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Abstract

This paper focuses on the placement of cameras in order to achieve the

highest possible localization accuracy with a multi-camera system. The cam-

eras have redundant fields of view. They have to be placed according to some

natural constraints but user defined constraints are allowed as well. A cam-

era model is described and the components causing the localization errors are

identified. Some localization accuracy measures are defined for any number

of cameras. The multi-camera placement is analytically formulated using the

expanded measures for multiple cameras. An example of placing two cameras

is shown and the generalizations into higher dimensional parameter spaces

are examined. There are publications where camera placement algorithms

are formulated or compared. We make an attempt to examine the analytical

solution of this problem in case of different objective functions.

Keywords: localization accuracy, multi-camera system, optimal camera pla-

cement

1 Introduction

Object tracking is nowadays a very popular segment of computer vision. There are
applications where multiple cameras are used to perform this task. The applications
can be classified based on the common field of views of the cameras. The first class
contains applications with relatively small overlapping in the field of views. This
class contains applications like video surveillance systems where the observed area
should be maximized. Using these systems only a lower localization accuracy is
required and the main goal is to get the approximated trajectory of the objects
like in [19]. The second class contains applications where the localization accuracy
can be helpful. There are plenty of papers about the localization accuracy, its
derivation and the camera placement in order to improve it.
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In [13, 5] the well-known pinhole camera model is used. The covariance matrix
of the localization is derived and the largest eigenvalue is selected as the measure
of the localization accuracy. It is stated in [10] that the complexity of camera
placement belongs to the class of NP-complete problems, and a genetic algorithm
is applied on the global optimization problem. In [5] the “Parisian evolutionary
computation approach” is used in order to reduce the computational requirements.
In our paper the pinhole camera model and the eigenvalue based measure are used
as well, but in addition the analytical background of the placement optimization is
examined.

A robot is observed on the ground in [6]. The cameras have to be placed on the
edges of the room in order to perform the localization. A very simplified camera
model is used: the mapping is represented as an orthogonal projection onto the
image plane. In contrast, we use the advanced pinhole camera model and user
constraints are also handled during our derivations.

An interesting problem is formulated in [7]. First, the localization accuracy is
derived in case of an N-ocular vision system. A camera system containing cameras
with fixed positions relative to each other is built on the bottom of a boat. This
camera system maps the seafloor. The position and its accuracy for the camera
system can be calculated from the overlapping images through time. With this
method an image with precision data can be constructed from the seafloor. Simi-
larly we describe the localization accuracy for multiple cameras. In [7] it is used to
determine the precision of the data collected about the seafloor. In our case it is
used to generate an objective function for the camera placement optimization.

In [2] a camera system with three cameras is examined. The main result of
that paper is, that in order to achive the smallest searching region, the cameras
have to be placed so that their line of sights are pairwise orthogonal. This is called
the “orthogonal axes stereo model”. Later in our paper a similar result is given as
perpendicular facing directions are optimal in a certain sense.

The multi-camera system can also be simulated with one camera through time:
one camera is moved with a robotic arm in [4]. An object has to be digitalized with
this camera. The path of the robotic arm and the imaging spots are planned ac-
cording to the objective function such as “Minimizing Reconstruction Uncertainty”,
“Minimizing Required Motion” and “Minimizing Number of Images”.

If every camera detects the object in its own image, the position in the world can
be calculated. But using such a system leads to inaccuracies which are discussed
later in this paper. A simple estimation of the position of the observed object is
given in [9] and [16]. They are not exactly the same but very similar. We use the
estimation introduced in [16].

In [18] the algorithms capable of approximating the NP-hard camera placement
problem are introduced and compared. There are two main groups: The goal of the
MIN problems is to minimize the number of cameras such that a target coverage
rate p can be achieved subject to other constraints. The goal of the FIX problems
is to maximize the coverage of targets subject to fixed number of cameras m and
other application specific constraints. We examine a problem which belongs to
the second group since a fixed number of cameras are placed according to some
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constraints.

In [12, 3, 11] PTZ (PanTiltZoom) cameras are used for object tracking. First,
only the orientation of the cameras is optimized in order to get the best possible
tracking accuracy. Second, the cameras are built on “Dubins vehicles” (ca. aerial
vehicles) and their positions can be manipulated according to the dynamics of the
vehicles. A Dubins vehicle is a planar vehicle that has a fixed forward velocity with
a bounded turning radius. Objects with dynamics given by stochastic difference
equations are tracked. It is said in [3] that the utility function is designed to
optimize estimation performance over a planning horizon. Performance is quantified
as a function of the expected fused geolocation information. A trace based measure
is used and its advanteges and drawbacks are analyzed as well. Third, the goal is to
take better pictures of the objects while the provided tracking accuracy is complied.
The value function is designed as an ordinal potential function, such that it can
be decoupled into local objectives known to every camera. In our paper not only
the trace based measure is investigated, but the more complex determinant based
and the eigenvalue based ones as well. It is shown that the trace based objective
function can be decoupled as described in [12, 3, 11]. Moreover, we examine the
camera placement optimization in case of using the other two measures.

There are publications where camera placement algorithms are formulated or
compared. We make an attempt to examine the analytical solution of this problem
in case of different objective functions. The camera model and the derivation of the
localization accuracy of a multi-camera system are introduced. The measures of
the localization accuracy are defined and the analytical examination of the camera
placement is described. Note that the presented algorithms and methods are part
of the Smart Mobile Eyes for Localization (SMEyeL) system which is open-source
and is written in C++ using the popular OpenCV [1] computer vision library. The
source code, documentation and all the input data for the presented measurements
are available for download from our homepage [15].

In [17] the basic problem is formulated, the camera model is introduced, the
localization accuracy of multiple cameras is calculated and the placement of two
cameras are examined. In [16] a localization accuracy measurement is described
which corresponds to the theory in [17]. In this present paper the placement of
multiple cameras are examined using several objective functions and analytical
solutions are given.

2 Problem Formulation

Assume that we have a multi-camera system observing an area. Every camera is
calibrated which means their parameters, positions and orientations are known.
There is an object in the observed area and its location has to be determined, this
process is called localization. Localization can be performed with various methods,
an example with measurements is shown in [16], while another method is introduced
in [9]. The main idea is that every camera detects the object in its own image and
these detections determine half-lines in the world coordinate system. The object
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is located at the intersection point of these half lines. As described in this paper,
such a system contains some inaccuracies. This means that these half lines do not
intersect in one single point, so an optimal solution has to be found. But this
also means that a localization accuracy can be defined and it can be improved for
example with a better camera placement.

2.1 Camera model

In order to determine the localization accuracy first the camera model has to be
defined and the error sources have to be identified. Simple optical cameras are used
because they are easily accessible, every person usually has one in the form of a
smartphone. We use the widely known pinhole camera model as in [13, 5]. Some
publications do not mention but implicitly they also use this model. Details about
this camera model can be found in [8]. In this model the camera center is at its
focal point and the camera has a plane imager in focal length distance from the
center. The imaging is a central projection onto this plane with the focal point as
center. As described in [17], there are two error sources during a localization:

• No depth information:
One camera cannot serve depth information unless the size of an object is
known. This means that a camera can determine only the direction in which
the object is located, it cannot say anything about the distance.

• Observation error:
One camera can detect the object in its own image only with some error. The
object position in the image is derived from its contour. This means that the
position is calculated as an average, which implies that this observation error
has a normal distribution. The standard deviation of this error is invariable.

2.2 Covariance Matrix

Based on the calculations presented in [17] the covariance matrix of the localization
performed by one camera can be constructed.

Definition 1. The covariance matrix of the considered camera model is given by
the formula:

Σ(α, d) = RT (α)





σ2
⊥(d) 0 0
0 σ2

⊥(d) 0
0 0 σ2

‖



R(α), (1)

where Σ is the covariance matrix, R is a rotation matrix representing the α ori-
entation of the camera, d is the distance of the object from the camera, σ‖ is the
parallel component while σ⊥ is the perpendicular component of the standard devi-
ation of the localization error. The camera is facing the direction of the z axis of
the Cartesian coordinate system fitted to the camera center.
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From now on only cameras with this form of camera model are investigated.
For one camera:

σ‖ → ∞, (2)

σ⊥ ∝ d. (3)

Since the parallel component of the standard deviation goes to infinity these co-
variance matrices have non-real values. Fortunately the inverse of such a matrix
can be calculated and contains only finite elements. If the ratio between σ⊥ and d

is determined as

C =
d

σ⊥
, (4)

then C is invariable for a given camera, but it depends on the focal length so it can
be different for multiple cameras. The inverse of the covariance matrix becomes:

Σ−1(α, d) = RT (α)





C2d−2 0 0
0 C2d−2 0
0 0 0



R(α). (5)

Therefore in the following sections the inverse of the covariance matrix is used.

2.2.1 Merging

Now, we have one camera observing one single point and the inverse of the covari-
ance matrix is constructed. In real-world situations multiple cameras are observing
the objects, so their covariance matrices have to be merged. This combination is
called the product of Gaussian densities [14] and it can be achieved by applying
the following formulas incrementally:

Σ−1
r = Σ−1

1 +Σ−1
2 , (6)

µr = Σr ·
(

Σ−1
1 µ1 +Σ−1

2 µ2

)

, (7)

where the two original densities areN (µ1,Σ1) andN (µ2,Σ2), while the combined,
resulting density is N (µr,Σr). The visualization of this merging can be seen
in Fig. 1. Two cameras represented with filled circles are observing one single
point. The two larger ellipses are the individual covariance ellipses of the cameras
separately. The confidence levels are chosen in order to get the best visualization.
For better visualization their major axes are shrinked so that not only two pairs of
parallel lines can be seen. The smaller ellipse is the combined covariance ellipse.

The orientation of the cameras in case of using multiple cameras observing one
single point can be defined in the simplest way as the camera positions are given in
a spherical coordinate system. The coordinate system can be fitted to the observed
point.

Assumption 1. The cameras are facing the observed object which is located at the
origin.
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Using Definition 1 and Assumption 1 the final resulting covariance matrix is:

Σ−1
r (x) =

n
∑

i=1

Σ−1
i (xi), (8)

where n is the number of the cameras used for localization and Σ−1
i is the inverse

of the covariance matrix of the ith camera. xi is the position of the ith camera.
During the calculations it will be represented as spherical coordinates. x contains
all the xi positions of all the cameras.

In 2D all the matrices become 2-by-2 ones, the coordinate system is a polar
coordinate system and the orientation is represented by a scalar value. The resulting
covariance matrix can be calculated from its inverse and it can be plotted at a given
confidence level. In 3D this is an ellipsoid while in 2D this becomes an ellipse. In
Fig. 1 these covariance ellipses are drawn at some localization points for a given
camera configuration containing two cameras. The placement of the ellipses is
symmetric, since all the cameras have the same parameters. It can be seen that
the errors near the cameras are smaller and they have a larger variance in the y

direction, while the distant ones have the larger variance in the x direction.
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Figure 1: The derivation of the combined covariance ellipse and the resulting co-
variance ellipses at some localization points.

2.3 Measures

Based on the previous sections the inverse of the resulting covariance matrix is
formulated in case of multiple cameras observing the origin. In order to perform an
optimization of the localization accuracy, it needs to be given by one scalar value.

Definition 2. The localization accuracy can be defined by various measures, but
it is common that all the measures are derived from the inverse of the covariance
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matrix:

qeig(x) = min
(

eig
(

Σ−1
r (x)

))

, (9)

qdet(x) = det
(

Σ−1
r (x)

)

, (10)

qtrace(x) = trace
(

Σ−1
r (x)

)

, (11)

where Σ−1
r (x) is defined in (8).

Since the cameras are observing the origin, the measures are functions of the
camera positions x only. The determinant based measure is inversely proportional
to the area, while the eigenvalue based measure is inversely proportional to the
length of the largest axis of the covariance ellipsoid. Using the trace of the inverse of
the covariance matrix can also be beneficial

(
∑

λ−1
i

)

. In the 2D case these measures
can be easily visualized with surface plots for any camera configuration. In Fig. 2
these measures are plotted for the camera configuration defined in Fig. 1. The
surface plot represents the localization accuracy with this fix camera configuration
at every point if the localization was performed there. It can be seen that the
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Figure 2: The surf plots of the measures defined in (9)—(11). The camera positions
are the same as in Fig. 1.

trace based measure prefers the smaller distance, while with the eigenvalue based
measure the inclination angle counts more. The determinant based measure is
somewhere between the other two. The details of this statement are described
later in this paper. The determinant and the trace based measure goes to infinity if
the observed point tends to any of the cameras. With the eigenvalue based measure
this is not the case. Of course the observed object cannot be placed arbitrarily close
to a camera because a camera has a physical size and minimal focal distance. In
real world applications these and other constraints are present.

In [13, 5] the eigenvalue based measure, while in [12, 3, 11] the trace based one
is used. In the following sections all three matrix norms are used, other norms
could also be applied.

3 Placement optimization

Based on (9)—(11) the localization accuracy can be determined in case of using
multiple cameras observing the origin. If the localization accuracy has to be im-
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proved, it can be achieved by placing the cameras in more appropriate positions.
The problem of placing the cameras in optimal positions means:

x(opt) = argmax
x∈K

q(x), (12)

where q is one of the measures defined in (9)—(11). K is the constraint domain of
the optimization and it represents the area where the cameras can be placed. It is
important that none of the cameras can be placed in the position of the observed
point.

Assumption 2. The observed point is excluded from the set of possible camera
positions.

3.1 Cameras with different parameters

The localization accuracy of one camera depends on the C value defined in (4).
As described in Section 2.2: C is invariable for a given camera, but it depends
on the focal length so it can be different for multiple cameras. It would be a large
simplification if all the cameras could be transformed into equivalent ones. If for all
cameras the d′ = C−1d substitution is performed, then all cameras can be handled
as if they had the same parameters: C′ = 1. This substitution represents a ho-
mothetic transformation where the homothetic center coincides with the observed
point. This means if the K constraints in (12) are transformed according to this
homothetic transformation, and the problem with the new constraints and equiva-
lent cameras is solved, then this solution is also the solution of the original problem.
An important property of the transformation is that it preserves the collinearity
of points which implies that it preserves the convexity of the constraints. This
simplification is used in the following sections.

Assumption 3. All the cameras have the same parameters, so for every camera
C = 1 in Definition 1.

3.2 Inversion of a camera through the observed point

Assume that the position of one camera is inversed through the observed point. In
this case

Σi(xi) = Σi(−xi), (13)

where Σi is the covariance matrix and xi is the position of the ith camera. This
statement is true since in (1) the diagonal matrix is invariable and the rotation ma-
trices are multiplied with (−1). Similarly to Section 3.1 this means if for some of the
cameras all of their constraints are transformed according to this transformation,
and the problem with the new constraints and equivalent cameras is solved, then
this solution is also the solution of the original problem. Similarly this transfor-
mation also preserves the collinearity of points which implies that it preserves the
convexity of the constraints. This transformation is used in the following sections.
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3.3 The 2D case

In the 3D world the camera placement defined in (12) is a hard global optimization
problem, so first the 2D case is managed. In the following section the x camera posi-
tions are represented in the polar coordinate system with (α,d) ∈

(

[−π;π)n,R+n)

.
The eigenvalues of the inverse covariance matrix can be determined as the so-

lution of the quadratic characteristic polynomial:

eig
(

Σ−1
r (α,d)

)

=
1

2

(

∑

i

1

d2i
±
√
R

)

, (14)

where

R =
∑

i

1

d4i
+
∑

k,l
k<l

2
1

d2k

1

d2l
cos(2(αk − αl)), (15)

and (αi, di) represents the xi position of the ith camera in a polar coordinate system
and (α,d) contains all the positions of all the cameras. The second summation
is performed for every ordered camera pairs. It can be noted that both of the
eigenvalues are non-negative values.

Using the eigenvalues the objective functions can be expanded:

qeig(α,d) =
1

2

(

∑

i

1

d2i
−
√
R

)

, (16)

qdet(α,d) =
∑

k,l
k<l

1

d2k

1

d2l
sin2(αk − αl), (17)

qtrace(α,d) =
∑

i

1

d2i
. (18)

It was used that the determinant is the product, while the trace is the sum of the
eigenvalues.

3.3.1 Partial derivatives

The first step to examine the objective functions is to calculate their partial deriva-
tives.

∂qeig

∂αi

=
1√
R

1

d2i

∑

j
j 6=i

1

d2j
sin(2(αi − αj)), (19)

∂qdet

∂αi

=
1

d2i

∑

j
j 6=i

1

d2j
sin(2(αi − αj)), (20)

∂qtrace

∂αi

= 0. (21)
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The partial derivatives of the trace based measure with respect to the αi angles are
constant zero which means that this measure is independent from the angles as it
can also be derived from (18). The partial derivatives with respect to the αi angles
of the eigenvalue based and the determinant based measures are more complicated.
They can be negative, positive or zero and they contain trigonometric functions of
inclination angles of all the camera pairs containing the ith camera.

The partial derivatives with respect to the distances di:

∂qeig

∂di
= − 1

d3i
+

1√
R

(

1

d5i
+

1

d3i

1

d2j
cos(2(αi − αj))

)

, (22)

∂qdet

∂di
= −2

1

d3i

∑

j
j 6=i

1

d2j
sin2(αi − αj), (23)

∂qtrace

∂di
= −2

1

d3i
. (24)

It can be proven that for any of the previously mentioned measures the partial
derivatives with respect to the distances di are negative. This is consistent with
the natural intuition that placing any camera closer to the observed object improves
the localization accuracy. Of course a camera cannot be placed arbitrarily close to
the observed object. This consideration implies that the cameras of an optimal
placement lie on the constraint boundary.

3.3.2 Placing 2 cameras

The simplest case is to place only two cameras since then the summations by all
the camera pairs are eliminated. The whole parameter space can be partitioned so
that the measures are quasi-concave functions on every domain. If these domains
and the user defined constraints are convex ones, then the objective functions have
only one local maximum at every domain. This can be used during the proof of
optimality of a solution and it can also be useful if the local optimum values cannot
be determined analytically. This means that running a local optimizer at every
domain results all the local optimum values and the best one can be simply chosen.
Based on the equations (19)—(24) in case of using the trace based measure the
whole parameter space is one big domain, but with the other two measures the
domain boundaries are determined by the hyperplanes:

α1 − α2 = m · π
2
, m ∈ {−4,−3,−2,−1, 0, 1, 2, 3, 4}. (25)

In the following section a specific case is introduced. Every coherent constraint
in 2D can be approximated by a polygon. The polygon can be splitted into convex
ones. Using the fact that the optimal placement lies on the boundary means that
only the line segments of the polygons have to be handled. This means that we
have to deal only with linear constraints.
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Assumption 4. The placing constraints of the cameras are one variable linear
equality constraints.

One of the simplest cases of camera placement with linear constraints is the
problem of placing two cameras within two half planes. This problem can be
parametrized in the Cartesian coordinate system with the distance of the intersec-
tion point of the half plane borderlines from the observed point (origin) at the x

axis and their azimuths (γ1, γ2). The intersection distance of the borderlines from
the origin can be chosen to unit distance based on Section 3.1. The inclination angle
of the borderlines can be chosen as 0 < |γ2 − γ1| ≤ π

2 based on Section 3.2. Fur-
thermore the azimuths of the borderlines can be chosen as −π

2 < γ1 < 0 < γ2 < π
2

since the problem has reflectional symmetry with the x axis.

Assumption 5. The intersection distance of the borderlines from the origin is
chosen to unit distance. The inclination angle of the borderlines satisfies 0 <

|γ2 − γ1| ≤ π
2 , while the azimuths of the borderlines satidfy −π

2 < γ1 < 0 < γ2 < π
2 .

It is important that none of these half planes contains the observed point. The
special case when the borderlines of the half planes are parallel is discussed later
in this paper. The general case is shown in Fig. 3. The two solid lines are the
borderlines of the half planes. The filled circle (origin) is the observed point while
the other symbols are the optimal camera positions belonging to different measures.
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Figure 3: The optimal placements of two cameras in two half planes using the
measures defined in (9)—(11).

The observed point is the origin and the camera positions are represented in
the polar coordinate system with the previously mentioned αi and di. Using the
fact that the optimal placement lies on the boundary means:

γ1 < α1 < γ1 + π, (26)

γ2 > α2 > γ2 − π, (27)

d1 =
sin γ1

sin(γ1 − α1)
, (28)

d2 =
sin γ2

sin(γ2 − α2)
. (29)



222 Dávid Szalóki, Sándor Kolumbán, Kristóf Csorba, Gábor Tevesz

Claim 1. Placing two cameras in 2D according to the Assumptions 1—5 the opti-
mal placement for the measure defined in (16) is:

[

α1

α2

](eig)(opt)

=



































+atan
(

1−ctg γ2

1+ctg γ1

)

− atan
(

1+ctg γ1

1−ctg γ2

)



 , if sin(γ2 − γ1) >
sin γ2
sin γ1

[

γ1 +
π
2

γ1

]

, if sin(γ2 − γ1) ≤
sin γ2
sin γ1

(30)

and the distances can be calculated using (28) and (29).

In case of the eigenvalue based measure after some considerations using (19)
and (22) it can be proven that the optimal solution (α1, α2) satisfies:

γ1 −
π

2
≤ α2 ≤ γ1 < 0 < γ2 ≤ α1 ≤ γ1 +

π

2
. (31)

It can be simply proven that the solution is included by the union of the two
domains defined in (25) for m ∈ {0, 1} and m ∈ {1, 2}. It can also be shown that
the solution is located strictly inside the union. We have no proof but it is our
strong conjecture that the optimum lies on the common boundary of these two
domains and the optimum is defined in (30).

Using the determinant or the trace based measure the optimal solutions become:

Theorem 1. Placing two cameras in 2D according to the Assumptions 1—5 the
optimal placements for the measures defined in (17) and (18) are:

[

α1

α2

](det)(opt)

=

[

1 0
0 −1

] [

2 1
1 2

]−1 [
π + γ1
π − γ2

]

, (32)

[

α1

α2

](trace)(opt)

=

[

γ1 +
π
2

γ2 − π
2

]

, (33)

and the distances can be calculated using (28) and (29).

Proof. The proof of the optimal solutions for the determinant and the trace based
measures.

In the determinant case similarly to the eigenvalue case it can be proven using
using (20) and (23) that the optimal solution (α1, α2) satisfies (31). The constraints
(28) and (29) are substituted into the expanded objective function defined in (16)
in case of n = 2. The roots of the partial derivatives with respect to the αi angles
are calculated. The only feasible solution is defined in (32) and it is the global
maximum value.

The trace based case can be solved similar to the previous one, but there is a
more simpler solution. Since this measure is independent from the αi angles and
the objective function can be decoupled, the distances has to be minimized. The
optimal solution contains the orthogonal projections of the origin onto the lines.
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The optimal solutions are shown in Fig. 3. The contour plots of the objective
functions are shown in Fig. 4. The global optimum values are represented by the
filled circles. A curve contained by another one has a higher localization accuracy.
The dashed lines represent the domain boundaries determined in (25). It can be
noticed that the objective functions have in fact only one local optimum in every
domain. In the eigenvalue case the solution lies on the domain boundary, while in
the other two cases the solutions lie on the user defined boudaries (borderlines of
the half planes).
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Figure 4: The contour plots of the objective functions in case of placing two cameras
in two half planes where the borderlines are not parallel.

The optimal solutions introduced in (30)—(33) have some physical meaning.
The trace based measure forces the cameras in positions where every camera is as
close to the observed point as it can (min d1,min d2). The eigenvalue based measure
results in camera positions where the observation angles are perpendicular and the
distances from the observed object are equal (α1 − α2 = π

2 , d1 = d2). If this is not
possible, the observation angles are perpendicular and the d1 distance is minimized
(α1 − α2 = π

2 ,min d1). A similar result is described in [2] as perpendicular facing
directions are optimal in a certain sense. The determinant based one is somewhere
between the previous two measures which means this allows different observation
inclination angle than π

2 in order to get closer to the observed point.

Parallel constraints The special case when two cameras have to be placed in
two half planes where the borderlines are parallel is not included in the general
case. Similarly to the general case none of these half planes contains the observed
point. The statements that only the borderlines have to be examined during the
optimalization is also true. The case when the observed point is between the two
half planes is shown in this section. If this is not the case, so one of the half planes
contains the other, the problem can be transformed based on Section 3.2. Similarly
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to (30)—(33) the optimal solutions in this cases are:

[

α1

α2

](eig)(opt)

=





+atan
(

m1

m2

)

− atan
(

m2

m1

)



 , (34)

[

α1

α2

](det)(opt)

=

[

1 0
0 −1

] [

2 1
1 2

]−1 [
π

π

]

=

[

π
3
π
3

]

, (35)

[

α1

α2

](trace)(opt)

=

[

+π
2

−π
2

]

, (36)

where m1 and m2 are the distances of the borderlines from the observed point.
The physical meaning is the same as in the general case. The proof of Theorem 1
is also applicable in this case. In case of using the eigenvalue and determinant
based measures the roots of the partial derivatives are determined after the sub-
stitution. With the trace based measure the distances are minimized according to
the constraints.

The optimal solutions are shown in Fig. 5, while the contour plots of the ob-
jective functions are shown in Fig. 6. It can be noticed that the eigenvalue and
the determinant based measures became point reflection symmetric with the center
(

π
2 ,−π

2

)

. This is because the problem is reflectional symmetric and the axis of the
symmetry is the y axis as it can be seen in Fig. 5.
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Figure 5: The optimal placements of two cameras in two half planes where the
borderlines are parallel. The notations are the same as in Fig. 3.

4 Generalizations

In case of using more than two cameras some difficulties occur during generalization
of the previously presented methods. Domains are required where the eigenvalue or
the determinant based measures are quasi-concave functions. Based on Section 3.3.1
this means that none of these formulas can have roots inside the domains at most
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Figure 6: The contour plots of the objective functions in case of placing two cameras
in two half planes where the borderlines are parallel. The notations are the same
as in Fig. 4.

on the boundary:

∑

j
j 6=i

1

d2j
sin(2(αi − αj)), i = 1..n. (37)

Section 3.3.1 contains a solution for n = 2, but for n ≥ 3 this is a hard, analytically
unsolved task. The trace based measure is a simple one. Since in this case all
the cameras are independent and the whole parameter space is one big domain,
this optimization can be easily performed. As described in [12, 3, 11] the objective
function can be decoupled. This results camera positions where all of them are
placed as close to the observed point as possible.

In case of optimizing in the 3D world some other difficulties occur during the
analytical handling of the problem. In order to get the eigenvalue based measure
the roots of a third order polynomial have to be determined. The determinant
can be calculated but it does not have a compact form as it is the determinant
of the sum of rotated 3-by-3 diagonals. The trace based measure is very simple.
The trace is invariant under cyclic permutations. Using this, (5), (8), (11) and the
simplification in Section 3.1, the objective function becomes

qtrace(x) =

n
∑

i=1

2

d2i
, (38)

where x represents the camera positions. This form is similar to the 2D case (18).

Our conjecture is that problems where the observed object is located strictly
on a plane can be solved with the 2D optimization technique. This means that a
robot on the floor can be localized with position optimized cameras but a flying
robot will need 3D optimization. This problem requires some further research.
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5 Conclusions

In this paper a multi-camera system is analytically examined. The multi-camera
system is used for object localization. There are publications where algorithms are
formulated [13, 5] or compared [18], but none of them investigates the analytical
solution.

In this present paper the placement of multiple cameras are examined using sev-
eral objective functions and analytical solutions are given. First, a camera model is
shown and the components which cause the localization errors are determined. The
covariance matrix of the localization is constructed for one camera and it is derived
for multiple cameras too. Some localization accuracy measures are defined and
their physical interpretation is given. The multi-camera placement is analytically
examined. An example of placing two cameras is shown and the generalizations
into higher parameter spaces are investigated. During the generalization some hard
problems occur that cannot be solved analytically with the introduced specific the-
orems. In case of using the trace based measures all the generalizations can be
done easily since in this case all the cameras are independent, the whole parameter
space is one big domain and the objective function can be decoupled.
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[16] Szalóki, D., Koszó, N., Csorba, K., and Tevesz, G. Marker localization with
a multi-camera system. In 2013 IEEE International Conference on System
Science and Engineering (ICSSE), pages 135–139, 2013.
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[18] Zhao, J., Haws, D., Yoshida, R., and Cheung, S. S. Approximate techniques
in solving optimal camera placement problems. In 2011 IEEE International
Conference on Computer Vision Workshops (ICCV Workshops), pages 1705–
1712, Nov 2011.

[19] Zhou, Q. and Aggarwal, J. K. Object tracking in an outdoor environment
using fusion of features and cameras. Image and Vision Computing, pages
1244 – 1255, 2006.


