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Linear regular languages. Part II 
The problem of synthesis 

B y G . T . H E R M A N 

1. Introduction 

In Part I of this paper [3] we discussed the problem of analysis for linear sequen-
tial circuits, i.e. we gave an algorithm which for every language accepted by a linear 
sequential circuit (described by the circuit and the function mapping the symbols 
of the language into inputs to the circuit) produced a regular expression which 
described that language. We have also shown that the converse cannot be done, 
there is a regular expression such that the language described by it is not linear 
regular, i.e. its symbols cannot be mapped into inputs of a linear sequential circuit 
in such a way that the circuit will accept exactly those words which belong to the 
language. We shall assume that the reader is familiar with the terminology of [3]. 

The algorithm of [3] for the analysis of linear sequential circuits had the advant-
age over similar algorithms by its being a practical algorithm which can be imple-
mented on a digital computer. Such implementation has been reported on in [4]. 

The problem of synthesis, for linear sequential circuits is to give an algorithm 
which for any given regular expression decides whether or not it describes a linear 
regular language and, if that is indeed the case, the algorithm must provide us with 
a linear sequential circuit and a mapping of the symbols of the language into inputs 
of the circuit, such that the circuit will accept exactly those words which belong to 
the language. In this paper we shall describe an algorithm which will do this job. 
Unfortunately, from the practical point of view the algorithm will do little more 
than show that such algorithm exists, if implemented on a digital computer its 
operation would be so inefficient that it could not be applied even to very sim-
ple cases. This is a usual state of affairs with algorithms in automata theory, but 
it is our contention that this particular problem should have an implementable 
solution, similar in simplicity to the one for . the problem of analysis. The reader 
should compare comments in § 5 of [3]. 

Similarly to [3], this paper will be introductory in the sense that it will make 
no assumption of knowledge on the part of the reader. Hence, some known defini-
tions and results will be given and proved without reference to' original sources. 

1 Acta Cybernetics 
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2.. .Definitions 

All definitions in [3] will be assumed to be known to the reader. 

Definition 1. A. finite automaton is a 5-tuple M = (Q, I , q, b, F), where 
(i) Q is a finite non-empty set of states, 

(ii) I is a finite non-empty set of input symbols, 
(iii) q 6 Q, the initial state, 
(iv) 5: Qxl Q, the direct transition function, 
(v) Fez Q, the set of accepting states. 

We extend the transition function to a mapping 5 from QXlz into Q as fol-
lows: 

S(q,e) = q, 

S(q, xa) ~d(S(q, x), a) 
for all q £ Q, a £ I and x t IE. 

Since, for all q€Q and a£l, 5(q, a) = 5(q, a), we denote S by <5 as well. 

Example 1. 

where {{q0, q l t q 3 ) , {a, b), q0, 5, {<72}> 
<5(<7;, «) = <?;, for O S / ^ 3 , 

^ ( l i , b ) = qi + l , for 0 ; s / S 2 , 
8(qs,b) = q3, 

is a finite automaton. , 

Example 2. 

<{<7o,9i}, {«. b), q0, 5, {q0}) 

where S(qi,a) = qi, for O s / ^ l , 

<K<7;, b) = ql-i, for O S / S i , 
is a finite automaton. 

Definition 2. Let M = (Q, I , q, <5, F) be a finite automaton and x£lz. We say 
that M accepts x i f and only if d(q, x)£F. Let W€.Lr. We say that M accepts W 
if and only if the set of those x in / , which are accepted by M is exactly W. 

Example 3. The finite automaton given in Example 1 accepts the language 
described by 

(((a*b)(a*b))a*). 

Example 4. The finite automaton given in Example 2 accepts the language 
described by 

(a%ba*)(ba*)y). 

Definition 3. A finite automaton M = (Q, I , q, 5, F) is said to be linearly realiz-
able if and only if there exists a linear sequential circuit C and functions a and <p 
with the following properties. (We assume that the circuit C has A; external input 
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wires and n delays and can be described by matrices A, B and C as in Theorem 1 
of[3].) 

(i) a maps I into ^-tuples of O's and l 's. ' 
(ii) <p maps Q into «-tuples of O's and l's. 

(iii) For each p £ Q and a £ X, ' . 

(p{8(p,aj) = <p(p)A©a(fl)B. . 
(iv) For e a c h p £ Q , 

p£F if and only if q>(p)C=l. 

In such a case C is said to be a linear realization of M. 
Example 5. The finite automaton of Example 2 is linearly realizable. Its linear 

realization is given in Figure 3 of [3]. a is defined by 

•a («) = 0, < a (A)-"- 1. 
(p is defined by 

<M<7o) = [ l , 0 ] , p f o J H l , 1J-

We shall see later on that the finite automaton of Example 1 is not linearly 
realizable. We note in passing that the definition of realization that is given here is 
somewhat restricted, but for the purpose of checking the linearity of regular languages 
it is as general as needed. For a discussion of various definitions of realization, see 
for instance [5]. 

Definition 4. An initial subautomaton of a finite automaton M = {Q, I , q, <5, F ) 
is the finite automaton (£>', I , q, 6', F'), where . 

Q' = {p\p£Q and p = 5(q,x) for some x£lr], 

S'(p, a) = 5(p, a) for all p£Q' and a^I, 

/• ' = ¡:T\ Q'. 

Intuitively, the initial subautomaton is that part of the automaton which con-
sists of all the states which are accessible from the initial state. 

Example 6. For the automata of Examples 1 and 2, the initial subautomaton 
is the automaton itself, since all states are accessible from the initial state. 

The following basic result is easy to prove and we shall assume it in the rest of 
the paper without further reference to it. 

Proposition. The language which is accepted by a finite automaton is the same 
as the language accepted by its initial subautomaton. 

Definition 5. Let C be a linear sequential circuit with n delays. With each state 
J> = [.J>I, ...,>„] of C we associate a mapping f R O R N strings of inputs ^... .T , into . 
{0, 1} defined as follows: 

xt) = yA'C ® 2 XiBA-'C. 
¡=i 

I.e. the value of ^(xx-.-x,) is the same as the output would be at time t + 1 if the 
machine was started in state y and received the external input at time i. 
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Example 7. For the linear sequential machine C of Figure 3 in [3] we have the 
following. 

if an even number of x, is 1, 
otherwise, 

if an even number of x t is 1, 
otherwise, 

, 0] (-̂ -1 • • • X,) — j Q 

-•• xl) — 1 1 c 

••• •*() — [̂"1,0] 0*1 ••• xt)> 

'-ib,O](-vL ••• xi) = j-fi,i](xi ••• xt)-

Definition 6. A linear sequential circuit C is said to be minimal if and only if 
it does not have two different states ^ and y2 such that ^ = 

Example 8. The linear sequential circuit of Figure 3 in [3] is not minimal. 

Fig. I 

Example 9. Let C be the linear sequential circuit of Figure 1. 

;.0
c(.v1....r,) = { J 

if an even number of x ; is 1, 
otherwise, 

0 if an even number of is 1, 
otherwise. 

Hence C is minimal. 

Definition 7. Let C and C' be two linear sequential circuits. C and C' are said 
to be equivalent if and only if 

{lf\y is a state of C} = {A£' | / is a state of C'}. 

Intuitively speaking two linear sequential circuits are equivalent if and only if 
for every state y of C there is a state y' of C' such that C started in state y behaves 
the same way as C' started in y', and vice versa. 

Example 10. The circuits in. Examples 8 and 9 are equivalent. 
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3. Outline of the argument 

Our aim is to provide an algorithm for the synthesis of linear sequential circuits. 
We are going to do this, in the following way. 

(a) We give an algorithm which for every regular expression produces a finite 
automaton such that the language described by the regular expression is the language 
accepted by the finite automaton. 

(b) We prove that a language described by a regular expression is a linear 
regular language if and only if the initial subautomaton of the automaton produ-
ced by the algorithm in (a) is linearly realizable. In particular, we show that from 
the linear circuit which is the linear realization (if there is one) of the initial subauto-
maton, we can effectively produce a linear sequential circuit which accepts the 
language described by the regular expression. 

(c) We give an algorithm which for any finite automaton decides whether or 
not its initial subautomaton is linearly realizable, and if it is, then the algorithm 
gives a linear sequential circuit which is a linear realization of it. 

It is clear that in view of (b), the algorithms in (a) and (c) combine to give the 
algorithm required for the problem of synthesis for linear sequential circuits. 

4. Synthesis for finite automata 

Theorem 1. Let I be any fixed finite, non-empty set. There is an algorithm 
which for any given regular expression R over the alphabet Z will produce, a finite 
automaton M = (Q, Z, q, <5, F) such that M accepts the language |/?|. 

Proof. The algorithm builds up the finite automaton M from finite automata 
which it has already produced for parts of R. We shall describe what it does for 
regular expressions of length 1, and then show how it produces the finite automaton 
for a regular expression of length greater than 1 from finite automata for regular 
expressions of shorter length. 

If R = o, then M = ({q},Z,q,5, 0>, 

where 5(q,a) = q for all a£Z. 

If R = e, then M = {{qx, q2}, Z, qt, d, {<7i}), 

where 5(q,a) = qt for #£ {<7i, <?2} a n d a£Z. 

If R = a where a£Z, then M = ({q0, qu q2}, Z, q0, <5, {^j}), where d(q0,a) = q1 
and S(q,b) = q2 otherwise. _ ._ 

We now show how to produce from a finite automaton D = (Q, Z, q, S, F) 
whic'i accepts a regular language |P | and a finite automaton E=(Q,Z,q,5,F) 
which accepts a regular language | 5 | (P and S are regular expressions), the finite 
automata which accept the regular languages KP+S) ! and |(PS)|, respectively. 

Suppose R is of the form (P + S) and D and E are finite automata as defined 
.above. The finite automaton M = (Q, Z, q, 5, F) which accepts |/J| is_ constructed 
as follows. Q= QXQ, i.e. ordered pairs of elements from Q and Q. q=(q,q). 
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For any a£Z, pdQ and r£Q, 

K<J>, r), a) =(S(p, a),d(r, a)), 

f = { { p , r ) \ p £ F or r<EF}. 

We leave it to the reader to show that M accepts [(-P+S)!-
Suppose R is of the form (PS) and D = (Q, I , q, 5, F> and £ = (Q, I , q,l,F) 

are finite automata which accept and |S | , respectively. The finite automaton 
M = (Q, X, q, 5, F) which accepts is constructed as follows. 

Let Q' denote the set of all subsets of Q. Q = QXQ', i.e. a set of ordered pairs, 
where the first element js a state of D and the second element is a subset of the states 
of E. q = {q, 0 ) if F and q = (q, {5}) if q^F. <5 is defined as follows. For any 
P£Q, Qi^Q and a£X, 

H(p,Q1),a)=(S(p,a),Q2), 
where 

q2 = { r | r = 5(s, a) for some Qi} U Q3, 
where _ 

0 3 = 0 . if S(p,a)£F and Q3 = {q} if S(p,A)TF. 
Finally, _ _ _ 

F= {</». Gi>l/»e5, Qi^Q and Qir\F^0}. 

We now have to show that the finite automaton F=(Q, X, q, 8, F) does indeed 
accept |(PS)| . The essence of the proof is the following. Given a word w of IE, 
there may be many ways of breaking up w into two subwords. vv£ |(i>S)| if and only 
if one of these ways is such that w = w1w2 and w^g |/»| and w2£ |S|. M keeps track 
simultaneously of all the possible states which E might be in depending on the way 
w has been broken up. 

In order to complete this part of the proof, it is sufficient to prove the follow-
ing claim. :' 

For any word 
d(q,w)=(S(q,w),Q1), 

where r £ Q x if and only if there exist wx and w2 in I t such that w = w t w z , w ^ | P | 
and 5(q, w.2) = r. 

We leave the proof, which can best be done by induction on the length of w, 
to the reader. _ 

If R is of the form P* and E = (Q, X, q, 5, F) is a finite automaton which accepts 
|P| , M = (Q, X, q, 5, F) is constructed as follows. 

Let q be such that q$ Q. Let Q = g U {q}. Define S:QXX - Q by 

N _ { % > « ) i f and a£X, 
\H<i,a) if q=q and a£X. 

O is the set of all subsets of Q. q= {¡7}. For any 2 a n d a£X, 

8(Qi,a) = {r\r = 5(s,a) for some J € 2 i } U g 2 
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where Q2={q) if d(s,a)£F for some s£Qx and £>2=0 otherwise. Finally, 

F={Q1\Q1<zQ and qeQj. 

The proof that M accepts |P*| is very similar to the proof outlined above and 
we leave it to the reader. 

Even though this theorem proves that the problem of synthesis is solved for 
finite automata, the algorithm described in it is such that the finite automata pro-
duced will in general be far from the simplest of the ones which do the job required. 
In fact, it will generally be so large that the implementation of the algorithm on an 
actual computing device is beyond the realm of practical possibility in all but the 
simplest cases. For instance, for the regular expression in Example 3 the finite auto-' 
maton produced by the algorithm will have more than 4 X1012 states, and the finite 
automaton for the regular expression in Example 4 will have over 10lolol° states. 
At the same time, both of the expressions denote languages that can be accepted by 
fairly simple machines (see Examples 1 and 2). 

Although one could give algorithms which work faster than the one described 
above, there is no existing algorithm which works so fast as to be implementable 
for non-trivial regular expressions. 

5. Some facts about linear sequential circuits 
and linear realizations 

Theorem 2. Let M = (Q, I , q, <5, F) be a finite automaton and C be a linear 
sequential circuit which is a linear realization of M with functions a and (p (see 
Definition 3). Let C be described by the matrices A, B and C. Then, for all p£Q 
and x ^ . . . * , in / j , 

<p(8(p, x,x2... x,)) = (P(P)A' © ¿«(*i)BA'-'. 
\ ¡=i 
Furthermore, 

a ( * r ) ) = 1 if and only if <5(/>, xxx2 . . . x() £ F. 

Proof by induction on t. 
I f / = 0, 

(p(8(p,e))=q>(p) = (p(p) A0. 

Assume that the theorem is true for all words of length t. Then 

<p(S(p, xtx2... x,x t + 1) = <p(S(d(p, x x x 2 . . . xt), x (+1)) = 
i 
y i=1 = cp(5(p, XiXo... x,))A © a(x ( + 1)B = <p(p)A< © 2 a(^ i)BA'" i A © a(x1 + 1)B = 

i + . i 
= q>(p)A' + 1 © 2 a(xi)BA'.+ 1 " i . 

i = i 

The second part of the theorem follows directly from Definitions 3 and 5. 
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Theorem 3. Let C be a linear sequential circuit with n delays. Let y\ and y2 
be any two states of C. If there exists a sequence .Y!, x2, . . . , of external input 
conditions such that 

1*2 ••• = ••• 

for all t, 0 ^ / ^ n - l , then 
; c = ; c 

>1 >'2' 
(This is sometimes expressed by saying that C satisfies the /j-diagnosability condition.) 

Proof. Assume that C can be described by matrices A, B and C. IF (*iX> ... X,) = 
= / £ , ( . Y 1 X 2 . . . . Y , ) , then 

)'i A ' C © 2 * I B A ' - ' C = y2A C © ¿ X I B A ' - ' C 
i=1 1=1 -

and so 

(1) . yiA'C = y2 A'C. 

Since this is true for O S / ^ H — 1 , it is also true for / T h i s follows from 
the fact (Cayley—Hamilton theorem) that any power of A can be expressed as a 
linear combination of powers of A less than n. Thus we have that (1) holds for every 
t. But then for any sequence x ^ . - . x , , 

¿ N ( * 1 X2... X,)= / .£, ( * ! -Y2 . . . X,) 
and so = /£,. 

Theorem 4. For every linear sequential circuit C there exists a minimal linear 
sequential circuit C' which is equivalent to C¡ 

Proof Assume that C is described by the matrices A, B and C. (A is nXn, 
B is kXn and C is « X I . ) Let K be the nXn matrix 

[ C , A C , . . . , A " - 1 C ] . 

First we prove that C is minimal if and only if K is a non-singular matrix. 

C is not minimal 
if and only if 

there exist yx and y2 such that = /£, and yl¿éy2, 
if and only if 

there exist yx and y2 such that ¿¿y2 and 

j ^ A ' C = J ; 2 A ' C for O s f g f l - 1 , 
if and only if 

there exist and y2 such that y1 ?±y2 and 

JiK - y2K 
if and only if 

K is singular. 
So if K is non-singular, then C is already, minimal and there is nothing to prove. 

Let us therefore assume that K is singular. 
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Now we pick a row of K which is the linear combination of previous rows. 
Since the underlying field is the field of two elements this means that the particular 
row of K, say t h e / t h , is the modulo 2 sum of some of the earlier rows. What is the 
physical significance of the y'th row of K being the sum of previous rows? it is that 
the7'th delay in the circuit is superfluous, since its behaviour can be obtained from 
the output of the other delays. 

Fig- 2. 

To see this consider the following argument. We separate the delays of a linear 
sequential circuit C by considering them to,form a separate circuit D with n external 
input wires and n external output wires. For instance for the circuit of Figure 3 
in [3], this would give us Figure 2. Fo r c l ^y ' ^w , the y'th external output of D at 
time t + 1 is the same as the j'th external input of D at time t. Another way of look-
ing at this, is that D takes a state of C as an input and returns the same state of C 
as an output one unit of time later. 

Now suppose that we have a linear sequential circuit C' which is the same as 
C, except that D is replaced by a circuit D' with n external inputs and n external 
outputs, such that if D' is given a state of C as an input, then it returns one unit 
of time later state y2 of C such that 

Clearly, such a C' is equivalent to C. ' 
We are now going to show that if K is singular, we can always find such a D' 

with only n — 1 delays. One of the many possible ways of constructing such a £>".is 
the following. 

Suppose the j 'th row is the first row of K which is the sum of some of the pre-
vious rows. Let us denote the rows of K by K1; K2, . . . , K„ and let S be that subset 
of {1, —1} such that 
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If 7 S / S / 1 —1, the input wire of the / ' thdelay of D' is connected to the ( / + l)'st 
external input wire to D', and the output wire of the / ' th delay of D' is connected 
to the ( / + l ) ' s t external output wire of D'. If l ^ i s j — 1 the output wire of the 
/'th delay of D' is connected to the / 'th external output wire of D'. If /$ S, the input 
wire of the / 'th delay of D' is connected to the / ' th external input wire of D'. If 
i£S, the input wire of the / 'th delay of D' is connected to the output wire of an 
exclusive or gate whose input wires are the / 'th and y'th external input wires to D'. 
Note that the y"th external output wire of D' is not connected to anything and so 
it never carries a pulse (it is earthed). 

If the input to D' is the state y1 = [a1,a2, ...,an], then the output to D' one 
unit of time later will be 

where 

b, = 
_ J 0 if i$S, 

la,- if i£S. 

In order to show that = , it is sufficient to prove tha t j^K =j'-2K (see beginn-
ing of this proof). 

.y2K = [al + bl,a2 + b2, aJ_1 + bJ_1, 0, aJ+1, . . . ,an] 

= J2aiKl+Jz\K;+ 2 a,Kf = 

i=I >=i <=;+I 

= J2ai*i+ 2ajKi+ 2 fliK; = i = 1 ¡es ¡=> + 1 
•='Zat + 2 = 

¡ = 1 f=y + l 

Kx 
K, 

K„ 

= 2 « ^ = i=i 

- yi K. 
We have now obtained a circuit C' which is equivalent to C and has fewer 

delays than C. If this circuit is not minimal, then we can repeat this process. Since 
C has only a finite number of delays, sooner or later we must find a minimal C 
which is equivalent to C. 

• Example 11. Consider the circuit C of Figure 2. For this circuit (see Example 5 
in [3]). 

A = [ i ? l , C = ( 1 1 

- G i l -
K = [ ! J ] , •K1-=K2 = [1,1]. 
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So in the method described above j = 2 and S= {1}. This gives us the D' and C' 
shown in Figure 3. 

It is easy to see that this circuit is equivalent to the one in Figure 1 (y2(t) never 
carries a pulse). 

We point out by the way, that the proof of Theorem 4 is constructive. Given 
a linear sequential circuit, we can actually construct a minimal linear sequential 
circuit equivalent to it using the proof of Theorem 4. 

6. The equivalence of linear realizability of finite automata 
and linearity of regular expressions 

Theorem 5. Let R be a regular expression and M be a finite automaton which 
accepts Then |i?| is a linear regular language if and only if the initial subauto-
maton of M is linearly realizable. Furthermore, if the initial subautomaton of M 
is linearly realizable by a linear sequential circuit C, then from C and the mappings 
(p and a we can effectively produce a linear sequential circuit C' and a function / 
such that C' accepts the language \R\ using / . 

Proof. First suppose that the initial subautomaton of M = (Q, S, q, 5, F) is 
linearly realizable by a linear sequential circuit C. Let a and q> denote the mappings 
described in Definition 3. ' 

We now construct a circuit C' which accepts the language \R\ using a as the / 
of Definition 9 in [3]. . 

Consider (p{q) = [yi, ...,y„]- We consider each delay of C in turn. If yt= 0, 
we make no alteration to the / ' th delay of C. If = 1, then we connect the output 
wire of the / 'th delay of C to one of the input wires of an exclusive or gate (newly 
introduced for this purpose) and we connect the output wire of the exclusive or 
gate to all the wires to which the output wire of the delay used to be connected (all 
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the old connections being removed). The other input wire of the exclusive or gate 
is not yet connected up. When we changed all delays in this way, we introduce one 
more delay (to be considered the first delay of C') whose input wire is not connected 
to anything (i.e., it is earthed) and whose output wire is connected to the so far 
free input wires of the newly introduced exclusive or gates. No other alteration is 
done to C to obtain C'. 

For example if C is as in Figure 3 of [3], then C is given in Figure 4. 

After time t= 1, the first delay of C" makes no contribution to the behaviour 
of C', hence we have that 

'"[1.0 0] — Atp(q)-

This together with Theorem 2 shows that if we let the function / of Definition 9 
in [3] to be a, then a word w in is accepted by M if and only if it is accepted by 
C". In particular, we have shown that is a linear regular language. 

Conversely, let us assume that |/?| is a linear regular language and let C be a 
linear sequential circuit which accepts Let C be a minimal linear sequential 
circuit which is equivalent to C. We shall prove that C' is a linear realization of the 
initial subautomaton of M. 

Since the number of external input wires for C and C' are the same, we can 
take a of Definition 3 to be t h e / o f Definition 9 in [3]. cp is defined as follows. 

For every state y of C there is one state y' of C' such that 

Ay ~ V 
(otherwise C and C' would not be equivalent). Furthermore, there is only one such 
y', for otherwise C' would not be minimal. Let ^i(^) denote this unique y'.~ 

Given a state p of the initial subautomaton of M, there exists an x = x1.v2;...v, 
in h such that 

p = d(q,x1x2...xt). 
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We define (using the matrices A', B' and C' which describe C') 

(pip) = ./i[l,0, . . . ,0]A" © 2 « ( * / ) B ' A " - ' . 
i=i 

The difficulty with this definition is that it is not necessarily unique. It is possible 
that for some x = xix«...x1 in I s , x^x and yet d(q, x) = 5(q, x). We.must show 
that in such cases 

(2) //[1,0, -...,.0]A" © 2 a C * l ) B ' A " - ' = p t l , 0 , : . . , Q ] A ' ' © ¿ « O Q B ' A ' ' " ' . 
. ;=i ¡=1 

Let us denote the left hand side of (2), which is a state of C', by yx and the right 
hand side of (2) by y2. Since C" is a minimal linear sequential circuit, to show the 
equality, it is sufficient to prove that 

)C' = )F. yi >'2 • 

We are now going to show- that for any sequence s1s2...sj£lz 

%(<*(<h)a(¿¡>) • • • «(¿j)) = (a(-ft)«(•%) ••• «(Sj)). 

Tn view of Theorem 3, this is sufficient. 

• ; £ ( a ( s i ) . . . a ( s , ) ) = • 

= ytA'JC ® 2'a(s,)B'A'''-'C'-= • ' 
i = 1 

= Ai[1, 0, ...', 0]A' '+ jC' © ¿ '«( .Y.JB'A'^- 'C ' © 2a(Si)R'A'^lC = 
i=i i=i 

= o](«fe) - i W a ( i i ) . - «(J;)) = •. 

. = i 1 if X! ... x,sx ... Sj£\R\, 
[ 0 otherwise 

_ | 1 if d(q, Xi ... x . i j ... Sj)£F, 
[ 0 otherwise . 

_ i 1 if ¿(<507, x t ... x,), Si ••• Sj)£F, -
[ 0 otherwise 

= | 1 if . 
} 0 otherwise 

= j ' l if d(5(q, Xi ... xj), Ji ... Sj)£F, 
[ 0 otherwise 
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All that is left to show is that conditions (iii) and (iv) in Definition 3 are satisfied. 
For any p in the initial subautomaton of M and for any a in I , p = 8(q, x) for 

some .v = x1....v, in l z and 

. <p(8(p,a)) = <p(8(.8(q,x),a)) = 

= (p(8(q, xa)) = 

= /«[1,0, ..., 0 ]A" + 1 © ¿ a ( . v i ) B ' A " + 1 - i f f ia(a)B' = 
¡=i 

= ( / ¿ [ 1 , 0 , . . . , 0 ] A " © ¿ A ( . Y , . ) B ' A " - i ) A ' © « ( A ) B ' = 

¡=1 

= ^ ( ¿ ( ^ . Y ^ A ' © « ^ ' = 
= <p(p)A'@a(a)B'. 

<p(p) C'=l 

if and only if 
( / ¿ [ 1 , 0 , . . . , 0 ] A ' ' f f i 2 a ( x ; ) B ' A " _ 1 ) C / = 1 

¡=1 
if and only if 

C accepts JC 

if and only if 

if and only if 
' M accepts .Y 

if and only if 
Hl,x)€F if and only if 

pdF. 

Corollary. There are finite automata which are not linearly realizable. 

Proof. The automaton of Example 1 is such. This is because this automaton 
accepts the language described in Example 3, and this language is not a linear regular 
language. (See Theorem 3 of [3].) . 

7. The linear readability of finite automata 

Theorem 6. If a linearly realizable finite automaton M = (Q, I , q, 8, F) has n 
states and k' symbols in X, then it is linearly realizable by a linear sequential circuit 
with at most k' external input wires and at most ri delays. 

Proof. Suppose M has a linear realization C with k external input wires, and n 
delays, where k>k' or n>n' or both. Suppose a- and q> are the mappings as in 
Definition 3. 

First we deal with the case when «>/7'. 
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Let qlt ...,q„' be the ri states of M. Consider the n'Xn matrix F whose /'th 
row is (p(qi). At least « — ri columns of this matrix F will be linearly dependent on 
the other ri columns, and by relabeling the delays we may assume that it is the last 
n — ri columns. * 

Now we proceed as in the proof of Theorem 4. We consider the subcircuit D 
with n external inputs and n external outputs which contains all the delays and 
nothing else. We replace this by a circuit D' with «'.delays. For 1 Si = ri, the input 
wire to the / 'th delay is connected to the /'th external input wire to D', and the 
output wire of the / ' th delay is connected to the f t h external output wire of D'. 

The other external input wires are not connected to anything. For «' < / s ri, 
the / 'th external output wire of the D' is connected to the delays through exclusive 
or gates in such a way that its output is. the modulo 2 sum of the outputs of those 
delays which correspond to those of the first ri columns of F which added together 
give the / ' th column. 

The circuit C' which we get by replacing D in C by D' is clearly equivalent to 
C and is also a linear.realization of M with functions a' = a and cp' such that q>'(p) 
is the vector consisting of the first ri elements of q>{p) (after relabeling of the delays 
of C). 

The case when k>k' can be similarly taken care of. C is altered by attaching 
in front of it a circuit consisting of exclusive or gates only (no delays) which has 
k' external input wires and k external output wires, the latter being attached to 
the external input wires of C. The exact nature of this additional circuit is determined 
by the linear dependencies between the columns of the matrix whose / 'th row is 
a(sj), where ŝ  is the / 'th element of I . . 

Theorem 7. There is an algorithm which for any finite automaton decides whether 
or not its initial subautomaton is linearly realizable, and, in case it is, the algorithm 
gives a linear sequential circuit which is a linear realization of it. 

Proof. First of all, it should be obvious that there is an algorithm which from a 
given automaton produces its initial subautomaton. Let us assume that this initial 
subautomaton has .« states and k symbols in its alphabet. If it is linearly realizable, 
then it has a linear realization with « delays and A: external input wires. (At most « 
or k, by Theorem 6, if less, then additional delays and external input wires can be 
introduced and earthed.) This linear realization can be described by an « X « matrix 
A, a kXn matrix B and a « X l matrix C of O's'and l's. Furthermore given three 
such matrices we can easily produce a linear sequential circuit which is described 
by them, and any two circuits described by them will be equivalent and be linear 
realizations of the same finite automata. (Only the matrices enter the definition of 
equivalence and linear realization.) Also, given matrices A, B and C it is easy to 
check (using Definition 3) whether or not the circuit described by them is a linear 
realization of a given automaton. 

So our algorithm will look like this. Try all possible nXn matrices A, kXk 
matrices B and « X l matrices C (there will be 2n(n+k + 1) possibilities). Check one 
by one whether the circuits described by them are linear realizations of the initial 
subautomaton of the given automaton. If we find such A, B and C, then our work 
is. done, if we exhaust all possibilities without finding them, then the initial subauto-
maton is not linearly realizable. 
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There are more efficient algorithms than the one described above to do what 
is required in Theorem 7. (One such could be based on the method of Cohn & Even 
[1].) However, in view of the comments after Theorem 1, it is clear that our total 
algorithm for the synthesis of linear sequential circuits cannot be made practicable 
and so we sacrificed efficiency for ease of proof in Theorem 7. 

8. Conclusions 

The algorithms described in Theorems 1, 5 and 7 together provide us with an 
algorithm for the synthesis of linear sequential circuits. However, this is a very 
roundabout as well as inefficient way of doing things, and the possibility of a direct 
synthesis from regular expressions to circuits remains an intriguing open problem. 

In this direction, the reader may find useful two books related to linear sequ-
ential circuits which appeared since the writing of Part I. These are [2] and [6]. 
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Generation of the /c-trees of a graph 

B y T. P A V O 

Abstract 

We present a new procedure that generates all &-trees of a graph in each compo-
nent of which a vertex is given in advance. Our method makes use of a theorem of 
Ore [7] concerning finite directed graphs, thus providing an application of this theo-
rem that beyond its theoretical interest can be used in practical analysis of electrical 
networks. 

Introduction 

Topological formulas are nowadays playing an ever increasing role in the analysis 
of electrical networks (see [8]). In the applications of such formulas, however simple 
they are, the question immediately arises how to generate all the trees, and also 
the 2-trees satisfying certain requirements, of a given graph. 

To overcome this problem several methods were proposed in the last decade. 
In principle, the most simple way to produce all the trees of a graph G with n vertices 
would be to scan all the sets containing n — 1 edges and dispose of those not eligible. 
Naturally for practical purposes such a procedure would be too lengthy and in-
tricate. A procedure usable also in practice was devised by Hakimi and Green [1] 
and solves the problem by splitting the graph in two parts the trees of which are 
assumed to be known. From the trees of these subgraphs the trees of the starting 
one can be composed and also &-trees satisfying certain requirements can be pin-
pointed. This procedure is, however, also lengthy and cumbersome; indeed, to 
carry out the splitting and composition of trees is in itself a complicated algorithm, 
and it must be repeated also for the. subgraphs obtained. A similar procedure was 
devised by Mayeda [3]. 

Other procedures were designed by Talbot (a new set of topological formulas) 
and by Mayeda and Seshu [4]. A common feature of these methods is that they 
choose an arbitrary tree as a starting one and generate the others from this by edge 
transformations. (After deleting an edge of the starting tree another edge of the 
graph is substituted, and then the same procedure is applied to the obtained tree.) 
These methods seem to have certain advantages but we must note that a recursive 
formula is used that is, from the viewpoint of computational technique, difficult 
to handle. 

The most feasible method for practical use that has been developed up to now 

2 Acta Cybernetica 

\ 
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is perhaps that due to Maxwell and Cline [5]. This method is of algebraic character 
and, to its advantage, is simple] easy to understand, and adaptable to digital com-
puters relatively easily. A snag is, however, that it can be used only to generate /r-trees 
with k = 1 or 2 and it uses up a relatively large internal storage capacity. 

In the present paper we are going to present a new procedure that generates 
the k-trees, satisfying certain requirements, of a graph; the procedure in the case 
k = 1 generates all the trees. Our method is about as simple as the algebraic method 
mentioned above is, but it can be applied under more general circumstances; namely, 
it can be used to handle the case / r S 2 too. It can also be ascribed to its advantage 
that, fed into computer, it needs considerably less internal storage room than the 
algebraic method mentioned. The procedure, as presented here, concerns only the 
generation of fc-trees of graphs without multiple edges, but there is, in principle, 
no difficulty in extending it so as to apply to graphs with multiple edges. Our considera-
tions are based on a well-known theorem of Ore [7] on finite directed graphs. 

1. Basic concepts and definitions 

Consider a. graph with n vertices P l 5 . . . , P„ and select arbitrarily a number k 
(1 ^A:Sw)from among them, these being denoted by P,^, . . . ,P i l t( l S / j - c — 

Definition. A k-tree _ ifc of the graph G is an arbitrary graph satisfying 
the following stipulations: 

1. it is a subgraph of G, 
2. it contains all the veitices of G, 
3. it consists of exactly k connected components, 
4. each component contains exactly one of the selected vertices P,,, . . . ,P / f c , 
5. each of its components are a tree. 

• In particular, as seen from the definition, F}t denotes a tree of the graph G; 
for the sake of simplicity we may sometimes drop the lower index and write only F1 . 
The purpose of this note is to study the generation of k-trees conforming to the 
above definition. 

Let M be a matrix of size nXn with the following properties: 
(I) Ev.ery element of M equals either 0 or 1, 

(II) each row of M contains at least one element equal to 1. 
Consider also a matrix M ; i ik, where l ^ / j ^ — < i k ^ n , of size nXn with 

the following properties: 
(I') the ij-th row of M ; , ik consists purely of zeros (J= 1, . . . , k), 

(II') in other rows of M f l ¡k there is exactly one element equal to 1 and 
otherwise these rows too consist purely of zeros, and finally 

(III') at every place where M(li_ i(! contains a 1 the matrix M too does so. 
A 

Definition. If M.j ¡k satisfies conditions (I'), (IF) and (III') then we call it an 
(i1,...,ik)-reductionofM. 

Suppose. M,-, ¡k satisfies conditions (I') and (II'), and write M(1 ¡k = («,-;), 
a,j being the element in the intersection of the ith row and y'th column of the matrix 
in question. 
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j if x /1; ..., ik and axj = 1 , 

0 if x coincides with one of 
the numbers ilt ..., ik 

is called the function associated with the matrix M ; i > 

As seen, the domain of <p(x) is the set {I, ..., n} and its range is a subset of 
{0, 1, ..., «}. Shortly, this function makes correspond to each row index an integer 
equalling zero unless the row with the considered index contains an element equal 
to 1, in which latter case this integer coincides with the column index of this unique 
element. It is clear that the correspondence between the matrices M ( j ¡k and the 
functions associated with them is one-to-one. 

This observation is important since it shows that it is possible to characterize 
the matrix in question with the aid of the row vector (cp(1), ..., <p(n)). This cha-
racterization will be called the row vector representation of the matrix M ; i ik. 

In what follows, both directed and undirected graphs may turn up. Unless 
otherwise stated, loops are not, in general, admitted. In addition, undirected graphs 
are assumed to have no multiple edges. Undirected edges will be viewed as pairs of 
edges directed in opposite directions that connect the same pair of vertices. 

To a graph containing the vertices P1 ( ..., P„ make correspond a matrix JU(<J) 
of size nXn that in the intersection of the /th row and the7'th column contains a 1 
if and only if the vertices P, and P j in this order are connected by a directed edge, 
the remaining elements of the matrix being equal to zero. 

Definition. The matrix //(G) is said to be the adjacency matrix of the graph G. 

It is easily checked'that the correspondance G — ¡x(G) between graphs, contain-
ing the vertices P 1 ; ..., P„, that have only single edges (loops being allowed too) 
and matrices of type nXn containing only 0 or 1 as elements is one-to-one. For 
graphs without loops the adjacency matrix contains purely zeros in its diagonal. 
Undirected graphs have symmetrical adjacency matrices. 

By a well-known theorem of Ore ([7], [6]; [2]), a.directed graph, possibly with 
loops, has the property that at each of its' vertices exactly one of the edges is directed 
outwards if and only if it satisfies the following three conditions: 

(a) each component of the graph contains exactly one circuit (this may possibly 
be a loop), 

(b) in this unique circuit the edges are directed cyclically, 
(c) in each component the edges that do not belong to its circuit are directed 

towards this circuit. 

Definition. An undirected graph without loops is called a generalized tree if 
each of its connected components contains at most one circuit. 

In particular a &-tree is a generalized tree. 
To introduce a useful notation, for a directed graph G we shall denote by v(G) 

the undirected graph obtained by retaining undirected edges between those pairs 
of vertices that are connected in G in at least one direction. 

Definition. The function 

<p{x) = 
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2. Some properties of the graphs Fk = v(/< 1(Mil,-t)) 

Consider a simple graph, i.e. an undirected graph without loops and multiple 
edges, that contains the vertices P j , . . . ,P„ ( n £ l ) , none of which is isolated, and 
write M = /i(G). Fix the integers z'1; — a n d let the matrix 
MFL run over all the (i\, ..., 4)-reductions of M. 

Theorem I. For every graph Fk of form v^i'^M,^,...,ifc)) each of the following 
five assertions hold: 

(A) Fk is a subgraph of G, 
(B) Fk is a generalized tree, 

. (C) the vertices Ptj belong to mutually distinct components of Fk (j= 1, ..., k), 
(D) if a component of Fk contains any of the P¡'s then this component is a 

tree (which may possibly degenerate to a single vertex), 
(E) those components of Fk not containing any of the vertices Pfj. contain at » 

most one circuit and at least one edge each. 
Conversely, if a graph Fk satisfies conditions (A), (B), (C), (D), and (E) then 

it can be represented in at least one way in the form /" Í=v(/¿_ 1(M ¡ 1 ¡J). 

Proof. Choose an arbitrary (/1; ..., 4)-reduction M ; I of M. It is obvius 
that FA : = V ( / Í ~ 1 ( M ¡ 1 ¡ J ) is a subgraph of G. 

Construct a matrix M^ ¡k from M,t i t by writing 1 in the intersection of 
the /j-th row and the /y-th column instead of 0 for every j—\,...,k. Then ju — 1(TVI1'1 ffc) 
is a directed graph such that to each of its vertices there is exactly one edge incident 
that is directed outwards. Applying Ore's theorem we obtain that every component 
of / i " 1 ^ , . . . , ^ ) contains exactly one circuit or loop. By transition from jU-1(M/i,. 
to j,...,,„) we must delete exactly k loops; thus the graph ffc) 
turns indeed out to be a generalized tree. Since the loops* were deleted precisely 
at the vertices Pf , we obtain (D) too (7=1, ...,k). 

Furthermore, since to each vertex P¡ in / i _ 1 (M ; i j i t) there is a loop incident, 
Ore's cited theorem also implies that each component of Fk may contain at most 
one of the vertices P,y; therefore (C) is also established. 

Finally, consider those components of Fk containing none of the points P ( j , 
and consider simultaneously also the corresponding componentes in |i-1(M,- ik). 
These latter contain exactly one directed circuit each. Passing back to —1(1VI11 
it is clear that the component in question of / t _ 1 ( M ¡ 1 J contains this circuit; 
moreover, since a directed circuit contains at least two distinct vertices, it is guaranteed 
that this component of Fk contains at least one edge. This completes the proof 
of (E).* 

For the proof of the converse of the theorem assume in what follows that 
Fk satisfies conditions (A), (B), (C), (D), and (E). To accomplish the proof we 

* It may happen that a component of Fk is, despite the fact that it contains none of the 
vertices P. , a tree. This is the situation if the subgraph in /i_ 1(M.' . ) corresponding to this 

lj '1 T » 'k 
component contains a directed circuit consisting only of two vertices; by transition to F , the two 
edges, directed in opposite directions, that are incident to both of these edges reduce to one single 
edge, and the component of Fk in question does not contain any circuit. 
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associate with Fk a directed graph Fk' for which the one hand Fk' = v(Fk') holds, and 
the other hand for which fi(Fk) coincides with one of the graphs M£l ¡k. 

Introduce a directing of the edges in each component of Fk by abiding by the 
following rules: 

1. If the component in question contains a vertex P(j. and this P ; j is not an 
isolated point then direct the edges of this component towards P , r (C) and (D) 
provides for the unique possibility of this. 

2. If the component in question contains a circuit then directed the edges of 
this latter cyclically and the other edges towards the circuit. Such a directing is made 
possible by (B). 

3. In the remaining cases, i.e. when the considered component contains neither 
a vertex P ; j nor a circuit then it contains at least one edge. Let us choose an edge 
and replace it by two edges directed in opposite directions and, if there exist any, 
direct the other edges towards the circuit constructed just now. 

In this way we obtain a directed graph Fk' for which-Fk = v(Fk ) obviously 
holds. • • 

Consider now the directed graph Fk" obtained by .adding loops at each point 
P o f Fk'. To this Fk" we can apply Ore's theorem. We derive that each row of the 
matrix n(Fk ") contains exactly.one 1. By deleting the loops of "Fk" we can pass back 
to Fk: ; in terms of the adjacency matrices this amounts to replacing the ones by 
zeros in each of the rows ij of n(Fk"). The obtained matrix n(Fk ) is then easily seen 
to be an (/1; ..., 4)-reduction of thé matrix M = n(G). The proof is complete. 

From the above proof it becomes clear that to a graph Fk there correspond, 
in general, several (z'1(..., 4)-reductions. The ambiguity of the construction of these 
reductions lies in steps 2 and 3 above, where for the directing of the edges there 
are, in general, several possibilities. 

We mention two more interesting properties of the graphs Fk featuring in 
Theorem I : 

Fk contains at least k components and at most n—k edges. 
The remark on the minimal number of components is an easy consequence 

of (D). That on the maximal number of edges follows from the fact that Fk' contains 
exactly n—k directed edges. Therefore the properties of the correspondance v imply 
that Fk cannot contain more than n — k edges. 

To require that the graph G contains no isolated points is necessary for the 
existence of an (t\, ..., 4)-reduction for any selection of ..., ik. Still, the assump-
tion.on isolated points can be eased if we extend the notion (z'x, ..., 4)-reduction for 
matrices M that possibly contain rows consisting purely of zeros. In any case, the 
maximal number of such rows must be limited to k and all such rows must be covered 
by those of incides z'l5 ...,z' t. 

As we- pointed out above, the generalized tree Fk in Theorem 1 cannot be 
represented unambiguously in form v(/i_1(Mil,...,,•„))• Nevertheless, in case this ge-
neralized tree is a /c-tree of G, this representation is unambiguous. More precisely, 
we have the following. 

Theorem 2. Assume G is a simple graph without isolated points and with ver-
tices P x , ..., P„, and select fixed vertices P ; i , . . . , P i t , where 1 ^ z^c ••• Then 
the k-très Fk

 ik can be represénted unambiguously in form' v(/t -1(M i l> ;.jIt)), 
where M( l is a suitable (z'x, ..., 4)-reduction of n(G). 
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Proof. That there exists at least one representation of the desired kind follows 
from the converse Theorem 1 since F*t ik obviously satisfies conditions (A), (B), 
(C), (D) and (E) of Theorem 1. 

In the proof that there exists no more than one representation we may assume 
k < n. Contrary to what we want to prove, suppose that ¡k — '(MJ, ¡k)) = 
= v(/i -1(M? ,....,•„)), where M j and M? ¡k are two different (/1; . . . , / j -reduc-
tions of n(G). We are going exhibit a contradiction. 

On account of the assumption that the two matrices are distinct, there exists a 
./V/'i, ..., ik (1 ^y'Sw) such that in they'th row of M j , ¡ k the ^th element is one 
whereas in the same row of M? ¡k the /2th element is one, and /2 being 
unequal and both being different from j { l u /2 = 1,... ,ri). This means that P¡, P ( l , and 
P,2 all belong to the same component of Ff1; i(t. Assume.that P,m is the unique 
one of the selected vertices that also belongs this component (m = \, ... ,k). Then in 
/¿"HMJ, ¡k) there exists a directed path leading fromPy to P,m through P ( l , and 
in n ' ^ M ^ ik) there is one leading from P j to P im through P,„. This means that 
there exist two different paths in some component of ¡k that connect Py with 
P im , contradicting the assumption that F£ ifc is a k-tree of G. The proof is complete. 

Similarly to what was said after the proof of Theorem 1 the stipulations im-
posed on G can be eased also here: it is enough to assume that G contains at most 
k isolated points and these are among the selected ones. 

In case k = 1 we obtain interesting particular cases of Theorem 1 and 2: 

Theorem 3. Assume G is a simple graph with vertices P 1 ; ..., P„, none of which 
is isolated. Write M =/i(G). Fix an integer /', l s / s « , and let the matrix M ; run 
over all (Z)-reductions of M. Then for each graph F o f form v(//_1(M,)) the following 
four assertions hold; 

(A) F is a subgraph of G, 
(B) F is a generalized tree, 
(C) the component containing P ; of F is a tree, which may possibly degenerate 

to an isolated point; and finally, 
(D) those components of F not containing P ; contain at least one edge and at 

most one circuit each. 

Theorem 4. Assume P ( is an arbitrary but fixed point of the connected simple 
graph G, where 1 ^ i ^ n , and F1 is a tree in G. Then M = / / ( G ) has precisely one 
(i)-reduction M,- such that F1 = v(n~1(M,)) holds. 

It is necessary to stipulate in this theorem that G is connected since otherwise it 
would not contain any tree at all. 

3. An algorithm to generate the k-trees 

Keeping an eye on Theorem 2, we want to generate all the ¿-trees F-j ¡k of 
G by forming all (i\, ..., 4)-reductions of /<(G). Among these there will turn up 
those representing the /c-trees exactly once. Apart from the A'-trees these reduced 
matrices will represent other generalized trees Fk satisfying conditions (A), (B), 
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(C), (D), and (E). In the sequel we are going to construct a procedure that selects 
those producing k-trees F£ ¡k from among all.the (i\, . . . , (^-reductions of //(G). 

So our procedure will enable us to sift out from among the mentioned generalized 
trees Fk the £-trees F\j ¡k, i.e. those generalized trees satisfying (A), (B), (C), 
(D), and (E) in Theorem 1 that contain no circuit in any of their components. 

To start with the description of our method, consider the sets {F* and 
(Mj, ¡k}, where the elements of the'second set denote the (/1; ..., 4)-reductions 
of the matrix M = /a(G). AS seen from Theorem 2, all the k-trees Fk

l ik occur 
exactly once among the graphs v ^ f ^ M ^ ik)). Also, we observed earlier in Section I 
that the elements of the second set can be given in row vector representation. So 
in the way described in Theorem 2, the set {F* ¡J can be mapped in a one-to-one 
way into the set {(<p(l), ...,(p(n))} of row vectors, <p running over the functions 
associated with any of the (i\, ..., 4)-reductions M ; i ij(. We shall describe a pro-
cedure that selects those vectors being in the range of the mapping just described. 
The selected row vectors (<p(l), - - -, («)) will be those representing the £-trees 

the graph G. 
Consider a matrix M ( l ik satisfying properties (I'), (II'), and (III') described 

in Section 1 and let (p be the function associated with this matrix. 

Definition. By a cycle check performed on the matrix M f l ¡k starting with 
the integer x we mean the construction of the sequence 

x,<p(x),<p(<p(x)),... (lSxssn). 

We say that the outcome of the cycle check is finite if we can construct only a finite 
sequence, i.e. if somewhere in the sequence a zero turns up, which does not belong 
to the domain of q>; otherwise we say that the outcome of the cycle check is infinite. 

If the outcome cycle check is infinite then, as is easily seen, from a certain point 
the same segment of the above sequence will occur repeatedly. 

Definition. By a complete cycle check performed on the matrix M ( l ) ik we 
mean a bunch of cycle checks starting with the integers 1, . . . , « respectively. The 
outcome of a complete cycle check is said to be finite if all checks constituting it have 
finite outcomes; otherwise, the outcome is said be infinite. 

Now we are going to study the cycle checks from an aspect that will have some 
importance for our later purposes. To this end, consider a matrix Mf • i t 
and a cycle check performed on it that starts with the integer x. The construction 
of the sequence x, <p(x), <p(q>(x)), ... can be regarded as starting at a vertex Px of 
the directed graph /i_ 1(M i l ¡k) and walking through a part of the graph, always 
proceeding in conformity with the direction of the edges passed along. The sequence 
obtained by a cycle check coincides with the sequence of vertices passed through 
during such a walk. In case of a cycle check with finite outcome, after a certain 
time we arrive at a vertex out of which there does not lead any edge. In case of 
infinite outcome we get into a directed circuit, during the walk. 

To be assured that the outcome of a complete cycle check performed on a given 
matrix is finite we must perform all the n cycle checks, constituting this complete 
check; we may, however, stop earlier if we happen to find an infinite check among 
these, because this already implies the infiniteness of the complete check. 
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Theorem 5. Assume G is a simple graph with vertices P 1 ; ..., P„, none of which 
is isolated, and M f l i t is an (ilt . . . , 4)-reduction of n(G). Then the complete 
cycle check performed on the matrix MlVj ¡k is of finite outcome if and only if 
v(n~i{Mh ifc)) is a ¿-tree Fj[ ¡k of the graph G. 

Proof. To verify the "if" part assume that JF,* ...jlk is a ¿-tree of the graph G. 
According to Theorem 2 there exists a reduction M ( l ,k such that Ifc = 
= v(n~1(MiJ ;„)) holds. Furthermore, in each component of the directed graph 
/ i - 1 (M ; i ¡k) all the edges are directed towards the corresponding vertex P 
(j= 1, ..., ¿). These imply that the cycle check performed on the matrix M i l ; Ifc 
that starts with an arbitrary ¡ = 1, . . . , n is of finite outcome. Therefore the complete 
cycle check is also of finite outcome. 

To prove the "only if" part assume, that the complete cycle check performed 
on the matrix M(1 i)c is of finite outcome. Then by an observation made above on 
cycle checks we see that none of the components of the directed graph ,fc) 
contains a directed circuit. 

This entails that the graph v(/i"1(Mj l i . ' i ¡J) does not contain any circuit. Indeed, 
assume the contrary, i.e. that this graph does contain some circuit. Consider the 
directed subgraph of fi~1(M i l ¡k) corresponding to this circuit. This subgraph 
cannot be a directed circuit; thus it contains at least one vertex with two edges 
incident to it that are directed outwards. This contradicts the definition of the 
matrix M,-, 

Moreover, we can derive that the number of edges of v ^ " 1 ^ , ¡J) is n—k. 
In fact, this is obvious for /t_1(M11 ¡k). This latter graph, as was pointed out above, 
does not contain any directed circuit; so, in particular, it does not contain a directed 
circuit with two edges. Therefore, the correspondance v does not reduce the number 
of edges. 

We obtained that v(fi_1(M i l ik)) is a circuit-free graph with n — k edges, 
and this means that it is indeed a ¿-tree. Taking Theorem 2 into account, we see 
that this ¿-tree can be represented in form Fil i i k . The proof is complete. 

From Theorem 2 in Section 1 and Theorem 5 in Section 2 we obtain the follow-
ing algorithm for the generation ¿-trees F^ ik of graph G: 

T. Construct the adjacency matrix M=/i((7) of the graph G. 
II. Form all (i1; . . . ,/^-reduction M f l ¡k of M. 

III. Perform a complete cycle on the matrices M f l ik. Those leading to finite 
outcomes give the desired ¿-trees in form v(/t_1(M ; i • ¡J). 

(If the graph G has no ¿-trees at all this will turn out by performing the algo-
rithm since in this case all the cycles have infinite outcomes.) 

The algorithm described can be extended so as to apply to the search of the 
¿-trees of a graph G with multiple edges by keeping in mind the following: 

Whenever two points of the graph G is connected with more than one edges 
we replace these with one single edge and call the number of edges replaced the 
multiplicity of this single one. By performing the above algorithm on the obtained 
graph G' we get its ¿-trees. Each of the ¿-trees of G' that contains no substituted 
edges is a ¿-tree of G too. 

Now consider the ¿-trees of G' that contain also substituted edges. By taking 
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into consideration the substituted edges with their multiplicities we obtain the 
k-trees of G. From a A>tree in G' we can derive as many k-trees in G as the product 
of the multiplicity of its edges. 

• This method provides a way for generating the k-trees of a graph G with multiple 
edges. , , • 

In case k = 1 our algorithm gives all the trees of a graph G. On account of. 
Theorem 4 we see that the generation of the trees can proceed in n different ways 
depending on which of the n vertices of G we choose as P,. We obviously obtain 
all the trees independently of this choice. This enables us to deliberate as to which 
of the n ways is the simplest from the angle of computational technique. This 
problem will be touched upon in the next section. 

We should like to add some computation-technical observations concerning 
the algorithm outlined in the previous section on the generation of the trees FfL ¡k 
of a graph. • 

To start with, it seems practical to perform the first two steps of the algorithm 
immediately on the row vector representation of the considered reduction M ; iJ i t . 
To make this possible we introduce the notion of generating matrix. 

Let M = /i(G)'=(tf,j) be the adjacency matrix of the graph G. 

Definition. The generating matrix MG = associated with the graph G is 
determined by the formula 

Now the row vector representation of a (z'1; ..., 4)-reduction M ; i j of the 
adjacency matrix M = /z(C) of the graph G can be obtained from M by choosing 
an element from each row of M in the following manner: 

If the index j of the row considered is different from all z, ( / = 1 , .. . , k) then 
let the choosen element be different from zero, and if j=U from some / then 
choose a 0 (e.g. the element in the diagonal). 

Now the cycle check can be performed on the row vector obtained accord-
ingly. 

In several cases computational short-cuts can be made in cycle checking. For 
example, it is easy to see that it is not necessary to start a cycle check at elements 
which were arrived at in earlier cycle checks. Moreover, if the complete cycle check 
has infinite outcome we may stop when we stumble upon the first cycle check with 
infinite outcome. — 

In principle, it is irrelevant which vertex P, we fix when generating the trees 
of a graph' G. In practice, the most clever choice seems to be the one for which 
the z'th row of the generating matrix M c contains the largest number of elements 
different from zero. It can furthermore be observed that the cycle check may have 
a finite outcome only if the number z occurs in the row vector representation 
of the matrix M ;. 

The remarks made here enable us to sift out those matrices M ; that are to be 

4. Remarks on adaptation to computers and model examples 
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0 2 0 0 5 
1 0 3 0 5 
0 2 0 4 0 
0 0 3 0 5 
1 2 0 4 0 

used for cycle checks. Many of the above remarks (e.g. that given in the last sentence 
of the previous paragraph) can be modified in an obvious way so as to apply also to 
the case 

Example. Consider the graph G in Fig. 1. We are going to generate all its trees. 
The generating matrix M c of G takes the form 

M c = 

Looking at this matrix we see that it is perhaps 
the best to choose the vertex P5 as P ; . If we cons-
truct the row vector representations of the M 5 reduc-
tions then, according to the remarks made above, we 
obtain 20 row vectors. Performing cycle checks on 
these we obtain that 9 of these vectors do not rep-

resent any trees. The final result is 11 trees, which are in turn in row vector rep-
resentation : 

(23540), (25230), (25250), (25450), 

(51230), (51250), (51430), (51450), 

(53450), (55230), (55250). 
Observe that from a row vector representation we can easily pass to the actual 

tree. To do this imagine another row, consisting of the elements 1, 2, . . . ,« , placed 
above the row vector representation of M f ; disregarding the one column containing 
zero, the remaining colums indicate the pairs of vertices that are connected in 
the tree in question. For example, the tree represented by the row vector (55230) can 
be seen in Fig. 2. 

Fig. 1. A simple graph 

row vector representation: 

(55230) 

"completed" row vector: 

2 3 4 

5 2 3 2] 

*3 
Fig. 2. A tree of the graph of Fig. 1. 
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As a further example we shall now generate the trees Fj.2,4 of the graph G 
given in Fig. 1. 

Again, we construct the row vector representations of all the eligibe ones of the 
matrices M 1 2 4 : 

(00201), (00202), (00204), (00401), 

(00402), (00404). 

Now performing cycle checks on the matrices corresponding to the rows enumer-
ated we obtain finite outcomes in all six cases. 

This means that in this case the number of the 3-trees is 6. Fig. 3 illustrates the 
3-tree corresponding to the vector (00404). 

row vector representation: "completed" row vector: 
(00404) p 2 3 4 51 

[ 0 0 4 0 4 ] 

Fig. 3. A 3-tree of the graph of Fig. 1. 

The advantages of this method in comparison to others for the generation of 
¿-trees of a graph G seems clear if the method is adapted to computer. Namely, 
the method described in Section 2 is perhaps the most easily fed into computers 
among the known tree-generation methods. It is also clear that the storage capacity 
occupied by a programme based on this method is considerably smaller than that 
needed for the performing of a programme using e.g. the algebraic method [5]. 
The reason for. this is that it is not necessary to store the data representing the tree 
for further operations, the cycle check decides immediately whether the obtained 
data (row vector) in fact represent a tree. This is a considerable advantage if we 
take into account that in pratice the number of the trees can be of magnitude order, 
of several millions [4]. If not programmed clumsily, the complete cycle check does 
not increase the computing time unfavorably in comparison with time used up by 
the algebraic method. 
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R É S U M É 

Dans cette petite .Note nous allons présenter une procedure nouvelle engendrant 
tous les A:-arbres d'une graphe avec un point donné dans chacun de ses composantes 
connexes. Notre méthode exploite un théorème d'Ore [7] concernant les graphes 
finîtes" et directées, ainsi rendant une application de ce théorème qui est, hors de 
son intérêt théorique, aussi utile dans l'analyse des secteurs électriquies pour des 
buts pratiques. 

(Received March 9, 1970) 



On the behaviour of some cyclically 
symmetric networks 

B y A . ADAM a n d U . K L I N G 

Zusammenfassung. In diesem Artikel beschäftigen wir uns mit dem folgenden 
speziellen Typ von Netzwerken: die Punkte des Graphen werden durch Px, P2, ..., P„ 
bezeichnet; es existiert ein Zahl k (1 ^k</;) so daß von jedem Punkt P, die Kanten 
zu den Punkten 

-Pi-lJ Pi-2> •••! Pi-k 

und nur zu diesen führen (wobei die Subtraktion modulo n gemeint wird). Wir 
setzen dasjenige kontinuierliche Modell fort, das im Abschnitt 3 der Arbeit [2] 
eingeführt wurde. Der Zustand 9t eines derartigen Graphen heißt zyklisch, wenn 
es eine positive Zahl p gibt, so daß nach einem Zeit-Intervall der Länge p der aus 
91 entstehende Zustand mit 91 übereinstimmt. Wir unterscheiden im § J reguläre 
und nicht-reguläre Zustände. In den §§ 2—3 wird das Funktionieren eines Graphen 
mit einem regulären Anfangszuständ diskutiert; wir stellen fest, daß jeder reguläre 
Zustand zyklisch ist. im § 4 beschäftigen wir uns mit dem Funktionieren eines 
Netzwerkes mit einem nicht-regulären-Anfangszustand; unser Hauptergebnis be-
sagt, daß kein nicht-regulärer Zustand zyklisch sein kann. • 

§ 1. Introduction 

In this paper we deal with the function of a special graph-theoretical class of 
networks. (We speak of a network if numerical values or numerical functions are 
assigned to the vertices of a graph.) We shall point out that the behaviour of net-
works in question can be described more explicitly in comparation to the general 
model elaborated in Sect. 3 of [2]. It is throughout supposed that the reader is familiar 
with Sections I—3 of . the former article [2]. 

Now we delimit the graph-theoretical structure of the networks to be investigated. 
Let G(n; m1,m2, ..., mk) (where l i m 1 < / ) i ! < - < m l . < / i ) denote the graph con-
sisting of n vertices, labelled as Pls P2, ...,P„, so that the directed edge P{Pj exists 
if and only if there is an integer h (1 s / i sAr) for which the congruence 

i—j = mh (mod n) 

holds.1 We shall regard the graphs G(n; 1, 2, ..., k) (where I < n ) in the whole 

1 For the isomorphism problem of these graphs see [1] and the most recent papers [3], [4]. 
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paper. We note that the subscripts of the vertices of such a graph (and consequently, 
also the subscripts of the functions assigned to them) are mostly understood 
modulo n r 

Let a state 
?r = <«,(/) ,«¡(0,. . . .«„(*)> 

(at the instant3 /) of a graph G. (containing n vertices) be considered. Let us denote 
by 31 [+/>] the state of G at the instant t+p where p is an arbitrary non-negative 
real number. (More precisely: let us apply the continuous model defined in Sect. 3 
of [2] for G, starting with 2t at / ; let [+p] be the vector 

{*1(t+p),x2(t+p), ...,«„(/+/>)>.) 

We say that 91 is a cyclic state (and p is its period) if there.exists a positive p such 
that 9f = 21 [+/>]• In the contrary case, 91 is an acyclic state. 

We use for a,(0) the shorter notation P¡, too. 
Let us consider a network G(n\ 1,2,. . . , k). Assume that there exists at least one 

vertex Pj with Uj(t) = 1. (If this holds for P}, then each of aj-^t), <Xj_2(t), <Xj_3(t), ... 
...,ctj_k(t) is 0.) We say that the vertices 

(1) Pi + l> Pi + n , ••• , Pj-o, Pj 
form an arc (at the instant /) if 

1 = a^) > a; + 1(/) > cci+2(t) > ••• > uJ_k_1(t) == 

S = *j-k + l(t) = ayJft+aO) = ••• = ctj-i(t) = 0 

(and, of course, a j ( t ) = l) hold. Evidently, the number of vertices of an arc is neces-
sarily at least + 1. (We emphasize that /"¡-does not belong to the arc (1).) A state 
of a graph G(n\ 1, 2, .. . , k) is called regular (at t) if each vertex is contained in an 
arc (obviously, it may be contained in only one). In a regular state, we denote by 
(p(Pi, t) the first vertex P} in the sequence 

Pi +1 > f i + 2 J P i + 3 > 

which satisfies «,(/) = 1; in other words, <p(Pt, t) is that vertex Pj in the arc contain-
ing Pi+1 which fulfils <Xj(t)= 1. (Pf and Pi+1 are in the same arc unless a , ( / ) = l . ) 

In what follows, we shall obtain that a state of a network G(n; 1,2, ...,k) 
is cyclic if and only if it is regular (Propositions 2, 8). 

§ 2. Discussion of the behaviour of a network starting 
with a regular state 

Let us consider a regular state of a network G(n; 1, 2, ..., k) at the instant 0. 
Our next aim is to give a detailed discussion of the function a( associated to a vertex 
Pi (chosen arbitrarily) of G during the time interval [0, r]. Our treatment is based 

2 For example, we write simply "the vertex /", +," instead of "the vertex Pj whose subscript 
is determined by j = / + / (mod n), 1 

3 In what follows, t will be almost everywhere 0. 
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upon Sect. 3 of [2]. We shall formulate several consequences of the present discus-
sion in §3; one of these consequences is anticipated just now: 

Proposition 1. If 

91 = <ai(0), a2(0), ...,a„(0)> 

is a regular state,, then we have 
«/(r) = «,•+* +1(0) 

for each i (i can be 1, 2, ..., n). 

We are going to perform the discussion. We distinguish three cases according 
to the possibilities 0 < / ? ; < l , /?; = (), Pt — l. Any case is subdivided to some sub-
cases with respect to the smallest integer /; satisfying Pi+h = <p(Pi, 0). In every dis-
cussed case, the following statement will be always, true: whenever <*;(<) = 0 and 
there exists a positive number e such that aj(t')>0 holdsfor every t'fulfilling / — e. < 
-=./'< t, then ocy+1(0 = l- We shall apply this method of inference (in a number of 
steps) without being mentioned explicitly. 

. Case I: 0 < / 5 i < l . We distinguish three subcases. 
Case 1/a: h > 2k+'\, in other words, each of Pi + 1, + •••>Pi+2k + i differs 

from <p(Ph0). This assumption implies (by the definition of the regular state) 

Pi^Pi + l^ >Pi+k > Pi+ k + 1 — Pi + k + 2 =•'••= Pi+2k + l-

The behaviour of a t in [0, r] can be described as follows: 
(i) in the interval [0, t ( l — pt)] the value of a ; grows linearly from'/?; to 1, 

(ii) in the interval [ t(1 —/?,), r ( l —/?i+1)) a ; is constantly 1, 
(iii) in the interval [t(1 — P'i+1), t ( I — Pi+k + 1)] a( is constantly 0, 
(iv) in the interval [r(l ~pi+k+x), t] (of length rpi+k + l) the value of a ; grows 

linearly from 0 to T-Pi+k + 1/t = Pi+k + 1. 
Indeed, PI gets edges exactly from the vertices PI+1, PI+2, PI+K. None of 

•ai + l , ...,ocl+k can be 1 in the interval [0, r ( l —pi+1)). However, at every instant t 
of the interval [ t (1 - / ? i + 1 ) , r ( l - / 3 i + J i + 1)), (exactly) one of a, + 1(i), ...,cci+k(t) is 1. 
In the interval [T(1 —y?i+t + 1), T) <xi+k + 1 is constantly 1, thus each of a i + 1 , ..., ai+k 
is constantly 0. We have also a i + 1 ( t ) = ••• =a I+ ) t(T) = 0, hence a( may grow in 

. Case l /b : jk + 2 31 h == 2A:+1. Then 

Pi> Pi + l^ '•• > Pi +h-k-l = Pi + h-k — Pi + h-k+1 — = Pi + h-1 — 

1 = Pi + h> Pi + h + l — Pi + h + 2 — £ Pi + h + k-
The condition of the case implies the inequalities 

i + 2 S i + h-k ^ / + ¿ + 1 i + h-l 'rS i + 2k, . 

thus Pi+k+1 = 0. The behaviour of a ; satisfies the assertions (i), (ii) of Case 1/a, 
moreover, 

(iii) in the interval [r(l —Pi+1), T] a ; is constantly 0. Indeed, since a i + t + 1 ( / ' ) < l 
at each instant t' of the interval [0, T), the behaviour of a i + 1 , ..., a i + t i s similar to 
Case 1/a (with t instead of x(l —P i+k + 1)). • 



72 A. Ádám and U. Kling 

Case 1/c: /1 = k+ 1. Then 

1 = Pi + k+l^ Pi+k+2 — Pi+k + 3 = ••• = Pi + 2k+2-
The behaviour of can be described as follows: 

(i) in the interval [0, t(1 — /?,)] the value of ot,- grows linearly from /?,- to 1, 
(ii) in the interval [r(l — /?,), t] a i is constantly 1. 
Indeed, none of <*i+1, a1 + 2 , ..., a i + k can reach 1 in the interval [0, t (2 - j 8 J + t + s ) ) , 

furthermore r < t (2 —/?i+t + 2). 

Case 2: ^¡ = 0. We distinguish four subcases: 
Case 2/à : /; = A" -I-1. We can prove by ideas similar to Case 1/c that a ; grows 

linearly from 0 to 1 in the whole interval [0, t]. 
Case 2/b: h = k. Then 

1 = Pi+k^Pi+k+1 = Pi+k + 2 — ••• — Pi + 2k + l-

The behaviour of a, is as follows : 
(i) in the interval [0, t (1 —/ifl+t+1)] af is constantly 0, 

(ii) in the interval [r(1 — /? i+fc+1), r] a t grows linearly from 0 to 

( t - T ( 1 -j8,-+t + i))/T = Pi+k + 1. 

Case 2/c: 1 S h k-l and Pi+k+1 = 0. Then 

Pi = Pi+i = ••• = p:+h-1=0,1 = pi+h>pi+h+1>-

••• > Pi + k + l> Pi+k+2 = Pi + k+3 — ••• — P, + 2k + 2-
The same conclusions (i), (ii) are true as in Case 2/b. 

Case 2/d: 1 si /1 S k-l and 0i+k + 1 = O. Then 

Pi = Pi+i = -= Pi+h-i = 0, 

1 = Pi + h>Pi + h +1 = fii+h+2 =••= Pi + k + 1 = 0. 

In this case a, is constantly 0 in the whole interval [0, T]. 

Case 3: /?; = 1. This case can be discussed similarly to Case 1. The single modifi-
cation is that T(1— Pi)=0, thus the conclusions (i) do not occur in the subcases. 

§ 3. Propositions on the behaviour of a network starting 
with a regular state 

We are going to expose some statements which summarize the discussion per-
formed in the preceding paragraph. Let g be the least common multiple of fc+l 
and n. 

Proposition 2. Any regular state is cyclic; gr/(k +1) is a suitable period. 
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Proof. If we apply Proposition 1 gj{k +1) times, then we get 

a.-(0) = 0 W + i , ( r ) = a , + 2 ( f c + 1 ) ( 2 r ) = ••• = ai+g(gz/(k+ 1)) = ai(gxj(k+ 1)) 

for every /. 

Proposition 3. If 11 is a regular state, then the state 91 [ + i] is regular for each 
non-negative t. 

Proof. Assume that the instant of 91 is denoted by 0. Let d be the greatest in-
teger so that dx ^ t. We get by successive application of Proposition 1 that the con-
clusion of the present proposition is true for dx. By analyzing § 2, we obtain that 
it holds for t too (because t—dx< x). The proof is completed. 

An easy consequence of our former investigations is 

Proposition 4. If 91 is a regular state and t is a non-negative number, then the 
number of arcs of 9t equals to the number of arcs of 9l[ + ?]. 

Let us fix a vertex P ; , let us consider the sequence 

( 2 ) P¡> P i + (k + l)> P ¡ + 2(k + l)> ^ ¡ + 3(l[ + l)> •••) P i - { k +1) 

consisting of g/(k + 1 ) (distinct) vertices and the sequence 

( 3 ) Pi + ll •Pf+(*-t-l) + l> Pi + 2(k + l) + l> J?i+3(fe + l ) + l5 •••! + 

which consists likewise of g/(A: + l) vertices. Either n,k+ 1 are relatively prime 
to each other (thus g = n(k + 1 ) and both of (2), (3) contain all the vertices) or 
(2), (3) are disjoint.4 Let us define the instants vh and wh by 

vh = * (/'-/?,+(A-I)(*+D) and wh = x (A-/? i + ( »_ 1 ) № + 1 ) + 1 ) 

(where h can be 1,2, . . . , g/(k +1)). This definition implies immediately 

Lemma 1. For any h, 

x(h — 1) S ct ë tA and x(h — \) ^ wh S xh. 

Lemma 2. For any h we have one of the three possibilities 

(aj) vh < wh 

(a2) vh = wh = xh 

(a3) wh = r(h — 1) and vh = xh 

(according as 

(bx) P i + 

(kg) Pi + (h-l)(k + l) — Pi + (h-l)(k + l) + l = 0 

(^3) Pi+(h-l)(k + l) = 0, Pi+(h-l)(k + l) + l = !)• 

4 For, if (2), (3) contain a vertex in common, then some multiple of k+1 is congruent to 1 m o -
dulo it, hence n and k+1 are relatively primes. 

3 Acta Cybernetica 
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Proof. The equivalence of (a,) and (b,) can be shown easily (for all the three 
values of /), the proof is completed by the remark either (bj) or (b.,) or (b3) is true 
since the state is regular. 

Lemma 3. If vh_1<wh_l and vh < wh for some / ; ( ^ 2), then either wh _, = vh = 
= x(h — 1) or < vh-r. 

Proof. The supposition implies 

Pi + (h - 2)(t + 1) > Pi + (ft - 2)(t +1) +1 > 

Pi + (A - IX* + 1) > Pi+ (* - 1)(* + !) +1 • 

The sequence (consisting of k + 1 numbers) 

( 4 ) Pi + (A-2)(t + l ) + l> "/+ (ft — 2)(& +1) + 2 s Pi + ((i-2)(k+l)+3> •••> Pi + (ft-l)(fc + l) 

is monotonically decreasing unless /?;+{/._1)(ifc + 1) = I (by the regularity of the state), 
thus we can distinguish two cases. 

Case 1: (4) is monotonically decreasing. Then the number 

Pi + (h-2)(k + l) + l — Pi + (h-l)(k + l ) { = (vh — r — W„-i)/r) 

is positive, hence w,,.! < vh — x. 

Case 2: l i ( fc+1) = 1. Then, on the one hand, vh = r(h—l); on the other 
hand, A+(/,-2)(* + i)+i = 0, this implies wh_1 = t ( / j - 1 ) . 

By use of the numbers vh, wh we can explicitly characterize the behaviour of a ; 
in the interval [0, gx/(k + 1)): 

Proposition 5. Let us consider a regular state at the instant 0. The function at, 
assigned to a vertex Pn satisfies the following four assertions: 

(A) If (l S h ^ g/(k+ l) and) vh<wh, then is constantly 1 in the interval 
K . ".'J.5 

(B) If (2 S h S g/(k + 1) and) w h w h , then arrows linearly in the inter-
val [v^ — t , vh] from 0 to 1. 

(C) If < Wj, then <xi grows linearly in the interval [0, u j from 1 — vjx to 1. 
(D) The value of a,- is 0 at all the instants of the interval [0, gxj(k + 1)) which 

are not referred to in (A), (B) and (C). 

Proof. Let an instant t lying in [0, gx/(k+\)) be considered. There exists a 
number h such that x(h — 1) S t -c T/I (where 1 S /; ^ g/(k -f-1)). By using Pro-
position 1 successively, h — 1 times (with t — x, t — 2t, t — 3T, ..., t — x(h — l) instead 
of 0), we get 

<*;(0 = ai + (t + i ) 0 - T ) = <*i + 2(* + i ) ( ' -2T) = ••• 
a i + (ft_2)(k + 1 ) ( / - t ( A - 2 ) ) = cci+ih^m + 1)(t-x(h- 1)), 

i.e. the behaviour of af in the interval [x(h — 1), xh) is the same as the behaviour of 
a i + ( h _ 1 ) ( t + 1 ) in [0, t ) (with the appropriate translation). 

5 Since wh = + 1 may occur, two or more intervals of this character can be joined. 
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First we show (A). The function a i + ( h _ i ) ( k + 1) takes the value 1 exactly in the 
sub-interval 

[ t ( l — Pi + (h-l)(k + l))> T 0 ~ Pi + (h-l)(k + l) + l)) 

of [0, t) by Cases 1/a, 1/b, 1/c, 3/a, 3/b, 3/c of the discussion in § 2 (even if at least 
one of 

Pi + (h-l)(k-H) = 1> + (/i-l)(t + l) + l = 0 
is true). 

In order to verify (B), let /( —T) be such an instant that a¡(t) = 1 but, for every 
positives, there exists a t* fulfilling a ; ( i * ) < l and t — a Thena i + ( h _ 2 ) ( t + 1) 
has the analogous property at the instant t — (h — 2), and T S t — x(h — 2) < 2x. 
By analyzing the discussion and by Proposition 1, we get that a;+ ( / l_2 ) № + 1 ) grows 
linearly in [f — r(/r — 1), t — x(h — 2)] from 0 to 1, consequently a ; behaves in [t — x, t] 
analogously. 

(C) follows from the discussion immediately. 
(D) is equivalent to the subsequent statement: any function a,- is 0 at t unless 

t is contained in an interval (t', f ' + t] such that a ;(i'-|-T) = 1. This statement fol-
lows easily from the discussion and Proposition 1 in the interval [0, 2r], it can be 
extended for any non-negative t by Proposition 1. 

The last assertion we state relying upon § 2 is the evident 
Proposition 6. The following three statements are equivalent for a regular state: 
(A) The state is steady. 
(B) Every arc of the state consists of exactly k + 1 vertices. 
(C) k + I is a divisor of n and the number of arcs in the state is n/(k + 1). 

§ 4. Study of non-regular states 

The purpose of this paragraph is to show that only the regular states are cyclic. 
First we define the irregularity indices of an arbitrary permitted state6 91 by the fol-
lowing three rules: 

(i) if /? ; - !</? ;< 1, then / is an irregularity index, 
(ii) if /?,_! = /?;>(), then i is an irregularity index, 

(iii) if /?,-i = /?; = 0 and each of /?I + 1 , i?i+2> is < 1 , then i is an irre-
gularity index. 

(The conditions in (i), (ii), (iii) exclude each other.) We agree that no remain-
ing number (out of the set {1 ,2 , . . . ,«}) is an irregularity index. The irregu-
larity number of the state 21 is the number of its irregularity indices. 

If (i) or (iii) holds for i, then i is called a strong irregularity index, the number 
of strong irregularity indices is the strong irregularity number of 21. If (ii) holds for i 
then we call i a weak irregularity index. 

Lemma 4. The irregularity number of 91 is 0 if and only if 2Í is a regular state. 

Proof. It is obvious that the definition of the regular state does not admit 
any of the possibilities (i), (ii), (iii). — Conversely, assume that no vertex fulfilling 

6 A state is permitted if a, = l , Pjíz(P¡) imply a.j = 0. 

y 
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the condition of either (i) or (ii) or (iii) occurs in 91; let Pt be an arbitrary vertex. 
If ft = 1, then 

Pi-k = Pi-k + 1 = Pi-k + 2 = ••• = P i - 1 = 0 

(since the state is permitted). If 0 1 , then (since otherwise (i) or (ii) 
would be violated). If /?,-'= 0, then either one of Pi+1, P-, + o, • ••, Pi+k is 1 or 
(in consequence of (iii)). Thus 9i is a regular state. 

Lemma 5. Let 91 be a state at the instant 0 and t be a positive instant such that 
the functioning of the network is defined (at least) in the interval [0, /]. If i is not a 
strong irregularity index at 0, then i is a strong irregularity index nor at t. 

Proof. Let t* be the (possibly non-existing) least real number such that 0 S t* ^ t 
and none of a, + i, a,+2, • ••, a i+fc takes the value 1 in the interval [t*, Either t* = 0 
or there exists a number q such that 1 ^qSk and to every positive e there exists a 
t' satisfying both t*—s < t' < t* and ai+q(t')= 1. 

Case 1: t* > 0 and q<k. We have 

« , - ! ( ' * ) = « . ( ' * ) = 0 , 

the functions a ,_i , a,- are equal and increase linearly in the whole interval [/*, i] 
from 0 to (t — t*)/T. (Necessarily / — / * < T; if the contrary were true, we should 
get a contradiction to the hypothesis that the functioning is defined in [0, r].) 

Case 2: t* > 0 and q = k. We have 

« • _ ! ( * * ) S « , ( / * ) = 0 . 
Three subcases are possible: 

Case 2/a: ai_1(t*)=0. This subcase can be treated similarly to Case 1. 
Case 2/b: a,•_!(/*)>() and t — t* < r. Then at increases linearly in the whole 

interval [i*, t] from 0 to (t — t*)/x. ai-1 increases linearly from 

* i / n t n f a ' - l ( i * ) + ( / - i * ) / T i n i f + 
' - l U ; i 0 l l in [ / * , i * + T ( l - « , _ ! ( / * ) ) ] if a,-x(.t*)Ht-t*)lT>1. 

In the second of these cases a , . ! is constantly 1 in [/* + T(1 — t ] . 

Case 3: t* = 0 and /?, _ x > f t . Let us assume that t is so large that all the inter-
vals to be discussed are in [0, /]. (If this assumption is not fulfilled, then the sub-
sequent discussion is altered so that it breaks off at the instant t.) In the interval 
[0, t (1 — j?;_i)] both a i _ 1 and af increase linearly. In [r(l — ft_i), r( l — ft)) a ^ is 
constantly 1 and a ; increases linearly. In [r(l — ft), f] a i s constantly 1 and is 
constantly 0. 

Case 4: t* — 0 and /?,-!=/?,. Then ? < r , furthermore ai_1, a,- are equal and 
increase from 0 to t/x similarly as in Case 1. 

Case 5: t* does not exist. Then there is at least one number q such that 1 S g g i 
and ai+q(t) = l, thus a,(i) = 0. i fulfils the conditions of neither (i) nor (iii) at t. 
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Lemma 6. If the strong irregularity number of a state 91 at the instant 0 is positive 
and the functioning of the network in the interval [0, t] is defined, then the strong 
irregularity number of the state 21 [ + T] is 0. 

Proof Let i be an arbitrary index. If i is not a strong irregularity index, then 
we can apply Lemma 5. Otherwise, let us define t* and q as in the proof of Lemma 5. 
If / * > 0 then Cases 1, 2 of the preceding proof remain valid; if t* does not exist, 
then the inference of Case 5 can be applied. We have still to study the cases when 
i* = 0 and i fulfils (i) or (iii). 

If (i) is true, then 

« M 1 - A ) ) = 1 and a ;- i(T(l —/?,)) = 0. 
i is not a strong irregularity index at T(1 — f}¡) consequently nor at T (by Lemma 5). 

If (iii) holds, then it is easy to see that the functioning of the graph is defined 
at most in the interval [0, T); this contradicts the supposition of Lemma 6. 

Lemma 7. Let 21 be a state at the instant 0 such that the strong irregularity number 
of 21 is 0. If the functioning of the network in the interval [0, T] is defined, then the 
irregularity number of 21 [ + T] is 0. 

Proof Whenever j is an arbitrary index and t' is an instant such that O S / ' ^ T , 
then j cannot be a strong irregularity index at t' (by Lemma 5). We shall study a 
function a¡ in [0, t]. Let us define t* and q in the same manner as at beginning of the 
proof of Lemma 5. 

Case 1: t* >0. Necessarily q — k (since now the value 1 "steps" from j to j+ 1, 
similarly to the case of a regular state, discussed in § 2). Hence <xi_1(t*)=-ai(t*)=0. 
In the interval 

0 V * + < 1 - 0 ^ 0 * ) ) ] 

a¡_ l5 a¡ increase parallel (i.e. <xi_1 — a.i remains constant). In the interval 

D * + T(1 - « , - ! ( / * ) ) , T] 

(provided that it exists) a,-^ is constantly 1 and a¡ continues its growth. 
Case 2: t*= 0. We distinguish two subcases. 
Case 2/a: Pi-1 = Pi. This assumption implies that the functioning of the net-

work is defined only in [0, r ( l — /?¡)), i.e. it contradicts the supposition of Lemma 7. 
Case 2/b: P¡- i>Pi- In the interval [0, x(l — j8,--i)], a¡-i and a¡ increase paral-

lel. In 
| > ( 1 - & - i ) , t ( 1 - / ? , ) ) 

a¡_! is constantly 1 and a¡ continues its growth. In [t(1 —P¡), r] a¡ is constantly 1 
and a ^ is constantly 0. 

Case 3: t* does not exist. We get a,(x) = 0 similarly to Case 5 of the proof of 
Lemma 5, hence i does not fulfil the condition of (ii). 

Proposition 7. If the state 21 (at the instant 0) is non-regular, then either T'max 
is defined for 21 and 0 < T'max < 2T or 2l[ + 2t] is regular.1 

' jfrá« was introduced in [2]. 
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Proof. Assume that the states 91 [ + i] are definable whenever The 
state 9I[ + T] cannot have a strong irregularity index (by Lemma 6), hence the state 
91[ + 2T] is regular (by Lemmas 7 and 4). 

Proposition 8. Any non-regular state is acyclic. 

Proof. Let 9Í be a non-regular state (at the instant 0). If the state 91[-H] is not 
definable for every positive t (i.e. if does exist), then 91 is obviously acyclic. 
Assume that 91 [-W] is defined for every t. Let 91 be cyclic and p be a period of it, 
we shall get a contradiction. Let d be the least integer such that dp^2x holds. On 
the one hand, 

91 = 91 [ +p] = 91 [ + 2p] = • • =91 [ + dp], 

thus 9Í [ + <//>] is non-regular. On the other hand, 9I[ + 2r] is regular by Proposition 7, 
hence also 9l[ + i/p] is regular by Proposition 3. 

§ 5. On some possibilities for future researches 

Let us consider a graph. Denote by A the set of its permitted states (i.e. all 
the mappings of the vertex set into the interval [0, 1] such that the restriction mentioned 
in Footnote 6 is satisfied), by Ar(czA) the set of its regular states. We define two 
partitions 7r1; 7To of A and a further partition 7r3 of Ar in the following manner: 

9t(C^4), 9I'(£/1) are in a common class mod n1 if there exists an integer s such 
that 0 ^ s ^ n - 1 and 

a l = a i + s> a 2 = a 2+s> •••) a n - l = a s - l J a / | — a s 

where 91 = (o^, a2, ..., a„>, 91' = {<*[, a2, ..., a„). 
91(6^), 9l ' (6/l) are in a common class mod n2 if the inequalities oc;<o(j and 

a-<0!j are equivalent to each other for every index pair i,j. 
91 (£A r), 9I ' (6^ r ) are in a common class mod n3 if there exists a non-negative 

real number t such that 9f[ + / ] = 9 t ' . 
The partitions and n2 generate a sublattice of the lattice of all partitions of 

A; similarly, 7i1; 7r2 and tt3 generate a sublattice in the partition lattice of Ar. Various 
questions (concerning both the lattice-theoretical properties and numerical problems) 
can be raised on the lattices generated in this manner. 

Finally, we mention a problem of this character. Let Ah be the set of the states 
9l = («j, a2 , ..., a„) fulfilling the three requirements: 

(i) a,- = 1 holds for exactly one index i, 
(ii) the state is permitted, 

(iii) whenever / and / ' are two indices such that 1 {PiJU^iP,), 
$ {PjUxCF,), then the inequalities 0 - c a j < I , 0 < a , ' < l , hold. 

It is easy to see that a randomly chosen element 9I' = (ai, a2, . . . , a n ) of A 
satisfies 9t ' [- t-t]£Ah with probability 1 where t = r ( l — max (a^, a2, ...,a'nj). 

Let us consider the graphs G(3; 2), G(4; 3), G(5; 4), . . . , G(n; n — 1), ... . Start-
ing with the general member G(n; n — 1) of this sequence, we denote by Q„ the 
factor set Aj,n)ln2 where A¡,n) denotes the set Ah with respect to the graph G(n; n — 1.). 
Qn is a finite set. On the other hand, let us define the subsets Al"'x) of Ai,n) so that 
9f if and only if the regular state Vf[ + t] (with the least possible / ( = 0)) 
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(exists and) consists of x arcs (x ^ «/2). The sets A(
H

N'X) are pairwise disjoint (for 
varying x), moreover, %eAl">x), W (¿A(£>x'>, 2t = 2I' (mod TT2) imply x = x'. Let Q<x> 
be the subset of QN which consists of the classes whose elements are in A£",X). It is 
interesting to examine the asymptotical behaviour of the numerical function 

/ (» , x) = 
|fl.<">| Ifi.l 

1-12] 
(Evidently, ¿ f ( n , x ) S l . ) A discussion shows that the first values of / (« , x) are: 

/1 
X 2 3 4 5 6 

1 1 ! 1 1/2 1/6 1/24 

2 1/2 5/6 17/24 

3 1/4 

We conjecture tha t / (« , [(« —1)/2]) converges to 1 if n tends to the infinity. 
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On measure-theoretic problems involving 
retrospective sequential functions 

By A . M A T E and J. Szucs 

1. Introduction 

The present paper can be regarded as self-contained inasmuch as it does not 
rely on outside repositories of references to an extent we would think underisable, 
yet, we think it should, in a proper setting, be considered as a continuation of, or 
an addendum to, L. Klukovits's paper [6] in the first issue of these Acta.1 Other-
wise it might be questionable whether the present paper, investigating pure measure-
theoretic properties of certain types of functions, should appear in a periodical of 
cybernetics. Though these researches might have some potential applications to 
cybernetics and to the theory of automata, this aspect of the problem will not be 
elaborated here in detail. Perhaps some additional research in this area may be 
useful. 

Yet, from a cybernetical angle, our study can be viewed as an investigation, 
on a theoretical level, of the relation between the behaviours of an automaton, 
firstly, if an arbitrarily large, but only a finite, number of input signs is successively 
fed into it and, secondly, if the feeding of input signs is repeated infinitely many 
times. 

The approach to the characterization of the behaviours of automata is achieved 
through studying measure-theoretic properties of retrospective sequential functions, 
the precise definition of which, along with other definitions, may be found below. 
We shall point out that under certain natural conditions such functions are measur-
able, or, in more specific circumstances, they are even continuous. They map Borel 
sets onto sets which, in a natural sense, can be called Lebesgue-measurable; we 
shall give an example which illustrates that the image of a Borel set may be a non-
Borel set, even in a very simple case. 

2. Preliminary notions 

Since the sections that follow depend to a considerable extent on different sets 
of notions we think it undesirable to accumulate here all the necessary definitions, 

1 The cited paper contains some inaccuracies and a considerable number of proofs in it are 
presented in an unnecessarily complicated way. Our observations concerning this matter are presented 
on p. 89. 
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and we collect here only the concepts that play a role throughout the whole of these 
notes. 

The very concept around which all that follows centres is that of the retrospective 
sequential function, shortly RS function. The domain of such a function is the Car-
tesian product 

( 2 . 1 ) X = X X n , 
n = l 

where Xn is intuitively interpreted as the set of input signs that can be fed into a given 
automaton at the «th stage. The range is a subset of the Cartesian product 

( 2 . 2 ) Y = X Y N , 
n = l 

where Y„ is, intuitively, the set of output signs that can be emitted immediately after 
the digestion of the input sign absorbed at the nth stage. The automaton in question 
is to be imagined as having a fixed initial state that completely determines its reac-
tions to sequences of input signs. The RS function assotiated with this automaton 
makes correspond to an infinite sequence of input signs the sequence of output 
signs the automaton emits while receiving the former. 

This intuitive description of RS functions may easily be put in the form of a 
precise definition: a function / mapping the set X into Y is called an RS function 
if, under f the first n signs of the .image sequence are uniquely determined by the 
first n signs of the argument sequence for every positive integer n. This specific pro-
perty of an arbitrary RS function / enables us to consider its restrictions to finite 
sequences. In notations, for every positive integer n put 

(2.3) X\n=XXk, Y\n = XYk] 
k = 1 *=1 

the funct ion/ |« ' sends , by definition, all sequences in X\n to sequences in Y\n in 
the same way as / handles these sequences as finite segments of infinite sequences. 
The notations 

( 2 . 4 ) n\X = X X*, n\Y= X Yk ( « S O ) 
*=n+ l k=n+l 

will sometimes prove useful, too. 
In all our considerations, each of the sets X„ and Yn will be vested with a measura-

bility structure, by which we mean an ordered pair consisting of a set, the underlying 
space, and a u-ring defined on this set, this latter being usually suppressed in the 
notational framework. The spaces X\n, Y\n, X and Y will be endowed with the 
measurability structures that are the products of their respective factors. The <r-rings 
determining these structures are the minimal ones generated by the sets of all rectan-
gular sets or, in case of an infinite number of factors, by the sets of all cylindrical 
sets; here a subset of e.g. A'is said to be cylindrical if, for some n, it is the Cartesian 
product of a set measurable in X\n with the whole set n\X. (As seen, the notion of 
cylindrical sets already depends on the concept of measurability in products of 
finite numbers of spaces.) 
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A part of our study depends only on this measurability structure, without 
the need of actually considering measures. In other parts we have also to assume 
that certain measures are given on the described a-rings. Sometimes we shall also 
consider the completions of these measures; these are, in general, defined on larger 
cr-rings, and this fact should carefully be kept in mind since, unless specifically 
mentioned our results may not hold for these extensions of the measures involved. 

Another point to be stressed is that, up to Section 5, when measures are con-
sidered the measures on the product measurability structure of X and Y are never 
assumed to be the products of the measures on the respective factors; on the other 
hand, all our counter-examples are so constructed that, when measures on X and 
Y are at all considered, these are the products of the measures defined on the res-
pective factors. 

3. Measurability of RS functions 

A very simple necessary and sufficient condition in order that an RS function 
be measurable in the sense that the whole inverse image of any measurable set is 
measurable is provided by 

Theorem 3.1. An RS function f is measurable if and only if the functions f\n 
are measurable for all positive integers n. 

Proof. The "only if" part of the assertion is quite obvious and needs no com-
ment whatsoever. Not much more complicated is the reverse implication, either. 
Indeed, observing that the inverse of a function does not spoil set-theoretical opera-
tions such as union and difference, the desired result immediately follows from 
the minimality restrictions, as imposed in Section 2, on product spaces. 

Here, of course, the question might be raised how far these minimality restrictions 
are indispensable. The situation is, perhaps, illuminated by 

Counter-example 3.1. The tacit assumption that in Theorem 3.1 measurability 
cn Y means belonging to the minimal a-ring generated by cylindrical sets cannot be 
omitted even in the simplest case. 

This assertion is intended to be a vague intuitive description of the situation 
rather than a precise mathematical statement. 

To consider a <7-ring, larger than the minimal one, of measurable sets in Y is 
senseless unless motivated in some suggestive way. Thus, what we are going to do 
will be to introduce measures on X„ and Y„ and consider the <r-rings that are the 
domains of the completions of the product measures on X and Y. 

Now we actually set to describe the counter-example in question. Choose Xn 
and Y„ as coinciding with the two-element discrete space, containing the integers 
1 and 2, such that the measure of each of its one-element subsets is 1/2. Let j< be 
the product measure on X= Y, and ¡1 its completion. 

Define the RS function / mapping X into itself by the stipulation that for an 
arbitrary sequence x={a„}~= 1 the image f(x) = y = {>'„}r=i be such that v2,.-i = ' 
and y2„ = xn. In compliance with the clause in Theorem 3.1, f\n is clearly measur-
able with respect to the (minimal) measurability structure on X\n=Y\n, this being 
the discrete structure. 
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Now the funct ion/being one-to-one, for any set Z g X we have Z = / _ 1 ( / ( Z ) ) . 
Here obviously //*(/(Z)) = 0,2 so / ( Z ) is always measurable with respect to /7; thus, 
providing Z is chosen nonmeasurable with respect to /¡, this set is an example for 
a measurable set whose full inverse image under / is not measurable. To make our 
considerations complete, we only have to point out that X has a subset which is not 
measurable with respect to ft; this, however, follows from the fact that ^ e n d o w e d 
with the measure fi is essentially identical as a measure space to the interval (0,1) 
with the usual Lebesgue measure on it. 

Finally, we remark that if the measurability structures of the spaces occurring 
here are coupled with certain topological ones then some simple conditions ensure 
the completion measurability of an RS function. These conditions and the proofs 
are analogous as in the cases of Lemma 4.2 and Theorem 4.3; the proofs in this 
case are even slightly simpler. We do not formulate these results here since they do 
not seem as natural as well as have no such a consequence as their counterparts in 
the next section (see Theorem 5.1 below). 

4. Questions concerning the transportation of measurability 

The question studied here, a much more difficult one than that envisaged in 
the previous section, concerns the transportation of measurability. More exactly, 
the problem to which we try to find an answer here is under what circumstances 
it is guaranteed that the image of a measurable set under an RS function is measur-
able again. This problem seems to depend much more on the topological structures 
of the spaces involved and on measures rather than on measurabilities than we 
experienced it in connection with the question studied in the previous section. Thereby 
we are forced to impose further restrictions on the spaces X„ and Y„, and it will 
be convenient to do this along with a short description of the related concepts. 

Throughout the rest of the paper we assume that, for each positive integer n, 
the spaces Xn and Yn are endowed with topologies induced by metrics under which 
these spaces are complete and separable metric spaces. The topologies on X\n, 
Y\n, X, and Fare defined as the products of the topologies on their respective factors. 
As is well known, it is possible also on these spaces to introduce metrics with respect 
to which they are complete and separable metric spaces. For example, if we denote 
the distance function on X„ by Q„ then the function 

( 4 . 1 ) g ( * , * 0 = i 2 - \ Q / o n ( x X i ' ) 
n = l 1 + i?n(*n> xn) 

serves as such a metric on X. Since our main concern is the possibility of the introduc-
tion of such metrics rather than the particular distance functions chosen, we shall 
suppress these latter in the notational framework; nevertheless, we might refer to 
the spaces involved as metric when it were enough to say metrizable in a certain 
way. 

Measures on these spaces will also be considered, ¡i and v will denote two 
Borel measures on A1 and Y, respectively; here a Borel measure, by definition, is a 

2 The asterisk * in superscript indicates outer measure. 
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er-finite measure explained on the <7-ring of all Borel sets, this being the smallest 
c-ring generated by e.g. all closed sets, p and v, called Lebesgue measures, will 
denote the completions of /1 and v. In an obvious way we can also define the restric-
tions fin, v„, fi\n and vj/7, of the measures n and v, to the spaces Xn, Y„, X\n and 
Y\n, respectively; e.g. for a Borel set H^X\n put ¡i\n(H) = it(HXn\X). It is usually 
not assumed that /1 and v are the products of the measures /t„ and v„. 

A simple condition in order that an RS function under the circumstances 
specified above be in a sense measurability transporting is 

Theorem 4.1. If the RS function f is such that f\n is Borel-measurable for any 
positive integer n then f maps all Borel sets onto Lebesgue-measurable ones. 

Here the Borel measurability of a function means that the whole inverse image 
under it of a Borel set is again a Borel set. 

Proof. It follows from Theorem 3. 1 that, under the given assumption, / is 
itself Borel-measurable; so it maps Borel sets onto analytic or, by another name, 
Suslin sets (see e.g. [2, 2.2.14 on p. 70]). As is weir known, every analytic set. is 
Lebesgue-measurable (see [2, 2.2.1.2. Theorem on p. 68]), which completes the 
proof. 

To illustrate how far the assumption in this theorem is necessary and whether 
the conclusion goes far enough we give several counter-examples. The assumption 
that f\n is Borel-measurable when we want to prove that / is measurability transport-
ing may seem artificial; Counter-example 4. 1, however, shows that it is not enough 
to suppose that f\n is measurability transporting. Counter-example 4. 2 shows that 
the given assumption does not ensure that / maps every Lebesgue-measurable set 
onto a Lebesgue-measurable set. It is not certain, either, that, under this assumption, 
the image of every Borel set is a Borel set; this will be shown later, in Counter-
example 5.1. 

Counter-example 4.1. The assumption that, for any positive integer n, the func-
tion f\n maps every subset of X\n onto a Borel set of Y\n does not imply the conclusion 
of Theorem 4. 1. 

In the example we are going to give, the validity of the assumption that f\n 
maps every set onto a Borel set will be ensured by choosing as Y \n a finite discrete 
space, every subset of which is, of course, a Borel set. To elaborate, choose the spaces 
X2, X3, ... and Yj, Y2, ... as identical to a two-element discrete space, with points 1 
and 2, such that either of its one-element subsets is of measure 1/2. Explain the 
Borel measure on Y as the product of those defined on the spaces Yn; define X1 as 
identical to Y, with the same topology and measure defined on it. Finally, choose 
the Borel measure on X as identical to the product of the measures explained on the 
spaces X„. 

Now choose as / j an arbitrary function from X1 into Y whose range is not 
Lebesgue-measurable. Then the funct ion/ that makes correspond to every x — {x„}™=1 
the sequence / i (xj) , independently of x„ for 2, is an RS function that satisfies 
our requirements, yet it does not map the whole set X onto a Lebesgue-measurable set. 

Counter-example 4. 2. The assumption of Theorem 4.1 does not assure that the 
image under f of a Lebesgue-measurable set is Lebesgue-measurable. 
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Using the same spaces X and Y as in the counter-example just before, define 
the RS func t ion / f rom X into Y so that it send a sequence A- = {xn}™=1 to a sequence 
y that is identical to .x16A'1 = Y, independently of the values of xn for n i 2 . It is 
obvious that the function f\n is Borel-measurable for each positive integer n. If we 
select an arbitrary set X'1(^Xl = Y that is not Lebesgue-measurable, then the image 
under / of the set X' = X[ X {1} X {1} X - - Q X is X[\ now the set X' is Lebesgue-
measurable, since its outer Borel measure is zero; yet its image is not so. 

It seems to be a rather difficult problem to give conditions that subtly differentiate 
between cases when Lebesgue-measurable sets are mapped onto this same' kind 
of sets and when they are, possibly, not. Nevertheless, the following two results, 
however rough they are, point in this direction. 

Lemma 4. 2. Assume that the space X is locally compact and that the measure of 
every compact set in X is finite.3 Suppose, furthermore, that the RS function f is such 
that, n running over all positive integers, the function f\n is Borel-measurable, and 
moreover, with some positive constant C, 

(4.2) - ( v j w r ( / i « ( C „ ) ) S Cfi j n (GJ 

holds for any open set Gn in X\n.2'* Then f maps all Lebesgue-measurable sets onto 
Lebesgue-measurable ones. 

We remind that the local compactness of X is an additional assumption and, 
as said at the beginning of this section, all the spaces considered here are assumed 
to be complete and separable metric spaces. We also recall that in order for the 
product of topological spaces to be locally compact it is necessary and sufficient 
that all factors, "with the possible exception of a finite number of them, be compact 
and the non-compact factors be locally compact (see [1, Proposition 11 on p. 65]). 
Taking this into account, we can reformulate the lemma accordingly. 

The point in adopting (4. 2) as an assumption of the lemma is that it ensures 
that the mapping/does not increase the outer measure of any set more than C times; 
thus, in particular, it maps sets of zero outer measure onto sets also of zero outer 
measure, and this implies the assertion of the lemma. 

Proof. Since every Lebesgue-measurable set can be represented as the union 
of two sets of which one is Borel-measurable and the other is of zero outer Borel 
measure, the assertion will follow from the previous Theorem if we show that / 
maps every set of zero outer Borel measure onto a set also of zero outer Borel mea-
sure. To accomplish this, let Z be an arbitrary subset of zero outer Borel measure 
of X. Since in a locally compact and separable metric space every Borel set is a 
Baire set, and a Baire measure on a locally compact space is always regular, pro-

3 Usually, Borel measures are considered on locally compact spaces and it is traditionally' 
included in .their definition that they are finite on compact sets. Here we cannot conform to this 
tradition since it would involve some unnecessary restrictions on the measures considered. 

' It is enough to require the conditions depending on n in this lemma and in the next theorem 
only for large enough integers, though the statements so obtained are not real generalizations since 
they easily follow from the assertions, analogous to the given ones, arrived at by grouping the factors 
of A1 as (̂ V, X • • • X Xk)X + , X . . . , and those of Y similarly. Moreover, it does not represent any 
real change to require only for large if s that f \ n is Borel-measurable since then the same follows 
for every positive integer n. 
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vided it is finite on compact sets (see [3, Theorem E on p. 218 and Theorem G on 
p. 228]), for an arbitrarily small positive e there exists an open subset G of X 
with / t(G)<£ such that Z Q G . 

n being an arbitrary positive integer, let U run over all the open subsets of 
X\n, and write 

(4.3) Gn = {}{U.: UXn\X <^G). 

Then G„ is an open subset of X\n, and, obviously, we have 

(4.4) GnXn\XQ Gn + 1X(n+l)\X, 

and 

(4.5) ' G= {]G„Xn\X-, 
n = l , 

moreover, on account of (4. 2), we obtain 

(4-6) v* ( / (G B X»|* ) ) =S v * ( / K < 7 „ ) X « | r ) S 5 

S (v|nf(f\n(G„)) Cn\n(C„) = Cfi(GnXn\X). 

Here all the sets are actually Lebesgue-measurable; for the first one this is 
stated by the previous theorem. For the second and the third one this fact will not 
be used, so we do not go into details and only note that in the proofs similar arguments 
involving analytic sets may be used. So, writing v instead of v*, the last four centred 
lines imply 

(4. 7) v ( / ( 0 ) = v ( 0 f ( G n X H * ) ] =£ Cp(G). 

Since G, by its choice, includes Z, we obtain \ 

(4.8) v * ( / ( Z ) ) ^ v(f(G))^ C[x(G)^Cs. 

Since e can be selected arbitrarily small we have v*(/(Z)) = 0, which completes the 
proof of the lemma. 

Though in the proof of this lemma we made a relevant use of the local compactness 
of X, this assumption can actually be dispensed with if we stipulate that ^ is totally 
finite, and we can derive 

Theorem 4. 3. Assume that the measure fi is totally finite and the RS function f 
mapping X into Y is such that, n running over all positive integers, f\n is Borel-measur-
able, and, moreover, with some positive constant C, 

(4.9) (v\nr(f\n(B„))^C(ii\n)(Bn) 

holds for any Borel set Bn in X\n.6 Then f maps all Lebesgue-measurable sets onto 
Lebesgue-measurable ones. 

5 An easy argument invoking analytic sets shows that here actually equality holds, and would 
continue to hold even if the set f\n{C„), which could easily be shown to be Lebesgue-measurable, 
were replaced by any subset of Y\n. This is, however, irrelevant for our purposes. 

0 See footnote 4. 



88 A. Máté and J. Szűcs 

Proof. Any complete and separable metric space is either countable or of con-
tinuum cardinality (see [4, IV on p. 320]), therefore to each X„ there is a compact 
and separable metric space X'n of the same cardinality. Since a compact metric 
space is necessarily complete, on account of a well-known result (see [7, 2° on p. 
358]), there exists a one-to-one function g„ mapping X'n onto X„ that is Borel-measur-
able in both ways.7 

Now define the function g from X', this being the product space A'iXA'oX--, 
onto X componentwise, i.e. put 

(4.10) g{x[xi...) = gy(x[)g2(x2)... 

Then g is obviously one-to-one and Borel-measurable in both ways. Determine 
the Borel measure /i' on X' so that g be also measure-preserving. Instead of the 
RS function /(.v) we may consider the RS function / (g(x)) mapping X' into Y and 
the assertion of the theorem directly follows from the previous lemma on account of 
the compactness of X'. 

5. The problem of transportation of measurability in a special case8 

In this concluding section we shall be concerned only with the following special 
case: Xlt X2, ... and Yl3 Y2, ... are all identical discrete spaces, with a finite number 
N^2 of points, and the Borel measures nn and v„ on Xn and Y„, respectively, are 
such that the measure of a one-point set is 1 /N; finally we determine n and v as 
the products of the measures and v„, respectively. It is easy to see that in this 
case all RS functions are continuous. Moreover, the assumptions of Theorem 4. 3 
are satisfied for any RS function / . Indeed, f\n is Borel-measurable for many reasons, 
e.g. since it is defined on a discrete space. The assumption (4. 9) is also satisfied 
with C= 1. The argument showing this is simply that the measure of a set in X\n 
is a constant multiple of the number of the (finite) sequences contained in it; this 
measure may only decrease by performing the mapping f\n, as a consequence of 
the phenomenon that two different sequences may have a common image. So in 
this case we have 

Theorem 5.1. Every RS function maps all Lebesgue-measurable sets onto Lebesgue-
measurable sets. 

The proof of this theorem does not, in fact, need such sophisticated tools as 
have been used to accomplish it. Namely, cylindrical sets being compact, their 
image is also compact, and the considerations based on (4. 9) that establish the full 
strength of the theorem are largely simplified by the fact that the measure n is the 
product of the measures . 

' Actually, the phrase "in both ways" need not be added; namely, it is easy to show that if 
a one-to-one function which maps a complete and separable metric space onto another is Borel-
measurable then its inverse is so, too. 

8 The more ambitious reader is advised also to consult L. Kalmar's paper [5], where a case 
with generality lying between that of the cases dealt with in this and the previous sections is studied 
from a somewhat different angle. 
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The paper of Klukovits [6], which spurred us to investigate measure-theoretic 
problems involving RS functions, considered only the particular case studied in 
this section. We take now a closer look at the relationship between some of his 
results and some of our considerations here. It will turn out, in particular, that 
many of the proofs in his paper can be radically shortened by using some simple 
devices of topology. 

Theorem 1 in "the paper in question says that two RS functions differing only, 
on a set of Lebesgue measure zero coincide. The functions in question being con-
tinuous, this is naturally true, since in this case the.measure of any non-empty open 
set is positive, and thus the set of coalescence is dense. , 

Lemma 1 claims that if the range of an RS function is Lebesgue-measurable 
then the image under it of any Lebesgue-measurable set is so, too. This is a con-
sequence of Theorem 5.1 of ours, though the assumption on the range is super-
fluous. Independently of our result just referred to, the fact that the range of / is 
measurable is obvious since, being a continuous image of a compact set, it is in. 
fact compact. In the proof of the cited lemma, the author leaves to the reader 
the verification of the assertion that, under the assumption of the measurability 
of the range, the image of every cylindrical set is Lebesgue-measurable. Cylindrical 
sets being compact, the task of the reader in proving this is indeed not difficult. 
He may, however, be annoyed by not finding a way to weave the measurability of 
the range into his considerations. 

Theorem 2 states that an RS function / is measure-preserving if and only if 
it is an onto mapping. Here the proof of the necessity can be contraced into a few 
lines as follows: the range of an RS func t ion / being compact, its complement is 
Open. The stipulation that / is measure-preserving implies that the measure of this 
open set is zero; so it is empty, which means that / is indeed onto. 

Lemma 2 asserts that the range of a "finite-state RS function without one-to-
one state" is Lebesgue-measurable. (The phrase is not an exact quotation; the author 
writes fsrsf for what we called a finite-state RS function.) In whatever way the above 
attributes may specify the notion of RS function, the range is a continuous image 
of a compact set, therefore it is compact, and so measurable. 

Theorem 4 announces that the range of any "fsrsf" is Lebesgue-measurable. 
Actually, the range is again compact. 

The concluding result of these notes is 

Counter-example 5. 1. There exists an RS function under which the image of 
a certain Borel set is not a Borel set. 

In order to give such an example, for every positive integer n, identify the. spaces 
XH and Yn with the discrete space consisting.of the points 1 and 2 and choose Nn 
as the discrete space containing exactly the positive integers; let N be the topological 
product of the spaces N„. 

Decompose the space X=Yas 

(5.1) A' = Z 1 X Z 2 X Z 3 , 

4 Acta Cybernetica 
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where 

(5.2) Z j = X X 3 k + j 0 = 1 , 2 , 3 ) . 
Jt = 0 

Let Z j be the subspace of Z j which consists precisely of the sequences that contain 
an infinite number of ones. It is easy to see that Z'j is homeomorphic to N. Indeed, 
a homeomorphism between these spaces can be described as follows: for an arbitrary 
element z of Zj form groups of consecutive elements constituting z so that 
each group consist purely of 2's except that it end with a 1. The numbers of 
elements in each group, in turn, form a sequence of positive integers which, if con-
sidered as the image of z, determines a homeomorphism between Z) and N. Denote 
this homeomorphism from Z3 onto N by h; for a sequence z £ Z 3 denote by hn(z) 
the nth integer forming the sequence h(z). 

Now, following closely the lines of the example for an analytic set that is not 
a Borel set given in [2, 2.2.11 on p. 68], our example can be described as follows: 

Choose a countable onen base U(n) of Z[ X Z« and define a closed subset of 
Z i X Z ^ X Z s by 

<5.3) C = | ( z 1 ; z 2 , z3): (zx, z2) i ^ ^ „ f e ) ) } • 

It is obvious that all the closed subsets Qf Z[XZ'2 occur among the slices 

(5. 4) C,3 = {(zt, z2): (zx, z2, z3) £ C}. 

Now, on the one hand, 

(5.5) ' 5 = {(z1; z3): (z1, z2,z3)eC for some . z2} 

is an analytic subset of Z\XZ'3\ and, on. the other hand, the slices 

(5. 6) S.a = {zi: (zj, z3) 6 S} = {z 1: {zx, z2) £ CZ3 for some z2} 

run over all the analytic subsets of Z'x, since Z3 is homeomorphic to N (see [2, 2. 2. 10 
on p. 65]). 

Finally, the intersection of S with the diagonal o f Z [ X Z 3 , the latter being a set 
closed in the relative topology, is an analytic subset of Z^XZ 3 . The projection of 
this set into Z'x, 
(5.7) T={z1: {z^z^iS and zt = z3}, 

is therefore analytic; now the complement of T, Z[ — T, is not analytic since it 
does not occur among the sets S23. Indeed, the assumption Z{ — T= SZ3 is equi-
valent to saying that for any zx^Z{ = Z3 

(5. 8) ( z ^ Z i K S holds if and only if (z1 ;z3)6 5. 

This is, however, certainly not true for zj = z3, implying that Z' — T is not analytic, 
as asserted. Thus, since the complement of a Borel set is again a Borel set, and so 
a fortiori an analytic set, we may conclude that T is not a Borel set. 

To complete our example, we shall determine an RS function that maps a 
Borel subset of Z ^ X Z 2 X Z 3 Q A'essentially onto T. To this end, define a diagonal 
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plane of the set C: 

(5. 9) D = {0 , , z 2 , Z3) : (zl, z2, z3)ÇC and z1 = z3}, 
and consider the func t ion / f rom Z j X Z2 X Z3 (without accents'!) into itself such that 

where c is an arbitrary but fixed"sequence in Z2 = Z3 , e.g. c = 111.... In view of.(5. 1), 
/ c a n . b e rewritten as an RS function mapping X~Y into itself. 

Now the set D, being a set closed in the relative topology on the Borel set 
Z r X Z 2 X Z 3 , is itself a Borel set, and its.image under / , the set Tx{c}x{c} , was 
proved to be a non-Borel set just before. 
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Versuch einer automatentheoretischen Beschreibung 
von Selektionsprozessen 

V o n K . BELLMANN u n d M . GÖSSEL 

Wir betrachten eine Population P von Individuen mit einer beliebigen meßbaren 
Eigenschaft x. Die Phänotypenwerte seien etwa normalverteilt. Mit x bezeichnen 
wir das Populationsmittel von x. . 

Zur genaueren phänomenologischen Beschreibung von Selektionsprozessen 
werden zweckmäßig die Begriffe "Selektiönsdifferenz" S(/;) und "Response" R(ti) 
benutzt, die durch 

(1) 

&(U) = x(tl+1)-x(tt) 
definiert sind. Dabei sind x(t¡) der Mittelwert von x in der i-ten Generation der 
Population, xE(tt) der Mittelwert von x der aus der /-ten Generation selektierten 
Eltern, und t charakterisiert die diskrete Zeit, die durch die Generationsfolge ge-
geben ist. 

Wir benötigen noch die Größe R(ti), die durch 

( 2 ) R ( t i ) = x ( h + d - x ( h ) 

definiert sei. Ä(/,) stellt den Gesamtresponse von der 0-ten bis zur /-ten Genera-
tion dar. ' . 

Aus (1) und (2) folgt unmittelbar 

(3) ; . R(h) - > '*( / , ) 
; 0 • 

. und damit auch R(t0) =R(t0^. (tk gibt den Endpunkt des Selektionsprozesses an.) 

Wir betrachten im folgenden den Selektionsprozeß als Ganzes und schließen 
dabei auch Intervalle ohne Selektion ein, für die S(tj) = 0 gilt. Relaxation der 
Selektion ist also ausdrücklich zugelassen. 

Wenn durch den Züchtungsprozeß ein möglichst großer Mittelwert x angestrebt 
wurde, vermindert sich x im allgemeinen ohne künstliche Selektion im Verlaufe 
der Zeit. Dieser Prozeß wird im folgenden als Selbstreduktion von P bezeichnet. 

Die Änderung des Mittelwertes x von Generation zu Generation wird durch 
zwei sich überlagernde Prozesse bestimmt: 

1. Veränderung von x durch künstliche Selektion (d.h. SV 0). 
2. Veränderung von x ohne (künstliche) Selektrion, d. h. durch Selbstreduktion 

(d.h. S 0). 
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Wir setzen voraus, daß sich beide Prozesse linear überlagern. Nach diesen 
Vorbereitungen soll der Selektionsprozeß von einem abstrakteren Standpunkt aus 
untersucht werden, was uns zu einem automatentheoretischen Modell dieses Pro-
zesses führen soll. Eine Folge von Werten S(/,•), die auf das System Population 
als Input einwirkt, verursacht eine Folge von Werten /?(/,), die die man als Output 
des Systems ansehen kann, wobei wir, wie oben erläutert, tt als diskrete Zeit des 
Systems aufTassen. (Das Vorgehen in der praktischen Züchtung besteht darin, daß 
eine bestimmte Anzahl Generationen lang eine Selektion bestimmter Intensitäten 
durchgeführt wird. Danach erfolgt die Nutzung ohne Selektion. Ein solches Vor-
gehen wird durch eine Inputfolge C!C 2 . . .CK0 0 0. . . beschrieben. Dabei sind die 
C; (/ = 1, 2, ..., K) die entsprechenden Selektionsintensitäten.) Eine derartige Input-
Output-Beziehung wird mathematisch adäquat durch einen abstrakten Automaten 
beschrieben. 

Wir betrachten hier wegen der vorausgesetzten linearen Überlagerung der unter 
1. und 2. aufgeführten Prozesse einen Spezialfall des abstrakten Automaten, den 
linearen Automaten [2, 3, 5]. Außerdem können wir uns auf eindimensionalen Input 
und Output beschränken, da Selektionsdifferenz und Response skalaren Charakter 
haben. 

Ein linearer Automat wird durch die Überführungs- und Ergebnisfunktion 

beschrieben, z ist ein n-dimensionaler Zustandsvektor, x ein eindimensionaler Input 
(vektor), y ein eindimensionaler Output (vektor). A, B, C, D .sind Matrizen ent-
sprechender Dimension mit konstanten Matrixelementen. 

Die Überführungsfunktion bestimmt: aus dem Zustand z(/,) und dem Input 
x(i,) den Folgezustand z(/ i+1). Die Ergebnisfunktion bestimmt aus dem Zustand 
z(r;) und dem Input x(7;) den zugehörigen Output j>(/,). Die Dimension n des Zu-
standsvektcrrs heißt auch die Dimension des linearen Automaten. 

Der Zustand z ( t j ) ist durch den Initialzustand z(/„) und die auf den Automaten 
wirkende Inputfolge x(/0), x ^ ) , x(t2), ... durch - . 

(4) 
z(ti+1) = Az (/,•) +B.y (7;) 

y(t,) = C z ( 0 + Dx(/ ;) 

(5) z(tj) = AJz(t0)+2! AJ-'-'BxQi) 

bestimmt. 
Für den Output gilt entsprechend 

j 
(6) 

mit 

y(tj) = CAJ z (/(,)+ M (tj -;) x ({i) 
i = 0 

Ist die Dimension n des Automaten endlich, dann gibt es eine endliche Zahl r i n , so 
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daß für alle m 

(7) M( / m + r + 1 ) = a1M(im + 1) + a 2 M ( / m + 2 ) + - + a f M ( / m + r ) 

gültig ist. 
Der Wert von r kann aus der Folge der Matrizen 

(8) Wtd] 
M( f l ) 
M(/2) 

M(?2) 
M ( i 3 ) 

M(/ t) M(/a) M(f3) 
M(i2) M (t3) M(/4) 
M(i3) M(/4) M(/ä) 

als der größte Rang entnommen werden, der einmal erreicht, bei Fortführung der 
Folge erhalten bleibt. 

Die Kenntnis der Beziehung (7) erlaubt, explizit eine Realisierung des linearen 
Automaten anzugeben. (Minimierungsprobleme bei linearen Automaten, auf die 
wir hier nicht eingehen, sind ausführlich z.B. in [2, 4] untersucht.) 

Eine mögliche Realisierung ist durch 

0 1 0 . . . 0 M ( / J 

0 0 1 . • 0 M ( I 2 ) 

( 9 ) A = 
0 0 0 . . 0 

B = 
M W 

0 0 0 1 

• « 1 « 2 <*3 • .. ar M (tr) 

C = [ 1 0 0 ... 0 ] D = M(/0) 
gegeben. 

Befindet sich das zu realisierende System im Initialzustand z(/o) = 0, so ist M(/ t ) 
nach. (7) als (Impuls-) Antwort auf die Inputfolge 3 0 0 0 ... bestimmt. Auf die 
Folge CV 0 0 0 ... antwortet das System mit Ci -M(^) (CV gibt wieder die Selektions-
intensität an). 

Auf die Inputfolge 0 0 0 0 ... reagiert das System vom Initialzustand z(/„) = 0 
mit dem Output 0 0 0 0 . . . , wie man ebenfalls unmittelbar aus (7) abliest. 

Wir nehmen an, daß sich das System Population zunächst im genetischen 
Gleichgewicht befindet. Der dem System zuzuordnende Initialzustand ist dann 
z(/0) = 0, da die Population in diesem Falle auf die Inputfolge der Selektions-
-differenzen 0 0 0 0 . . . mit der Response-Outputfolge 0 0 0 0 ... reagiert. Um in ein-
facher Weise das Modell für das genetische System bestimmen zu können, ist das 
Verhalten der Population auf die Inputfolge Q 0 0 0 ... zu untersuchen. Ist dann 
das Modell bestimmt, so läßt sich eine Reaktion auf eine beliebige, etwa praktisch 
vorliegende Inputfolge vorhersagen. Die Response-Impuls-Antwort erhält 
man, wenn man auf die Population die Selektions-Inputfolge 1 0 0 0 . . . einwirken 
läßt. In der Praxis sind verschiedenartige Response-Impuls-Antworten möglich. 

Wenn wir von zufälligen Mutationen absehen können, ist Rj(tk) eine monotone 
nicht wachsende Funktion mit 

R.ik) -o . 
k-

D.h. die Änderungen des Populationsmittel von Generation zu Generation ohne 
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weitere Selektion werden immer geringer. Es scheint sinnvoll, R,(tk) durch 

bk für k <7 
(10) R,(tk) = b.e-a(k-j) . f ü r 

zu approximieren. 
Die Beziehung (8) nimmt dann für alle m a 0 die Form 

(11) Rj(tm+J + 1) = 0-R1(tm + l) + 0-R1(tm+2)+-+0-RI«m+J_1) + e-°-R](tm+j) 

an, und aus (10) und (11) erhalten wir 

(12) А = 

0 1 0 . 

0 0 1 . , 

0 0 0 . . 

0 0 0 . . 

в 

I bj 

C = [1 0 0 . . . 0 ] D = ¿0. 

Da eine monotone nicht wachsende Funktion ist, gilt für k?± 0 , 

V . 0 , 

wenn ¿ „ > 0 ist. 
Ein Beispiel ist in [1] betrachtet. 
Herrn Prof. Dr. W. Kämmerer möchten wir für Diskussionen herzlich danken. 
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Zusammenfassung. Es wird ein Selektionsprozeß als linearer Automat beschrieben. 
Abstract. The process of selection is considered as a linear automaton. 
Резюме. Рассматривается селекционный процесс как линейный автомат. 
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On a minimization algorithm- for Boolean functions 

B y F . MÓRICZ 

1. Logical design of circuits with a single output, using solid-state integrated 
circuits, as primitive elements, leads to several non-traditional optimization problems 
which require to find, for any given Boolean function, a formula (or all formulas); 
composed from fixed Boolean functions as primitive elements, representing the given 
function and minimal with respect to a given objective function. 

In this note our purpose is to present an algorithm which (provided the objective 
function satisfies a simple restriction) obviously leads to the exact solution of the 
problem and, moreover, a limited number of its steps which can be implemented 
on a digital computer delivers a fairly good approximative solution. (Of course, 
the approximation will be the better the more steps are performed and thus a larger 
computer may provide a better approximation.) 

In view of the general nature of the problem, the algorithm will be formulated 
here in a very general and comprehensive way which, for each practical application, 
must be specified in accordance with the given particular primitive elements and 
objective function. , 

2. Assume 0= {Sj, 92, ...} is a functionally complete system1 of a finite number 
of Boolean functions, or in other words, of logical operations in a general sense 
where the number of operands of each operation, i.e. the number of arguments of 
each function can be arbitrary. Let X={x1,x2, ...} be the (countable) set of 
the available Boolean variables. (In an actual realization of the algorithm to be 
formulated we have, of course, to limit ourselves to a finite set of variables.) 

The formulas considered here are all those composed of the constants 0 (falsity) 
and 1 (truth) and of the given Boolean variables by means of operations belonging 
to 0 . ? We say .that two formulas, F a n d G, are identically equal or that the equality 
F=G is an identity if for every Valuation their values coincide; here by valuation 
we mean a mapping which makes correspond to each of the variables belonging to 
A'one of the constans 0 and 1. 

A substitution instance of a formula F is, by definition, any formula that can 
be obtained by replacing.all occurrences in F of some variables, say xh, .••,xir 
(i\, ...,ir are different positive integers), by an equal number of formulas, say 

1 See, e.g., A. Ádám [1], Chapter 4. 
2 In other words, the following symbol strings are called formulas: (i) 0 and 1; (ii) any element 

of X; (iii) 3(Fj,... Fr) where 3 € 0 is a Boolean function with r variables and F1,...,Fr are formulas; 
(iv) nothing else. 
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Hl,...,Hr, respectively; for the formula thus obtained we introduce the notation: 

F(Xii: = Hi;...-,xir: = Hr). 

Here the variables .v(l, . . . , xir and formulas Hl, ...,Hr are called substituends and 
substituents, respectively. Analogously, by a substitution instance of an identity 
F=G we mean any equality of the form 

F(xh: = Hi,...; = Ht) = C(xu: = / / , ; . . . ; = Hr), 

which is easily shown to be also an identity. 
Consider now a formula F and an identity G = H the left-hand side G of which 

is a (proper or non-proper) subformula of F. For each occurrence of G in F decide 
independently whether it is to be left unchanged or replaced by H and proceed ac-
cordingly.. Any of the formulas that can be obtained in this way are said to arise 
from F by a direct application of the identity G = H; the number of such formulas 
is 2s, where s denotes the number of occurrences of G in F. If the formula F is left 
untouched we speak of a trivial direct application. If G is not a subformula of F 
then the only possible direct application is the trivial one. 

The formula F' is said to be obtained from F by an application of the identity 
G = H if F' arises from- F by a direct application of some substitution instance of the 
identity G = H. Analogously as above, calling an application trivial if it leaves F 
untouched, in case G has no substitution instance that is a subformula of F the 
only possible application of the identity G = H is the trivial one. 

We note that the minimization problem mentioned above has been studied 
in detail so far mainly in the case of the classical propositional calculus, i.e. when 
0 = {S1>92, 93}, where 9I(*I ,x2) — *IAx2 , 92(x1 ; x2) = x ^ x ^ and 93(x1) = x1 (ne-
gation). For practical applications also important is the case when consists of ShefTer's 
alternative or Peirce's joint denial only3, or of some of their generalizations for sev-
eral variables, known as N A N D and NOR elements. 

3. Let c(F) be a mapping from formulas to real numbers. We call the number 
c(F) the weight of the formula F. An identity G = H is said to be weight-reducing if: 

c(G)>c(H). 

We shall assume that c(F) satisfies the following requirement, which in most 
cases of practical application does indeed hold: 

If the formula F' is obtained from F by anon-trivial direct application 
of a weight-reducing identity then we have 

c ( F ' ) < c ( F ) . 

This condition ensures that the direct application to a formula of a weight-
reducing identity is always efficient in the sense that it reduces the weight of this 
formula. Some care must be taken, however, in connection with non-direct applica-

3 See the classical papers of C. S. Peirce [2] and H. M, S heffer [3]. 
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tions since the analogous assertion is not necessarily true for them even in the most 
simple cases occurring in practice.4 

In most cases that are practically important, the meaning of the weight function 
c(F), playing the role of an objective function to be minimized, is either'the length 
of the formula F,5 or the cost involved in its technical realization under specified 
circumstances. 

4. After these preliminaries the minimization problem can be formulated 
precisely as follows: Assume that we are given a functionally complete system 
0 = {$!, •••} of a finite number of Boolean functions, a countable set X = 
= {xl5 x2 , ...} of Boolean variables, and an objective function c(F), satisfying prop-
erty (-£), defined for all formulas that can be composed by means of the given 
primitive elements. For a given Boolean function, represented by a formula' F, 
consider the set J2r = # ' ( F ) = {Fj, F2, ...} of all formulas identical to F. Any formula 
Fio, belonging to J*, such that 

holds for all formulas Ft £ SF, is said to be a minimal representation of F. (In general,-
there exist several such formulas Fio.) An algorithm which, for any given formula . 
F, selects a minimal representation of F is called a minimization procedure. 

5. Now we have reached the stage where we-can outline the ideas on. which 
our minimization procedure is based. ^ 

(1) Enter the formula F given as input datum, possibly in a converted form 
suitable for the computer, on a list called the "list of formulas to be minimized". 

(2) For any formula G newly entered on the list of formulas to be minimized, 
form all its subformulas, and then all those formulas H that have at least one sub-' 
stitution instance which is a subformula of G, and, finally, enter on a list called the 
"list of the left-hand sides of applicable identities" all those of these formulas H that 
do not yet occur there. 

(3) For any formula H newly entered on the list of the left-hand sides of appli-
cable identities, generate all formulas K having a weight less than H has. For each 
of these formulas K check whether it is identically equal to H\ if yes then enter the 
identity H = K on a list called the "list of applicable identities". 

(4) Apply directly to every formula occurring on the list of formulas to be 
minimized all (weight-reducing) identities newly recorded on the list of applicable 
identities and also all those substitution instances of these identities that are weight-

4 E.g. in case of the classical propositional calculus, taking the total number, of occurrences 
of variables in the formula F as c(F)> • 

. Xi A I , A Xt A X2 = XL A X2 A X2 

is obviously a weight-reducing identity, but its substitution instance 

XI A X-J A A 0"3 A X, A X5) = x t A (x3 A X4 A X5) A (x3 A X4 A X6) 
is not. 

5 There are many different weight functions called the lenght of a formula, e.g. those defined 
as the number of occurrences of variables or as the number of occurrences of variables and function 
symbols, etc. in the formula in question. 
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reducing.6 Add those of the resulting formulas which are not yet contained in the list 
of formulas to be minimized to this list. 

If the list of formulas to be minimized is not enlarged in step (4) then the al-
gorithm is concluded by printing out one of the formulas with minimal weight occur-
ring on this list; otherwise it continues at (2) again. 

6. It is easy to see that our algorithm finally leads to an exact solution of the 
minimization problem formulated above. Indeed, if M is a minimal representation 
of the formula /"given as input datum then F=M is an identity. 

If M has smaller .weight than F has, i.e. the identity F=M is weight-reducing, 
then it will sooner or later occur on the list of applicable identities, for F, as a sub-
formula of itself, is to be. found on the list of the left-hand sides of applicable identities. 
Then, by a direct application of the identity F=M to F, we obtain M as a formula 
to be added to the list of formulas to be minimized. Hence, finally, either M or 
another formula of the same weight will be printed. 

If, however, the weight of M equals thai of /"then F is already itself of minimal 
weight. Each of the generated weight-reducing identities can be applied to F only 
trivially, and thus the algorithm concludes after the first performance of step (4), 
and the only formula on the list of formulas to be minimized will be F, as a minimal 
representation of itself. 

We emphasize that each of the formulas on the list of formulas to be mini-
mized (among others F itself) has to stay on this list even if a formula identically 
equal to it of smaller weight is added to this list. Otherwise the application of a weight-
reducing identity might impede later, possibly more advantageous, application of 
another such identity. 

In practice, storage capacity or available running time limitations might prevent 
the continuation of the algorithm until its conclusion. If one is forced to'interrupt 
the algorithm, we propose to print out one of the formulas with minimal weight 
from the list of formulas to be minimized.as an approximative solution. 

7. It is expedient to give the input formula of the algorithm in the so-called 
Lukasiewicz bracket-free notation (shortly ¿-notation; also known as Polish no-
tation), or to convert it into that form by a supplementary algorithm.7 The ¿-notation 
considerably simplifies the performing the algorithm. 

Among others, if the formulas are written in ¿-notation, it is relatively easy 
to construct, by making use of the so-called push down store,8 the sub-algorithms 
for the following tasks: 

6 In view of condition ( * ) , a non-trivial direct application of a weight-reducing identity 
always reduces the weight of the formula in question, but in case of a. non-direct application, as 
we already noted, it might happen that some substitution instance of a weight-reducing identity 

»is not weight-reducing (see footnote4). 
In principle, a direct application of all identities newly recorded on the list of applicable iden-

tities to every formula occurring on the list of formulas to be minimized would suffice. However, 
disregarding the weight-reducing substitution instances of these identities would lenghten our 
algorithm to such an extent that it were not practically feasible any more. 

' See J. Lukasiewicz and A. Tarski [4], pp. 30—50. As for a simple.proof of the unambiguous-
character of this notational system see, e.g., L. Kalmár [5], pp. 11—15. 

8 See F. L. Bauer and K. Samelson [6]. 
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(i) Elimination of the Boolean constants from a given formula; 
(ii) Production, for a given formula G, of all formulas that have at least one 

substitution instance which is a subformula of G; 
(iii) Determination of the truth-value of a given formula for a given valuation 

of the variables occurring in it and, by repetitions of this sub-algorithm, the decision 
of the question whether two formulas are identically equal or not; 

(iv) Application of an identity to a given formula. 

8. As for the implementation of the algorithm on a computer, the most delicate 
part is (3), since it requires producing, given a formula H, all formulas K that have 
a smaller weight than H has. This part can perhaps most easily be realized in practice 
by splitting it into two.steps: 

(v) Production of all formula types of given weight. A formula type associated 
with a given formula containing no Boolean constants can be obtained, by definition, 
by replacing all Boolean variables occurring in this formula by a common one, x 
(without subscript), say. 

R, ' ft 
(vi) Production of all the formulas of a given type containing variables from 

a given set only, e.g. that of the variables occurring in the input formula. 
Empirical evidence (in cases that are practically most important) shows that 

weight-reducing identities with a smaller weight on the left-hand side, when applied, 
are more efficient than those with a left-hand side having a greater weight. There-
fore it is advisable to apply the former ones first. 

Hence, it is appropriate to generate and store the formulas in order of increasing 
weight. Thereby, the algorithm, even if it is interrupted, delivers a well approximat-
ing solution. -

9. In the above version of the algorithm its run is controlled by the formula 
F to be minimized, at least in the sense that»only those weight-reducing identities 
are produced which are non-trivially directly applicable to F or to another formula, 
arisen from F, occurring on the list of formulas to be minimized. In this of the 
way a great deal of computing time and storage room may be spared if we have only 
one formula to minimize. 

If, however, we want to minimize several formulas, the above way might be 
disadvantageous. Indeed, in this case the algorithm produces, separately for each 
of the formulas to be minimized, all formulas, built up from the available stock 
of variables, that have smaller weights than those occurring on the list of the left-hand 
sides of applicable identities have. This might result in a very redundant repetition 
in the production of formulas. 

An alternative version of the algorithm consists, e.g. in case only positive in-
tegers occur as weights, in generating and tabulating a "complete system of independent 
weight-reducing identities" up to a given ceiling for their left-hand side. In more 
detail, this version produces a set Sit of weight-reducing identities such that 

(a) Any weight-reducing identity such that the weight of its left-hand .side 
does not exceed the given ceiling can be obtained, and therefore its direct applica-
tions can be replaced, by a finite number of direct applications of identities which 
either belong to 9Jt or are weight-reducing substitution instances of identities belong-
ing to 9)1; 

(P) 9W is minimal in the sense that no identity belonging to 9J? can be obtained 
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by a finite number of direct applications of either other identities in 9)1 or such sub-
stitution instances of these as are weight-reducing. 

This variant of the algorithm is advantageous if we have to minimize a large 
number of formulas, since it requires to draw up the above chart of weight-reducing 
identities together with all their appropriate substitution instances only once, and 
then we have only to attempt to apply directly the identities in this chart to the 
formulas to be minimized. Nevertheless, we have to take into consideration that 
generating and tabulating the chart in question might require an enormous storage 
capacity. 

10. Another variant of our algorithm consists in that besides the weight-reduc-
ing identities we admit such ones as leave the weights of their left-hand sides un-
changed. More precisely, for every formula on the list of the left-hand sides of appli-
cable identities we generate all the identities H = K such that the weight of K does 
not exceed that of H\ and then we apply any such substitution instance of each of 
these as are not weigh-augmenting to all formulas on the list of formulas to 
be minimized. (See especially steps (3) and (4) of the algorithm described above.) 

For example, in case of classical propositional calculus with the weight of a 
formula meaning its length (see footnote5), this variant of our algorithm enables 
us to make use of the associative and commutative laws of conjunction and disjunc-
tion; these identities obviously do not change the length of a formula, but they may 
prepare for the application of another, strictly weight-reducing, identity9. 

Using this version of the algorithm we may, possibly, arrive at a minimal rep-
resentation of the starting formula much quicker, though the price of this may be 
a much larger storage capacity used up. In yet another possible variant of our al-
gorithm, for which the remarks made just now apply still more strongly, we may 
allow the application of certain weight-augmenting identities as well; e.g., in case 
of the classical propositional calciilu! the use of distributive law in the direction 
C V 1 V . V 2 ) A , V 3 = ( X 1 A J C 3 ) V ( X 2 A J R 3 ) may sometimes prove useful by preparing the way 
for the application of a powerful weight-reducing identity.10 

RESEARCH GROUP ON MATHEMATICAL LOGIC 
A N D THEORY OF AUTOMATA OF THE 
HUNGARIAN ACADEMY OF SCIENCES, 
SOMOGYI BELA U . 7 , 
SZEGED, H U N G A R Y . 

• The situation is illustrated by the following simple example, for which the author is indebted 
to an oral communication of G. Specker: 

( . . . ((*! V x2)V x3)...\'x,l)vxl = (... (((*! V *,) V xs) Vx3)... V .r„ _,) V .v„ = 

= ( . . . ((*, V x„) V x3)... V .v„ . , ) V x„. 
10 The following example may serve as an illustration: 

((X, V X2) A -ÏJ) V X2 = (X, A .V3) V (X2 A X3) V = (AT, A JV3) V XO . 
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On some generalizations of cyclic networks 

B y A . Á D Á M 

Zusammenfassung. Die ersten Abschnitte der Arbeit geben eine vollständige 
Beschreibung der endlichen zusammenhängenden gerichteten Graphen, die mindes-
tens zwei Zyklen enthalten und in denen jeder Punkt und jede Kante entweder 
in einem Zyklus oder in (genau) zwei Zyklen liegt. Bezeichnen wir durch Cx die 
Klasse dieser Graphen. Sei G ein Element von Cx und k eine Zahl, die kleiner als 
die Längen der Zyklen von G ist; bezeichnen wir durch 9i t(G) den Graphen, dessen 
Punktmenge mit der Punktmenge von G übereinstimmt, so daß die Kante AB 
in 2tfc((j) genau dann existiert, wenn A?±B und B aus A in G durch höchstens k — 1 
Kanten erreichbar ist. Sei C2 die Klasse aller Graphen 9t* (G) wobei G die Elemente 
von Cj durchläuft. . 

In den letzten Abschnitten wird es danach bestrebt, die in der früheren Arbeit 
[2] ausgearbeiteten Untersuchungen (über das Verhalten der Netzwerke mit einer, 
speziellen graphentheoretischer Struktur) auf die in C2 enthaltenen Graphen zu 
verallgemeinern. Es gelang nicht, alle erzielten Aussagen zu beweisen, folglich ent-
hält die Arbeit auch unentschiedene Vermutungen (sowohl über die Struktur wie 
über das Verhalten). 

§ 1. introduction 

In [2] certain cyclically symmetric networks were studied. These networks can 
be obtained in such a manner that we.start with a single cycle and draw some additional 
edges in it. 

Let us alter the mentioned procedure so that.we start with a graph G satisfying 
the following four requirements (instead of being a cycle): 

G is a finite connected directed graph, 
to any edge e of G there exists at least one cycle containing e, 
G contains at least two cycles, 
whenever zi,'z2, z3 are three different cycles of G, then there exists no vertex 

lying in all of zlt z2, z3. • 
The collection of these graphs G will be called the class Cl. We shall define a 

class of graphs (the class C2) by adding edges to any graph in Cx in an appriopriate 
manner. In §§ 3—4 we study the graph-theoretical structure of the members of the 
classes Clt C2; in §§ 6—8 the behaviour of the networks of type C2 is analyzed. 
Since I did not succeed in solving all the arising problems, the paper also contains 
conjectures besides the propositions verified. 

5 Acta Cybernetica 
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§ 2. Some graph-theoretical definitions 

We shall always consider finite graphs having at least one edge. "Graph" will 
mean a directed one unless (rarely) we speak of a non-directed tree explicitly. Self-

. loops are (in general) permitted. Among the graphs con-
taining parallel edges with the same orientation (espe-
cially, at least two self-loops on the same vertex), only 
the two graphs seen on Fig. 1 are allowed (cf. Remark 
2 at the end of § 3). 

Let G be a directed graph. A sequence 
Fig. / 

(1) A0, ex, Ax, e2, A2, ..., e„, A„ 

GO \ 

consisting of the vertices A0, Ax, ..., A„ and the edges e1, e2, . . . , en of G (alternatively) 
is called a directed edge sequence (of length ri) if each (1 = / ̂  n) goes from 
to A,. If, in addition, A0, Alt ••••An are different vertices, then (I) is a path. If 
A0, At, ..., A„-j are different but A0 = A„, then (1) is a cycle. Let Z(A) be the number 
of cycles of G which contain the vertex A ; let Z(e) be the number defined for the 
edge e analogously. We denote by MG the minimal cycle length that occurs in the 
graph G. 

In case of undirected graphs (or if the orientation of the edges is disregarded), 
the concepts analogous to path and cycle are called chain and circuit, respectively. 

Let A be a vertex of the directed graph G, assume that A is incident to exactly 
k edges oriented towards A and to exactly / edges oriented outwards from A. Then 
we say that the indegree of A is k, the outdegree of A is /, and the degree of A the 
ordered pair (k, i). — If G is undirected, then the degree d(P) of the vertex P is 
the number of edges incident to P. 

Let H be a subgraph of G. If H contains all the vertices (but, possibly, not all 
the edges) of H, then we say that H is an e-subgraph of G. The subgraph H of G 
is called a p-subgraph of G if the following condition is satisfied: whenever A and 
B are contained in H and the edge e of G is incident to A and B, then e is contained 
in H too.1 For each subgraph H of G, there exists exactly one graph <ZG(H) such 
that <ZG(H) is a /^-subgraph of G and H is an e-subgraph of <5a(H). 

Let G be a directed graph fulfilling2 MG S 3 and k be a number such that 2 s /c < 
<MC. Let us form a graph H conforming to the following two rules: 

the vertex set of H equals to the vertex set of G. 
the (directed) edge AB (A ^ B) exists in H if and only if in G there is a path 

of the length from A to B. 
The obtained graph H is denoted by 9Ik(C). Obviously, G is an e-subgraph of 

91* ((7) and 9I2(G) = G is always true. 
Let C be a class consisting of directed graphs. Then we denote by 91(C) the 

class of all the graphs 91k(G) where G runs through the members of C and, for any 
G, k runs through the numbers satisfying 2 ^ A : < A f c . 

1 If e is a self-loop, then the same vertex is considered as A as well as B. 
2 The condition M G s 3 means that G contains neither self-loops nor (oppositely oriented) 

parallel edge pairs. 
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Now we introduce two classes of connected directed graphs. Let C t consist 
of all the graphs having at .least two cycles and satisfying the inequalities 

ls=Z(/l) = 2 and l s Z ( e ) s 2 

identically,3-4 Let C2 be® « ( Q . 

§ 3. • Thé structure of the graphs in Cx 

. Construction I. The construction consists of four steps. 

Step I. Let T be a non-directed tree with at least one edge. For each vertex 
P of T, we denote by e[p\ e(

2
P), the edges incident to P (in an arbitrary 

manner). (Evidently, every edge gets two notations.) 

Step 2. Let us form a directed graph G, by what follows: the vertices of G\ 
correspond one-to-oné with the edges of T; if the vertex A of G± corresponds to the 
edge e{p = e(® of T, then edges go from A to the vertices corresponding to e f h and 
e^+i and only to these vertices (in case p = d(P), e[P) plays the role of e(Ph). 

Step 3. Choose a subset V of the set of vertices of Gj arbitrarily. For any 
element A of V',' perform the following procedure: 

Replace A by two vertices A' and A"; 
if an edge had gone to A, then let it go to A', 
if an edge had gone from A, then let it go from A"\ 
finally, supplement the graph with a new edge leading from A' to A". 
Evidently, this process can be carried out for all the vertices in V simultaneously. 

We denote the resulting graph by G2. (See Fig. 2.) 

Step 4. Instead of any edge of G2, we draw a path 
ofarbitrary length ( S i ) . (Of course, the inner vertices 
of these paths have the degree (1, 1).) We denote the 
resulting graph by G. 

Theorem 1. Any graph G arising by Construction / 
belongs to the class Q. 

Proof. First we show that G is connected. It is 
sufficient to verify that G t is connected because Steps Figm 2 

3, 4 cannot spoil the connectedness. Let A, B be two ver-
tices of G1. If the edges eA, eB of T, corresponding to. A and B (resp.), are adjacent, 
then A and B can clearly be joined by a chain. — Let now A, B be arbitrary vertices 

3 The word "identically" means that the conditions are required for each vertex A and for 
each edge e, respectively. 

4 These four inequalities do not form an independent system: if Z ( A ) ^ 2 a n d Z ( e ) ^ 1 are 
true, then also Z(A)s 1 and Z ( e ) s 2 hold. 

5 Our present notation differs from that of [2]: the graph, denoted by G(n; 1 ,2 , k) in 
[2], is now denoted by + ) (z„), where z„ is the cycle of length n. 

5* 
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of (¡v There exists a chain in T with edges 

eA = e1,e2, ...,ek = eB. 

Let the vertices of corresponding to these edges (respectively) be 

— -^l? ? ••*> ^k — 

We have shown that A,, Ai+1 can be joined by a chain (for each /, 1 ^ /<Ar) ; this 
implies that the same holds for A and B. 

Let A be an arbitrary vertex of G± and eA be the corresponding edge of T. There 
exist two vertices P, Q of Tsuch that eA = e{p = e(

q
Q) (wherep, q are suitable numbers). 

A is of degree (2, 2) by Step 2, and, moreover, A is a cut vertex since any chain 
going from e(ph to e(

q
Q+x passes through A. These considerations imply that a sequence 

of vertices of Ci determines a cycle if and only if it corresponds to the edge sequence 

for some vertex P of T. Hence Z(A) = 2, Z(e)=l are identically satisfied in G1. 
Step 3 of the construction does not alter the number of cycles and the identical 

validity of Z(A) = 2. For an edge e of C2, either Z(e) = 2 or Z(e) = 1 holds accord-
ing as e is a new edge (i.e. going from an A' to an A") or not. 

Step 4 does not modify the number of cycles, either. Denote by e' an edge 
of G2, let A be an arbitrary inner vertex and e be an arbitrary edge of the path (in G) 
replacing e' by virtue of Step 4. We have obviously Z(A) = Z(e) = Z(e'). If A is a 
vertex of G2, then Z(A) = 2 holds in G as well as in G2. Thus 1 SZ(A)^2 and 
1 ^Z(e)^2 are identically satisfied in G. 

Lemma 1. Assume that the graph G satisfies Z(A) = 2 and Z(e) = 1 identically. 
Then any two cycles of G have at most one vertex in common. 

Proof. Let z1; z2 be two cycles containing (at least) two common vertices. Let 
A be a common vertex such that the edges of zx and z2, starting from A, are dif-
ferent. Let us pass from A on zx to the first other common vertex B(^A), then let 
us pass from B to A on z,. Thus we have got a third cycle containing A; this, however, 
contradicts Z(A) = 2. • 

Theorem 2. Every graph G belonging to the class C1 may be produced by Con-
struction I. 

Proof Let G be contained in Cx. The condition Z(A)S 1 implies that any 
vertex of G has a positive, outdegree and a positive indegree. Neither the outdegree 
nor the indegree of a vertex A can exceed 2, because if e.g. the indegree were A:(=-2), 
then each of the k edges starting from A could be extended to a cycle, hence Z(A) ^ 

> 2 would follow; this is a contradiction. 
Thus the degree of any vertex of G is either (1, 1) or (2, 1) or (1, 2) or (2, 2). 

There is at least one vertex whose degree diifers from (1, 1) (otherwise G would be a 
single cycle). 

In what follows, we shall define a decomposition procedure for G that consists 
of four steps corresponding to Steps 4., 3., 2., 1. of Construction I, respectively. 

Step 1. If A is of degree (1, 1), then we delete A and contract the two edges 
incident to A into one edge. This can be performed for all the vertices with degree 
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(1.1) simultaneously (without essential difficulties). Let us denote the resulting 
graph6 by CJ. It is clear that (7^6 C l 5 and, furthermore, that only the degrees (2, 1), 
(1.2), (2,2) may occur in G\. 

Now we establish three lemmas on Gi (the proof of Theorem 2 will be con-
tinued later). 

Lemma 2. Let e be an edge of G[, going from A to B. Then Z(e) = 2 if and only 
if d(A) = (2, I) and d(B) = (\,2). 

Proof. The sufficiency is trivial. Conversely, suppose Z(e) — 2; if the outdegree 
of A is 2, then Z(A)^3; if the indegree of B is 2, then Z(5 ) 'S3 . 

Lemma 3. Let e, A, B be as in Lemma 2. Then Z(e) — I if and only if d(A) is 
either (1, 2) or (2, 2) and d(B) is either (2,1) or (2, 2). 

Proof. First we show that each of the following four statements leads to a 
contradiction: 

(a) d(A) = (2, 1) and d(B) = ( 2,1) 
(b) d(A) — (l, 2) and d(B) = ( 1,2) 
(c) d(A) = ( 2,1) and d(B) = ( 2,2) 
(d) d(A) = ( 2,2) and d{B) = {\,2). 

Indeed, (a) implies Z ( e ' ) ^ 3 for the single edge e' going out from B, (c) implies 
Z ( 5 ) — 3; (b) and (d) can be disproved analogously (by interchanging A and B). 

Since the possibilities (a)—(d) and the ones of Lemma 2 are excluded, only 
those allowed in Lemma 3 remain. 

Lemma 2 implies immediately. 
Lemma 4. If Z(e) = Z(e') = 2 for two different edges e, e' of G[, then e and e' 

are not adjacent. 
Proof of Theorem 2 (continued). 
Step 2. Consider the graph G[ (resulting by Step 1), and choose an edge e 

of G[ satisfying Z{e) = 2. Contract the two vertices A, B incident to e into one ver-
tex (i.e. delete e, A and B, and introduce a new vertex C so that any edge ( ^ e ) 
which has been incident to A or B will now be incident to C).7 This process can be 
performed for all the edges fulfilling Z(e) = 2 simultaneously (by Lemma 4). Let 
the resulting graph be denoted by G2. Obviously; G2 € Cx, and, moreover, d(A) = (2, 2), 
Z(A) = 2, and Z(e) = l are identically valid in G2. 

Step 3. Consider G2, and define an undirected graph 7" in the following manner: 
the vertices of T' correspond in a one-to-one way to the cycles of G2; two vertices 
P, Q of T' are joined by an edge if and only if the corresponding cycles of G',, have 
a vertex in common. 

Next we state two lemmas on T'. The first of them follows from Z(A) = 2 
(holding in G2) and Lemma 1 at once: 

6 If parallel edges with the same orientation do not occur in G, then either the same holds 
for G[ or G{ is one of the graphs of Fig. 1. 

7 If there has been an edge e' going from B to A (of course, satisfying Z(e') = 1), then e' will 
become a self-loop of the new vertex C. 
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Lemma 5. Let us assign to any edge e of T' the (unique) common vertex of the 
two cycles in G'2 corresponding to the vertices incident to e. This assignment is a 
one-to-one correspondence between all the edges of T' and all the vertices of G2. 

Lemma 6. T' is a tree. 
Proof. First we show that T' has no circuit. Assume that t is a circuit of minimal 

length in T', let t consist of 
Pi, P2, e2, ..., Pk, ek, Px (k^3i) 

(i.e. Plt P2, ..., Pk are the vertices and eu e2, ..., ek are the edges of t, passed through 
as they follow). Let 

A», ..., Ak 

be the vertices of G2 corresponding to 
ex, e2, ... , ek 

(resp.) and 
zx, z2, ..., zk 

be the cycles of G2 corresponding to 
P\ > P2 , • • • > Pk 

(resp.). Let us form a directed edge sequence in G2 so that we pass 
on Zj from Ak to Ax, afterwards 
on z2 from Ax to A2, 
on z3 from A2 to A3, 

finally, on zk from Ak_1 to Ak. 

This sequence z is a cycle (otherwise / cannot be minimal). Thus Z(Ai)^3 (1 S/^/c), 
which is a contradiction. 

We are going to show that T' is connected. Suppose the contrary. The discon-
nectedness of T' implies (by Step 3) that G2 is either disconnected or has an edge e 
fulfilling Z(e) = 0. Both alternatives are contradictory (the first one is because the 
connectedness of G2 is equivalent to the connectedness of G, by Steps 1, 2). 

Proof of Theorem 2 (final part). The proof is completed by noting that the 
decomposition procedure, described in this proof (together with Lemmas 2—6), 
is an exact counterpart of Construction I. 

Remark J. To a vertex A of the graph G± (produced by Step 2 of Construction I) 
a self-loop is incident exactly if the edge in T, corresponding to A, is a final edge 
in T (i.e. it is incident to a vertex of degree 1). A graph G produced by Construc-
tion I contains no self-loop (i.e. cycle of length 1) exactly if each self-loop of Gx is 
eliminated either in Step 3 or in Step 4. 

Remark 2. It is easy to see that if a connected directed graph G satisfying Z(e) s 1 
identically has two parallel edges with the same orientation, then either G is one 
of the graphs of Fig. 1 or G has a vertex A such that Z(A)^3. This fact justifies 
the agreement posed in the fourth sentence of § 2. 
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Remark 3. A graph Gj (produced by Step 2 of Construction I) contains a 
pair of oppositely oriented parallel edges (i.e. a cycle of length 2) exactly if T 
has a vertex of degree 2. A graph G produced by Construction I does not contain 
a pair of oppositely oriented parallel edges exactly ife ach pair of this property of 
edges of Gx is eliminated either in Step 3 or in Step 4 (of course, the possibility 

• that GL contains no such pair is included). 

Problem. How to describe all connected directed graphs fulfilling 1 ^ Z ( e ) ^ 2 
identically?8 

§ 4. Some conjectures on the class C, 

By definition, each graph G contained in the class C2 has at least one e-sub-
graph G' such that G = 9Ifc(G') where k is a suitable number.fulfilling k<Mc . 
It is an open problem whether or not the statement of unicity of this presentation 
holds. This problem would be solved in the affirmative sense if a method were 
given for constructing G' from G such that the resulting graph G' is the unique 
e-subgraph such that G = 9l t(G'). In this § some conjectures related to this question 
will be exposed. The unicity statement is formulated in Conjecture 3. 

In what follows, we shall make use of two further classes of connected directed 
graphs. Let C3 contain a graph G if and only if G has an automorphism a such 
that a permutes the vertices of G cyclically and there exists an edge from A to a (A) 
for any vertex A.9 Let G belong to the class C4 exactly if the following assertion is 
fulfilled: whenever 

G = 9l t(G'), k<MG. and G ' e C j 

are satisfied for G', k, and z is a cycle of G', then10 '11<3c(z) = 9(*(z). 

. 8 This condition implies the identical fulfilment of Z(A)sl. Fig. 3 shows a graph in which 
Z{e)— 1 for each edge and Z(A) = 3 for some vertex. 

9 The relation G 6 C3 holds exactly if the vertices of G can be labelled by the numbers 1,2, . . . , n 
such that 

• G = G(n; 1, in.,, mz, ..., mk), 

where n is the number of vertices of G, k is a suitable number and, on the right-hand side, the no-
tation means that an edge A,Aj exists exactly if /— j is congruent to one of 1, m.,, . . . , mk modulo n. 

• . 0 

Fig. 3 Fig. 4. 

10 The inclusion <5k(z)39lk(z) is trivially satisfied; we require now the converse inclusion. 
It is obvious that 9tk(z) 6 C3. 

11 Let G' be the graph of Fig. 4 and z be the longer cycle of G'. Evidently C,. If 
all the cycles of G' are of the same length, then Wk(G')'e C,. 
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Let C be a graph in C2. If a /»-subgraph Gx of G belongs to the class C3 , then 
we say that Gx is a C3-subgraph of G. If G1 is a C3-subgraph of G and there exists 
no C3-subgraph G2 of G such that G1<zG2c:G, then we say that Gx is a maximal 
C3-subgraph of G. 

Conjecture 1. Let G be a graph contained in C2. Let G' be an e-subgraph of 
G and k be a natural number such that 

C G Q , k<MG. and G = 2t*(G'). 

If Gx is a C3-subgraph of G, then there exists a cycle z of G' such that z contains all 
the vertices of Gx. 

Conjecture 2. Let G, G' be two graphs as in Conjecture 1. Assume that .G is 
contained in C4. A./»-subgraph Gx of G is a maximal C3-subgraph of G if and only 
if there exists a cycle z of G' such that G x = S c ( z ) . 

Proposition 1. If Conjecture I holds, then so does Conjecture 2 as well. 

Proof. Let z be a cycle of G'. ©c(z) is a C3-subgraph of G in consequence of 
G£C 4 . Let G2 be a proper C3-subgraph of G such that <3 c (z)cG 2 . Conjecture 1 
implies the existence of a cycle z' of G' containing all the vertices of G2. The vertex 
set of z is a proper subset of the vertex set of z'\ this contradiction shows that <3G(z) 
is a maximal C3-subgraph, thus the sufficiency statement of Conjecture 2 is proved. 

Conversely, let Gj be an arbitrary maximal C3-subgraph of G. Consider S c ( z ) , 
where z is the cycle whose existence is stated in Conjecture 1. <3c(z) is a C3-subgraph 
of G by GÇC4 . The-maximality of Gt implies G1 = <àc(z). 

' Conjecture 3. Suppose G£C 2 . Then there exists exactly one pair (G' ,k ) (con-
sisting of an e-subgraph G' of G and of a natural number k) such that G = 9f)t(G/). 

Proposition 2. If Conjecture 2 holds and G £ C2 f l C4, then the conclusion of Con-
jecture 3 is valid for G. 

Proof. Let G', G" be two e-subgraphs of G and kx, k2 be natural numbers 
such that 

k2^Mc„, G'cCl, G-eQ, G = ^i(G') = ^2(G"). 

Conjecture 2 implies the equivalence of the following three assertions (i), (ii), (iii) 
for a /»-subgraph Gx of G: 

(i) the vertices of coincide with the vertices of a cycle of G', 
(ii) Gj is a maximal C3-subgraph of G, 

(iii) the vertices of Gt coincide with the vertices of a cycle of G". 
Hence the vertex sets of the cycles of G' coincide with the vertex sets of the 

cycles of G". Let z' be a cycle of G' and z" be a cycle of G" such that z', z" contain 
precisely the same vertices; let A be à vertex of z ' (and of z"). We shall label the 
vertices (in question) as they follow A on z' or on z". From A, edges (of G) go to 
the first, second, .. . , Ar1-th vertices (and only to these) of z ' ; analogously, from A 
edges go to the first, second, !.., £2-th vertices (and only to these) of z". This implies 
z' = z" and /r1 = /r2, thus also G' = G" (because Z(e) ë 1 is identically satisfied in G' 
and in G"). • 
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§ 5. Some lemmas 

Let A, B be two vertices of a graph G and a be a directed edge sequence from 
A to B. It is well-known that we can select a path aY from a such that ax leads from 
A to B, too; more precisely, ax may be constructed by iterating the method that we 
omit a cycle out of a directed edge sequence (unless it is a path). This fact will be 
used sometimes in this §. 

Lemma 7. Let A,B be two vertices of a connected graph G. IfZ(e) S1 is identically 
satisfied in G, then there exists a path a of G such that the beginning vertex of a is A 
and the end vertex of a is B.12 

Proof First we show that the .conclusion is satisfied by some directed edge 
sequence. Since G is connected, there exists a chain whose. vertices are 

A = A0, Ai, A.,, ..., Am_1; Am = B 

where m is the length of the chain. For every subscript / (0 there exists either 
the edge AiAi+1 or the edge Ai+1AI. 

Suppose that there exists a directed edge sequence b from A to A; ( 0 ^ / < / n ) , 
we shall prove the analogous statement for A, Ai+1. If A-tAi+1 does exist, then the 
existence of the required sequence is obvious. If e = Ai+1Ai exists, then let c be the 
path which originates from a cycle containing e by deleting e. b and c form together 
a directed edge sequence from A to Ai+1. We can select a path from the directed 
edge sequence constructed above between A and B. This completes the proof. 

In the subsequent lemmas, we consider a graph G belonging to Cx and we denote 
by d the greatest common divisor of the lengths of all cycles of G. For any pair 
A, B of vertices of G, the number of cycles containing both A and S is either 0 or 
1 or 2. 

Lemma 8: Let G be a grap'.i belonging to and A, B be two vertices of G. Denote 
by n(A, B) the number of pa,lis going from A to B. The following three assertions 
are true: 

(a) If there is at most one cycle containing both A and B, then 

n(A,B) = 1. 

(b) If there exist two cycles containing both A and B, then 

either n(A, B) = 2 and n(B, A)=i, 

or n(A,B) = \ and n(B, A) = 2. 

(c) Suppose that the first alternative of (b) holds. Let /,, /2 be the lengths of thé 
paths leading from A to B arid l3 be the length of the path going from B to A. Then 

4 = 4 = —/3 (modi/). 

12 If A and B coincide, then a path of length 0 fulfils the conclusion. 
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Remark. The assertions (a), (c) hold also in symmetrized form (by interchanging 
A and B). 

Proof. We use induction with respect to the number of cycles of G. If G has 
two cycles, then the lemma is evidently valid. 

Assume that the number of cycles is m and the lemma is true for the graphs 
having at most m — 1 cycles. We shall rely upon Construction I without any explicit 

reference (this is justified by Theorem 2). Let z be a 
D1 cycle of G such that z corresponds to a vertex of 

degree 1 of T. G has exactly one cycle zx such that 
z, zx have at least one vertex in common. The ver-

2 tices of z can be denoted (uniquely) by 

Fx, F2, ..., F„ £>j, Do, ...,DW 

• F, t-1 
such that z passes through the vertices in this 

3 ordering and exactly Fx, F2, ..., Ft are the com-
mon vertices with zx. Also zt passes over the F's 

¿hi according to increasing subscripts.( See Fig. 5.) t = l 
- is possible. t = 1 implies that the degree of F1 is 

(2, 2), i > 1 implies that the degree of Ft is (2, 1) 
and the degree of F, is (1,2); in both cases, all 
the remaining vertices of z are of degree (1, 1). 

Denote by Gx the graph resulting if Dx, D2,..., 
^ j i Dw (and the edges incident to them) are deleted. 
i . <v-'. Clearly Gx £ C1. 
" We distinguish six cases with respect to the 

situation of A and B. (The cases aiising when A, 
Dw-1 B are interchanged are not treated separately.) 

Case 1: neither A nor B occurs in z. Then the 
connectibility of A and B is the same in G as in Gx. 

Fig. 5 Case 2: A = Di and B = Dj (where 1 ^ / <_/' S it-'). 
Then (a) is trivially fulfilled. 

Case 3: A = Ft and. B = Fj (1 isj< t). We have 

n1{A,B) = n1{B,A)=\ 

for the function 7zx defined in Gx, hence 
n(A, B) = 2 and n(B, A)=l, 

i.e. the first alternative of (b) holds. Let llt l2 be the lengths of the paths from A to 
B along z1 ; z, respectively; let /*, l2 be the lengths of z1 ; z (resp.); let l3 be the length 
of the path from B to A. Then 

+ '3 ~ l*>. 4 + = J 

hence, on the one hand. d\lx = ¡x + l3, thus 
^ = — /3 (mod d); 
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on the other hand, li — l2 — l* — l2• Since both of I*, I* are multiples of d, the same 
holds for their difference, thus 

= l2 (mod d). 
Also (c) is verified. 

Case 4: A = Di and B = Fj ( l s / s i v , (a) is trivially fulfilled. 

Case 5: A does not occur in z and B — Ft (1 ^ i S /). (a) follows from the induc-
tion hypothesis. 

Case 6: A does not occur in z and B = Dt ( l s / s « ' ) . Because n(A, F,)=l 
by Case 5, it is clear that n(A, B)= 1. — Analogously, 7t(FJ, A)= 1, hence n(B, A) = l. 
The proof is completed. 

Lemma 8 implies immediately 

Lemma 9. Let G be a graph belonging to C, and A, B be two vertices of G. If 
a, b, c are three directed edge sequences such that both of a, b lead from A to B and c 
goes from B to A, then 

lx = /2 = — /3 (mod d), 

where /1; /2, /3 are the lengths of a, b, c respectively. 

§ 6. Some notions concerning the behaviour of networks 

We recall the continuous model of the behaviour of a network,13 exposed in 
Section 3 of [1]. The subsequent treatment is — essentially — an extension of that 
of [2]. The mentioned behaviour may be shortly summarized as follows: 

(1) To any vertex A{ a function a , (0 is assigned. The domain of a,- is either 
the (real) interval [0, or an interval [0, T'max) where T'm,1X is some positive number 
(common for the vertices). The range of a ; is the interval [0, 1]. 

(2) For any number t lying in the domain of the functions a, (where 1 ^ i ^ n , 
n is the number of vertices), if the edge AjAk exists and <Xj(t)=\, then ak(t)=0. 

(3) The initial values a,(0) of the functions are assumed to fulfil the requirement 
posed in (2) (with 0 as /). 

(4) If the value of the function a, is less than 1, then it increases linearly unless 
it must be 0 in consequence of (2). 

(5) If the value of the function a ; is 1, then it remains constantly 1 unless it 
must be 0 in consequence of (2). . 

(6) If AjAk exists and the function a}, ak reach the value 1 at some instant t0 
simultaneously, then (/„ is denoted by T'max and) the functions are not defined for 
numbers / = /0-

If the functioning of a network is defined at an instant t, then the vector 

» = < a i ( 0 , a 2 W , . . . , « „ ( / ) > 

is called the state of the network at t. Let us form the state D of the network at 

13 By a network we mean a graph (without self-loops) together with numerical functions,. 
depending on the time, assigned to the vertices in a one-to-one manner. 
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the instant t + t' (where t' is a non-negative number and this new state X) is formed 
from 23 in agreement with the above rules (1)—(6)); X> is denoted by ©[ + / '] too. 

The state 93 is called cyclic if there exists a positive t such that 33 = ©[ + /]; 
each suitable t is called a period of the network with the initial state 23. © is called 
steady if S —23[ + r] is true for every positive t. Any steady state is obviously cyclic: 
By a proper cyclic state a non-steady cyclic state is meant. If 23 is a proper cyclic 
state, then clearly there exists a positive number t0 such that 23 = 23[+ /] holds exactly 
if t = gt0 where g can be 0, 1, 2, 3, ... . 

In the remaining part of this §, the concept of regular state will be introduced. 
Let us consider a graph G' belonging to the class Cx . Denote by d the greatest com-
mon divisor of the lengths of the cycles of G'. We define a partition 77 of the vertex 
set of G' in the following manner: let A =B (mod /7) be true exactly if there exists a 
path a (of length SO) such that the beginning vertex of a is A, the end vertex of 
a is B and the length of a is a multiple of d. We have to show that 77 is an equivalence. 

Lemma 10. The relation II is reflexive, symmetric and transitive. 

Proof. The reflexivity is evident since paths of length 0 are allowed. 
Next we prove the symmetry. Suppose A s B (mod 77). There exists a path a 

from A to B and a path b from B to A by Lemma 7. The length of a is a multiple 
of d by the supposition; either the fact that a, b form together a cycle or Lemma 8 (c) 
implies that also the length of b is a multiple of d\ consequently, B = A (mod 77). 

Finally, we show the transitivity. Assume A =B (mod 77) and B = C (mod 77). 
There exists a path a from A to B and a path b from B to C such that the lengths 
of a and b are multiples of d. Hence C can be reached from A on a directed edge 
sequence whose length is = 0 modulo d. By Lemmas 7, 8, 9, the same holds for the 
path(s) leading from A to C (and there exists such a path). 

Lemma 11. Let A, B, C, D be four vertices of G'. If A = B (mod n),and there 
exists an edge from A to C, and there exists an edge from B to D, then C = D (mod 77). 

Proof. Lemmas 7, 9 and the definition of 77 imply the existence of two paths 
a, b such that a goes from C to A, the length of a is = — 1 (mod d), b goes from 
A to B, the length of b is s 0 ( m o d d). Hence the directed edge sequences, going 
from C to D, are of length congruent with — 1 + 0 + 1 = 0 (mod d), thus 
C = D (mod 77). The proof is completed. 

Since Lemma 11 is valid and Z(A)^l is identically satisfied, it is easy to see 
that there are d equivalence classes modulo 77 and we can label these classes by 
(6.1) E1,Et,...,Ed 

so that if an edge comes from a vertex in £j (1 ^ i S d), then it terminates at an element 
of £ ,_! (where, of course, Ed plays the role of ^ - i ) . This enumeration of the classes 
is unique apart from cyclic translation. 

Let us consider a network G(£C2), having'the vertices Av, A2,...., A„, and 
an e-subgraph G'(eCi) of G such that 'G.= ^ ( G ' ) and 2^k<d.u A state 

23 = < a i ( / ) , a 2 ( / ) , . . - , « n ( 0 > ; 

14 Throughout the following parts of the paper, this terminology will be used extensively. 



Generalizations of cyclic networks 117 

of G will be called regular1'0 (at the instant /) if it satisfies the following three con-
ditions: 

(a) If Ai = Aj (mod II), then ai(t) = oiJ(t). 
(b) If a,(/) = 1 for the vertices lying in a class E j (occurring in (6. 1)), then 

a,, (t) = 0 for every 
Al.(€Ej_1UEj_2[J ••• {JEj_k+1) 

where the expressions j—\,j — 2, ... are meant modulo d. 
(c) If 0 ' S a i ( 0 < l , A i ^ E j and am(t)< 1 for every 

then cc;(t) <ar(t) for each Ar(ÇEj-i), where the expressions j+\,j + 2, ... and 
j — 1 are again viewed modulo n.16 

By comparing the notions of cyclic and regular states with how these concepts 
had been introduced in [2], one can ascertain that the cyclic states were defined in 
precisely the same manner and the regularity was introduced in an almost full analogy 
(the difference is motivated by the modification of the graph-theoretic structure). 

§ 7. The cyclicity of regular states 

Consider a network G(£ C2) (as in the definition of the regular state). Suppose 
that we start with a regular state of G at the instant 0. The behaviour of G may be 
studied in detail in analogy to the discussion in § 2 of [2]. In studying a function a ( 
assigned to a vertex At, the only modification here is that now the sequence of sets 

• f f i ' Y T t f ) , 

must be considered, where consists of the vertices from which A{ is reachable 
by a path of length h (instead of the vertex sequence 

P> + 1 5 P i + 2 5 P i + 3 ! • • • 

in [2]); clearly, any set Hjp is a subset of Ej+k (where h can be 1, 2, 3, . . . , and j is 
determined by A ^ E j ) , thus any two vertices lying in a common H(

h
i] have the same 

initial value (by the requirement (a) in the definition of the regular state). The dis-
cussion and inferences, being in analogy with the respective parts of [2], lead to the 
following statements : 

Proposition 3. If we start with a regular state at the instant 0 and Ah£Ej, 
AiSEi+k, then 

a ; i ( T ) — a ; 2 ( P ) 

(the expression j + k is meant mod d). 
Denote by g the least common multiple of d and k. 

Proposition 4. Any regular state is cyclic, gzjk is a suitable period. 

15 The regularity of a state depends on which p-subgraph of G is distinguished as C . If Con-
jecture 3 is valid, then this dependence is apperent only. 

16 If A,£EJ, a,(i) = l and At,eEjjfc, then both a - ( 0 = 0 and «,.(/) =-0 are permitted. 
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Proposition 5. If S is a regular state, then the state ©[ + /] is regular for each 
non-negative t. 

Proposition 6. Let S be a regular state. S is steady if and only if k is a divisor 
of d and there exists a number j such that 1 ë j = d/k and the equivalence 

Our Proposition 4 is an exact analogon of Proposition 2 of the article [2]. For 
the networks of the.type investigated in [2],'the converse statement is true as well: 
only the regular states are cyclic ([2], Proposition 8). Now we are going to make 
some considerations (without any claim for completeness) on the question whether 
or not a similar assertion concerning the networks lying in C2 holds. 

First we characterize the steady states (without presupposing the regularity). 
Let A, B be two vertices of a graph G; we say that A is A>reachable from B if there 
exists a path of length ^ k from B to A (A = B is permitted). 

Proposition 7. Let G, k, G' have the same meaning as in the definition of the 
regular state. Let 93 be a state of the network G (at the instant 0). Denote by 
H the set of the vertices A{ satisfying «¡(0) = 1. The state 23 is steady if and only if the 
following three conditions are fulfilled: 

(i) A&H implies a ;(0) = 0 for all the vertices At of G. 
(ii) If A B£H and A is (k- \)-reachable from B in G', then A=B. 

(iii) To any vertex A of G there exists a vertex B( £ H) such that A is (k — I )-
reachable from B in G'.17 

Proof. If (i), (ii), (iii) are fulfilled, then at each vertex of G outside H at least one 
edge of G coming from an element of H terminates (by the operation hence 
all the initial values a,(0) remain unchanged. 

Assume that one of (i), (ii), (iii) is not satisfied. If (ii) were not true, then state 
in question would not be permitted. If either (i) or (iii) were not valid, then a vertex 
A j would exist such that «,(/) would increase in an interval [0, t') with an appro-
priate positive t'. Thus the state could not be steady. The proof is complete. 

ott(0)= 1 « AtÇ.Ej\JEj+k\JEJ+9k\JEj+u\J- U E j + d _ k 
holds. 

§ 8. On the regularity of cyclic states 

A A, 

Fig. 6 

" In case Ai H the statement is satisfied with B=A trivially. 
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Consider the graph G = S3I3(G'), where G' is the graph on Fig. 6. If we put 

Pi = Pt=P* = Ps = P, = Pa = 0, P3=P<¡= 1 (where ft = «,(0)) 
then we get a steady state (since (i), (ii), (iii) are fulfilled) that is not regular. Thus 
the statement "any cyclic state is regular" does not hold. However, it can be expected 
that all non-regular cyclic states are steady, or (equivalently): 

Conjecture 4. Any proper cyclic state of a network of type C2 is regular. 
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• VIDEC: A universal Visual input 
for digital electronic Computers 

B y D . M U S Z K A a n d A . S Ä R A 

In the investigations concerning pattern recognition, the adoption of electronic 
computers recently became more and more frequent. For a long time it had been 
impossible because of the absence of suitable technical aids. Though lateron there 
came some visual readin instruments connectable with digital electronic computers 
into being, the most of them, however, were special purpose machines which, accord-
ing to the demand of the commercial data processing, served in general just as 
reading-in vouchers, for the identifications of alphanumerical signs. 

Another, but much smaller group of visual readin instruments has already 
been useful in scientific research — primarily in medical technics —, as they have 
proved to be suitable for analysing more complicated visual.information sets. These 
instruments, however, have never been able to come into general use because of 
their elaborateness and, so, their high prices. 

Among these instruments let us mention just for an example the FIDAC in-
strument, well-known in England, built by Ledley and his collaborators, in which 
the film to be processed is resolved by a cathode ray tube (as light source), controlled 
by a digital sweep circuit, and the greyness degree of its picture-elements is forwarded 
in an appropriately encoded form to the computer. 

In Hungary, on the request of medical research institutes, the Cybernetical. 
Laboratory is continuing researches to develop a suitable technical appliance. The 
primary goal of this work consists in developing a relatively not expensive visual 
readin instrument which, connected to any digital electronic computer, is capable 
of processing both transilluminatable and light-reflecting pictures. In the following, 
I should like to give a review on our so-scalled VIDEC instrument, which constitutes 
the produce of the first stage of our research work. 

The pictures to be processed (e.g. X-ray photographs, diagrams drawn by 
EEG, ECG registering devices etc.) can be fixed on the superficies of a cylinder 
made of glass. Taking into account that most of the pictures to be processed are 
such that the greyness degree of the picture-elements of the visual patterns on the 
pictures does not carry any essential new information (for instance this is the case 
of an ECG diagram) we decided to consider the elements, under an appropriate 
resolution of the picture, as dark and light points. 

Along the generating line of the cylinder there are placed 5—8 point-like sources 
of white light. Near the inner and outer surface of the picture cylinder, according 
to the position of the sources of light, there are built in 5—8 diodes of appropriate 

6 Acta Cybemetica 
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resolving power. (In case of a transilluminatable picture the inner, in case 'of a 
light-reflecting picture, the outer diodes are activated, respectively.) The photo-
diodes and the sources of light are placed along the generating line proportionally 
in the sense that if the size of the picture to be processed, taken in the direction 
of the generating line, is "6" and we have "n" photodiodes then the distances between 
the photodiodes equal "b/n". (This distance can be changed on the instrument, 
and before starting the visual input one has to take care of its appropriate adjustment.) 
The number of the photodiodes is determined by how many channels of the computer 

stzgrti'x ttteptor 

the instrument is connected to are ready to receive information simultaneously. 
In case of our instrument, "«" cannot exceed 8. The length of generating line of 
the cylinder is 240 mm, so the size "6" of the picture to be processed can be 240 mm 
at most. The circumference of the picture cylinder is 270 mm, thus taking into 
account the size of the picture fixing device as well, the size "a" of the picture to 
be processed is 240 mm at most. 

On the surface of the picture cylinder, outside the field of picture, there are 
magnetic Marker signs of density corresponding to the finest resolution applicable. 
The attainable finest resolution (raster) is 0,5 mm X 0,5 mm, so the number of 
the Markers is 480. The Markers cannot be found all along the circumference, 
just on the section of 240 mm. The device fixing the edges of the picture is placed 
inside the remaining stripe of width 30 mm, on the picture cylinder. 

In the following, let "Ae" always denote the resolving fineness in both directions 
(the possible values of 11 Ae" are 0,5—1, 0—2,0 mm). The choice of the value "Ae" 
depends in part on the resolving fineness required by the task in. question, in part 
on the operative memory capacity of the computer we are to work with. In fact, 
in case of the finest resolution (0,5 mmX0,5 mm) and of the maximal size of picture 
(240 mm X 240 mm), 480 x480 = 230.400 bits as information have to be stored 
which, in case of an average computer word length (30 bits), means. 8/Tword memory 
capacities. 

Here we should point out the fact that the proportional placement of photo-
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diodes mentioned above implies that, after the input, the visual information is 
stored in the memory unit of the computer in a form unfit for direct processing. 
In fact, the bits corresponding to neighboring picture-elements are no longer "neigh-
boring" in the memory. Therefore — with the aid of the VIDECORD ordering 
program1 to be presented at the end of this talk — the visual information set stored 
in the memory before processing has to be rearranged into a form suitable for pro-
cessing. This" problem of rearrangement could be eliminated if the photodiodes 
were placed directly beside each other at. a distance corresponding to the resolving 
finess. However, the construction of photo-perceptors of a sufficiently small, size 
gives a grave technical problem as well as an additional expenditure. Therefore, 
the divided proportional placement of the photodiodes which made it possible to 
use any photo-perceptor and optics seemed to us more practical. Furthermore, 
the running time of the VIDECORD ordering program in most of the cases of the 
pattern recognition programs is much less than that of an effective pattern recog-
nition program. 

The operation unit of the instrument receives the starting impulse from the 
computer. Then the actuating engine of the instrument starts working and rotates 
the picture cylinder with 750 revolutions per minute. Thus, the time needed for the 
input of one picture varies between 5 and 8 second. (In case of a five channel and eight 
channel input system this is 8 and 5 seconds, respectively.) 

The maximal speed of the information transport (in case of the finest resolution 
and 8 channels) is 54.000 bits per second. Just for comparison: the maximal informa-
tion transport speed of a modern punched tape reader, RC-2000 of G1ËR Co., is 
16.000 bits per second. 

The actuating en£iae of the instrument, rotating the picture cylinder simultane-
ously, moves the photodiodes and sources of light with the aid of a suitable cog-
wheel transmission and pulling spindle in axial direction. The cog-wheel is chosen 
in such a way that during a full revolution of the picture cylinder the photodiodes 
and sources of light cover the distance "/le". This cog-wheel transmission has, of 
course, to be retooled, according the choice of the resolving fineness. 

The operation unit counts the number of revolutions of the picture cylinder 
(with the aid of the photo-electric "0"-impulses), and after "6/(«-zle)" revolutions 
it automatically changes the direction of rotation of the actuating engine, not allow-
ing any further information flow, and it gives a signal to the electronic computer 
to begin the VIDECORD-program. Now if the photodiodes and sources of light 
moving backwards come again into ground position (the first diode ought to be 
just at thé edge of the picture) the operation unit stops the actuating engine and it 
changes the sense of rotation again. 

During the working of the instrument, the signs of the photodiodes, arriving 
continuously, get on Schmitt-triggers. The output levels of the Schmitt-triggers 
control gate stages. The signs gating the gate stages are furnished by Marker signs. 
The Marker signs are emitted by a magnetic perceptive head. At thé value "Ae" = 
= 0,5 mm every Marker sign is effective. At "Ae" = 1,0 mm every second, at 
"Ae" = 2,0 mm every fourth Marker sign is effectual, respectively. 

The output impulses of the gate stages are directly connected to the input 
unit of the computer. The effectual Marker signs also serve to synchronize the com-

1 The ordering program is maked by P: Hunya. 
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puter. Thus, the picture is transmitted to the computer in a form of parallel-series 
information. Each photodiode scans just a given zone of the picture, but their joint 
information gives the entire field of picture. In the further development of the in-
strument we have set ourselves the task of making the instrument capable of dis-
tinguishing the nuances retraceable in the picture. This, on the one hand, raises the 
requisite concerning the memory capacity of the computer, on the other hand, 
increases the electronics of the instrument. In fact, in this case, the signs of the 
photodiodes are conducted onto analogue-digital converters, instead of Schmitt-
triggers, and according to the greyness degree of the picture-element, at least 3 bit 
codé per picture element has to be transmitted to the computer. 

To carry out pattern recognition experiments (human chromosome analysis) 
the instrument is connected to a MINSK-22 electronic computer working in our 
Laboratory. 

* * « . 

The VIDECORD ordering program Consists of two parts. The first part of 
it is suitable for horizontal investigations, and it converts the information into a 
so-called row-continuous form. If vertical investigations are needed, then the second 
part of the program, which arranges the information, previously brought into a 
row-continuous form, is also be used. The entire VIDECORD program leaves 
the original information set fixed, therefore for the rearranged information as large 
additional memory capacity is needed as for storing the original information set. 

Let the length of word of the computer adapted to the VIDEC instrument 
be bits in general. This word plotted against the input visual information is of 
the following form: 

1 II 1 1 
z s n s n s n s n 

ktt-(s + n) 
V 

/. = z + t a t ( s + n) 

where z = the number of possibly unused bits (e.g. sign-bit); 
it = the number of elementary informations read-in an effectual Marker sign. 

It is identical with the number of the input channels (this can be 5, 6, 8); 
s = the number of unused bits depending on the input system (ordinarily 

0 or 1); 
A'a = the number of picture characters of "«" bits stored in one word. 

Thus the memory capacity needed to store a picture consisting of e-e = e2 

e 2 

picture-elements is C = words. (The possible values of "e" are 120, 240 
kx • n 

and 480.) After each £a-th effectual Marker sign the VIDEC instrument gives 
the computer a distinct operating sign to. write the information, read in up to that 
time, in the memory and to increase automatically the adress. kx has to be chosen 
such that "e/kx" is an integer, and that the inequality kx(s + n) ^ X < (kx+ 1) • (s + n) 
holds. The first condition is necessitated by the requirement that, after a full revolu-
tion of the picture cylinder, the computer should start storing into a new word by 
all means, the second one aims the best exploitation of the memory. The values of 
kx on the VIDEC instrument can be adjusted 3, 4, 5, 6 and 8. 
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The placement of the information brought into a row-continuous or column-
continuous form in one word is the following: 

y = z + kp 

where ^ = the number of the bits used in one word, whether after a row-continuous 
or a column-continuous rearrangement. 

: e-After the rearrangement the memory capacity needed for storing is C' = -¡~-
kt> 

V i d e c o r d - I . 
(for horizontal arrangement ) 

start 
< =>m 
i =>l 
0 

• 
i =>i 

Fig. 2 
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word, kp is to be chosen such that "e/kp" is an integer and that the inequality kp^). 
holds. 

Before the run of the VIDECORD program the following parameters are to be 
made known to the computer: 

e- (the number of the picture-elements) ; 
n (the number of the input channels); 
ka (the number of picture characters stored in one word); 
kp (the number of bits used in one word after the rearrangement.) 

Videcord - E . 

Fig. 3 
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In the block diagram of the VIDECORD program we use, in addition, the 
following notation: 

//m = the w-th word of the information brought into a row-continuous form; 
Fm = the w-th word of the information brought into a column-continuous 

form; 
/, j, k, I, m = indices; 
M = work compartement in the operative memory; 
Lk = logical constánts depending on the input system separating the correspond-

ing picture-elements (k = 1, 2, 3, . . . ,n -k x ) . 
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