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* On some enumeration questions éoncerning trees
and tree-type networks '

By A. ApAmM and J. BAGYINSZKI
To the memory of Dr Catherine Renyz and Professor Alfred Rényi

Zusammenfassung. Im § 3 werden gewisse Fragen der Abzdhlung von Wurzel-
Bdumen betrachtet. Sei T ein Wurzel-Baum mit der Wurzel R, bezeichnen wir
durch k die Anzahl der Kanten von T. Teilen wir die Kanten in Klassen durch
die folgende Relation ein: zwei Kanten sind dquivalent, wenn sie auseinander ohne
Berithren ‘von R erreichbar sind. Existieren genau »x; Aquivalenzklassen, die aus
je i Kanten bestehen (wobei i die Zahlen 1,2, 3, ..., k durchliuft), so sagen wir,
daB die Partition von T der Vektor K={u,, %,, ..., %) ist. Wir erhalten drei Formeln -
fiir die Anzahl Sk (k) der numerierten Baume von der Partition K unter die Annahme,
daB die Nummer der Wurzel als 1 fixiert wird und die {ibrigen Punkte die Nummern
2,3, ..., k+1 (auf belicbige Weise) bekommen. Eine dieser Formeln stimmt im
Wesentlichen mit einem (in verschiedener Weise bewiesenen) Resultat von J. Dénes
.iberein. Aus unseren Ergebnissen ist auch die wohlbekannte Formel von Cayley
ableitbar (Corollary 1),

In den Paragraphen 45 wird ein zelthches Verhalten dem Wurzel-Baum
T laut des Modells der fritheren Arbeit [1] zugeordnet, so dal die Kanten in die
Richtung der Wurzel gerichtet sind und jeder Punkt P; einen im Intervall (0, 1)

- liegenden beliebigen Anfangswert S(P;) hat. Wir definieren fiinf Typen von mit
den Werten B(P;) versehenen Biumen, die finf charakteristischen Arten des Ver-
haltens entsprechen (Proposition 6). Im §4 studieren wir die Wahrscheinlichkeit
des Ereignisses, daB der Baum zu einem oder anderem Typ gehort, wenn sowohl
der Baum (als ein Graph) wie die Werte B(P;) zufillig gewihlt sind. '

§ 1. Introduction

§ 3 is devoted to some enumeration questions of rooted trees. In Theorems 1,
2 and ‘Corollary 2 several formulae for the number of labelled rooted trees having
a fixed partition of the number k of edges are obtained, supposing that the root is
labelled by 1 and the other vertices by 2,3, ..., k+1. From our results the well-
known Cayley enumeration formula can be deduced, too (Corollary I).

In §§ 4—5, a temporal behaviour is assigned to the rooted tree T in sense of
the model exposed in the former paper [1], such that each edge is directed towards
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130 A. Adam and J. Bagyinszki

the root and any vertex P; has an arbitrary initial value f(P,) lying in the interval
(0, 1). We define five types of trees, being supplemented with the values S(P;);
these types correspond to five characteristic features of behaviour (Proposition 6).
We study in §4 the probability of the event that the tree belongs to one or another
type provided that the tree (as a graph) and the values B(P;) are chosen randomly.

A large collection of results and methods concerning the enumeration Questions
of labelled trees is contained in the lecture note [4] of Moon. The articles of Dénes
[3] and A. Rényi [6] deal with subjects closely connected with the present paper;
especially, our Corollary 2 follows easily from Theorem 5 of [3] (by addmg a new
vertex as a root to the graph and by connecting the root to one vertex in each com-
ponent). The publication [7] of C. and A. Rényi is devoted to the generalization of
the questions of counting for the case of k-trees.

’

§ 2, Preliminaries

We suppose that the reader is familiar with the basic notions of graph theory
If the edge e and the vertex P are mmdent then we say, equivalently, that P is a
terminal of e.
Let H be a finite set and H,, H,, ..., H; be some pairwise disjoint non-empty
subsets of H. If the union of H,, H,, .. H equals to H, then we say that H,, H,, ...
., H; form a set-partition of H. (The ordermg of the H;’s is indifferent.)
Let k be a natural number. If the members of the vector

K=y, %3y o0y )
consisting of k non-negative integers satisfy the equality
2n Tesey+2en+3 03+ +kox, =k,

then we say that K is a numerical partition of the number k.

We speak about a partition simply if the context makes doubtless whether a
numerical one or a set-partition is dealt with.

Let a set-partition Hy, H,, ..., H; of the set H consisting of k elements be given.
If, among the subsets H,, H,, ..., H,
there are %, subsets each consisting of 1 element,
there are x, subsets each consisting of 2 elements,

and there are x, subsets each consisting of £ elements,
then ((2. 1) is obviously fulfilled and) we say that the numerical partition, assigned to
the partition of H in question, is (x;, %,, ... ,,ck>

Denote by @, the set of all numerical partitions of the number k. If we write:
2., then the summation must be taken for all elements K of Q,. :
£ .

“ o Let a, b be real numbers such that a=b. By the closed interval [a, b] we mean
the set of the real numbers x satisfying a=x=b. By the open interval (a, b) we under-
stand the set of the real numbers fulfilling a<x-<5. In analogy, we define [a, b)
and (a, b] by the conditions a=x<b and a<x=b, respectively.

We shall often write exp x instead of e* where e is the base of natural logarithms
(this is useful if a long expression occurs in the role of x). The Biirmann—Langrange-
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formula concerning the series expansion of inverse functions is supposed to be
known (see [2]). We shall use the subsequent Proposition I, II (of analytlc cha-
racter): .

Proposition L. There holds the identity

@» =) [ 3 @oaety) =14 3 A
j=1‘x;=0 ¥l k=1
in the real interval (u, v) where
=2 Ha, 1_
& Jj= J

' if the power series on the right-hand side of (2. 2) is uniformly convergent in (u, v).

. Proof. Let the expression on the left-hand side of (2. 2) be ordered according
to the increasing powers of x. Then the coefficient of x* gets an additive contribu-
tion from all the possible partitions of the number k; the contribution of any single
partition is ]] ayly P

j*

Before statmg Proposition II, we introduce three notations z,, T,(x), Z(x)
as follows:

T,(x)=cos (r arccos x)

(i.e. T,(x) is the Chebyshev polynomlal of degree r)

2y = 62023 y=1e=2Vm (] 4 O(m=12)) if m — oo,

2.3) . Z(x) = 1; [z0+2 Z (——1)"‘2 Tom [ ! ]] where xz=1.
Proposition I1. There holds the identity |
. IT'(n) = n! = (27r)1/2 iz, exp(—n+Z(n))

consequently, the right-hand side of the deﬁmtwn (2. 3) is convergent.
The proof of Proposition IT may be found in [5]. We note that the analogon
of the convergence conclusion of this proposition does not hold for Stirling series.

§ 3. The enumeration of rooted trees

A rooted tree is a finite connected undirected graph without circuits in which
a vertex is distinguished. The distinguished vertex is called the root of the tree. If
R is the root and P is an arbitrary vertex in a rooted tree, then the distance of R and P
is called also the height of P}

! In §§ 4—35 we shall consider the rooted trees as directed graphs in such a manner that each
edge is oriented toward the vertex of smaller height.

i*
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Let T be a rooted tree and R the root in it; suppose that the degree of Ris 1.
We say that the partition of the tree T is

1 2 3 k-1 g
o - = -

K,=(0,0,0, ..., 0, 1).

Denote by P the single vertex adjacent to R. If we delete R and the edge between
P, R, then we get a tree T”; we agree that P should be the root of 7”. The rooted tree
T’, defined in this manner, is called the truncated tree of T. (It is defined only if
the degree of the root is one.) If the number of edges of T is k, then T has k—1
edges (consequently, k vertices).

Now let T be a rooted tree (with the root R) such that the degree d of R is at
least two. Denote the edges incident to R by e, e,, ..., ¢;, and their terminals,
different from R, by P,, P,, ..., P, respectively. We define d new rooted trees
T,,T,, ..., T; in the following four steps: '

(i) we delete R, e, e,, ..., €y,

(i) we introduce d new vertices R, R,, ..., R; and d new edges €], e;, ... , €5,

(iii) for each number i (1=i=d), let e; be incident to R; and P;, )

(iv) for each i (1=i=d) let T; be that connected component of the graph,
built up in the previous steps, which contains R;; let R; be the root of T;.

The process, described in (i), (ii), (ii1), (iv), is called the dzsmembermg of the
tree T (having a root of degree =1) and every T; is called a branch of T.

If, for each number j (1=j=k), there are exactly x; branches T; such that
the number of edges of any T; equals to j, then we say that the partition of T is

(3tys %oy ooy Hp)s

Evidently, this expression is a partition of the number of edges of T.

Let T be a rooted tree with k edges. T has k+1 vertices. Let us assign £+ 1
different natural numbers to the vertices of T. The tree T together with such an
assignment is called a /abelled rooted tree. If we require, in addition, that the assigned
numbers should be 1,2,3,...,k,k+1 and, especially, the root should have the
number 1, then we speak on a standardly labelled rooted tree.

We denote by N(k) the number of the (non-isomorphic) labelled rooted trees
with k edges when the set of numbers, corresponding to the vertices, is fixed. Fur-
thermore, we denote by S(k) the number of the standardly labelled rooted trees
with k edges. If K is a partition of k and only the treés having partition K are counted,
then the analogous numbers are denoted by Ny(k) and S (k), respectively. Ob-

viously,
o N(k) = 2 Ng(k) and S(k) = > Sk (k).
o 2

In case k=1 we have evidently
Proposition 1. For the single partition Ky=(1) of 1

N =Ng,()=2 and S()=Sg(1)=1
hold.

Proposition 2. If K is an arbitrary partition of k, then
3G.1D I_VK(k) = (k+1). Sg(k).
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Remark. We get from (3 D NKk)=(k+ l)S (k) by summarizing for all parti-
tions K.

Proof. We can suppose (without an essential restriction’ of the generality)
that the vertices are labelled with the numbers 1,2, ..., k+1 in the non-standard
case too. Let the set © of all the trees (with k edges) labelled with these numbers;
be considered. For any element T of &, let us consider the vertex P to which 1 cor-
responds. If we interchange the labelling of R and P, then we get a standardly la-
belled tree. In the mapping, defined by this interchanging, every standardly labelled
tree is obtained exactly k-1 times.

Proposition 3. For the partition K4=(0,0,...,0,1) of k, the equality

Sk,(k) = N(k—1)
is satisfied.

Proof. Let us consider the set of the standardly labelled trees T (with k edges)
the partition of which is K,. If we form the truncated trees of the 7s, we get a one-to-
one correspondence with the set of the trees with k—1 edges, being labelled with
- the numbers 2,3, ... ,k+1.

Theorem 1. Let K=<x1,x2', ... %) be an arbitrary partition of the number k.
Then ’

N(@i—1
(.2 st = i [ (XD .)] .]
. i=1 1! x;
Remarks. N(0) is regarded to be 1. If %;=0, then the i-th factor of the product
in (3. 2) equals to 1. '

Proof. Let us consider the set S of all the standardly labelled rooted trees,
with k edges, having the numerical partition K; moreover, all the set-partitions
A of the set {2,3,...,k+1} to which the numerical partition K corresponds. To
“each element T of S, we assign a set-partition A as follows: two numbers i, j belong
to a common class precisely if the vertices, labelled with i and j, are in the same
branch of T. Let the set-partition I' of & be defined so that 7(€ &) and T'(€ €)
are in a common class when the same set-partition A is assigned to them.

It is easy to see that the number of the set-partitions A is

k! /]j] (@),

Furthermore, for any fixed A, there exist

.‘]i (NG— 13)idp

trees T lying in a common class modulo I' (this can be pointed out if one considers
the forest consisting of the truncated trees of the branches of T). The product of
the obtained quantities yields the formula exposed in the theorem. -

In the remaining parts of this §, we shall show that the well-known formula
of Cayley may be deduced as a consequence of Theorem 1, moreover, two explicit
formulae for the quantity Sk (k) will be given.
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Corollary 1 (the enumeration formula of* Cayley).
St = (k+ 1)1,

Proof. Let us summarize both sides of (3. 2) for all the partitions of k. We get,
by use of (3. 1), the recursion

k . %
3.3 S®) = Z&m_szﬂﬂCQ Bl

o Ual =D wt)”

, This recursion can be solved by the method of generating functions. Let the
exponential generating function of S(k) be defined as

Gly= 2 58 e

(the empty product ]] is regarded to be 1). By utlllzmg (3. 3) and Proposition I,

we get the functlonal equatnon

o= x| (B 1) -+ | 5 ) ] -

.1

= xﬁexp{S(]—]l))'X’} _ xexp{jév —§((j:—}))'xl} ='x-eG(x)

for G(x). Since the Bﬁrmann-Lagrange series expansion formula (see {2], p. 22)'
- implies that the single solution of the functional equation

(3.9 ) x=G(x)e~®
is
> (k k—1
3.5 . A(;(x) - k;o’ —(_+T1')— xk+L

the assertion is proved.

The next statement is essentially the same as a result of Dénes ([3], Theorem 5),
proved by him with other methods.

Corollary 2.

K -2 -Z.‘.
(3.6) . Sc(k) = k!.]] [[(l’__)'] L].

P

Proof. We get from (3.2) the formula. (3. 6) by substituting ii~2 for S(z—l)
(in sense of Corollary 1).
Corollaries 1, 2 imply at once

Corollary 3. Denote the quotient Sg(k)/S(k) by F(K). Then

R

i! ;!
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Theorem 2. For any partition K={%;, %5, ..., %) of k, we have

S(k) = (27:)'%_11; ( ]](:3;';: v)) exp(zoc)_i =2k1 x‘-Z(i))

where % = sty +xy+ -+, (Z(n) was defined in §2).
Proof. Let Corollary 2 be taken into account. Since
) ' l'i——2 ie l'i-—2
(G—n! " it

we obtain the formula stated in the theorem in such a manner that Proposmon II.-
is applied for i! and k!, furthermore, the obvious pos51b1ht1es for simplifying are
- performed. The proof is completed

It remains an open problem to get a simpler formula being asymptotically equal
to the quantity

[j](, S, v)) exp (’Z(k)—-él xiZ(i))

occurring in Theorem 2. We did not succeed in doing this.

§ 4. Some enumeration questions of networks with a rooted trée structure

By a network we understand a finite directed graph G together with a function
B defined on the vertex set of G, the range of B is the (real) open interval (0, 1).2 The
number B(P) is called the state of the vertex P.3

In what follows, we shall consider networks formed from rooted trees, any
edge being oriented toward its terminal having smaller height. We suppose that
the states are assigned randomly to the vertices. Hence, we can assume that B(P)#
#B(Q) if P#=Q because the complementary event is (possible but) of probability 0.

The state of the root of a network is called the state of the network, too.

"Assume that the root of the network G is of (in-)degree 1. Let the truncated
tree G’ be formed and, to the vertices of G’, let the same states be attributed as
their states in G. In this case the network G’ is called the truncated network of G. —
The term “branch of a network™ is used in an analogous' sense.
) Let e be an edge going from P to Q. For the sake of the brevity, we say that
.e is a red edge or green edge according as f(P)<p(Q) or B(P)=f (Q), respectively. |

We are gomg to introduce a partition of the set of networks into the types
A, B, C, D, E. These types will be defined inductively by the twelve rules (i)—(xii)

2 This definition (and the subsequent ones still more) has a cértain formal character. The rea-
sonable meaning- of the notions introduced now will be explained in § 5 where we shall attribute
a temporal behavior to the networks, starting with the states f(P) assigned to the vertices.

3 Now we have required that any state f(P) must differ from 0 and 1. This was done for the
simplicity’s sake, because, on the one hand, the possibility when some values (P) are equal to 0 or 1
will be an event of probability 0, on the other hand, our treatment would be more lengthy and intri-
" cate if the states 0, 1 were allowed. .

We emphasize that the numbers 0, 1 as states will #ot be excluded in § 5.
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to be exposed. The root is denoted by R. In the rules (ii), (iii), (iv), (v), (vi), the
degree of R is supposed to be 1; in the rules (vii), (viii), (ix), (x), (xi), (xii) the degree
of R is supposed to be at least 2. If R is of degree 1, then let ey be the single edge
incident to R.

(i) If G has only one vertex (and no edge) then G belongs to the type A.

(ii) If the truncated network G’ of G is either of type C or of type E, then G
belongs to the type A.

(iii) If the edge eg is red and G’ is of type B or D, then G belongs to the type B.

(iv) If the edge ey is green and G’ is of type B or D then G belongs to the type C.

(v) If the edge ey is red and G’ is of type A, then G belongs to the type D.

(vi) If the edge ez is green and G’ is of type A, then G belongs to the type E.

(vii) If G has a branch being of type E, then G belongs to the type E.

(viii) If G has two branches being of type C and D (respectively), then G belongs
“to the type E.

(ix) If G has no o branch of type D or E but it has a branch being of type C,
then G belongs to the type C.

(x) If G has no branch of type C or E but it has a branch bemg of type D, then

. G belongs to the type D.

(xi) If G has no branch of type C, D or E but it has a branch being of type B,
then G belongs to the type B. :

~ (xii) If every branch of G is of type A, then G belongs to the type A.

G’ . o
ex A B c D E
green E. C A C
red D B boA B
Table 1.

The rules (ii), (iii), (iv), (v), (vi) are illustrated i in Table 1. The rules (vii); (viii),
(1x) (x), (xi), (xii) can be summarized by saying that the strength of the ﬁve types
is the partial ordering seen in Table 2.

C D

.
B
|

A
Table 2.

* * Let N be a network. We agree in some notations. The number of edges of N
is k. The state of (the root of) N is f (0<pB~<1). The partition of (the graph of) N is

K=oy, %yy oon s )
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The partition

123 klk
(,0,0, ..., 0, 1)

is denoted by K. K; denotes an arbitrary partition of k different from K.

In what follows, we use a small letter p or a Capital one P according as the:
probability, to be denoted, does or does not depend on f (resp.). (In the latter case,.
B can vary in the interval (0, 1).) After p, the variable f will or will not be" writ-
ten out.

For a partition K of k, we denote by pX the probability of the event that a
randomly chosen network of partition K (with k edges), being of state f, belongs.
to the type X where X can be any of A, B, C, D, E (and, accordingly, the subscript.
of p is a small letter a, b, ¢, d or e). We write p(") for the analogous probability when
-k is fixed but not K. We denote by P® the probability of the fact that a network,.
chosen randomly out of all networks having k edges, belongs to the type X.

We adopt three hypotheses (H1), (H2), (H3):

(H1) All the graph-theoretical structures of forming a rooted tree from k edges.
(distinghished from each other by the 1somorphy of standardly labelled trees) are
equlprobable »

(H2) The state of a vertex P is chosen from the real interval (0, I) in sense of’
the uniform distribution.

(H3) The states of two different vertices P Q are chosen independently of each
other.

If these- hypotheses are accepted, then the rules (1}—(xii) 1mp1y the followmg
recursive system for the probabilities introduced above:

CY) ¥ = Zpi‘Fk(K)

(the quantities F,(K) were determined in Corollary 3)

4.2) | P¥ = [p®dp
(where x-can be any of a, b, ¢, d, e) ’
@.3) pKo = p¥-V 4 pk-D
@4 = f (P +PE 0 ))dﬂ
@5 pro = f (P¢=D () + L (B))dB
N ' X
) B
@6 - pho= [ plD(g)ap

4.7 i pfo = fpg‘—l)(ﬂ')dﬁ’v
B
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k
“4.8) p= [ (pD)%
=1
k n -
4.9 p",\’l = H(p&l)-{-pg}))"j._pfl
j=1
{4.10) Kx = ]I (p(])+p(l)+p£j))"j_(pfl_,_p:,(l)
i .
(4. 11) ph= j]=]1' (p(,;i)+P%i)+P§j))x1—‘(Pfl+pfl)
‘(4 12) pfl = 1—(p§1+P +pK1+p )

{in (4. 8)—(4. 12), K, =(%t;, %3, ..., %). Indeed, equality (4. 1) follows from (H1);
(4.2) is implied by (H2), (H3). The equalities (4. 3)—(4. 7) are consequences of
the rules (ii)—(vi), respectively. (4. 8)—(4. 12) follow by analyzing (vii)—(xii) if
one takes into account that these rules do not contradict to each other and the
premissa of them form a full system of events (if events having probability 0 are
disregarded).

We are going to point out that the solution of the equatlon system . 3)~—(4 12)
«can be reduced to solvmg a recursive equation system such that the recursive system
«depends on the expressions

k—1
x, = p® k
k x k!

{where x may be any of a, b, ¢, d, €) and, of course, on the number k (but is inde-
pendent of the partition K of k).

Proposition 4. Let us introduce the simpler notation

2

PoZy oy Ul

. J=1

Jor the expression

The system (4. 3)—(4. 12) implies the subsequent system of equations (4. 13)—(4. 17):

k 1 k-2 1
(4.13) [1+[k21] ] a =zna+[;'i—1] of (ck_lfe,:_l)dﬂ'
‘ k-1 -
[1+[k+1] ](ak—l-bk) -

(. 14) o .
—Enab'*'[kk ] {f(bk 1+ di_pdf’ +f(ck 1+ € 1)d,3}
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L ] .

k—1 .
[1+["+1]- ](ak+bk+ck>=

k

(4.15) o Yer 2 _

= ZHa,b,c-l_[k____l) f (bk—1+ck—1+dk—1+ek—1)dﬁ,v

k 1 k—1
- (4.16) o s o
= Zna,b,d‘i'[k—_—-l] {6/ (ak—1+bk—1+dk—1)dﬁ’+6/.(ck—1+ek—1)dﬁ’}
k-1 . '

(417) T=ak+bk+ck+dk+ek.,

Proof. We shall use the following terminology: if two equations of form X=Y,
Z =W are given, then the equation XZ=YW is called the product of them.

. Let us.form the product of any of (4. 3), (4. 4), (4. 5), (4. 6) with (3. 7), applied
for K,; similarly, let the product of any of (4. 8)—(4. 12) with (3. 7), applied for
K, be formed. Furthermore, let the sums corresponding to (4. 1) be formed for
each of the subscripts a, b, ¢, d, e (for x), concerning all the partitions of k. This
equation system can be deduced by use of (3. 7) to the system (4. 13)—(4. 17).

‘We did not succeed in solving the system (4 13)—(4. 17) completely. However
we can prove some partial résults:

Theorem 3. T he following assertions hold:
(A) Any of a;, by+c¢,, dite, is a rational expression of k, independent of B.
(B) b, and d, are polynomials of B with degree exactly k, with non- negatwe
( ratlonal ) coefficients, without a term of degree zero.
kk—l

_ k! .
. _ k-1
(D) Each of ay, bytcy, di+ey, by, dy is contained in the interval [O, k—kT—]

ak+bk+ck+dk+ek =

(E) Each of s b, ck, dy, e, is a polynomial of B with coefficients being ra-
tional in k. . . :

Proof. First we verify the independence statements of the assertion (A). The
last term of (4. 13) does not depend on f, because the limits of the integration con-

. k-1
cerning f are constant. Subtract a from both sides; we get [——] a, on the

left-hand side, and a sum on the rlght-hand one each term of which is a product
of expressions a; (with j<k) (the summation is taken over all partitions of the number
k except the one- member partition j=k that was subtracted). Hence the independence
of a, can be obtained by induction with respect to k. . .

(4. 13) implies by an analogous deduction that a,+b,+¢, is independent on
B. Since a, proved to be independent, the same holds for b,+¢,, too.
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: The independence of dy-+e, follows from (4. 17) and the previous parts of
the proof. A
The rationality statements of (A) can be obtained as consequences of (E) (to be
proved later). Now we are going to prove (B).
Let (4. 13) be subtracted from (4. 14). We get by the independence of a,:

k—1
[1+[k:1] ]bk ):n,,,, I+

k k-2 B .
4.18) +[kj] of(bk_1+dk_1)dﬂ’=

] - k 1 k . k k k-2
-2 () (e ) fosraa
The binomial theorem enables the subseque‘nt t_ransformatlon: '
= * k ®; k X i x; x -1
H@+byr- [ = a3 (7)der}- ma
j=1 j=1 j=1 1=0

—1 0 .
(where the empty sum of type 2 or 2 is regarded to be 0). If we multiply out
=0 =0 )
in the first product, then an expression is yielded every term of which contains a

k
power of b; (with a positive exponent) as a factor, because precisely that term [] a;t
. j=1
is subtracted which does not contain such a power. It is clear that subtraction cannot
oc¢ur in the remaining terms, furthermore, if b, has been subtracted from both
sides of (4. 13), every subscript j of a b; on the right-hand side of the resulting equality
satisfies j<k. This implies the statement to be proved, by induction, with regard to
the following remarks. The right-hand side is a sum each term of which is a polynomial
of degree Xx;-j = k with non-negative coefficients without a term of degree zero
(by the induction hypothesis). The latter term containing the integral is the integral
of a polynomial with non-negative coefficients on the interval [0, ], the degree
of this polynomial is exactly k—1; hence the integration yields a polynomial ex-
actly of degree k with non-negative coefficients, without a term of degree zero.
Thus the .assertion of (B) concerning b, is proved. By the analogy, we give
the proof for 4, only in outlines. We subtract (4. 14) from (4. 16); afterwards, we cal-

culate with a;+b;, d;; a,_, B 1nstead of a;, b;, f (by_1+d,_dp’ (resp)occur-r

ring in the above proof concermng b,.
(C) coincides with (4. 17).
‘In order to prove (D), first we fote that the deﬁmtlon of x; implies that each

of a, by, ¢, dy, e, is contamed in the interval [0 ] Smce the -values p® +p""

k-1
and p® 4 p(k) are probabtlities, also by+c,, dy+e, belong to [(_), kk—|]
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Finally also the assertions of (E) will be proved by induction (with respect to
k). Suppose that (E) is true with k —1 (instead of k). (4. 13) implies that the asser-
tion (with k) holds for 4,; (4. 14) implies that it is valid for a,+b,; hence it is true
for b,, too. Similarly, the assertion follows from (4. 15) and (4 14) for ck, from
(4.16) and (4. 14) for d,, thus (by (4.17)) for e as well.
The inductive proof is completed by Tables 3, 4. Table 4 contains the values
of p® and x; if k is 0, 1, 2, 3, 4; similarly, Table 3 gives the values of pX when -
0=k=4. o

k-] o 1 2 ' o3

K | © | @ o1y (2,0 {0,0,1) - {1,1,0) (3,0,0)
F(K)j 1 1 2/3 1/3 9/16 38 1/16
px 1 0 12 o 4/9 0 .0
o [ o F12 0 2609 0 0
pE 0} 0 (1—p59)2 0 (2-28%/9 0 0
pX 0 B 0 B B/3 (B+28%/3 B
pE 0 |1-8 0 =g | a-p3.  (G=-289/3 1-p
ok , 4
K {0,0,0, 1) {1,0,1,0) {0,2,0,0) {2,1,0, O)/
Fo(B)]. 64/125 - - 36/125 12/125 12/125
pK . 89/192 ' 0 . 1/9 : 0
X (B0B+168%+954/192 U QB+ 0
pX (55-30p2—1682—9p%/192 -0 (3-282—BH/9 0
Py B4 (48582 + 45+ 384/16 QB+3899 (B2 42893
pE (1-p5)/4 (16—4p—-5p2—4p—389/16 (5—-28—-389/9 (3-H~-28Y/3
Table 3.

Proposition 5. Let us introduce the notations my, uy, v,, Wy, 2, by -

_1 .3
m, = (2r) 2k 2ek,

U = atby, v =at+bte,

Wk. = ak+bk+dk’ ZR = dk+ek'
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kop 1 2 3 4
p 1] © 1/3 1/4 31/125
a. |0 o 1/3 38 248/375
PO 0 1/3 1/4 31125
p oy o B3 B8 (3882 + 1682+ 1384)/375
b o] o B3 3p%/16 (30482 + 12883+ 10444)/1125
PIO] 0 1/9 T 132 289/5625
p ol o [(—-p%3 (—po/8 (67 — 382 — 1682 — 1384)/375
e 101 0 |(1-p¥/3 (3-38/16 . (536 — 30452 — 1284° — 1044%)/1125
p@lo| a 2/9 3/32 716/5625
p ol g B3 (SB+4p2+ BY/16 (3008+ 2158 + 1088 +2378%/1500
d. |0} B B3 (1584 1282438332 (6008 — 43082 — 21682 — 47489/1125
PE o] 12 1/9 49/192 4441/22500 '
pol1-g|-p%/3| (10—58—482—B%/16 |(860 —3008— 21552 — 1088 —2375%)/1500
e || 0[1—8]—pB3/3] (30—156—1282—38%)/32 [(1720— 6008 — 43082 ~2164° - 4745%)/1125
P o] 1/2 2/9 71/192- 8459/22500

Table 4.

If koo, then the following equation system (4.19)—(4. 23) is asymptbtically vaild
for the polynomials w,, wy and the constants ay, v, z:

(4.19)

(4. 20)
(4.21)
(4.22)

(4. 23)

1
(1+e)a, = ZHa+mk—-efwk_1dﬁ’
0

1
(l+eau, = ZH,,+mk—e{ak_1ﬁ+ fwk_ldﬂ'}
- : B

(A+e)yy, =20,+m,—e-a,_,

1
(+e)w,=Z0,4+m,—e f wy_1df’
: C

Z v, = my

Proof. Let us apply the substiiution

C1t e =

(k—1yk-2
k=1

— Wi

and term-wise integration in (4. 13), using (4. 17). Let analogous transformations
be performed for (4. 14), (4. 15), (4. 16) (e.g., in case of (4. 14), the substitution

byitaatde 1 te 1=

(k — 1)+~
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is to be applied). Taking the asymptotic equalities
NLE2) I 2
k k —1 ’

k-1
kk ~ (2m)~ 2k 2e"

into account, we get the system (4. 19)—(4. 23).
] Remark. For the particular choice =0,
Wk(O) u,(0)=a,

holds (thlS follows from Theorem 3 as well from (4. 19) —(4. 23))

§ 5. The connection between the type and the behavwr of a tree-structure
network

The types A, B, C, D, E were distinguished in § 4 in a formal way so that the reader
should feel the lack of a convincing motivation. Now (as this was promised in Foot--
note 2) we are going to point out that the fact that a network N is contained in
one or other of the types A, B, C, D, E implies entirely unlike consequences if the-
behaviour of the network is studied, as it was introduced in Section 3 of the former-
article [1], starting with the values f(P).

We suppose that the reader is familiar with Sections 1—3 of [1]. Let N be a.
tree-type network, let us denote the vertices of N by Py, Py, ..., P,yy (Where k& is.
the number of edges of N) such that the subscripts constitute a standard labelling..
To any P;, let us assign a function «;(¢) by the method explained in Sect. 3 of [1}
such that the initial values are determined by o;(0)=pf(P;) (where 1=i=k+1).
Especially, to the root P, the function «,(¢) is attributed. We have

Proposition 6. If the assumptions, exposed premously, are accepted, then the follow--
mg six statements are valid for the network N:

() If N belongs to one of the types A, B, C, D, E, then the functzons o;(t) are
defined at least in the interval [0, 1] ( where 1<1<k+1 ).

(I1) If N belongs to the type A, then ay(t)=1.

(IID). If N belongs to the type B then Q<o (1) <1 and there exists a ¢ such that )
O<t<tand a,(2)=1.

(IV) If N belongs to the type C then 0<o, (1)<l ana’ o, (t)=<1 for every t lying
in the interval [0, 1].

(V) If N belongs to the type D, then al(r) 0 and there exists a t such that O<t<t
and o, (t)=1. A

(VI) If N belongs to the type E, then a,(t1)=0 and al ()=<1 for every t lying in
the interval [0, t].

1 The words ““at least” mean that the «;’s may also be defined for some (possibly all) values.
¢t fulfilling ¢>v7. . .



1144 A. Adém and J. Bagyinszki

Remark. Since the conclusions of (II)—(VI) exclude each other, each of. (II)—(VI)
‘holds with the formulatlon “4f and only if” provnded that & is contained in some
-of the five types. .

Proof. (I) does not require a separate treatment (it follows from the other five
.assertions). To prove (II)—(VI). we use induction with respect to the number of
-vertices of N. The type of a network was defined in §4 by the rules (i)—(xii) re-
.cursively; now twelve cases can be distinguished corresponding to these rules.

If N has a single vertex, then, on the one hand, it is of type A by (i); on the other
‘hand, evidently o, (¢)=1 if ¢t = (1 —B(Py)), especially, a,(r)=1.

Assume that the number of vertices of N is k41 and the assertions (I)—(VI)
.hold for the networks having at most k vertices. We distinguish eleven cases cor-
-responding to (ji)— (xu)

Suppose that N is of type A by virtue of (ii). Denote (by P, the root of N and)
by P, the root of the truncated network N’. There exists the edge P2P1 and no other
-edge is incident with P, (in N). By the induction hypothesis, the conclusion of (IV)
or (V1) holds for N, thus «,(¢)<1 is valid in the whole mterval [0, 7). Hence «,(t)=1
-in the interval [r(l— B(PD), Tl

Assume that N belongs to the type B in consequence of (1u). Either the conclusion
-of (III) or that of (V) holds for N’; in both cases, az(t)—l is satisfiable with some
t in (0, 7). Let ¢, be the minimal ¢ “such that r=¢"=7 implies az(t <1 (it exists
since a,(t)<1 and the functions « are continuous from right); it is clear that the

value of «; grows from 0 to (t—1,)/r in the interval [¢,, £]. Because PQP1 is a red
-edge, B(Py)<B(Py), hence ay(z(1—B(P)) = 1.

If N is of type C in sense of (iv), then §(P,)=f(Py), thus o, grows in the interval
i0, (1 —B(Py))) from B(P,) towards 1—pB(Py)+B(Py) (< 1) (without reaching it),
furthermore o,(t(I—B(Py))) = 1 and «,(t(1—B(Py))) = 0. a;(t)=B(P,)<1 when-
ever t(1—p(P)) =t =1

Still we have to prove 0<a1(r) If N’ is of type B, then this is obviously .valid.
If N’ is of type D and there exists a ¢’ such that 0<¢"<t and the implication

Ust=1= a(t)<1

“is true, then evidently «,(t) = (t—1t")jt = 0. If N’ is of type D and no ¢’ (with the
-mentioned property) exists, then it is clear that some o; grows in the interval {0, 1!
from 0 to 1; however, «;(0)(=B(P;))=0 was excluded (cf. the hypothesis (H2)).

If the type of N is determined by (v) or (vi), then the proof can be carried out
by similar ideas.

If one of (vii)—(xii) decides the type of N, then the conclusion of the correspond-
‘ing statement of Proposition 6 can be proved by use of the subsequent principle
-(following from the behaviour defined in [1]): if the out-degree of P; is at least
two, then the value «,(¢) (at any instant ) equals to the minimum of the values
“that result if the values assigned to P, (at ?) are calculated for the several branches
-of N.

a
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Dual pushdown automata and context sensitive grammars

By GY. REVESZ

1. Introduction

In recent years, a number of generalizations of pushdown automata have been
studied. The basic model of pushdown automata bears an equivalence relationship
to context-free grammars as shown by Chomsky [1]} and Schiitzenberger [2]. Gray,
Harrison and Ibarra extended this model as they studied two-way pushdown auto-
mata [3] while Ginsburg, Greibach and Harrison introduced stack automata [4 and 5].
A stack automaton is essentially a pushdown automaton which is allowed to scan
the inside of its pushdown store without having to erase, i.e., in a read only mode.
Stack automata are closely related to context sensitive grammars [6], but they are
not equivalent to them. (See e.g. in [7].) '

In the present paper we offer a new model called dual pushdown automaton
(DUPA), since it-has two pushdown stores which are complementary to each other.
This model can be motivated by a normal form of context sensitive grammars
which we shall see later. It can be seen that dual pushdown automata are equivalent
to context sensitive grammars and, which is the same, to linear bounded automata
[8 and 9]..

To every context sensitive grammar in normal form we can construct a DUPA
that always performs the leftmost replacement(s) while parsing sentences of the
given context sensitive language. This feature may be useful for parsing from left
to right, which is of great importance in connection with the direct interpretation
of algorithmic languages by machine (without translation) as suggested by Kalmadr,
[10]. Namely, according to the concept of Kalmdr’s formula directed computer
the execution of an algorithm written in a mathematical formula language proceeds

-as follows. The description of the algorithm, i.e., the program of the calculation is
analysed from left to right and, whenever a syntactic unit is recognized, it is semantic-
ally interpreted. Naturally, for this purpose we need a suitable language where no
back tracking is necessary for the syntactic analysis. It seems useful to treat this pro-
blem with the aid of context sensitive grammars even if we are concerned with
context-free languages only.

In the present paper. we discuss only the basic relation of dual pushdown auto-
mata to context sensitive grammars. The problem of left-to-right parsing with
respect to a specific subclass of context sensitive (namely, unilateral context sensitive)
grammars has been studied in [11] whose results can very likely be generalized for
context sensitive grammars in normal form. However, the problem of transforming

2%
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unfeasible grammars into suitable forms has not been solved yet in general. This
problem is also related to the problem of simplifying given arbitrary dual push-
down automata.

2. Preliminaries

The set of words (including the empty word &) over a finite set of symbols V
will be denoted by ¥ *. Individual symbols will be denoted by small latin letters while
words and sets of symbols by capitals.

Definition 1. A context sensitive grammar is a quadruple G=(T, V, s, P), where
T and V are finite sets of symbols, TC V, s€ V—T and P is a finite set of ordered pairs
— called rules — of the form XqY — XQY, where g€ ¥V — T while X, Y and Q are in V'*
and Q¢ (i.e., @ non-empty).

Definition 2. A context sensitive grammar G is said to be in normal form if
every rule in P is of the form a -~b or a —~bc or ac —~bc or ab —~ac, where a, b and
carein V.

Definition 3. For a given context sensitive grammar G and two words 4 and
B¢ V*, Bis an immediate consequence of 4 (in symbols A= B), if there exists a
rule XgY —~XQY in P such that A=UXqYZ and B=UXQYZ for some U, Z¢ V*.

Definition 4. For a given context sensitive grammar and two words 4 and B€ V¥,

B is derivable from A (in symbols A:>B), if there exists a finite sequence of words
X,, X, ..., X, each in V* such that A=X,, B=X, and X,;=>X;,, for 0=i<n.
The sequence X,, X;, ..., X, is then called a derivation of B from A with respect
to G. :

Definition 5. For a given context sensitive grammar G the set of words

Lo = {W|s= winT*

is the language generated by G.
Two grammars are called weak-equivalent if they generate the same language
A DUPA may be informally illustrated as in Fig. 1. Each move of the device
is determined by the actual state of the finite state control and the topmost symbols
in the two pushdown stores. :

Ia,‘,, o
{ first pushdown store

finite
state
control
i

[#)bli ]t:J

second pushdown store

Fig. 1. Dual pushdown automaton
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Each move consists of moving the two read-write heads at most one square
‘right or left and writing a new symbol on one of the two read-write positions. The
movements of the two read-write heads are coordinated such that only four types
exist: {R, S, L, D}, i.e., right, stay, left, delete.

The DUPA is stopped if it attempts to read a symbol from an empty pushdown
store, i.e., if its first read-write head is to be positioned below the bottom of the
correspondmg pushdown store.

We now give the formal definition of a DUPA.

Definition 6. A dual pushdown automaton is an 8-tuple 4=(X, X, T s, #,0,p, F)
where

(i) Kisa finite nonempty set (of states),

(i) ¥ and T are finite nonempty sets (of symbols), TCZ, s€Z—T,

(iii) 4 is the left endmarker: # ¢X, -

(iv) 6 is a mapping from KX(ZU {3 )X Z into the finite subsets of K XX

X{R, S; L, D} such that (p”, x’, LY§ 6(p, #, x) and (p’, x’, D)¢ 6(p, #, x) .
for any p, p’, x, x".

(v) p,€K (1n1t1a1 state) and FEK (ﬁnal states)

If the mapping ¢ is umque then A is determlmstlc otherw1se it is nondeter-
ministic.

Definition 7. A conﬁguratlon of a DUPA is any element of the set KX #Z*'X*
where 142,

Definition 8. Let \— be the binary relation defifed on the set of configurations
as follows. _
For arbitrary a€(ZU{#}), and b,c€2 and XeEU{#}* Ye3*

(p, XalbY)-(p', XaclY) if (¥, ¢, R)ES(p, a,b),
(p, Xq!bY)l— (v, XaleY) if (p’,c, S)€é(p,a,b),
(p, XabY)-(p’, X!cbY) if (p’,c, L) €6(p,a,b),
(p, XabY)(p’, X'cY) if (p’,c, D)ed(p, a,’b).
Definition 9. Let 1= be the transitive closure of -, te., for configurations z

and z’, z|=2z" if there exists a sequence of configurations z, z,, ..., z, such that
20=2, z,=2z’ and z;}z;,, for 0=i<n.

Definition 10. A word W ¢ 2* is accepted by a DUPA if (p,, # !W)i=(p;, #5!)
for some p € F.

Deﬁmtzon 11. The set of all terminal words (We T*) accepted by a DUPA is
called the language accepted by it.

3. The relationship of DUPA to context sensitive grammars

Theorem 1. The language accepted by a DUPA can be generated by a context
sensitive grammar in normal form.

Proof. To each DUPA we construct a context sensitive grammar as follows.
Let a;¢ V for every a; € 2. Moreover to every pair (p;, a;) in KXZ a new element
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af € V will be defined. The set of rules will be defined such that
a ~aP€eP if (pi,a, DES ), %*,a,)
| or (piai, S)ES(p;, #,4,),
aa) ~ aa’€P if (p;,a,R€cd(p;, a,a,)
or (p;,ax, S)€d(p;, ar, a,),
aa, - aPa,eP if (pi,a, LYES(p), a1, a),
a® ~aPa, e P if (p;,a., D)Ed(p;, a, a,).

In addition to that
af¥ ~ a, € P for every a, €T,
aa, ~ aiaf € P
. . for every i, I, r
aa® - afPa,eP
and .
s>aP¢P if (p;,s, RES(p;, %,a,) for

some p € F. A : :

It can be easily verified that each word accepted by the DUPA can be ge-
nerated by the grammar, if we follow the way of accepting the given word in reversed
order. '

On the other hand, to each word generated by the grammar a sequence of
moves of the DUPA. can be specified that corresponds to the reversed derivation of
the given word.

Some of the rules of the grammar constructed above are of the form ab —cd,
which is not allowed in the normal form (see Definition 2.), but each of these can
be replaced by three rules of the form ab —ab’, ab” —cb” and cb’ —cd.

Theorem 2. The language generated by a context sensitive grammar is accepted
by a DUPA having one internal state only.

Proof. It is known that each context sensitive grammar is weak-equivalent to one
in normal form [9]. Thus, we have to consider context sensitive grammars in normal
form only. The corresponding DUPA will be defined as follows:

Let 2=V and the mapping & defined such that if @, -~a,€ P then (p,, a;, S)¢
€6(p.,aq,a,) for.every q €V, if a,—~aa P then (p,,a,, DYES(p,,a,a,), if
aa, ~aqa,cP then (py,a, S)Y€d(p,,a,a), if ara,—aia,€ P then (py,a., L)€
€6(p1, a;, a,). Moreover :

(pl’ arﬁ R)Ea(ph 0,, ar)‘

(p19 ai: R)Eé(pls #: ar)

(P>, LY€S(py1sap, a,)
for every a,, a, in V.

It can be seen again that each word generated by the grammar is accepted by
the DUPA and vica versa.

Corollary. Each DUPA is equivalent to a DUPA having one internal state
only. '
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T/hus we can say that the finite state control of the DUPA is superfluous since it
can be replaced by a single state control.

Naturally the number of internal states will be decreased at the cost of increasing
the Aumber of auxiliary symbols. The construction of a minimal (in some sense)
DUPA to a given context sensitive grammar is an open question.

’Determmlstlc DUPA can be easily implemented and used for practical purposes
but' it is to be ensured that the language to be recognized is of suitable structure.
Usually the grammar generating the language must be transformed into an appro-
prlate form (if possible) and the transformed grammar is more complex than the
original one. These questions are not discussed here, since they are not sufficiently
elaborated yet. :
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3ameuanne K TEeopeMe O NOJIHOTE CHCTEMbI KOHCYHBIX aBTOMATOB

F. FERENCZY

B Hacrosiedl cTaThe Mbl YKa3biBaeM Ha OWIAOKY B.JIOKa3aTEILCTBE TEOPEMBI
O TIOJHOTE CHCTEMBI KOHEYHBIX aBTOMATOB M MCIPAaBHM ee. DTa TeopeMa NepBBIA
pa3 Gbita omybaukoBana B ctaThe A. A. JleTnuesckoro [1] ¥ Mel Oyzem npearnona-
‘TaTh 3HAKOMCTBO YHTaTeNs ¢ 3Toi paboToii.

VnomsauyTas TeopeMa A. A. JleTHYeBCKOIr'O I'NNACHT:

J1a mozo, umobsl cucmema agmomamos 061a0asa ceoLlicmMeom NOAHOMbI, HeoH-
X00UMO U QOCMAMOUHO, UMOBbl OHA COOEPHCAL A8MOMAM € PA3VEAAIOUUM COCHIOA-
HueMm. .
JTokasaTensCTBO JOCTATOYHOCTH 3TOH TeopeMbl B [1] onMpaeTcs, B 4aCTHOCTH,,
Ha TOT (aKT 4YTO, HCHOJIb3Ys aBTOMAT C PA3eNAIOLIMM COCTOSHHEM, MOXHO pea-
JIM30BaTh aBTOMAT, HMEIOLIMI COeIMHUMYIO CHUCTeMy MHOXecTB. Paccmartpusa-
IOTCS IBA THUIIA AaBTOMATOB C Pa3AeisAIOLUMM COCTOSHHEM dy, KOTOpblE MbI OyleM
Ha3bIBATh ®-aBTOMATAMH M [-aBTOMATaMH, COOTBeTcBeHHO. MMeHHO, B cilyyae
a,#dy N aj%a, Mbl ToBOpuM 00 ¢-aBTOMATe, a B ciyyae a;=a,—0 f-aBTomarte.
" B moKa3aTeNnbCTBe AJIA Ciydas o-aBTOMATa, MCHOJB3YIOTCA MYTH BHIAA

s:(alaaZs e Ayt aO)
H .
s'=(a{,a§, trey al’l—l’ a())

B 3TOM aBTOMaTe. XOTA 3TOT (hakT He MOTYEPKUBAETCH, SICHO, YTO TpebyeTcs oT
KaXIOro W3 3THX TyTeil HE NOBTOPSTH COCTOSAHMSA, T.€. a;#<a; (i) B 5, M ay=a;,
a; #a;(i#]) B s’. Mexny TeM BBIACHSIETCS, YTO NpPHUMEHAS K ®-aBTOMAaTaM cnocob,
yKasaHHblif B [1], Hen3s Bcerga TOJIyYHTh aBTOMAT, 00JafaromMi COEIMHUMOI:
CUCTEMOI MHOXECTB. PaccMoTpHM 11 ipaMepa aBToMaT /= (A4, X) ¢ MHOXeCTBOM
coctosnmit A={ay, a,, a;, b} ¥ MHOXeCTBOM BX0onoB X ={x,, Jo}, CO clleAytoLIei
-Tabauueit nepexonos: ' '
a, | a, | a1 | b

Xollalag | arl b

Yol ai| b b|b

TIOCKONBKY @aXy=dy, d1X0=0ay, H QgYo=4a;, A1 Xq=4a;, d1Xy=0y, TO dy €CTb
paznensroiee coctosHue apToMata &f={(4, X), 1 B Ka4eCTBE UCMONb3yeMbIX MyTeiL
HMEEM: ' ‘

s:(al’ao)a S’Z(ai, alaao)‘
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CorIacHo [0Ka3aTeNbCTBY NPOBEACHHOMY B [1], Mbl MOCTpOMM aBTOMAT &7 —
TIpsMOe Ipou3BeicHHe, B koTopoe &/ BXomut 5 pa3. IlycTk cocTosHHMA, NpuHane-
wawme V, 6ynyT u=(a,, a,, ay, a9, a7) n v=(a,, a,, ai, a,, a,). EcIa Ml Temepb
TiepeBedeM ¥ B COCTOSHME, NPHHAICKAILEE V), 2 v B COCTOSHME, TIPHHAMJICKALLEES
V,, cioco6oM yKka3aHHBIM B [1], HONy9AM OIHO M TO e cOCTOsIHKE (dg, Gy, Ay, a3, ay),
H OKa3BIBAeTCA HENPAaBUJLHBIM YTBEPXKAEHHE O TOM, YTO MHOXecTBa V; M V, —
Hemepecekarompecs. OTOT HEMPUATHBIA (aKT cIy4aeTcss OYEBHIHO H3-3a TOTO, YTO
-COCTOSIHUE @, BXOAUT U B NyTh &', T. €. a43=4,.

Orcrona BHAHO, YTO OOKA3aTESBCTBO BO3MOXKHOCTHU peajiM3alldd aBTOMATa
:CO COEMHHMOI CHCTEMOM MHOXECTB C TIOMOLII0 o-aBTOMaTa B [1] ocraercs B cune
TONBKO TOTOA, KOCJa B G-aBTOMATE HAHAYTCS MyTH S H §', HEMEpeceKarouuecs HU
B OJHOM M3 COCTOSIHHI @, M @]. ®-aBTOMATHI C 3TUM CBOWCTBOM HAa30BeM &,-aBTO-
.MaTaMu. PaccMoTpenHblid mpumep aBToMaTa /=(A, X) OAHOBPEMEHHO HOKAa3bl-
BAa€T, YTO CYLIECTBYIOT G-aBTOMATEI HE SBJNAIOILMECH o,-aBTOMaTaMu. Takue o-
.aBTOMATBI HA30BEM O ,-aBTOMATaMA.

MBI Teneph TMOKaXeM, YTO UCIOJNb3YS ®,-aBTOMAT TaKKe BO3MOXHO peajin3o-
BaThb aBTOMAT, MMEIOIUHA COEOUMHUMYIO CHCTEMY MHOXecCTB. JIerko BHAeTIb, 4TO
y KaKIOTO & ,-ABTOMATa HAlAYyTCs MyTH § U §’, He MOBTOPSIOLIME COCTOSIHAA U Tepe-
.CEKaIoLIUeECS TOJTBKO B OMHOM M3 COCTOAHMIM @, M a7. TIpeanooxuM, 910 Y o ,-aBTO- .
MaTa &, s 1 s IEPECEKATOTCA B @4. DTO 3HAYHT, YTO MiIs nogxonsiero k(l=k=n-2)
MMEEM @y, ,=a,. MoxeM YOeIUThCS TAaKKe, YTO COCTOSIHHE g, NPEAIIECTBYIOLICE
-COCTOSIHMH @, B niyTH §’ , He BXOOUT M B nyTh §. Korma OBI 3TO cy4dsioch cyuuect-
BOBaJIW OBI ¥ TAKME MTyTH § ¥ §’, KOTOPLIE HE TIEPECEKAIOTCS HA B OMHOM M3 COCTOSHHIA
.y ¥ aj, T. e. Toraa aBToMaT &/ He MOXET OBITh o ,-ABTOMATOM.

CrpoumM aBTOMaT &%™*™ _ mipgaMoe MpPOU3BENEHHE, B KOTOPOE & BXOIMUT
2(m+n) pa3. B 3T0M aBTOMAaTe pacCMOTPHUM MHOKeCTBO V cocTosHuM, 0banaroLmx
-cBOiicTBOM: Kaxoe a;(i 0) M a] BXOJMT B Ka4eCTBe KOMIOHEHTHI 2 pa3a; eclu Ajis
HEKOTOPBIX COCTOSIHHI BBIMOJHSIOTCS PAaBEHCTBA BUOA ¢; =a;, TO TaKhe COCTOSHUS
JIOJKHBL BXOAMTH 4 pa3a: IBa pa3a B KayecTBE ¢; U ABA pa3a B KAYeCTBE a@;; COCTO-
SIHNE d, BXOAWT B KauecTBe KOMIOHEHTHI 4 pa3a. Tak, B xakA0M COCTOSIHMK U3 V; a,
uMeeT TOYHO 4 BXOXKIEHHUH, a ay ¥ @, — TOYHO 2 BXOXICHHHA B Ka4eCTBe KOMIOHEHTHI.
PazobbeM MHOXKECTBO V' Ha ABa Hemepecekawluecss MHoXecTBa V, U V, Tak, 4TOOBI
¥, comepxaiio T€ U TOJNBKO T€ COCTOSHHA U3 VF, y KOTOPBIX HU OJIHA KOMIIOHEHTA,
paBHas a;, He PACIIOJIOKEHa MeXAy ABYMS KOMIOHEHTaMH, paBHBIMHA d;. Tak kak
'y KaX[OTO COCTOSIHUS v, NpHHAIJexalleM V, ecTb ABa KOMIIOHEHTa, PaBHBIX d,
MEXIY KOTOPbIMH HE PACIIOJIONKEH HH OLHWH KOMIOHEHT, PABHAIOILMMACA af, 1 OLHO-
'BPEMEHHO CYLUECTBYIOT 1Ba KOMIIOHEHTA, PABHBIX @y, MEXKIAY KOTOPBIMH PACIOJIOKEH
IO KpaliHeil Mepe OAHH KOMITOHEHT, PaBHSIOLUMMNCA gy, TO UMEIOTCS BXOABI Z; U Z,
TaKue, YTO vZ; U vz, MpUHaANexaT V; u ¥V, cooTBEeTCTBEHHO, T. €. V|, u V, obpasytor
COEAMHUMYIO CHCTEMY MHOKECTB.

A remark on the theorem of the completenes of the systems of finite automata

The author showed that the proof of the following theorem of A. A. Leticevskij, 4 system of
_finite automata is complete if and only if contains an automaton whith a dividing state, published in his
paper Uslovyja polnoty dija koneényh avtomatov (Zurnal vycislite’'noj matematiki i matematiceskoj
Afiziki, v. 4, 1961, pp. 702—710), conatins an error and corrected it.
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Namely, in the sufficiency proof two classes of automata whith dividing state were considered.
However the proof for the first class cannot be applied to all the automata which should be covered
by the class. Therefore, in the present paper the author has divided the first mentioned class into
two subclasses and has completed the proof for the mentioned subclass for which the origina
LetiCevskij-s proof was not appllcable

JlurepaTtypa

111 Netuuenckuit, A. A., Veopus TIOAHOTHI AJ151 KOHEYHBIX ABTOMATOB, JKypHaA gvruucaume. vnoil
Mamesamuru u4 mamesmamuvecrkoii gusuxu, T. 4, 1961, crp. 702—710.

(Hocmynuno 11-020 despaas 1971 2.)






Computer simulation of the information |
preprocessing in the input of the cerebellar cortex

BY A. PELLIONISZ

1. Introduction

Since the classical studies of Ramon y Cajal (1911) extensive work has been
carried out in order to reveal the neuronal organization of the cerebellar cortex.
‘The morphology has been elucidated in many particularly also ultrastructural
details by neuroanatomists (Fox et al. 1954, 1962, 1967; Szentdgothai and Raj-
kovits, 1959; Gray, 1961 ; Hamori, 1964; Hamori and Szentdgothai, 1964, 1965, 1966)
and tentative circuit diagrams have been suggested (Szentdgothai, 1963, 1965). The
physiological properties of different types of neurons have been established electro-
physiclogically (especially by Eccles and his collaborators, 1964, 1966). As a result of
these studies considerable progress was attained also in the interpretation of the
function of the cerebellar neuronal circuits which has led to the possibility of some
structuro-functional synthesis of the cerebellar network. (Eccles et al. 1967a.)

All these efforts have paved the way for preliminary attempts at computer
simulations of the cerebellar neuron network (Pellionisz, 1970). By simulation of
cerebellar neuronal fields of restricted but nevertheless substantial size (in the order
of 10* neurons) one could get some insight into the holistic activity of. whole. fields
of the cerebellar cortex. In our first step at modeling the cerebellar circuits neurons
were considered as McCulloch-Pitts type elements, and the transfer of an arbitrary-
random -excitation pattern arriving simultaneously through the mossy fibers was
simulated. : '

In this paper the simulation of the transfer of excitation patterns is applied

" with the objective of a further analysis of the mossy fibre input. First, in order to
explain the structural basis of this approach, a short review of the neuronal ar-
rangement of the cerebellar granular layer will be given. As this layer receives all
the mossy fibre input, any volleys of information (before entering the higher layers
of the cerebellar cortex) undergo a certain kind of preprocessing in this remarkably
simple and regular neuronal structure. Looking at this structure the first obvious
question that comes to one’s mind is: What may be the functional significance of
this preprocessing? In the first part of this paper it will be shown how this ques-
tion might .be answered by analyzing the transfer of excitation patterns in the model

_ neuron circuit. The second part is to demonstrate that even complex physiological

events can be readily explained by this approach: The electrophysiologically ob-

served “pattern sensitive” inhibition of the Golgi cells (Precht and Llinds, 1969)

will be interpreted by computer simulation of excitation patterns.
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2, Neuronal organization of the cerebellar granular layer

It would be far beyond the scope of this paper to discuss in full details the
structure of this neuron arrangement. The reader is, therefore, referred to the anatom-
ical literature and the recent comprehensive treatment by Eccles et al. 1967 a. Cha-
racteristic features of the architecture of the granular layer are shown in the Fig. 1.
The inputs to the layer are the mossy fibres (MF) that upon entering the layer branch
several times and develop presynaptic expansions, each giving rise to a complex
synaptic apparatus, to a so-called “cerebellar glomerulus” (GL). The space is densely
packed with very small granule cells (GR) having 3—5 dendrites each. Their axons
constitute the output lines of the layer. They ascend to the molecular layer, where
they bifurcate in 7-shape manner to give rise to the parallel fibres (PF). The terminals

Fig. 1. Simplified, schematic view of the cerebellar architecture. Lamination of the cortex is

indicated at right: GRL: granular layer; PL: Purkinje cell layer; ML: molecular layer; MF: mossy

fibres; GL: cerebellar glomeruli; GR: granule cells; GO: Golgi cell; GD: Golgi cell dendrites;
GA : Golgi axon; PC: Purkinje cell; PF: parallel fibres.



Computer simulation of cerebellar cortex

159-

of the mossy fibres in the glomeruli establish excitatory synapses with the granule
cell dendrites. A glomerulus receives always only one mossy fibre terminal. The
mossy fibres synapse in the glomeruli also with the descending dendrites (GD) of
the Golgi cell (GO). The axonal terminals of the Golgi cell (GA) descend also into
the glomeruli, and exercise a postsynaptic inhibitory influence on the dendrites.
of granule cells. (Golgi cells have excitatory synapses also with the parallel fibres,
this indirect input, however, will be neglected in the model for the time being.)-

3. Pattern-transfer in the mossy fibre-granule cell neuronal net

In order to model the function of the structure, a connectivity chart has to be
deduced first. Fig. 2 shows a simplified model of the connectivities among mossy
fibre terminals (glomeruli) and granule cells, by placing all these neurons into a.
two dimensional field. The mossy fibres entering the layer end in a glomerulus.
each. Granule cells are assumed to have four dendrites, which enter into glomeruli
situated around the granule cell. The functioning of this system can be visualized.

(Pellionisz, 1970) by considering a pattern
of the excited glomeruli at a particular inst-
ant, and computing the transfer of this exci-
tation pattern to the granule cells, if they are
considered McCulloch-Pitts elements.

In Fig. 2 the glomeruli, considered to
be excited at- a particular instant, for ex-
ample, are shown in black. Let us assume
that the threshold of the granule cells be 3,
i.e. simultaneous excitation of three of the
four glomerular synapses would fire the
granule cell. The granule cells excited under
these circumstances are also shown in black.
In this way, the pattern of excited glomeruli
is easily transformed into a granule cell
excitation pattern. But as nobody knows
the real threshold of the granule cells, all
the four possibilities have to be considered
(each granule cell having four synaptic sites,
of unitary: function each, it has obviously
four possible thresholds, i.e. if no other
influence were exercised upon the granule
cell). The transfer for all the four possible
thresholds are shown in Fig. 3. A randomly
generated pattern of active glomeruli are
shown here and the transfer into excitation
patterns of granule cells if their threshold is
supposed to be 1, 2, 3 or 4, respectively. From
these patterns one gets the visual impression
that — independently of the threshold —
as a result of the pattern-transformation- a

PF

i

6L

1
(F

Fig. 2. Model of the mossy fibre-granule-
cell neuronal connexions. MF: mossy-
fibres; GL: glomeruli; GR: granule cells;
PF: parallel fibres. Mossy fibres (and glo-
meruli) supposed to be excited in a parti--
cular instant are shown in black. If the-
granule cells are considered threshold ele-
ments, granule cells, shown in black are
excited (granule cell threshold is assumed
to be 3). Note, that the state of the mossy-
fibre marked with arrow is irrelevant
(c. f. p. 160).
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concentration of the excitatory spots emerges. At the granule cell threshold of 1
or 4, however, the result of the transfer is an almost entirely black (or white)
pattern. The granule cell threshold, therefore, seems very unlikely to be 1 or 4; it
is most probably 2 or 3. This preprocessing, however, can be interpreted not only as a
visual impression but can be considered from a theoretical aspect as well:

Note, that in Fig. 2 the mossy fibre, marked with arrow, carries no information
under the existing conditions: i.e. no matter, whether excited or not, the granule
cell pattern would remain the same. That means, that there is a redundancy in the
functioning of the mossy fibre-granule cell cerebellar input channel, which provides
an increased reliability in this input. The error-suppressing effect of this redundant
transformation can be numerically estimated :

‘Determine the probability that an erroneous activity of a single mossy fibre
terminal (i.e. an excited state instead of non-excitation, or vice versa) does not effect

GR3 GR&

Fig. 3. Transfer of a randomly generated excitation pattern of 2424 glomeruli (GLOM) to
patterns of excited granule cells if their threshold is considered, 1,2, 3,4 in GR 1, GR 2, GR 3,GR 4
respectively. Black squares represent excned neurons.

any change in the granule cell excitation pattern. Consider that every mossy fibre
terminal (glomerulus) is connected to four granule cells in the model, and these
cells in turn are connected to eight other mossy fibre terminals (see Fig. 2). Thus
“each erroneously activated mossy terminal has 286=256 different possible pattern-
-environments. The granule cell patterns have been computed for all the 256 possible
<cases at 1, 2, 3 or 4 values of the granule cell threshold. At 1 or 4 values of the
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granule cell threshold, no change in granule cell excitation pattern would occur
in 161 cases if the state of the central mossy fibre terminal were changed to 1 from
0 or vice versa. At 2 or 3 values of the threshold the output pattern is indifferent
to a single change in the input pattern in 47 cases. Therefore, if the probability of
all the possible patterns is-considered equal, the probability, that a single error of a
mossy fiber terminal will not be carried on to the granule cell pattern is 0,63 (at 1
or 4 values of the threshold) and 0,18 (at 2 or 3 values of the granule cell threshold).
The 0,63 probability of the error suppressing largely limits the capacity of the mossy
fibre channel, and in addition, very asymmetrically: the threshold of 1 favours
low activity-level in the mossy fibre patterns, the threshold of 4 favours the highly
excited patterns. As there is no reason to postulate such asymmetry in the function-
ing of the pattern transfer, the 1 or 4 threshold seems again unprobable, as long
as Golgi inhibition is not introduced. This case is discussed in a following study
(Szentdgothai and Pellionisz, 1971).

It is worth mentioning, that besides the redundancy of the transform itself,
there is another kind of redundancy in the flow of information: the redundancy
in the neuronal structure. In the model the number of glomeruli and granule cells
- are considered equal, consequently the numbers of the possible input- and out-
put patterns are identical, both being 2* (if n is the number of the elements in the
pattern). .

In the real cerebellar granular layer, however, there are about 27 times as
many granule cells as there are glomeruli (Palkovits et al. 1972) and, therefore,
‘there can be approximately 227" output patterns, while the number of the possible
inputs is 2". Considering, that every glomerulus pattern determines one and only
one granule cell pattern (if the granule cell threshold is fixed) the structural redun-
dancy is enormous.

Both considerations lead to the notion that the granular layer might play an
error-suppressing role in the mossy fibre input of the cerebellar cortex. It is worth
while to draw attention to the fair agreement between a real neuronal structure
and theoretical studies (Neumann, 1956) dealing with formal neuronal networks,
in which information restoring organs in such networks had been postulated.

4. Model of the pattern-sensitive Golgi cell inhibition in the granular layer

In this Chapter an experimental observation of complex interaction events in
the mossy fibre input will be demonstrated and explained by computer simulation of
the excitation pattern transfer.

In experiments performed by Precht and Llinds (1969) mass activity of granule
cells had been recorded by microelectrodes introduced into the floccular area of
cat’s cerebellum. The field potenctial of great many granule cells could be evoked
by electrical stimulation both of the ipsilateral and of the contralateral VIIIth nerve,
since there is an overlapping mossy fibre input to this area of the granular layer
from both the ipsi- and contralateral VIIIth nerves. '

If the test stimulus was preceeded by an identical conditioning volley, the second
granule cell field response was drastically reduced. This phenomenon is attributed
to a Golgi cell inhibition exercised upon the granule cells (see Fig. 1) and it is in
good accordance with the morphological observation by Hdmori and Szentdgothai

3 " Acta Cybernetica
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(1966) that Golgi cells have fairly large direct inputs from the mossy fibres. (Sub-
sequently these connexions have been also confirmed electrophysiologically by Eccles
et al. 1967a.) Figs. 4, 5, 6 show experimentally measured field potential recordings
(EXP) (by Precht and Llinds, 1969), and the simulated results (SIM) (see Figs.
8, 9, 10). In Fig. 4 A shows the field potential evoked by single ipsilateral stimula-
tion of the VIHth nerve. In AA the response had been conditioned by an identical

EXP S o
A M 5 EXP SIM
o 3943 | '
S = : = _
AA ipsi 100% - contra 2733=100%
' 05 mV ! 05mV | .
¢4 Z
L~ M=
ipsi ipsi 2262=57% contro 1477 =53%
Fig. 4 , Fig. 5

Composite diagram of experimental recordings (EXP, after Precht and Llinas, 1969) and computer

simulated results (SIM) of homonymous ipsilateral VIiIth nerve stimulation. A shows granule cell

field potential evoked by single stimulation. In AA the stimulus was conditioned ipsilaterally; the

response is considerably reduced. Arrows show the location of the stimuli. Simulated results
indicate the number of active granule cells in the simulated pattern (c. f. Fig. 8).

Responses at homonymous contralateral stimulation (c. f. Fig. 4). In B the granule cell field was
evoked by single contralateral 1mpulse in BB a double contralateral impulse was applied: shown
as Fig. 4.

preceeding stimulus. Records A and AA are averaged from 16—16 responses. AA
shows the response to the second stimulus exclusively as the first response has been
subtracted from this record.

Similarly, Fig. 5 shows the responses to homonymous contralateral stimula-
tion. In B the field potential was evoked by single contralateral stimulus, in BB the
response had been conditioned also contralaterally. The -amplitudes of the second
responses in Figs. 4 and 5 are considerably reduced.

At heteronymous stimulation, however, when the ipsilateral stimulation had
been conditioned by preceeding contralateral stimulus (or vice versa) the second
response showed only a slight decrease: In Fig. 6 BA shows the only slightly reduced
granule cell field potential response to ipsilateral VIIIth nerve stimulation (con-
ditioned by contralateral stimulus), AB shows the response evoked by contralateral
stimulus if the conditioning stimulus was applied ipsilaterally.

This unexpected phenomenon, labelled as “‘pattern sensitive Golgi cell in-
hibition” will be modelled and an attempt at its explanation will be made by simulat-



Computer simulation of cerebellar cortex

163

ing the granule cell excitation patterns emerging upon different combinations of
stimulation. The model might reveal in very highly schematized form patterns that,
if existing, would be hidden from microelectrode recording, in which only the average

activity-level of a pattern can be measured. .

The model considers a two-dimensional field, consisting of 100X 100 glomeruli
and 1003< 100 granule cells, in a configuration as shown in Fig. 2. First a pattern-pair
of the excited glomeruli is generated by a computer according to the ipsi- and contra-
lateral stimulation. Then the granule cell patterns are computed from these mput
patterns, without and with considering the effect of Golgi inhibition.

It is supposed. that the 10* glomeruli are innervated exclusively by two (an

ipsilateral and a contralateral) bundles of
mossy fibres. In order to try to imitate the
realistic innervation of a field of glomeruli by
a single mossy fibre bundle, let us assume a
quasi-random distribution of the glomeruli
excited for example by the ipsilateral mossy
fibre bundle as follows: (Fig. 7)

1. The field of 100X 100 glomeruli is di-
vided into 100 subordinate quadran-
gular areas, containing 10X 10 glome-
ruli each.-

2. In each subordinate area either 30 or
70% of the glomeruli can be fired by

© stimulating one of the two mossy

" fibre bundles (B and A in Fig. 7).

3.  About 50% of the subordinate areas
are of 70% activity (dominant areas,
marked by A), but the distribution of
the dominant areas is random.

As every glomerulus can be thrown into
action in the model either by ipsilateral or
by contralateral stimulation, the patterns
of glomeruli in Fig. 8 A GLOM and in
Fig. 9 B GLOM have to be complementary
to each other.

Fig. 8 shows the patterns set up inthe
model by ipsilateral stimulation. A GLOM
shows the pattern of exited glomeruli at ips-

ilateral stimulation, and A GRAN shows the

pattern of granule cells transformed from
A GLOM assuming a granule cell threshold
of 3. The number of active granule cells
corresponding to the amplitude of the field
potential in the experiment is shown in Fig.
8 (compare with Fig. 4). Similarly in Fig.
9 B GLOM shows the glomerulus activity
pattern evoked by contralateral mossy fibre

3*

oy
1

EXP SIM
A
1
ipsi 3943+100%

%
(f}
AN

con ipsi 2997 =76%
B
— M\-.
contra 2733=100%
05mVI %
‘M’f' L é
IPSI contru * 2157=79%

Fig. 6. Recorded (EXP) and simulated
(SIM) granule cell responses at heterony-
mous stimulation of the VIIIth nerve. If
the ipsilateral stimulation was conditioned
contralaterally (BA) the second response is
only slightly reduced compared to A. Simi-
larly the granule cell field potential evoked
by contralateral stimulus (B) decreases only -
shghtly ifan lpsdateral conditioning impulse
is applied (AB).
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activation, and B GRAN represents the transformed granule cell pattern (compare
with Fig. 5)

The inhibition of mossy fibre-granule cell relay by the Golgi cells upon repeated
stimulation, either ipsilaterally or contralaterally, was taken into account in this
model as follows: The inhibitory Golgi cells (Fig. 1) show a territorial arrangement

in the granular layer, which territories do not
20 10 G. overlap significantly (Eccles et al. 1967 a).
Each Golgi cell controls the mossy fibre-
V granule cell relay approximately in its own
% % B ? territory i.e. where its dendrits receive their
excitatory inputs from the mossy fibres.
B 7 B / ‘Accordingly, the modelled neuronal field is
4 / divided into 5X5 rectangular territories
(Fig. 7) corresponding to a Golgi cell each
B B and comprising 4 neighbouring subordinate
2 areas. )
B B The Golgi cells are supposed to be
] / thrown into action by the mossy fibres if in
7 i 7 the majority of the 4 subordinate areas the
. glomerulus activity is dominant. The Golgi
Fig. 7. Schematic diagram of a part of Cells, after having been activated by a mossy
the 100X 100 glomerulus pattern, gene- - fibre volley, will in turn inhibit the glomeruli
rated by the computer so as to imitate the  in their territories for a short time. When the
palistic exiuion patcrms emesihg 6 next glomerulus pattern appears during is
is divided into subordinate areas of 10x 10  Period of inhibition the activity of glomeruli
glomeruli. In these areas the averageglo- in these territory will be reduced (to an assu-
merulusactivity is randomly 70% (domi- med 10%). : )
nant areas, A) or 30% (B)."Every Golgi In Fig. 8 AA GLOM and in Fig. 9 BB
cell owns four subordinate areas (G). . GLOM shows the glomerulus-patterns evo-
ked by the second stimulus at homonymous
(ipsi- or contralateral) stimulation. In these patterns the most active areas of the
previous A or B-pattern are largely blotted out. Therefore, in the granule cell res-
ponses transformed from these patterns (in Fig. 8 AA'GRAN and in Fig. 9 BB
GRAN) the full number of the active granule cells is remarkably smaller (also indi-
cated in the corresponding Figs. 4 and 5).

Upon heteronymous stimulation, however, the second response is inhibited
by Golgi cells activated by the inverse excitation pattern: accordingly not the most
active, but inversely the Jeast excited areas -will be suppressed by the Golgi cell
inhibition. See in Fig. 10, where AB GLOM. shows the response to the second
B stimulus, conditioned by a previous A stimulus, and in BA GLOM vice versa.
The number of the activated granule cells, therefore, is only slightly decreased
in AB GRAN (Fig. 10) as compared to- BB GRAN (Fig. 9) or in BA GRAN (Flg 10)
as compared to AA GRAN (Fig. 8). (See also Fig. 6)

The results of the model can be summarized in saying that by a computer simula~
tion based on the micromorpholooy of the cerebellar granular layer it can be ex-
plained why the Golgi inhibition is more effective upon homonymous stimulation
then upon heteronymous pairing of the stimuli.

It has to be emphasized that in spite of the quantitative data, the model must

10
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3943 =100Y% |

A GRAN

Fig. 8. Computer simulation of glomerulus- (GLOM) and granule cell (GRAN) excitation

patterns at homonymous ipsilateral stimulation. (Black asterisks represent excited glomeruli or

granule cells.) Responses to single ipsilateral stimulation are shown above (A), the second responses

at double ipsilateral stimulation the previously most active spotsin AA GLOM (and therefore in

AA GRAN) are drastically inhibited by the Golgi cells. The number of the excited neurons in the
patterns are also indicated (c. f. Fig. 4).
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Fig. 9. Modelled excitation patterns evoked by homonymous contralateral stimulation (c. f.

Fig. 9). B GLOM shows the response to single contralateral stimulation (it is the inverse pattern of

A GLOM). B GRAN is computed from BGLOM by the threshold 3. At contralaterally conditioned

contralateral stimulation the response is BB GLOM and BB GRAN. Note the largely reduced second
responses (c. f. Fig. 5).
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BA GLO

BA GRAN

2997=76%

kR R

2157=79%

W
L

Fig. 10. Simulated patterns evoked by heteronymous VIIIth nerve stimulation. BA GLOM
shows the response to ipsilateral stimulus conditioned contralaterally. The Golgi inhibition is activated
by the conditioning impulse, therefore the pattern is inhibited in the least active areas. Accordingly
in the transformed BA GRAN pattern the number of active granule cells is only slightly reduced
as compared to A GRAN and AA GRAN. Similarly AB GLOM is the pattern of excitation at cont-

ralateral stimulation, previously conditioned ipsilaterally (c. f. Fig. 6).
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not be considered as a quantitatively precise description of the physiological events
but rather as a qualitative explanation of an unexpected experimental result. This
remark is necessary since this model has several free parameters (as models generally
do) and any variation in their values (for example in the threshold-values) can effect
numerical deviations in the results. The qualitative result, however, is fairly indifferent
to threshold-variations. The whole simulation has also been carried out for example
with a 2 value of the granule cell threshold. In this case the results are slightly mod-
ified, however, the much smaller effectiveness of the inhibition at heteronymous
stimulation has remained qualitatively identically demonstrated:

Granule cell threshold=3

Tesponse ipsila:teral contralateral
stimulation
homonymous 57% 54%
heteronymous - 74% 8%
Granule cell threshold=2 '
response ipsilateral contralateral
- stimulation
homonymous 66% 65%
heteronymous 76% - 78%
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«Cutting plane methods for solving nonconvex programming problems

By F. ForGoé

1. Introduction

It is well known‘that the solution of the programming problem .
’ S(x) >max - (1. 1)
x¢eL,

subject to

— where L is a subset of the Euclidean n-space E” and fis a scalar-valued function —
can be. very difficult unless L is convex and f(x) is quasiconcave (see: [1], [2]). For
special cases of (1. 1) efficient methods have been developed among which the so
called “cutting plane”” methods are of considerable importance (see: [3], [4], [5], [6]).
In this paper we want to apply the cutting plane idea — developed orlgmally
in [6] for quadratic objective function, in [5] and later but mdependently in {7] for
convex objective function — to more general programming problems: mcludmg
such as
max1mlzmg a quaswonvex functlon over a convex polyhedron
maximizing a quasiconvex function over the lattice points of a convex poly-
hedron
mixed zero-one integer programmmg w1th convex objective function to be
maximized
_fixed charge problems with convex objective function
separable nonlinear programming with linear constraints
general continuous nonlinear programmmg -
general pure integer programmmg

2. A method for accelerating the full description method -

Let the problem be the following®: :
fx)-max . . 2. 1)
Ax=h,

subject to

1 Throughout the paper A, B ... denote matrices, a,b ... denote vectors, * stands for trans-
position and e; is the j*» identity vector. :
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where x€ E", b€ E™, A is an m by n matrix, L= {x|Ax=b} is nonempty and bounded,
f(x) is continuous and quasiconvex over the whole E”". This latter means that for alk
X;, X, and 2 (0=1=1)

SOxHU=2x) = max (xS} @)

It is knowr ([2]) that among the global maximumpoints of (2. 1) there is at
least one extreme point of L. This gives a basis to a method of solving (2. 1) called
“full description method™ ([8], [9]) which generates in some way all extreme points.
of L and.then we can choose that (those) extreme point(s) which give(s) the maximal
objective function’s value. Unfortunately in cases of practical pro blems this method
fails because of the large number of extreme points.

In this section we give a method which is based on an arbitrary variant of the
full description method but it doss not require usually the determination of all
extreme points.

We shall call the method capable of leading us through all extreme points of
L the “wandermg method”. (A realization of a “wandering method ise.g. [8] and [9]).
We call a point x of the convex polyhedron L a nondegenerate basic solution if A
and b can be partitioned in the following manner:

A, b, A, X=hb,, :
A= [A] > b= [b] Ask<b, @3
where A, is nonsingular. All other basic solutions are called degenerate.

. To begin with let us determine an extreme point of L, say x,. If x, is degenerate,
then applying the “wandering method” find a nondegenerate basic solution X,.-
If x, is nondegenerate, then X,=xX,. Let the maximal objective function’s value
through the path leading from x, to X, be C;=C,. If all basic solutions of L are
degenerate, then we have to determine all extreme points. In this case our method
reduces to the full description method and C, = max Jx).

Since X, is nondegenerate we can transform (2. 2) into the equivalent problem:

SZo—Ag'y) -~ max
-subject to

y=0, | 2.4
Agzy=h,, ’
where ‘ ) |
_ A S
A= [AJ’ b= [bz] ALK, <b,, ¥ b, — A; x, A(2.v5)

Ay = —AATY by = by—A,X,.

~ The objective function of (2. 4) is also quasiconvex since f(x) is assumed to be quasi-
convex over the entire E”. Since X, is nondegenerate y=0 in problem (2. 4) has
exactly n adjacent extreme points:

: 01€1, %€g, ..., Up€y,
where ;>0 (j=1, ..., n).



Nonconvex programming problems 173

Let |
C, = max {Cy, max SXo—o; A1 e)} - (2.6)
and ¢; the maximal number (¢; —¥ is admitted) for which the inequality
f(xo—tA; e) = C, G=1,...n) 2.7
holds (¢;=0 since f(Xo—a;Ar'e;) = C,). )

Denote
t*=(/ty, ..., 1/1,).

(If t;= oo, then l/t =0 by definition.)
‘We shall dlstmgulsh two cases:

(l) [t*A1|§T>-
(i) A>T,

where Tis a fixed positive number.
In case (i) we consider the problem:

S®y— AT'y) — max

y=0, o 2. 8)
t'y=1. .
By (2 7) it is clear that thc global maximum of (2. 8) does not exceed C0 Therefore
the cutting inequality

subject to

t'y=1 - 2. 9)
and its transformation by (2..5) ' :
h*x=h,, (2. 10)

where h*=t*A, and &, = t*b,—1 excludes a region of L, where f(x)= C,.

In case (ii) let
& =(1/oy, ..., /a,)

A d*A,x = d*b,— 1. _ 2.11)
It can easily be seen that (2. 11) cuts off the simplex with vertices

_and consider the inequality

Y -1
xO:XO_alAl ela vy Xg— & A1 €,.

Adjoining mequallty (2. 10) or (2. 11) to the original constraints of (2. 1) we
teduce the feasible set L. Let the new feasible set be L,(L=L;). Then the whole
procedure can be repeated with the obvious modification that in Step k+1

C.=max {C,-1, Ci}.

When computing C, by (2. 6) we replace the index 0 by k and C;. denotes the
maximal ob|ect1ve function’s value along the path leading to a nondegenerate basic
solution in Step k+1.

It is clear that

L,oL,D...DL,D

Co=Ci=..=C=Cyy --- .
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The procedure terminates if for some index p=1, L,=0. Then x’ is a solution of
2.1 if f(x)=C,_;.
We shall prove that the procedure terminates in_finite number of steps. For
the proof we need a simple lemma.
Lemma 1. If X, is the nondegenerate basic solution obtained in Step k+1 and
cut (2. 10) is applied, then )
Xe~w| =T

where u, is the orthogonal projection of X, onto the hyperplane h*x=#h, (h>20).

Proof. By the definition of h and 4, it follows that X, is on the hyperplane h*x =
= hy+ 1. Write Schwarz’s inequality for h and X, —u,

Ih* (X, —w)| = |h}[X, —u,.
Since the left hand side equals 1 we get the desired inequality
' X —w| = |h|~" = [t*A |t = T
Theorem 1. There is an index p=1 for which L,=0.

Proof. 1t is sufficient to prove that cut (2. 10) cannot be applied infinite times
since (2. 11) cuts off a simplex and every polyhedron consists of finitely many
simpleces.

Suppose on the contrary that (2. 10) occurs infinite times. Then the sequence
of nondegenerate basic solutions determined in the steps when (2. 10) is used has
at least one cluster point X because L is bounded. Thus there is a neighbourhood
K(x, &) of X and an index r such that for a k=r, X, € K(X, ¢). In the step when X,
is cut off by inequality (2. 10) Lemma 1. assures that the distance of X, from the
cutting plane is at least T~ Thus ¢ can be chosen so small that the entire X(x, &)
lies on the infeasible side of the cutting plane. But this is a contradiction.

Remarks

1. If f(x) is strictly convex that is for any x;#x, and 0<A<T1 the mequahty
SOx+(1 —))x2) < Af(xy)+(1 — ) f(x,) holds, then the method described above gives
all global maximumpoints. We have never cut such pomts where the objective
functlon s value equals the maximum.obtained so far and since f(x) is strictly convex
every global (and local) maximumpoint is an extreme point of L. .

2. It is clear that the procedure works well with an arbitrary extreme point as
a starting solution in each step but it seems us more advantageous to start with a
local vertex maximumpoint. (This is a pomt that has no adjacent extreme point of
higher ObjeCtIVC function’s value.) .

3. It is obvious that the efficiency of the method is greatly reduced if degenera-
tion occurs frequently. Therefore it is of disadvantage if cut (2. 11) has to be applied
many times since this cut increases the number of degenerate basic solutions. In
the next section we give a variant of this method which is insensitive to degenera-
ton.

4. By the construction of the method the number of constraints increases.
But simultaniously some of the old constraints may become redundant. (We call
a constraint redundant if there is no feasible point satisfying it as an equality.)
For elimination of the redundant constraints the method proposed in [6] can be
used.
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. The procedure can be simplified to a great extent if we are content with
an “s optnmal” solution of problem (2. 1). We call z€ L an “¢ optimal” solution if’

ng(f(x) §f(z)+s, . e=0.

In this case it is sufficient to find a local vertex maximumpoint in every step (not.
necessarily nondegenerate) and tranformation (2. 5) can be carried out with any
basis associated with the extreme point in question. Inequality (2.7) is changed
by replacing the right hand side to Cy+e¢. Since f(x) is continuous every ¢; will be
positive and cut (2.10) excludes a proper subset of the feasible region. Thus cut
(2. 11) is not necessary and we do not need the ‘“wandering method” too.

It is an open questlon whether this modified procedure terminates in finite: -
number of steps. »

3. Maximizing a quasiconvex function over the lattice points
of a convex polyhedron

Let the problem be

f(x) >~max
subject to
Ax=b, G. 1D
» x =integer, '
where

(i) L={x]Ax=b)} is nonempty and bounded,
(ii) The entries of A and b are integers,
(iii) f(x) is continuous and quasiconvex on E™.

 The method proposed for solving (3. 1) consists of iterational steps. In each

step we reduce the feasible region. Denote the feasible set in Step k& by L.

Step 0. Find a feasible point to (3. 1) with any method of integer program-
ming. If there is no such point, then (3. 1) has no solution. Otherwise go to Step [.

Step k.

a) Find a local (vertex) maximumpoint x, of L, (L,=L). .

b) Do transformation (2. 5) and determine ¢; as the maximal positive number
satisfying the inequality

fx,—tAg'e) = Ci+e, >0 (j=1, ..., n), (3.2)

where A;; is a nonsingular submatrix of A; (we have not assumed nondegeneracy!).
and C, is the maximal objective function’s value obtained so far on lattice points.
of L. Then we construct the vector t, as in Section 2. and test the inequality [¢fA,|=T.
If it is satisfied by t, or x, =integer, then we reduce L, by cut (2. 10). If x, has at
least one noninteger component and [tfA,,|>T, or there is no positive ¢ satisfying -
(3.2) then reduce L, by a Gomory cut (see [1] p. 272). Let L, ., be the new feasible:
set. and go to Step k+1.
The procedure terminates if for some p>1 L, (D

Theorem 2. After finite number of steps L,=9 for some p=1.
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Proof. Cut (2.10) cannot be applied infinite many times by the reasoning in
the proof of Theorem 1. and because the number of lattice points of L is finite.
Furthermore the application of the Gomory cuts provides an integer point after
- finite number of steps ([1] p. 276).

Remarks

1. The procedure described above gives “only” an “& optimal’ solution which
is always satisfactory in practical situations. But if f(x) takes on integral values for
any integer x (e.g. f(x) is a polynomial with integer coefficients), then we can replace
£ by 1 and determine at least one “true’ optimal solution of (3. 1).

2. Tt is clear that this procedure can be used instead of the method proposed
in Section 2. in almost all practical cases since the integrity stipulation is very week
if we choose proper scale. In addition if in (2. 1) every extreme point of L is integer
{e.g. (2. 1) is a transportation problem with integer parameters [11]) then the pro-
cedure of this section can be applied without changing the scale.

4. Mixed zero-one integer programming with convex objective
function to be maximized

Let us consider the problem
F(x) ~max
subject to :
' 0=x;=1, x;=integer (j=1,...,p), p=l

0=x; §kj (j=p+1,....n), : 4.1)
.n

2 a;x; = b; (i=1,..,m),

=1

where x=(x;, ..., x,) and F(x) is convex on E”".
For the solution of (4. 1) we can apply the full description method. The follow-
ing theorem gives the basis for doing so.

Theorem 3. Among the optimal points of (4. 1) there is at least one extreme,
point of L. (L denotes the set of points satisfying the conditions of (4 1) ignoring
the integrity stipulations.)

Proof. Let z be an optimal solutlon of (4. 1) Fix the first p components of z
and consider the problem:

F(zy, ..., 2y, Xpi1s---5 X,) —Max
subject to - . '
O=x;=k; (j=p+1, ... n),
Z a,JxJ—_—b Zau ; (i=1,...,m). 4.2)
Let y be an optlmal extreme point of (4. 2). (There is at least one such point since
{Z,415 --.» 2,) Is a feasible point and F(x) is convex.) Let

XO =(215 cery Zp: .v*)
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X, is an optimal solution of (4. 1) since F(x,)= F(z). Suppose that X, is not an extreme
point. Then there are points x;€ L, X, € L, X; #X, such that x; = 4 (x,+Xx,). Since
the first p entries of x, are 0 or 1 the first p components of x, and x, are equal. But
the last n—p components of x; and x, must coincide because y is an extreme point
of (4.2). This contradicts the assumption x;x,. Thus x, is an 0pt1mal extreme
point.

Our purpose is to apply the methods of Section 2. for (4. 1) to accelerate the
full description method. The following theorem provides a continuous equivalent
to problem @. 1.

"~ Theorem 4. Consider the programmmg problem

F@—i Zx(-x)~max  (1=0) @.3)

subject to
. xelL.

There exists a real number 4,>0 so that for all A>)0 the set of opt1mal extreme
points of (4. 1) and (4 3) coincide.

Proof. Let
o Cp
= min Jé; x;(1—xp)

where L’ denotes the set of those extreme poiﬁts of L which have at least one non-
integer component among their first p components.

Let x°(A)=(x2(4), ..., x3(A))* be an arbitrary optimal extreme point of (4. 3).
Then : o . . .

F2) = F(X(D)—4 é XD -2@D, 4. 4)

where z is an optimal extreme point of (4. 1). If one of the first p components of x°(4) .
is not integer, then from (4. 4) it follows

SFEM) - FE] = 3 001 — X0 = 5,=0. @5

Thus we see that if 1 is sufficiently large, then x°(4) cannot have noninteger components
among its first p entries. Consequently there is a A, such that for 1= 4, every optimal
extreme point of (4.3) is an optimal solution to (4. 1). ,

Conversely if z is an optimal ¢xtreme pomt of (4 1), then z has to be optlmal
for (4. 3) because of 4. 5). .

For practical computation we need an estimation for 4,. Suppose that-we are
content with an “almost feasible” “¢ optimal” solution of (4. 1).. We call y “o feas-
ible” “g optimal” (6=>0, ¢=0) solution of (4. 1) if y can violate the conditions

Zaijx]- = b‘ (izl, es m),
j=1

4 Acta Cybernetica
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by no ‘more than é and F(y) = F(z)—e¢ where z is an optimal solution of (4. 1). The
following theorem provides an estimation for 4,.

Theorem 5. Assume that
(i) for every x, €7, x,€ T where

T={x|0=x;=1 (j=1,...,p), 0=x;=k; (j=p+1,..,n)}
the inequality ‘ ‘
' F(x) — F(xs)| = M |x;—Xo|*
holds where M and a are positive constants, ‘

(ii)) K,=F(z)=K, where 'z is any feasible solution of (4. 1),

(iii) A=[a;;] has no zero rows and columns.

If 1 satisfies the inequality
. A Kf;*Ka
o (1 ~ o)

then every vector obtained from an optlmal extreme point of (4.3) by rounding
the first p components to the nearest integer is a ““d feasible” “e optimal” solutlon
of (4.1) where . .

A

v

(4.6)

0g=min (&, &)

el e o

& <min { ‘min N ——}; a=>0. “.8)
1=i=m . 2 n
2 la;{ :
. ‘ s
Proof. Let x°(1) be an optimal extreme point of (4. 3) with 1 satisfying (4. 6)

and z an optimal extreme point of (4 1). Then by (4. 5), (4. 6) and assumption (u)
‘we obtain

x3(AH[1 —xf;(ll)] = é’x?(ﬂ)[l —x?(l)] = 7 [F(x"(,l))—F(z)_] =

_ 4.9 :
= ,11 (Ky—K) = a(l-w) =a(l-a) (=1, ~oP)- '
This implies that one of the following inequalities holds
0=x(N)=& |
1-a =x}() =1 (j=1,....p) 4. 10)

Denote-by X (1) the vector obtained from x°(1) by rounding the first p components‘
to the nearest mteger By (4. 8) we get

Za” ,(l)—b+a |a”|—b+5

This means that i(i)—(xl(l), s x,,(l)) is “6 feasible”.
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To prove the “¢ optlmallty” we obtain by assumptnon (i), (4.7) and (4. 10) the
inequalities: ,

R - FR®)| = MR DX = M(vpa)a<M[vp LY -
which means, that X(2) is “¢ optimal”. )

Corollaries

1. If every a;; and b is integer and p=n, then by choosing 6 <1, x()) isa feasxble
solution of (4. 1). Furthermore if F(x) takes on integral values for every integer X,
then by choosmg €=<1 we obtain an optimal solution of (4.1).

2. If x(%) is a “4 optlmal” solution of (4. 3), then by changmg @. 6) to

K;,—K,+4
ato(1 —ap)

we get a “d feasible”, “A-+¢ optimal” solution X(4) by rounding]x°(4).

* In the pure integer case § and A+¢ have to be chosen smaller then 1 in order
to get an optimal solution of (4. 1).

For the solutlon of (4.3) we. can apply the methods proposed in Section 2

A=

and 3. If F(x) = 2 c;x ;X;,then (4. 1) is the mixed zero-one integer linear programmlng

problem. In thls case we can increase the efficiency of our cutting plane method by
"adjoining to the constraint set the inequality

2 x; =z F+4,

where F, is the largest objective function’s value obtamed up to Step k. In the pure
case 4 can be chosen 1 provided'all the ¢;-s are integer. '

5. Fixed charge problemé with convex objectl'_ve‘function

" The following problem occurs very frequently in economic applications:
A production vector has to be found which satisfies a number of linear con- ~
straints and minimizes a cost function composed of individual cost functions having
a fixed cost at x;=0. For x;>0 the cost function is concave. :
In mathemat1cal terms the problem to be solved is the following:

fx) = = = Z'j;(x) - max
subject to C
' i=Kj (j=1, o), B ER))

» xcL,

4%
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where L is a convex polyhedron and

0 if x;=0, . .

gi(x;)isa conéave monotone increasing function.

We can formulate (5. 1) as a mixed zero-one integer programming problem
in the following manner: (For convenience we suppose that 4;=0 (j=1, ..., p)
and 4;=0 (j=p+1,...,n).)

P n
F(x,8) = — 2 [4;¢;+g(x)l+ > gi(x) ~ max
j=1 j=p+1
subject to A
0§x1§k1 (j=15'-',n)9
x€L (5-2)
x—k;&; =0 -
0<§J_1 ¢;=integer  (j=1,...,p).

Since (5. 2) is of type (4. 1) the ‘method proposed in Section 4. can be used for solv-
ing (5. 2). From computational point of view it is not indifferent that (5. 2) has p
new variables. In this section we give a method for solving (5: 1) without increasing
the number of variables.

Without any loss of generality we may assume that p=n. The following theorem -
asserts the existence of a continuous equivalent to (5. 1). ‘

Theorem 6. Let us consider the problem:

: f(x, r) ~max
subject to

0§xj§kj (_]=l; ..'.',n), (5 3)

xcL,

where r*=(r,, ..., r,) (t=0) is a parameter vector and

f(x’r)=_.2;fj(xj’rj)’
J= .

f(x " m;x; if x;=r,
Ak gl(x) if x;=r;,

(j=la Thes n)y

m; = &)
. . rJ
There exists a positive vector r, such that for all r (0<r=ry) the sets of optimal

extreme points of (5.1) and (5. 3) coincide.
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Proof. Let x, and x,(r) be optimal -solutions to (5.1) and (5. 3) resp. Since
both f(x) and f(x,r) are concave functions we may assume that x, and x,(r) are
extreme points. Let x*=(x,, ..., x,) and -

' s-—mm(mm x;)  (x;=0),
l=sj=
where L’ denotes the extreme points of the common feasible region of (5. 1) and
(5. 3). (We can disregard of the trivial case if O € L’ since in this case X;(r)=x,=0O
for any positive r by the monotomc1ty of the functlons g;(x;).) Let 1y be a posmve
vector satisfying rie;=s (j=1, ..., n). Then

-f (xl (ro), ro) =f1 (Xl (1'0))-

Since f;(x} (r(,)e,,r0 e;)=0 if x}(roe;=0 and f;(xf(rode;, g ej) g;(xf(rp)e;) if -
Xi(rp)e; =s=rge; (j=1,...,n). But by the optimality of xl(ro) it follows -

S (xl (l'o)) = f (xl(l' 0)s ro) =f(xy, 1) = f(xg)

which means that x,(ry) is optimal to (5. 1). Conversely by‘ the optimality of X,

f(xq,10) = f(xp)=f (xl (r 0)) =f (xl (o) ro) '
which means that x, is optimal to (5.3) if r=r,.

Corollary. The objective function of (5. 3) is convex on E” and therefore the
method of Section 2. can be used to solve it. ,

The only difficulty is that we cannot give an a priori estimation on r,. For-
tunately by a slight modification of the algorithm described in Section 2. we do
not néed the exact value of r,. There are only two places where changes have to
be done:

1. In (2. 4) f(Xo—A1'y) is defined only for those values of y where

—A7ly = 0. _ (5.4

2. In the définition of ¢; ((2. 7)) (5. 4) has also to be taken into consideration.

Thus ¢#; is the maximal number for which the inequalities
' f,—tA{le) = C B

AR (2 W) )

xo—tA]_lej%o T

hold.

All other statements of Section 2. including Theorem 1. remain valid. Naturally
our method can be combined with other methods e.g. approximative methods like
[14] since any good approximative solution can serve as a starting point for the
cutting plane method. Of course the difficulties caused by degeneration can be
overcome by searching for an “¢ optimal” solution.

‘6. Separable nonlinear programming with linear constraints

Nonlinear programrﬁihg with general objective function is a rather undiscovered
field of mathematical programming. There are methods based on the idea of approxi-
mation with polygons, [1], [15), algorithms applying “branch and bound” [16], [17]
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and full description methods [18). We shall apply the cutting plane method of Section
2. for accelerating the full description method. We begin with the simple case of
separable objective functlon and thereafter we discuss the general programming
problem.

fx)= Z fj(x ) - max
subject to . .
O=x=k (k=0) . 6. 1)

Suppose that
- () L= {x[0<x<k Ax=b}=0, -
(ii) for every x}, x} satisfying 0<x’§k*ej (r=1, 2) holds the inequality:

Ifj(xl-)—f}(x?)léMjlxj—X?! G=L.m), (62

where M; is constant, : »

(iii) fJ(xJ)= —~oo for x;<0 and x;>k*e; (]—-l ., n). Our purpose is to de- -
termine an ‘¢ optimal” feasnble solutlon X €L

The method for solving (6. 1) consists of iterational steps. To start with let us
determine an extreme point of L=L,, say x,=(x?, ..., x9*. Let us assume that
we have a “good” approximative solution y,€ L. (y, can be e.g. a local maximum-
point of (6. 1) which can be obtained. by several local methods such as grad1cnt
methods, linear approximation e.t.c. )

Put K,=f(y,) and define f(x) in the following manner:

fo) = ij(

where f;(x;) is convex, f(x)>f1(x1) for all x;, f,(x)=£,(x (j=1, ..., n).
‘ Because of Property (ii) f(x) is defined over the entire E" Since x, is a vertex
of L transformation (2. 5) can be carried out. Now consider the problem (see (2. 4))

J(%— A7'y) ~ max

subject to .
yz0 ‘ ‘ 6.3)
. Azy=bh,. '
By the definition of f(x)
' Txo)=1(%o)-

Let ¢; be the maximal nﬁmber (but at most 'M, a large fixed positive number) sa-

tisfying .
f(xo—.fAflej)éKo+8 (=1, ...,n). : (6.4

Each ¢; is positive since ]'(x(,)<K0 and f(x) is continuous. (Since it is convex over

E") Let
=(1/tla' LR l/tn)'
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Take a fixed positive number T and apply the cut _
try=1 ' " (6.5)
if [t*A4,[=T. With cut (6. 5) we have excluded a region where
F(xo—Ar'y) = Ky+¢
and smce F(x,—A7ly) = f(X,—A;'y) the relation

f(x—Arty) = Koﬂ'sA

holds for every y in the excluded region.
If [t*A,|=>T, then we apply the cut
. t'y=1, B (6. 6)
where , :
t*=(/aty, ..., 1/at,)

and o is chosen so that [t*A,| =T is satisfied.
Of course in this case we can only guarantee that for all y in the excluded

regron
S(xo—A7ty) <f(xo Arty) = lgllagnf(xo-—at Al J) = P,.

The whole procedure is repeated for the reduced polyhedron L,. We have seen in
Section 2. (Theorem 1.) that after finite number of steps L,=# for some p=1.

Naturally if in the course of computations we arrive.at a vector which gives
~ higher objective function’s value than K|, then starting from this point we can find
a better local maximumpoint with objective function’s value K1>KO and replace
K, by K;.

After having arrived at the situation where L,= the best solution y, obtained
so far satisfies the inequality

f(yr) = max Rk’

0=k=p—1

where R, = K, +¢ if in Step k cut (6. 5) was used and R, =P, if cut (6. 6) was applied.
Thus if 051?3} . R.=K,+¢ forsome 0=k =p—1 . 6.7)
then y, is an “g optimal” solution of (6. 1) if |

' fa)=K,..
“Let-Q={g;, .., g,} be the set of indices for which

qu>0§nk)§;(_1Kk+£ (s=1, ceeaF)

For each ¢, there can be associated a problem:

f(x,,—B;'y) - max
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~ subject to

v

y=0
A, ysb,  (s=1,..,r), ' (6.8)

;* y=1,
where A, y=b, , y=O defines Lq -1 after having done transformation (2.5), B,, is

the matrix of transformation, t,_is defined in (6 6), x,, is the actual extreme pomt
of L, _,. :
We shall decompose (6. 8) into d subproblems having the form:

S(x,,— B, 'y) -~ max

subject to
y=0
AY=by G ), - (6.9)
. . I .
tq.!y = 7

Lét s#O be an arbitrary feasible point of (6 8) and v the intersection of the ray

determined by O and s with the hyperplane t* =1. Let further / be the index for
which the inequality '

I = Ps= I+1
d = s d 4 R
holds. Denote by r the intersection of the ray (O, s) with hyperplane ?q,y =§.

. Sincer and s aneibn the ray (O, v) they can be written in the following way:

r=A4,v,
s=AV,
where A= —‘Ii Then the following relations hold:
| |1 1 1
Ir—s| = |4, —4]]v] = ‘ As|I¥] = ,—— 5 |V|=’7—"d—|| l—jjl"f- -
Since

Iv| = max t: =M,
d can be chosen so large that jr—s| = 8 for given 6=>0. But because of property
(ii) if & is small enough, then

HOEVOERS

This means that if we can solve problem (6. 9) for each J, then the objectiveAfunction’s
value of an “g/2 optimal” solution of problem (6.9) cannot differ from the optimum
of (6. 8) by more than ¢. But the feasible set of (6. 9) is of lower dlanSIOI‘l than that
of (6. 8).
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For solving subproblems (6. 9) we can apply the same procedure as for (6. 1).
It is clear that after finite number of steps either situation (6. 7) occurs or the di-- -
mension of the subproblems reduces to zero. In both cases we obtam at least one-
¢ optimal” solution of (6. 1).

Of course the right hand side of 1nequa11ty (6. 4) may increase by discovering:
new better solutions and those subproblems of type (6. 8) where P,, does not exceed.
the best objective function’s value obtained so6 far can be dropped

To illustrate the method let us take a numerical example:

A ; X)) ==~ (6 —1)P4x,—1 - max.
-Subject to : o
Osx,=2 (6. 10):
—15%,410x, = 2 '
—3x,+4x, = 2.

First of all determine a local maximumpoint. For this purpose we can use e.g. the-
method of Zangwill [19]. If we start from x,=2, x,=2, then this method leads us.

. . 3 13 e .
to the local maximumpoint- x, = 50 X2 =g where the objective function’s value:

8
3 13 1
f(?’_s‘]“K‘_E'

According to the method proposed in this section we have to start with an:
arbitrary extreme point. Let this be x,=2, x,=2. The constriiction of the func-
tions f{(x,) and f¥(x,) is an elementary task. (The upper index denotes the number-
of iterations.)

PG = - 3%+ 5,
FiP(xg) = X— 1.

The matrix of the transformatlon and its inverse is the following:

3 4] 0. 1]
a=[7 0 ae- [1/4 3l
We have to find the max1mal positive - solutlons to the inequalities: (The admiss—
able error £=0,1)

fm[[z]"’ [1(/)4]] =P+ [2‘_.] = 3+10= 5

[[ ]" [3/4]] = I Q-1+ [2—3t] s 3.

The solutions are t{=oo, t{=4/15. Thus the cutting mequahty obtained in the:

first step is
[o, 15/4][’ ”"1] = [0, 15/4]“—1
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-or briefly
R . = 2_6

It

L » " 26 9

In the second iterational step let our sta;tlng extreme point be x; = T30 X2 = 5-

Since f (fg z) ;, K2=K1=%'. The matrix of transformation remains un-
changed but f®(x) will be different from f®*(x). By simple computation we get
121 8107 '
(2) = i
) = =55 5t 3375
FP(x) = x,— L.

Consider the inequalities

{126] o] |
15§ . 1 3
(2) - — F® (2) - =
o
. 5 4 ]
{36_ (1~\ : : -
- 15 - 26 3 3
(2) 1. — 7|20 _ ol _ 2. 1<2
el s 1[15 ’]”[ ]‘5
~5'J -4J .

The maximal positive solutions #® =0, 1@ = ;323(2)2 The ‘cutting inequality

. 482658 _3
1= 344729 2"

To make the calculations simple we take the less sharp cut

3
2

ll/\

X1

. L e . 13 .
Our starting solution in the third iterational step is: x; = 7 X = 5 The matrix

of transformation is also unchanged and K;=K,=XK;.
B(x) = — > '
. Oy = _§x1+1,

| FP0) = x— 1. |
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Consider the inequalities:

31 0 o
. 2| - 13 1.)_3
® _ — F® @l _ L <2
o' t‘{l o3 (Bt =2,
5] % :
_3- - ) . - .
— 1
2| 3 3
(3) o . —_ e @) | = _ . = =
oIl s =G Jere (-3 =3
8 4 : : '

L E SRS

The maximal positive solutions are: #{=co, {9 =20, Thus Ly=§ which means

that x; = =, x, = E_is an “0,1 optimal” solution of (6. 10).

2 8 :
(Throughout. the calculations we have assumed M and T very large.)

7. The solution of general continuous nonlinear programming problems

Asa ﬁrst step of generalization let.us drop the separablhty stlpulatlon for f(x)
That is we consider the problem ; '
, f(x) >max
subject to

Ax=b, | . . 1)
where : ’
(i) L={x{Ax=b} is nonvoid and bounded,

(ii) for every closed, bounded, convex set CCE" there exists a constant M
such that for all x,,x,€C :

'_If(xl)—f(xz)l_éM';le-le- - H(7.2_>‘

The method proposed to solve (7. 1) is very similar to the method of Section 6.
Since we have used the separability of the objective function in the construction of -
J(x) we define f(x) for (7.1) in an other way. Let

fe(x) = M X —Xo| +/(x0), , V (7.3)

where x(', is the starting extreme pomt M, is the constant belongmg to a closed,
bounded, convex set C (see (7. 2)). It is easy to prove that f.(x) is convex and if f(x)
is contmuously dlfferentlable on E*, then

M, = max |f ®), - . (7.'4i

where f7(x) is the gradient vector of f1 x). :
Since in the definition of f.(x) the set C is involved we have to modify the
procedure of détermining ¢;. In this case #; is the maximal number for which the
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relations 7 ,
c(Xo—tATe) = K +e
o G=1,...,n) (7. 5)
Xo—tA;'e;€C :
hold.
All other steps of the method of Section 6. remain unchanged.
1t is clear that the efficiency of a particular cut depends greatly on the choice
of C. Theoretically we ought to choose C to minimize [t*A,|. But this is a very
difficult problem solving. Instead of solving this problem we propose choosing
a region depending on one parameter (e.g. a ball with radius 4, a cube with edge-
length A etc.) and to solve the one variable minimization problem.
Now we are able to treat the general continuous nonlmear programming pro-

blem
S(x) - max
‘subject to
. . XEL’
&®=0  (k=1,...,p), (16

where L is a bounded convex polyhedral set and the functions f(x), g,(x), ..., g,(x)
- are contmuously differentiable over E".
By using the idea of Fiacco and McCormick [20] we reduce (7. 6) to (7. 1) and
then we apply the method of cutting planes. ‘
Problem (7. 6) can always be transformed into the following problem:

—exp z ~max
subject to
yes,
p(y)—z=0,

where § is a convex polyhedron.
‘We shall search for a “(9, o) solution” (6=0, g>0) of (7. 7). A point (y,, zo)
is called “(d, @) solution” of (7.7) if

yO-E S,
h(yo)l=6 k=1, ..., p), (78
2y =zZ— o,
where Z is optimal to. (7. 7).
Consider the following problem: _
Fv,7,0) = —expz—al| th(y)+(<p<y)—z)2] cwax(0L9)
subject to
yes,

where g, is a positive parameter. -
(7. 9) can always-be solved smce Si is bounded Let (y,, z,) be an “g,- opt1ma1 >
solution of (7.9) (&,>0).
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Theorem 7. If hm a,= -0 and hm ¢,=0, then every cluster poiﬁt of the sequence
{(¥:, z)} is an optnmal solution of (7 .

Proof. Let (¥, Z) be an optimal solution of (7 7). By the definition of (y,, z,)
the following inequalities hold

—exp z,—a, Lé; hi (Yt) + ((p (v — z‘,)2]‘ =

P 4 ) ! .

= _—expzi—a, [k;;hﬁ(‘i) +((p(-y')‘—2)2]—s,- = —expz—g,.
Hence o ’ _‘
‘ 1 : . 1. )
0 = hi(y) = —[—exp Z,+expZ +a,] = — [expz +g] (k=1,..,p). (1.10)
From (7 10) we get- for any cluster pomt (. %)

h(H=0 k=1, .P)s

which means that y is feasible. By the same reasoning -we obtain
h(§)—2=0. |

T expz = expz+s,

Also from (7. 10)

which means that if ¢, -0, then z, ~Z.

Corollary. Let us assume that we know lower and upper bounds for Z.
_ N=z=M. - (7. 11)
Then from (7. 10) ‘ .
: 1 ~ 1 : I
H1) = —(expZ+6) = — (exp M+so) (7.12)
t t .

Czest=1,2,...) (k=1,...,p),

G| = |/ SRR

If we want |h,(y,)|=6 to hold, then g, has to be chosen to safisfy

expM g,

a =~ (7.13)

Furthermore from (7. 10)
: . expz;—expZ =g

exp {(z;—Z)+z}—expZ = &

expzlexp (z,—2)—1] = ¢
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and using inequality (7. 11) we obtain the estimation

= £ £
-z = log(expif“] = IOg[expN ]

If we want z,—Z = ¢ to hold, then we have to choose g, to satisfy

& = (exp g—1) exp N. A (7. 14)

Summing up. If we find an “g, optimal” solution to (7.9) where ¢, satisfies
(7. 14) and g, satisfies (7. 13), then this solution is a **(8, g) solution” of (7. 7).
To solve (7. 7) we can apply the cutting plane method described in this section.

8. General pure integer programming

Let us consider the problem

J(x) ~max

subject to .
X 6 L’ (8' 1)

x =integer,

wlere L is a polyhedron and f(x) satisfies Property (ii) in Section 7.
The method of Section 6. and 7. can be modified to be able to solve (8. 1) too.
The main steps of the procedure are as follows:

Step 0. Find a feasible point (if there is any) of (8. 1) with an integer program-
ming algorithm.

Step k. Take an extreme point x, of L, (L=L,). Denote by K, the maximal objec-
tive function’s value obtained so far on integer points of L. Let A, be the matrix of
transformation and T a fixed positive number.

Case 1. x, is noninteger, f(x,) =K.
If Jt*A,|=T, then apply cut (6. 5). :
If [t*A;|>T, then make a Gomory cut or construct subproblems (6. 9).

Case 2. x, is noninteger, f(x,)>K,.
Make a Gomory cut.

Case 3. x, s integer.

Apply cut (6. 5).

It can easily be proved along the lines of the proof of Theorem 1, Theorem 2
and Section 6. that these procedures converge in finite number of steps to an “e
optlmal” solution of (8. 1).
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- -9, Computational considerations

For the various algorithms contained in the previous sections concrete computa-
tional experiences are available only for application of the cutting plane method
to the pure zero-one integer linear programming. Detailed description of test pro-
blems and results will be reported elsewhere. However we can mention in advance
that finding the optimal solution needs much less computational-effort than verify- -
ing the optimality. We think that an optimal solution. of zero-one integer linear
programming problems up to 120 variables can be obtained by the cutting plane:
method within acceptable time interval with the best computers available in Hungary.
It may happen however that we cannot make sure that this is the optimal solu-
tion. .

There are special problems where existence theorems assure that there is at
least one integer feasible solution and every feasible point is a solution of the prob-
lem (e.g. finding an equilibrium point of a bimatrix game [21]). In these cases the:
cutting plane method seems to be able to solve the problem completely.

DEPT. OF MATEMATICS
KARL MARX UNIVERSITY OF ECONOMICS
BUDAPEST, HUNGARY

References

[1] HapLEY, G., Nonlinear and dynamic programrming, Addison Wesley, London, 1964.
[2] MARTOS B., Quasi-convexity and quasi-monotonicity in nonlinear programmmg, Studia Sci..
Math. Hungar v. 2, 1967, pp. 265—273.
[3] KELLEY, J. E. Jr., The cutting plane method for solving convex programs, SIAM J. Applv
Math., v. 8 1960 pp. 703—712.
[4] GOMORY .E, Outhne of an algorithm for mteger solutions. to linear programs, Bull. Amer..
Math. Soc., v. 64 1958, pp. 275—278.
[5] Hoang TUI Concave programming under linear constraints, Soviet Math. Dokl., v. 5, 1964,.
. pp- 1437—1440
[6] RutTeR, K., A method for solving maximum problems with nonconcave quadratic funcnon,
Z. Wahrscheml:chkezlsthearte und Verw. Gebiete, v. 4, 1966, pp. 340—351.
[7]1 Fora6; F., A method for maximizing a convex function subject to linear constraints (in Hun--
garian), Dontési modellek 11. Kozgazdasagi €s Jogi Konyvkiad6, Budapest, 1969, pp. 211—236.
[8] CHARNES, A., W. COOPER, A. HENDERSON, An introduction to linear programming, John Wiley-
and Sons, New York, 1953.
[9] BaLinsky, M. L., An algorithm for finding all vertices of convex polyhedral sets, SIAM J. Appl
Math., v. 9, 1961 pp. 72—88.
[10] BEALE E. M L., Survey of integer programming, Operational Research Quarterly, v. ]6
1965, pp. 219--228.
[11]) HapLEY, G., Linear programmmg, Addison Wesley, Reading, Mass. 1961.
{12} ForGo, F., Relatlonshlp between mixed zero-one integer linear programming and certam
quadratlc programming problems, Studia Sci. Math. Hungar., v. 4, 1969, pp. 37—43.
[13] RAGHAVACHARI, M., On connections between zero-one integer programming and concave.
. programming under lmear constraints, Operations Res., v. 17, 1969, pp. 680—0684.
[14] Barinski, M. L., Fixed cost transportation problems, Naval Res. Logist. Quart., v. 8, 1961,
pp. 41—54.
[15) BeaLk, E. M. L., Numerical methods, Nonlinear Programming, North Holland Publ. Comp...
Amsterdam 1967 pp. 135—205.
[16) LawLEr, E. L. & D. E. Woob, Branch and bound methods a survey, Operations Res., v. 14,
1966, pp. 699—719. .



192 . F. Forgé: Nonconvex programming problems

‘[17] FALK, J. E. & R. M. SOLAND, An algorithm for separable nonconvex programming, Internal
Report, Research Analysis Corporation, McLean, Virginia, 1968.

i{18] Manas, M., An algorithm for a nonconvex programming problem, Ekonom. Mat. Obzor, v.
.2, 1966, pp 202—211.

[19] ZANGWILL W., The convex simplex method, Management Sci., v. 14, 1968, pp. 221—238

:[20] Fiacco, A V. & G. P. MccorMmick, The slacked unconstrained minimization technique for
convex programming, SIAM J. Appl. Math., v. 15, 1967, pp. 505—515.

{21] MrLLs, H., Equilibrium points in finite games, SIAM J. Appl Math., v. 8, 1960, pp. 397—402

g22] FORGO F Cutting plane methods for solving nonconvex programming problems, Technical
Rreport, Department of Mathematics, Karl Marx University of Economics, Budapest, March

1970.
( Received June 25, 1970)



A niethod_ for chronological orderin_g of archeological sites

By ANNAMARIA G. VARGA

1. I_ntroducfion .

The chronological ordering of archeological material is an important question
of the archeological investigation. For the solution of this problem, besides the
classical archeological methods, various methods using tools of natural sciences
and mathematics are known. '

In this paper we are going to describe a mathematical method based on the
theory of regression. This theory gives a natural approach to the problem of chrono-
logical ordering. By the aid of this theory we are able to decide in which cases the
chronological order obtained by the method of Brainerd-Robinson [1] and by
similar methods can be accepted. The idea of the application of the theory of regres-
sion was given by an analysis of the methods of Brainerd-Robinson and Dempsey-
Baumbhoff [2]. :

2. Prerequisites

The purpose of this section is to summarize concepts and to state results which
are familiar to mathematicians but not to archeologists and which will be used
in what follows. Whenever the word ‘set’ is used it will be interpreted to mean a
subset of a given set which will be denoted by S. If x is an element of S, and E is
a subset of S, the notation x ¢ E means, that x belongs to -E; the negdtion of this
assertion, i.e. the statement that x does not belong to E, will be denoted by x§ E.
. If E and F are subsets of S, the notation £ C F means that E is a subset of F i.e.
that every point of E belongs to F. Two sets £ and F are called equal if and only
-if they contain exactly the same elements or, equivalently, if and only if FC F and
FCE. ' o

If P(x) is a proposition concerning x then the symbol {x: P(x)} denotes the
set of those elements x for which the proposition P(x) is true. In general the brace
" notation {...} will be reserved for the formation of -sets. Thus for instance if x
and y are elements then {x, y} denotes the set whose only elements are x and y.

If E is any set of subsets of S, the set of all points of S which belong to at least
one set of E is called the union of the sets of E; it will be denoted by UE or
U{E: EcE}. For the union of a special set of sets various special notations are
used. If for instance E={E,, E,, ..., E,}, then UE is denoted also by E,UE,U ...

...UE, or U E,.
§=

1

5 Acta Cybernetica
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If E any set of subsets of S, the set of all elements of S which belong to every
set of E is called the intersection of the sets of E; it will be denoted by NE or
- N{E: EEE}.

Two sets E and F are called disjoint if they have no elements in common. A dis-
joint set is a set E of sets such that every two distinct sets of E are disjoint.

If E and F are subsets of S, the difference between E and F, denoted by E~ F,
is the set of all elements of E which do not belong to F. The symmetric difference
of two sets E and F, denoted by, EAF is defined by EAF = (E—-F)U(F—E).
It is the set of all elements which belong to one and only one of E and F.

Let R be any set whose elements are called, for suggestivity, points. If to each
-pair x, y of elements of R a non-negative real number, denoted by ¢(x, y) and called
the distance of x and y, is attached such that

(1) if x=y then ¢(x, y)=0,

(2) if g(x, y)=0 then x=y,

(3) o(x, »)=e(y, %),

(4) for each three elements x, y, z of R

o(x,¥) = o(x, 2)+a(z, y),

the resulting “space” M is called a metric space over the groundset R with metric g.
A function ¢ which satisfies (1), (3), (4) only, is called a pseudo-metric and the
resulting space is called a pseudo-metric space M over the groundset R with pseudo-
metric o.
Let M be a pseudo-metric space and let D be the family of all sets G,=
={yeM: o(x,y)=0}. If u€G, and v€G, then

o(u,v) = o(u, x)+o(x, »)+ea(y,v) = o(x, y).

Consequently, since in this case it is also true that x€¢ G, and y€G,, o(u, v)=0(x, y).
Let A and B be two members of D and let 7(4, B) be equal to g(x, y) for every x
in A and for every y in B. Thus D with the function 7(4, B) is a metric space. In the
sequel we shall call the set D with 7(4, B) the metric space induced by the pseudo-
metric space M. A set N is called a subset of a metric space M provided N is a sub-
set of the groundset R of M and the distance of any two points x, y of N is the same
as their distance in M. If N and L are subsets of two metric space M and Q, res-
pectively, we say N is congruent to L provided there exists a one-to-one distance- -
preserving correspondence between the points of N and the points of L; that is
for every pair x, y of points of N go(x, y)=0'(x’, ¥"), where x’, y" are the points of L
that correspond, respectively, to points x, y of N and g, ¢” denote the distance in
N and L, respectively. _

A subset N of a metric space M is congruently imbeddable in a metric space
O provided there is a subset L of Q such that N is congruent to L..

We shall apply in the sequel the theory of regression. We need the linear regres-
sion. For our purposes it is necessary to know only the following. We consider
n points (x5, 1), (X2, Yo)s ..., (X, ¥,) in the plane. It is convenient to write the equa-
tion of the straight line which we fit to these # points in the from

) ¥y =a+b(x—X),
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where % is the arithmetic mean of x,, X, ..., X,; b is the slope of this line and a
is the y intercept on the line x=X. The y intercept on the y axis is a—bX. The problem
is to determine the parameters @ and b so that the sum of the squares

(i~ Yo

IS

)

will b_e a minimum. When y” is replaced by its value as given by (1), it becomes
clear that this sum is a function of a and b only. If this function is denoted by
F(a, b) then

F(a,b) = 3 lyi—a—b(x— 9.

If this function is to have a minimum value, it is necessary that its partial derivates
vanish there; hence, a and b must satisfy the equations

OF <
o = ,-Z 2[y;—a—b(x;—3[~1] =0,
OF

95 = 2 2 a- b= R-x—5] = 0.

When the summations are performed term by term and the sums that involve Vi are
transposed, these equations assume the form .

“m'i‘bZ(xi—x) = 2¥
i=1 i=1

aé(xi—x)+b_§"l(x.._—.x)2 = ig"l(xi_x)y,._

Since 2’ (x;—X) = 0, the solution of these equations is given by
i=1 . ®

2,, (x: —x)y. ‘

These values‘ when inserted in (1) yield the line y'—y = b(x;—X) which is usually
called the regression line.
If we write

and

—
=

then we may write

o
!
!

-
Nt
I
~
I

5#
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Sy . e . . .
Here r = —=% is called the correlation coefficient. The value of r must satisfy

the inequalit} '11§r§ . The value of r will be equal to %1 if and only if, the points
(x15 7, (X2, Vo), ..., (x,, ¥s) lie on the regression line.

3. The archeological bases of the methods of Brainerd-Robinson
and Dempsey-Baumhoff

Let us assurﬁe that we compare #n sites. We denote by S; (i=1, 2, ..., n) the set
of the objects of i-th site and by T: (i=1, 2, ..., n) the set of the types of the i-th

site. Put S = U S;and T = U T;. The number 45, means the precentage of the

" objects of type K belonging to the i- th site. The correlation between site / and site
J accordmg to Brainerd and Robinson is defined by

(2) Xij — 200_ 2 IAKSi AKS_,'I'
KeT

This may be written in the following from
X.’j = 200'— Z Ags,— Z Axs,— . Z IAKS,-"‘AKS_,-{'

KeT-T, = KeT,-T, KeT;NT,;
From this one can easily seen that the method of Brainard-Robinson is based
-on the following principle. If two sites have types in essentially different percentages
or if there are types which belong to one of the two sites but absent other site then
the two sites originate from different times.

If T;=T); i.e. the i-th and the j-th sites have the same types then in the above
formula the first and second sums are equal to zero. Thus the agremeent between
the i-th and j-th sites is determined by third sum. If the desagreement is small between
i-th and j-th sites then the members of the foregoing sum ( Z’ lAKS —Ags, )

are also small. This is the only case, according®to Brainerd- Robmsons method,
the two sites are of an age.

This means that the percentage of each type is approximately the same in the
both sites.

Even if the site S; contains essentially more objects than the site S;, consequently,
the site S; has a greater number of the objects of the type K than the site §;. The
point of view of archeology this is such a requirement regarding to two sites Wthh
only rarely holds.

The element X;; of the matrix used in Dempsey-Baumhoff’s method is given
by formula

. KeT;aT;
where N means the number of all types belonging to sites S; (i=1, 2, ..., #n). Accord-
ing to this formula the method of Dempsey-Baumhoff is based on the following
principle. If two sites have the same types than both sites are of an age. However
there exist such types which belong to one of the two sites only then they originate
from different times.
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These principles show that the two methods are essentially different. Later we
shall return this question and we shall formulate the difference between these methods
in the language of mathematics. '

4. The mathematical analysis of the methods of Bramard—Robmson
3 and Dempsey-Baumhoff

The first method assigns to each pair (S,, S ) (i,j=1,2,...,n) of sites the
number given by formula (2), the second one assngns the number glven by for-
mula (3). '

Let us correspond to each pair (S,, S) elther the number
@ 2 |Ags,—Ags |+ 2 |Aks,~ 4ks)|

KeTAT; KeT;NT
or the number - _
&) : ‘ > 1
KeT,aT, .

For the sake of brevity, let us denote the number (4) by r(S;, S;) and the number
(5) by 0(S;, S;), respectively. The function corresponding to the first method is
200—r(S,, S;) and the function corresponding to the second one is N—g(S;, §)).
It is clear that the determination of chronological order we may use the function
r(S;, S;) instead of 200—r(S;; S;) in the case of the first method and the functlon
o(S;, S) instead of N—p(S;, S) in the case of the second one.

We shall prove that the functlons r and p satisfy the

© 0(Si, 5)) = o(Si, S)+o(Ss, S))
and o
(N , r(Si, S;) = r(Si, SO +r(S, S,)

inequalities, respectively. :
First we prove the mequahty (6). Let us correspond to each subset L of the set
T the number of the element of L (that is the number of types contained in L) which
we denote by pu(L). The domain of the function u(L) is the set P(T) of all subsets
of T and its values are non-negativ numbers. 1f L and M are dxsjomt subsets of
T then
p(LUM) = p(D)+pu(M),

i.e. the function u(L) is additive.
The function @(S;, S;) can be given with the aid of function u(L) as follows
0(S;, S) = w(T; A T)).

Thus the inequality (6) obvxdusly follows from the additivity “of y'
After this we are gomg to prove.the inequality (7). ThlS may be rewritten in
the following form A
® ‘ > fAKs;"AKs,I = X IAKs;fAKsk]+ 2 IAKS,‘—AKS',I-
. KeT,UT;

KeT,UT; KET,UT,
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Now the left-hand side of (8) in detail is.
Ags, + 2 Ags, + > | Aks,— Ags,| +

©) KET,—(T;UT)) Y ReT;ZTUTY Ke(TNTH~T,
Ags, + 2 Ags,+ > |Aks, — Aks;,]|
Ke(T,OTY-T, KeTNTY-T; Ker,AT;NT,

‘and the right-hand side of ®)
Ags, + 2 Ags,t 2 Ags+

i
KeT,~(T,UTy) KET,~(T,UT)  ©  KeTNT)-T,
|[Aks,— Aks,| + 2 Axs,+ 2 |Ags,—Ags )+
KemAT-T, Ke(r,ATY-T, KeT,AT,nT, :

(10)
Ags, + 2> dgs,+ - 2 Ags;+
KET,—(T;NT) KeT;~(T,UT},) Ke(TNT)-T,
+ > Ags, + 2> | Aks, _AKS~! + 2 [Aks, — Aks,i-
Ke(T;NTY-T, Ke(T,NTY—T, KeT,AT;NT,
We omit from (9) and (10). the members occuring in the both (9) and (10)
By the application of the triangle inequality we get

an > |Aks,— Aks,| = > |Ags,— Axs,| + 2 | Ags,— Aks,|;
Ker,AT,NT, KeTNT,NT, € ker,AT,nT,

(12) 2 | ks, — Aks,| = kst Ags;;
Ke(T,AT)-T, _ KemAT)-T, Ke(NT)~T,

(13) L2 Ags = 2> |Aks,— Axs,| + > Ags,;
KemATY-T, Ke(TNTY-T, Ke,ATY-T; .

(14) 2 Ags, = > | Aks, — Aks,| + > Ags, -
Ke,NTY-T, Ke(r,NT-T, Ke(T;AT)-T,

The left-hand sides of (11), (12), (13), (14) add up the left-hand side of the ®) and
similarly the right-hand-sides of (11), (12), (13), (14) add.up the right-hand 51de of
~ the (8), dlsregardmg the omitted members and the sum

2 2> Ags, -
KET, —(T,UT))

~ From this we can infer that the inequality (8) and automatically the inequality (7)
holds .

S. The application of the regression theory to the chronological
seriation

From the foregoing it can be easily seen that the function r(S;, S;) in the method
of Brainerd—Robinson and the function ¢(S,, S;) in the method of Dempsey-
Baumbhoff determine each a pseudometric space. In the prerequisites it was shown
that a pseudo-metric induces a metric on the set of all sets G;={S;: o(S;, S;)}=0.
Thus we may assume, with no loss of generality, that the function r(S;, S;) and -
0(S;, S;) are metrics. Arises the question what kind of a metric are induced by the
function r and g in the set of the sites. Are they similar to the metric of the straight
line or euclidean plane. Precisely, they are whether or not congruently imbedd-
able in the euclidean plane. It may happen that the imbedding is not possible.
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Namely, let us consider, four sites 4, B, C; D. Assume that each of the sites
have the same types: I, J, K, L, M, N, P, Q. Assume moreover, that in the site 4
the type 7 occurs in percentage 25, the type M in percentage 45, and the other types
occur in percentages 5—5; in the site B the type J occurs in percentage 25, the type
N in percentage 45 and the other types in percentages 5—35; in the site C the type
K occurs in percentage 25, the P in percentage 45 and the other types occur in percent-
ages 5—35; and finally in the site D the type L occurs in the percentage 25, the type Q
in percentage 45 and the other types occur in percentages 5—5.

By the method of Brainerd-Robinson

r(4, B)=r(4, C)=r(4, D)=r(8, C)=r(B, D)=r(C, D)=120,

i.e. the distance of each pair of the four sites is the same. Since we cannot find in
the plane four distinct points such that any pair of them has the. same non-zero
distance, the metric space détermined by the set {4, B, C, D} and the metric r is
" not congruently imbeddable in the plane. We may make a similar example in the
case of the method of Dempsey-Baumhoff. It is easy to see that in such cases
neither the Brainerd-Robinson’s method nor Dempsey-Baumhoff’s method cannot
give a chronological order. -

In the reality, however, such cases occur only when we commit an error in the
preparation of the archeological material or in our calculations. After a new examina-~
tion we may find the trouble. ’

We have seen the difference between principles on which the methods of
‘Brainerd-Robinson and Dempsey-Baumhoff are based. This may the right time
to straighten out the different in another way. Arises the question that the metric
space induced by the sites and the metric ¢(S;, S;) can be congruently imbeddable
in the metric space induced by the sites and the metric r(S;, S;). In general this is
not possible. Consequently, the chronological orders obtained by the two methods
_are not the same, because both methods determine the chronological order comparing
the sizes of the distances of the sites.

In order to establish the chronological serlatlon we need at least demand that
the metric space induced by the set of sites and the function r or ¢ be congruently
imbeddable in the plane. But in this case it is reasonable to apply the theory of
regression. First we must decide that the ‘metric space induced by the function
r(S;, S;) on the set of the sites are imbeddable whether or not in the plane. If this is
not possible then we must examine preliminary analyses particularly the isolation
of the types.

It is known various methods to decide the possibility of the imbeddirig. We may
use the following general theorem [3].

An arbitrary metric space S with metric r is congruently imbeddable in euclidean
n-dimensional space if and only if (i) .S contains an 7+ l-tuple py, py, ..., p, (t=n)
such that the determinant

10 1 1 .. 1
L0 r*(pep) - - . r¥(popd)
1 "2(.?1170) 0 S r.z(PIPk) :

D(pO’pl, vere pk) =

1 r2(pypy) . . 0
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where k=1, 2, ..., t, has the sign of (—1)¥*2, (ii) for.every pair (x y) of points of
S the determ‘nants D(FO’pI’ . ,an) D(Po,Pl, <5 Do y) D(POan . :ph X, y)
vanish. We use this theorem in the case of n=2. Since each set of three points of a
metric space is congruently contained in the euclidean plane, we must verify that
for any four points p,, p,, ps, Ps of the metric space of the sites the determinant

0 1 1 1 1
1. 0 rF(pop) r*(Pop2) r*(popy)

D(po,pl,pz,pa)— 1 r*(pp) O r¥(pips) r*(pips)
1 r’(pops) r*(p1p2) 0 r*(p.ps)
1 r*(pops) r(pips) r*(peps) O

vanish. If the metric space determined by the set of the sites and the metric r is imbed-
dable in the plane then we do imbedding (for example graphically). After this we com-
pute the coordinates of the points of the p]ane corresponding to the sites and with the
aid of the theory of regression the regression line to points corresponding in the plane
to the sites. The correlation coefficient shows the position of the points which represent
the sites in the plane, relative to the regression line. If correlation coefficient is equal
to +1 or —1 then every point lies on the regression line. If the correlation coefficient
differs from 41 then there exist points do not lic on the regression line. If the cor-
relation coefficient is close to &1 then the distances of the points from the regression
line which are outside of the regression line are small. '

Inasmuch as each point is on the regression line, we consider the position of
the points on this line as the chronological order of the sites. Otherwise we project
the pomts onto the regression line perpendicularly, and we consider the position of
the images as the chronological order. Thus the reliability of the chronological
seriation depend upon the value of the correlation coefficient. If the correlation
coefficient is close +1 or —1 then the chronological seriation is satisfactory The
advantage of this method is that we can control simultaneously the premseness of
the preliminary analyses. ’
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Ilpumenenne ANTOPUTMOB ODYYeHHsI B MeTeopPOJIOrHH
JIJI NPeICKA3bIBAHNSI KOHBEKTHBHON AKTHBHOCTH

- G. SzZALAY*, L. MOLNAR**, O. GULYAS** : :

Beenenne

OnHoii U3 ueliel Hawiel paboTHl ABJIAIOCH MCCIIEXOBAHME BOSMOXKHOCTEH MpH-
MeHEHUA aJrOpUTMOB- OOYYEHUS WJIM PACIO3HAaBAHMS, TIOCPENCTBOM OCYILUECTB- -
JIeHUSI KOHKPETHBIX TIPaKTUYECKUX MpuMereHnH. JIpyroi uenbro — B CBA3M C mpeabl-
AyLIEM — SBJIAJIOCh CPABHEHWE ANTOPUTMOB MEXZY COOOM C TOYKH 3peHHS HalexX-
HOCTH, CKOPOCTH CXOAUMOCTH M IPYTHX (HakTOPOB, HA OCHOBAHMH HOCTHIHYTHIX npn
PN TIPAKTHYECKAX 3224 pe3yabTaToB.

B nacrosweit pabore HOKa3bIBAeTCS NPHMEHEHHE HECKOABKMX aJrOpHUTMOB-
o6yuenus, IeHCTBYIOWMX TIO MeToly obyuenns ¢ yaneneM DTS 3aa4M, CBA3AHHON
C MpeicKa3blBAHUEM NOTOnBI. ,

MeTeopoiorMdecKasi 3adaya OTHOCHTCA K TPEACKA3BIBAHUIO KOHBEKTUBHON
AKTHBHOCTH, ﬂanilouleﬁCﬂ mepod aTMocepHOH TPO30BOH AEATENBHOCTH.

B nHauane namHofl paboTel paaum oOnEryeHUs MMOHHMAHMA AAECTCA KPaTKui
0630p MCNOJB30BAHHBIX AJITOPHUTMOB . o6yquI/m U peanu3yrolnx Hx nporpaMM"
s OBM.

Dta paboTa ABNAETCS YACTHIO NEATENbHOCTH HMCIOmCPI mecto B HUM Casasu
(TKH), no 061acTssM AUarHOCTHKH MOCpeACTBOM DBM 1 pacnosHaBanus o6pa3zos..

PeLenyie M3araeMoii 3a1auy MPOM3BEAEHO B PAMKAX COTPYJAHHYECTBA MEXKIY
UentpansheiM MeteoponoruueckuM Muctutytom 1 HUW Casasu.

Co3nganne MeTeopOoJIOTMYeCKoil MOAENId W MOATOTOBKA IaHHBIX OBINH IMPOU3-
sencHel B LenTpanbnoM MeTeoponornyeckom MHCTHTYTE, a TEOPETHYECKHE HCC-
JIEIOBAHMS, CBf3aHHBlE C aNTOPUTMaMM, M3TOTOBJIEHHE MAalUMHHBIX TPOrpaMm
H OMBITHI TIOCPENCTBOM OBM mnpowuszsenucs B HUM Casasu. Ouenka pezyanaTos.
ApoU3BeIeHa cOTPyaHUKaMHu obonx MHcTuTYyTOB coobia.

ITonyyennble m0 CHX TIOp pe3yJpTaThl TOKA3ajH, - YTO MeTeopo.normecxaﬂ
MOJIENb U M3jaraeMble alNropruTMbl IPUTOAHBI [UJIsi PELIEHUS TIOCTABJIEHHONW 3a/1ayd.

_ OpHako Hallel KOHEYHOM 1eblo ABJsETCA BHEAPeHHE mpolenyp s DBM,.
. HCTIOJIB3YIOLLUUX aNrOpHTMBLI OOydYeHHsi B OMEPATUBHYIO MeTeociayxOy, TIpH Aaib--
HeMIlleM UX pa3BUTHH M yBeJIMUeHHH UX 3(QdHeKTUBHOCTH.
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1. O BriGOpe anropuTMoB

B pacno3HaBanu# 06pa3oB M3BECTHO MHOXKECTBO Pa3jiM4HBIX BAPHAHTOB JIr0-
‘puTMOB 00yuenusa. IlonpoOusrit 0630p ux Haxomutcs B [1]—4].

Jnsa BpiOpaHHOM HamM¥y 3ana4u HauboJiee MOJXOASLAMH SABASKOTCA aJITOPHTMBI
JeACTByIOLIME TI0 MeTony ODYYEHUS] ¢ YHHTeNleM.

IepByro rpynny anropuTMOB, HCMOJBL30BAHHBIX TPUH PelUeHHHM 3aJIauH, coc-
"TaBJIAIOT ANrOPUTMBI, JeHCTBYIOLWE MeTOJOM IIOTeHOHasbHbIX (yHKHmT. MeTon
TIOTEHUHAIbHbIX QYHKIKI ABASETCS OAHUM H3 HanboJiee OCHOBATE/LHO pa3pa60TaH-
HBIX BHAOB aJrOPUTMOB OOYyYeHUs,

OBPHCTH4ECKOE BBEIECHHE ero conepxuTca B [5] u [14], a TeopeTHYeCKHE OCHOBBI
‘M HauboJiee U3BECTHBIE PA3HOBHIAHOCTH H3JIOKeHEL B [6] u [7].

B HUMU Cssa3u, kpoMe HCClIeIOBAHUA M peaAu3aldu NpH nmomMomu OBM, 3auu-
‘MajIiChb U O0OOILEHHEM 3THX AJTOPHTMOB H APYTMMH TEOPEeTHYECKAMH HCCHEH0-
Baumsmu [8]—[11]. :

Beibop MeTONA AaNropuTMOB TIOTEHIMANBHBIX (PYHKIMK CBEPX BBILEYKA3AHHBIX
MOTHBHPOBAJICA H TE€M, YTO 3TH aJITOPUTMBI yxKe ObUTH YCTEUIHO NPHMEHEHB! B IpY-
THX objacTax Meteoposioruu [19].

BTOpBrIM HCTIOIB30BAHHBIM AJTOPHTMOM SIBISUICS METOXN ITOJIAHOMMAJIBHOM
_nuckpumubanui [I1IM]. Teopetueckue ocHoBwl ITJAM conepxatcs B [12], a Moau-
(HIIMPOBAHHBIE H YCOBEPILEHCTBOBAHHEIE BAPUAHTHI B [14].

Ero cBsi3b ¢ METOJOM TIOTEHUMAIbHBIX DyHKUHI mokaseiBaeTcs B [14] u [15].
-OCHOBHBIM I0CTOMHCTBOM IIJIM SIBNISI€TCS TO, YTO OH OYeHb HANEKHO KIaCCHMULIH-
PyeT H B cnyyae HaJIMYHS OTHOCHUTENbHO Majlol oOydalouleid mocieaoBaTeJbHOCTH.
B pabore [13] nokassiBaeTcs ycnewdoe npuMenenue ITIJIM B kapauosnoruu. TpeTuit
HCMOAb30BAHHBIH AJITOPUTM, PEASIU3YIOLIUHA NPOCTEHIINI U3 BUTOB MHOFOCIOMHEIX
-ceTe! TOPOTOBBIX JJIEMEHTOB, TAK HA3bIBaeMblil anNropuTM “committee machine”
(CM). CM cmocoben o6pazoBaTh KyCOYHO-JIHHEHHYIO TOBEPXHOCTH DPa3deseHHs.

TeopeTHYeCKHE OCHOBBI AIMHEHHOTO M KyCOYHO-JIMHEHHOrO pa3lelicHus], a TaAKKe
pa3HBle BADHAHTEL 3TOTO aaropurMa coaepxatcs B [3] u [16]. O6 ycmeuiHoM mpu-
MeEHEHUH U1 MPeCKa3bIBAHUA OCAJIKOB ajrOpHTMa KyCO‘{HO JIKHEHHOT O pa3aelieHust
-coobuaercs B [17].

"B nocneayroleM paccMOTPUM O0LLUE YepTHI AJIrOPUTMOB 00y4UeHus, AeHCTBY-
JOLLMX TIO MeTOIly 0OyUYeHHs ¢ yuuTeneM, ajiee KOPOTKO M3NaraloTca TeOPeTHUYECKHE
-OCHOBBI BBIIlIEYKa3aHHBIX TPEX aJTOPUTMOB.

2. Aaropatmbl 00yyenns ACHCTBYHOIHE 10 METOIY OOYUeHHS C YUMTEeaeM

M3naraeMble HAMH aNrOPUTMBI IPHHAANEKAT K TPYIIIIE aITOPUTMOB Pa3eleHus
¢ MOMOLIBK pa3iensonmx GyHxmmii.

Haiuu anroputMel o0yueH st CIYXXAT IS pa3fiejileHus MOAMHOXKECTB #-MEPHOIO
“IBKNUIOBa pocTpaHcTBa R". Be3 orpaHnyeHHs OBIIHOCTH MOXeEM TIpeANoJoraTh
YUCJIO Pa3AeNieMBIX TMOIMHOXECTB paBHBIM ABYM. COOTBETCTBEHHO mycTb OyayT
3aflaHbl MHOXKECTBA A U B B ocro8HOM npocmpancmige X, Nisl KOTOPBIX

AUBC X,

2.1)
ANB = 0. @D
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Paszdeasioweii gynxyueli (hyHromneit paaueneHnﬂ) HaspiBarOTCA Takue dyHkumn f(x),
YTO -
+1 npu x€A,

—1 mpn x€B. 2.2

sign f(x) = {

MartepuanoM OGyUeHMS WM obGyuaroweli nocaAed08amesbHOCMblo HA3BIBAETCS
MHOXecTBO Touek {x'€ X}i°, ecmu (1) BIGOp Kaxmol TOYKM X' NMPOU3BOMMTCS
He3aBucHMO (2) 1o oblieMy pachpeneneHUI0 BEpOSTHOCTEH p(x).

V anroputmMoB oOYyYeHHs, JEHCTBYIOLIUX 10 METOAY OOY4YEeHHs C yUUTeIeM,
X Ka)XIo# Touke obyqaroluei MocaeaoBaTelbHOCTH NPUHALIEKUT yKa3zaHHE O TOM,
X KaKOMY MHOXECTBY CJIEAYET OTHECTH NAHHYIO TOHKY, H 3TO Ha3bIBAETCA yUeHUEM.
O6y'~leHHC XKEe TnpeacTaBlsaAcT coloit l'IOC.I'[C[lOBaTEJ]bHOCTb BepOﬂTHOCTHBIX rlepe-A
MeHHbIX {X}7°, rne

xl: 1
= “?“ 2.3
£ =sign f(xY). ’
IlycTe  #, U 7, SBISAFOTCA COBOKYMHOCTSIMH X NEPBHIX 3JIEMEHTOB OOy4YeHUS
s o6y‘{a}omeﬁ NOCAeA0BATEJIBHOCTH COOTBETCTBEHHO.
3ajaueil anropuTMoB OOYyueHUS fBJgETCE BhipaboTka Takod ¢yuxumuu f,(x),
KOTOpas Ha OCHOBaHWM 00yyaroLeil NOceA0BATEILHOCTH U 00yUYeHU sl «B HEKOTOPOM
cMebIciie» oBpa3syeT f(x),.T. €. :

LO=f s 2=, 2.4
roe m,={x!, x%, ..., x"},
fy =&, £, ..., 7).

2.a. Menod nomenyuavubix @Gynxyuii

HpH aJiropyTMax nNoTE€HIHAJTbHbIX (byHKul/IPl npennonaraeM 4YTO pasacndrouias
Q)ym(uvm A0ONYCKaeT 3alliCb B BUIE!

0= Zan Cean

TAe {(p ()}, aBnseTca numelinoi cHCTEMON He3aBUCHMbIX (byHKIIHI/I
. n-oe npubnwxenne pasgensrowed Qyukuuu f, (x) 06pa3yeTc;i C/ICAYIOIHM -
PEKYPCUBHBIM NYTEM:

fn‘(x) =ﬁ,-1(x)+rn(x")'K(x, x") e a-b2)

rae onpeapciasacMas B BUIC
N . .
K(x,y) = ,_21 0;(x)-0;(») : (2.a.3)

(YHKUUS HA3BIBAETCSH MOTEHIMANBHON (GyHKLUMEH, a KOPPEKTUPYIOLLAS NepeMeHHAs
r (x¥) nmeet pa3nwn-n,m omucaunabii B (6] ¥ [7] BUA npu Kaxa0oM KOHKpCTHOM anro-
pHTMe.
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B nanwuediem npu

0 () = Ol (M) —fio ()]

(2.a.4)
0=0=2/supK(x, x)
aﬂTOpMTM HA3pIBAEM TE€TA-aJITOPUTMOM, & NPH
r? (x5 = y,-sign [f(x*)— xk
% ( Viee sign () —fr—1(x)] 2.2.5

Y=>0, ?vk=°°, : ,12v3<°°

— FraMMa-aJirOpuTMOM.

TeopeMbl CXOTUMOCTH, OTHOCSLIIHECS K.aNTOPHTMaM coaepxkatcs B [7] u [9].

B crenaHHod HaMH nporpaMMe, peajiu3yrolleil anropuTMBI oOydeHus no Me-
TOdy TNOTeHUHaNbHbIX (yHKUMH 11 OBM, BbiOpanu pasgessouyo QyHKUuIO
B BHJIE TIOJMHOMA.

_ KonuyecTBO mepeMeHHBIX M YHCIIO CTENECHEeH MOJMHOMA OTPaHUYHBAETCS JIMILIDL
eMkocThIo naMaTe DBM. KosddunneHTsr NOTHAOMA BHIYUCIAIOTCS PEKYPCHBHBIM
MyTeM, IO3TOMY HeT HeOOX0AHMOCTH COXPpaHATh B NMaMsATH TOYKH 0Oyuenns. Benen-
CTBHE 3TOrO TIOTpeﬁHOCTb B IIaMATH .B TE€YCHHHU 06yqemm OCTAaeTCHd TNOCTOAHHOH
M He 3aBHCHT OT JJIMHBI 0bOy4arolei NocnegoBaTeIbHOCTH.

IMTporpamMma — noA00HO BceM ONMMCHIBAEMBIM B HACTOSIILEM HOKjane Mpor-
paMMaM — HallucaHa Ha s3bike Anroil — 60 B mMamvHHON pernpe3eHTauun GIER—
ALGOL 4.

2.6. Memod noaunomuansHoit duckpumunayuu (ITAM)

CBollka TEOPETHYECKUX OCHOB AJITOPUTMA comepxuTes B [12]. Anroputm TTIM
cnoco®eH maTh He TOJNBKO Npubnmienue pasuenstowiel GyHkUUH, HO KpoMe TOTO,
IAaeT M MPUOJIN3UTENILHYIO OLEHKY paclpeieneHds BePOATHOCTER ToueK oOyueHus, -
TIpUHAANEKAILNX K KaXAOMY OT/IeNIbHOMY Knaccy obpa3os.

Onenxa BeleyKa3aHHBIX (YHKUHH IJIOTHOCTEH pacnpene/ieHnit BepOSTHOCTEN
TPOU3BOAMTCS TaKMM 06pa30M, YTO [T KaXAOH Touku obyHarolei mocenosareib-
HOCTH Ha3HA4YacTCsaA Tak Ha3LIBaCMaﬂ q)yHKLllr{ﬂ HHTEPNOJAUUHA W BbIYHUCIIACTCA
HX CpellHee 3HAYCHHE.

B cnyyae onHOMEPHOTO OCHOBHOIO TPOCTPAHCTB& OTHOUIEHHUS MWJLIIOCTPHPY-
10TCA Ha pHcyHke 1.

C uesibro obJieryeHus BIYUCITUTENbHOH PaGOTHI B KauecTBe HHTEPNOJISHIHOHHBIX
¢dyHkuKMi ObLTH BHIOPaHb! 9KCIOHEHLMANBHBIE (PYyHKIIMH.

TakuM 06pazoM npuHamtexkawas X knaccy A QyHKUNS IIOTHOCTH NPHHHMAST

BH[: .
» .
- \2 2 -

Jat) = = F)” Z’ exp |~ 2, (s = x0"/20%|, © (2.6.1)
rae: ' - _
m — 4HUCNO TO4eK ofyuarowelf nocnenoBaTebHOCTH, NPUHAANEXKAILUX K Kiaccy 4,
P — YHMCAO MEP OCHOBHOIO NPOCTPAHCTBA,

Xai = (Xaits Xaizs <o » Xgip) — -TAA TOUKA o6yqa}omen "MOC/ie10BATEABHOCTH.

Ilpu dopmupoBaHuu TpaBwiIa pelueHus, NpuMeHsnack beitecoBa crtparerus.
ITpu npo6neme knaccidukaluy B Be KATETOPHU TOUYKA X FIPHUHCIISETCH K KATErOpHHU
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A, ecnu : ' ’
hA'lA ’fA(x)>hB‘lB‘fB(x),' (2.0. 2)
rne
h,w hB — ampuopHas BCpOi{THOCTb HAXOXKJEHWS IIpHHAIeXKALleH K Kiaccy 4 uim
B TOuKWH,
1, n l 5 — BEJUYWHBIL, xapaKTepH:’.y}oume Horepn, KOTOpbIE BO3HHKAIOT IIPA He-

MpaBUJIbHOM KylaccH(UKaMM OTHOCALIUXCH K KiraccaM 4 ¥ B Touex.
(BelllieyKa3aHHOE INPABUJIO DPELICHUS JIETKO 06061uaercs[ U [t npobiaeMbl
Knaccnq)m(aunn Ha M =2 KaTeropmi.)

fi (X)
UHTEPNOAKUUOHHEIE GRYHKUMU
pyHrulU naoTHOCTER
falX)
T -~ P
RATSRIOT
. \ N8 S i \
/AN "\ A \
¥ { I\ : ,k 1 \
2RV ARN \
L VSOANO N
1/ Y NS
/ :(’I \\ )I'\‘ SN \\\\
C T T
| N % P Py
) (2) ) G xPx9 @ ) (5) .
x4 XY xPoxyr xXPx% 0 x§ x§ xg x§ X

Puc. I. HamoxeHne MHTEPMOTILMOHHBIX GYHKLIUHT

OaHako, anropuTM, npnMeHﬂIoumn (ynKuUMM TUIOTHOCTER pacnpeneeHmit
Briga (2.6.1) NpUMEHUM JIMLIb MPH CPABHUTEJBHO HEGOJBILIOM KOJIMYECTBE TOYEK —
TIpeaACTaBUTENeH, T. K. B IIpouecce 0OyYeHHs] He0OX0IUMO XpaHEHHEe BCEX TOUYEK 00y-
yatowed MOCAENOBATENLHOCTH, TPH 3TOM KiacCU(UKALUSA HEU3BECTHON TOYKH
TpebyeT NMPOMOPLHOHANIBHON NJIMHBI 00y4arolleil MoCieq0BATEBHOCTH BbIYUCIIH-
TeJIbHOH paGoThlL.

DTOT HENOCTATOK YCTpaHseTcs pa3iokenueM B. psin Teinopa BbIpaKEHH
(2.6.1).

-Tlocne pasnoxxenus B paf Gysxmust f4(x) pa3narae'rcs{ — ToapobHO omucaH-
HBIM B [12] 1 {14] oGpa3oM — Ha mpoU3BEIEHKE HE3ABUCHMOM OT To4eK obyuarolneit
MOCIENOBATENHHOCTH MOJNOXATENLHON DYHKUUH U HA TIOJIMHOM, TTO3TOMY ANS aTb-
HellKux knaccudukanuii JOCTATOYHO NMPUMEHATH . 3TOT nmoauHoM. KosadduunenTs
TOJIMHOMA BBIMMCJISIOTCS M3 KOOPAMHAT TOUYeK ODy4varollei MmociiefoBaTeNbHOCTH
PEKYPCUBHBIM TIyTeM. -B 3TOM  ciiyyae [OCTATOYHO XpaHHTh BMECTO TO4Yek 0Dy-
Yarollei Moc/IeNoBaTeIbHOCTH TOJIBKO KO3 (UIHEeHTH noauHoMa. CleqoBaTeNbHO,
MOTPeGHOCTh B MAMATH B mpolecce 0OyYeHUs MOCTOSIHHA.

Knaccudukaias HEM3BECTHBIX TOYE€K COCTOMT M3 BBIYHMCICHHA 3HAYEHHS IMOJIH-
HOMA TMOACTABJIAL KOOPAMHATHI Toukd. ONHAKO 32 BbilLeyKa3laHHbIE TIPEHMYLIECTBA
NpHAETCH IUIATHTH BO3HHMKaloUleHd BesielcTBHE ycedeHuss psiga oluubkoit. OmnplT
TIOKA3pIBAET, YTO IIPH PELUEHWH MPAKTHYECKWX 3adav TOYHOCTh Kjaccuduraliuu
HE CHHXAETCH 3HAYUTEJILHO, N0 CPABHEHHUIO ¢ METOAOM KJacCu(UKALMH, - TIPUMEHS-
rouM GyHKuMU moTHocTed Buna (2.6.1).
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Cnenyet oTMeTUTB, 4TO NpUMeHHUB I1/IM — B IpOTHBONOJIOKHOCTD NPUMEHEHUS
aNropuTMa NOTEHUUANbHBIX QYHKIUH — TOJAydYeHHAs paszeidiouias (QpyHKOus He
3aBHCHT OT NOpSAJIKa CJIeIOBaHUs TO4eK obydatowieit nociaenoBaTesbHOCTH. Dddek-
THBHOCTH AQiTOPUTMAa B 3HAYMTENHHOM Mepe 3aBHCHT OT HpPaBMIbHOTO BBEIGOpPA
cBoGoanoro napamerpa o B (2.6.1) ¥ yyacTByloLHUX B ECHCCOBOM TIpaBUjle PELUCHUS
K03¢(UIHEHTOB TOTEPb.

ITporpamma, peasyusyrouias anroput™ ajsg 3BM, coCTOUT M3 PeKypPCHUBHOTO
BbIYHCIIEHUS] KOI(HLIHEHTOB NMOJIHHOMA.

2.B. Ancopumm Kycouno-auHeiinozo pasdeaenus

W3BecTHO, YTO JHMHEHHBIM pa3lcJICHUEM pPeLIaeTCs JIMIUb CPAaBHUTEALHO Y3KHit
Kpyr NPaKTHYeCKHX 3a7a4. OJHUM U3 BO3MOXHBIX 0000LIeHnH NHHEWHOTO pa3aeie-
HUA SBJISETCA METOH KYCOYHO — JMHelHoro pasnencHus. KycouHo. — nuHeHHyrO
pa3nensiolyl0 TIOBEPXHOCTE MOXHO CO31aTh COCAMHEHMEM B CETh JIMHEHHBIX
peuiaroiux dieMenToB (TLU: threshold logic unit).

Kasxnplit pemaroiinii 3neMeHT (Ha3bIBAETCS H MOPOTroBBIM 3neMentoM TLU),
HMEIOLLHI BeCOBOH BEKTOP (BEKTOD pELLEHHUS) W, KJIaCCHPUIIMPYET TOUKY oOyyarolei
NoCie0BaTebHOCTH X MO 3HAYeHHIO (PyHKUMM sign (W, X).

CeTb, OCYLLECTBJISAIOILAA KYCOYHO-IHHENHOE pa3aenenue (T. H. “‘committee mach-
ine”) ABNseTCA NPOCTEHIINM THUIIOM MHOTOCJIOWHBIX CeTell IOPOTOBbIX INEMEHTOB.

W,

(o0 |Lsionwx)’
i s

sign (W, X)

Puc. 2. “Committee machine”

EnuncTBeHHBIH Haxoasuipics Bo BTopoM ciolo TLU cumtaer «ronoca»
M peliiaeT Ha OCHOBaHMM OOJBLIMHCTBA (M3 3TOrO ClEAyET, YTO B TIEPBOM CJIOIO
Heob6xoouMo HMeTh HedeTHoe uuciao TLU). ,

B npouecce 06yueHns NpH HEMPaBUILHOM DELIEHHH YCTPONCTBA MO 3aJAaHHOMY
TIpaBuily M3MeHsieM BeKTOpHI peliienuit HekoTopeix TLU. Hanpumep nio onucanHomy
B [4] ¥ ACNONBE30BaHHOMY HaMH METOHY, K BEKTOPaM peLIEHUH HEeCKOJBKAX Ollpele-
JIEHHBIX, HENPAaBUIbHO KJIaccH(PUUMUPOBABLINX 3JIEMEHTOB AO0ABHIIM NPOW3BEICHHE
TOuYKH oOyuaroilieit MOCNEROBATENLHOCTA € 3aJaHHBIM TOCTOAHHBIM K0dPdhuiu-
eHTOM: W] = W;+C-X Txe
— BekTop pemteaus TLU no yuenns,

— BEKTOp peliekus TLU mnocne yueHus,

— MOCTOSIHHBIA K03(HUIIHEHT,

— HenpaBUJIbHO KilaccHDUIMPOBaHHAA TOYKA 0Dyvarouieil nocjie0BaTe b=
HOCTH.

X

x Q &i\ H.s\
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DTa mpoleaypa NOBTOPETCS OO TOTo, IOKa He A0OBEMCS IIPaBUIIbHON KJIACCH--
(duKauuy TOYKH X.

JIns anropuTMa KyCOYHO-THHEMHOrO Pa3fesieHHs HEW3BECTHEI TEOPeMSBI 0 ero-
cxoguMocTH. O CXOAMMOCTH OOYYEHMs] MOXHO CyJUTh JIMIUb Ha OCHOBAHHU OIbI--
TOB. . ’

Ha cxopocTh 00ydYeHusi HaualbHash HACTPOHKA 3JIEMEHTOB MMEET CYLIECTBEH--

. HOC BJIHAHUE.

3. MereopoJiornyeckas Mojaelb 3aJa4M

OnHMM U3 THIIMYHLIX ODJlacTedl TPUMEHEHUS aJTOPUTMOB OOYYCHHS ABIAETCS:
NpeACKA3bIBaHHE TOrOMBI. ’

IIpuMenenune B METEOPOJIOrHYM METOOB PACMO3HABAHUS 0OPA30B U aJIrOPUTMOB-
o6yuyenus nanaraercs B [18], [20] u [21] B o61ueM BHIe, a 06 YCIIEIIHOM MX HCHOJb--
30BaHMH Uil KOHKPETHBIX METEOPOJIOTHYECKHX 3anau cooOuiaercs B [17] u [19]. -
B [17] coobiieHo 06 omnbrTax, CBA3aHHBIX C MpeacKa3blBaHHEM OCAAKOB, C MOMOILBIO-
IrOPUTMA KYCOYHO-TMHeWHOTo paszdeneHus. B [18] ommceiBaeTcs mpuuHCieHHE:
K OIpelesieHHBIM MOrONHBIM 30HaM OTAENIBHBIX TeppuTopHaibhbix dacteit CCCP,
C OpUMEHEHHEM. AJITOPHTMA CaAMOODYYEHHs, JEHCTBYIOLIETO 1O METONY NMOTeHIM--
anbHbIX (yHKuuit, Cyns MO CTaThsM, ONMyOJMKOBAaHHBIM B JHTEPATYpPE, aJITOPUTMBI
oOy4YeHHUs aNy COTJIACHBIE C PaHee HCOIb30BAaHHBIMH METOAAaMU, HO B OTHAECNBHBIX
ciy4yasX TpeBBIIAIONINe HX TOYHOCTh pe3ynbTathl. OHaAKO, BONPEKU BBILLIEYKA3aH-:
HBIM pe3yJibTaTaM, B METEOPONOTHYECKO} NPAKTHKE MAIIHHHBIE METONBI, TIPUMEHA--
JOLIME airopuTMBI 0OydeHus eule He TIONyvMiHM pacnpocTpanenue. IlpuMmeHneHue:
aNropUTMOB O00YUeHAA HCBITAHO JINLIb B HECKOJIBKHUX M3 MHOTOYHCIIEHHBIX 0o0MacTeik.
METEOPOJIOTHH.

B macrosueit paGoTe moka3bIBaeTCs pelleHHE 3afavd TIpeACKa3bIBAHHS KOH-
BEKTHBHOH aKTHBHOCTH, SBISIOLIEACS MEPOMH rpo3oBoi ReATENLHOCTH aTMochepsl,.
¢ NPHUMEHEHHEM AJTOPHTMOB O6ydeHHs.

B Beurpuu B llenTpameHoM MeteoposaorniyeckoM HMHCTUTYyTE B ToceAnKe-
rogpl Gpna NpowW3BeleHa HMHTEHCHBHAs HCCle0BaTeNbCkast pabora B obnacth |
METEOPOJIOTHUYECKHX SIBJIEHHI, CBA3aHHBIX C IIPECKa3biBaHUEM KOHBEKTHBHOM AKTHUB-
Aoctd. Pa3pabortanpl Monens M Meron ansd OBM nys 0O6beKTHBHOrO aHayuM3a.
YCIOBUA OKpYXeHWs, OIaronpHATCTBYIOWMX OOpa30BaHHIO KOHBEKTHBHBIX MpO--
meccoB. [Toapo6Hbiii 0T4eT 06 3TOM HaxOmHTCA, B [22].

I/IH,IIKKaTOpLI, pa3paboTtannbie B [22], cocTaBisuin KOOPAMHATHI Toyek obyya-
IOLel TOCAeI0BATENBHOCTH, 4 HOCIEAYIOIAs (baKTmeCKaﬂ KOHBEKTHBHAST AKTHUB--
HOCTBb COCTaBjisifla y4YeHHE.

‘ OneITeI, TPOU3BENCHHBIE B NPOLIECCE PELIeHUsS 3a7a4H, HO}:[pOGHO OTIMCHIBAKOTCS'
B [23]

JlocTurayThie pe3ynbTaThl M NojlydaeMble U3 HMX BBIBOOBI coAepikarcs B [24]..
W3noxenue pe3ybTaTOB C TOYKM 3peHust anroputma ITJIM naetcs B [25]. _

B mocnenyrooweM paeTcs OIHCaHWe B OOIIMX YEPTax CYIIECTBEHHEIX 4acTei
METEOPOJIOTHYECKOH MOIeH, AaJjiee Jal0TC PE3yNbTATEL, MOJXY4eHHbIE IPUMEHEHHUEM.
pPa3HBIX aJrOPUTMOB, HAKOHEN, CpPABHEHHE aJITOPUTMOB MeXAy cOoOOM.

B mporeccax arMocdepHbIX OBHXeHMH BaXHYIO POJIb MI'PAIOT BepTHKAJbHbIE
TOTOKH, KOTOPBIe TIOABIISIOTCA BCJIEACTBHE BO3MYLIEHWA HeYCTOMYMBBIX paclpene-
JICHMH BO3IOYLIHBIX Macc.
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OTH ynopsAouYeHHBIE BO3AYUIHBIE MIOTOKK Ha3bIBAIOTCS KOHBeKiHeil. Hanbonee
pa3BUTOM HX GopMOii ABNAETCS KOHBEKLHA JOXKAEBBIX KyYeBbIX 00/1aK0B, YTO BEPTH-
KaJIbHO OXBaTbIBAaeT BCIO Tponocdepy, ee rOpH3OHTajIbHbIE pa3Mepsl niopsaka 10-TH
KM, a B JIMHEHHO#H dopMaunu MOXET JOCTHUTATh H HECKOJIbKO COTeH kM. KoHBekuus
JOXAEBBIX Ky4eBbiXx 06y1akoB Bcerga obpa3syercst npu OGnaronpHsATHOM CONEACTBHH
MHOTOMHCNEHHBIX (PaKTOpOB.

TTpuUHATO CYUTATh CaMbIMK BaXXHBIMH M3 3TUX (aKTOPOB CACAYIOLIME:

a) JOCTATO4HOE CONEPXAHHE BOASHOrO Mapa B HUXKHHUX CMOAX BO3AYXA;

6) moTeHUManbHAsA HEYCTOMYHBOCTh [MAPOCTATHYECKOrO PABHOBECHS BO3AyLI-
Horo cronba;

B) CyLUeCTBOBaHME ME€XaHH3Ma JMHAMMKH, BbI3BIBAIOILIETO BbLACTICHHS SHEPrUH
HC)’CTOH‘H’IBOCTH -

B pabore [22) onucana npoueaypa, npuMenumMas niis 9BM, koTopas BusSBaseT
0bCcTOATENbLCTBA, ONpeAeAsIouIre d)opMHpOBaHue SABJICHUH KOHBEKLMH [OXIEBBIX
Ky4eBbIX 001aKOB:

Jins oxapaKTepH3OBaHHS YCIOBHH, IIPH KOTOPEIX TPOHCXOAHT 06pa3oBaHue
KOHBEKTHBHOM aKTHBHOCTH, HAMH NMpPUMEHEHH! 12 NapaMeTpoB, BHIOPAHHBIX TaKUM
0bpa3oM, YTOOEl OHH C HEOOXONHUMOI IOSTHOTOM M BECOBBLIM COOTHOLIEHHEM Ipesl-
CTABJIUIM BbILIEYKA3aHHBIE TpH (HakTOpa.

JI718 3TOro npeanKTOPsl ONpeeNieHbl TAKUM 00pa30oM, UTOOL! KaXAblid HHIAHKA-
- TOp COCTOS1 W3 NIapaMETPOB ONMHAKOBOH (PU3MYECKOH MpHpOIb!.

OnpeneneHbl BCEro 4 MHAMKATOPa KOHBEKTHBHON aKTHBHOCTH.

Wnpukatop I, COCTOMT M3 TMAPOCTATUYECKHX NMapaMeTpoB. Cpelu ero 4jeHoB
HMEIOTCS: UHICKC YCTOHYHBOCTH, MHAEKC BJIAKHOCTH, BEJIMYKHHA, XapaKTepu3ylouas
COAEPXKAHHA BJIArM HWKHUX YPOBHEW, W HAKOHEL MNapaMeTp, XapakTepH3YIOUIMit
B3aUMHOCTb CTPYKTYP TOJIeH TeMNepaTyphl H BIIAXHOCTH.

Wnpukatop I, npencrasnser co6oil pa3BuTHE HEYCTOWMHBOCTH BO3MYLIHOIO
€T0J1ba M COCTOHT.U3 Pa3HOCTH reocTpodryeckux aaBeKUHil TeMIepaTyp Ha YPOBHAX
500 u 850 mumnudap.

‘Vngnkatop I, comepXHUT Takue mapaMeTpsl, KOTOPbIE YKa3BLIBAIOT HA CYILECT-
BOBAHME MEXaHHU3MOB, aKTHBU3MPYIOLINX CKPHITYIO HEYCTOMYMBOCTS.

Cpenu 3TvX MapaMeTPOB HAXOIATCA TeHe3 BUXPS CKOPOCTH, BBIYHCJEHHAS s
ypoBHs 850 mbap, a Takxe GyHKOMs rene3a GPOHTA HAKOIUIEHUA TEMIEPATYPHI U
TOYKM pOCHI, Aajiee reoctpoduueckast aABeKUNsT OTHOCHTEJIBHOTO BUXPSA CKOPOCTH,

IMocpeacTBoM uHAWKaTOpa I, TONMBITaNNCh XapaKTepH30BaTh OMHOBPEMEHHOE
TIPUCYTCTBUE PA3BHTHUS HEYCTOHYHBOCTH M MEXaHM3Ma aKTHBU3ALHH. DTOT HHAH-
KaTop oTMeyaeT Te 00J1acTH, BHYTPH KOTOPLIX TOCTIOACTBYIOUIMMH SBJIAIOTCS TOPH-
30HTaJIbHas CXOIMMOCTh MOTOKA BO3/IyXa HA HHXKHHMX YPOBHSAX, 4 HA CPEHUX YPOBHIX
FOPH3OHTAJbHAS PACXOAUMOCTh MOTOKZ BO3AYyXa; Jajiee BHHU3Y HabJonarorcs
afBEKNUA TEIJIOTO H BJIAXXHOTO, @ HABEPXY aJABEKLIUS CYXOTO U XOJIONHOTO BO3AYXa.

WHpiMu cioBamu 1, oTMedaeT Te obnacte, BHYTPM KOTOPBIX Habiromaercs
ONTHMaJIbHAas KOMOMHAIMS Pa3BATHA HEYCTOMYHMBOCTH BO3YLWIHOTO CT0Ji0a, Iepe-
YCTPOUCTBO MOPAAKA BEPTHKANBHOTO pacrpeliejieHHs BJIard, W TpUrrep, Bo3Oyx-
AarOUIMH KOHBEKTHBHYIO LHDKYJIALMIO.

- TloABOAKMM UTOTH: HENBXO HACTOsIIEH pabOTHI ABIKETCH NPEACKa3LIBAHHE BETH-
YHMHBI KOHBEKTHBHOM aKTHBHOCTH. M3 BBILIECKA3aHHOTO CJEAYET, YTO COCTOAHHE
aTMOC(hepsl OMUCHIBAIOT 4 MHIMKATOPa KOHBEKTHBHOM aKTHBHOCTH.
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Tlnowane 3anansoi m Cpenneil EBPONBI MOKPHUIM NPAMOYTOJNBLHON CETHIO,.
coctositeit u3 13X 8 y3noBex Touek cetd. Takum o6pazom monyuunu 12X 7 = 84
KBaJpaTa, COCTOSIHHE BO3AYLIHOTO TIPOCTPAHCTBA BHYTPH KOTOPBIX OMNHCHIBACTCS
HHAUKATOpaMH B 4-x TOukax cetd (puc. 3). - .
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Puc. 3. OpToroHanbHast CeTh, IOKPHIBatOIIas NCCIIENOBAHHYIO 00IacTh

Kax st kBapat, IUHOI cTopoHEl 250 KM, Xapaktepusyercs 16 mapameTpamu,
T. €. TIip4 BHIPabOTKe CyIIECTBEHHBIX NIPU3HAKOB 3ajaia oToOpaxkaercs B 16-MepHoe
DBKJIUIOBO MPOCTPAHCTBO.

Ha ocHoBauuu 3THX. 16 TMapaMeTpOB CHEOyeT ONPENEHTh MOSBJICHHE WA

OTCYTCTBHE KOHBEKTMBHOW aKTHBHOCTH B KBajpare Ha IO cieayrolve 12 dacos.
Jns ombITa HAMH - NCTIOJIb30BAHBI MHIMKATOPHI, BHIYUCIICHHBIE M3 HaHHBIX, HOJIy-
YeHHBIX BLICOTHEIMHM M3MEPEHHSAMHM COCTOSHHA Bo3Ayxa 11-ro mions 1968-ro roma
B 12% no I'punsuuy. [TapamMeTp, ONMCHIBAIOLIM (aKTHYECKYIO KOHBEKTHBHYIO aKTHB-
HOCTb B TpoMexyTke BpeMenm 120°—24° mo Tpumsuyy TpencrasiseT coGoi
yueHHe. )
' Kpome 250-knIoMeTpoBO# ceTH, ObLTa TIPUMEHEHA U CeTh C MJIMHOW CTOPOHEI
kBazparta 125 kM. [aHHbIEe KaXmOH ceTH ObUIM ONpENENICHBI HANOXEHUEM IIPSIMO-
yronpHo# ceTn Ha o6paborannble LI chepu4ecKoil CHCTEMBI KOOPAUHAT U3OJIUHUH,
¥ O KaXI0M TOYKM — IO Mepe HeoOXomuMocTu — OBUTH HMpOBeIeHbl NHTEPHO-
AIMM 3HAYCHHUIL.

BenuunHbl MapaMeTpa KOHBEKTHBHOW AKTHBHOCTH OTPEAENSUINCH CJIEIYHOIINM
obpazomMm:

a) Ecnu He OBLITIO KOHBEKTHBHOM aKTHBHOCTH, TO ¥ = —1,
6) Ilpn penxmx nuBHiX u=1, '

B) Ilpu MHOTOYHUCIEHHBIX JIMBHAX U=2,

r) Ilpu rpose, oTMe4YeHHOH KaKo#-To cTaHiuMelr u=3,

) Ilpu cHIBHOM I'PO30BOI AEATENbHOCTH u=4.

6 Acta Cybernetica



210 G. Szalay, L. Molnar, O. Gulyas

4., Pe3y/bTaThl, N0Jy4eHHbIE NPHMeHeHHeM HPOrpaMM H CJIeACTBHS,
BBITEKAIONIHE H3 HUX

Kaxaplif anropuTM M3 Tpex OKa3aJicsi NPUTOAHBIM IS PELIEHHS METEOpPO-
Jioruyeckoi 3azmauu. JList IpoBepKH B Cilydae anropuTMa NOTEHUUANBHBIX (DYHKIMIA,
coJepalliero NOTeHIHaNbHYI0 GYHKLHIO B BHIe TIOJIMHOMA, U B Cliy4ae aJirOpHTMa
KYCO4HO-JIMHEHHOTO pa3ziefieHust Obljila MCNob30BaHa obOyyaroutas mocienoBaTelb-
HOCTB, YTO JIONYCTHMO TIOTOMY, YTO 3TH TIPOLEAYPH! #ABJISIOTCS WTEPATHBHBIMH
MpoUeNypaMH U aBTOMAaTHYECKH He Pa3feisiioT MPaBUABLHO HA OOYYalOILYIO TOCIe-
HOBATEJILHOCTD.

Onnaxo Ay npoBepkd anroputma I1JIM 6pnia HCIoNB30BaHa MOCAEAOBATEN b
HOCTb, oTIMYaloLtascs oT obyuyarouielh. [1poBepka MpON3BOOUNACE OBYMS Pa3jiHy-
HBIMHM MeToZaMHu. B ciyyae mepBOro Meroja HaHHbE HAXOASLIMECS B HALIEM pac-
NopsixkeHWH OBLUIM pa3leNieHbl Ha JIBE YacTH: NepBasi YacTh Oblia MCIONb30BaHa I
o6yuenus, a Bropas s nposepku (ITJAM/I). TIpu BToOpoM MeTone o6yueHHe GuLIO
TIPOBEAEHO CTOJIBKO Pa3, CKOJILKO HMEJIOCh To4eK 00y4arolleil mocie10BaTeIbHOCTH.
M3 uMeroluxcst Toyek ObLIa BBIAENICHA OJIHA, OCTAJbHBIMU OBLIO NMPOBeAEHO OGY-
yeHHe, a TIOTOM C NOMOLIBIO TOJIyYEHHOH pasmenstouneii ¢GyHKUHMH Oblia Npou3-
BefieHa kiaccudmkauus octasuieiica Touku (ITIM/IL).

Huxe Noxa3bIBalOTCS HECKOJILKO XapaKTepHBIX Pe3yJbTaToB.

B Tabnune H, n H, 0603Ha4al0T OLUIMOKH NEPBOTO U BTOPOTO POIOB. OmmbKoit
TIEePBOTO POIa Ha3blBaeTCA Cy4ai, KOrJa aJFOpPUTM IIPEACKa3bIBAET SICHYIO TIOFOAY,
a B HEHCTBHUTENBLHOCTH MOSBIAETCS TPo3a.

ITox TOYHOCTBIO TIOHHMAaeM OTHOCUTEIbHYIO ‘-laCTOTy TpaBUNBLHOTO TIpen-
CKa3zaHus.

"B ciyvae nuueiiHOM pasuensromed GyHKIMU aJII‘OpPlTMbI nomnunam;nmx
dbyakouit nanu ciepyrolide pesyiasTathl: (Tabmuua I).

Tabmuua 1. Pe3ynsTaTel aNTOPHTMOB NOTEHUHMATBHBIX (hyHKIMI

AnropatM Hellli‘g:;’:;"a Toqk?rggsaepm Hy ‘Hy | H=H,+H;| Tosmocts (%)
Tera «250 kn» 84 = 33rp.451 9 6 15 822
Tamma - «250 km» 84 = 33p.+51 ‘14 10 24 71.5
Tera - «125 km» 336 = 92rp.+244 20 30 50 85.2

Tamma «25km» | 336 =92mp.+244 | 36 | 21 57 83.1

M3 Tabanubl BPI}],HO YTO TETa-aJITOPHTM, Y KOTOPOTO BENHYMHA KOPPEKLMH
He 3aBHCHT OT IIOJIOXEHHS TOYKM BHYTpHM oOyvarowieil mocienoBaTesbHOCTH, Najt
nyqiide pe3yibTaThl 4eM TIamMma- 'anropuTM TAe BeNMYMHA KOppekuuu yOniBaeT
B niponecce oOyveHus. ITpd mpMMeHeHMH pasfensromux GyHKkuuil 60jiee BHICOKOTo
AOpPsIKA 4eM JIMHEHHEIE TOYHOCTD HE YBEMYHBANACh, YTO HABOJHUT Ha MBICIB O TOM,
YTO NMOJIOXKEHNE He TakoBO OynTo GBI IBa MHOXeECTBA B 16-M MepHOM TIPOCTPAHCTBE,
COOTBETCTBYIOIIHE COCTOAHHSAM «IPO3a» U «HE IPO3ay, ABJISAIOTCA HenepeceKaroilu-
MHCS, TOJIBKO JIMHHUSA pa3feia OueHb CJIOXHA-, a HA00OpOT, 3TH JBa MHOXECTBA Ie-
pecekaroTcst (cM. puc. 4).
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B cnyvae MTepaTHBHOTO ajiropuTMa, BEIpaboTaHHAA pasienstouiast GyHKIUS
TIOJBEPraeTCs BJIHAHUIO TOPSAKA CJICHOBAHASA Touek obyvalrollied MoCiIefoBaTelNhb-
HocTH. T103TOMY, y aATOPUTMOB TIOTEHIMANBHBIX (GYHKUUH HaMH ObLIO MPOBEICHO
U HCIBITAHHE C LENBIO OIpeIesieHHs TOTO, KaK BIHAET MOPSAOK CIEIOBAaHUS TOYEK
obyvarouielf MOCAEKOBATENLHOCTH HA TOYHOCTD Pa3fAcieHMs.

9

-9

‘Puc. 4. XapakTep pa3nejiieMbIX MHOXKECTB

Jnst aT0#t 1end ObUIH M3rOTOBJIEHBI HECKOJBKO «CMELIAHHBIX» IIOCIIEN0OBATENb-
HOCTeH naHHbIX, «CMelIaHHAS» TOCNeNOBATEIBHOCTE TONYYeHa CIEAYIOIUM obpa-
30M: MOCJEAOBATENbHOCTh TOYEK, MOJYyYeHHBIX A 250-KHIOMeTpPOBOM CeTH CMe-
IUAJIH OTHOCUTEJIBHO HX «ECTECTBEHHOIO» MOPsAKa clieHoBaHus (cM. pHc. 6). Pe3yis-
TaThl, MOJIYYEHHblE TAKAMH «CMEIUAHHBIMM» NaHHBIMH, NokaszaHbl B TaGnmue II u
HOJIy‘IeHHbI C MpHMEHEHHEM JIMHEHHOro TeTa- anropmMa

Tabnuna II. Pe3synbTarsl, nomy4eHHple IPHMEHAB HECKOJILKO
: «CMEHIAHHBIX» NOCIENOBATENBHOCTEH JAHHBIX

TlepdonenTa manmbix YHCI0 OXHOPOIHEIX OTPE3KOD } Hy I H, f H l Tourocts (%)
«EeCTeCTBEHHAN ' 15 9 6 15 82.2
«cryyainas» - 3s | 8 4 12 85.7
«paBHOMEpHas/1» © 67 6 6 12 85.7
«paBHOMEDPHAA[2» . 67 5 5 10 . . 88.1

B mepBoif cTpoke TaOMHMUEL colepaTcs Pe3ybTaThl MOCHEAOBATEIBHOCTH
JaHHBIX C «ECTECTBEHHOW» O04YepeNHOCTHI0. Tak Kak rpo30BBlEe 30HBI O6GpPa3yrOTCH
OOBIYHO Ha CBA3HBIX 00JIACTSAX, MO3TOMY 3€Ch IIOJYy4YEHO OTHOCHTENLHO HeGOobLIOE
YHCIIO OMHOPOJHBIX OTPE3KOB (BHYTPH OHOPOIHOTO OTPe3Ka HAXOAATCH TGO oM
"«TPO30BHIE» TOUKH, JIHOO OMHH TOYKH «ICHO# MOrone»). Bo BTOpoif crpoke moka-
3aH pe3yJbTaT TaKoH NOCAeNOBATENBHOCTh HAHHBIX, T MOPANOK ClieAOBAHMSA
TOYEK YCTAHOBJIEH C HOMOIIBIO reHepaTopa CIIyYaiHBIX 4YHCeNl. 3[eCh YHCJIO OfO- -
HOPOIHEIX OTDE3KOB Oounbire.

B TpeTheli u weTBepTON CTpOKAaX IMOKa3aHbl Pe3yJbTATH TAKHX IMOCIEHOBATEE-
HOCTEH ZaHHBIX, Ile TOUKH oOyd4arolilei MoyiceaoBaTEILHOCTH NOCTABIICHB B TOPS-
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IOK Cje[OBAHHMsA, IIPH KOTOPOM CTapajiiCh NPUAATh PACHPOMEICHHIO «TPO30BUX»
TOYEK KaK MOXHO OOJIbLIYI0 PaBHOMEPHOCTb.

3meck YACIO OOHOPOOHBIX OTPE3KOB MakCUMasibHOe. M3 ONBITOB BMAHO, YTO
HMEETCS] TEHACHUHMSI K NOBBLIUEHHIO TOYHOCTHU npencxaamaauuﬂ C YBEJHYEHHEM
vYMCia ONHOPOJHEIX OTPE3KOB.

XapakTtepHble pe3yabTaTs! anroputMa IIJIM comepxatcs B Tabauue ITI.

Tabsmua III. Pesynetate: anropurma ITAM

Meron Remurramus | [ 1oRoeHTa Cepus tecTon H, Hy H | Tounocts (%)
oaM/aI - «250 km» 42 = 22rp.+20 4 1 5 88.1
H,[[M/II «250 km» 84 = 33rp. +51 ‘ 9 8 17 80.0
HI[M/I «125 km» 168 = 35rp.+133 . 4 - 16 20 |- 88.1

Anroput™m ITJM nagexHo pabGoTtaer. Pasnmenstowias GyHKUHS, MOJTyYeHHAsE
Ipyu MOMOWM o6yyarolledl MOCIeA0BATENbHOCTH, OYeHb XOPOIIO KacCHbUIupyeT
TaKKe M CEPUU TeCTOB, OTJMYAIOUINXCHA OT 0Oydaloiiel IOCAeI0BaTEILHOCTH.

" Pe3ynbTaTel, TONYYEHHBIE C TPHMEHEHHEM aJIOPUTMa KyCOYHO-JTHHEHHOTO
pasnesieHns, puBeaeHs! B Tabnuue IV. ONBITH, IpOBeNeHHbIe HAMH, IOKA3aJIH, YTO
B 0011eM clyyae adTOPATM KYCOYHO-JIMHEHHOTO pa3/esieHus CyECTBEHHO CXOOUTCS
CO CKOPOCTBIO, CYLIECTBEHHO MEHBUIEH, YeM ajrOPpUTM NOTEHIHANBHHX (yHKOHR.
" Pe3ynpTaThl, MOJIyYeHHBIE TIPUMEHHB MCXOAHYIO 06Y4arOnIyI0 MOCAEIOBATEbHOCTD,
OKasaJuch noBoJbHO cnabbiMu (1). ITosTomy HamMm 6bLna yBenmueHa IuHa 0Oy-
YaroIei MOCNeI0BATENLHOCTH TaKHM 06pa3oM, 4TO MPOU3BEIH 00YUEHHS C IPOCTHIM
5-, 10-kpaTHBIM IOBTOPEHHUEM HCXOOHOH 00YYaroILIei Tocie 10BATENLHOCTH, Y IIUHUB
TakuM obpa3zoM 06y4arollylo HOCHIENOBATEIBHOCTH, MBI TIOJNYYHJIH CYIIECTBEHHO
yIyUIlIEHHBlE Pe3yNsTaTel (2 u 3).

Tabmura 1V. Pe3yapTars! ajJropuTMa KyCOYHO-IHHEHHOTO

pasgeneHus

ult}g:ﬁogaﬁ-ﬁb?g:fu Hy Hy H TovHOCTH (%)
: 1-xpaTHasn ) 24 1,2 ] 26 69.1
5-kpaTHas s | o 15 82.2
10-kpatnas 2 4 6 92.8

PesynsTatel monyyens! ¢ npuMmeHeHneM 3 TLU u npu 3HayeHAM KOPpeKTHUPY-
routero MHoxwutenss C=1. Hcxonnas obyyarolias IOCHENOBATEIBHOCTH COCTOSIA
u3 84 Touex 250-KUTIOMETPOBOH CeTH. YBenHuYeHne Yhcia - TLU He OJajio yJIy'merHe
TOYHOCTH KiaccupUKamuy. - :
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. HakoHeLl, HaMH HCCIEN0BAIIOCh H TO, €CTh JIA BO3MOXHOCTbh YMEHbLIATH YUCIIO,
Mep. PesynbTaThl, npuBeAeHHble B Tabiane V, MokasanH, YTO 3aJaHHe C JaHHBIMU
16-MepHOro IMpPOCTPAHCTBA SABNACTCS B 3HAYMTEJBHOH MEpE HM3JIMILHHM.

B mepsoit crpoke oboszuauenne R3/1, 3, 4 o3HauaeT, YTO U3 4-X MHAMKATOPOB
JUIS KaX/IOil TOYKM OJMH OCTAJICS HEWCIIOJb30BAaHHBIM, M TaK NPUMEHATHCh I, I;

Ta6bmuua V. Pe3ynsTaThl JAHHBIX C YMEHBIICHHBIM YHCIIOM MeEp

~ Bz coxpamenn Gmcmosen| Hy | Ha | H | Towoers (b
1 | R3/1,3,4 12 7 6 13 . 845
2 ‘R2/1,4 8 7 7 14 83.1
3 "R1/4 4 4 15 | 19 774
4 R4/cpensee 4 1| 7 | 18 785
5 R2/1, 4/cpennee 2 7 | 8 | 15 82.2
6 R2/1, 4fcpenuee 2 4 2 6 85.7

n I,. TakuM oGpa3oM npobieMa cTajga COKpallleHHOH B 12-MepHOE NPOCTPAHCTBO.
Bo sTopoii crpoke R2/1, 4 o3HayaeT, 4TO MPUMEHEHBI JNUIUL MHIUKATOPH I u 14,
‘Torna npobGnema craneT 8-MepHoli. VI3 pesynbTaToB BHMAHO, 4YTO B 12-MepHOM
M Jaxe B 8-MEPHOM MNPOCTPAHCTBE pa3/iejieHHEe OCYLIECTBHMO 0e3 yMCHbILCHHS
TouHocTu. Hdanee (3) BUAHO, 4TO NMPH HMCIOJIB30BAaHMHU JIMWIbL MHAMKATOpa I;, Tem
-CAaMBIM COKpAaTHUB NIpobiieMy B 4-MepHOe MPOCTPAHCTBO, TOYHOCTb HE YMEHbLIIAETCS
3HauUTENBHO. IIpobGiieMy MOXHO COKPATHTH B 4-MepHyIO H APYTMM CIIOCOOOM:
.00pa30oBaHHEM CpEIHEro U3 3Ha4YeHWH HWHAMKATOPOB, NMPUHATBIX MMM B YETBIpeX
‘yriax KkBajapaTta. B oToM ciyyae HaMH JOCTHMTHYTa OPUOIM3UTENBHO TaKas Xe TOoY-
THOCTb pa3fiejieHunsi, YTO M MPH OPYroi 4eThIpeXxMepHOil mpobieMe.

OcobeHHEI HHTEPEC NMPEACTABNASAIOT ¢O00M pe3ysibTaThl, HaxXo4dlMecs B 5-of
U 6-0it cTpokax Tabsuusl V. B 3Tux ciyyasx npobnemMa yxe ABYXMEpPHasi, YTO IOC-
‘“TUTHYTO TaKuM 00pa3oM, YTO B HOCNENOBATENLHOCTH BBIILIEOMUCAHHBIM CIOCO60M
BBIUMCJIEHB! CpeaHue 3Havyenus. TIpuMeHUB 3Ty AByxMepHyro oOydarouiylo Tocie-
. J0BATEJIBLHOCTh, AJITOPUTM OOyuYcHHA KiacCH(UUUPOBAN ¢ TAKOH ke TOYHOCTLIO,
YTO W B CJydae HCXOAHOTO 16-MepHOTO MpOCTpaHCTBA HaHHBIX! A mporpamma
IIAM/I ¢ Takoit xe nepdoNeHTOH HAHHBIX, KOTHAA OJsi OOydYeHHsl NMPHMEHSJIHMCh
‘mepBble 42 TOYKH, a AJsi TIPOBEPKH OCTANBHBIE, Oaja OYeHb XOPOILIYH) TOYHOCTHL
‘xnaccupukaumu (npubausutesnpHo 86%), 4TO Takke O4YeHb Majuo OTIM4anach OT
‘88 %-HOTO pPe3yNbTaTa, NONY4eHHOTO NPUMeHHB 16-MepHYyt0 06y4aloLLylo Mocen0Ba-
"TeJIbHOCTh NPU MOTOOHBIX OOCTOATENbCTBAX. SICHO BHAHO Ha OCHOBAaHUMW OIBITA,
“TIOAYYEHHOTO B CBSI3H C COKPALLUEHHEM JJaHHBIX, YTO IPUMEHEHHUE aJITOPUTMOB UMEET
‘3HaYEHHE TAKKE C TOUKH 3PEHMS YCOBEPIIEHCTBOBAHUA METEOPOJIOTHYCCKON MOLeIH,
‘“Tak KaK ¢ HX IIOMOLUBIO MOXHO CYIMTH OO OTHOCHTENBHOW BaKHOCTH KaXIOro
"MHOMKATOPA, C TOYKM 3PEHUs] TOUHOCTH TpeiacKa3biBaHMsi. MOXKHO yCTaHOBHTH
“TIEPBOCTENEHHYEO BaXHOCTh HHAUKaTOpa I,, ubo mocTuraeMas Ha OCHOBaHUK OJHOIO
I, TOYHOCTb MpPEeCKA3bIBAHMSI MaJlo OTCTaeT OT TOYHOCTH MOJTy4aeMoil IPHU OQHO-
‘BpEMEHHOM TIPUMEHEHHH BCEX YETBIPEX WHAMKATOBOD.



214 G. Szalay, L. Molndr, O. Gulyés

BTopbIM Mo BaXXHOCTH MOXHO OTMETHUTH 1;, Tak Kak npuMenus I, u I, TouHOCTH
JOCTMraeT 3Ha4Y€HUA, KOTOpOEe MMEJIOCh IpH NPHUMEHEHUHM Bcex YeThipex. Menee
BaXXHB! MHIMKATODPHL I, u I;, T. K. UX OTCYTCTBHE He UMEET 3aMETHOE BJIMSIHHE Ha
TOYHOCThH KJacCH(HKALHH.

Pe3ynbTathl, HaxoasAwuMecs B Tabs. V, NofayvyeHb! IMHERHBIM TeTa-aATOPHTMOM
MOTEHLMANBHBIX (YHKOHMH, TIPUMEHUB JaHHble 250-KHJIOMETPOBOM CETH, 32 HUCKIIIO-
YeHHeM 6-0#t CTpPOKH, ToNiydeHHO#M anroputMom IT1JIM/L

Haxoneu, Oblna McciegoBaHa W NMPUYHHA TIOABJIEHUS OLUIWOOYHBIX pelLeHUIT
anropuT™MoB. JIns 3TOro cpaBHUBANIM Pe3yAbTAThl HAEBATH PAa3JIMYHBIX ajJrOPHTMOB.
— Pa3HBIX BAPHAHTOB NMOKa3aHHBIX paHee aJIIOPUTMOB — W NPHHSAJIM PELICHHE Ha
ocHOBaHHK OonplinHcTBa. TakuM NyTeM TIONy4yeHBI NpHBEAEHHBIE B-Tabnune VI
pe3yIabTATHI. :

PesynbraThl, MONyYCHHBIC NIPUMEHUB BhIIeyKa3aHHBlE 9 alrOpuTMOB, U300~
paxeHbl Ha puc. 5. Ha puc. 5 usobpaxkena kpaapaTHdeckas CeTb HaTAHYTas Ha.
KapTy EBpomnel ¢ nnuHo#i cTponsl kBaapata 250 kM. Lludpa, Haxondmasics B JeBOM:
BEpXHEM YIJy KBaapaTa, SBJISETCS €ro MOpSIKOBEIM HoMmepoM. OTMeTHM [jist
OpHEHTUPOBKH, uro Jlonnon HaxomuTcs B 40-oM, a Bymanewt B 58-oM kBazpaTtax.

Lndps1, HaxoasMecs B IPaBOM, HHXXHEM YTy KBaAPaTOB, HOKA3bIBAalOT, CKOJIb--
KO W3 Ha3BaHHBIX 9-TH aJirOPpMTMOB JaJH HENMpaBUIBHOE pelileHHe. BYKBBI BHYTpH
KBagpaTa OTMEYaIOT, KaKHe UMEHHO aJITOPUTMBI HaBajii HENPABWIHLHOE pEllIeHHUE:
COTJIACHO CNEAYIOLIEMY KOZIY: )

— or a) mo g) OYyKBBI OTMEYAIOT pe3yNbTAaThl JIMHEHHOTO TeTa-aJIrOPHTMA.
NepBOHAYAJBHO NPUHSATOTO BMAA HpPHU NpPUMEHEHWH oOyvaroluel nocieRoBaTeN b
HOCTH C TIEPBOHAYAJIBHBIM MOPSIIKOM CIIeA0BaHUSL TO4YeK (g)) U 00y4aroUMMH I0C/Ie--
JOBATENLHOCTSAMH Pa3jIM4HBIX BUAOB «CMEILAHHBIX» TIOPSIKOB CIEAOBAHUA TOYEK.

— h) oTHOCHTCS K pe3ynabTaTaM, NpPHBeJEHHBIM B CTpoke 2 Tabmauusl IV,
NOJIyYEHHBIM ¢ TIPUMEHCHUEM aJITOPUTMA KYCOYHO-JIMHEHHOTO pa3aeiieHus.

— 1) oTMevaeT pe3ynbTaThl IpUBeeHHble B cTpoke 2 Tabnuipt III anroputMa.
nam 11 :

IlITpuxoBaHHble KBaApaTbl OTMEYAIOT T€ TEPPUTOPHHU, HA KOTOPBIX B HEHCTBU--
TENBHOCTH ObLia rpo3a, a oOGpaMIieHHBIE >XMPHOM JIMHHEH KBaApaThl COOTBETCT--
BYIOT Te€M TEPPUTOPUSIM, TIE HOALUWUHCIEO AA2OPUMMO8 NRAJIO HesepHoe peuleHue.

Ob1ee KOIHYECTBO TaKHX KBaApaToB 11, cnenoBaTeflbHO pEUICHHE, TIPUHATOE:
HAa OCHOBaHMM peEILIeHHsT OOJILIIMHCTBA aJrOPUTMOB, SIBJISETCS TPABHJLHBLIM B.
87%-ax.

IMpomopuuu peuleHnii aNrTOPHTMOB:

9:0 B 45 cnyvasix

gé » 1?/ cryaix | IIpaBunbHoe peluenme:
63 2 4 zgz:z;z B 74 cnyvasx (87%)

5:4 B 3 cmywasix

4:5 B 2 cmyvasx)

gg B %Cquaﬂx | HenpaBunsHoe peueHue:
s Lot G (5%
0:9 B 2 ciyyasx '
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HabmomeHus MoKa3ald, 4TO OLIMOKH, CHENaHHbIE TakUM 00pa3oM, GpUIM
COBEpLICHBI B TeX 00JacTIX, KOTOPHIE Pa3MECTH/IMCh HA TPaHHUE T'PO30BOM 30HEI
WY NPOHCXOIHIIM B TeX 00JacTiX, I/le JaHHbIe H3MEPEHUS He SBJISJIHCh OCTOBEp-
HBIMA. CHefOBaTENBHO, TOABUBLIHECH OLUMOKH TAABHEIM 00pa30M NPOUCXOHAT

U3 HECOBEPUIEHCTBA METEOPOAOrHYECKOMH

Tabmima V1. PesyneTar pemenuit MOJIEJIH, 4 TAKXKe U3 HETOYHOCTH H3MePEHHBIX
OONBIIAHCTBA JEBATH AJITOPHTMOB

naHAbiX. Ha 3T0 ykasbiBaeT U TO 06cTOATE Ib-

o | Hy H | Tourocts (%). CTBO, YTO TOTZA, KOrda UCKJIKOYIIIH U3 00y-

l qarolled nociaeqoBaTeabHOCTH Te 11 Touek,

5 6 1 ' 87 I KOTOPBIX pelleHusT OOJbIIAHCTBA ali-

TOPATMOB Oajd HENPABHALHBIA pe3yJIbTAaT,

TO IPUMEHHB 00Y4YaloLIyIO MOCJIEN0BATENILHOCTh M3 73-X OCTaJIbHBIX TOYeK, JIMHEH
HBIH TeTa-aNrOPUTM MOTECHUUANBHBIX QyHKIMH KiraccudrIApOBA C OYCHb BBHICOKOH
TOYHOCTBIO (cM. Tabnuiy VII) mpu oJHOKpAaTHOM NMpOMyCKaHWM oOyuaroieil rmoc-
JIEAOBATEIBHOCTH € TOYHOCTHIO

Ta6nuua VII. PocT TOYHOCTH IPH OTOPAaCHIBAHUH 94,6%, a Ipu TPEXKPaTHOM HPO-

He HaJEXKHBIX TO4eK 00y4altolleil ToCIeq0BaTENbEHOCTH MyCKaHHN — C TOYHOCTBHIO 97,4 %.
ITomeiTOXHB BCce BHILIEH3ITO-

K
nponycxamei | M1 Hy H Tounocrs (%) KEHHOE, MOXHO CKa3aTh, 9TO B
ciydae M3/0XeHHOM BHIIE MeTe-
1 3 1 4 946 Oponorﬂ‘{eCKOﬁ MOJAEIH KOHBEK-
3 5 0 5 97.4 THBHAS  AKTHBHOCTh  XOPOILO

npeackasblBaeTcs. ¢ MOMOLUBIO
TIOKa3aHHBIX aJITOPUTMOB 00yuye-
Husi. HamexHOCTh mpencka3biBaHHsI MPEBbILIAET HANEHOCTH CHHONTHYECKO# mpak-
“THKH; 2 KPOMeE 3TOr0: TAaBHBIM TOCTOMHCTBOM-IPOUENYP-IPHMEHSIOIUIHX aJrOPUTM
o0y4yeHuss IO CPAaBHEHUIO C CHHONTHYECKOH TIPAKTHKOH $BASETCA TO, YTO OHHM
OaioT OOBEKTHBHBIH METOX AN NpelCcKa3bIBaHUA.

MoxeM paccunTBIBaTH Ha JalibHEHIlee YBeIMYEHHE TOYHOCTH TIPE/ICKA3bIBAHUS
IyTeM YBENUYEHHs MTHHBI 0OydYarollel MOCHeA0BaTEIbHOCTH.

B 6moxafiniem GynyuieM MBIl pacIMpUM KPYr HCCAeNOBaHUN Ha Npenckaspi-
BaHUS pacHpelesieHUs BO BPEMEHH, — HO CHX IOp HaMH HCCIENOBAJIOCH JIHIIb
TIPOCTPAHCTBEHHOE paclpedesieHHe — a MOTOM TakXe W Ha MpeJCKa3bIBaAHHE COB-
MeCTHOTO HpPOCTPaHCTBEHHO-BpEMEHHOro pacnpeneieHus. M3 3THX wcciemzoBaHMi
pPaccUMThIBAEM IOJYYHTh TAaKOH OMBIT, KOTOPHI MO3BOJUT YCOBEPIIEHCTBOBATH
METEOPOJIOTHYECKYIO MOJAENb.,

Application of learning algorithms in meteorology for the
prediction of the convective activity

In this paper the application of some supervised learning algorithms in connection with mete-
orological prediction is described. The meteorological task, solved in cooperation of the Central
Institute of Forecasting and the Research Institute for Telecommunication, related to the predic-
tion of convective activity, or more popularly, to the prediction of rainstorms.

First a brief survey of the general theory of supervised learning is given, then the algorithms
used in our experiments are discussed, and the computer programs realizing them are presented.
For solving the above mentioned task three algerithms were used: the method of potential functions,
introduced by Aizerman, Bravérman, Rozonoer and others [6], the polynomial discriminant method
of Specht [12] and the piecewise-linear separator of Nilsson [3] called committee machine. In the fol-
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lowing the most important details of the meteorological model,-thoroughly discussed in [22], is-
given.. Finally the results and conclusions are discussed.

On the basis of the results it can be stated that the learning algorithms used in our experiments.
are able to predict the convective activity with high reliability, which éxceeds the usual standards-
of more traditional techniques in meteorology.

* CENTRAL INSTITUTE OF FORECASTING; **# RESEARCH INSTITUTE FOR TELECOMMUNICATION,.
BUDAPEST, HUNGARY ) BUDAPEST, HUNGARY
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