed). If we assume that in the Bayesian approach the a priori distribution £ is uniform

t;i = P(w = i) = ± , (1 = 1,2, . . . ,«!) ,

which is a natural assumption, we get again that the optimal decision rule is the least
frequently used algorithm. The proof is based on the following lemma.

Lemma 2. L e t / 1 ; / 2 , . . . , / „ denote the frequencies of the pages Al7 ..., A„ in the
independent reference string t]lt ...,r] t, then

i f Pfi^i,
• P(w = i\r1l,...,rlt) = - ^ - n (5)

2 n p{l=v 1=17=1

The proof of (5) is only a slight extension to that of (3) by the same induction method
and so will not be repeated here.

Abstract

An example of the replacement problem in computer system management is the page replace-
ment in virtual memory computers. In this note an elementary proof is given-that the "least fre-
quently used" algorithm is the optimal one, using the assumption that the references to the pages
are indentically distributed independent random variables with unknown distribution. The general
case of this problem is discussed in the paper of Benczúr—Krámli—Pergel.

RESEARCH INSTITUT FOR APPLIED
COMPUTER SCIENCE
H-1536 BUDAPEST, HUNGARY
CSALOGÁNY U. 30—32.

30 M. Arató: A note on optimal performance of page storage

References

[1] ARATÓ, M., Statistical sequential methods in performance evaluation of computer system,
2nd Internat, workshop on modelling and performance evaluation of computer systems,
Stresa—Italy, 1976, pp. 1—10.

[2] ARATÓ, M., Számítógépek hierarchikus laptárolási eljárásainak optimalizálásáról, MTA
SZTAKI Közlemények v. 16, 1976, pp. 7—23.

[3] BÉLÁDY, L. A., A study of replacement algorithms for a virtual storage computer. IBM Systems-
J. v. 5, 1966, pp. 78—101.

[4] BENCZÚR, A., A. KRÁMLI, J. PERGEL, On the Bayesian approach to optimal performance of
page storage hierarchies, Acta Cybernet., v. 3, 1976.

[5] CASEY, R. G., I. OSMAN, Generalized page replacement algorithms in a relational data base,
ACM SIGMOD, Workshop on data description, 1974, pp. 101—124.

[6] DE GROOT, M. H., Optimal statistical decisions. Mc Graw-Hill, N. Y„ 1970.
[7] EASTON, M. C., Model for interactive data base reference string, IBM J. Res. Develop, v. 19,

1975, pp. 550—556.
[8] FELDMAN, D., Contributions to the "two-armed bandit" problem, Ann. Math. Statist., v. 33,

1962, pp. 847—856.
[9] GELENBE, E., A unified approach to the evaluation of a class of replacement algorithms, IEEE

Trans. Computers, v. C-22, 1973, pp. 611—617.
[10] INGARGIOLA, G., J. F. KORSH, Finding optimal demand paging algorithms, J. Assoc. Comput.

Mach., v. 21, 1974, pp. 40—53.
[11] SHIRYAEV, A. N., Statistical sequential analysis, (in Russian), Nauka, Moscow, 1969.

(Received March 11, 1976)

A language for Markov's algorithms composition
B y G . GERMANO a n d A . MAGGIOLO—SCHETTINI

The present paper gives an improvement of [2]. There, after having noted that
Markov's normal algorithms cannot be composed immediately like flow-charts, the
authors presented four operations on Markov's normal algorithms without con-
cluding formulas which helped to overcome the difficulty; among these operations
there were the analogs of if and goto. Here other operations are given: the analogs
of if and goto are substituted by the analog of while. This allows to use only one
alphabet for output strings, whereas in [2] infinitely many alphabets are used (in the
sense that two different algorithms might have as output alphabets A' and AJ respec-
tively with iy^f), and to use a simpler definition of computability.

Furthermore an Algol-like language L is given which is interpreted into Markov's
normal algorithms without concluding formulas via the new operations defined for
composing them. So the statements of L come out to be names of Markov's normal
algorithms and it is immediate to pass from traditional programming to algorithms.
As a practical motivation, we have already mentioned the fact that this work gives
the possibility of writing Markov's algorithms along the familiar patterns of computer
programming. As a theoretical motivation, after having recalled the known relation-
ship between programming and combinatory logic, we offer the following quotation
from H.B. Curry [1]:

"Altough it is well known that any partial recursive numerical function can be
represented in combinatory logic... and thus, by Church's thesis, any effective process
can be so represented via the detour of Godel representation, yet there is some interest
in a direct representation, not involving this detour, of certain processes, like... Mar-
kov algorithms".

§ 1. Operations on algorithms

We will use alphabets ¡, [J with lSi 'Sco and will consider algorithms which
transform words in the alphabet { A i , | i } into words in some alphabet I J { * ; , | i }

(where I is finite for each algorithm) and eventually naturally transform such words
into words in the alphabet {A „,1c} (see [3] for the notions of "transforms" and
"naturally transforms"). We will use "x" and " y " to denote letters in the alphabet

.32 G. Germano and A. Maggiolo-Schettini

{À,-,!,}. Analogously to [2], we will use the following translations for words in
.the alphabets above: , r , . _ , IT,. _ i

* i ' • —. * l+J li • — li+j
JtTJ - = Jt \T> A © • /\ CO I CO

* i > : = * , IP
4: TJ • = -k . IXJ 7\ o • Ay lo,

These translations are extended to words in the usual way and we will write P j
to mean that each letter in P is indexed by j. Algoritmhs are translated word by word.

We introduce three operations for composing algorithms, namely juxtaposition,
connection and controlled repetition and prove the relative theorems.

1.1 Juxtaposition. The juxtaposition of the algorithms 91 and © is the algo-
rithm

y m + 3 X2 "*" x2 y m + 3

(2lr')Tm+2

(©rm + 2)tm + n + s

Xm + 2 -*" xa>

, -̂ m + n + 3-*" Xa
-where m=maxind 91 and w = maxind © (maxind 91 is defined as the highest index
j < û) occurring in 91, see [2]).

Theorem. If £ is the juxtaposition of 91 and S then for every P € { A i , |i}A it
.holds that £(/>) s; 9I(P) ©(P).

The proof is immediate (see [2] p. 305 for analogy).
1.2 Controlled repetition. The repetition of the algorithm © controlled by the

algorithm 91 is the algorithm

<

X 1 J m + n + 3 ""*" x i y i (1)
xl~~ x2xm + 3 (2)

y m + 3 x2 x2 Y m + 3 (3)

(9t r i) t m + 2 (4)

^ m + 2Xm + 2ym + 2^~ A m + 2Xm + 2 (5)

^ m+2Xm + 2ym + S J'm+S (6)

^ m + 2xm + 3~* xct> ^ m + 2 (7)

^ m + 2~*~ (8)
+ 2^rm + n + 3 (9)

^ rH-n + 3 - * ^ 1 (10)
where m = maxind 91 and n = maxind ©.

A language for Markov's algorithms composition 33

Theorem. If G is the repetition of © controlled by 91 then for every P£ { A l t |i}*
it holds that

<£(P) = &(P)

if j is the least (non negative) integer such that 91 (93 J (P))~ A a whereas

(i(P) is undefined
if no such j exists.

Proof. I. If for i with 0 s=i< / 91 (» ' (P)) ^ * m then it holds that

G : P

t= PiPm+3 by (2),(3)

1= (2I(JP»m + 2JPm+3 by (4)

N Pm + 3 by (5), (6)

N (®0P))m+n + 3 by (9)

N by (10), (1)

t=

A „, then it holds that

G :P

1= P^Pm + 3 by (2), (3)

N ^ m+2-Pm + 3 by (4)

N by (7)

N P» "I by (8).

From I and II the thesis of the theorem follows immediately.

1.3. Connection. The connection of the algorithms 91 and S is the algorithm

where m=maxind 91.

Theorem. If £ is the connection of 91 and S then for every -P€{*i , | i}* it
holds that

G(P) =* 23(91 (P)).

The proof is immediate (see [2] p. 304 for analogy).
3 Acta Cybernetica III/l

34 G. Germano and A. Maggiolo-Schettini

§ 2. The language

The syntactic definition of the language L is
(initial statement)
(projection statement)
(statement)

: = zero|succ|pred
: = proj ¡¡(projection statement)i
: = (initial statement)¡(projection statement)!

((statement),(statement)) |
while(statement)do((statement> |
((statement); (statement))

j

For short we will write proj(J) instead of proj i . . . i. As variables for statements we will
use <3 and X.

We define now an interpretation , / of L into Markov's normal algorithms
without concluding formulas by induction on the syntactic definition of L:

(zero) : = { a i - A ,

J (succ) : -I A i — A ,

J (pred): =
A i l l - * A ,
A I - * A a,

l i - L

A A ILL— A T O A J

L A I|I -*- LO, A I

A CO A I A ÇA

L A I - L

J (proj W>): =<!
A 0)1" A

\o\l~*' !<y|co

A J 2 - A r a

A 2 A i -* - A 2 A 2

A 2I1 — A'2

A 1— A 2

^/((S, 3;)) is defined as the juxtaposition of JQZ) and > (2) . £ (while S do Z) is
defined as the repetition of */(£) controlled by */(£). ./((<3; 2)) is defined as the
connection of J f (S) and J (Ï) .

A language for Markov's algorithms composition 35

§ 3. Application

We say that a function / is computable by S (relatively to the input alphabet
{ A i, |i} and to the output alphabet { A t»>L}) if and only if

S- -L I"1 X ln* t X •••' • A l | l . . . A l | l 1= A a>\co 1 •
As concerns computability of partial recursive functions (characterized as in [4])
it is immediate to see how to write programs for initial functions and concerning
substitution. We give the programs concerning recursion scheme and /¿-operator.

Let the function g be computable by <2, the function h be computable by Z and
R M ^ - S O O

\f(S(x),y)^h(y,f(x,y))

Then the function / is computable by
((((proj«1?, projf^), (projO; ©));

while projW do (((prop); pred), proj<2>), ((proj<2>, proj<3>); 2))); proj<3>).
Let the function g be computable by S and

/(*!, ...,xk) ^ fix(g(x,x1, ...,xk) = 0)
Then the func t ion / i s computable by

(((... ((zero, proj(1>),..., proj(*>);
while <3 do (... ((proj(1); succ), proj(2)),..., prop +*>)); proj(1)).

So we may conclude that every partial recursive function is computable by
Markov's normal algorithms without concluding formulas relatively to the input
alphabet { A i, |i} and to the output alphabet { A a,,!^}.

Abstract

A programming language is introduced to whose statements Markov's algorithms univocally
correspond via the operations of juxtaposition, connection and controlled repetition. Avoiding'
goto statements allows to use only one output alphabet.

LABORATORIO DI CIBERNETICA INSTITUTO DI SCIENZE DELL'INFORMAZIONE
DEL C. N. R. DELL'UNIVERSITA, VIA VERNIERI 42
80072 ARCO FELICE, ITALY 84100 SALERNO, ITALY •

. References

[1] CURRY, H. B., Representation of Markov algorithms by combinators, Notices Amer. Math. Soc.,
v. 20 , A - 5 9 0 , 1973.

[2] GERMANO, G. & A. MAGGIOLO-SCHETTINI, A flow diagram composition of Markov's normal
algorithms without concluding formulas, BIT, v. 13, 1973, pp. 301—312.

[3] MARKOV, A. A., Teoria algoritmov (Russian), Trudy Math. Inst. Steklov., v. 42, 1954.
[4] ROBINSON, R. M., Primitive recursive functions, Bull. Amer. Math. Soc., v. 53, 1947, pp. 925—942.

(Received Oct. 7, 1974)

3*

On minimal incomplete systems of finite automata
B y P . DÖMÖSI

To the memory of Professor L. Kalmár

From papers by F. GECSEG (see [1], [2]) it is known, that there exist neither
finite homomorphically, nor minimal isomorphically incomplete systems of finite
automata. In the book by F. GECSEG and I. PEAK [3] it is mentioned as an unsolved
problem whether or not there exists a minimal homomorphically ^-complete system
of finite automata.

In this paper we prove that the answer to this problem is in the affirmative.
Namely, it is shown that there exists a minimal homomorphically ^-complete system
of finite automata. Moreover, we prove that there exists a homomorphically in-
complete system of finite automata which does not contain any minimal subsystem.

Before proving our statements, we introduce some notions and notations. Take
an arbitrary, finite partially ordered set J?=(1,2, . . . ,«) of indices, and for every
i (=1 , 2, ..., n) let an automaton A—A^Xi, Ah Yu 5¡, A,) be given. Suppose that
for an automaton A = A(Z, A, Y, <5, A) with state setA=A1XA2X--.XAn the functions
cp:A1XA2X...XAnXX-^X1XX2X...XX„,\J/:A1XA2X...XAnXX^Y are given.

n
Then A = JJ A ;[Z, Y, <p, i¡/] is called a loop-free or R-product of the automata A1 ; A2,

¡=1
..., A„, if the conditions <5((a j , a2, ..., an), x) = (81(a1, x j , 82(a2, x2), ...,5n(a„, x j) ,
A((als a2, ..., a„), x)-ij/(a1, a2, ..., an, x) hold for arbitrary (at, a2, ..., an)£A and
x£X, where (xlt x2, ..., xn) = (p(a1, a2, ..., a„, x); moreover cpfa, a2, ..., an, x) =
= (<p1(a1,a2, ...,an,x), <p2(ax,a2, ...,a„,x), ..., (pn(a1} a2, ...,an,x)) holds as well,
where (z=1, 2, ..., ri) is independent of states having indices not less (in the original
definition not greater) than i under the partial ordering R. The functions q> and ¡¡/ of
the R- product are called feedback function and output function, respectively.

If in the considered ^-product A the set R is completely ordered, then A is called
a quasi-superposition of Ax, A2, ..., A„.

Let A1=A1(A'] , Alt Yj, d1, /.j) and A2=A2(X2, A2, Y2, S 2 , b e arbitrary
2

automata, where Y^X2. Then a quasi-superposition A= JJA¡[Zj, Y2, cp, <p] of Ax

and.A2, where <p , a2, x)=(x, (a1, x)), \l/(a1, a2, x) = X2{a2, (a1, x)) are for any

38 P. Domosi

a1£A1, a2£A2 and x£XL, is said to be the superposition of Ax by A2. The superposition
can naturally be generalized for an arbitrary finite system of automata A ,=
= A„ Y„ S„ A;) (/=1, 2, . . . ,«) with Yj = Xj+1 (j=\, 2, ...,n-1).

A system 91 of finite automata is called homomorphically (isomorphically)
R-complete, if for every given finite automaton A there exists a finite R- product B of
automata from 21, such that an ,4-subautomaton of B can be mapped ,4-homomorphi-
cally (/1-isomorphically) onto A. 91 is a minimal (homomorphically or isomorphically)
i?-compIete system if for arbitrary C£9l the system 9I/(C) is not (homomorphically
or isomorphically) incomplete.

Then the following theorem holds**'.

'Theorem 1. There exists a minimal homomorphically R-complete system of finite
automata.

Proof. Denote by f a system of finite automata, where the elements of r are
pair-wise not isomorphic, and simultaneously for every finite automaton A there
exists an element B of r , such that A is isomorphic to B. It can easily be seen,
that r is enumerable. Take an arrangement r=(Ai(Xi, A,, Yit <5-, /.;)['~ 1, 2, . . .)
of the (enumerable) set r .

Let p0, Pi, •••, pn, ... be an infinite sequence of prim numbers, where p0^2,
Pi>Po, a n d for every further p} (J=2, 3, ...), pj>pj_l+pQ-pl • . . . •pj_2-AJ_1 holds.

Give the elements of automaton-system A =<B0, B l5 ..., B„, ...) as follows:
B0=B0(A"0, D0, Y0, <50, A0) is an arbitrary automaton, such that D0=(1,2, ..., p0),
furthermore for any pair u€D0, x6X0

. , . . 11+1, if 1 ^ u < p, da(u,x) - J w + 1 , if 1 =§ ,
| l , if U — pQ .

For every further B; («'= 1, 2, ...) let Bi = B i(C,xA' ; , A U Q X / f , - , Y i , d n /.,) be, where
Y'i is an arbitrary nonempty and finite set,

C; = <1,2, ...,P0'Pl- ... -Pi-1), (1)

A = <1 ,2 , . . . , /> ,) , (2)

and ¿¡-.(DiD CiXA^XCiXXi — Yi is arbitrary function, moreover for every triple
s£Dt, (u, a)£CiXAh (r, x)£CtXX{

SL t f W f^+J' lf 1 = S < Pi,
St(s,(r,x)) = (3)

11, if s = p¡,

<5i((", a), (r, x)) =
-1 j (u +1, S'j(a, x)), if /• = 11 and 1 ^ u < Po'Pi' •••'Pi-

(l ,<5;(a,x)) , i f r = u and u = Pq-Pj,-... (4)

1 (6 A) . ^

<*' The proof of Theorem 1 is based on an idea of F. Gecseg.

On minimal ^-complete systems of finite automata 39

First we prove that A is homomorphicaily ^-complete system of finite
automata.

Take an arbitrary finite automaton A=A(A", A, Y, 5, A), and let (lF1, f 2 > f 3)
denote an isomorphism of A onto a suitable element A; in F. Let the automata C ; =
=Ci(X, Ci,CiXXi, 8", X"), B; = B ; (C , X X t , DtU QXAh Y, Si , X*) be constructed
in the following way:

For any rdCt, xdX, sdDt, (u, a)dC(XAl,

From the above constructions it is evident that the superposition C,- * B- of C ;
by B- exists. On the other hand, using (4), (5) and (6), it can easily be proved that
there is an ,4-subautomaton of Q * B , ' with set of states B=((u, u, a)\udCh adA;).

Consider the mapping f 2 : B—A given as follows:
For every state (M, u, a) dB let f 2 ((u, u, a)) = W2

1(a). From constructions (4)—(7)
it can be seen that is an ^-homomorphism of the ^4-subautomaton of C, * B-
with set of states B onto A. On the other hand, using (2) and (3), it is not difficult
to prove that Cf can be represented as an ^4-subautomaton of a quasi-superposition
of automata B0, BJ, ..., B; _ x . So in consequence of construction BI, the superposition
C ; * B - is an /i-subautomaton of a quasi-superposition of B 0 , B 1 ; . . . , B ; . Since A
is arbitrary chosen, A is a homomorphicaily ^-complete system of finite automata.

Let us prove that A is minimal, i.e. in case of any B¡dA the system ^ \ < B ,) i s not
homomorphicaily ^-complete. To this we shall show, that no i?-product of elements
in J \ (B j) has any ^-subautomaton which can be mapped ^-homomorphicaily
onto BF.

Suppose that contrary to our assumption such ^-product there exists. Denote
by (IPj, f a , ^ s) a homomorphism of an A-subautomaton of this i?-product onto
Bj, moreover, let (e l5 e2> ••., em) be a state of this ^4-subautomaton such that
V2((.ei,e2,

From (3) it is evident that

X(r,x) = (r, ^ w) ; (6)

let X* (r, xFl (x))) be an arbitrary element in Y given unambigously,

(V^iXHa^Ax))), if r = u
X*((u, a), (r, (x))) = arbitrary element in Y given (7)

unambigously, otherwise.

s-q = s*>p,\q\ (qdFiQXXd). (8)

Also from (3) and !Pa((ei> e2> • ••> A it can be supposed that for a suitable

40 P. Domosi

element x of C, X Xt the
(e1, e2, ..., em) • x = (e1,e2, ...,em) (9)

holds, where / is an appropriate natural number. Thus, due to (8), pt\l also holds.
Suppose that the I is minimal among all numbers satisfying (9). For every i (= 1, 2, ...
...,m) let /; be a minimal natural number for which (e1, e2, ..., et) • xl'=(e1, e2, ..., et)
holds, moreover, let (pt be the i th function-component of the feedback function of
the i?-product in question. Finally, let M; be the i th component-automaton in our
.R-product.

Suppose that M 1 =B J (€z l) . In this case, refering to the equalities <px• (px(ely
e2, ...,em,x),x) = (p1((e1,e2, ...,em)-x, x), and (4), either M i = B0, or e1-<p1(e1,
e2, ..., em, x)(pi((e1, e2, ..., em) • x, x)holds. Then, because of (3) and (4), equality
(9) holds only in case e^Dj. Hence ply pi-1,pi+1, pi+2, ...) that is /? , f4 .
If M 2 in the i?-product is independent of M x , pL\l2 similarly holds. Othervise there are
two possible cases.

(a) The number of states in M 2 is less than that in B;. Hence for arbitrary input
word q of M 2 the number of pairly different states f rom the series e2, e2- q, e2-q2, ...
...,e2-qs, ... is less than (see the construction of {p0,pi, •••))• Namely, if by the
effect of (?! and x'1 the input word q is given to M 2 , then Pi\l2 since l2 = t, where
/ is a natural number with

(b) The number of states in M 2 is greater than that in B,-. Suppose that by the
effect of ex and x'1 the input word q is given to M 2 . In this case for every natural
number k by the effect of ex and xk'li the automaton M 2 in state e2 has the input
word qk andPi\\q\. Suppose that M 2 = B h > /) and e2 — (s, a) (£ChXAh). Because
of (1) and (4), e2 • (s)XAh. Therefore, by (4), f o r a n y f c (^ l) we have e2 • ChXAh.
Thus e2 • qk£Dh, which, by (9) and (3), means that e2€Dh. Consequently, taking into
considerations the minimality of 12, by (8) we get l2 = Ui, Pj], where [m, n] denotes
the least common multiple of m and n. Therefore, prfl2 holds as well.

Repeating our procedure for the components es, e4, ...,em, finally we get that
Pi\lm. Since l=lm holds per definitionem, thus p^l. Therefore, by (8), *F2((e1, e2, ...
. . . , <?m))(t Z)f. Thus none of the /1-subautomaton of the considered i?-product can be
mapped /4-homomorphicaIly onto the ^4-subautomaton of B(with the set of states
D,-. Consequently, it also cannot be mapped ^4-homomorphically onto B, . Hence
the system A is minimal, which ends the proof of Theorem 1.

Finally we prove

Theorem 2. There exists a homomorphically R-complete system of finite automata
which does not contain any minimal homomorphically R-complete subsystem.

Proof. Again l e t r = (A 1 , A2, . . . , A„, ...) denote a system of finite automata such
that the elments of f are pairly not isomorphic and for every finite automaton
A there exists an element B of T which is isomorphic to A. Now let us take the
system y l = (B 1 , B 2 , . . . ,B„, . . .) where for arbitrary / (= 1 , 2 , . . .) every automaton
A,-0 = 1, 2, ..., i) is a subautomaton of B,.

It can easily be seen that A is homomorphically -R-complete system of finite
automata. By a result of F . GECSEG [1] , no finite subset of A is homomorphically
.R-complete.

On minimal Comple te systems of finite automata 4t

Denote by Q an infinite subset of A. It is evident that for every natural number
i there is a / with jsi such that Bj £ A fl Q. Since every Ax, A2, ..., A^F is a subauto-
maton of Bj, thus Q is also homomorphically J?-complete. It is obvious that Q is not
minimal, which completes the proof of Theorem 2.

THE BOULDING SOCIETY OF
SOUTHERN H U N G A R Y /DLJLEP/
H-6721 SZEGED, H U N G A R Y
BOCSKAI U. 10—12.

References

[1] GÉCSEG, F., О композиции автоматов без петель, Acta Sci. Math. (Szeged), v. 26, 1965,.
pp. 269—272.

[2] GÉCSEG, F . , On complete systems of automata, Acta Sci. Math. (Szeged), v. 30 , 1 9 6 9 , pp. 2 9 5 —
3 0 0 .

[3] GÉCSEG, F . & I. PEAK, Algebraic Theory of automata, Disquisitiones Matematicae, Akadémiai
Kiadó, Budapest, 1972.

(Received May 14, 1975)

Homogeneous event indexes
By F . FEIND, E. KNUTH, P . RADÔ, J. VARSÂNYI

1. Discrete event simulation

General purpose discrete simulation languages are based on the so-called "event
¡notice" concept. It means special data patterns assigned to each simulation event
and handled by the run-time timing routines of the systems.

These routines have the following main functions :
1) scheduling future events (generated in the course of program execution);
2) registering the events in a properly linked order so as to be able to produce the
"next event" in any case.

We assume in this paper that whenever an event is scheduled its event time is
always known. The examination of more general, e.g. conditional scheduling possibil-
ities would lead to much more complicated structures. Therefore we can assume
that definite time values are assigned to each event notice and they are necessarily
ordered according to their time values.

We are not dealing with the problems of multiple
•schedulations into the same time point, which may be
a question of disciplines or priorités but has no impor-
tance as to the performance of the algorithms we do.

Now discrete event simulation works as follows :
at the initiation and during the whole execution event
notices are generated and inserted into the event list
for all arisen simulation activity demanding a définit
timing. The program execution is controlled by the
event list i.e. having finished an activity assigned to an
event notice the activity corresponding to the next one is going to be carried out
according to the instantaneous state of the list structure. (More detailed descrip-
tions can be found in references [1], [2] and [3].)

po in te r s required
b y the event list s t ruc ture

po in te r to the assigned
p r o g r a m po in t ("p rocess")

Fig. I. General structure
of an event notice

4 4 F. Feind, E. Knuth , P. Rado arid J. Varsanyi

2. Event list algorithms

The functional activities of event list algorithms may be comprised by the fol-
lowing four procedures:

1. scan (/)
The procedure finds the event after which a new event will have to be inserted

if its event time value is t. Thus using the SIMULA formalism [4] the procedure specifi-
cation is

ref (event) procedure scan (/); real t;
or according to the PASCAL formalism [7]

function scan (i:real): event;
where we denoted the data structure "event notice" simply by "event".

2. insert (E, P, t)
E is the event after which the insertion must be done. P is the simulation activity

having to be timed. The procedure must generate a new event notice of time value
t and insert it after E referring to the simulation activity P.

The formal spedification is
procedure insert (E, P, t); ref (event) E; ref (process) P; real t;

or
procedure insert (-¿".'event, P:process, /:real);

and the most typical call of the procedure is insert (scan (/), P, t);.

3. delete (E)
This procedure must delete the event E from the event list preserving the cor-

rectness of the remaining list. Formally:
procedure delete (E); ref (event) E\

or
procedure delete (E: event);

4. delete current
This procedure is equivalent to the call delete (current); where "current" is always

the first event of the list. For a deletion implied by the termination of any simultation
activity is always related to the current event, it is worth doing to develop this proce-
dure in a more special way than the previous, general one.

3. Linear list structure

The simplest structure, the linear list is widely used in simulation languages
including SIMULA [4], SIMSCRIPT f las t^event j (

!
—["suc H
4 p r e d I

j evt ime :

L p r o c _ J

Fig. 2. Structure of the linear list

[5] , GPSS [6].
Sue and pred are the linking
pointers. Evtime is the time value
assigned to the notices. If E is
an event notice then the relation

E.suc.evtime S E.evtime*

0

Homogeneous event indexes 45

must always be satisfied. The pointers current and last event always point to the
first and last events respectively.

The event list algorithms for linear lists are very simple:
1. scan (t)

Begin to compare t with the values evtime from the last event and follow it
sequentially while evtime^t holds. (This simple algorithm is described in the
Appendix in detail.) The reason of scanning from the end of the list is its better per-
formance.

2. insert (E, P, t)
The procedure is to perform a usual

insertion into a two-way list as it is shown
in Fig. 3 and in formal way in the Ap-
pendix.

3—4. delete (E)
Now a deletion simply means reset-

ting the pointers having been set by the
insertion Fig. 3 (see Appendix). The spe-
cial procedure "delete current" need not

4. Further structures proposed

With the linear list structure, the overhead time taken by a call of the procedure
scan is proportianal to N, the number of events in the list. (It leads to the amount
of scheduling overhead proportional to N2.)

Myhrhaug [8] gave the first results to improve it replacing the linear list by
binary tree structures. Knuth [9,p. 150] also gave a brief account under the title of
"priority queues" and suggested the use of the so-called "post-order trees".

A complete investigation on this topic can be found in the work [10] with tests
using a set of typical stochastic scheduling distributions. The paper explicitely pro-
duces the algorithms of three different structures and compares them with the linear
one.

These structures are the following:

• post — order tree,

• end — order tree,

• indexed list.

The behaviour of all the structures highly depends on the probabilistic nature
of the event stream, but the indexed list structure provides the best overall perform-
ance. This structure, however, needs an adaptive mechanism to set an interval para-
meter according to the operating conditions.

E

I <P

Fig. 3. Insertion into a linear list

be done in different way.

* In connection with dot notation we refer to [4] and [6].

46 F. Feind, E. Knuth, P. Rado arid J. Varsanyi

In this paper we introduce a dynamic version of the indexed list structure which
has only a bit worse performance than a well chosen static one, but it needs no adap-
tive mechanism and it is completely independent of the probabilistic properties of the
arrival stream because of its homogeneous nature.

5. General characteristic of homogeneous structures

Let /c>l be an integer. Suppose that we have a linear list and every /c-th of the
elements is pointed to by indexes constituting a new linear list. All the &,-th elements
of this list are also pointed to by second level indexes and the structure of levels

is continued terminating at a highest level
consisting of only one element.

The first task is to find the optimal value
of the indexing step k :

level / •
/

level 1

level 0 • - 6 - • • • - D

Theorem 1. The average number of com-
parisons needed by a call of the procedure
scan is minimal if fc = 3.

Proof. The procedure scan works in a
* * " natural way: beginning at the highest level

Fig. 4. Fixed homogeneous indexes the procedure executes a linear list scan in
each level from the entry point designated by

the pointer having been found at the previous level. Thus, supposing that the proba-
bilities of terminating the scan in a given level are all the same for any of the ele-
ments, the average number of conparisons in any level is equal to kjl. Hence the
average number m(k) of the comparisons in all levels will be

_ UogN
m W ~ 2 log k '

Considering m(x) as a continuous function of x > l simple derivation shows that
its only local minimum is achieved at the point x = e, and referring to the monotonity
when ,Y>e the simple comparison m(2)>m(3) proves the statement.

6. The „2/3-structure"

The following structure (proposed by one of the authors of this paper E. Knuth)
is theoretically based on the result of Theorem 1.

Let us allow to use steps of size both k=2 and k = 3 at random in the following
way:

• If an arrival occurs into a "molecule" of 2 elements it will simply become
a "molecule" of 3 elements.

• If an arrival occurs into a "molecule" of 3 elements it will form two
"molecules" of 2 elements and a new index will have to be inserted into
the next level in the very same way just described. This process continues

Homogeneous event indexes 4 T-

up to a level in which the insertion can be done into a "molecule" o f
only 2 elements.

The main properties of the structure we defined
are the following:

1. The average number of new elements having
to be inserted when calling the procedure insert is
less than two. This follows from the simple fact
that in the worst case, when all the molecules
have two elements the whole structure has 2N— 1
elements. (The exact value of the mean number Fig. 5. Example of a "2/3-structure"
will be determined in paragraph 7.)

2. The average number of comparisons needed by a call of the procedure scan
is less than m(3) i.e. it is nearer to the ideal value m(e). (Also proved in para-
graph 7.)

3. The "2/3-structure" has a homogeneous nature i.e. it is independent of
the distribution of the arrival stream. (This follows from its logical symmetry and
has been empirically tested too.)

4. The static structure described in paragraph 5. is naturally unsuitable to-
practical use for preserving the fixed structure would need complicated insertion,
procedures. This is also solved by allowing variable size molecules.

7. Stochastic behaviour

Let a t and /?,- be the numbers of the molecules of 2 elements and 3 elements,
respectively after the i'-th insertion.

Theorem 2. stochastically tends to 2.
Pi

Proof. Let ck be the number of elements contained in all the molecules of 2"
elements after the insertion of the k+7- th element. Then ck is an inhomogeneous.
Markov process with £ 0 = 4 (seven elements can be arranged in a unique way).

Let
0 if the k + 7-th arrival changes a molecule of
2 elements to a molecule of 3 elements;

(Pk •
1 if the k + 7-th arrival cuts a molecule of
3 elements to two molecules of 2 elements.

Considering the effect of an arrival we have

4 = ^-i + 4% + 2(%-1) = + 6<pk - 2
hence k

Qk = CO + 6 2 (Pi-2k.
/ = 1

From the construction

P{<Pk= H^-i, ...,Vl)= 1 - ^ = 1 ^

4 8 F. Feind, E. Knuth, P. Rado arid J. Varsanyi

holds with probability 1. For

P{<Pk = 1} = Ecpk

it follows

therefore

E{(pk\q>k-i, ...,<Pi) =
3k-6Z<Pi

/=1
k + 6

E<pk =

3k-6 k£ Ecpi
1=1

k + 6

3 3
S i n c e w e g e t E<px-=— a n d b y i n d u c t i o n E(pk=— f o r k ^ l .

Now we have to find the variance

D\E(cpk\<pk_lt

From the relation

P{(P; = 1|<pj = 0, <p, + 1 = yJ+1, = y^!, = x)-

~P{<P, = 1 \9j = 0, (pj+1 = yj+l, ~;<Pi-l = yi-i, Zi-1 = x) = j

for any yJ+i, J ' i _ 1 =0, 1 and we get

And from

it follows

¡Hence

P{<pt = 1|cpj = 0 } - P { q > , = 1|<pj = 1} = j U < 0 -

j P { 9 , = 1| <Pj = 0 } + | P { < p , - = l\(pj = 1} = |

3 2 4
E i M j l - E M E t o j) = />{<?,- = l}(P{<pf = I K = = 1}) = y - ^ -

On this basis

lim D2(E((pk\q>k_1, ...,(pj)= lim

K 7 2
2 »tod 2 2 ^
1=1 , ISi-zjSk I"1

(k + 6) 2 (A: + 6) 2 = 0

Homogeneous event indexes
4 T-

and referring to the Tchebycheff inequality, it implies the stochastic convergence

_ J i _ 1
k + 6 7

which is equivalent to the statement of the theorem.

Corollary 1. From theorem 2. we get by simple conputation that the average
number of events having to be inserted when calling the procedure insert is equal
to 1.75.

Corollary 2. The average number of comparisons needed by a call of the proce-

dure scan is Comparing it to the best fixed structure m(3) we find w [y] <

< m (3).

8. Algorithms for the 2/3-structure

To build the algorithms in detail first we have to define the following pointers:

• sue (successor) and pred (predecessor) are the usual linkage
pointers for linear lists.

• for (forward link) is the indexing pointer between the lev-
els, see Fig. 4. (When being in the lowest level we use for
to point at the process assigned.)

• back (backward link) is a redundant pointer not shown
in Figures 4 and 5. The reason of introducing it is to
make the building of procedure delete easier. The pointer
value is defined by

for F: — E. for, F. sue while F=/ = E. sue. for do F. back: — E;

where E is any event not at the lowest level.

Fig. 7. Definition of the pointer back Fig 8. evtime values

Fig. 6.
Event notice
pointers at

homogeneous
structures

Now let us define the evtime values at all the levels in the natural way:

E.evtime = E.for.evtime.

4 Acta Cybernetica in/1

50 F. Feind, E. Knuth, P. Rado arid J. Varsanyi

On these bases the logical
structures of the procedures we
tested are the following. (The
exact versions are contained in
the Appendix.)

The general procedure delete
(E) is contained only by the
Appendix for its structure is quite
similar one barring that techni-
cally more complicated.

insert new
pr imary event

<has the inser t ion d o n e

at the h ighes t level? J ~
- • \

Chas the inser t ion d o n e
into a d o u b l e t o n ? J

insert n e w even t
into t h e next level t o o

increase ihe
yes ' n u m b e r of levels

Fig. 10. Logical struclure of procedure insert (E, P, t)

Fig. 9. Logical structure
of procedure scan (f)

Fig. 11. Logical structure of procedure
delete current

9. Experimental results

We chose the execution times of the typical call insert (scan (t) , P, t) to compare.
The algorithms used are exactly those contained in the Appendix. The test were

performed on a Control Data 3300
computer.

In the test the parameter t in the
call insert (scan (t), P, /) was expo-
nentially distributed. As it is known the
increase of the line describing the per-
formance of the linear list depends on
the choice of the distribution of t, but
our experimental results showed that
using homogeneous indexes the per-
formance was quite independent of it.

The deletion procedure proved to
be about 1.8.-times slower than the
simple linear one with a small variance.

Fig. 12. Comparison of scan + insertion times (Th i s is 1.85 f o r t h e genera l v e r s i o n .)

Homogeneous event indexes
4 T-

These results altogether designate a limit of about 100 events below which the
simple linear method may well be used and the relative performance of the homoge-
neous structure fastly increases beyond.

10. Further problems

There are several further questions which seem very useful to study. Construct-
ing more and more effective structures is important not only for discrete event
simulation but for any other linked structures sorted' by continuous keys too. We
propose the following problems:

1. We used duplicated events at the higher levels indexing the original ones
of the lowest level. We have seen that it leads to an average number 3N/4 of du-
plications. However, it seems possible that using certain further pointers even a linear
list can be supplied by a crafty additional structure ensuring effective search without
duplicated events.

2. The performance can be improved by not cancelling the events when their
activity is terminated but leaving them for some kind of "garbage collector". It will
not decrease the effectivity of the procedure scan if it is always starts from the end of
the list.

3. Finally we notice that during a discrete event simulation the region of time
values interested is permanently being shifted to higher values. If we could describe
stochastically the distributions of events resulted by such a consistent shift, then it
would be possible to develop special structures based on this probabilistic behaviour.

Appendix

In this part we use the S IMULA 6 7 formalism [4] but the reader needs not to
know it precisely because the denotations used are self-explanatory.

A. Algorithms for linear lists

ref (event) procedure scan (?); real t;
begin ref (event) F;

F: — last event;
for F: — F while F. evtime do F: — F.pred;
scan: — F;

end;

procedure insert (E, P, t);
ref (event) E\ ref (process) P; real t;

52 F. Feind, E. Knuth, P. Rado arid J. Varsanyi

begin ref (event) F;
F: — new event (t, P);
F.pred: — E;
F. sue: — F.suc;
F.pred.suc: — F.suc.pred: — F;

end;

(The last procedure body illustrates how to set the new pointer references. If the sub-
class relation link class event is assumed using the standard SIMULA list processing
facilities the whole procedure body may be simply replaced by new event (/, P).
follow (£•).)

| £ : - | r o o t ; |

£ . fo r is process) >J s can : — £ : I — exit

| J yes I -J

| £":—£- f o r ; |

n o f ^ (E. sue qua event , t ime <i
t

[e-.-E. sue; |

Fig. 13. ref (event) procedure scan (0 ;

procedure delete (E); ref (event) E;
begin

E. sue. pred: — E. pred;
E. pred. sue: — E. sue;
E. sue: — E. pred: — none;

end;

(The procedure body is equivalent to the standard SIMULA procedure F.out.)

B. Algorithms for the 2/3-structure

The structure of the event notice could be defined by
class event (back,for, time);

ref (event) back, for-, real time;
begin

ref (event) sue,pred;
end;

but for practical reasons in the algorithms it is replaced by the following version
using the SIMULA linkage possibilities:

link class event (back, for, time);
ref (event) back,for, real time;;

Homogeneous event indexes
4 T-

We use the global pointers:
ref (event) root, current;

and the initiation is
root: — current: — new event (none, new process, 0);
root.into (new head);

The algorithms are contained by figures 13—16.

Fig. 14. procedure insert (£, proc, /);

exit

-v. Fig. 15. procedure delete current ;

Finally we give the logical structure of the general procedure delete. The dia-
gram may readily be programmed in a similar way as the procedure delete current.

Fig. 16. Logical structure of procedure delete (£);

Homogeneous event indexes
4 T-

Abstract

Simulation event scheduling algorithms based on linear lists are generally used in simulation
languages. Under heavy traffic conditions these algorithms have poor performance. The best of
the more complicated algorithms having proposed to improve it is the indexed list method.

In this paper we introduce a multiple-indexed list structure of fully homogeneous nature to
eliminate certain disadvantages of the use of static indexes and to gain further improvements. We
give all the necessary program routines in detail. The sense of probabilistic behaviour is also given
and simulation results are presented to make a comparison with linear list algorithm.

COMPUTER A N D AUTIMATION INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES
H-1502 BUDAPEST, HUNGARY

References

[1] BUXTON, J. N. (ed.), Simulation programming languages, North—Holland, Amsterdam,
1968.

[2] GENUYS, F. (ed.), Programming languages, Academic Press, N. Y., 1968.
[3] GORDON, G., System simulation. Prentice — Hall, Englewood Cliffs, N. J., 1968.
[4] DAHL, O . J. , B . MYHRHAUG, K . NYGAARD, SIMULA 67 common base language, S22 , N o r w e g i a n

Computing, Centre, 1967.
[5] KIVIAT, P. J., R . VILLANVEVA, H . H . MARKOWITZ, The SIMSCRIPT II programming language.

Prentice—Hall, Englewood Cliffs, N. J., 1968.
[6] General purpose simulation system 360 — User's manual, H20—0326, IBM Corp., White Plain,

N. Y., 1968.
[7] WIRTH, N., The programming language PASCAL, Acta Informat., v. 1, 1971, pp. 35—63.
[8] MYHRHAUG, B., Sequencing set efficiency, A9, Norwegian Computing Centre.
[9] KNUTH, D. E., The art of computer programming, v. 3, Addison Wesley, Reading, Mass.,

1973.
[10] VAUCHER, J. G. & P. DUVAL, A comparison of simulation event list algorithms, Comm. ACM,

v. 18, 1975, p p . 2 2 3 — 2 3 0 .

(Received March 11, 1976)

Method for simulation of digital automata
B y T . VELITCHKOV a n d K . BOYANOV

Simulation of digital automata is more and more widely applied in designing
of digital devices, as it permits full functional testing before their building. The
methods for simulation known so far may be classified into two groups. The first one
includes the methods for simulation based on the algorithm describing the behaviour
of the tested devices [1], [2]. The second group includes the methods based on the
logical equations, describing the components the digital device consists of [3], [4].
Some of these methods give an idea of the time sequence of the signals of the real
device, others do not. The methods of the first group can be easily applied when the
simulation of the automaton as a whole is required, while those of the second group
are convenient when the simulation of some components of the automaton is neces-
sary. The existing methods for simulation have some inconveniences. In the detailed
examination of the behaviour of a digital automaton the volume of the data processed
by the simulating programme and the machine time required, grow much faster
than the increase of complexity of the automaton. Due to that it is accepted that the
whole automaton consists of few, but complex components. This approach does not
allow the detailed study, which is often required.

This paper proposes a method permitting the detailed examination of the behav-
iour of each of the structurally described components when the simulation of an
algorithmically described complex digital automaton is carried Ag Ai
out. The method makes possible the determination of the output * f
signals of the automaton for every time interval for which the —1

input signals are determined. Moreover, the simulating pro-
grammes remain unchangeable for different structures of the p-'
simulated digital automaton and for the various input signals.

Basic definitions

We define a finite automaton according to [5]. Logical network for us is a multi-
tude of finite automata with connected inputs and outputs. We accept that time
is. divided into equal elementary time intervals during which the input and the output
symbols of the automaton remain unchangeable and

c z
Fig. 1

58 T. Velitchkov and K. Boyanov

where t is a real time interval, r is the elementary time interval and T is a number
without dimensions. We call T delay factor. The multitude of all input and output
symbols assigned for an elementary time interval to the automata the logical network
consists of is called momentary state. Time diagram is the multitude of momentary
states for the time interval t=m where «>1 . We classify the internal states of the

i

A , n
•

1 1 ^ SX •
1

I V, \
1 1 /
! '-» !

I •S *
 1

! /3
V . '

I

1

1
1 1

1

1 '

I I 1

1
1

1 1
1
1
1

t

^
1 1

i
i

1
1
1

L 1
1
1

1

1
1

t

1

Fig. 4

automaton into two groups: stable states, in which the automaton can stay during
more than one successive time intervals and quasistable states, in which the automaton
cannot stay during more than one elementary time interval. We call signals the physi-
cal phenomena representing the input or the output symbols of the finite automata.

[Method for simulation of digital automata 59'

Essential ideas

We will try to represent the real automata so as to obtain the time-diagram of
a logical network and its components.

XviYif

A-.fVc)

Fig. 5

Let us consider a real automaton having two inputs C and Z and two outputs
A0 and Ax (fig. 1), whose input and output symbols are represented with real signals.
The .time-diagram of the automaton is shown on fig. 2. It can be seen that during the
time intervals tlt t2, t4 and t5 the output state of the automaton is undetermined.

We will approximate the behaviour of the real automaton to this of a finite
automaton, whose graph is shown on fig. 5 and whose time-diagram is given on fig.3.

60 T. Velitchkov and K. Boyanov

Both the input and the output alphabets of the automaton are shown on fig. 14.
(The symbol A will be discussed later.)

On fig. 3 it can be seen that there is no undetermined in the time-diagram. How-
ever, it does not show the time delay between the input affectations and the output
reactions of real automaton (time intervals t1(5.)

The time-diagram on fig.4 approximates permissibly precisely the time-diagram
given on fig.2. Fig.6, fig.7 and fig.8 show the graphs of automata meeting the require-
ments of the time-diagram on fig.4. The automaton defined by the graph on fig.6
analyses its own input symbol for every elementary time interval and according to
its internal state provides the corresponding output symbol. The stable states of the
automaton (0, 1,2 and 3) are separated by sequences of quasistable states in which
the automaton can be during the time intervals tx H- ?5. The number of the quasistable
states is obviously dependent on the duration of the corresponding time interval. The

[Method for simulation of digital automata 61'

-output symbol of the automaton being in a quasistable state is identical with its
output symbol of the latest stable internal state it has been into. The described autom-
aton carries out the time :diagram from fig.4, but in this representation the number
of the internal states is too great and this makes difficult the representation and the
simulation of complex automata. Besides that, two functionally equivalent real
•automata with different delay factors will have a different number of internal states
and this is quite inconvenient. Moreover, it don't makes possible the checking of the
correctness of the input symbols. This inconvenience can be avoided by the introduc-
tion of an additional stable state N (undeterminated state, fig. 7). Before getting into
any successive state (regardless of its being stable or quasistable) the automaton
analyses its input symbol and in case it proves to be unacceptable for the given internal
state, the automaton gets into the undeterminated state N and supplies the undeter-
mined output symbol Y„. The automaton remains in the state N till some prelimi-
narily defined input affectation does not make it change its state. For the automaton
on fig.l this is the input affectation X0. Nevertheless, the number of the internal
states of the automaton is still great in this representation. In order to avoid this
inconvenience the automaton is represented on fig. 8 by a graph where the successive
quasistable states are joined into new stable states M1 2_i, M12_2 . . . The automaton
will remain in these new states for as many elementary time intervals as is the duration
of the intervals t1-^-t5. We consider this representation of the real automata to be
enough convenient and will use it in simulation of digital devices.

Simulation

To simulate the work of logical network means in fact to-simulate the work
of the automata it consists of. Not the real automata are considered, but their equiv-
alent finite automata, which are represented in the manner described above. A multi-
tude of variables jSf is introduced for the simulation of the work of a finite automaton.

arguments
ai a2

conjunction disjunction nor
operation

nand
operation

exclusive
or

exlusion
Of Oi

0 0 0 0 1 1 0 1

0 1 0 1 0 1 1 1

1 0 0 1 0 1 1 0

1 1 1 1 0 0 1 0

0 A 0 A A 1 0 1

A 0 0 A A 1 v A A

1 A A 1 0 A ' A 0

A 1 A 1 0 A A A

A A A A A A A A

Fig. 9

62 T. Velitchkov and K. Boyanov

P D (individual description)'

' / / / / / / / / y / 7)

T D (type description)

automaton 1

automaton 2

automaton / automaton /

automaton m

type I

type 1

E type k

Fig. 10

I D E N T

lenght LN [type G |

These variables correspond to the input, output and internal states of the automaton
and will be called internal variables of the automaton. The variable representing the
input state can have many values as is the number of the symbols of the input alphabet
of the automaton and its value in any given moment corresponds to the actual input
symbol. The internal and the output states are represented in the same way. The
multitude of the internal variables includes also variables corresponding to the delay
factors, as well as service variables required by the simulating system. As the func-

tioning of every type of automata is in-
individual number dividually simulated, it is necessary to

define all its stable and quasistable
states, the incorrect input affectations,,
which will be looked for, when the
simulation will be carried out and also
to define the internal variables of the
automata and to work out the algo-
rithm of their changes. For the simu-
lation of a logical network all the auto-

• mata it consists of should be described
and all their connections should be
pointed out. It is also necessary to
determine the initial state of the net-
work. This presents a difficult problem
when complex logical networks are
considered. That is why this method
accepts that the input (and output) sym-
bols are three : 0, 1 and A. The A state

Fig. 11 is undetermined (0 or 1) and it is assign-

i inks of input C

au tomaton A'i ou tput A/|

links of input Z

j au toma ton A'; | ou tput A/ : J

ident i f icators of the au toma ta connected to the outputs A
a
 and A t

au tomaton A'; | a u t o m a t o n N , | ~7 / [

[Method for simulation of digital automata 63'

ed to any input (or output) whose state cannot be precisely specified, as well as to
the outputs of the automata, which have received an incorrect input affectation (on
the graph on fig.5 and fig.6 this state is marked by Yn). The introduction of this third
state demands that the truth table of the logical functions should be changed (we
accept that all logical functions are. represented in a classical and, or, not basis).

Structure of the simulating system

This paper considers the simulating system carrying out the described ideas.
The system includes the files TD and PD (fig. 10), the lists Ll9 L2 and the. counter
CNT. It makes possible the simulation of the logical network, built of a finite number
of types of automata, which have preliminarily assigned internal variables and algo-
rithms. The programmes simulating the functioning of each type of automata are
worked out according to their algorithms and are grouped into the file type descrip-

64 T. Velitchkov and K. Boyanov

tions (TD). The internai variables of all automata, taking part in the network, form
the individual descriptions of the automata and are grouped into the file PD. Besides
that, every individual description includes the length factor (LN), indicating its own
length, the identificator IDENT, showing the individual number of the automaton
and the type factor G, denoting the type of the automaton (fig. 11). The connections
between the components of the simulated network are shown by the identificators
of the automata and by the numbers of the outputs connected to each input. (See
fig. 11.) In order to examine a network it is necessary to define precisely the input
affectations for every elementary time interval. This method achieves that by describ-

(en'OÜ
C internal state rnal state y

H I r ^ ^ ^ [¿ 7] Ï j i 5 1«IMJ IjwLj [Mm^

[¿ J (" F j ^ gWj] i^jjJ

(s t a t e 0)

input symbol
any other

X,

\V-. = Mm., I

l 5 ' ^ ' I

(ÉD

XI

any other

(state l)

input symbol
Xo

Xi X2

1 V: = Mn.t

\ 1
|S,: = A/IM |

1

\T:—-T2 . \T-.=T, 1

Fig. 13a

ing all input variables as autonomous automata, according to the definition given
in [6]. The time counter CNT contains the number of the actual time interval. At the
initial moment its value is 0, while all inputs and outputs are in the A state. The list
Lx includes the identificators of the autonomous automata, representing the input
variables. The programme reads an identificator of an automaton from L1} takes out
its individual description from the file PD, decodes its type and reads its type descrip-
tion from the file TD. During the first elementary time interval this automaton will
be an autonomous one whose output will be set in 0 or 1. After that the identificators
of all automata connected to the output which has changed its state are put in L2.
In case the automaton has got into a quasistable state, its own identificator will be
put in L2. This process continues till the list is exhausted. Then the contents of L2
is put in the place of Lx, "1" is added to the time counter and the study of the behav-
iour of the network for the next time interval begins. The list L j contains now the

[Method for simulation of digital automata 65'

identificators of all the automata to whose inputs new symbols have been assigned,
as well as the identificators of the automata being in a quasistable state. The rest
automata are not studied because their states (input and internal) remain unchangea-
ble. The general algorithm of the simulating programme is given on fig. 12. After
every elementary time interval "the complete table of output states" is filled with
the new data, composed of the identificators and of the states of the outputs of all the
automata the network consists of. This table is the result of the simulation and is

Ao

(̂ state

/ input symbol
any other

1 K

1 , |s, = M23-2|
I 1 ,

|s, = Y0 |

1 ,
= 3

1 ,

|s,

1 T . \T

1 1

Xo

ŝtate

_J ^ any other
- ^ i n p u t symbol

Xi

= Aijo-i

= M, o.2

r> \

1
* 0 1

F: = T, 1

Fig. 13b

stored on a magnetic tape. The simulation will be carried out till some preliminarily
specified conditions are detected. (Certain states of some automata or a given value
of the time counter CNT.) The structure of the simulated network and the algorithm
of the automata for each type are described in a proper language, which is not dis-
cussed in this paper.

5 A c t a C y b e r n e t i c a I I I / l

66 T. Velitchkov and K. Boyanov

Let us consider a counter, for example. Its time-diagrams (real and approximat-
ed) are shown on fig.3 and fig.4. The graph of the finite automaton, approximating:
the counter, is given on fig. 8. (Only the stable states 1 and 2 and the quasistable ones
linking them are shown; the other branches are similar to them.) The multitude of
the internal variables becomes of the kind

&={V,X,Y,T1,Tz,...,Ti,T}

(s t a l e i v)

^ 1
inpu t sy iuboP>—

i V: = Mso.i 1

any other

Fig. ISc

where:

V — is the variable of the internal state, it contains the number of the actual
internal state;

X — is the variable of the input state, it points out the actual input symbol;
Y— is the variable of the output state, it points out the actual output symbol;
Ti, i— 1, 2, ... are delay factors;
T — is the variable of the actual delay.

[Method for simulation of digital automata 67'

input
symbols

binary values
of the input signals output

symbols

binary values
of the output signals input

symbols
C Z

output
symbols

A0 A!

0 0 Y, 0 1

0 1 Yt 0 1

X* 1 0 Y, . 1 0

X3 1 1 Y* 1 1

Xt 0 A Y* 0 A

Xs A 0 Y5 A 0

Xs A 1 Yt A 1

X7 1 A Y, 1 A

Xs A A Yy A A

Fig. 14 note: the symbols Yiy YB, y6, K,
are not allowed

Examining the behaviour of the counter we accept that the input affectations.,
cannot be shorter than t2, ?4 (fig-4). Any input affectations which do not meet
this requirement will be considered to be incorrect. Let us suppose that the counter
is in the stable state 1 (fig.8). It will stay in it as long as the input symbol remains X0.
When the input symbol becomes Xx, the internal state will get into the quasistable :
state M12_i (see fig.8), the variable of the actual delay (T) receives the value T2 and
the output symbol remains unchangeable. Being in the state M12_i the counter
analyses its input symbol, whose value should remain invariably X1. Meanwhile "1" '
is subtracted from the current delay during every elementary time interval. When
the value of T becomes 0 the counter gets from the state M12_x into the state M12_2.
and the output symbol changes from Y± to. Y2. The change of the input symbol while
the internal state is still M12_± means that the input affectation is shorter than T2.
In such a case the next internal state of the automaton will be N and the variable
of the output state will receive the value YN. The automaton will remain in the state
M12_2 as long as the input symbol is Xx. It will get into the state 2, when the input,
symbol is X0. Any other input symbol will lead into the state N. The maximum length
of the input affectation is not checked during the time interval t3, because it is not
limited in time. So far we have considered the branch of the graph connecting the
stable states 1 and 2. All other branches are similar.

The algorithm of the counter described above is shown on fig. 13. The variables ..
S1} S2, S3, / j , I2 and 73 are service variables. They are not required by the graph but .
their use makes the algorithm simpler.

•68 Т. Velitchkov and К. Boyanov: Method for simulation of digital automata

Conclusions

The method considered in this paper makes possible the simulation of logical
networks, composed of large and expansible set of components. The simulating
programme does not depend on the structure of the network and on the kind of the

•components it consists of. On one hand, the examined network could consist of only
one algorithmically described automaton (except the automata representing the
input variables). On the other hand, the structure of the network could be described
in full details (it can be accepted that the network is composed of elements carrying
•out the elementary logical functions). This method permits the combination of these
two extreme cases. Complex digital automata can be simulated in this way and the
detailed examination of some of their parts is possible. Descriptions of new types of

• components can be easily added to the simulating programme system.
A full information about the functioning of the simulated automata is obtained

as a result of the work of the programme. Moreover, race simulation or oscilation
of the tested network can be registrated. Finally, by the lists L± and L2 we can judge
how often the various components of the tested nerwork are used.

The authors are indebted to ass. prof. D. Dobrev from the Institute of Mathe-
matics and Mechanics of the Bulgarian Academy of Sciences for his valuable recom-
mendations.

BULGARIAN ACADEMY OF SCIENCES
INSTITUTE OF MATHEMATICS A N D
MECHANICS WITH COMPUTER CENTER

: SOFIA, BULGARIA

References

»[1] Боянов , К. & Т. Величков, Моделирование логических схем на цифровой вычисли"
тельной машине, Доклады БАН, т. 22, № 5, 1969.

•[2] BREUER, М . A . , Functional partitioning and simulation of digital circuits, IEEE Trans. Com-
puters, v. C19, N11, 1970.

[3] BREUER, M. A., Techniques for the simulation of computer logic, Comm. ACM, v. 7, 1964, pp.
443—446.

' [4] SHALLA, L . , Automatic analysis of electronic digital circuits using list processing, Comm. ACM,
v. 9, 1966, pp. 372—380.

• [5] Глушков , В. M., Синтез цифровых автоматов, Физматгиз, 1969.
,.[6] Т р а х т е н б р о т , Та., Конечные автоматы (поведение и синтез), Наука, Москва, 1969.

(Received April 13, 1974)

шштят S

INDEX—TARTALOM

A. Ádám: On graphs satisfying some conditions for cycles, 1 3
J. Duske: Zur Theorie kommutativer Automaten 15
M. Arató: A note on optimal performance of page storage 25
G. Germano and A. Maggiolo-Schettini: A language for Markov's algorithms composition 31
P. Dömösi: On minimal if-complete systems of finite automata 37
F. Feind, E. Knuth, P. Radó and J. Varsányi: Homogeneous event indexes 43
T. Velitchkov and K. Boyanov: Method for simulation of digital automata 57

Felelős szerkesztő és kiadó: Kalmár László
A kézirat a nyomdába érkezett: 1976. június hó

Megielenés: 1976. december hó
Példányszám: 1000. Terjedelem: 5,2 (A/5) ív
Készült monószedéssel, íves magasnyomással

az MSZ 5601 és az MSZ 5602-55 szabvány szerint
76-2550 — Szegedi Nyomda — F. v.: Dobó József ig.

