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Linear regular languages. Part II
The problem of synthesis

: >By G. T. HERMAN °

1. Introduction

In Part I of this paper [3] we discussed the problem of analysis for linear sequen-
tial circuits, i.e. we gave an algorithm which for every language accepted by a linear
sequential circuit (described by the circuit and the function mapping the symbols
of the language into inputs to the circuit) produced a regular expression which
described that language. We have also shown that the converse cannot be done,
there is a regular expression such that the. language described by it is not linear
regular, i.e. its symbols cannot be mapped into inputs of a linear sequential circuit
‘in such a way that the circuit will accept exactly those words which belong to the
language. We shall assume that the reader is familiar with the terminology of [3].

~ The algorithm of [3] for the analysis of linear sequential circuits had the advant-
age over similar algorithms by its being a practical algorithm which can be imple-
mented on a digital computer. Such implementation has been reported on in [4].

The problem of synthesis, for linear sequential circuits is to give an algorithm
which for any given regular expression decides whether or not it describes a linear
regular language and, if that is indeed the case, the algorithm must provide us with
a linear sequential circuit and a mapping of the symbols of the language into inputs
of the circuit, such that the circuit will accept exactly those words which belong to
the language. In this paper we shall describe an algorithm which will do this job.
Unfortunately, from the practical point of view the algorithm will do little more-
_ than show that such algorithm exists, if implemented on a digital computer its
operation would be so inefficient that it could not be applied even to very sim-
ple cases. This is a usual state of affairs with algorithms in automata theory, but
it is our contention that ‘this particular problem should have an implementable
solution, similar in snmpllc1ty to the one for.the problem of analysis. The reader
“should compare comments-in § 5-of [3].

- Similarly to [3], this paper will be introductory in the sense that it will make
no assumption of knowledge on the part of the reader. Hence, some known defini-
tions and results will be given and proved without reference to" original sources.

1 Acta Cybernetica
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2...Definitions

All definitions in [3] will be assumed to be known to the reader.

Definition 1. A finite automaton is a 5-tuple M =(Q, %, g, 6, F), where
(i) Q is a finite non-empty set of states,

(ii) Z is a finite non-empty set of input symbols,

(iit) ¢ € Q, the initial state,

(iv) 6:0XZ — Q, the direct. transznon Sunction,

(v) FCQ, the set of acceptmg states.

We extend the transition function to a mapping & from QX /I; into Q as fol-
lows:

5 (q> e) =q;

3(g, xa)y=6(3(g, x), a)
. for ali g€ Q, ac Z and xtIz
Since, for all g€ Q and ¢€Z, (g, a) 5(q, @), we denote & by 6 as well.

te

Example 1.
. where <{q0: qla-QZs qa}a {a, b}> 9o 5: {q2}>

5(q;,a)=q;, for 0=i=3,
5(qi’.b)=‘1i+1, fl‘0r.0§i§2,

. . ' 5(q3’Ab)=q39 -
is a finite automaton. L :

Example 2.
i <{¢10s a.}, {a, b}, 4o, 9, {‘10_}>

where 6(g;, a)=gq;, for 0=i=l,

{g;, b)=q,_;, for 0=i=1,
is a finite automaton. :

Deﬁnirion 2. Let M=(Q,Z2,q,6, F) be a finite automaton and x¢I;. We say
that M accepts x if and only if (g, x)€ F. Let W L;. We say that M accepts W -
if and only if the set of those x in Iy which are accepted by M is exactly W.

Example 3. The finite automaton given in Example 1 accepts the lanouage
described by
: (((a*b)(a‘b))a*).'
Example 4. The finite automaton given in Example 2 accepts the language
described by
(a*((ba®) (ba*))").

Definition 3. A finite automaton M =(Q, Z, g, 6, F) is said to be linearly realiz-
able if and only if there exists a linear sequential circuit C and functions « and ¢
with the following properties. (We assume that the circuit C has k external input
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wires and 1 delays and can be described by matrices A B and C as in Theorem 1
of [3].)
(i) « maps X into k- tuples of 0’s and 1’s.”
(i) @ maps Q into n-tuples of 0’s and I’s.
(iii) For each p€Q and ac2Z,

) - @ (3(p, a)) = <P(p)A€Ba(a)B
(iv) For each p€Q,
p€F- if and on'ly if _(p(p).Cz_l.

In such a case C is said to be a linear realization. of M.

Evample 5. The finite automaton of Example 2 is linearly reallzable Its linear
reallzatlon is given in Figure 3 of [3] is- defined by

’ oz(a) 0, <oc(b)=l

@(go)=I1, 0], ¢(ql)—[1 11

We shall see later on that the finite automaton of Example 1 is not lmearly
realizable. We note in passing that the definition of realization that is given here is
somewhat restricted, but for the purpose of checking the linearity of regular languages -
it is as general as needed. For a discussion of various definitions of realization, see -
for instance [3].

@ is defined by

, Deﬁnirion 4. An initial subautomaton of a finité automaton M={(0,2,q,6, F)
is the finite automaton {Q’, Z,q, ¢’, F"), where

Q' ={plpcQ@ and p=0d(q,x) for some IxE'I_v},
8(p,a)=5(p,a) forall pcQ’ and acZ,
= FNQ.

Intuitively, the initial subautomaton is that part of the automaton which con-
sists of all the states which are accessible from the initial state. :

Example 6. For the automata of Examples 1 and 2, the initial subautomaton
is the automaton itself, since all states are accessible from the initial state.

The following basic result is easy to prove and we shall assume it in the rest of
the paper without further reference to it.:

Proposition. The language which is accepted by a finite automaton is the same
as the language accepted by its initial subautomaton. »

Definition 5. Let C be a- linear Sequential circuit With n delays. With each state
y=[y1, ..., ¥] of C we associate a mapping AS from strings of inputs x,...x, into
{O 1} defined as follows:

t .
A(xy, ... x)=yACD ;;x,-BA‘“"C.

Le. the value of AS(x;...x,) is the same as the output would be at time t+1 if the
machine was started in state y and received the external input x; at time i.

1*
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Example 7. For the linear sequential machine C of Figure 3 in [3] we have the
following.
1 if an even number of x;is 1,
0 otherwise,

;-E:l,O](xl e X)) = {

;-fl,l](xl

) = 0 if an even number of x; is 1,
X 1 otherwise,

E:O 1](x1 xr) = )-[1'0](x1 vee X‘),
/ﬁ) 0](\1 X‘) = ;‘.[CI'I](XI X,).

Definition 6. A linear sequential circuit C is said to be minimal if and only if
it does not have two different states y, and y, such that A5 =4S,

Example 8. The linear sequential circuit of Figure3 in [3] is not minimal.

% E 2 (¢}

J) S T

T x(t)

Fig. 1

Example 9. Let C be the linear sequential circuit of Figuré 1.

1 if an even number of x; is 1,
0 otherwise, :

W0 x) = {

0 if an even number of x;is 1,
1 otherwise.

M (xy .. x) = {

Hence C is minimal.

Definition 7. Let C and C’ be two linear sequentlal c1rcu1ts C and C’ are said
to be equivalent if and only if .

{/$ly is a state of C}={).f,'|y’ is a state of C’}.

Intuitively speaking two linear sequential circuits are equivalent if and only if
for every state y of C there is a state y” of C” such that C started in state y behaves
the same way as C’ started in y’, and vice versa.

Example 10. The circuits in Examples 8 and 9 are equivalent.
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3. Qutline of the argument

Our aim is to provide an algorlthm for the synthesis of linear sequential crrcu1ts
We are gomg to do this in the following way.

(a) We give an algorithm which for every regular expressxon produces a finite
automaton such that the language described by the regular expressmn is the language
accepted by the finite automaton.

(b) We prove that a language described by a regular expression is a linear
regular language if and only if the initial subautomaton of the automaton produ-
ced by the algorithm in (a) is linearly realizable. In particular, we show that from
‘the linear circuit which is the linear realization (if there is one) of the initial subauto-
maton, we can effectively produce a linear sequential circuit which accepts the
language described by the regular expression.

(c) We give an algorlthm which for any finite automaton demdes whether or
not its-initial subautomaton is linearly realizable, and if it is, then the algorlthm
gives a linear sequentral circuit which is a linear realization of it. :

It is clear that in view of (b), the algorithms in (a) and (c) combine to give the
" algorithm required for the problem of synthesis for linear sequential circuits.

. 4. Syntllesis for finite automata

Theorem 1. Let X be any fixed finite, non-errlpty_set. There is an algorithm
which for any given regular expression R over the alphabet X will produce. a finite
automaton M =(Q, Z, q, 5, F) such that M accepts the language |R|.

Proof. The algorithm builds up the finite automaton M from finite automata
which it has already produced for parts of R. We shall describe what it does for
regular expressions of length 1, and then show how it produces the finite automaton
for a regular expression of length greater than 1 from finite automata for regular
expressions of shorter length.

If R=o, then M={q}, %, q,8, &),

where , .  8(g,a)=q for all . ack.
 If R=e, then M=Ug1, 2}, Z; 41, 6, {a.})s
where 6(g, a)y=q, for q€{g;,q,} and a€l.

If R=a where acZ, then M=({q,, q1> 2}, Z; qo, 6; {q1})> where 6(qo, a) =1,
and 9(g, b)y=g, otherwisé.
We now show how to produce from a ﬁmte automaton D=(0, Z, g, 9, F}

" whicl- accepts a regular language |P| and a finite automaton E=(Q,X,§,9, F)
which accepts a regular language |S| (P and S are regular expressions), the finite
automata which accept the regular languages |(P+ S)| and |[(PS)|, respectively.

Suppose R is of the form (P+ S) and D and E are finite automata as defined
above. The finite automaton M =(Q,Z, g, 8, F) which accepts |R| is constructed

as follows. 0 = 0 X 0, i.e. ordered pairs of elements from Q and Q. q¢= (g, g).
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For any acZX, pcQ and re Q,
3(p, r), @) =(5(p, a),5(r, a)),
= {{p,r)lpeF or rEIT—'}.

We leave it to the reader to show that M accepts [(P+ S)).

Suppose R is of the form (PS) and D=(0, %, §, 5, F) and E=(Q, %, §,5, F)
are finite automata which accept |P| and |S|, respectively. The finite automaton
M={Q,Z,q, 4, Fy which accepts |R] is constructed as follows.

Let O’ denote the set of all subsets of Q. Q = QX @, i.e. a set of ordered pairs,
where the first element is a state of D and the second element is a subset of the states
of E.q=(q, @) if g¢F and q=(q, {g}) if g€ F. ¢ is defined as follows. For any
p€Q, 0,c Q and acZ,
5(<p, Q1>a a) = <5(p7 a)’ Q‘z)a

where o
. Q.= {r|r = 5(s, a) for some s€Q}UQ,,
where .
Q; =@  if 8(p,a)¢F and Q3 {g} if o(p,a)¢F.
Finally,

= {(p. Q0| P€ 0, Q1CQ and Q10F¢ a}.

We now have to show that the finite automaton F=(Q, Z, ¢, 8, F) does indeed
accept |(PS)|. The essence of the proof is the following. Given a word w of I,
there may be many ways of breaking up w into two subwords. w ¢ [(PS)| if and only
- if one of these ways is such that w=w,w, and w, €|P| and w,€|S|. M keeps track
simultaneously of all the possible states which E might be in depending on the way
w has been broken up.

In order to complete this part of the proof, it is suﬂiment to prove the follow-
ing claim.

For any word we Iy,

5(qa W) =<5(q7 W), Q1>,

where r€ Q, if and only if there exist w, and w, in [; such that w=w, w,, w,€|P|
and 6(q, Wy)=r. .
We leave the proof, which can best be done by induction on the length of w,
to the reader. _ o
If Ris of the form P* and E=((Q, Z, g, d, F) is a finite automaton which accepts
P, M= (Q, Z, g, 6, F) is constructed as follows.

Let g be such that qé{Q Let 0 = 0 U {g}. Define 5:0XZ —~ Q by

6(g,a) if ¢qcQ and ac2Z,

5((1,‘1) {S(q,a) if g=¢ and acZ.

- Q is the set of all subsets of 0.q= {g}. For any Q,c 0 and acZ,

0(Qy,a) = {rlr= §(s, d) for some. s€Q,}UQ,
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where 0,={gq} if 3(5', a)€F for some s€Q, and Q2=4® otherwise. Finally,
={0:/@:cQ and FeQy}.

The proof that M:-accepts |P*| is very similar to the proof outlmed above and
we leave it to the reader.

Even though this theorem proves that the problem of synthe51s is solved for
finite automata, the algorithm described in it is such that the finite automata pro-
duced will in general be far from the simplest of the ones which do the job required. .
In fact, it will generally be so large that the implementation of the algorithm on an
actual computing device is beyond the realm of practical possibility in all but the
simplest cases. For instance, for the regular expression in Example 3 the finite auto-
maton produced by the algorlthm will have more than 4102 states, and the finite
automaton for the regular expressmn in Example 4 will have over 101" states.
"At the same time, both of the expressions denote languages that can be accepted by
fairly simple machines (see Examples 1 and 2).

Although one could give algorithms which work faster than the one described
above, there is no existing algonthm which works so fast as to be 1mp1ementable
for non-trivial regular expressions. :

5. Some facts about linear sequential circuits
and linear realizations

Theorem 2. Let M ={Q, X, g, 5, F) be a finite automaton and C be a linear
sequential circuit which is a linear realization of iM with functions a and ¢ (see
Definition 3). Let C be described by the matrices A, B and C. Then for all peQ
and x;x,...x, in Iy, - .

‘\\ e(8(p XXy . X)) = (p(ij‘ @ iga(x,-)BA“".
Furthermore, - : ' .
/lg(p)(a.(xl)a(xg..'. «(x,))=1 if and only if 8(p, X3Xs... X)) € F.
ﬁ‘roof by mductmn on t. o
I 90(6(p, 9) =0 (p) = (DA _
Assume that the theorem is true for all words of length 1. Then

‘ (P(‘S(P, X1Xg .. XX 11) = (9(5(5(17: X1 Xg ... xt).’ xt+1)) =

= @(3(p, 1% ... X))A @ (¥ 1)B = [(P(p)A' ® __Zrla(kz)BA""] A® ot(xuu)'l‘3 =

. 141
= oA @ 2 a(x)BAITL
. i=1" .

The second part of the theorem follows directly from Definitions 3 and 5.
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Theorem 3. Let C be a linear sequential circuit with » delays. Let y; and y,.
be any two states of C. If there exists a sequence x,, X,, ..., X,_; of external input
conditions such that

2 xaxs .. x) = 25, (X1 X5 - X,).

for all t, 0=r=n—1, then’
. /*_C — )C
¥ “ye*

(This is sometimes expressed by saying that C satisfies the n-diagnosability condition.)

Proof. Assume that C can be descnbed by matrices A, Band C. If A5 (x;x,...x)=
=25,(x1X5...X,), then

nA'Ce Zx BA' iC = y2A'C &) Z’xBA' 'C
i=1 -
and-so

(1) . i ylA'C = ygA'C.

Since this is true for 0=t=n—1, it is also true for t =n. This follows from
the fact (Cayley—Hamilton theorem) that any power of A can be expressed as a
linear combination of powers of A less than n. Thus we have that (1) holds for every
1. But then for any sequence x;X,...X;,

- A, (0 xg o x) = 25, (0x0 .. X))
and so- AS = 1§,. :

Theorem 4. For every linear sequential circuit C there exists a minimal linear
sequential circuit C’ which is equivalent to C.:

Proof. Assume that C is described by the matrices A, Band C. (Ais nXn,
Bis kXnand Cis nX1.)) Let K be the n X n matrix

[C,AC, ..., A" 1C]..
First we prove that C is minimal if and only if K is a non—singular matrix.

C is not minimal
if and only if .
there exist y, and y, such that A5 =4S and y, =y,,
if and only if
there exist y; and y, such that R and

. A C= pA'C for O0=r=n-1,
if and only if
there exist y, and y, such that y; >y, and

.V1K = 3, K
if and only if
Kis smgular
So if K is non-singular, then Cis already minimal and there i is nothing to prove.
Let us therefore assume that K is singular.
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Now we pick a row of K which is the linear combination of previous rows.
Since the underlying field is the field of two elements this means that the partlcular
row of K, say the j’th, is the modulo 2 sum of some of the earlier rows. What is the
physical sngmﬁcance of the j°th row of K bemg the sum of previous rows? It is that
the j’th delay in the circuit is superfluous, since its behaviour can be obtamed from.
the output of the other delays. | :

7

X il . z(t)

Fig. 2

To see this consider the following argument. We separate the delays of a linear
sequential circuit C by considering them to.form a separate circuit D with » external
input wires and n.external output wires. For instance for the circuit of Figure 3 .
in [3], this would give us Figure 2. For<l =j=n, the j’th external output of D at
time 1+ | is the same as the j’th external input of D at time 7. Another way of look-
ing at this, is that D takes a state of C as an input and returns the same state of C

. as an output one unit of time later. :

Now suppose that we have a linear sequential circuit C’ ‘which is the same as

. C, except that D is replaced by a circuit D’ with n external inputs and »n external
outputs, such that if D’ is given a state y, of 'C as an input, then it returns one unit
of time later state y2 of C such that

25 =25,

Clear]y, such a C " is equivalent to C.

We are now going to show that if K is singular, we can always ﬁnd such a D’
with only n—1 delays. One of the many possible ways of constructmg such a D-ls
the following.

Suppose the j’th row is the first row of K which is the sum of some of the pre-
vious rows. Let us denote the rows of K by K;, K, ..., K, and let S be that subset
of {1, ...,j—1} such that : :

= >K.

i€s
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If j=i=n—1, the input wire of the i’th delay of D’ is connected to the (i + 1)’st
external input wire to D’, and the output wire of the i’th delay of D’ is connected
to the (i 4+ 1)’st external output wire of D’. If l<ifj—1 the output wire of the
i’th delay of D’ is connected to the i’th external output wire of D’. If i¢ S, the input
wire of the i’th delay of D’ is connected to the i’th external input wire of D", If
i€ S, the input wire of the i’th delay of D" is connected to the output wire of an
exclusive or gate whose input wires are the i’th and j’th external input wires to D’.
Note that thej th external output wire of D" is not connected to anything and so
it never carries a pulse (1t is earthed).

If the input to D’ is the state y, =[a;, @5, ..., a,], then the output to D’ one
unit of time later will be

Yo =lay+by,a5+bs, ..., a; 1+ b;-1,0, 0544, ; a,l,
where
_Jo if ig¢s,
“la; if ie€S.

In order to show that 1S = A,

i<, it is sufficient to prove that y, K =y, K (see beginn-
ing of this proof). .

yﬂK_:[a1+bl,a2+b2a~”saj—1+bj—1,09aj+1’""an] S =

j—1

JZaK+ZbK+ Z aK; =

i=1 i=j+1

Il
M\-.

aK+2'aK+ Z aK; =

i=1 i=j+1

j—1 v n
.zig]'. a,K,-}—aJKJ-l- 2 a,-Ki =

i=j+1

We have now obtained a circuit C” which is equivalent to C and has fewer
delays than C. If this circuit is not minimal, then we can repeat this process. Since
C has only a finite number of delays, sooner or later we must find a minimal C”
which is equivalent to C.

. Example 11. Consider the circuit C of Figure 2. For this circuit (see Example 5

in [3]).
TP

- 1
K=LJVK:&=KH
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So in the method described abovej 2 and S={1}. This gives us the D’ and c’
shown in Figure 3. :
It is easy to see that this Circuit is equivalent fo the-one in Figure 1 (3, (t) never
carries a pulse).
" We point out by the way, that the proof of Theorem 4 is constructive. Given
a linear sequential circuit, we can actually construct a minimal linear sequential
circuit equivalent to it using the proof of Theorem 4.

' ) st .
x(t) . . : z()

Fig. 3

6. The equivalence of linear realizability of- finite automata -
and linearity of regular expressions

Theorem 5. Let R be a regular expression and M be a finite automaton which
accepts |R|. Then |R| is a linear regular language if and only if the initial subauto-
maton of M is linearly realizable. Furthermore, if the initial subautomaton of M
is linearly realizable by a linear sequential circuit C, then from C and the mappings
¢ and o« we can effectively produce a linear sequential circuit C” and a functlon f
such that C” accepts the language |R| using f.

Proof First suppose that the initial subautomaton of M={Q, %, g, 4, F> is
linearly realizable by a linear sequential c1rcu1t C. Letx and ¢ denote the mappings
described in Definition 3.

We now construct a circuit C’ whlch accepts the languagc IR} usmg o as the f
of Definition 9 in [3]. :

Consider @(g)=[»1, .-+ Vul- We consider each delay of C in turn. If y,=0,
we make no alteration to the i’th delay of C. If y,=1, then we connect the output
wire of the i’th delay of C to one of the input wires of an exclusive or gate (newly
introduced for this purpose) and we connect the output wire of the exclusive or
gate to all the wires to which the output wiré of the delay used to be connected (all
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-the old connections being removed). The other input wire of the exclusive or gate
" is not yet connected up. When we changed all delays in this way, we introduce one
more delay (to be considered the first delay of C”) whose input wire is not connected
to anything (i.e., it is earthed) and whose output wire is connected to the so far
free input wires of the newly introduced exclusive or gates. No other alteration is
done to C to obtain C’.

For example if C i is as in Flgure 3 of [3], then C” is given in Figure 4.

E— y(t)
LT

x(t} z{t)

Fig. 4

After time =1, the first delay of C’ makes no contribution to the behaviour
of C’, hence we have that

[ — )C
H0,...00 = Locay

This together with Theorem 2 shows that if we let the function f of Definition 9
in [3} to be «, then a word w in [ is accepted by M if and only if it is accepted by
C’. In particular, we have shown that |R} is a linear regular language.

Conversely, let us assume that [R} is a linear regular language and let C be a
linear sequential circuit which accepts |R|. Let C’ be a minimal linear sequential

~circuit which is equivalent to C. We shall prove that C” is a linear realization of the

initial subautomaton of M.

Since the number of external input wires for C and C’ are the same, we can
take « of Definition 3 to be the f of Definition 9 i in [3]. ¢ is defined as follows.

For every state y of C there is one state y* of C’ such that :

25 =25

(otherwxse C and C’ would not be equivalent). Furthermore, there is only one-such
-y’, for otherwise C” would not be minimal. Let u(y) denote this unique y’. )

.Given a state p of the initial subautomaton of M, there exists an x=x,¥,:i..x;,

in Iy such that ,

' o P=0(q, X1X5...%).
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. We deﬁne (usmg the matrices A’, B” and C’ which describe C)

<P(P) = u[l1,0, ...,0]A" @ _;;a(xi)B'A"“-

The difficulty with this definition is that it is not necessarily unique. Itis possi‘ble' '
that for some X =X,X,...X; in [g, x#X and yet d(q, x) =5(g, X).  We must show
" that in such cases = - :
t . - i ’
2 ull,0,...,001A"® Ja(x)BA" = p(l1,0,...,00A" @ Ja(x)BAT
. . i=1 . ' ) i=1
Let us denote the left hand side of (2), which is a state of C’, by y; and the right

hand side of (2) by y,. Since C’ is a minimal linear sequentlal circuit, to show the
equallty, it is suﬁiCIent to prove that

We are now going to show- that for any sequence Sisz...sjelz'

lfx (@(sDa(sy) .- afsy)) = A5 (a(s)e (s‘)) .o (s)))-

“In view of Theorem 3, this is sufficient.

I (a(sy) - a(s)) =

i ’
=y ATC @ Sals)BAITIC =

= kll1,0,. O]A”“C’@ Za(\)BA’“ ‘Co Z’a(s)B’A” ¢ =

= ;y[l 0,. 0](0‘()‘1) “(xt)“(sl) ,)) =
_= /1[1,0,..4,0](“(?‘1) o a(x)o(sy) .. a(sj)) =

Lif oy o x5 SJEQRL
0 otherwise

1if 8(q, xy ... %,8, .. S)€EF,
0 otherwise

Lif 8((q, X, - X)), 81 .. ;)€ F,
0 otherwise ’

1if 8(p, 51... 5)€F,
0 otherwise ' ' -,

N {-1 if 5(3(g, Xy ... %), 51 ... §)€F,

-0 otherwise.

= 25 (a(s) ... a(s)).

3
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All that is left to show is that cdnditions (iii) and (iv) in Definition 3 are satisfied.
For any p in the initial subautomaton of M and for any a in 2, p= 4(g, x) for
some X=ux,...x, in Iy and

9 (5(p, ) = ¢(3(5(¢, x), @) =
= (p(é(q, xa)) =

C .
= u[1,0,...,00A"" @ Sa(x)BA '+ -iga(@B =
. i=1

= (u[1,0, ..., 01" ® 3 a(x)BA"~)A' Da(a)B =
i=1

= ¢(6(g, ))A' ®a(@)B =
= (DA Bo@B.
¢(p)C =
if and only if o
| (i11,0, ..., 0]A" & Z',’a(x;)B’A”‘l)C’: 1
if and only if ‘ =

C accepts x
if and only if .
: X€|R]
if and only if »
* M accepts x
if and only if ' .
. ' 3(q,x)€F
if and only if
_PEF.

~ Corollary. There are finite automata which are not linearly realizable.

Proof. The automaton of Example 1 is such. This is because this automaton
accepts the language described in Example 3, and this language is not a linear regular
language. (See Theorem 3 of [3].) .

7. The linear realizability of finite automata

Theorem 6. If a linearly realizable finite automaton M =(Q, 2, ¢, §, F) has n’
states and k" symbols in X, then it is linearly realizable by a linear sequential circuit
with at most k" external input wires and at most »” delays.

Proof. Suppose M has a linear realization C with k external input wires-and n
delays, where k =k’ or n>n" or both. Suppose « and ¢ are the mappmgs as in
Definition 3. .

First we deal w1th the case when n=>n".
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Let ¢y, ..., g, be the »n” states of M. Consider the n” X »n matrix F whose i’th
row is (p(q) At least n —n’ columns of this matrix F will be linearly dependent on
the other #’ columns, and by relabeling the delays we may assume that it is the last
n—n’ columns.

Now we proceed as in the proof of Theorem 4. We consider the subcircuit D
with »n external inputs and n external outputs which contains all the delays and
nothing élse. We replace this by a circuit D" with »” delays. For 1=i=x’, the input
wire to the i’th delay is connected to the i’th external input wire to D’, and the
output wire of the i’th delay is connected to the i’th external output wire of D’.

The other external input wires are not connected to anything. For n’ <i=un,.
the i’th external output wire of the D’ is connected to the delays through exclusive
or gates in such a way that its output is.the modulo 2 sum of the outputs of those
delays which correspond to those of the first n” columns of F Wthh added together
give the i’th column.

The circuit C* which we get by replacing D in C by D’ is clearly equivalent to
C and is also a linear realization of M with functions o’ =« and ¢’ such that ¢’(p),
is the vector con51stmg of the first n’ elements of o(p) (after relabeling of the delays
" of C).

The case when k>k can be srmllarly taken care of. C is altered by attaching -
in front of it a circuit consisting of exclusive or gates only (no delays) which has
k" external input wires and k external output wires, the latter being attached to
the external input wires of C. The exact nature of this additional circuit is determined’
by the linear- dependenc1es between the columns of the matrlx whose i’th row is
a(s;), where s; is the i’th element of Z.

leeorem 7. There is an algorithm which for any finite automaton decides whether
or not its initial subautomaton is linearly realizable, and, in case it is, the algorithm
gives a linear sequential circuit which is a linear realization of it.

Proof. First of all, it should be obvious that there is an algorithm which from a
given automaton produces its initial subautomaton. Let us assume that this initial
subautomaton has n states and k symbols in its alphabet. If it is linearly realizable,
then it has a linear realization with n delays and k external input wires. (At most n
or k, by Theorem 6, if less, then additional delays and external input wires can be
introduced and earthed.) This linear realization can. be described by an n X # matrix
A; a kX»n matrix B and a n X1 matrix C of 0°s and 1’s. Furthermore given' three
such matrices we can easily produce a linear sequential circuit which is described

by them, and any two circuits described by them will be equivalent and be linear
realizations of the same finite automata. (Only the matrices enter the definition of
equivalence and linear realization.) Also, given matrices A, B and C it is easy to
check (using Definition 3) whether or not the circuit described by them is a linear
realization of a given automaton.

So our algorithm will look like this. Try all possible nXn matrlces A, kXk
matrices B and nX 1 matrices C (there will be 2""+¥+V possibilities). Check one
by one whether the circuits described by them are linear realizations of the initial
subautomaton of the given automaton. If we find such A, B and C, then our work
1s, done, if we exhaust all possibilities without ﬁndlng them then the initial subauto-
_maton is not linearly realizable. e
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There are more efficient algorithms than the one described above to do what
is required in Theorem 7. (One such could be based on the method of Cohn & Even
[1].) However, in view of the comments after Theorem 1, it is clear that our total
algorithm for the synthesis of linear sequential circuits cannot be made practicable
and sc we sacrificed efficiency for ease of proof in Theorem 7.

8. Conclusions

The algorithms described in Theorems 1, 5 and 7 together provide us with an
algorithm for the synthesis of linear sequential circuits. However, this is a very
roundabout as well as inefficient way of doing things, and the possibility of a direct
synthesis from regular expressions to circuits remains an intriguing open problem.

In this direction, the reader may find useful two books related to linear sequ-
ential circuits which appeared since the writing of Part 1. These are [2] and [6].
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Generation of the k-trees.of a graph

By I. PAVG -

Abstract

- We present a new procedure that generates all k-trees ofa graph in each compo—
nent of which a vertex is given in advance. Qur method makes use of a theorem of
-Ore [7] concerning finite directed graphs, thus prowdmg an application of this theo-
rem that beyond its theoretlcal interest can be used in practical analysis of electrical
networks. .

Introduction

Topological formulas are nowadays playing an ever increasing rol¢ in the analysis
of clectrical networks (see [8]). In the apphcatlons of such formulas, however simple
they are, the questioh immediately arises how to generate all the trees, and also
the 2-trees satisfying certain requirements, of a given graph.

To overcome this problem several methods were proposed in the last decade.
In principle, the most simple way to produce all the trees of a graph G with » vertices
" would be to scan all the sets containing n — 1 edges and dispose of those not eligible. -
Naturally for practical purposes such a procedure would be too lengthy and in-
tricate. A procedure usable also in practice was devised by Hakimi and Green [1]
and solves the problem by splitting the graph in two parts the trees of which are
assumed to be known. From the trees of these subgraphs the trees of the starting
one can be composed and also k-trees satisfying certain requirements can be pin--
pointed. This procedure is, however, also lengthy and cumbersome; indeed, to
carry out the splitting and composition of trees is in itself a complicated algorithm,
“and it must be repeated also for the subgraphs obtained. A similar procedure was

devised by Mayeda [3].

. Other procedures were designed by Talbot (a new set of topological formulas)
and by Mayeda and Seshu [4]. A common feature of these methods is that they
chogse an arbitrary tree as a starting one and generate the others from this by edge
transformations. (After deleting an edge of the startmg tree another edge of the
graph is substituted, and then the same procedure is applied to the obtained tree)
These methods seem to have certain advantages but we must note that a recursive
formula is used that is, from the viewpoint of computational techmque ‘difficult
to handle.

The most feasible method for practical use that has been developed up to now

2 Acta Cybernetica
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is perhaps that due to Maxwell and Cline [5]. This method is of algebraic character
_ and, to its advantage, is simple; easy to understand, and adaptable to digital com-
puters relatively easily. A snag is, however, that it can be used only to generate k-trees
with k=1 or 2 and it uses up a relatively large internal storage capacity.

In the present paper we are going to present a new procedure that generates
the k-trees, satisfying certain requ1rements of a graph; the procedure in the case-
k =1 generates all the trees. Our method is about as simple as the algebraic method
mentioned above is, but it can be applied under more general circumstances; namely,
it can be used to handle the case k =2 too. It can also be ascribed to its advantage
that, fed into computer, it needs considerably less internal storage room than the
algebraic method mentioned. The procedure, as presented here, concerns only the
generation of k-trees of graphs without multiple edges, but there is, in principle,
no difficulty in extending itso as to apply to graphs with multiple edges. Our considera-
tions are based on a well-known theorem of Ore {7] on finite directed graphs.

1. Basic eoncepts and definitions

Consider a graph with n vertices Py, ..., P, and select arbitrarily a number &

(1 =k =n) from among them, these being denoted by P, ....P, (I=ij<--<i =n).

Definition. A k-tree Ff , of the graph G is an arbitrary graph satisfying
thc following stipulations: '
it is a subgraph of G,
it contains all the vertices of G,
it consists of exactly k connected components, ,
each component contains exactly one of the selected vertices Py, ..., P;,
each of its components are a tree."

- In particular, as seen from the definition, F} denotes a tree of the graph G
for the sake of simplicity we may sometimes drop the lower index and write only F*,
The purpose of this note is to study the generation of k-trees conformmg to the
above definition.

Let M be a matrix of size nXn with the following properties:

(D) Every element of M equals either 0 or 1,

(HI) each row of M contains at least one element equal to 1.

Consider also a matrix M; where 1=i,<--<i,=n, of size nXn w1th
the following properties: ,

(I') the i;-th row of M, consists purely of zeros (=1,..., k),

(Il') in other rows of M;, _ ; there is exactly one element equal to I and
otherwise these rows too consist purely of zeros, and finally .

(I11") at every place where M;,, contains a 1 the matrix M too does so.

wewwr

Ty oees i
.

- ik

Definition. If M, satisfies conditions ([) (It’y and (III’) then we call it an
(iy, ..., iy)-reduction of M.
Suppose. M;, ik satisfies conditions (I") and (II"), and write M;, (a,,),

;; being the element in the intersection of the ith row and ]th column of the matnx
ln questxon :
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Definition. The function _ _
Jitx#Zi,. ., anda;=1,

®(x) = {0 if x coincides with one of
the numbers i;, ..., i,

“is called- the function associated with the matrl‘c M,
As seen, the domain of (p(.x) is the set {l n} and its range is a subset of
{0, 1, , n}. Shortly, this function makes correspond to each row index an integer

o equallmg zero unless the row with the considered index contains an element equal

to 1, in which latter case this integer coincides with the colimn index of this unique
,element It is clear that the correspondence between the matrices M;, _ ; and the
functions associated with them is one-to-one. :

This observation is important since it shows that it is possible to characterize
the matrix in question with the aid of the row vector (¢(1), ..., ¢(1)). This cha-
racterization will be called the row vector representation of the matrix M, ;.

In ‘what follows, both directed and undirected graphs may turi up. Unless
" otherwise stated, loops. are not, in general, admitted. In addition, undirected graphs
- are assumed to have no multiple edges. Undirected edges will be viewed as pairs of
edges directed in opposite directions that connect the same pair of vertices.

To a graph containing the vertices Py, ..., P, make correspond a matrix u(G)
of size n X n that in the intersection of the ith row and the jth column contains a 1
if and only if the vertices P; and P; in this order are connected by a drrected edge,
the remaining elements of the matnx being equal to zero.

Deﬁnmon The matrix 1(G) is said to be the adjacency matrix of the graph G

It is easily checked“that the correspondance G —u(G) between graphs, contain-
ing the vertices Py, ..., P,, that have only single edges (loops being allowed too) .-
and matrices of type nXn containing only 0 or 1 as elements is one-to-one. For
graphs without.loops the adjacency matrix contains purely zeros in its diagonal.
Undirected graphs have symmetrical adjacency matrices.

By a well-known theorem of -Ote ([7], [6]; [2]), a.directed graph, possibly with.
loops, has the property that at each of its vertices exactly one of the edges is directed
“outwards if and only if it satisfies the following three conditions:

(a) each component of the graph contams exactly one circuit (this may possibly
be. a loop),

(b) in this unique circuit the edges are directed cyclically,

(c) in each component the edges that do not belong to its circuit are dlrected
towards this circuit.

Definition. An undirected graph without loops is called a generaltzed tree 1f
each of its connected components contains ‘at most one circuit. .

In particular a k-tree is a generalized tree.

To introduce a useful notation, for a directed graph G we shall denote by v(G)
the undirected graph obtained by retammg undirected edges between those pairs
of vertices that are connected. in G in at least one direction.

2
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2. Some properties of the graphs F* = v(u='(M, )

Consider a simple graph, i.e. an undirected graph without loops and multiple
edges, that contains the vertices Py, ..., P, (n=1), none of which is isolated, and
write M= u(G). Fix the integers i, ..., (1=i,<---<i,=n) and let the matrix

M,, .. run over all the (i, ..., {)-reductions of M.

Theorem 1. For every graph F* of form v(;r“(M,‘l,“_’,-k)) each of the following
five assertions hold: )

(A) F*is a subgraph of G,
(B) F*is a generalized tree,
. (C) the vertices P;; ‘belong to mutually distinct components of F(j=1,..,k),

(D) if a component of F* contains any of the P;’s then this component is a
tree (which may possibly degenerate to a-single vertex)

(E) those components of F* not containing any of the vertices P;, contain at
most one circuit and at least one edge each.

-Conversely, if a graph F* satisfies conditions (A), (B), (C), (D), and (E) then
it can be represented in at least one way in the form F*=v(u3(M,, . ;). i

Proof. Choose an arbltrary (i1, ..., iy)-reduction M,
that F¥=v(u (M, ) isa subgraph of G. »
Construct a matrix M, from M, _ ; by writing 1 in the intersection of
thei;-th row and thei;-th column instead of O for every j=1,..., k. Then p='(M; ;)
is a directed graph such that to each of its vertices there is exactly one edge incident
that is directed outwards. Applying Ore’s theorem we obtain that every component
“of u~}(M;, . ;) contains exactly orie circuit or loop. By transition from p='(M; ;)
to u‘l(M,l,_“, ) we must delete exactly k& loops; thus the graph p~(M;  _ .)
turns indeed out to be a generalized tree. Since the loops: were deleted precisely
_at the vertices P;,, we obtain (D) too (j=1, ..., k).

Furthermore, since to each vertex P in u"l(M,h ;) there is a loop incident,
Ore’s cited theorem also implies that each component of F* may contain at most
one of the vertices P; ; therefore (C) is also established. )

Finally, consider those components of F* containing none of the points P,
and consider simultaneously also the corresponding componentes in p~ (M, ’,k)
These latter contain exactly one directed circuit each. Passing back to u~(M,, ),
it is clear that the component in question of p~!(M; ) contains this circuit;
moreover, since a directed circuit contains at least two distinct vertices, it is guaranteed
that this component .of F* contains at least one edge. This completes the proof
of (E).*

For the proof of the converse of the theorem assume .in what follows that
F* satisfies conditions (A), (B), (C), (D), and (E). To accomplish the proof we

of M. 1t is obvius

e B

* It may hapren that a component of F* is, despite the fact that it contains none of the
vertices P , a tree. This is the situation if the subgraph in y“(M' ) corresponding to this

componenl contams a directed circuit consisting only of two vertrces by transition to F*, the two

edges, directed in opposite directions, that are incident to both of these edges reduce to one single
edge, and the component of F* in question does not contain any circuit.
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associate with F* a directed graph F* for which the one hand F* = v(F¥) holds, and
the other hand for which u(F*) coincides with one of the graphs M, .

Introduce a directing of the edges in each component of F* by ab1d1ng by the
following rules:

_ 1. If the component in question contains a vertex P;, and this P;, is not an
isolated point then direct the edges of this component towards P;,. (C) and (D)
provides for the unique p0551b111ty of this.

2. If the component in question contains a circuit then directed the edges of
this latter cyclically and the other edges towards the circuit. Such a directing is made
possible by (B). '

3. In the remaining cases, i.e. when the considered component contains neither
a vertex P; nor a circuit then it contains at least one edge. Let us choose an edge
and replace it by two edges directed in opposite directions and, if there exist any,
direct the other edges towards the circuit constructed just now. .

In this way we obtaina dnected graph F* for which. F*=v(F*) obviously
holds.

Consider now the directed graph F* obtained - by .adding loops at each pomt
P;, of F¥. To this F¥ we can apply Ore’s theorem. We derive that each row of the
matrix u(Fk ) contains exactly one 1. By deleting the loops of ‘F*" we can pass back
to F¥; in terms of the adjacency matrices this amounts to replacmg the ones by -
zeros in each of the rows i; of u(F*"). The obtamed matrix u(F*) is then easily seen
to be an (i, ..., i)- reductlon of thé matrix M = u(G). The proof is"complete.

From the above proof it. becomes clear that to a graph F* there correspond,
in general, several (i, ..., i,)-reductions. The ambiguity of the construction of these
reductions lies in steps 2 and 3 above, where for the dlrectmg of the edges there
are, in general, several possibilities. ’

We mention two more mterestlng propertles of the graphs F* featurmg in .
Theorem-1:

F* contains at least k components and at most n—k edges.

The remark on the minimal number of components is an easy consequence
of (D). That on the maximal number of edges follows from the fact that F* contains
exactly n — k directed edges. Therefore the properties of the correspondance v imply
that F* cannot contain more than n—k edges

To requ1re that the graph G contains no isolated points is necessary for the
existence of an (i, ..., i,)-reduction for any selection of i, ..., i,. Still, the assump-
tion_ on isolated pomts can be eased if we extend the notion (il, ey ik)—reduction for

matrices M that possibly contain rows consisting purely of zeros. In any case, the
maximal number of such rows must be limited to & and all such rows must be covered
by those of incides iy, ..., i,. .

As we pointed out above, the -generalized tree F* in Theorem 1 cannot be .
represented unambiguously in form v(u“l(M,l,“ .i))- Nevertheless, in case this ge-
neralized tree is a k-tree of G, this representation 1s unambiguous. More precisely,
we have the following.

Theorem 2. Assume G is a simple graph without isolated points and with ver-
tices P, ..., P,, and select fixed vertices P;, ..., P, ,'where 1=i,<--- <i,=n. Then
the k-tre: F'I"“,_,k can be represented unamblguously in -form" v(,u‘l(M,l’ ,k))
where M,

is a suitable (i, ..., iy)-reduction of u(G).

s ik
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Proof. That there exists at least one representation of the desired kind follows
from the converse Theorem | since Ff _ ; obviously satisfies conditions (A), (B),
(C), (D) and (E) of Theorem 1.

. In the proof that there exists no more than one representation we may assume
k <n. Contrary to what we want to prove, suppose that £, . = v(p“(\’l )=
=v(u (M} ;) where M}, and M} _ , are two different @iy, .- lk) -reduc-
tions of u (G) We are going CXhlblt a contradlctlon

On account of the assumptlon that the two matrices are distinct, there exnsts a
J#iy, ..., I, (1=j=n) such that in the jth row of M}, the /;th element is one
whereas in the same row of M _ , the lth element is one, /, and /, being
unequal and both being different from j(/;, l, =1, ..., n). This means that P;, P, and
P,, all belong to the same component of Ff .. Assume that P; is the unique
one of the selected vertices that also belongs this component (m=1, ..., k). Then in
l‘_l(Mill,...,ik) there exists a directed path leading from P; to P; through P, and
in pmYMZ ) there is one leadmg from P; to P; through P,,, This means that
there ex1st two different paths in some component of Ff . that connect P; with

P, _, contradicting the assumption that Ff, . is a k-tree of G “The proof is complete
’ Similarly to what was said after the proof of Theorem 1 the stipulations im-
posed on G can be eased also here: it is enough to assume that G contains at most
k 1solated points and these are among the selected ones.

In case k=1 we obtain interesting partleular cases of Theorem 1 and 2:

Theorem 3. Assume G is a simple-graph with vertices P,, ..., P,, none of which
is isolated. Write M =pu(G). Fix an integer i, 1 =i=n, and let the matrix M; run
over all (i)-reductions of M. Then for each graph F of form v(u‘l(M,)) the followmg
four assertions hold:

(A) Fis a subgraph of G,

(B) Fis a generalized tree,

(C) the component containing P; of F is a tree, Wthh may possibly degenerate
to an isolated point; and finally,

(D) those components of. F not containing P, contain at least one edge and at
most one circuit each.

Theorem 4. Assume P; is an arbltrary but fixed point of the connected 51mp]e
graph G, where 1 =i=n, and Flis a tree in G. Then M = u(G) has precisely one
(¢)-reduction M; such that F!'=v(u~%M,) holds.

It is necessary to stipulate in this theorem that G is connected since otherwise it
would not contain any tree at all.

3. An algorithm to generate the k-trees

Keeping an eye on Theorem 2, we want to generate all the k-trees Ff _ , of
G by forming all (i, ..., §;)-reductions of u(G). Among these there will turn up
those representing the k-trees exactly once. Apart from the k-trees these reduced -
matrices will represent other generalized trees F* satisfying conditions (A), (B),



k-trees of a graph ’ : » ) 63 ‘

(C), (D), and (E). In the sequel we are going to construct a. procedure that selects
those producing k-trees Ff ;. from among all.the (i, ..., i,)-reductions of u(G).

So our procedure will enable us to sift out from among the mentioned generalized
trees F* the k-trees FE Jix» 1€, those generalized trees satisfying (A), (B), (C), .
(D), and (E) in Theorem 1 that contain no circuit in any of their components ‘

To start with the description of our method, consider the sets {F} .} and
{M; . .}, where the elements of the second set denote the (iy, .. lk) -reductions
of the matrix M =pu(G). As seen from Thedrem 2, all the k- trees F,’i ;. occur
exactly once among the graphs v{(u~ (M, ,k)) Also, we observed earlier in Sectlon 1
that the elements of the second set can be glven in row vector representatlon So .
in the way described in Theorem 2, the set {Ff . .} canbe mapped in a one-to-one
way into the set {((p(l),. ,(p(n))} of row vectors ¢ running over the functions
associated with any of the (iy, ..., iy)-reductions M, . We shall describe a pro-
cedure that selects those vectors belng in the range of the mapping just described.
The selected row vectors ((p(l) ., @(n)) will be those representmg the k-trees
Ft i of the graph G.

""Consider a matrix M |, satlsfymg propertles I, (I[) and (i) described
in Section 1 and let ¢ be the functlon associated with this matrix..

Definition. By a cycle check performed on the -matrix M;, ;. starting with
the integer x we mean the construction of the sequence

.x,(p(x),(p((p(x)), o . (I1=x=n).

We say that the outcome of the cycle check is finite if we can construct only a finite
sequence, i.e. if somewhere in the sequence a zero turns up, which does not belong
to the domain of ¢; otherwise we say that the outcome of the cycle check is infinite.

1If the outcome cycle check is infinite then, as is easily seen, from a certain point
the same segment of the above sequence will occur repeatedly.

Definition. By a° complete cycle check performed on the matrix M, we
mean a bunch of cycle checks starting with the integers 1, ..., n respectrvely The
outcome of a complete cycle check is said to be finite if all checks constituting it have .
finite outcomes; otherwise, the outcome is said be infinite.

Now we are going to study the cycle checks from an aspect that will have some -
importance for our later purposes. To this end, consider a matrix M, . ;.
and a cycle check performed on it that starts with the integer x. The constructlon
of the sequence x, ¢(x), @(@(x)), ... can be regarded as starting at a vertex P, of

“the directed graph p~*(M;, ;) and walking through a part of the graph, alWays
proceeding in conformity. with the direction of the edges passed along. The sequence
obtained by a cycle check coincides with the sequence of vertices passed through
during such a walk. In case of a cycle check with finite outcome, after a certain
time we arrive at a vertex out of which there does not lead any edge. In case of
“infinite outcome we get into a directed circuit. during the walk.

To be assured that the outcome of & complete cycle check performed on a given
matrix is finite we must perform all the n cycle checks constituting this complete
check; we may, however, stop earlier if we happen to find an infinite check among
these, because this already implies the infiniteness of the complete check..
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Theorem 5. Assume G is a simple graph with vertices Py, ..., P,, none of which
is isolated, and M, ; is an (i, ..., i;)-reduction of p(G). Then the complete
cycle check performed on the matrix M ..ix is of finite outcome if and only if
v(y (M, 5)) is a k-tree Ff of the graph G.

Proof. To verify the “if” part assume that F} . is a k-tree of the graph G.
According to Theorem 2 there exists a reductlon M,l i such that Ff . =
=v(u~'(M,, .. ;) holds. Furthermore, in each component of the directed ‘graph
p~¥M;, ;) all the edges are directed towards the corresponding vertex P;
(=1, .. k) These imply that the cycle check performed on the matrix M; .,
that starts with an arbitrary i=1, ..., n is of finite outcome. Therefore the complete
cycle check is also of finite outcome

To prove the “only if”” part assume, that the complete cycle check performed
on the matrix M, ; is of finite outcome. Then by an observation made above on
cycle checks we see that none of the components of the directed graph u‘l(M i)
contains a direcied circuit. )

This entails that the graph v(u='(M, - ;) does not contain any circuit. Indeed,
assume the contrary, i.e. that this graph does contain some circuit. Consider the
directed subgraph of p~(M, ;) corresponding to this circuit. This subgraph
cannot be a directed circuit; thus it contains at least one vertex with two edges
incident to it that are directed outwards. This contradicts the definition of the
matrix M, ;.

Moreover, we can derive that the number of edges of v(u~'(M,, m,,k)) i1s n—k.
* In fact, this is obvious for p=*(M;, ;). This latter graph, as was pointed out above,
deces not contain any directed cxrcurt so, in particular, it does not contain a directed
circuit with two edges. Therefore, the correspondance v does not reduce the number
of edges. )

We obtained that v(u'l(M ..i)) is a circuit-free graph with n—k edges,
and this means that it is indeed a k-tree. Taking Theorem 2 into account, we see
that this k-tree can be represented in form Ff ;. The proof is complete.

ey 1

From Theorem 2 in Section 1 and Theorem 5 in Section 2 we obtain the follow-
ing algorithm for the generation k-trees Fi¥ _ ., of graph G:

ik
1. Construct the adjacency matrix M =u(G) of the graph G.
II. Form all (i, ..., ii)-reduction M, ik of M..
III. Perform a complete cycle on the matrlces M, . Those leadmg to finite
outcomes give the desired k-trees in form v(u 1(M ,k))

" (If the graph G has no k-trees at all this will turn out by performing the algo-
rithm since in this case all the cycles have infinite outcomes.)

The algorithm described can be extended so as to apply to the search of -the
k-trees of a graph G with multiple edges by keeping in mind the following:

Whenever two points of the graph G is connected with more than one edges
we replace these with one single edge and call the number of edges replaced the
multiplicity of this single one. By performing the above algorithm on the obtained
graph G’ we get its k-trees. Each of the k-trees of G’ that contains no substituted
edges is a k-tree of G too.

Now consider the k-trees of G’ that contain also substituted edges. By taking
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into consideration the substituted edges with their multiplicities we obtain the
k-trees of G. From a k-tree in G’ we can derive as many k-trees in G as the product
of the multiplicity of its edges.

- This method prov1des a way for generating the k-trees of a graph G with multiple
edges. :

In case k=1 our algorithm gives all the trees of a graph G On account of,
Theorem 4 we see that the generation of the trees can proceed in i different ways
depending on ‘which of the r vertices of G we choose as P;. We obviously obtain
all the trees independently of this choice. This enables us to deliberate as to which
of the n ways is the simplest from the angle of computational technique. This
problem will be touched upon in the next section.

4. Remarks on adaptation to computers and model examples

We should like to add some computation-technical observations concerning
the- algorithm outlined in the prev1ous section on the generation of the trees F :
of a graph.

To start with, it seems practical to perform the first two steps of the algorithm
immediately on the row vector representation of the considered reduction M; |
To make this possible we introduce the notion of generating matrix.

Let M=pu(GY=(a;;) be the adjacency matrix of the graph G.

w ik
skt

_ ‘Definition. The generating matrix Mg =(b; ;;) associated with the graph G is
determmed by the formula

A ; _ lf aij = 0,
blj—{j if aij= 1.

Now the row vector representation of a (i, ..., i,)-reduction M, ;. of the
adjacency matrix M =pu(G) of the graph G can be obtained from M by choosing
an element from each row of M in the followmg manner:

If the index j of the row considered is different from all i, (l—l ., k) then
let the choosen element be different from zero, and if j=1{ from some [ then
choose a 0 (e.g. the element in the diagonal). '

Now the cycle check can be performed on the row vector obtamed accord-
ingly. :
In several cases computational short cuts can be made in cycle checking. For
example, it is easy to see that it is not necessary to start a cycle check at elements
which were arrived at in earlier cycle checks. Moreover, if the complete cycle check
has infinite outcome we may stop when we stumble upon the first cycle check with
infinite outcome. -

In principle, it is irrelevant which vertex P; we fix. when.generating the trees .
of a graph G. In practice, the most clever choice seems to be the one for which
the ith row of the generating matrix M contains the largest number of elements
different from zero. It can furthermore be observed that the cycle check may have
a finite outcome only if the number i occurs in the row vector representation
of the matrix M,.

The remarks made here enable us to sift out those matrices M; that are to be
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used for cycle checks. Many of the above remarks (e.g. that given in the last sentence
of the previous paragraph) can be modified in an obvnous way so as to apply also to
the case k =2.

Example. Consider the graph G in Fig. 1. We are going to generate all its trees.
The generating matrix Mg of G takgs the form

P, 0200 5
/////\\\\_ 103035
M;={0 2 0 4 0

P ¢ P, 00 305
1 20 40

Looking at this matrix we see that it is perhaps
the best to choose the vertex P, as P;. If we cons-

P ' P truct the row vector represertations of the M; reduc-
o 3 tions then, according to the remarks made above, we
Fig. 1. A simple graph obtain 20 row vectors. Performing cycle checks on

these we obtain that 9 of these vectors do not rep-
resent any trees. The final result is 11 trees, which are in turn in row vector rep-

resentation: _
) ’ (23540), (25230), (25250), (25450),

(51230), (51250), (51430), (51450),
(53450), (55230), (55250).

Observe that from a row vector representation we can easily pass to the actual
tree. To do this imagine another row, consisting of the elements 1,2, ..., n, placed
‘above the row vector representation of M;; disregarding the one column containing
zero, the remaining colums indicate the pairs of vertices that are connected in
the tree in question. For example, the tree represented by the row vector (55230) can
be seen in Fig. 2.

row vector representation: ) “completed” row vector:
(55230) : 1 2 3.4°5
: . 55 230
/l\
Pe P,
.p4 . p3

Fig. 2. A tree of the graph of Fig. 1.
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As a further example we shall now generate the trees F3 , 4 of the grdph G
given in Fig. 1.
Again, we construct the row vector representatlons of all the eligibé ones of the

matrices M 5 4: )
. (00201), (00202), (00204), (00401),

(00402), (00404).
) Now performing cycle checks cn the matrices corresponding to the rows enumer-
ated we obtain finite outcomes in all six cases.

This means that in this case the number of the 3-trees is 6. Fig. 3 illustrates the
3-tree corresponding to the vector (00404)

- TOw vector representation: “completed” row vector:

- (00404) [1 2345
' 0.0 4 0 4

P, P,

3 .
Fig.A3. A 3-tree of the graph of Fig. 1.

The advantages of this method in comparison to others for the generation of
" k-trees of a graph G seems clear if the method is adapted to computer. Namely,
the method described in Section 2 is perhaps the most easily fed into computers-
among the known -tree-generation methods. It is also clear that the storage capacity
occupied by a programme based on this method-is considerably smaller than that
needed for the-performing of a .programme using e.g. the algebraic method [5].

" The reason for: this is that it is not necessary to store the data representing the tree

for further operatlons the cycle check decides 1mmed1ately whether the obtained
data (row vector) in fact represent a tree. This is a considerable advantage if we
_take into account that in pratice the number of the trees can be of magnitude order.
of several millions [4]. If not programmed clumsily, the complete cycle check does
not increase the computing t1me unfavorably in comparlson with time used up by
- the algebraic method
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RESUME

Dans cette petite Note nousallons présenter une procedure nouvelle engendrant
tous les k-arbres d’'une graphe avec un point donné dans chacun de ses composantes

. connexes. Notre méthode exploite un théoréme d’Ore [7] concernant les graphes

finites' et directées, ainsi rendant une application de ce théoréme qui est, hors de
son intérét théorique, aussi utile dans ’analyse des secteurs électriquies pour des
buts pratiques.

( Received March 9, 1970)



~On the behaviour of some cyclically
symmetric networks

By A. ApAM and U. KLING

Zusammenfassung. 'In diesem Artikel beschiftigen wir uns mit dem folgenden
speziellen Typ von Netzwerken: die Punkte des Graphen werden durch Py, Ps, ..., P,
bezeichnet; es existiert ein Zahl k (1 =k <n) so daB von jedem Punkt: P; die Kanten
zZu den Punkten )

Pi—la Pi—2, cees Pi—k

und nur zu diesen fithren (wobei die Subtraktion modulo n gemeint wird). Wir
setzen dasjenige kontinuigrliche Modell fort, das im Abschnitt 3 der Arbeit [2]
eingefiihrt wurde. Der Zustand 2 eines derartigen Graphen heifit zyklisch, wenn
es eine positive Zahl p gibt, so daB nach einem Zeit-Intervall der Linge p der aus
A entstehende Zustand mit U libereinstimmt. Wir unterscheiden im § 1 reguldre
und nicht-reguldre Zustinde. In den §§ 2—3 wird das Funktionieren eines Graphen
mit einem reguldren Anfangszustand diskutiert; wir stellen -fest, daB jeder reguldre
Zustand zyklisch ist. Im § 4 beschéiftigen wir uns mit dem Funktionieren eines
Netzwerkes mit einem nicht-reguldren- Anfangszustand; unser Hauptergebnis be-
* sagt; daB kein nicht-reguldrer Zustand zyklisch sein kann."

§ 1. Introduction

In this paper we deal with the function of a special graph-theoretical class of
networks. (We speak of a nerwork if numerical values or numerical functions are
assigned to the vertices of a graph.) We shall point out that the behaviour of net-
works in question can be described-more explicitly in comparation to the general
model elaborated in Sect. 3 of [2]. It is throughout supposed that the reader is familiar -
with Sections [—3 of . the former article [2].

Now we delimit the graph-theoretical structure of the netw01 ks to be mvestngated .
“Let G(in; my,m,, ..., m) (where | =m; <m,<---<m<n) denote the graph con-
sisting of n vertices. labelled as Py, P,, ..., P,,, so that the directed edge P; P exists
if and only if there is an integer /2 (1 =h=k) for which the congruence

i—j=m, (mod n)

holds.! We shall regard the graphs G(n; 1,2, ..., k) (where 1=k <n) in the whole

T For the isomorphism problerﬁ of these graphs see [1] and the most recent papers [3], [4].
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paper. We note that the subscripts of the vertices of such a graph (and consequently,
also the subscripts of the functions «; assigned to them) are mostly undersfood
modulo 7.2 . .

Let a state

‘3[‘= (o (2), 25(1), -, 2 (2))

(at the instant® ¢) of a graph G (containing » vertices) be considered. Let us denote
by A[+p] the state of G at the instant ¢4 p where p is an arbitrary non-negative
real number. (More precisely: let us apply the continuous model defined in Sect. 3
of [2] for G, starting with 2 at ¢; let A[+ p] be the vector

(. (t+p), % (t+p), ..., “n(t‘l'l’))-)

We say that 9 is a cyclic state (and p is its period) if there exists a positive p such
that A=A[+p]. In the contrary case, U 15 an acyclic state.

We use for «;(0)-the shorter notation f;, too.

Let us consrder a network G(n; 1,2,..., k). Assume that there exists at least one
vertex P; with «;(¢) = 1. (If this holds forP , then each of o _ 1(t) a;_o(t), aj—5(1), .

;- k(t) is 0) We say that the vertices '

(1) : P,+1,P,+2,...,PJ_:,,Pj_l,Pj
form an arc (at the instant l) if A
I =0;(t) > ;1 (t) > 240(8) == o551 () =
=0 (1) = 0 11(1) = 0 x40(t) == a;_1,(t) = 0

(and of course, a;(¢) = l) hold. Evidently, the number of vertices of an arc is neces-
sarily at least k + 1. (We emphasrze that P;-does not belong to the arc (l)) A state
of a graph G(n; 1,2, ..., k) is called regular (at t) if each vertex is contained in an
arc (obviously, it may be contained in only one). In a regular state, we denote by

@(P;, t) the first vertex PJ in the sequence

Pr+1’ Pt+”’ P1+31

which satisfies «;(t) =1; in other words; ¢ (P;, 1) is that vertex P in the arc contain-
ing P;,, which fulﬁls o (t)—l (P; and P;,, are in the same arc unless a (t)—l )

In what follows, we shall obtain that a state of a network G(n 1,2, ..., k)
is ‘cyclic if and only if it is regular (Propositions 2, 8).

§ 2. Discussion of the behaviour of a network starting
with a regular state

Let us consider a regular state of a network G(n; 1,2, ..., k) at the instant 0.
Our next aim is to give a detailed discussion of the function «; associated to a vertex
P; (chosen arbitrarily) of G during the time interval [0, 7). Our treatment is based

2 For example, we write simply “the vertex P,*, instead of “the vertex P “whose subscnpt
is determined by j = i+/ (mod n), 1=j=n".
3 In what follows, ¢ will be almost everywhere 0.
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. upon Sect. 3 of [2]. We shall formulate several consequences of the present discus-
sion in § 3; one of these consequences is ant1c1pated _]ust now:

‘Proposition 1. If
A = (o, (0), 2,(0), ..., x,(0))
is a regular state,. then we have »
;i (r) = %4x41(0)
- for each i (i can be 1,2, ..., n). o
‘We are going to perform the discussion. We distinguish. three cases according

to the possibilities 0 <f; <1, f,=0, f;=1. Any case is subdivided to some sub-
cases with respect to the smallest integer /2 _satisfying P, y=@(P;, 0). In every dis-

cussed case, the following statement will be always. true: whenever a;(t)=0 and -

there exists a positive number & such that «;(¢") >0 holds for every ¢’ fulfilling t —é <
< 1’< 1, then a;,,(t)=1. We shall apply this method of inference (in a number of
steps) withouit being mentioned explicitly. :

<Case 1: 0<pf;<1. We distinguish three subcases. - :
Case l/a: h > 2k +1, in other words, each of Py, Piys, ..., Piygyiq differs
from (p(P,,O) This assumption implies (by the definition of the regular state)’

Bi=PBix1= _ =Bk = Bivkrr T Piars == /3;+2k+1- :

The behaviour of «; in [0, t] can be described as follows: .
(@) in the interval [0, t(1 — ;)] the value of «; grows linearly from'f; to I,

(i) in the interval {t(1 =B, T(1 = fisq)) o; is constantly 1,

(iii) in the -interval [t(1 —B;,1), (1 — B;i+rx+1)] &; is constantly 0,

(iv) in the interval [t(1 — B;41 1), 7] (of length r/i,+k+1) the value of «; grows
linearly from O to 744 44/T = Bisx+1-

Indeed, P; gets edges exactly from the vertices P;,;, P;.,, ..., P;;,. None of
“Oi41, o> Xy Can be 1 in the interval [0, T(1 —f,4,)). However, at every instant ¢
of the interval [t(1 — ﬂ,ﬂ) 1:(1 B1+k+1)) (exactly) one of o, ,(¢), ..., a; () is 1.
In the interval [t(1 —B;sr+1)s T) %1s+1 1S constantly 1, thus each of Ciprs o> Kjag

.is constantly 0. We have also o;,,(1) =+ =a;,,(1)=0, hence a; may grow in
[c(1— Bi+k+1)s Tl : :
"Case l/b: k+2 = h = 2k+1. Then

Bi>ﬁi+1> o= Piinker ZBivn-r = Bisnar1 == Biyn=1 =0,
1= Bion>Bivnsr = Bivnre = = Biyns-
The condition of the case implies the inequalities _
i+2=ith—k =itk+1 = ith—1=i+2k,

thus B;14,+1=0. The behavio’ur of «; satisfies the assertions (i), (if) of Case 1/a,
-moreover, ’ v

(iii) in the 1nterva1 [t(1 —B;+1), ] @; is constantly 0. Indeed, since o;;,4,(t) <1
at each instant ¢” of the interval [0, 7), the behaviour of «;,;, ..., ;s similar to
Case 1/a (with 1 instead of T(1 — Bi4+1))- .
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Case 1fc: h = k+1. Then
Bi=Bist = Biya= ... = Bisk =0,
1= Birks1> Biskse = Piskss = = Birokso-

The behaviour of «; can be described as follows:
() in the interval [0, (1 —B))] the value of a; grows linearly from f; to 1,
(ii) in the interval [t(l1 —f,), 7] «;-is constantly 1.
Indeed, none of %1, @; 42, ..., %44 can reach 1 in the interval [0, T(2 — B4 1+2)),
furthermore 7 < 7(2 —B;sx10)-

- Case 2: ;=0. We distinguish four subcases:
Case 2/a: h = k+1. We can prove by ideas similar to Case 1/c that «; grows
linearly from O to 1 in the whole interval [0, 1].
Case 2/b: h=k. Then

fi=Piz1i=.=Bix1=0,
1= Bivk>Bivksr Z Pisise = = Bisana.

The behaviour of «; is as follows:
(i) in the interval [0, T(1 — ff;+4+1)} @; is constantly O, -
(if) in the interval [t(1 —f; 4541, 7] ; grows linearly from 0 to

(T_T(l _ﬂi+k+1))/f = Birk+1-
Case 2/c: 1 = h =k—1 and Bisrvs1=0. Then
Bi=Pisi== Biznor = 0,1 =Bsp>PBishs1>
oo > Bivkr1™ Bivkae Z Pisrss =0 = Pliokso-

The saine conclusions (i), (ii) are true as in Case 2/5.
Case 2/d: 1 = h = k—1 and f;4,+1:=0. Then

Bi= Bisn == Birn-1=0,
1= Bin>Bisns1 = Bivnre = = Pisnsr = 0.
In this case «; is constantly O in the whole interval [0, t].

Case 3: f;=1. This case can be discussed similarly to Case 1. The single modifi-
cation is that (1 — B;)=0, thus the conclusions (i) do not occur in the subcases.

§ 3. Propositions on the behaviour of a network startihg
with a regular state

We are going to expose some statements which summarize the discussion per-
formed in the preceding paragraph. Let g be the least common multiple of k+1
and n.

Proposition 2. Any regular state is cyclic; gt/(k+1) is a suitable period.
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Proof. If we apply Proposition1 g/(k+1) times, then we get
#;(0) = oy ke 1y(D) = Xipogesy(27) =0 = ai+g(g“'/(k+ 1)) = a;(gr/(k + 1))
for every i.

Proposition 3. If W is a regular state, then the state N[+ 1] is regular for each
non-negative t.

Proof. Assume that the instant of 2 is denoted by 0. Let 4 be the greatest in-
teger so that dr=t¢. We get by successive application of Proposition 1 that the con-
clusion of the present proposition is true for dz. By analyzing § 2, we obtain that
it holds for ¢ too (because ¢t —dr < 7). The proof is completed.

An easy consequence of our former investigations is

Proposition 4. If W is a regular state and t is a non-negative number, then the
number of arcs of W equals to the number of arcs of W[+1t].

Let us fix a vertex P;, let us consider the sequence
@) 'Ph Pi+(k+1): Pi+2(k+l)’ Pi+3(k+l)’ ) Pi—(k+1)
consisting of g/(k +1) (distinct) vertices and the sequence
(3) Pi+1! Pi+(k+1)+15 Pi+2(k+1)+1’ Pi+3(k+1)+15_ s Pi—(k+1)+1

which consists likewise of g/(k+ 1) vertices. Either n, k+1 are relatively prime
to each other (thus g = n(k+1) and both of (2), (3) contain all the vertices) or
(2), (3) are disjoint.* Let us define the instants v, and w, by .

vy = T(h—=Bivn-nw+1y) and w, = T(h_ﬁi+(h—l)(l.:+1)+1)

(where h can be 1,2, ..., g/(k+1)). This definition implies immediately

Lemma 1. For any h,

tth—D)=v,=th and t(h—1) = w, = 1h.

Lemma 2. For any h we have one of the three possibilities

(a) vy=<w,

(ag) vy=w,=1h

(@g) wo=t(h—1) and v,=rth
(according as

(b ﬂt;+(h-1)(k+1) >Bi+(h—1)(k+1)+1

(bz) Bi+(h—1)(k+1) = »Bi+(h-1)(k+l)+1 =0

(bs) .3i+(h—1)(k+1) =0, Bi+(h—1)(k+l)+1 = 1).

4 For, if (2), (3) contain a vertex in commoh, then some multiple of k+1 is congruent to 1 mo-
dulo n, hence n and k£+1 are relatively primes.

3 Acta Cybernetica
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Proof. The equivalence of (a;) and (b;) can be shown easily (for all the three
values of i), the proof is completed by the remark either (b,) or (b,) or (b;) is true
since the state is regular.

Lemma 3. If v,_y <w,_, and v,<w,, for some h(=2), then either w,_, = v, =
=1h—1) or wy_, < v,—1.
Proof. The supposition implies
ﬁl’+(h—2)(k+1)>ﬂi+(h—2)(k+l)+1a
ﬁi+(i-—1)(k+1)?ﬁi+(h—1)(k+1)+1-

The sequence (consisting of k + 1 numbers) -

)] ﬁi+(h—2)(k+l)+17 ﬁi+(h—-2)(k+1)+2: ﬂi+(h—2)(k+1)+3a cers ﬂx+(h—1)(k+1).

is monotonically decreasing unless f;, - 1)(kﬂ)_l (by the regularity of the state),
thus we can distinguish two cases.

Case 1: (4) is monotonically decreasing. Then the number

ﬁi+(h—2)(k+l)+1_ﬂi+(h-1)(k+1)(: (4 —T—Wh—1)/7)
is positive, hence w,_, < v,—1.

Case 2: B4 (h-1y@+1y=1. Then, on the one hand, v, = t(h—1); on the other
hand, B;.p-2u+1+1=0, this implies w,_, = t(h—1).

.By use of the numbers v,, w, we can explicitly characterize the behaviour of a;
in the interval [0, g7/(k +1)):

Proposition 5. Let us consider a regular. state at the instant 0. The function «;,
assigned to a vertex P;, satisfies the following four assertions:

(A)If (1 = h = gl(k+1) and) v,<w,, then x; is constantly 1 in the interval
[Ons w)-° ’

(B) If(2 = h = g/(k+1) and) w,_y <v,<w,, then «; grows linearly in the inter-
val [v,—1, v} from O to 1.

(C) If vy<w,, then a; grows linearly in the interval [0, vy] from 1 —uv,ft to 1.

(D) The value of a; is O at all the instants of the interval [0, gr/(k+ 1)) which
are not referred to in (A) (B) and (C).

Proof. Let an instant t lying in [0, gr/(k + 1)) be considered. There exists a
number A such that t(h—1) =t < th (where | = i1 = g/(k+l)) By using Pro-
position | successively #—1 times (with t—1,1—=2t, 137, ..., 1 —1(h—1) instead
of 0), we get

o (t) = ai+(k+1)(t—7) = Kipop+ny(t—27) =
- = ai+(h—2)(k+1)(t‘—r(h_2)) = “i+(h~1)(k+1)(t—'f(h— 1)),

i.e. the behaviour of a; in the interval [1(h —1), th) is the same as the behaviour of
%4+ h-nk+1y 0 [0, T) (with the appropriate translation).

.
5 Since w,=v, ., may occur, two or more intervals of this character can be joined.
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First we show (A). The function ;4 ;_1)«k+1 takes the value 1 exactly in the
sub-interval

[T(l "'Bi+(h—l)(k+1)): (1 _'/}i+(h-—1)(k-fl)+1))

of [0, 7) by Cases l/a, 1/b, 1/c, 3/a, 3/b, 3/c of the discussion in § 2 (even if at least
one of

/)’1+(h 1k+1) — 1, /3:+(h Hk+)+1 = 0
is true).

In order to verify (B), let 1(=1) be such an instant that o;(1) =1 but, for every
positive ¢, there exists a ¢* fulfilling o;(+*) <1 and t—¢ < ™ < 1. Then &;4 (,_ay4 41,
has the analogous property at the instant t—(h—2), and 7 = t—1(h—2) < 21.
By analyzmg the discussion and by Proposition I, we get that a;, 2)(k+1) GrOWS
linearly in [t —t(h—1), t —t(h —2)] from O to 1, consequently «; behaves in [r-—r t]
analogously.

(C) follows from the discussion immediately.

(D) is equivalent to the subsequent statement: any function «; is O at ¢ unless
t is contained in an interval (¢”,t"+ 1] such that o;(z"+1) = 1. This statement fol-
lows easily from the discussion and Proposition | in the interval [0, 21], it can be
extended for any non-negative ¢ by Proposition 1.

The last assertion we state relying upon §2 is the evident

Proposition 6. The following three statements are equivalent for a regular state:
(A) The state is steady.

(B) Every arc of the state consists of exactly k + 1 vertices.

(C) k+1 is a divisor of n and the number of arcs in the state is nf(k+1).

§ 4. Study of non-regular states

The purpose of this paragraph is to show that only the regular states are cyclic.
First we define the irregularity indices of an arbitrary permitted state® 2 by the fol-
lowing three rules:

() if B;_y<P;=<1, then i is an irregularity index,
@ai) if B;_,=p;=0, then i is an irregularity index,
(iii) if B;_,=p;=0 and each of B, 1, Bire, ---» Bisx is <1, then i is an irre-
gularity index.
(The conditions in (i), (i}, (iii) exclude each other.) We agree that no remain-
ing number (out of the set {l,2,...,n}) is an irregularity index. The irregu-
larity number of the state ¥ is the number of its irregularity indices.

If (i) or (iii) holds for i/, then i is called a strong irregularity index, the number
of strong irregularity indices is the strong irregularity number of . 1f (ii) holds for i
then we call i a weak irregularity index.

Lemma 4. The irregularity number of W is 0 if and only if W is a regular state.

Proof. 1t is obvious that the definition of the regular state does not admit
any of the possibilities (i), (ii), (iii). — Conversely, assume that no vertex fulfilling

¢ A state is permitted if o;=1, P;¢x(P;) imply a;=0.

3%
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the condition of either (i) or (ii) or (iii) occurs in UA; let P; be an arbitrary vertex.
If B;=1, then ' _
Bick = Bicks1 = Bickse=-=Bi.1 =0

(since the state is permitted). If 0 <f, <1, then 8,_,>p; (smce otherwise (i) or (ii)
would be violated). If ;=0 then either one of B, Biss, .., Biryis 1 or By >p;
(in consequence of (iii)). Thus A is a regular state.

Lemma 5. Let U be a state at the instant O and t be a positive instant such that
the functioning of the network is defined (at least) in the interval (0, t]. If i is not a
strong irregularity index at 0, then i is a strong irregularity index nor at t.

Proof. Let t* be the (possibly non-existing) least real number such that 0 =* =1
and none of o, , &40, .-, ;4 takes the value 1 in the interval [¢*, r]. Either t* =0
or there exists a number ¢ such that 1 =g =k and to every positive ¢ there exists a
¢’ satisfying both ¢* —e < ¢ < t* and o, (t")=1.

Case 1: t*>0 and g <k. We have
| &1 (1) = a,(t*) = 0,

the functions «;_;, «; are equal and increase linearly in the whole interval [r*, 1]
from O to (¢ —r*)/r. (Necessarily t —1* < 7; if the contrary were true, we should
get a contradiction to the hypothesis that the functioning is defined in [0, ].)

Case 2: t*=>0 and g =k. We have

. o (") za;(t*) = 0.
Three subcases are possible:
Case 2/a: o;_4(t*)=0. This subcase can be treated similarly to Case 1.
Case 2/b: a;_,(¢t*)=>0 and 1t —¢* < 7. Then ¢; increases linearly in the whole
interval [t*, ¢] from O to (+ —¢*)/z. o;_; increases linearly from

1 (t%) to{ai_l(t*)+(t—t*)/r in [t*¢] if a_,(tN+@E—1M=1,
-1 1oin [ ¥+ (L= (0] if o )+ —1%)/r>1.

In the second of these cases «;_, is constantly 1 in [t*+ (1 —a;_,(t*)), 7].

Case 3: t*=0 and f,_;>B;. Let us assume that ¢ is so large that all the inter-
vals to be discussed are in [0, ¢t]. (If this assumption is not fulfilled, then the sub-
sequent dlscussmn is altered so that it breaks off at the instant ) In the interval
{0, (1 —B;_,)] both «;_, and «; increase linearly. In [‘L’(l— im0 T(L =) oy is
constantly 1 and «; increases lmearly In [t(1 —B), t] «; is constantly 1 and «;_, is
constantly 0

Case 4: t*=0 and f;,_,=p;. Then t<7, furthermore o;_,, «; are equal and
increase from O to t/tr similarly as in Case 1.

Case 5: t* does not exist. Then there is at least one number g such that 1 =g =k
and a;,,(t)=1, thus o;(r)=0. i fulfils the conditions of neither (i) nor (iii) at ¢.
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Lemma 6. If the strong irregularity number of a state W at the instant 0 is positive
and the functioning of the network in the interval [0, 1] is defined, then the strong
irregularity number of the state U[+1] is O.

Proof. Let i be an arbitrary index. If i is not a strong irregularity index, then
we can apply Lemma 5. Otherwise, let us define #* and ¢ as'in the proof of Lemma 5.
If 1* >0 then Cases 1, 2 of the preceding proof remain valid; if +* does not exist,
then the inference of Case 5 can be applied. We have still to study the cases when
t*=0 and i fulfils (i) or (iii).

If (i) is true, then

ai(t(=B) =1 and @1(z(1—B)) = O,

i is not a strong irregularity index at 7(l — ;) consequently nor at t (by Lemma 5).
If (iii) holds, then it is easy to see that the functioning of the graph is defined
at most in the interval [0, 7); this contradicts the supposition of Lemma 6.

Lemma 7. Let W be a state at the instant O such that the strong irregularity number
of W is 0. If the functioning of the network in the interval [0, 1] is defined, then the
irregularity number of U[+1] is O.

Proof. Whenever j is an arbitrary index and ¢’ is an instant such that 0=¢"=7,
then j cannot be a strong irregularity index at ¢#” (by Lemma 5). We shall study a
function «; in [0, 7). Let us define ¢* and g in the same manner as at beginning of the
proof of Lemma 5. '

Case 1: t*>0. Necessarily g =k (since now the value 1 “steps” from j to j+ 1,
similarly to the case of a regular state; discussed in § 2). Hence «;_,(+*) >0, (¢*) =0.

In the interval
[*, * +1(1 —o;— 1 (#"))]

o;_,, o; increase parallel (i.e. «;_, —o; remains constant). In the interval
[+l —o= 1 (t7)), 7]

(provided that it exists) a;_, is constantly 1 and o; continues its growth.

Case 2: t* =0. We distinguish two subcases.

Case 2/a: f;_,=p;. This assumption implies that the functioning of the net-
work is defined only in [0, 7(1 — B)), i.e. it contradicts the supposition of Lemma 7.
Case 2/b: B;_;=B;. In the interval [0, 7(1 — B;- )], #;—; and «; increase paral-

lel. In _
[T(l —Bi—y), (1 '—Bi))

a;_, is constantly 1 and o; continues its growth. In [t(1 —8)), 7] «; is constantly 1
and «;_, is constantly 0. )

Case 3: t* does not exist. We get o;(7) =0 similarly to Case 5 of the proof of
Lemma 5, hence i does not fulfil the condition of (ii).

Proposition 7. If the state W (at the instant 0) is non-regular, then either T,
is defined for W and 0<T,,,, <21 or W[+ 21] is regular.”

? T, was introduced in [2].
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Proof. Assume that the states AUA{+t] are definable whenever 0=7=2¢. The
state [+ 7] cannot have a strong irregularity index (by Lemma 6), hence the state
A{+ 21] is regular (by Lemmas 7 and 4).

- Proposition 8. Any non-regular state is acyclic.

Proof. Let A be a non-regular state (at the instant 0). If the state 2{ +¢] is not
definable for every positive ¢ (i.e. if T, does exist), then U is obviously acyclic.
Assume that A[+ 1] is defined for every ¢. Let U be cyclic and p be a period of it,
we shall get a contradiction. Let d be the least integer such that dp =2t holds. On
the one hand,

A=A[+p]=AU[+2p]=---=A[ +dp),

thus [ + dp] is non-regular. On the other hand, [+ 27] is regular by Proposition 7,
hence also [+ dp] is regular by Proposition 3.

§ 5. On some possibilities for future researches

Let us consider a graph. Denote by A the set of its permitted states (i.e. all
the mappings of the vertex set into the interval {0, 1] such that the restriction mentioned
in Footnote 6 is satisfied), by A4,(c A4) the set of its regular states. We define two
partitions m,, 7, of 4 and a further partition 7z of A, in the following manner:

A€ A), W(cA) are in a common class mod =, if there exists an integer s such
that 0 = s = n—1 and

. ’ ’ . ’
Oy =0y gy A=W pgy veny Ly = Ag g, K, =0

where A ={(a;, s, ..., 0,), W=}, a5, ..., ).

A (€ A), W(€A) are in a common class mod r; if the inequalities a; <a; and
a; <o are equivalent to each other for every index pair i, ;.

AU(€A,), W(cA,) are in a common class mod n, if there exists a non-negative
real number ¢ such that W[4 ¢]=".

The partitions 7, and 7, generate a sublattice of the lattice of all partitions of
A; similarly, n,, n, and 7, generate a sublattice in the partition lattice of 4,. Various
questions (concerning both the lattice-theoretical properties and numerical problems)
can be raised on the lattices generated in this manner.

Fmally, we mention a problem of this character. Let A4, be the set of the states
N=(x, %, ..., o,y fulfilling the three requirements:

() ;= l holds for exactly one index /,

(i1) the state is permitted,

(i) whenever [/ and [’ are two indices such that 1=/</"=n, P ¢ {P}U/(P)
Pg {P}Uy(P) then the inequalities 0 <a; <1, O<af <1, oy hold.

It i1s easy to see that a randomly chosen element 9[’ {as, aq, ey of A
satisfies [+ 1]€ A4, with probability 1 where t = 7(1 —max (], 3, ..., a,’,)).

Let us consider the graphs G(3;2), G(4; 3), G(5;4),...,G(n; n—1), ... . Start-
ing with the general member G(n; n—1) of this sequence, we denote by @, the
factor set A{”/n, where A denotes the set 4, with respect to the graph- G(n; n— L).
Q, is a finite set. On the other hand, let us define the subsets 4™ of A{” so that
A€ A if and only if the regular state A[+¢] (with the least possible (= 0))
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(exists and) consists of x arcs (x = n/2). The sets Aj™* are pairwise disjoint (for
varying x), moreover, A€ A, A € A, A=A’ (mod n,) imply x =x’. Let QF
be the subset of ©, which consists of the classes whose elements are in A", It is
interesting to examine the asymptotical behaviour of the numerical function

|2:]

f(n, x) = |Qn! .

(/2] .
(Evidently, > f(n, x)=1.) A discussion shows that the first values of f(n, x) are:
x=1 .

. " Vz | 3 4 5 6
1 1 112 | e | 1y2s
2 | sie 17
3 1/4

We conjecture that f(n, [(n — 1)/2]) converges to 1 if n tends to the infinity.

MATHEMATICAL INSTITUTE OF THE INSTITUT FUR NACHRICHTENTECHNIK DER
HUNGARIAN ACADEMY OF SCIENCES TECHNISCHEN HOCHSCHULE
BUDAPEST, HUNGARY MUNCHEN, BR DEUTSCHLAND
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On measure-theoretic problems involving
retrospective sequential functions

By A. MATE and J. Sz(cs

1. Introduction

The present paper can be regarded as self-contained inasmuch as it does not
rely on outside repositories of references to an extent we would think underisable,
yet, we think it should, in a proper setting, be considered as a continuation of, or
an addendum to, L. Klukovits’s paper [6] in the first issue of these Acta.! Other-
wise it might be questionable whether the present paper, investigating pure measure-
theoretic properties of certain types of functions, should appear in a periodical of
cybernetics. Though these researches might have some potential applications to
cybernetics and to the theory of automata, this aspect of the problem will not be
elaborated here in detail. Perhaps some additional research in this area may be
useful.

Yet, from a cybernetical angle, our study can be viewed as an investigation,
on a theoretical level, of the relation between the behaviours of an automaton,
firstly, if an arbitrarily large, but only a finite, number of input signs is successively
fed into it and, secondly, if the feeding of input signs 1s repeated infinitely many
times. : ,

The approach to the characterization of the behaviours of automata is achieved
through studying measure-theoretic properties of retrospective sequential functions,
the precise definition of which, along with other definitions, may be found below.
We shall point out that under certain natural conditions such functions are measur-
able, or, in more specific circumstances, they are even continuous. They map Borel
sets onto sets which, in a natural sense, can be called Lebesgue-measurable; we
shall give an example which illustrates that the image of a Borel set may be a non-
Borel set, even in a very simple case.

2. Preliminary notions

Since the sections that follow depend to a considerable extent on different sets
of notions we think it undesirable to accumulate here all the necessary definitions,

1 The cited paper contains some inaccuracies and a considerable number of proofs in it are
presented in an unnecessarily complicated way. Our observations concerning this matter are presented
on p. 89. ’
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and we collect here only the concepts that play a role throughout the whole of these
notes.

The very concept around which all that follows centres is that of the retrospective
sequentlalfuncnon shortly RS function. The domam of such a function is the Car-
tesian product

R, X=XX
n=1

where X, is intuitively interpreted as the set of input signs that can be fed into a given
automaton at the nth stage. The range is a subset of the Cartesian product

(2.2) Y= XY,
n=1

where Y, is, intuitively, the set of output signs that can be emitted immediately after
the digestion of the input sign absorbed at the nth stage. The automaton in question
is to be imagined as having a fixed initial state that completely determines its reac-
tions to sequences of input signs. The RS function assotiated with this automaton
makes correspond to an infinite sequence of input signs the sequence of output
signs the automaton emits while receiving the former.

This intuitive description of RS functions may easily be put in the form of a
precise definition: a function f mapping the set X into Y is called an RS function
if, under f, the first n signs of the image sequence are uniquely determined by the
first n signs of the argument sequence for every positive integer n. This specific pro-
perty of an arbitrary RS function f enables us to consider its restrictions to finite
sequences. In notations, for every positive integer n put

@y Xjn= X X, Y|n= XY
k=1 k=1

the function f[n sends, by definition, all sequences in X |[n to sequences in Y|n in
the same way as f handles these sequences as finite segments of infinite sequences.
The notations

(2. 9) nX= X X, nY= X Y, (n=0)
k=n+1 k=n+1
will sometimes prove useful, too.

In all our considerations, each of the sets X, and Y, will be vested with a measura-
bility structure, by which we mean an ordered pair consisting of a set, the underlying
space, and a ¢-ring defined on this set, this latter being usually suppressed in the
notational framework. The spaces X|n, Y|n, X and Y will be endowed with the
measurability structures that are the products of their respective factors. The ¢-rings
determining these structures are the minimal ones generated by the sets of all rectan-
gular sets or, in case of an infinite number of factors, by the sets of all cylindrical
sets; here a subset of e.g. X is said to be cylindrical if, for some n, it is the Cartesian
product of a set measurable in X|n with the whole set #|X. (As seen, the notion of
cylindrical sets already depends on the concept of measurability in products of
“finite numbers of spaces.)
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A part of our study depends only on this measurability structure, without
the need of actually considering measures. In other parts we have also to assume
that certain measures are given on the described o-rings. Sometimes we shall also
consider the completions of these measures; these are, in general, defined on larger
o-rings, and this fact should carefully be kept in mind since, unless specifically
mentioned our results may not hold for these extensions of the measures involved.

Another point to be stressed is that, up-to Section 5, when measures are con-
sidered the measures on the product measurability structure of X and Y are never
assumed to be the products of the measures on the respective factors; on the other
hand, all our counter-examples are so constructed that, when measures on X and
Y are at all considered, these are the products of the measures defined on the res-
pective factors. '

3. 'Measurability of RS functions

A very simple necessary and sufficient condition in order that an RS function
be measurable in the sense that the whole inverse image of any measurable set is
measurable is provided by

Theorem. 3.1. An RS function f is measurable if and only if the functions f|n
are measurable for all positive integers n.

Proof. The “only if” part of the assertion is quite obvious and needs no com-
‘ment whatsoever. Not much more complicated is the reverse implication, either.
Indeed, observing that the inverse of a function does not spoil set-theoretical opera-
tions such as union and- difference, the desired result immediately follows from
the minimality restrictions, as imposed in Section 2, on product spaces.

Here, of course, the question might be raised how far these minimality restrictions
are indispensable. The situation is, perhaps, illuminated by

Counter-example 3.1. The tacit assumption that in Theorem 3.1 measurability
cn Y means belonging to the minimal o-ring generated by cylindrical sets cannot be
omitted even in the simplest case.

This assertion is intended to be a vague intuitive description of the situation
‘rather than a precise mathematical statement.

To consider a o-ring, larger than the minimal one, of measurable sets in Y is
senseless unless motivated in some suggestive way. Thus, what we are going to do
will be to introduce measures on X, and Y, and consider the o-rings that are the
domains of the completions of the product measures on X and Y.

Now we actually set to describe the counter-example in question. Choose X,
and Y, as coinciding with the two-element discrete space, containing the integers
1 and 2, such that the measure of each of its one-element subsets is 1/2. Let p be
the product measure on X=Y, and j its completion.

Define the RS function / mapping X into itself by the stipulation that for an
arbitrary sequence x={x,};=, the image f(x)=y={y,};, be such that y,,_,=1
and y,,=x,. In compliance with the clause in Theorem 3.1, f'|n is clearly measur-
able with respect to the (minimal) measurability structure on X'|n = Y|n, this being
the discrete structure.
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Now the function f being one-to-one, for any set ZS X we have Z =1~ f(Z)).
Here obviously u*(f(Z))=0,2s0 f(Z) is always measurable with respect to ji; thus,
providing Z is chosen nonmeasurable with respect to j, this set is an example for
a measurable set whose full inverse image under f is not measurable. To make our
considerations complete, we only have to point out that X has a subset which is not
measurable with respect to ji; this, however, follows from the fact that X endowed
with the measure f is essentially identical as a measure space to the interval (0,1)
with the usual Lebesgue measure on it. .

Finally, we remark that if the measurability structures of the spaces occurring
here are coupled with certain topological ones then some simple conditions ensure
the completion measurability of an RS function. These conditions and the proofs
are analogous as in the cases of Lemma 4.2 and Theorem 4.3; the proofs in this
case are even slightly simpler. We do not formulate these results here since they do
not seem as natural as well as have no such a consequence as their counterparts in
the next section (see Theorem 5.1 below).

4. Questions concerning the transportation of measurability

The question studied here, a much more difficult one than that énvisaged in
the previous section, concerns the transportation of measurability. More exactly,
the problem to which we try to find an answer here is under what circumstances
it is guaranteed that the image of a measurable set under an RS function is measur-
able again. This problem seems to depend much more on the topological structures
of the spaces involved and on measures rather than on measurabilities than we
experienced it in connection with the question studied in the previous section. Thereby
we are forced to impose further restrictions on the spaces X, and Y,, and it will
be convenient to do this along with a short description of the related concepts.

Throughout the rest of the paper we assume that, for each positive integer n,
the spaces X, and Y, are endowed with topologies induced by metrics under which
these spaces are complete and separable metric spaces. The topologies on X|n,
Yin, X, and Y are defined as the products of the topologies on their respective factors.
As is well known, it is possible also on these spaces to introduce metrics with respect
to which they are complete and separable metric spaces. For example, if we denote.
the distance function on X, by g, then the function

: - 0.(x,, X0

4.1 o(x,x") = . ML
( ) " ) ’% l + Qn(xn’ x’l)
serves as such a metric on X. Since our main concern is the possibility of the introduc-
tion .of such metrics rather than the particular distance functions chosen, we shall
suppress these latter in the notational framework; nevertheless, we might refer to
the spaces involved as metric when it were enough to say metrizable in a certain
way.

Measures on these spaces will also be considered. u and v will denote two
Borel measures on X and Y, respectively; here a Borel measure, by definition, is a

* The asterisk * in superscript indicates outer measure.
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o-finite measure explained on the o-ring of all Borel sets, this being the smallest
o-ring generated by e.g. all closed sets. i and ¥, called Lebesgue measures, will
denote the completions of u and v. In an obvious way we can also define the restric-
tions g,, v,, uln and vin, of the measures y and v, to the spaces X,, Y,, X|n and
Y |n, respectively; e.g. for a Borel set HCE X|n put pln(H) = p(H X n}X). It is usually
not assumed that u and v are the products of the measures yu, and v,.

A simple condition in order that an RS function under the circumstances
specified above be in a sense measurability transporting is

Theorem 4.1. If the RS function f is such that f|n is Borel-measurable for any
positive integer n then f maps all Borel sets onto Lebesgue-measurable ones.

Here the Borel measurability of a function means that the whole inverse image
under it of a Borel set is again a Borel set.

Proof. 1t follows from Theorem 3.1 that, under the given assumption, f is
itself Borel-measurable; so it maps Borel sets onto analytic or, by another name,
Suslin sets (see e.g. [2, 2.2.14 on p. 70]). As is well known, every analytic set. is
Lebesgue-measurable (see [2, 2.2.1.2. Theorem on p. 68]), which completes the
proof.

To illustrate how far the assumption in this theorem is necessary and whether
the conclusion goes far enough we give several counter-examples. The assumption
that f'|n is Borel-measurable when we want to prove that f is measurability transport-
ing may seem artificial; Counter-example 4. 1, however, shows that it is not enough
to suppose that f|n is measurability transporting. Counter-example 4.2 shows that
the given assumption does not ensure that f maps every Lebesgue-measurable set
onto a Lebesgue-measurable set. It is not certain, either, that, under this assumption,
the image of every Borel set is a Borel set; this will be shown later, in Counter-
example 5. 1.

Counter-example 4. 1. The assumption that, for any positive integer n, the func-
tion f|n maps every subset of X |n onto a Borel set of Y |n does not imply.the conclusion
of Theorem 4. 1. :

In the example we are going to give, the validity of the assumption that f|n
maps every set onto a Borel set will be ensured by choosing as Y | a finite discrete
space, every subset of which is, of course, a Borel set. To elaborate, choose the spaces
X,, X5, ... and Y;, Y,, ... as identical to a two-element discrete space, with points 1
and 2, such that either of its one-element subsets is of measure 1/2. Explain the
Borel measure on Y as the product of those defined on the spaces Y,; define X; as
identical to Y, with the same topology and measure defined on it. Finally, choose
the Borel measure on X as identical to the product of the measures explained on the
spaces X,,.

Now choose as f; an arbitrary function from X, into Y whose range is not
Lebesgue-measurable. Then the function f that makes correspond to every x = {x,};,
the sequence f;(x,), independently of x, for n=2, is an RS function that satisfies
our requirements, yet it does not map the whole set X onto a Lebesgue-measurable set.

Counter-example 4. 2. The assumption of Theorem 4.1 does not assure that the
image under f of a Lebesgue-measurable set is Lebesgue-measurable.
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Using the -same spaces X and Y as in the counter-example just before, define
the RS function f from X into Y so that it send a sequence x = {x,};=, to a sequence
¥ that is identical to x, € X; = Y, independently of the values of x, for n=2. It is
obvious that the function f|n is Borel-measurable for each positive integer n. If we
select an arbitrary set X7& X; =Y that is not Lebesgue measurable, then the image
under f of the set X’ = X;X {1} X {1} X"--S X is X;; now the set X’ is Lebesgue-
measurable, since its outer Borel measure is zero; yet its image is not so.

1t seems to be a rather difficult problem to give conditions that subtly differentiate
between cases when Lebesgue-measurable sets are mapped onto this same’ kind
of sets and when they are, possibly, not. Nevertheless, the following two results,
however rough they are, point in this direction.

Lemma 4. 2. Assume that the space X is locally compact and that the measure of
every compact set in X is finite.® Suppose, furthermore, that the RS function f is such
that, n running over all positive integers, the fufiction fin is Borel—measurab[e and
moreover, with some positive constaiit C,

@2 - (v[m)*(f1n(G,) = Cu|n(G,)

holds for any open set G,in X |n.>* Then f maps all Lebesgue-measurable sets onto
Lebesgue-measurable ones.

We remind that the local compactness of X is an additional assumption and,
as said at the beginning of this section, all the spaces considered here are assumed
to be complete and separable metric spaces. We also recall that in order for the
product of topological spaces to be locally compact it is necessary and sufficient
that all factors, with the possible exception of a finite number of them, be compact
and the non-compact factors be locally compact (see [1, Proposition 11 on p. 65]).
Taking this into account, we can reformulate the lemma accordingly.

The point in adopting (4.2) as an assumption of the lemma is that it ensures
that the mapping f does not increase the outer measure of any set more than C times;
thus, in particular, it maps sets of zero outer measure onto sets also of zero outer
measure, and this implies the assertion of the lemma.

Proof. Since every Lebesgue-measurable set can be represented as the union
of two sets of which one is Borel-measurable and the other is of zero outer Borel
measure, the assertion will follow from the previous Theorem if we show that f
maps every set of zero outer Borel measure onto a set also of zero outer Borel mea-
sure. To accomplish this,let Z be an arbitrary subset of zero outer Borel measure
of X. Since in a locally compact and separable metric space every Borel set is a
Baire set, and a Baire measure on a locally compact space is always regular, pro-

3 Usually, Borel measures are considered on locally compact spaces and it is traditionally’
included in their definition that they are finite on compact sets. Here we cannot conform to this
tradition since it would involve some unnecessary restrictions on the measures considered.

4 Tt is enough to require the conditions depending on # in this lemma and in the next theorem
only for large enough integers, though the statements so obtained are not real generalizations since
they easily follow from the assertions, analogous to the given ones, arrived at by grouping the factors
of X as (XX XX,()XX,‘“X , and those of Y similarly. Moreover, it does not represent any
real change to requnre only for large n's that f]n is Borel-measurable since then the same follows
for every positive integer n.
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vided it is finite on compact sets (see [3, Theorem E on p. 218 and Theorem G on
p. 228)), for an arbitrarily small positive & there exists an open subset G of X
with u(G)<e such that ZEG.

n being an arbitrary positive integer, let U run over all the open subsets of
X|n, and write

4.3) - G, = U{U: UXn|X S G}.
Then G, is an open subset of X |n, and, obviously, we have
4.4 G, XnlX € G, ., X(n+ DX,
and _

@.5) ' 6= U Gxnlx:

mofeover, on account of (4.2), we obtain
4.6) v (f(G,Xn|X)) = v*(f|n(G)Xn|Y) =?
= (v|n)*(f1n(G)) = Culn(G,) = Cu(G, X n|X).

Here all the sets are actually Lebesgue-measurable; for the first one this is
stated by the previous theorem. For the second and the third one this fact will not
be used, so we do not go into details and only note that in the proofs similar arguments
involving analytic sets may be used So, writing ¥ instead of v*, the last four centred

lines imply

“7) "’(f(G)) = V[ l_Jlf(GnXHIX)] = Cu(6). -
Since G, by its chonce includes Z, we obtain

4.8) . *(f(Z)) = ¥(f(G) = Cu(G)<C£

Since ¢ can be selected arbitrarily small we have v*(f(Z))=0, which completes the
proof of the lemma.

Thoughin the proof of this lemma we made a relevant use of the local compactness
of X, this assumption can actually be dispensed w1th if we stipulate that u is totally
finite, and we can derive

Theorem 4. 3. Assume that the measure  is totally finite and r/ze RS function f
mapping X into Y is such that, n running over all positive integers, f|n is Borel-measur-
able, and, moreover, with some positive constant C, :

4.9) (1n)*(f1n(B,) = C(uln) (B,)

holds for any Borel set B, in X|n.® Then [ maps all Lebesgue-measurable sets onto
Lebesgue-measurable ones.

> An easy argument invoking analytic sets shows that here actually equality holds, and would
continue to hold even if the set f|#(G,), which could easily be shown to be Lebesgue-measurable,
were replaced by any subset of Y|r. This is, however, irrelevant for our purposes.

¢ See footnote 4.
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Proof. Any complete and separable metric space is either countable or of con-
tinuum cardinality (see [4, IV on p. 320]), therefore to each X, there is a compact
and separable metric space X, of the same cardinality. Since a compact metric
space is necessarily complete, on account of a well-known result (see [7, 2° on p.
358]), there exists a one-to-one function g, mapping X, onto X, that is Borel-measur-
able in both ways.” S

Now define the function g from X’, this being the product space X7 X XX ---,
onto X componentwise, i.e. put

(4.10) ‘ gx1xz ...) = & (x1)ga(x2) ...

Then g is obviously one-to-one and Borel-measurable in both ways. Determine
the Borel measure y” on X’ so that g be also measure-preserving. Instead of the
RS function f(x) we may consider the RS function f(g(x)) mapping X’ into Y and
the assertion of the theorem directly follows from the previous lemma on account of
the compactness of X”.

5. The problem of transportation of measurability in a special case®

In this concluding section we shall be concerned only with the following special
case: X;, X;, ... and Y;, Y,, ... are all identical discrete spaces, with a finite number
N =2 of points, and the Borel measures p, and v, on X, and Y,, respectively, are
such that the measure of a one-point set is 1/N; finally we determine p and v as
the products of the measures yu, and v,, respectively. It is easy to see that in this
case all RS functions are continuous. Moreover, the assumptions of Theorem 4. 3
are satisfied for any RS function f. Indeed, f|» is Borel-measurable for many reasons,
e.g. since it is defined on a discrete space. The assumption (4.9) is also satisfied
with C=1. The argument showing this is simply that the measure of a set in X|n
is a constant multiple of the number of the (finite) sequences contained in it; this
measure may only decrease by performing the mapping f|n, as a consequence of
the phenomenon that two different sequences may have a common image. So in
this case we have

Theorem 5. 1. Every RS function maps all Lebesgue-measurable sets onto Lebesgue-
measurable sets. .

The proof of this theorem does not, in fact, need such sophisticated tools as
have been used to accomplish it. Namely, cylindrical sets being compact, their

image is also compact, and the considerations based on (4.9) that establish the full = -

strength of the theorem are largely simplified by the fact that the measure u is the
product of the measures y,,.

? Actually, the phrase ““in both ways” need not be added; namely, it is easy to show that if
a one-to-one function which maps a complete and separable metric space onto another is Borel-
measurable then its inverse is so, too.

8 The more ambitious reader is advised also to consult L. Kalmar’s paper [5], where a case
with generality lying between that of the cases dealt with in this and the previous sections is studied
from a somewhat different angle.
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The paper of Klukovits [6], which spurred us to investigate measure-theoretic
problems involving RS functions, considered only the particular case studied in
this section. We take now a closer look at the relationship between some of his
Tesults and some of our considerations here. It will turn out, in particular, that
many of the proofs in his paper can be radlcally shortened by 'using some srmple'
devices of topology. :

Theorem 1 in ‘the paper in.question says that two RS functions diﬁ'ering only .
- on a set of Lebesgue measure zero coincide. The functions'in question being con-
tinuous, this is naturally true, since in this case the measure of any non- empty open
" set is positive, and thus the .set of coalescence is dense.,

Lemma I claims that if the range of an RS function is Lebesgue-measurable
then the image under it of any Lebesgue-measurable set-is so, too. This is a con-
sequence. of Theorem 5.1 of ours, though the assumption on the range is super-
fluous. Independently of our- result Jjust referred to, the fact that the range of fis
measurable is obvious since, being a continuous image of a compact set, it is. in.
fact compact. In the proof of the cited lemma, the author leaves to the reader
the verification of the assertion that, under the assumption of the measurability .
of the range, the image of every cylindrical set is. Lebesgue -measurable. Cylindrical
sets being compact, the task of the reader in ‘proving this is indeed not difficult.
He may, however, be annoyed by not ﬁndmg a way to weave the measurablllty of
- the range into his considerations. :

-Theorem 2 states that an RS function f-is measure-preserving if -and only if’
it is an onto mapping.- Here the proof of the necessity can be contraced into a few
. lines as follows: the range of an RS function f being compact, its complement is
open. The stipulation that f is measure-preserving implies that the measure of thls
open set is Zero; so it is empty, which means thatfls indeed onto. ‘

, Lemma 2 asserts that the range of a “finite-state RS function w1thout one- to-
one state” is Lebesgue-measurable. (The phrase is not an exact quotation; the author
-writes fsrsf for what we called a finite-state RS function.) In whatever way the above
attributes may specify the notion of RS function, the range is a continuous 1mage
of a compact set, therefore it is compact, and so measurable.

* Theorem 4 announces that the range of any “fsrsf” is Lebesgue measurable
Actually, the range is again compact. :
The concluding result of these notes.is

. Counter-example 5. 1. There exists an RS funcnon under which the lmage of
a certain Borel set is not a Borel set. : :

In order to give- such an example for every positive mteger n, 1dent1fy the spaces -
X, and Y, with the discrete space consisting.of the points 1 and 2 and choose N,
as the dlscrete space containing exactly the positive integers; let N be the topologrcal
product of the spaces N,. .
Decompose the space X=Yas

(. l) o X = Z,XZyX Zs,

4 Acta ‘Cybernetica



90 A. Mité and J: Sziics

where
(5.2) ' L Zi= X Xas, (=1,2,3).

Let Zj be the subspace of Z; which consnsts precnsely of the sequences that contain
an mﬁmte number of ones. lt is easy to see that Z; is homeomorphic to N. Indeed,
a homeomorphism between these spaces can be described as follows: for an arbltrary
element z of Z) form groups of consecutive elements constituting z so that
each group consnst purely of 2’s except that it end with a 1. The numbers of -
elements in each group, in turn, form a sequence of positive integers which, if con-
sidered as the image of z, determines a homeomorphism between Z; and N. Denote
this homeomorphism from Z; onto N by h; for a sequence z¢ Z, denote by h,(2)
the nth integer forming the sequence /(2).
' Now, followmg closely the lines of the example for an analytic set that is not
a Borel set given in [2, 2.2.11 on p. 68], our example can bé described as follows:
Choose a countable open base U(n) of ZIXZ‘, and define a closed subset of
- Zl><22><23 by :

(53 C= {(Zu 23, 23)t (21, 29) § L=J1 Y (h.,(zs))}.

It is obt/ious that all the closed subsets of Z; X Z; occur among the slices
. (5.9 » = {(zl, 2): (21, 25, za)EC}
Now, on the one hand,
. 5) ’ S= {(zl, z3): 2y, 2,, 23) €C  for some - z,}
is an analytlc subset of Z; X Z3; and, on the other hand, the slices N
(5.6) S, = {zl: (z1, z3) € S}= {z;: (23, 22)EC234 for some 22}

run over all the analytic subsets of Z;, since Z; is homeomorphic to N (see [2, 2. 2.10
on p. 65]) .

Fmally, the intersection of S with the diagonal of Z; X Z;, the latter bemg a set
closed in the relative topology, is an analytic subset of Z; X Z;. The prOJeCtlon of
this set.into Z7, .

B.7 e : T:{zlz (zl,zﬁ)ES and  z,=z,,

is therefore analytic; now the complement of 7, Z{—T, is not analytic since it
does not occur among the sets S;,. Indeed, the assumption Z; —T = S, is equi-
valent to saying that for any z,€Z; = Z; - '

(5.8) (z1, z))4 S holds if and only if (z;, z,)€ S.

This is, however, certainly not true for z, = z;, implying that Z’ — T is not analytic,.
as asserted. Thus, since the complement of a Borel set is again a Borel set, and so
a fortiori an analytic set, we may conclude that T is not a Borel set.

To complete our example, we shall determine an RS function that maps a
" Borel subset of Z{ X Z; X Z; & X essentially onto T. To this end, define a diagonal
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plane of the set C: c | ‘ |
(5 9) : D= {(2.1"22’ 23). (zl’ Z3, Za)éc ‘ and’ 21‘223}

- and con51der the functlonffrom Zy X Zy X Z, (without accents’ ') into itself such that
(5 10) . f(zls 22, 23) (21’ <, C):

" where ¢ is an arbitrary but ﬁxed'sequence in ZZ—Z;,,, eg.c=111.. .In view of (5. 1),
f can_be rewritten as an RS function mapping X=7Y into ItSle

_ Now the set D, being a set closed in the relative topo]ogy on the Borel set
Z1X ZyX Zs, is itself a Borel set, and its. image underf, the set 7' {c} X {c} was
proved to be a non-Bore! set Just befoxe ’ -
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'Versuch einer automatentheoretischen Beschreibung.‘
von Selektionsprozessen

Vbn K. BELLMANN und M. GOSSEL -

Wir betrachten eine Population P von Individuen mit einer beliebigen mefbaren
Elgenschaft x. Die Phanotypenwerte seien etwa normalvertellt M]t X bezeichnen
wir das Populationsmittel von x.

Zur genaueren phinomenologischen Beschreibung von Selektlonsprozessen

werden zweckmiBig die Begriffe “Selektionsdifferenz” S(t)) und “Response” R(t)

B benutzt die durch

O

S@) = () — A(f)

R(tl) - x(tt+1) x(t)

deﬁmert sind. Dabel sind X(t;) der Mlttelwert von x in der i-ten Generatnon der
~ Population, Xg(#;) der. Mittelwert von x der aus der i-ten Generation selektierten
~ Eltern, und ¢ charakter151ert d1e diskrete Zeit, die durch dle Generatlonsfolge ge-
© geben ist. ,

Wir benotlgen noch die GroBe R(r,), die durch

2 - Rw= x(tl+1)—’C(to)

definiert sei. R(¢)) stellt den Gesamtresponse von der O-ten blS zur zten Genera-
“tion dar. :
“Aus (1) und (2) folgt unmlttelbar

- 3) PR R(rk)—ZR(r,)

. und damlt auch R(zO) R(ro\ (, gibt den Endpunkt des Selektlonsprozesses an.)

Wir befrachten im folgenden den SelektlonsprozeB als Ganzes und schlieen
dabei auch Intervalle ohne Selektion ein, fiir die S(z;)=0 gilt. Relaxation der
Selektion ist also ausdriicklich zugelassen

Wenn durch den ZuchtungsprozeB ein moghchst groBer Mittelwert x angestrebt
wurde, vermindert sich X im allgememen ohne kiinstliche Selektion im Verlaufe -
der, Zeit. Dieser Prozel wird im folgenden als Selbstreduktion von- P bezeichnet.

- Die Anderung des Mittelwertes- X von. Genera’uon zu Generation wird durch
zwei sich iiberlagernde Prozesse bestimmt:

1. Verinderung von X durch kiinstliche Selektion (d.h. S=0).

2. Verdnderung von X ohne (kunstltche) Selektrion, d. h..durch Se]bstreduktlonv
(d.h. S 0).
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Wir setzen voraus, da3 sich beide Prozesse linear iiberlagern. Nach diesen
Vorbereitungen soll der Selektionsprozel von einem abstrakteren Standpunkt aus
untersucht werden, was uns zu einem automatentheoretischen Modell dieses Pro-
zesses fiihren soll. Eine Folge von Werten S(¢;), die auf das System Population
als Input einwirkt, verursacht eine Folge von Werten R(¢;), die die man als Output
des Systems ansehen kann, wobei wir, wie oben erldutert, ¢; als diskrete Zeit des
Systems auffassen. (Das Vorgehen in der praktischen Ziichtung besteht darin, da8
eine bestimmte Anzahl Generationen lang eine Selektion bestimmter Intensititen
durchgefiihrt wird. Danach erfolgt die Nutzung ohne Selektion. Ein solches Vor-
gehen wird durch eine Inputfolge C,C,...Cx000... beschrieben. Dabei sind die
C;(i=1,2, ..., K) die entsprechenden Selektionsintensititen.) Eine derartige Input-
Output-Beziehung wird mathematisch addquat durch einen abstrakten Automaten
beschrieben.

" Wir betrachten hier wegen der vorausgesetzten linearen Uberlagerung der unter
1. und 2. aufgefiihrten Prozesse einen Spezialfall des abstrakten Automaten, den
linearen Automaten [2, 3, 5]. AuBerdem konnen wir uns auf eindimensionalen Input
und Output beschrinken, da Selektionsdifferenz und Response skalaren Charakter
haben.

Ein linearer Automat wird durch d1e Uberfuhrungs und Ergebmsfunktlon

z(t;.1) = Az(t) +Bx(t)

C)) .

’ y(t) = Cz(t) +Dx(1)

. beschrieben. z ist ein n-dimensionaler Zustandsvektor, x ein eindimensionaler Input
(vektor), y ein eindimensionaler Output (vektor). A, B, C, D. smd Matrlzen ent-

sprechender Dimension mit konstanten Matrixelementen.

Die Uberfithrungsfunktion bestimmt: aus dem Zustand z(t;) und dem Input
x(t;) den Folgezustand z(t;,,). Die Ergebnisfunktion bestimmt aus dem Zustand
z(t;) und dem Input x(#;) den zugehorigen Output y(z;). Die Dimension n des Zu-
standsvektors heift duch die Dimension des linearen Automaten.

Der Zustand z(r ) ist durch den Initialzustand z () und die auf den Automaten
wirkende Inputfolge x(t,), x(ty), x(t,), ... durch .

j=1

®) )= Afz(ro)+2 A1 Bx (1)
i=0 e
bestimmt.
Fir den Output gllt entsprechend
. Jj
© y(t,-) = CAJz(to)+;(; M(t;_ ) x (1)
mit .
D fir k=0

M(1) = {CA"“B fir k=0

Ist die Dimension » des Automaten endlich, dann gibt es eine endliche Zahl r=n, so
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" daB fiir alle m _
7 M(fpsrs1) = GM(fns) + 8M(py2) + -+ My,

giiltig ist. .
- Der Wert von r kann aus der Folge der Matrizen

M(r) M(t) M)
M(t,) M(fa) M(1,)
M(r;) M(t) . M(t5)

als der groBte Rang entnommen werden, der einmal erreicht, bei Fortfiihrung der
Folge erhalten bleibt.

: Dije Kenntnis der Beziehung (7) erlaubt, expllzlt eine Reallsxerung des linearen
Automaten anzugeben. (Mmlmlerungsprobleme bei linearen Automaten, auf die
" wir hier nicht eingehen, sind ausfiihrlich z.B. in [2; 4] untersucht.)

Eine moghche Reahsxerung ist durch

M(1) Mty

® MO |y @ M

M(n)

o1 0..0]
, 0.0 1..0 M)
o) Ao |0 0 0.0 5o |M®
00 0 R
10 O O3 ..., M(z,)

cC=1|1 0 0.:0] D= M(,
gegeben.
Befindet sich das zu reahs1erende System im Initialzustand z(zy) = 0 so ist M(t,)
nach (7) als (Impuls-) Antwort auf die Inputfolge 1000 ... bestimmt. Auf die
Folge C,000 ... antwortet das System mit C;-M(t,) (C, gibt wieder die Selektions-

. intensitdt an).

Auf die Inputfolge 0000 ... reagiert das System vom Initialzustand z(#,) =0
mit ‘dem Output 0000 ..., wie man ebenfalls’ unmittelbar aus (7) abliest.

Wir nehmen an, daB sich das- System Population zundchst im genetischen
Gleichgewicht befindet. Der dem System zuzuordnende Initialzustand ist dann
z(%)=0, da die Population in diesem Falle ‘auf die Inputfolge der Selektions-
..differenzen 00 00 ... mit der Response-Outputfolge 0000 ... reagiert. Um in ein-
facher Weise das Modell fir das.genetische System bestlmmen zu konnen, ist das
Verhalten der Population auf die Inputfolge C; 000 ... zu untersuchen. Ist dann
das Modell. bestimmt, so 146t sich.eine Reaktion auf eine beliebige, etwa praktisch
. vorliegende Inputfolge vorhersagen. Die Response-Impuls-Antwort R;(f,) erhalt
man, wenn man auf-die Population die Sélektions-Inputfolge 1000 ... einwirken
1aBt. In der Praxis sind verschiedenartige Response-Impuls-Antworten mdglich.

Wenn wir von zufilligen Mutationen absehen konnen ist R;(t,) eine- monotone
nicht wachsende Funktion mit : .

R (1) 0.

k—r oo

D.h. die Anderungen des Populationsmittel von Generation zu Generation ohne
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weitere Selektion werden immer geringer. Es scheint sinnvoll, R,(z;) durch

fur k<j

. b,
(10). ' R,(t) = { bye2=i) . fiir kz=j

Zu approximieren.
Die Beziehung (8) nimmt dann fiir alle m =0 die Form

() Ri(tmsj+) =0-Ri(tns ) +0-Ry(142)+ -+ +0°Rl(tm+j‘-l).+e_a'Rl(’m-*—j)

an, und aus (10) und (11) erhalten wir

01 0.0 Abl"
_ 00 1.0 | o |
12 Aol B
00 0.1 :
0 0 0 L6

C=[1 0 0..0 ] D = b,.
Da R,(t,) eine monotone nicht wachsende Funktion ist, gilt fiir k=0 ,

. b=0,
wenn b, =0 ist. '
Ein Beispiel ist in [1] betrachtet. .
Herrn Prof. Dr. W. Kdmmerer mochten wir fiir Diskussionen herzlich danken.
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On a minimization algorithm-for Boolean functions

By F. M6Rricz

1. Logical design of circuits with a single output, using solid-state integrated
circuits, as prlmmve elements, leads to several non-traditional optimization problems
which require to find, for any given Boolean function, a formula (or all formulas)
composed from fixed Boolean functions as primitive elements representing the given
function and minimal with respect to a given objective function. '

. In this note our purpose is to present an algorithm which (provided the objective
function -satisfies a simple restriction) obviously leads to the exact solution of the
problem and, moreover, a limited number of its steps which can be implemented
on a digital computer delivers a fairly good approximative solution. (Of course,
the approximation will be the better the more steps are performed and thus a larger
computer may provide a better approximation.) . '

In view of the general nature of the problem, the algorithm will be formulated .
here in a very general and comprehensive way which, for each practical application,

 must be specified in accordance with the given partlcular pnmmve elements and
objective function. , .

2. Assume © = {9,, 9 25 - .} is a functionally complete system® of a finite number
of Boolean functions, or in other words, of loglcal operatlons in a general sense
where the number of operands of each operation, i.e. the number of arguments of
each function 9;, can be arbitrary. Let X={x, x,, ...} be the (countable) set of
the available Boolean variables. (In an actual realization of the algorithm to be
formulated we have, of course, to limit ourselves to a finite set of variables.)

The forinulas considered here are all those composed of the constants 0 (falsity):
and 1 (truth) and of the given Boolean variables by means of operations belonging
to 0.2 We say.that two formulas, F and G, are identically equal or that the equality
F=G is an ldennty if for every va]uatlon their values coincide; here by valuation
we mean a mapping which makes correspond to each of the variables belongmg to
X one of the constans 0-and' 1.

A substitution instance of a formula F is, by definition, any formula that can
be obtained by replacing.all occurrences in F of some variables, say Xips ones X;,
(iy, ..., i, are different positive integers), by an equal humber of formulas, say

1 See, -e.g., A. Adam [1], Chapter 4

. ¢ In other words, the following symbol strings are called formulas: (i) 0 and 1; (i) any element
of X; (iii) 9(F,,... F,)y where ¢ @ is a Boolean function with r variables and F;,... F are formulas;
(iv) nothing else. :
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H,,..., H,, respectively; for the formula thus obtained we introduce the notation:
F(x;,: = Hy; ey Xl = H).

Here the variables Xis ---» X;, and formulas H,, ..., H, are called substituends and
substituents, respectively. Analogously, by a substitution instance of an identity
F=G we mean any equality of the form

F(x;,: = Hy;ooixi=H)=G6(x;;: = Hy; ... x

r tr

1= H),

which is easily shown to be also an identity.

Consider now a formula F and an identity- G = H the left-hand side G of which
is a (proper or non-proper) subformula of F. For each occurrence of G in F decide
independently whether it is to be left unchanged or replaced by H and proceed ac-
cordingly.. Any of the formulas ‘that can be obtained in this way are said to arise
from F by a direct application of the identity G = H; the number of such formulas
is 2°, where s denotes the number of occurrences of G in F. If the formula Fis left
untouched we speak of a trivial direct apphcatlon If Gis not a subformula of F
then the only p0551ble direct application is the trivial one.

The formula F” is said to be obtained from F by an application of the identity
G=Hif F” arises from' F by a direct application of some substitution instance of the
identity G = H. Analogously as above, calling an application trivial if it leaves F
untouched, in case G has no substitution instance that is a subformula of F the
only possible application of the identity G = H is the trivial one.

We. note that the minimization problem mentioned above has been studied
in detail so far mainly in the case of the classical propositional calculus, i.e. when
0={3,,9,, 85}, where 3,(x;, xo) = x;Ax,, 9; (xl, X)) = X,Vx, and 93(x,) =X, (ne-
gation). For practical applications also important is the case when consists of Sheffer’s
alternative or Peirce’s joint denial only?, or-of some of their generalizations for sev-
eral variables, known as NAND and NOR elements.

3. Let c(F) be a mapping from formulas to real numbers. We call the number
c(F) the weight of the formula F. An identity G = H is said to be weight-reducing if:

¢(G)>c(H).

We shall assume that c(F) satisfies the following requirement, whlch in most
cases of practical apphcatlon does indeed hold:

(%) If the formula F’ is obtained from F by a non-trivial direct application
of a weight-reducing identity then we have

- c(F)<c(F).
This condition ensures that the direct application to a formula of a weight-

reducing identity is always efficient in the sense that it reduces the weight of this
formula. Some care must be taken, however, in connection with non-direct applica-

3 See the classical papers of C. S. Peirce [2] and H. M., S heffer {3].
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tions since the analogous assertion is not necessarlly trué for them even in the most
simple cases occurring in practice.?

In most cases that are practically important, the meaning of the welght'functlon
¢(F), playing the role of an objective function to be minimized, is either the length
of the formula F,? or the cost involved in its technical realization under specified
~ circumstances. . :

4. After these preliminaries the minimization . problem can be formulated
precisely as follows: -Assume that we are given a functionally complete ‘system
0={9,,9;,...} of a finite number of Boolean functions, a countable set X =
= {x,, X,, ...} of Boolean variables, and an objective function ¢(F), satisfying prop-
erty (), defined for all formulas that can be composed by means of the given
primitive elements. .For a.given Bodlean function, represented by a formula F,
consider the set & = .?"(F)= {F,, F,, ...} of all formulas identical to F. Any formula .

belongmg to. #, such that : o ' '

lo’

c(F)=c(F)

holds for all formulas F; EJ' is said to be a minimal representation of F. (In general?
there exist several such formulas 'F,,.) An algorithm which, for any given formula .
- F, selects a mmlmal representatlon of Fis called a minimization procedure.

5. Now we have reached the stage where we-can outline the ideas on. which
our minimization procedure is based. = .

(1) Enter the formula F given as input datum, possnbly in a converted form
suitable for the computer, on a list called the “list of formulas to be minimized”.

(2) For any formula G newly entered on the list of formulas to be minimized,

form all-its subformulas, and then all those formulas H that have at least one sub-" -

stitution instance which is a subformula of G, and, finally, enter on-a list called the
“list of the left-hand sides of applzcable identities” all those of these formulas H that
do not-yet occur there.

(3) For any.formula H newly entered on the llSt of the left-hand sides of appll-
. cable identities, generate all formulas K having a weight less than H has. For each -
of these formulas K chéck whether it is identically equal to H; if yes then enter the
1dent1ty H=K on a list called the “list of appltcable identities”™.

- (4) Apply directly to every formula occurring on the list .of formulas to be
minimized all (weight-reducing) identities newly recorded on the list of applicable
identities and also all those substitution instances of these identities that are weight-

4 E.g. in case of the classical propositional calculus, taklng the total number. of occurrences .
of variables in the formula F as c(F),

Xy AXLA XA Xy = X3 A Xy AXg
is obviously a ‘wei'ght;reducing identity, but its substitution instance

Xy AXy AX A (X3 AXgAX5) = xl/\(x3/\x4Ax5)A(x3/'\x4/\xa)"
is not:
5 There are many different weight functions called the lenght of a formula e.g. those defined
as the number of occurrences of variables.or as the number of occurrences of varlables and function
symbols, etc. in the formula in questlon
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reducing.® Add those of the resulting formulas which are not yet contained in the list
of formulas to be minimized to this list.

If the list of formulas to be minimized is not enlarged in step (4) then the al-
gorithm is concluded by printing out one of the formulas with minimal weight occur-
ring on this list; otherwise it continues at (2) again.

6. It is easy to see that our algorithm finally leads to an exact solution of the
minimization problem formulated above. Indeed, if M is a minimal representation
of the formula F given as input datum then F=M is an identity.

If M has smaller weight than F has, i.e. the identity /=M is weight-reducing,
then it will sooner or later occur on the list of applicable identities, for F, as a sub-
formula of itself, is to be found on the list of the left-hand sides of applicable identities.
Then, by a direct application of the identity =M to F, we obtain M as a formula
to-be added to the list of formulas to be minimized. Hence, finally, elther M or
another formula of the same weight will be printed.

If, however, the weight of M equals that of F then F is already itself of minimal

- weight. Each of the generated weight-reducing identities can be applied to F only
trivially, and thus the algorithm concludes after the first performance of step (4),

_and the only formula on the list of formulas to be minimized w1]l be F, as a minimal
representation of itself. :

We emphasize that each of the formulas on the llst of formulas to be mini-
mized (among others F itself) has to stay on this list even if a formula identically
equal to it of smaller weight is added to this list. Otherwise the application of a weight-
reducing identity might impede later, possnbly more advantageous, application of
another such identity.

In practice, storage capacity or available running time limitations might prevent
the continuation of the algorithm until its conclusion. If one is forced tointerrupt
the algorithm, we propose to print out one of the formulas with minimal weight
from the list of formulas to be minimized as an approximative solution.

7. It is expedient to give the input formula of the algorithm in the so-called
Lukasiewicz bracket-free notation (shortly £-notation; also known as Polish no-
tation), or to convert it into that form by a supplementary algorithm.? The £-notation
considerably simplifies the performing the algorlthm

Among others, if the formulas are written in £-notation, it is relatlvely easy
to construct, by making use of the so-called push down store® the’ sub algorlthms
for the following tasks:

¢ In view of condition (%), a non-trivial direct application of a weight-reducing identity
always reduces the weight of the formula in question, but in case of a non-direct application, as
we already noted, it might happen that some substitution instance of a weight-reducing identity

- i not weight- reducmg (see footnote?).

In principle, a direct application of all identities newly recorded on the list of appllcable iden-
tities to every formula occurring on the list of formulas to be minimized would suffice. However,.
disregarding the weight-reducing substitution instances of these identities would lenghten our
algorithm to such an-extent that it were not practically feasible any more.

7 See J. Lukasiewicz and A. Tarski [4], pp. 30—50. As for a simple.proof of the unamblguous-
character of this notational system see, e.g., L. Kalmir [5], pp- 11—15.

8 See F. L. Bauer and K. Samelson [6]
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(i) Elimination of the Boolean constants from a given formula;

- (ii) ' Production, for a glven formula G, of all formulas that have at least one
substitution instance which is a subformula of G;

(iii) Determination of the truth-value of a given formula for a given valuation
of the variables occurring in it and, by repetitions of this sub-algorithm; the decision
of the question whether two formulas are 1dentlcally equal or not;

(iv) Application of an identity to a given formula

8. As for the 1mplementatron of the algorlthm ona computer the most dellcate
-part is (3), since it requires producing, given a formula H, all formulas K that have
a smaller weight than H has. This part can perhaps most easily be realized in practice
by splitting it into two.steps:

'(v) Production of all formula types of given weight. A formula type associated -
with a given formula containing no Boolean constants can be obtained, by definition,
by replacing all Boolean variables occurrmg in this formula by a common one, x
(without subscript), say.

(vi) Production of all the formulas of a grven type contammg varrables from
a given set only, e.g. that of the variables occurring in the input formula.
. Empirical evidence (in cases that are practically most -important) shows that
weight-reducing identities with a smaller weight on the left-hand side, when applied,
are more efficient than those with a left-hand side having a greater weight. There-
fore it is advisable to apply the former ones first.

Hence, it is appropriate to generate and store the formulas in order of i increasing
welght Thereby, the algorlthm even 1f it is interrupted, dellvers a well approxrmat—
ing solution. : .

9. In the above version of the algorithm its run is controlled by the formula -
F to be minimized, at least in the sense that>only those weight-reducing identities
are produced which are non-trivially directly applicable to F or to another formula,
arisen from F, occurring on the list of formulas to be minimized. In this of the
way a great deal of computmg time and storage room may be spared if we have only '
one formula to minimize.

If, however, we want to minimize several formulas,, the above way might be
-disadvantageous. Indeed, in this case the algorithm produces, separately for each
of the formulas to be minimized, all formulas, built up from the available stock
.of variables, that have smaller weights than those occurring on the list of the left-hand
.51des of applicable identities have. Thls might result mavery redundant repetition
in the production of formulas. '

‘An alternative version of the algorithm consists, e.g. in case only positive in-
tégers occur as weights, in generating and tabulating a “complete system of independent
weight-reducing identities” up to a given ceiling for. their left-hand side. In more
detail, this version produces a set M of weight-reducing identities such that

() Any weight-reducing identity such that the weight of its left-hand .side
‘does not exceed the given ceiling can be obtained, and therefore its direct applica-
tions can be replaced, by a finite number of direct applications of identities which
* either belong to M or are weight- reducmg substitution instances of identities belong-
ing to M;

(B) E)Jl is minimal in the sense that no 1dent1ty belonging to 9 can.be obtained
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by a finite number of direct applications of either other identities in M or such sub-
stitution instances of these as are weight-reducing. -

This variant of the algorithm is advantageous if we have to minimize a large
number of formulas, since it requires to draw up the above chart of weight-reducing
identities together with all their appropriate substitution instances only once, and
then we have only to attempt to apply directly the identities in thi$ chart to the
formulas to be minimized. Nevertheless, we have to take into consideration that
generating and tabulating the chart in question might require an enormous storage
capacity.

10. Another variant of our algorithm consists in that besides the weight-reduc-
ing identities we admit such ones as leave the weights of their left-hand sides un-
changed. More precisely, for every formula on the list of the left-hand sides of appli-
cable identities we generate all the identities H =K such that the weight of K does
not exceed that of H; and then we apply any such substitution instance of each of
these as are not weigh-augmenting to all formulas on the list of formulas to
be minimized. (See especially steps (3) and (4) of the algorithm described above.)

For example, in case of classical propositional calculus with the weight of a
formula meaning its length (see footnote?®), this variant of our algorithm enables
us to make use of the associative and commutative laws of conjunction and disjunc-
tion; these identities obviously do not change the length of a formula, but they may
prepare for the’ apphcatlon of another, strictly welght-reducmg, identity?®, o

Using this version of the algorithm we may, possibly, arrive at a minimal rep-
resentation of the starting formula much quicker, though the price of this may be
a much larger storage capacity 'used up. In yet another possible variant of our al-
gorithm, for which the remarks made just now apply still more strongly, we may
allow the application of certain weight-augmenting identities as well; e.g., in case
of the classical propositional calculu} the use- of distributive law in the direction
(x,Vx)Axs = (x;Ax3)V (x2Ax;) may sometimes prove useful by preparmg the way
A for the application of a powerful weight-reducing identity.°

RESEARCH GROUP ON MATHEMATICAL LOGIC
"AND THEORY OF AUTOMATA OF THE'
HUNGARIAN ACADEMY OF SCIENCES,
SOMOGYI BELA U. 7,

SZEGED, HUNGARY.

9 The situation is illustrated by the followmg simple example, for which the author is mdebted
“to an oral communication of G. Specker: .

VXDV X)) o VIV X = (e (6 VX)) V X3) Vaxg).. v X, - l) Vx,=
=(..((VX)VXg)... VX))V X
10 The following example may serve as an illustration:

(o VI Ax) VX = (5 AXg) V(X AX) V Xy = (X AXp)V Xy
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~ On some generalizations of cyclic networks

By A. AD_AM

"Zusammenfassung. Die ersten Abschnitte der Arbeit geben eine vollstindige .
Beschreibung der endlichen zusammenhingenden gerichteten Graphen, die mindes-
- tens zwei Zyklen enthalten und in denen jeder Punkt und jede Kante entweder

in einem Zyklus oder in (genau) zwei Zyklen liegt. Bezeichnen wir durch C, die
- Klasse dieser Graphen. Sei G ein Element von C; und k eine Zahl, die kleiner als
die Langen der Zyklen von G ist; bezeichnen wir durch 2, (G) den Graphen, dessen
Punktmenge mit der Punktmenge von G uberemstlmmt so daB die Kante AB
in A, (G) genau dann existiert, wenn 4 > B und B aus A 'in G durch hochstens & —1
Kanten erreichbar ist. Sen C, dle Klasse aller Graphen QIk(G) wobei G die Elemente
von C; durchléuft.
“In den letzten Abschnitten wird es danach bestrebt, die in der fruheren Arbeit
[2] ausgearbeiteten Untersuchungen (iiber das Verhalten der Netzwerke mit einer.
speziellen graphentheoretischer Struktur) auf die in C, enthaltenen Graphen zu
verallgemeinern. Es gelang nicht, alle erzielten Aussagen zu beweisen, folglich ent-
halt die Arbeit auch unentschledene Vermutungen (sowohl iiber die Struktur wie
iiber das Verhalten). o

§1. Introduction

In [2] certain cyclically symmetric networks were studied. These networks can
~ be obtained in such a manner that we start with a smgle cycle and draw some addmonal
edges in it. :
Let us alter the mentioned procedure so that we start with a graph G sat1sfymg
- the followmg four requirements (instead of being a cycle):
G is a finite connected directed graph,
to any edge e of G there exists at least one cycle containing e,
G contains at least two cycles,
- whenever z,,'z,, z; are three different cycles of G then there exists no vertex
lying in all of z,, z,, zj. .
The collection of these graphs G will be called the class C,;. We shall deﬁne a
class of graphs (the class C,) by adding edges to any graph in C, in an appriopriate
manner. In §§ 3—4 we study the graph-theoretical structure of the members of the
~ classes Cy, C,; in §§ 6—8 the behaviour of the networks of type C, is analyzed
* Since I did .not succeed in solving all the arising problems, the paper also contams
conjectures besides the propositions verified. :

5 Acta Cybernetica
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§ 2. Some graph-theoretical definitions

We shall always consider finite graphs having at least one edge. “Graph™ will
mean a directed one unless (rarely) we speak of a non-directed tree explicitly. Self-
. loops are (in general) permitted. Among the graphs con-
. taining parallel edges with the same orientation (espe-
/ cially, at least two self-loops on the same vertex), only
' GO \ l the two graphs seen on Fig. | are allowed (cf. Remark
R 2 at the end of § 3).
Fig. 1

Let G be a directed graph A sequence
3] Ay, €1, Ay, €3, Ao, ..., 85, 4,

consisting of the vertices Ay, A, ..., 4, and the edges e,, e,, ..., e, of G (alternatively)
is called a directed edge sequence (of length n) if each e; (1 =i=n) goes from 4;_,
to A;. If, in addition, A, 4,, ..., A, are different vertices, then (1) is a path. If
Ag, Ay, ..., A, -, are different but 4g= A, then (1) is a cycle. Let Z(4) be the number
of cycles of G which contain the vertex 4; let Z(e) be the number defined for the
edge e analogously. We denote by M the minimal cycle length that occurs in the
graph G.

In case of undirected graphs (or if the orientation of the edges is disregarded),

the concepts analogous to path .and cycle are called chain and circuit, respectively.
Let A be a vertex of the directed graph G, assume that A is incident to exactly

k edges oriented towards A and to exactly I edges oriented ourwards from A. Then
we say that the indegree of A is k, the outdegree of A is I, and the degree of A the
‘ordered pair (k, /). — If G is undirected, then the degree d(P) of the vertex P is

the number of edges incident to P.

Let H be a subgraph of G. If H contains all the vertices (but, possibly, not all

the edges) of H, then we say that H is an e-subgraph of G. The subgraph H of G
is called a p-subgraph of G if the followmg condition is satisfied: whenever 4 and
B are contained in H and the edge e of G is incident to 4 and B, then e is contained
in H too.! For each subgraph H of G, there exists exactly one graph S;(H) such

that €;(H) is a p-subgraph of G and H is an e-subgraph of GG(H ).

Let G be a directed graph fulfilling? M; =3 and k be a number such that 2=k <
<M. Let us form a graph H conforming to the following two rules:

the vertex set of H equals to the vertex set of G.

the (directed) edge AB (A # B) exists in H if and only if in G there is a path -
of the length <k from 4 to B.
- . The obtained graph H is denoted by U, (G). Obviously, G is an e-subgraph of
A (G) and U, (G)=G is always true.

Let C be-a class consisting of directed graphs. Then we denote by U (C) the
class of all the graphs A, (G) where G runs through the members of C and, for any
G, k runs through the numbers satisfying 2=k <M.

1 f e is a self-loop, then the same vertex is considered as 4 as well as B.
2 The condition M;=3 means that G contains neither self-loops nor (opposrtely oriented)
parallel edge pairs.
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) Now we introduce two .classes of connected directed graphs. Let C,; consist
of all the graphs having at least two cycles and satisfying the inequalities

1=Z(A)=2 and 1=Z(e)=2

identically.®* Let C, be® A(C)).

§ 3.- The structure of the graphs in C,

. Construction I. The construction consists of four steps.

Step 1. Let T be.a non- drrected tree with at least one edge. For each vertex
P of T, we denote by &P, e, ..., elf}) the edges incident to P (in an arbitrary
manner) (Evidently, every. edge’ gets two notations.) .

Step 2. Let us form a directed graph G, by what follows: the .vertices of G,

" correspond one-to-one with the edges of T; if the vertex 4 of G, corresponds to the

edge i) =@ of T, then edges go from 4 to the vertices corresponding to e, and
e, and only to these vertices (in case p=d(P), e{”) plays the role of {f) 1)

Step 3. Choose a subset V' of the set of vertices of G1 arbitrarily. For any
element A4 of V', perform the following procedure:
" Replace 4 by two vertices 4” and A4”;
if'an edge had gone to A, then let it go to A,
if an edge had gone from A, then let it go from 47,
finally, supplement the graph with a new edge leading from A4’ to A4”.
) Evidently, this process can be carried out for all the vertices in V'’ srmultaneously
We denote Ihe resulting graph by G,. (See Fig. 2.)

‘ Step 4. Instead of any edge of G,, we draw a path- ' ' ,
of -arbitrary length (=1). (Of coutse, the inner vertices - \A/ -
- of these paths have the degree (1,1).) We denote the . —" \
resulting graph by G.

Theorem 1. Any graph G arising by Construction I ~_ & £ /

belongs to the class C,. , - : : \‘

Proof. First we show that G is connected. It is - o
sufficient to verify that G, is connected because Steps-
3, 4 cannot spoil the connectedness. Let 4, B be two ver-
tices of G,. If the edges e, ey of T, correspondmg to 4 and B (resp) are adjacent
then 4 and B can clearly be joined by a chain. — Let now A4, B be arbitrary vertices

Fig. 2

3 The word “‘identically” means that the conditions are required for each vertex 4 and for
each edge e, respectively. °

4 These four inequalities do not form an independent system if Z(4)=2 and Z(e)=1 are
true, then also Z(4)=1 and Z(¢)=2 hold.

5 QOur present notation differs from that of [2]: the graph, denoted by G(n; 1,2, ...,k) in
[2], is now denoted by U, ,,(z,), where z, is the cycle of length 7. .

hid
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of G,. There exists a chain in T with edges
e,=€, €, ..., e, =¢€p.

Let the vertices of G, corresponding to these edges (respectively) be
A=A4,, As, ..., A, =B.

We have shown that A;, A; ., can be joined by a chain (for each i, ]<l<k) this
implies that the same holds for 4 and B.

Let 4 be an arbitrary vertex of G, and e, be the corresponding edge of 7. There
exist two vertices P, Q of T'such that e, =e{f’ =¢{@ (where p, ¢ are suitable numbers).
A is of degree (2,2) by Step 2, and, moreover, 4 is a cut-vertex since any chain
going from e{}, to €!9, passes through A. These considerations imply that a sequence
‘of vertices of G, determines a cycle if and only if it corresponds to the edge sequence

eP) etP . olP)
1 ,€2 7, d(P)
for some vertex P of 7. Hence Z(A)=2, Z(¢)=1 are identically satisfied in G;.
Step 3 of the construction does not alter the number of cycles and the identical
validity of Z(A4)=2. For an edge e of G,, cither Z(e)=2 or Z(e)=1 holds accord-
ing as e is a new edge (i.e. going from an 4’ to an A”) or not.
Step 4 does not modify the number of cycles, either. Denote by e’ an edge
of G,, let 4 be an arbitrary inner vertex and e be an arbitrary edge of the path (in G)
replacing ¢’ by virtue of Step 4. We have obviously Z(A) Ze)=Z(e). If Ais a
vertex of G,, then Z(4)=2 holds in G as well as in G,. Thus 1=Z(4)=2 and
1=Z(e)=2 are identically satisfied in G.

Lemma 1. Assume that the graph G satisfies Z(A)=2 and Z{e)=1 identically.
Then any two cycles of G have at most one vertex in common.

Proof. Let z;, z, be two cycles containing (at least) two common vertices. Let
A be a common vertex such that the edges of z; and z,, starting from A4, are dif-
ferent. Let us pass from A on z, to the first other common vertex B(2 A), then let
us pass from B to A on z,. Thus we have got a third cycle containing 4 ; this, however
contradicts Z(4) =2.

Theorem 2. Every graph G belonging to the class C, may be produced by Con-
srructzon L :

Proof Let G be contained in C1 The condltlon Z(A)=1 lmplles that any
vertex of G has a positive outdegree and a positive indegree. Neither the outdegree
nor the indegree of a vertex 4 can exceed 2, because if e.g. the indegree were k(=2),
then each of the k edges startmg from A could be extended to a cycle, hence Z(A4) =
=k >2 would follow; this is a contradiction.

Thus the degree of any vertex of G is either (1, 1) or (2, 1) or (1, 2) or @2, 2).
There is at least one vertex whose degree differs from (1, 1) (otherwise G would be'a
single cycle).

In what follows, we shall deﬁne a decomposition procedure for G that consists
of four steps corresponding to Steps- 4., 3., 2., 1. of Construction I, respectively.

Step 1. If A is of degree (1, 1), then we delete 4 and contract the two edges
incident to A into one edge. This can be performed for all the vertices with degree
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(L1 simultaneously (without essential difficulties). Let us denote the resulting .
graph® by Gj. ltis clear that G} € C,, and, furthermore, that only the degrees (2, l)
(1,2), (2,2) may occur in Gj.

Now we establish three lemmas on Gy (the proof of Theorem 2 will be con-
tinued later). :

Lemma 2. Let e be an edge of Gl, going from A to B. Then Z(e)=2 if and only
if d(A)=(2,1) and d(B)=(l, 2):

. Proof The sufficiency is trivial. Conversely, suppose Z(e)=2; if the outdegree
of 4 is 2, then Z(A4)=3; if the indegree of B is 2, then Z(B)>3

Lemma 3. Let e, A, B be as in Lemma 2. Then Z(e)—l if and only if d(A) is
either (1,2) or (2,2) and d(B) is either (2,.1) or (2,2).

Proof. First we show- that each of the followmg four statements leads to a
contradiction: .
(@) d4)=(2,1) and d(B)=(2, 1)
(b) dA)=(1,2) and d(B)=(l,2)
(¢) d(A)=2,1) and d(B)=(2,2)
d) d4)=(2,2) and d(B)=(l,2). :
Indeed, (a) implies Z(e")=3 for the single edge ¢’ going out from B, (c) implies
Z(B)=3; (b) and (d) can be disproved analogously (by interchanging 4 and B).
Since the possibilities (a)——(d) and the ones of Lemma 2 are excluded only :
those allowed in Lemma 3 remain.

Lemma 2 implies immediately.

Lemma 4. If Z(e)=Z(e")=2 for two di ﬂerent edges e, ¢’ of G, then e and e
are not adjacent.

Proof of Theorem 2 (continued).

Step 2. Consider the graph Gj (resulting by Step 1), .and choose an edge e
of Gj satisfying Z(e)=2. Contract the two vertices 4, B incident to e into one ver-
tex (i.e. delete e, A and B, and introduce a new vertex C so that any edge (¢e)
which has been incident to 4 or B will now be incident to C).7 This process can be.
performed for all the edges fulfilling Z(e)=2 simultaneously (by Lemma 4). Let
the resulting graph be denoted by G;. Obvnously, G € C,, and, moreover, d(4) = (2, 2),
Z(4A)=2, and Z(e)=1 are identically valid in G;.

Step 3. Consider G, and define an undirected graph T” in the following manner:
the vertices of T~ correspond in a one-to-one way to the cycles of G5; two vertices
P, Q of T’ are joined by an edge if and only if the correspondmg cycles of G, have
a vertex in common.

Next we state two lemmas on T’ The first of them follows from Z(A) 2
(holdmg in G3) and Lemma 1 at once:

s If parallel edges with the same orientation do not occur in G, then either the same holds
for Gi or G7 is one of the graphs of Flg 1. .
’ 7 If there has been an edge ¢’ going from Bto A (of course, satnsfymg Z(¢’)=1), then ¢’ will
become a self-loop -of the new vertex C.
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) Lemma 5. Let us assign to any edge e of T’ the (unique) common vertex of the
two cycles in G, corresponding to the vertices incident to e. This assignment is a
one-to-one correspondence between all the edges of T’ and all the vertices of Gj.

Lemma 6. T’ is a tree.

Proof. First we show that 77 has no circuit. Assume that ¢ is a circuit of minimal
length-in 77, let ¢ consist of

Py,e, Py,e,,...,P, e, P, k=3)

(i.e. Py, Py, A ace the vertices and e,, e,, ..., e, are the edges of 1, passed through
as they follow). Let
Ay, Asy ooy Ay

be the vertices of G2 corrésponding to
- €1, €, ...,
(resp.) and
Zy5 Zgy eees Z
be the cycles of G correspondmg to
P, Py, ..., P,
(resp) Let us form a directed edge sequence in G2 so that we pass'
on z; from 4, to A, afterwards
on z, from A4, to A,
on z, from ‘A4, to A5,

finally, on z, from A,_, to 4,.

This sequence z isa cycle (otherwise ¢ cannot be minimal). Thus Z (4; ) =3(1=i <k)
which is a contradiction.

We are going to show that T’ is connected. Suppose the contrary. The discon-
nectedness of 7" implies (by Step 3) that Gj is either disconnected or has an edge e
fulfilling Z(e)=0. Both alternatives are contradictory (the first one is because the
connectedness of Gy is equivalent to the connectedness of G, by Steps 1, 2).

Proof of Theorem 2 (final part). The proof is completed by noting that the
decomposition procedure, described in this proof (together with Lemmas 7—6)
is an exact counterpart of Construction . :

Remark 1. To a vertex A of the graph Gl (produced by Step 2 of Construction I)
a self-loop is incident exactly if the edge in 7, corresponding to A, is a final edge
in T (i.e. it is incident to a vertex of degree 1). A graph G produced by Construc-.
tion I contains no self-loop (i.e. cycle of length 1) exactly if each self- loop of G, is
eliminated either in Step 3 or in Step 4.

Remark 2.1t is easy to see that if a connected directed graph G satisfying Z(e) = 1
identically has two parallel edges with the same orientation, then either G is one
of the graphs of Fig. 1 or G has a vertex A such that Z(4)=3. This fact justifies
the agreement posed in the fourth sentence of § 2.
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" Remark 3. A graph G, (produced by Step 2 of Construction 1) contains a
pair of oppositely oriented parallel .edges (i.e. a cycle of length 2) exactly if T
has a vertex of degree 2. A graph G produced by Construction I does not contain
a pair of oppositely oriented parallel edges exactly ife ach pair of this property of
edges of G, is eliminated either in Step 3 or in Step 4 (of course, the p0551bll|tv
-that G, contains no such palr is included). :

Problem. How to describe all connected dlrected graphs fulfilling 1 =Z (e)<2
identically 78

§ 4. Some conjectures on the class C, .

, By definition, each graph G contained in the class C, has at least one e-sub-
graph G’ such that G=,(G") where k is a suitable number. fulfilling k <M,..
It is an open problem whether or not the statement of unicity of this presentation
holds. This - problem would be solved in the affirmative sense if a method were-
--given for constructing G’ from G such that the resulting graph G’ is the unique
e-subgraph such that G =, (G"). In this § some conjectures related to this question
will be exposed. The unicity statement is formulated in Conjecture 3. : -

In what follows, we shall make use of two further classes of connected directed
graphs. Let C; contain a graph G if and only if G has an automorphism « such
that o permutes the vertices of G cyclically and there exists an edge from 4 to oz(A)
for any vertex A4.° Let G belong to the class C4 exactly if the following assertion is
fulfilled: whenever

: =‘lIk(G’), k<Ms and G'¢€C,

are satisfied for G’, k, and z is a cycle of G7, then'® M S;(z) =AU, (2).

. ® This condition implies the identical fulfilment of Z(4)=1. Fig. 3 shows a graph in which
Z(e)=1 for each edge and Z(4)=3 for some vertex.
® The relation G € C; holds exactly if the vertices of G can be labelled by the numbers 1, 2, .
such that
G =G 1, my, my, ..., m),

where n is the number of vertlces of G, k is a suitable number and on the right-hand side, the no-
tation means that an edge A,AJ exists exactly if i—j is congruent to one of 1, m,, ..., m, modulo n.

Fig.3. Fig 4

1 The inclusion Gk(z)DQIk(z) is trivially sausﬁed we requ1re now - the converse inclusion.
It is obvious that A.(z) € C,.

1t Let G’ be the graph of Fig. 4 and z be the longer cycle of G'. Ewdently ‘Ha(G)q C,. If
all the cycles of G’ are of the same length, then U (G’ )6 C,.
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Let G be a graph in C,. If a p-subgraph G, of G belongs to the class C,, then
we say that G, is a Cs-subgraph of G. If G, is a Cs-subgraph of G and there exists
no Cs-subgraph G, of G such that G,c G,C G, then we say that G, is a maximal
C,-subgraph of G. .

Conjecture 1. Let G be a graph contained in C,. Let G’ be an e- subgraph of
G and k be a natural number such that '

G'€C, k<Mg dand G=U(G).

If G, is a C3-subgraph of G, then there exists a cycle z of G’ such that z contains all
the vertices of G;.

Conjecture 2. Let G, G’ be two graphs as in Conjecture 1. Assume that G is
contained in C,;. A p-subgraph G, of G is a maximal Cs-subgraph of G if and.only
if there exists a cycle z of G’ such that G, =&;(2).

Proposition 1. If Conjecture I holds, then so does Conjecture 2 as well.

Proof. Let z be a cycle of G'. S;(z) is a C;-subgraph of G in consequence of
.G¢C,. Let G, be a proper Cz-subgraph of G such that €;(z) c G,. Conjecture 1
implies the existence of a cycle z” of G” containing all the vertices of G,. The vertex
set of z is a proper subset of the vertex set of z’; this contradiction shows that G;(z)
is a maximal Cz-subgraph, thus the sufficiency statement of Conjecture 2 is proved.

Conversely, let G, be an arbitrary maximal Cs-subgraph of G. Consider S4;(z),
where z is the cycle whose existence is stated in Conjecture 1. S4;(z) is a Cs-subgraph
‘of G by G€C,. The: maximality of G, implies G, =G;(2).

" Conjecture 3. Suppose G € C,. Then there exists exactly one pair (G, k) (con-
sisting of an e-subgraph G’ of G and of a natural number k) such that G—"[k(G’)

Proposition 2. If Conjecture 2 holds and G € C,(\Cy, then the conclusion of Con-
Jecture 3 is valid for G.

" Proof. Let G, G” be two e-subgraphs -of G and k,, k, be natural numbers
such that

ky<Mg, ky<Mg., G€C, G'€C, G=Qik1(G’)=9Ik2(G”).

Conjecture 2 implies the equivalence of the following three assertlons (1), (i), (m)
for a p-subgraph G, of G:
(i) the vertices of G, coincide with the vertices of a cycle of G’,

(ii) G, is a maximal C;-subgraph of G,

(iii) the vertices of G, coincide with the vertices of a cycle of G”.

Hence the vertex sets of the cycles of G’ coincide with the vertex sets of the
cycles of G”. Let z’ be a cycle of G’ and z” be a cycle of G” such that z’, z” contain
precisely the same vertices; let A be a vertex of z” (and of z”). We shall label the
vertices (in question) as they follow A4 on z” or on z”. From A, edges (of G) go to
the first, second, ..., k,-th vertices (and only to these) of z’; analogously, from A
edges go to the first, second, .., k,-th vertices (and only to these) of z”. This implies
2’=z" and k,=k,, thus also G"=G” (because Z(e)= 1 is identically satisfied in G’
and in G”). . : .
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§ 5. Some lemmas

Let 4, B be two vertices of a graph G and a be a directed edge sequence from

A to B. It is well-known that we can select a path a, from a such that g, leads from

A to B, too; more precisely, a, may be constructed by iterating the method that we

omit a cyc]e out of a directed edge sequence (unless 1t JS a path) This fact will be
used sometimes in this§.-

Lemma 7. Let A; B be two vertices of a connected graph G. If Z (&)= 1 is identically
satisfied in G, then there exists a path a of G such that the beginning vertex of a is A
and the end vertex of a is B*?

_ Proof. First we show that the .conclusion is satisfied by some directed edge
" sequence. Since G is connected, there exists a chain whose vertices are

A=Ay, A, Ay, ..., Ay_1; A,=B

where m is the length of the chain. For every subscript i (0=i<m) there ex1sts either

the edge A4, Al+1 or the edge A,+1A
Suppose that there exists a directed edge sequence b from A to A, (0<z<m)

we shall prove the.analogous-statement for A4, A;,,. If 4,4,, A,+1 does exist, then the

existence of the required sequence is obvious. If e= ,HA exists, then let ¢ be the

path which originates from a cycle containing e by deleting e. b and ¢ form together
a directed edge sequence from A to A;,.,. We can select a path from the directed
edge sequence constructed above between-4 and B. This completes the proof.

11& the subsequent lemmas, we consider a graph G belonging to C; and we denote
by d the greatest common divisor of the lengths of all cycles of G. For any pair
A, B of vertices of G, the number of cycles contammg both A4 and B is either O or
1 or 2.

Lemma 8. Let G be u grap’ belonging to C, and A, B be two vertices of G. Denote
by n(A, B) the number of puchs going from A to B. The foIlowzng three assertions
are true: ‘

(a) ]f there is at most one cycle containing both A and-B, then
| (A4, B)=1.
(b) If vthe.re exist two cycles containing both A and B; then
~either (A4, B)=2 and n(B, A)=1,
or n(d, B)=1 and n(B, A)=2.

(c) Suppose that the first alternative of (B) holds. Let I, I, be the lengths of the
paths-leading from A to B and I3 be the length of the path going from B to A. Then

L=1lL=-1I (modd).

2 If 4 and B coincide, then a path of length 0 fulfils the conclusior.
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Remark. The assertions (a), (c) hold also in symmetrized form (by interchanging

A and B).

Proof. We use induction with respect to the number of cycles of G. If G has
two cycles, then the lemma is evidently valid.

Assume that the number of cycles is m and the lemma is true for the graphs
having at most m — 1 cycles. We shall rely upon Construction 1 without any explicit

, D,
* Fy B,
* Fio * Dy
. F3 b
. F .

2 .-
ez 2 4
oA
jOR—

/.f]\ /. Pt
Dw
Fig. 5

reference (this is justified by Theorem 2). Let z be.a
cycle of G such that z corresponds to a vertex of
degree 1 of 7. G has exactly one cycle z; such that
z, z, have at least one vertex in common. The ver-
tices of z can be denoted (uniquely) by
Fy, Fy, ..., F,, D,,Ds,..,D,

such that z passes through the vertices in this
ordering and exactly Fy, F,, ..., F, are the com-
mon vertices with z,. Also z, passes over the F’s
according to increasing subscripts.( See Fig. 5.) t=1
is possible. 7=1 implies that the degree of Fj is
(2, 2), t=1 implies that the degree of F; is (2, 1)
and the degree of F, is (1,2); in both cases, all
the remaining vertices of z are of degree (1, 1).

Denote by G, the graph resulting if D,, D,, ...,
D,, (and the edges incident to them) are deleted.
Clearly G,€C,.

We distinguish six cases with respect to the

~situation of 4 and B. (The cases arising when A4,

B are interchanged are not treated separately.)

Case 1: neither 4 nor B occurs in.z. Then the
connectibility of 4 and B is the same in G asin G,.
' Case 2: A=D;and B=D;(where | =i<j=w).
Then (a) is trivially fulfilled.

Case 3: A=F, and. B=F; (1=j<i=t). We have
nl(A B)=m;(B, A)=1

for the function =, deﬁned in G, hence
' n(4,B)=2 and 1:(B A)=1,

i.e. the first alternative of (b) holds. Let /;, /, be the lengths of the paths from 4 to
B along z,, z, respectively; let If, I3 be the lengths of z,, z (resp.); let /, be the length

‘of the path from B to A. Then

1 +13’* 117 19+13 = 12*:
hence, on the one hand, d[lf = I, +1;, thus

I, = —1l; (modd);
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on the other hand, /; —/, = IT —I3. Since both of 1%, I¥ are multiples of d, the same
holds for thetr diﬂ‘erence, thus :

=1, (mod d).
Also (c) is verified.

Case 4: A=D; and B F; (l<1<w 1=j=1). (a) is trivially fulfilled.

_ Case 5: A does not occur in zand B=F, (1 =i= r) (a) follows from the lnduc-
tion hypothesis.

Case 6: A does not occur in z and B= D' =i=w). Because (A, F)=1
by Case 3, itis clear that (A4, B)=1. —Analogously,n(Fl, A)—l hence n(B, A)=1.
The proof is completed.

Lemma 8 implies immediately

Lemma 9. Let G be a graph belonging to C1 and A, B be two vertices of G. If.
a; b, c are three directed edge sequences such that both of a, b lead from A to B and ¢
goes from B to A, then .
Lh=L=-1 (mod_d),

where 1), I,, 1, are the lengths of a, b, ¢ respectively.

§ 6. Some n_oﬁons concerning the behaviour of networks

We recall the continuous model of the behaviour of a network,!® exposed in
Section 3 of [1]. The subsequent treatment is — essentially — an extension of that
of [2]. The mentioned behaviour may be shortly summarized as follows:
(1) To any vertex A; a function o;(t) is assigned. The domain of «; is either
‘the (real) interval [0, =) or an interval [0, T},,;) where Ty, is some positive number

~(common for the vertices). The range of «; is the interval [0, 1].

(2) For any number ¢ lying in the domain of the functions a; (where 1 =i=n,
nis the number of vertices), if the edge A AT( exists and a; (1) =1, then o, (1)=0.

(3) The initial values «;(0) of the functlons are assumed to fulfil the requirement
posed in (2) (with O as t)

(4) If the value. of the function oc is less than 1, then it increases lmearly unless
it must be 0 in consequence of (2)

(5) If the value of the function o; is 1, then 1t remains constantly 1 unless it
must be 0 in n_consequence of (2). .

6) If AA, A, exists and the function aJ, o, reach the value -1 at some instant to
’ snmultaneously, then (t(, is denoted by T,,. and) the functions are not deﬁned for
numbers 1 =1¢,. :
If the functioning of a network is defined at an instant 1, then- the vector .

% - <al(t)’ aZ(t')9 tevy d,,(’)>

is called the state of the network at 7. Let us form the state D of the.network at

13 By a network we mean a graph (wnthout self- Ioops) together with numerical functlons .
depending on the time, assigned to the vertices in a one-to-one manner.
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the instant ¢+ ¢’ (where ¢’ is a non- negative number and this new state D is formed
-from B in agreement with the above rules (l)——(6)) D is denoted by B[+ 1] too.

The state B is called cyclic if there exists a positive 7 such that B =B[+1¢];
each suitable ¢ is called a period of the network with the initial state B. B is called
steady if B =B[41] is true for every positive 1. Any steady state is obviously cyclic:
By a proper cyclic state a non-steady cyclic state is meant. If B is a proper cyclic
state, then clearly there exists a positive number /£, such that B =B+ ] holds exactly
if t=gt, where g can be 0,1,2,3, ....

In the remaining part of this §, the concept of regular state will be introduced.
Let us consider a graph G’ belonging to the class C;. Denote by d the greatest com-
mon divisor of the lengths of the cycles of G’. We define a partition /7 of the vertex
set of G’ in the following manner: let 4 = B (mod IT) be true exactly if there exists a
path a (of length =0) such that the beginning vertex of a is 4, the end vertex of
a is B and the length of @ is a multiple of 4. We have to show that I7is an equivalence.

- Lemma 10. The relation I is reflexive, symmetric and transitive.

Proof. The reflexivity is evident since paths of length 0 are allowed.

Next we prove the symmetry. Suppose A4 =B (mod IT). There exists a path a
from A to B and a path b from B to 4 by Lemma 7. The length of a is a multiple
of d by the supposition; either the fact that a, b form together a cycle or Lemma 8 (c)
implies that also the length of b is a multiple of d; consequently, B=A4 (mod IT).

Finally, we show the transitivity. Assume 4 =B (mod II) and B=C (mod I1).
There exists a path @ from A to B and a path & from B to C such that the lengths
of a and-b are multiples of d. Hence C can be reached from 4 on a directed edge
sequence whose length is =0 modulo d. By Lemmas 7, 8, 9, the same holds for the
path(s) leading from A4 to C (and there ex1sts such. a path).

Lemma 11. Let A, B, C, D be four vertices of G’. If A=B (mod IT), and there
exists an edge from A to C, and there exists an edge from B to D, then C=D (mod IT).

Proof. Lemmas 7, 9 and the definition of /7 imply the existence of two paths
a, b such that a goes from C to A, the length of a is = —1 (mod d), b goes from
A to B, the length of b is =0 (mod d). Hence the directed edge sequences, going
from C to D, are of length congruent with —1+0+4+1 = 0(mod d), thus
C=D (mod IT). The proof is completed. ‘

Since Lemma 11 is valid and Z(4)=1 is identicaliy satisfied, it is easy to see
that there are d equivalence classes modulo IT and we can label these classes by -
(6. l) E19E25'--aEd
sothatif an edge comes from a vertex in E; (1 =i =d), then it terminates at an element
of E;_, (where, of course, E, plays the role of E;_)). ThlS enumeration of the classes
is unique apart from cyclic translation.

Let us consider a network G(€C,), having the vertices A4;, A4,,...., 4,, and
an e-subgraph G’(€C)) of G such that'G=%,(G") and 2=k <d.* A state

B = (o, (1), 0 (1), .-, %, (1))

4 Throughout the following - parts of the paper, this te;rfninology will be used extensively.-
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of G will be called regularla (at the instant t) if it satisfies the followmg three con-
ditions:
(a) If A;=A;(mod II), then o;(t)=a; (t)
(b) If a,(t)—l for the vertices A lylng in a class E; (occurring i in (6 1)), then
a; (1) =0 for every
A; (€ E; 1UEj—2_U"'U j—k+_1)

where the expressions j—-l Jj—2, ... are meant modulo d.
© If 0= (1) <1, 4; €E; and a,(t)<1 for every

Am(E +1U +2U U j+k— l)

then a; (1) <o (¢) for each A;(€E;_,), where the expressrons j+1,j+2,...-and
j—1 are again 'viewed modulo 7.6

By comparing the notions of cyclic and regular states with how these concepts
had been-introduced in [2], one can ascertain that the cycl1c states were defined in -
precisely the same manner and the regularity was introduced in an almost full analogy
(the difference is motivated by the modification of the graph-theoretic structure).

§ 7. The cyclicity of regular states -

Consider a network G(€C,) (as in. the definition of the regular state). Suppose
that we start with a regular state of G at the instant 0. The behaviour of G may be
studied in detail in analogy to the discussion in § 2 of [2]. In studying a function a;
assigned to a vertex A;, the only modification here is that now the sequénce of sets

HP,HP HP, ...
‘must be considered, where H{ consists of the vertices from which A, is-reachable
by a path of length h (lnstead of the vertex sequence :

‘P|+13 P:+2aPz+as

in [2]); cleatly, any set H{ is a subset of E;.. (where hcanbe'l, 2,3, ..., and jis
determined by 4;€ E)), thus any two Vert1ces lying in a common Hf G have the same
initial value(by the requrrement (a) in the definition of the regular state). The dis-
cussion and inferences, being in analogy with the respect1ve parts of [2], lead to the
following statements:

. Proposition 3. If we start with a regular state at the instant 0 and A, €E;,
A, €E;,,, then
il(r):'aiz(o)

(the expression j+k is meant ‘mod d). - :
Denote by g the least common multiple of d and k.

Proposition 4. Any regular state is cyclic, gt/k is a suitable period. .
15 The regularity of a-state depends on which e-subgraph of G is distinguished as G’. If Con-

jecture 3 is valid, then this dependence is apperent only.
18I A,eE;, at)=1 and A; € E;jZy, then both e« (1)=0 and o (t)>0 are permitted.
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Proposition 5. If B is a regular state, then the state %[+t] is regular for each
non-negative t.

Proposition 6. Let B be a regular state. B is steady if and only if k is a divisor
of d and there exists a number j such that 1 = j=dlk and the equivalence

40)=1o A cEUE GUE  qUE; ;qU--UE; 44
holds. .

§ 8. On the regularity of cyclic states

Our Proposition 4 is an exact analogon of Proposition 2 of the article [2]. For
the networks of the.type investigated in [2], the converse statement is true as well:
only the regular states are cyclic ([2], Proposition 8). Now we are going to make
some considerations (without any claim for completeness) on the question whether
or not a similar assertion concerning the networks lying in C, holds.

First we characterize the steady states (without presupposing the regularity). .
Let 4, B be two vertices of a graph G; we say that A4 is k-reachable from B if there -
exists a path of length =k from B to 4 (4= B is permitted).

Proposition 7. Let G, k, G’ have the same meaning as in the deﬁnmon of the
regular state. Let B be a state of the network G (at the instant 0). Denote by
H the set of the vertices A; satisfying «;,(0)=1. The state B is steady if and only if the
Jfollowing three conditions are fulfilled:

(i) A;¢ H implies o;(0)=0 for all the vertices A; of G.

(i1) IfAEH BeH and A is (k—1)-reachable from Bin G, then A=B.

(iii) To any vertex A of G there exists a vertex B(€ H) such that A is (k—1)-
reachable from B in G"7

Proof. If (i) (ii), (iii) are fulfilled, then at each vertex of G outside H at least one
edge of G coming from an element of H terminates (by the operation ), hence
all the initial values «;(0) remain unchangcd

Assume that one of (i), (ii), -(iii) is not satisfied. If (ii) were not true, then state
in question would not be permitted. If either (i) or (iii) were not valid, then a vertex
A; would exist such that «;(t) would increase in an interval [0, t") with an appro-
priate positive ¢’. Thus the state could not be steady. The proof is complete.

A‘o -(—-——Aso

/Aa
ay N :
Fig. 6

17 In case A € H the statement is satisfied with B=A trivially.
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Consider the graph G =,(G’), where G” is the graph on Fig. 6. If we put
Br=Ba=Bs=B5=Pr=Ps=0, Bs=Be=1 (Whereﬂ.—a(o))

then we get a steady state (smce @), (i), (iii) are fulﬁlled) that is not regular. Thus
the statement “any cyclic state is regular” does not hold. However, it can be expected
that all non-regular cyclic states are steady, or (equwalently)

Conjecture 4. Any proper cyclic state of a network of type C, is regular.
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*VIDEC: A universal visual input
for digital electronic computers

By D. Muszka and A. SARA

In the 1nvest1gatlons concerning pattern recognition, the adoption of electronic
computers recently became more and more frequent. For a long time it had been
impossible because of the absence. of suitable technical aids. Though lateron there
came some visual readin instruments connectable with digital electronic computers.
into being, the most of them, however, were special purpose machines which, accord-

-ing to the demand of the commercial data processing, served in general just as
reading-in vouchers, for the identifications of alphanumerical signs. .

Another, but much smaller group of visual readin instruments has already-
been useful in scientific.research — primarily in medical technics —, as they have
proved to be suitable for analysing more complicated v1sual,mformatlon sets. These
instruments, however, have never been able to come into general use because of
their elaborateness and, so, their high prices.

_Among these instruments let us mention just for an example the FIDAC in-
strument, well-known in England, built by Ledley and his collaboraters, in which
the film to be processed is resolved by a cathode ray tube (as light source), controlled
by a digital sweép circuit, and the greyness degree of its picture- elements is forwarded
in an appropriately encoded form to the computer.

In Hungary, on the request of medical research institutes, the: Cybernetlcal.
Laboratory is continuing researches to develop a suitable technical appllance The
primary goal of this work consists in developing a relatively not expensive visual
readin instrument which, connected to any digital electronic computer, is capable
of processing both transnllummatable and light-reflecting pictures. In the following,
I should like to give a review on our so-scalled VIDEC instrument, which constitutes
the produce of the first stage of our research work.

The pictures to be processed (e.g. X-ray photographs, dlagrams drawn by

“EEG, ECG registering devices etc.) can be fixed on the superficies of a cylinder
made of glass. Taking into account that most of the pictures to be processed are
such that the greyness degree of the picture-elements of the visual patterns on the
pictures does not carry any essential new information (for instance this is the case
of an ECG diagram) we. decided to consider the elements, under an approprlate
resolution of the picture, as dark and light points.

Along the generatlng line of the cylinder there are placed 5—8 point- 11ke sources
of white light. Near the inner and outer surface of the picture cylinder, according
to the position of the sources of llght there are built in 5—8 diodes of appropriate

6 Acta Cybernetica
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resolving power. (In case of a transilluminatable picture the inner, in case of a
light-reflecting picture, the outer diodes are activated, respectively.) The photo--
diodes and the sources of light are placed along the generating line proportionally
in the sense that if the size of the picture to be processed, taken in the direction
of the generating line, is 6’ and we have “n”” photodiodes then the distances between
the photodiodes equal “b/n”. (This distance can be changed on the instrument,
and before starting the visual input one has to take care of its appropriate adjustment.)
The number of the photodiodes is determined by how many channels of the computer
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the instrument is connected to are ready to receive information simultaneously.
In case of our instrument, “n’> cannot exceed 8. The length of generating line of
the cylinder is 240 mm, so the size “‘b” of the picture to be processed can be 240 mm
at most. The circumference of the picture cylinder is 270 mm, thus taking into
account the size of the picture fixing device as well, the size “a” of the picture to
be processed is 240 mm at most.

On the surface of the picture cylinder, outside the field of picture, there are
magnetic Marker signs of density corresponding to the finest resolution applicable.
The attainable finest resolution (raster) is 0,5 mmX0,5 mm; so the number of
the Markers is 480. The Markers cannot be found all along the circumference,
just on the section of 240 mm. The device fixing the edges of the picture is placed
inside the remaining stripe of width 30 mm, on the picture cylinder. -

1n the following, let “de’” always denote the resolving fineness in both directions
(the possible values of “4e” are 0,5—1, 0—2,0 mm). The choice of the value “4e”
depends in part on the resolving fineness required by the task in. question, in part
on the operative memory capacity of the computer we are to work with. In fact,
in case of the finest resolution (0,5 mm X 0,5 mm) and of the maximal size of picture
(240 mm X 240 mm), 480X 480 = 230.400 bits as information have to be stored
which, in case of an average computer word length (30 bits), means. 8K word memory
capacities. . :

Here we should point out the fact that the proportional placement of photo-
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diodes ‘mentioned above implies that, after the input, the visual information -is
stored in the memory unit of the computer in a form unfit for direct processing.
In fact, the bits corresponding to neighboring picture-elements are no longer “‘neigh-
boring” in the memory. Therefore — with the aid of the VIDECORD ordering

-program1 to be presented at-the end of this talk — the visual information set stored
in the'-memory before processing has to be rearranged into a form suitable for pro-
cessing. This problem of rearrangement could be eliminated if the photodiodes
were placed directly beside each other at a distance corresponding to the resolving
finess. However, the construction of photo-perceptors -of a sufficiently small size
gives a grave technical problem as well as an additional expenditure. Therefore,
the divided proportional placement of the photodiodes which made it possible to
use any photo-perceptor and optics seemed to us more practical. Furthermore,
the running time of the VIDECORD ordering program in most of the cases of the
pattern lecogmtlon programs is much less than that of an effective pattern recog- .
nition program.

The operation unit of the instrument’ receives the starting 1mpulse from the
computer. Then the actuating engine of the instrument starts working and rotates
the picture cylinder with 750 revolutions per minute. Thus, the time needed for the
input of one picture varies between 5 and 8 second. (In case of a five channel and eight
" channel input system this is 8 and 5 seconds, respectively.) .

The maximal speed of the inféormation transport (in case of the finest resolution
and 8 channels) is 54.000 bits per second. Just for comparison: the maximal informa-
tion transport speed of a modern punched tape reader, RC-2000 of GIER Co., is

16.000 bits per second. :

The actuating engiae of the 1nstrument rotatmg the picture cylinder simultane-
ously, moves the photodiodes and sources of light with the aid of a suitable cog-
wheel transmission and pulling spindle in. axial direction. The cog-wheel is chosen
in such a way that during a full revolution of the picture cylinder the photodiodes
and sources of light cover the distance “Ae”. This cog-wheel transmission has, of
course, to be retooled, according the choice of the. resolving fineness.

' The operation unit counts the number of revolutions of the picture cyllnder
(with  the aid of the photo-electric “0”-impulses), and after “b/(n- de)” revolutions
it automatically changes the direction of rotation of the actuating engine, not allow-
ing any further information flow, and it gives a signal to the electronic computer -
to begin the VIDECORD-program. Now if the photodiodes and sources of light
moving backwards come again into ground position (the first diode ought to be
just at the edge of the picture) the operatlon unit stops the actuating engine and it
changes the sense of rotation again.

During the working of the instrument, the signs of the photodiodes, arriving
continuously, get ‘on-'Schmitt-triggers. The ‘output levels- of the. Schmitt-triggers
control gate stages. The signs: gating the gate stages are furnished by Marker signs. .
The Marker signs are emitted by a magnetic perceptive head. At the value “de” = -
=0,5 mm every Marker sign is effective. At “de”=1,0 mm every second at
“Ae” =2,0 mm every fourth Marker sign is effectual, respectively.

The output impulses of the gate stages are directly connected to the ‘input
unit of the computer. The effectual Marker signs also serve to synchronize the com-

! The ordering program’ is maked by P. Hunya. .
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puter. Thus, the picture is transmitted to the computer in a form of parallel-series
information. Each photodiode scans just a given zone of the picture, but their joint
information gives the entire field of picture. In the further development of the in-
strument we have set ourselves the task of making the instrument capable of dis-
tinguishing the nuances retraceable in the picture. This, on the one hand, raises the
requisite concerning the memory capacity of the computer, on the other hand,
increases the electronics of the instrument. In fact, in this case, the signs of the
photodiodes are conducted onto analogue-digital converters, instead of Schmitt-
triggers, and according to the greyness degree of the picture-element, at least 3 bit
code per picture element has to be transmitted to the computer.

To carry out pattern recognition experiments (human chromosome analysis)
the instrument is connected to a MINSK 22 electronic computer working in our
Laboratory.

* o

The VIDECORD ordering program consists of two parts. The first part of
it is suitable for horizontal investigations, and it converts the information into a
so-called row-continuous form. If vertical investigations are needed, then the second
part of the program, which arranges the information, previously brought into a
row-continuous form, is also be used. The entire VIDECORD program leaves
the- original information set fixed, therefore for the rearranged information as large
additional memory capacity is needed as for storing the original information set.

Let the length of word of the computer adapted to the VIDEC instrument
be “}” bits in general. This word plotted -against the input visual information is of
the following form:

e —— Y i———peype—e—l s
z s n s n s n s n

kg (S+n)
i=z+4k,(s+n)

—

where z=the number of possibly unused bits (e.g. sign-bit);
n=the number of elementary informations read-in an effectual -Marker sign.
It is identical with the number of the input channels (this can be 5, 6, 8);
s=the number of unused bits depending on the input system (ordinarily
0 or 1); .
k,=the number of picture characters of “n’ bits stored in one word. .
Thus the memory capacity needed to store a picture consisting of ¢-e = e*

2
ke p words. (The possible values of “e” are 120, 240

and 480.) After each k,-th effectual Marker sign the VIDEC instrument gives
the computer a distinct operating sign to write the information, read in up to that
time, in the memory and to increase automatically the adress. k, has to be chosen
such that “efk,”” is an integer, and that the inequality k, (s +#) = A < (k,+ 1)- (s +n)
holds. The first condition is necessitated by the requirement that, after a full revolu-
tion of the picture cylinder, the computer should start storing into a new word by
all means, the second one aims the best exploitation of the memory. The values of
k, on the VIDEC insttument can be adjusted 3, 4, S, 6 and 8.

picture-elements is C =
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The placement of the information brought into a row-continuous or column-
continuous form in one word is the following:

. I . “ : I oy =1z+kg T
' z kg -

where k,;=the number of the bits used in one word, whether after a row-continuous
or a column- contmuous rearrangement

2

After the rearrangement the memory. capacity needed for.storirig is ¢ = %
: . ”

Videcord -I. -

(for horizontal arrangement.)
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word. kp is to be chosen such that “e/k,” is an integer and that the mequallty kg
holds.

Before the run of the VIDECORD program the followmg parameters are to be
made known to the computer:

e (the number of the picture- elements),

n (the number of the input channels);

k, (the number of picture characters stored in one word);

kp (the number of bits used in one word after the rearrangement.)

Videcord — 1.

(from horizortal -0 vertical arrangemend)
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- In the block diagram of the V[DECORD program we use, in addition, the
followmg notation:
H =the m-th word of the information brought into a row-continuous form;
V,=the m-th word of the information brought into a column contmuous
form; :
i j, k, 1, m—indices
M =work compartement in the operative memory;
L= loglcal constants depending on the input system separatmg the correspond— .
ing picture-elements (k = 1,2,3, ..., n-k)).
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