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Abstract

The concatenation of trees can be defined either as a sequential or a par-
allel operation, and the corresponding iterated operation gives an extension
of Kleene-star to tree languages. Since the sequential tree concatenation is
not associative, we get two essentially different iterated sequential concatena-
tion operations that we call the bottom-up star and top-down star operation,
respectively. We establish that the worst-case state complexity of bottom-up
star is (n + 3

2
) · 2n−1. The bound differs by an order of magnitude from the

corresponding result for string languages. The state complexity of top-down
star is similar as in the string case. We consider also the state complexity
of the star of the concatenation of a regular tree language with the set of all
trees.
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1 Introduction

The descriptional complexity of finite automata has been studied for over half a
century [13, 15, 16], and there has been particularly much work done over the
last two decades. The reader may find more information in the surveys [4, 8,
12]. Also the state complexity of various extensions of finite automata, such as
tree automata [14, 19] and input-driven pushdown automata (a.k.a. nested word
automata) [7, 17] has been considered. These models retain the feature of finite
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automata that a nondeterministic automaton can be converted to an equivalent
deterministic automaton.

Concatenation of tree languages can be defined either as a sequential or a par-
allel operation. Tight state complexity bounds for the concatenation of regular
(respectively, subtree-free) tree languages were given in [18] (respectively, [3]) and
the state complexity of concatenation operations with the set of all trees was con-
sidered in [11].

Here we consider the iterated concatenation of trees, that is, an extension of
the Kleene-star operation for tree languages. If defined in the usual way, the it-
erated parallel concatenation is not a regularity preserving operation and Gécseg
and Steinby [6] define the Kleene-star of tree languages slightly differently. Since
sequential concatenation of tree languages is non-associative, there are two essen-
tially different ways to define the corresponding iterated operation. We name these
variants the bottom-up star and the top-down star operations. It is easy to see
that the top-down (sequential) star operation coincides with the iterated product
(Kleene-star) based on parallel concatenation considered in [6].

We give tight state complexity bounds for both the bottom-up and the top-
down Kleene-star operations. We show that the bottom-up star of a tree language
recognized by a deterministic bottom-up automaton with n states can be recognized
by an automaton with (n + 3

2 ) · 2n−1 states and, furthermore, there exist worst-
case examples where this number of states is needed. This bound is, roughly, n
times the corresponding bound for regular string languages. On the other hand,
the state complexity of the top-down star operation is shown to coincide with the
state complexity of Kleene-star on string languages.

The state complexity of combined operations on regular languages was first
considered by A. Salomaa et al. [21], and later there has been much interest in
this topic [2, 10]. In the last section we consider the state complexity of tree
concatenation combined with star in the special case where one of the argument
languages consists of the set of all trees. For some of the combined operations
we get tight bounds that are significantly lower than the function composition of
the state complexity of concatenation with FΣ and the state complexity of the
corresponding star operation.

To conclude the introduction we comment on the difference between classical
ranked tree automata [5] and unranked tree automata. Much of the recent work on
tree automata uses automata operating on unranked trees that are used in modern
applications such as XML document processing [1, 18, 19, 22]. The transitions of
an unranked tree automaton A are defined in terms of regular languages, called
horizontal languages. Each horizontal language is specified by a deterministic finite
automaton (DFA) that processes strings of states of the bottom-up computation, or
vertical states. The size of A is defined to be the sum of the number of vertical states
and the numbers of states of the DFAs used to define the horizontal languages.

In the case of the Kleene-star operations, the worst-case state complexity bounds
for the numbers of vertical states can be reached using just binary trees, and for
the sake of readability we restrict here consideration to automata operating on
ranked trees. The upper bound construction for bottom-up star for unranked tree
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automata was given in [20]. The generalized construction relies on the same ideas
as Lemma 2 below, however, the notations are considerably more involved.

In the case of DFAs operating on strings, it is common to give state complexity
bounds in terms of complete DFAs, that is, all transitions of a DFA are required to
be defined, see e.g. [8, 24]. In order to keep our state complexity bounds consistent
with corresponding results for tree automata operating on unranked trees [1, 18, 19],
our definition allows a deterministic tree automaton to have undefined transitions.

Note that requiring a ranked tree automaton (or an ordinary DFA) to be com-
plete, changes the number of states by at most one. On the other hand, for deter-
ministic tree automata operating on unranked trees where the horizontal languages
are defined by DFAs [1, 18, 19], the sizes of an incomplete deterministic automaton
and the corresponding completed version may be significantly different. In an un-
ranked tree automaton, adding a dead state qsink for the bottom-up computation,
requires the addition, corresponding to an input symbol σ, a horizontal language
Lσ,qsink

that is the complement of a finite disjoint union Lσ,q1 ∪ . . . ∪ Lσ,qn , where
q1, . . . , qn are the vertical states of the incomplete automaton. The size of the min-
imal DFA for Lσ,qsink

may be considerably larger than the sum of the sizes of the
DFAs for Lσ,qi , i = 1, . . . , n, [9].

2 Basic definitions on tree automata

We assume that the reader is familiar with the basics of automata and formal
languages [23, 24]. Here we recall and introduce some definitions related to tree
automata. For more information the reader may consult the texts by Gécseg and
Steinby [5, 6] or the electronic book by Comon et al. [1].

The cardinality of a finite set S is |S| and the power set of S is 2S . The set
of positive integers is N. A ranked alphabet is a finite set Σ where each element
is associated a nonnegative integer as its rank. The set of elements of rank m
is Σm, m ≥ 0. The set of trees over ranked alphbet Σ, or Σ-trees, FΣ, is the
smallest set S satisfying the condition: if m ≥ 0, σ ∈ Σm and t1, . . . , tm ∈ S then
σ(t1, . . . , tm) ∈ S.

A tree domain is a prefix-closed subset D of N∗ such that if ui ∈ D, u ∈ N∗,
i ∈ N then uj ∈ D for all 1 ≤ j < i. The set of nodes of a tree t ∈ FΣ can be
represented in the well-known way as a tree domain dom(t) ⊆ {1, . . . ,M}∗ where
M is the largest rank of any element of the ranked alphabet Σ. The tree t is then
viewed as a mapping t : dom(t)→ Σ.

We assume that notions such as the root, a leaf, a subtree and the height of a
tree are known. We use the convention that the height of a single node tree is zero.
For σ ∈ Σ and t ∈ FΣ, leaf(t, σ) ⊆ dom(t) denotes the set of leaves of t with label
σ. Let t be a tree and u some node of t. The tree obtained from t by replacing
the subtree at node u with a tree s is denoted t(u← s). The notation is extended
in the natural way for a set of pairwise independent nodes U of t and S ⊆ FΣ:
t(U ← S) is the set of trees obtained from t by replacing each node of U by some
tree in S.
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The set of Σ-trees where exactly one leaf is labelled by a special symbol x
(x 6∈ Σ) is FΣ[x]. For t ∈ FΣ[x] and t′ ∈ FΣ, t(x ← t′) denotes the tree obtained
from t by replacing the unique occurrence of variable x by t′.

A deterministic bottom-up tree automaton (DTA) is a tuple A = (Σ, Q,QF , g),
where Σ is a ranked alphabet, Q is a finite set of states, QF ⊆ Q is a set of accepting
states and g associates to each σ ∈ Σm a partial function σg : Qm −→ Q, m ≥ 0.
In the usual way, we define the state tg ∈ Q reached by A at the root of a tree
t = σ(t1, . . . , tm), σ ∈ Σm, m ≥ 0, ti ∈ FΣ, i = 1, . . . ,m, inductively by setting
tg = σg((t1)g, . . . , (tm)g) if the right side is defined, and tg is undefined otherwise.
The tree language recognized by A is L(A) = {t ∈ FΣ | tg ∈ QF }. Deterministic
bottom-up tree automata recognize the family of regular tree languages.

The intermediate stages of a computation of A, called configurations of A, are
Σ-trees where some leaves may be labeled by states of A. The set of configurations
of A consists of ΣA-trees where ΣA0 = Σ0 ∪ {Q} and ΣAm = Σm when m ≥ 1.

A bottom-up automaton begins processing the tree from the leaves because,
following a common custom, we view trees to be drawn with the root at the top.
As discussed in the previous section, our definition allows a DTA to have undefined
transitions, that is, σg, σ ∈ Σm, is a partial function.

2.1 Iterated concatenation of trees

We extend the string concatenation operation to an operation where a leaf of a tree
is replaced by another tree. Concatenation of trees can be defined also as a parallel
operation, however, as will be observed below the iteration of parallel concatenation
does not preserve recognizability.

For σ ∈ Σ0 and t1, t2 ∈ FΣ, we define the sequential σ-concatenation of t1 and
t2 as

t1 ·sσ t2 = { t2(u← t1) | u ∈ leaf(t2, σ) }. (1)

That is, t1 ·sσ t2 is the set of trees obtained from t2 by replacing one occurrence of
a leaf labeled by σ with t1. The definition is extended in the natural way for tree
languages T1, T2 ⊆ FΣ by setting

T1 ·sσ T2 =
⋃

ti∈Ti,i=1,2

t1 ·sσ t2.

Alternatively, we can consider a parallel σ-concatenation of tree languages T1, T2 ⊆
FΣ by setting

T1 ·pσ T2 = { t2(leaf(t2, σ)← T1) | t2 ∈ T2 }.

The operation T1 ·pσ T2 is called the σ-product of T1 and T2 in [6]. Note that the
parallel concatenation of tree languages could not be defined by defining first the
concatenation of individual trees (as was done for sequential concatenation in (1))
and then taking union over sets of trees. For trees t1, t2 ∈ FΣ, t1 ·pσ t2 is an individual
tree while t1 ·sσ t2 is a set of trees. In the case where no leaf of t2 is labeled by σ,
t1 ·sσ t2 = ∅ and t1 ·pσ t2 = t2.
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Figure 1: A tree in T s,t,∗σ (a) and in T s,b,∗σ (b). Here t0, t1, . . . ti+1 are trees in T .

When considering bottom-up tree automata operating on unary trees, both of
the above definitions reduce to the usual concatenation of string languages: when
processing T1 ◦T2, ◦ ∈ {·sσ, ·pσ}, the automaton reads first an element of T1 and then
an element of T2.

The parallel concatenation operation is associative, however, sequential concate-
nation is nonassociative, as observed below in Example 1. The nonassociativity of
sequential concatenation means, in particular, that there are two variants of the
iteration of the operation.

For σ ∈ Σ and T ⊆ FΣ, we define the kth sequential top-down σ-power of T ,
k ≥ 0, by setting T s,t,0σ = {σ}, and T s,t,kσ = T ·sσ T s,t,k−1

σ , when k ≥ 1. The
sequential top-down σ-star of T is then

T s,t,∗σ =
⋃
k≥0

T s,t,kσ .

Similarly, the kth sequential bottom-up σ-power of T , is defined by setting T s,b,0σ =
{σ}, T s,b,1σ = T and T s,b,kσ = T s,b,k−1

σ ·sσ T , when k ≥ 2. The sequential bottom-up
σ-star of T is

T s,b,∗σ =
⋃
k≥0

T s,b,kσ .

Note that the definition of bottom-up σ-powers explicitly sets T s,b,1σ to be equal to
T . This is done because T s,b,0σ ·sσ T can be a strict subset of T if some trees of T
contain no occurrences of σ. Figure 1 illustrates the definitions of top-down star
and bottom-up star.

Example 1. It is easy to see that sequential concatenation is non-associative.
Consider a ranked alphabet Σ determined by Σ2 = {ω}, Σ0 = {σ} and let t =
ω(σ, σ). Now t ·sσ t = {ω(ω(σ, σ), σ), ω(σ, ω(σ, σ))} and t1 = ω(ω(σ, σ), ω(σ, σ)) ∈
t ·sσ (t ·sσ t) but, on the other hand, t1 6∈ (t ·sσ t) ·sσ t.

To illustrate the difference of top-down and bottom-up star, respectively, con-
sider T = {ω(σ, σ)}. We note that T s,t,∗σ = FΣ and

T s,b,∗σ = {r ∈ FΣ | each non-leaf node of r has at least one leaf as a child }.
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Note that with T = {ω(σ, σ)}, T s,b,kσ , k ≥ 0, consists of trees of height (exactly) k.
The trees of T s,b,∗σ all consist of a path labeled by binary symbols ω and all children
of nodes of the path that “diverge” from the path are labeled by the leaf symbol σ.

The following characterization of bottom-up σ-star as the smallest set closed
under concatenation with T from the right follows directly from the definition of
bottom-up star. The characterization will be used in the next section.

Lemma 1. For σ ∈ Σ0 and T ⊆ FΣ, define clσ(T ) as the smallest set S ⊆ FΣ

such that (i) T ∪ {σ} ⊆ S, and (ii) t1 ·sσ t2 ∈ S for every t2 ∈ T and t1 ∈ S. Then
clσ(T ) = T s,b,∗.

Completely analogously we can define, for T ⊆ FΣ, the parallel σ-star of T , de-
noted T p,∗σ . Since parallel concatenation is associative, we do not need to distinguish
the bottom-up and top-down variants. However, we note that with T = {ω(σ, σ)},
T p,∗σ consists of all balanced trees over the ranked alphabet Σ, where Σ2 = {ω},
Σ0 = {σ}. Since the “straightforward” definition of Kleene-star based on parallel
concatenation does not preserve regularity, in fact, Gécseg and Steinby [6] define a
regularity preserving σ-iteration operation by defining the kth (k ≥ 1) power of T
by parallel-concatenating the union of all the ith powers of T , 0 ≤ i ≤ k − 1, with
the tree language T .

It is easy to verify that the definition of the σ-iteration operation (based on par-
allel concatenation) given in section 7 of [6] coincides with the sequential top-down
star defined above, and in the following we will focus only on the sequential variants
of iterated concatenation. The top-down (respectively, bottom-up) σ-powers and
σ-star of a tree language T are in the following denoted T t,kσ , (k ≥ 0), and T t,∗σ
(respectively, T b,kσ and T b,∗σ ), that is, we drop the superscript “s” in the notation.

3 Bottom-up and top-down star: state complexity

We establish for the bottom-up star operation a tight state complexity bound that is
of a different order of magnitude than the state complexity of Kleene-star for string
languages. First we give an upper bound for the state complexity of bottom-up
star.

Lemma 2. Suppose that tree language L is recognized by a DTA with n states. For
σ ∈ Σ0, the tree language Lb,∗σ can be recognized by a DTA with (n+ 3

2 )2n−1 states.

Proof. Let A = (Σ, Q,QF , gA) be a DTA with n states recognizing the tree
language L. Without loss of generality we assume that σgA is defined, because
otherwise

L(A)b,∗σ = L(A)b,0σ ∪ L(A)b,1σ = {σ} ∪ L(A),

and it is easy to construct a DTA with n+ 1 states that recognizes L(A) ∪ {σ}.
Choose three disjoint subsets of 2Q × (Q ∪ {dead}) by setting

(i) P1 = {(S, q) | S ∈ 2Q, {q, σgA} ⊆ S, q ∈ QF },
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(ii) P2 = {(S, q) | S ∈ 2Q, q ∈ S ∩ (Q−QF )},

(iii) P3 = {(S, dead) | S ∈ 2Q, S 6= ∅}.

Here dead is a new element not in Q. Now define a DTA B = (Σ, P, PF , gB) where

P = P1 ∪ P2 ∪ P3 ∪ {pnew}, PF = {(S, q) ∈ P | S ∩QF 6= ∅} ∪ {pnew}.

We define the transitions of B by setting, σgB = pnew, and for τ ∈ Σ0 − {σ},

τgB =

 ({τgA , σgA}, τgA) if τgA ∈ QF ,
({τgA}, τgA) if τgA ∈ Q−QF ,
undefined, if τgA is undefined.

(2)

To define transitions on Σm, m ≥ 1, we view pnew as the state ({σgA}, σgA), and
hence every state of B is represented in the form (S, q), S ⊆ Q, q ∈ Q. (Note that
pnew is not the same as ({σgA}, σgA), because the former is an accepting state and
the latter need not be accepting.) For τ ∈ Σm and (S1, q1), . . . , (Sm, qm) ∈ P , we
first denote

X =

m⋃
i=1

{τgA(q1, . . . , qi−1, z, qi+1, . . . , qm) | z ∈ Si}

Now we define
τgB ((S1, q1), . . . , (Sm, qm)) (3)

to be equal to

(i) (X ∪ {σgA}, τgA(q1, . . . , qm)) if τgA(q1, . . . , qm) ∈ QF ,

(ii) (X, τgA(q1, . . . , qm)) if τgA(q1, . . . , qm) ∈ Q−QF ,

(iii) (X,dead) if X 6= ∅ and τgA(q1, . . . , qm) is undefined.

In the remaining case, where X = ∅ and τgA(q1, . . . , qm) is undefined, also (3) is
undefined. Note that if for some 1 ≤ i ≤ m, qi = dead, this implies automatically
that τgA(q1, . . . , qm) is undefined.

Recall that if (S, q), S ⊆ Q, q ∈ Q is a state of B then q ∈ S and, furthermore,
if q ∈ QF then σgA ∈ S. The transitions of gB preserve this property and the
state in (i) (in (ii), (iii), respectively) is an element of P1 (an element of P2, P3,
respectively).

The second component of the state of B simply simulates the computation of A
on the current subtree, and goes to the state dead if the next state of A is undefined.
Intuitively, the first component of the state of B consists of all states that A could
reach at the current subtree t′ assuming that

in t′ at most one subtree of L(A)b,kσ , k ≥ 0, has been replaced by a leaf σ. (4)

Inductively, assume that B assigns to the root of tree ti a state (Si, (ti)gA) where
Si ⊆ Q satisfies the property (4) for ti, i = 1, . . . ,m. Now the rule (3) assigns to the
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Figure 2: The DFA A from [24] with added c-transitions.

root of tree t = τ(t1, . . . , tm) a state (S, q) where q = τgA((t1)gA , . . . , (tm)gA) and S
consists of all states that A could reach at the root of t assuming the computation
uses as arguments q1, . . . , qm where (by the definition of the set X) at most one of
the qi’s can be replaced by an arbitrary state from Si, 1 ≤ i ≤ m. This means that
the state (S, q) again satisfies the property (4) for the tree t.

The choice of the set of final states PF and Lemma 1 now imply that L(B) =
L(A)b,∗σ .

It remains to estimate the worst-case size of B. We note that if QF = {σgA},
in B only states of the form ({q}, q), q ∈ Q, can be reachable, and pnew can be
identified with ({σgA}, σgA). In this case L(A)b,∗σ has a DTA with n states. Thus,
without loss of generality we assume that QF contains a final state distinct from
σgA .

We note that |P1| = |QF | · 2n−2, |P2| = |Q − QF | · 2n−1 and |P3| = 2n − 1.
Here the estimation of the size of P1 relies on the above observation that we can
exclude the possibility QF = {σgA}. Thus, the cardinality of P1 ∪P2 ∪P3 ∪ {pnew}
is maximized as (n+ 3

2 )2n−1 when |QF | = 1.
The upper bound of Lemma 2 is of a different order of magnitude than the

known state complexity of Kleene-star for string languages [24]. It remains to
verify that the bound of Lemma 2 can be reached in the worst case.

Figure 2 represents a DFA A used in [24, 25] for the lower bound construction
for Kleene-star where we have added transitions on the symbol c. Note that A is
an incomplete DFA since the c transition on 0 is undefined. Based on A we define
in the following a tree automaton MA.

Choose Σ = Σ0 ∪ Σ1 ∪ Σ2 where Σ0 = {e}, Σ1 = {a, b, c} and Σ2 = {a2, d2}.
We define a DTA MA = (Σ, QA, QA,F , gA), where QA = {0, 1, . . . , n− 1}, QA,F =
{n− 1} and the transition function gA is defined by setting:

(i) egA = 0, cgA(i) = i, 1 ≤ i ≤ n− 1,

(ii) agA(i) = (a2)gA(i, i) = i+ 1, 0 ≤ i ≤ n− 2,
agA(n− 1) = (a2)gA(n− 1, n− 1) = 0,

(iii) bgA(i) = i+ 1, 1 ≤ i ≤ n− 2, bgA(j) = 0, j ∈ {0, n− 1},

(iv) (d2)gA(0, i) = i, i = 0, 2, 3, . . . , n− 1, (d2)gA(1, 1) = 1.

All transitions of gA not listed above are undefined. Intuitively, the construction
of MA can be, roughly speaking, explained as follows. Denote by Td the subset of
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FΣ consisting of trees without any occurrences of the binary symbol d2, thus the
only binary symbol in trees of Td is a2. On a tree t ∈ Td, the DTA MA simulates
the computation of A on each string of symbols starting from a node of height
one, where occurrences of a2 are “interpreted” simply as a. The computations on
different paths verify that for any u ∈ dom(t) labeled by a2 and any nodes v1 and
v2 of height one below u, the simulated computations started from v1 and v2 agree
at u.

Note that the original DFA has no transitions on d, and the transitions on d2

have been added for a technical reason that will be used in the proof of Lemma 4.
Also, the above intuitive description is not completely precise on how MA operates
on binary symbols a2 where one child is a leaf (that gets assigned the state 0)
and the other child is not a leaf. The following Lemmas 3 and 4 rely only on
the formal definition of the transition function gA of MA. The above intuitive
description of the operation of MA is intended only as a guide that may be useful
in understanding the operation of the DTA constructed to recognize the bottom-
up e-star of L(MA). Finally, note that the d2-transitions will be needed only
to establish the reachability of one particular state, and in most of the technical
constructions the above intuitive description of the operation of MA (based on the
DFA A of Figure 2) can be sufficient.

Using the construction of the proof of Lemma 2, based on MA we construct
a DTA MB = (Σ, QB , QB,F , gB) that recognizes the tree language L(MA)b,∗e . We
make the convention that the sink-state “dead” used in the proof is denoted by n.
Thus the set of states QB consists of the special state pnew assigned to e and all
pairs

(P, q), P ⊆ {0, . . . , n− 1}, 0 ≤ q ≤ n, (5)

where 0 ≤ q ≤ n − 1 implies q ∈ P , q = n − 1 implies 0 ∈ P and q = n implies
P 6= ∅. The number of pairs as in (5) is (n+ 3

2 )2n−1 − 1.
In the following two lemmas we establish that MB is a minimal DTA. That

is, first we show that all states of QB are pairwise inequivalent with respect to
the Myhill-Nerode equivalence relation extended to trees. Second we show that all
states of QB are reachable, that is, for each q ∈ QB there exists t ∈ FΣ such that
tgB = q. The proof of our first lemma assumes that all states are reachable which
will be established next in Lemma 41.

Lemma 3. All states of MB are pairwise inequivalent.

Proof. For the sake of convenience, we assume that we have already proven that
all states of MB are reachable (Lemma 4). Thus, in order to distinguish two states
with respect to the Myhill-Nerode relation, we can use an arbitrary configuration
of MB where one leaf is replaced by the given states. More formally, in order to
show that two distinct states of QB , p1 and p2, are inequivalent, it is sufficient to
find t ∈ FΣMB [x] such that the computation of MB started from the configuration
t(x ← p1) accepts if and only if the computation started from the configuration
t(x← p2) does not accept.

1The proof of Lemma 4 does not rely on Lemma 3.
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We first show that any two distinct states (S1, q1) and (S2, q2) as in (5) are not
equivalent. After that we consider the special state pnew. We begin by considering
the case where neither of q1 or q2 is equal to n (which was used to denote the dead
state of MA).

Case 0 ≤ q1, q2 ≤ n− 1: (a) Assume S1 6= S2 and s ∈ S1−S2 (The other possibility
is completely symmetric.) After reading n − s − 1 unary symbols a, a final
state is reached from state (S1, q1). On the other hand, since (S2, q2) is as
in (5), q2 6= s. This means that the computation C that begins with (S2, q2)
and reads n − s − 1 unary symbols a ends with a non-final state. Note that
at some point during the computation C, the second component may become
n − 1 which adds an element 0 to the first component. However, at the end
of the computation C the first component cannot contain n− 1.

(b)(i) Next we consider the case S1 = S2 = S, {0, 1, . . . , n − 2} 6⊆ S and
q1 6= q2. According to the definition of the states (5), q1, q2 ∈ S. Choose
p ∈ {0, 1, . . . , n−2}−S and consider a tree t1 = a2n−2−q1a2(({q1, p}, p), x) ∈
FΣMB [x]. Since p ∈ {0, 1, . . . , n− 2}, ({q1, p}, p) is a legal state (5). Consider
the computation of MB on tree t1(x ← (S, q1)). Since p 6∈ S the state
({q1 + 1}, n) is assigned to the root of the subtree a2(({q1, p}, q1), (S, q1)).
(Here addition is modulo n.) After this the computation reads the 2n−2−q1

unary symbols a in t1 and ends in an accepting state. On the other hand,
consider the computation of MB on t1(x ← (S, q2)). Since p 6∈ S and q2 6∈
{q1, p}, the transition (a2)gB on arguments ({q1, p}, p), (S, q2)) is undefined
and the computation does not accept.

(b)(ii) Consider S = {0, 1, . . . , n− 2}, and hence we know that q1, q2 6= n− 1.
From state (S, qi) by reading a unary symbol b we get (S′, q′i), where S′ =
{0, 2, . . . , n − 2, n − 1}. Since q1, q2 6= n − 1, q′1 6= q′2 and the states (S′, q′1)
and (S′, q′2) are distinguished as in b(i) above.

(b)(iii) Consider then the possibility S = {0, 1, . . . , n − 1} and q1 6= q2. If
{q1, q2} 6= {0, n − 1}, by reading a unary symbol b from (S, q1) and (S, q2),
respectively, we get two states (S′, q′1), (S′, q′2), q′1 6= q′2, that are distinguished
as in the previous case2. Next consider the case {q1, q2} = {0, n−1}, and first
assume that n ≥ 3. By reading a unary symbol a we obtain states (S, q1 + 1),
(S, q2 + 1) where q1 + 1 6= q2 + 1 and qi + 1 6= n − 1, i = 1, 2 (addition is
modulo n). The states (S, q1 + 1) and (S, q2 + 1) can be distinguished as in
the previous cases.

Finally consider the possibility n = 2 and {q1, q2} = {0, 1}. From state
({0, 1}, 1) by reading unary symbols ca, we reach the accepting state ({0, 1}, 0).
On the other hand, a computation starting from ({0, 1}, 0) by reading the
unary symbols ca reaches the nonaccepting state ({0}, 2).

Case where q2 = n: First assume q1 6= n. Choose t2 ∈ FΣMB [x] by setting t2 =
an−2a2(({0, 1}, 1), bn−1(x)). Since n − 1 consecutive b-transitions take any

2The b-transitions of A violate injectivity only on states 0 and n− 1.
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state of A to state 0, the computation of MB on t2(x← (S1, q1)) assigns state
({0}, 0) to the root of the subtree bn−1((S1, q1)). Then the state ({1}, n) is
reached at the root of the subtree a2(({0, 1}, 1), bn−1((S1, q1))). A final state
({n − 1}, n) is reached after reading further n − 2 unary symbols a. On the
other hand, in the computation of MB on t2(x ← (S2, n)) the state ({0}, n)
is assigned to the root of the subtree bn−1((S2, n)). When reading the binary
symbol a2 with arguments ({0, 1}, 1) and ({0}, n) the computation step of
MB is undefined, and hence MB does not accept t2(x← (S2, n)).

Finally consider the case where also q1 = n. Thus S1 6= S2 and choose
s ∈ S1−S2. After reading n− s− 1 unary symbols a, a final state is reached
from state (S1, n), and the same computation does not reach a final state
from (S2, n).

It remains to show that pnew is not equivalent with any state (S, q) as in (5). Since
pnew is final, it is sufficient to consider states where n − 1 ∈ S. Thus, by reading
a unary symbol c from state (S, q) we get a state (S′, q′), where n − 1 ∈ S′ and
0 ≤ q′ ≤ n. On the other hand, computations starting from pnew are identical
to computations starting from ({0}, 0) and hence a computation step with unary
symbol c is undefined.

Before the next lemma we introduce the following notation. For a unary tree
representing a configuration of MB , t = z1(z2(. . . zm(z0) . . .)) ∈ FΣMB , we define
word(t) = zmzm−1 . . . z1. Note that word(t) consists of the sequence of symbols
labeling the nodes of t bottom-up, and the label of the leaf is not included. In the
following when we refer to word(t) of a tree t, without further mention, this implies
that t is a unary tree.

Lemma 4. All states of MB are reachable.

Proof. The transition function of MB assigns the special state pnew to leaf symbol
e. Recall that from pnew the computation of MB continues as from ({0}, 0). Thus,
after reading n− 1 unary symbols a we reach the state ({0, n− 1}, n− 1).

Inductively, we assume that a state ({0, 1, 2, . . . , k, n−1}, n−1), 0 ≤ k < n−2,
is reachable. We show that ({0, 1, 2, . . . , k+1, n−1}, n−1) is also reachable. From
state ({0, 1, 2, . . . , k, n− 1}, n− 1), we reach the state Z1 = ({1, 2, . . . , k + 1, 0}, 0)
by reading a unary symbol a. By our assumption on k, k + 1 < n− 1. Thus from
Z1 we reach the state Z2 = ({2, 3, . . . , k+2, 0}, 0) by reading b. Since k < n−2, all
elements of {2, 3, . . . , k + 2, 0} are distinct (that is, the b-transition does not take
k+1 to 0). After reading n−1 symbols a, the state ({1, 2, . . . , k+1, n−1, 0}, n−1)
is reached. The element 0 is added to the first component as the second component
becomes n− 1.

By the above inductive claim we now know that the state ({0, 1, . . . , n− 2, n−
1}, n − 1) is reachable. After reading i + 1 a′s, state ({0, 1, . . . , n − 2, n − 1}, i) is
reached, 0 ≤ i ≤ n− 1.

Inductively, assume that all states (S, j), where |S| ≥ k + 1, 1 ≤ k < n and
0 ≤ j ≤ n − 1 as in (5) are reachable. We show that then also states where
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|S| = k are reachable. Let (S, si) where S = {s1, s2, . . . , sk}, 1 ≤ i ≤ k and
0 ≤ s1 < s2 < . . . < sk ≤ n − 1 be an arbitrary state where |S| = k. Recall that
in states of MB , when the second component is not n, it must belong to the first
component.

In the below cases (a) and (b), numbers z ≥ n are interpreted as the unique
element of {0, 1, . . . , n− 1} congruent to z modulo n.

(a-i) First consider the case where si < n − 1. The following discussion assumes
n ≥ 3, and the case n = 2 is handled in case (a-ii). Since |S| = k < n,
in the “cyclical sequence” of s1, . . . , sk, there exist two consecutive numbers
with difference at least two, where the difference between the numbers sk and
s1 is counted modulo n. More formally, either there exists 1 ≤ j ≤ k − 1
such that sj+1 − sj ≥ 2 or n + s1 − sk ≥ 2. In the latter case we choose
j = k. In the following we assume that i ≤ j. The case where i > j is
similar and only some notations are changed. According to the inductive
assumption, the state Z3 = ({0, n − 1} ∪ S1, n + si − sj − 1) where S1 =
{sj+1−sj−1, sj+2−sj−1, . . . , sk−sj−1, n+s1−sj−1, n+s2−sj−1, . . . , n+
sj−1 − sj − 1} is reachable. Note that since 0 ≤ s1 < s2 < . . . < sk ≤ n − 1
and sj+1 − sj ≥ 2, |S1 ∪ {0, n − 1}| = k + 1. After reading from state
Z3 a unary symbol b, we get the state Z4 = ({0} ∪ S2, n + si − sj) where
S2 = {sj+1−sj , sj+2−sj , . . . , sk−sj , n+s1−sj , n+s2−sj , . . . , n+sj−1−sj}.
Since 0 ≤ s1 < s2 < . . . < sk ≤ n − 1, 0 /∈ S2. From state Z4 we reach the
state ({sj , sj+1, sj+2, . . . , sk, n+ s1, n+ s2, . . . , n+ sj−1}, n+ si) by reading
sj symbols a. The latter state is the state (S, si) that we wanted.

(a-ii) Assume that si < n − 1 and n = 2. Now k = 1, and the only legal state
(S, si), |S| = k = 1, 0 ≤ si < 1, is ({0}, 0) (because we know that si ∈ S).
The state ({0}, 0) is reached from state pnew by reading unary symbols ab.

(b) Now consider the case where si = n − 1, and thus i = k. This implies that
0 ∈ S, and we have si(= sk) = n − 1 and s1 = 0. Since k < n, there
exists 1 ≤ j ≤ k − 1 such that sj+1 − sj ≥ 2. According to the inductive
assumption, the state Z5 = ({0, n − 1} ∪ S3, n − 2 − sj) is reachable, where
S3 = {sj+1 − sj − 1, sj+2 − sj − 1, . . . , sk−1 − sj − 1, n − 1 − sj − 1, n +
0 − sj − 1, n + s2 − sj − 1, . . . , n + sj−1 − sj − 1}. Similarly as in (a) above
we observe that |S3 ∪ {0, n − 1}| = k + 1. From state Z5 we get the state
Z6 = ({sj+1 − sj , sj+2 − sj , . . . , sk−1 − sj , n − 1 − sj , n + 0 − sj , n + s2 −
sj , . . . , n+ sj−1 − sj , 0}, n− 1− sj) by reading a symbol b. After reading sj
symbols a, from state Z6 we reach the state ({sj+1, sj+2, . . . , sk−1, n− 1, n+
0, n+s2, . . . , n+sj−1, sj}, n−1). This means that we have reached the desired
state (S, n− 1) with S = {0, s2, . . . , sk−1, n− 1}.

Up to now, we have shown that all that states (S, j), S ⊆ {0, . . . , n − 1},
0 ≤ j ≤ n − 1 as in (5) are reachable. Next we will show that the states (S, n),
S ⊂ {0, 1, . . . , n− 1} are reachable.

We know that ({0, 1, . . . , n − 1}, 0) is reachable and from this state we get
Z7 = ({1, . . . , n − 1}, n) by reading a unary symbol c. From Z7 we get all states
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(S, n), |S| = n−1 by cycling the elements of S using a-transitions. Now inductively,
assume that all states (S, n), n > |S| ≥ k+ 1, k < n− 1 are reachable. Consider an
arbitrary state (S, n) where |S| = k. Choose 0 ≤ j ≤ n−1 such that j 6∈ S. By our
inductive assumption the state (S ∪ {j}, n) is reachable. From this state we reach
(S, n) by reading the sequence of unary symbols an−jcaj . Note that transitions on
a always add one modulo n to states of S and the c-transition deletes the element
0 and is the identity on all other elements.

It remains to consider the state ({0, 1, . . . , n − 1}, n). We know that states
({0, 1}, 0) and ({0, 1, . . . , n − 1}, 1) are reachable. According to the definition
of d2-transitions of MA, the d2-transition of MB with arguments ({0, 1}, 0) and
({0, 1, . . . , n− 1}, 1) gives the state ({0, 1, . . . , n− 1}, n).

Note that above the transitions on d2 were needed only to establish that the
state ({0, 1, . . . , n− 1}, n) is reachable in MB . The transitions of d2 in MA did not
have a similar intuitive interpretation as the other transitions based on the DFA
A, and they were introduced only for the technical purpose needed at the end of
the proof of Lemma 4.

By Lemmas 2, 3 and 4 we have a tight bound for the state complexity of bottom-
up star that differs by an order of magnitude from the known bound for Kleene-star
of string languages [4, 24].

Theorem 1. If A is a DTA with n states, the bottom-up star of L(A) can be
recognized by a DTA with (n+ 3

2 ) · 2n−1 states. For every n ≥ 2, there exists an n-
state DTA A and σ ∈ Σ0 such that the minimal DTA for L(A)b,∗σ has (n+ 3

2 ) ·2n−1

states.

Next we give a tight state complexity bound for top-down star of regular tree
languages. The top-down iteration of the concatenation operation allows the re-
placement of subtrees at arbitrary locations and, as can perhaps be expected, the
state complexity is similar as for the Kleene-star of string languages. However, it
should be noted that we are considering incomplete automata and the known state
complexity bounds for ordinary DFAs are stated in terms of complete DFAs [24, 25].
The state complexity results for complete and incomplete DFAs, respectively, differ
slightly for operations such as union or concatenation [24, 18].

Theorem 2. Let A = (Σ, QA, QA,F , gA) be a DTA with n states and σ ∈ Σ0. The
top-down σ-star of the tree language recognized by A, L(A)t,∗σ , can be recognized by
a DTA B with 3

4 · 2
n states and this bound can be reached in the worst case.

Proof. The construction of B = (Σ, QB , QB,F , gB) is similar as the construction
used to recognize the Kleene-star of a string language. The set of states QB consists
of nonempty subsets of P ⊆ QA such that P ∩ QA,F 6= ∅ implies σgA ∈ P , and
additionally QB has one new state qnew that is reached at leaves labeled by σ (the
symbol that defines the star operation). Note that the state qnew is used as a copy
of σgA because the latter state is not, in general, accepting. The cardinality of QB
is maximized as 2n−1−2n−2 +1 = 3

4 ·2
n by choosing |QA,F | = 1. We leave details

of the construction to the reader.
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When restricted to unary trees, the top-down (or bottom) star operation coin-
cides with Kleene-star on string languages. Theorem 5.5 of [24] gives a complete
DFA C with n states such that the state complexity of the Kleene-star of L(C) is
3
4 · 2

n. Furthermore, C does not have a dead state, which means that the same
lower bound construction works for incomplete DFAs.

4 Kleene-Star Combined with Concatenation

The worst case state complexity of star–of–concatenation of string languages is
known [2]. However, already in the case of string languages determining the precise
state complexity of combined operations is often quite involved [2, 10].

For tree languages we consider a restricted case of Kleene-star combined with
concatenation where one of the arguments for concatenation is the set of all trees
FΣ. For some of the combined operations we get tight bounds that are significantly
lower than the function composition of the state complexity of the individual op-
erations. Altogether there are four combinations of bottom-up star (or top-down
star) with the parallel or sequential concatenation with the set of all trees. The
combined operations for bottom-up star are as follows:

(FΣ ·pσ L)b,∗σ , (L ·pσ FΣ)b,∗σ , (L ·sσ FΣ)b,∗σ , and (FΣ ·sσ L)b,∗σ .

It turns out that, for the first and the last of the listed combined operations, the tree
automaton constructions can be significantly simplified by relying on general obser-
vations about the (parallel or sequential) concatenation of a general tree language
with the set of all trees.

Lemma 5. Let L ⊆ FΣ and σ ∈ Σ0. Then

(i) (FΣ ·pσ L)b,∗σ = (FΣ ·pσ L)t,∗σ = FΣ ·pσ L ∪ {σ},

(ii) (L ·sσ FΣ)b,∗σ = (L ·sσ FΣ)t,∗σ = L ·sσ FΣ ∪ {σ}.

Using Lemma 5, we get tight state complexity bounds for two combined oper-
ations involving bottom-up star and top-down star, respectively.

Theorem 3. Let A be a DTA with n states and σ ∈ Σ0. Then, (FΣ ·pσ L(A))b,∗σ
can be recognized by a DTA with 2n−1 + 1 states and this bound can be reached in
the worst case.

Proof. Let A = (Σ, QA, QA,F , gA) be a DTA with n states recognizing the tree
language L. Without loss of generality we assume that σgA is defined, because
otherwise FΣ ·pσ L(A) = L(A), and (FΣ ·pσ L(A))b,∗σ = L(A) ∪ {σ} and we can easily
construct a DTA with n+ 1 states to recognize L(A) ∪ {σ}.

We define a DTA B = (Σ, QB , QB,F , gB) where

QB = 2QA ∪ {qnew}, QB,F = {P ∈ QB | P ∩QA,F 6= ∅} ∪ {qnew},
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and the transitions of gB are defined as below. Note that qnew can be viewed as
a copy of the state {σgA}. The reason why we have an additional state qnew is
because qnew needs to be an accepting state and {σgA} is not accepting, in general.

For τ ∈ Σ0, τ 6= σ, τgB = {τgA , σgA}, and, σgB = qnew. For P ∈ QB , define
P ⊆ QA by

P =

{
P if P ∈ 2QA ,

{σgA} if P = qnew.

Now for τ ∈ Σk, k ≥ 1, and Pi ∈ QB , i = 1, . . . , k, define

τgB (P1, . . . , Pk) = τgA(P1, . . . , Pk) ∪ {σgA}.

We leave to the reader the details of verifying that B recognises the tree lan-
guage FΣ ·pσ L(A) ∪ {σ}. Among the states P ∈ QB , the sets where σgA /∈ P are
unreachable. Therefore, the number of reachable states of B is at most 2n−1 + 1.

For the lower bound, we can modify the corresponding construction by Yu et
al. [25] for string languages. The proof of Theorem 2.1 of [25] gives an n-state DFA
C3 over alphabet Γ = {a, b} such that

Γ∗ · L(C) = {w ∈ Γ∗ | w = ubv, |v|a ≡ n− 2 (mod n− 1)}.

and verifies that the state complexity of Γ∗ ·L(C) is 2n−1. We note that the empty
string is not in Γ∗ · L(C). Thus, when C is interpreted as a tree automaton C ′

with unary symbols a, b and a nullary symbol σ, a tree automaton recognizing
FΣ ·pσ L(C ′) ∪ {σ} needs one additional state for the leaf symbol σ.

Now by Lemma 5 (i) and Theorem 3 we get a tight state complexity bound for
the corresponding combined operation involving top-down star.

Corollary 1. If L ⊂ FΣ is recognized by a DTA with n states, for any σ ∈ Σ0, the
tree language (FΣ ·pσ L)t,∗σ has a DTA with 2n−1 + 1 states and this number of states
is necessary in the worst case.

Theorem 4. Let A be a DTA with n states and σ ∈ Σ0. Then, (L(A) ·sσ FΣ)b,∗σ
can be recognized by a DTA with n+ 2 states and this bound can be reached in the
worst case.

Proof. Let A = (Σ, QA, QA,F , gA) be a DTA with n states recognizing the
tree language L. We define a DTA B = (Σ, QB , QB,F , gB) for the tree language
(L(A) ·sσ FΣ)b,∗σ = L(A) ·sσ FΣ ∪ {σ}. The following construction assumes that σgA
is defined and σgA 6∈ QA,F . If either of these two conditions is not satisfied, the
construction is similar and simpler (in both cases B can do with one fewer state).

Choose

QB = QA ∪ {qσ, qdummy}, QB,F = QA,F ∪ {qσ},

3In the notations of [25], the DFA C is called B.
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and the transitions of gB are defined as below. For τ ∈ Σ0,

τgB =


qσ if τ = σ,

τgA if τ 6= σ and τgA is defined,

qdummy otherwise.

Define g : QB → QB by setting g(qσ) = σgA and g(q) = q when q 6= qσ. Recall
that we assumed that σgA is defined. Let qfinal be an arbitrary but fixed element
of QA,F . Now for τ ∈ Σk, k ≥ 1, and pi ∈ QB , i = 1, . . . , k, define

τgB (p1, . . . , pk) =


qfinal if ∃j, 1 ≤ j ≤ k where pj ∈ QA,F ,
τgA(f(p1), . . . , f(pk)) if p1, . . . pk ∈ (QA −QA,F ) ∪ {qσ}

and τgA(f(p1), . . . , f(pk)) is defined,

qdummy in all other cases.

The DTA B simulates the computation of A up to a point when it reaches a
final state, and having reached a final state is marked by entering the state qfinal.
The state qσ is entered only in a leaf labeled by σ and for transitions on symbols
of Σk, k ≥ 1, qσ is treated as σgA . The “copy” of the state σgA is needed because
B has to accept σ and σgA is not accepting. If the computation of A reaches an
undefined transition (before entering a final state), B enters the state qdummy. Thus
it is clear that B recognizes the set trees having a subtree in L(A) and additionally
the tree consisting of the single leaf labeled by σ.

Next we show that the upper bound n+ 2 is tight. Choose Σ = Σ0 ∪ Σ1 ∪ Σ2,
where Σ0 = {c}, Σ1 = {a} and Σ2 = {b}. We define a DTA C = (Σ, QC , QC,F , gC),
where QC = {0, 1, . . . , n − 1}, QC,F = {n − 1}, and the transition function gC is
defined by setting:

cgC = 0, agC (i) = i+ 1 (mod n) for 0 ≤ i ≤ n− 1.

All transitions not listed above are undefined. In particular, note that all transitions
for the binary symbol b are undefined. Based on C, we construct a DTA D =
(Σ, QD, QD,F , gD) recognizing (L(A) ·sc FΣ)b,∗c = L(A) ·sc FΣ ∪ {c}, as described
above. Here QD = QC ∪ {qc, qdummy}, QD,F = QC,F ∪ {qc}.

We verify that all states of D are reachable and pairwise inequivalent, and none
of the states is a dead state. The state 1 is reached by reading the tree a(c). Then
the cyclic transitions on unary symbols a guarantee that states 2, 3, . . . n and 0 are
also reachable. The state qc is reached in a leaf labeled by c and qdummy is reachable
because C has undefined transitions.

States 0 ≤ i < j ≤ n − 1 are not equivalent because by reading n − 1 − i
unary symbols a the state i ends in the accepting state n − 1 and by reading the
same sequence of unary symbols j does not enter an accepting state. By the same
reasoning qc is not equivalent to any state 1 ≤ j ≤ n. The state qc is not equivalent
with 0 because the former is a final state and the latter is not. The state qdummy

cannot reach a final by reading a sequence of a’s while all other states have this
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property. Finally to verify that none of the states is a dead state, above we have
already observed that the states 0 ≤ i ≤ n − 1 and qc can reach a final state
by reading a sequence of a’s. According to the definition of the transitions of D,
bgD (qdummy, n − 1) = n − 1 and it follows that also qdummy is not a dead state.
(Note that in the DTA D we must have qfinal = n− 1 since n− 1 is the only final
state of C.)

We have verified that the minimal DTA for L(A) ·sc FΣ ∪ {c} has n + 2 states
and this concludes the proof.

In the construction used for the lower bound of Theorem 4, the symbol b of
rank two has no defined transitions in the original DTA C. However, it can be
noted that the tight bound cannot be reached by tree languages over a ranked
alphabet that has no symbols of rank greater than one. If the ranked alphabet has
only unary and nullary symbols, in the DTA B constructed to recognize the tree
language (L(A) ·sσ FΣ)b,∗σ the state qdummy will always be a dead state.

Again using Lemma 5 (ii) and Theorem 4 we get a tight bound for the same
combined operation involving top-down star:

Corollary 2. For a tree language L recognized by a DTA with n states and σ ∈ Σ0,
the tree language (L ·sσ FΣ)t,∗σ has a DTA with n+2 states and n+2 states is needed
in the worst case.

For establishing an upper bound for the combined operations (L ·pσ FΣ)b,∗σ and
(L ·pσ FΣ)t,∗σ we first consider a construction for the parallel concatenation of L and
FΣ. If A is an n-state DFA on strings over alphabet Γ, the language L(A) · Γ∗ can
be recognized by a DFA with n states. For the parallel concatenation of an n-state
tree language and FΣ we use 2n states.

Lemma 6. Let A be a DTA with n states and f final states and σ ∈ Σ0. Then,
L(A) ·pσ FΣ can be recognized by a DTA with 2n+ 1− f states.

Proof. Let A = (Σ, QA, QA,F , gA). We construct a DTA B = (Σ, QB , QB,F , gB)
for the tree language L(A) ·pσ FΣ. Note that if σ ∈ L(A), then L(A) ·pσ FΣ = FΣ.
Without loss of generality we can assume that σgA 6∈ QA,F . Choose

QB = {0, 1} × (QA −QA,F ) ∪ {0} × (QA,F ∪ {qAdead}),

where qAdead is a new element not in QA, QB,F = {(0, q) | q ∈ QA ∪ {qAdead}} and
the transitions of gB are defined as below. We set σgB = (1, σgA) if σgA is defined,
and σgB is undefined otherwise. For τ ∈ Σ0, τ 6= σ,

τgB =

{
(0, τgA) if τgA is defined,

(0, qAdead) if τgA is not defined.

For τ ∈ Σk, k ≥ 1, and x1, . . . , xk ∈ {0, 1}, q1, . . . , qk ∈ QA ∪ {qAdead} we define
τgB ((x1, q1), . . . , (xk, qk)) to be

(i) (1, τgA(q1, . . . , qk)) if there exists 1 ≤ i ≤ k such that xi = 1 and
τgA(q1, . . . , qk) ∈ Q−QA,F ,
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(ii) (0, τgA(q1, . . . , qk)) if τgA(q1, . . . , qk) ∈ QA,F ,

(iii) (0, τgA(q1, . . . , qk)) if xi = 0, i = 1, . . . , k and τgA(q1, . . . , qk)) is defined,

(iv) (0, qAdead) if τgA(q1, . . . , qk) is undefined and x1 = . . . = xk = 0,

(v) undefined in all the remaining cases.

Note that in the above definitions if some qi is qAdead, the transition τgA(q1, . . . , qk)
is naturally undefined.

We note that the tree language L(A) ·pσ FΣ consists of all Σ-trees t that have
the property that any leaf labeled by σ must belong to a subtree of t that is in
L(A). The DTA B checks this property as follows. The second components of the
states simulate the computation of A and the bit in the first component keeps track
of whether or not the current subtree has a leaf labeled by σ that “was not part
of a subtree” belonging to L(A). More precisely, suppose that the computation
reaches the root of t in state (x, q). If x = 1, this indicates t had a leaf ` labeled
by σ and the computation from ` to the root of t has not passed through a final
state of A. Note that in the transitions of B when the second component becomes
an element of QA,F the first component is always reset to 0, that is, pairs of the
form (1, q), q ∈ QA,F , are not used as states of B. If the second component of the
state is qAdead, this indicates that the computation of A on the current subtree t is
undefined. In this situation if t contains a leaf labeled by σ, t cannot be a subtree
of L(A) ·pσ FΣ and the state (1, qAdead) is not in QB .

The claim follows since |QB | = 2 · |QA|+ 1− |QA,F |.
Now combining Lemma 6 with, respectively, Theorem 1 and Theorem 2 we get

the following upper bounds for the state complexity of bottom-up or top-down star
of a tree language L ·pσ FΣ. Note that the bound of Lemma 6 reaches the worst case
2n when the DTA has exactly one final state.

Proposition 1. Let A be a DTA with n states and σ ∈ Σ0. Then (L(A) ·pσ FΣ)b,∗σ
can be recognized by a DTA with (4n+ 3) · 4n−1 states.

The tree language (L(A)·pσFΣ)t,∗σ can be recognized by a DTA with 3·4n−1 states.

We do not know whether the bounds of Proposition 1 are optimal. Finally, the
bottom-up or top-down star of the sequential concatenation of FΣ with a regular
tree language L, FΣ ·sσ L, seem to be the most problematic of the combined op-
erations involving Kleene star and concatenation with FΣ. For these operations
we know only trivial upper bounds implied by the state complexity of sequential
concatenation and the corresponding star operation.

5 Conclusion

In the last section we have considered the state complexity of star–of–concatenation
in the special case where one of the argument tree languages consists of the set of
all trees. The precise state complexity of star–of–concatenation remains open for
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general tree languages. For references dealing with the string case the reader may
consult [2].

For top-down and bottom-up star we have established the precise worst case
state complexity. The lower bound construction for Kleene-star in [24] uses a two-
letter alphabet, and hence the worst-case state complexity of top-down star can be
achieved over a ranked alphabet with two unary and one nullary symbol. It is clear
that one unary and one nullary symbol is not sufficient because the state complexity
of Kleene-star for string languages over a one-letter alphabet is (n − 1)2 + 1 [24].
With one binary symbol ω and one nullary symbol σ, we can encode strings over a
two letter alphabet as trees “built up” from elements ω(σ, x) and ω(x, σ). In this
way one clearly gets an exponential lower bound construction, however, we do not
know whether one binary and one nullary symbol is sufficient to reach the precise
bound of Theorem 2.

Our lower bound construction for Theorem 1 uses a ranked alphabet of six sym-
bols. The state complexity for bottom-up star is of a different order of magnitude
than the corresponding bound for string languages. This means that the worst-case
constructions essentially need to rely on “tree properties” and finding the minimal
alphabet size remains an open question.
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