
Acta Cybernetica 22 (2015) 35–56.

Variance of Source Code Quality Change Caused

by Version Control Operations

Csaba Faragó∗

Abstract

Software maintenance consumes huge efforts. Its cost strongly depends
on the quality of the source code: an easy-to-maintain code needs much less
effort than the maintenance of a more problematic one. Based on experiences,
the maintainability of the source code tends to decrease during its lifetime.
However, in most of the cases, this decrease is not a smooth linear one, but
there are larger and smaller ups and downs, and the net root of these changes
generally results in a negative tendency.

Detecting common development patterns which similarly influence the
maintainability could help to stop or even turn back source code erosion. In
this research the scale of the ups and downs are investigated, namely that
which version control operations cause bigger and which smaller changes in
the maintainability. We calculated the maintainability and collected the car-
dinality of each version control operation for every revision of four inspected
software systems. With the help of these data we checked which version con-
trol operation causes higher absolute code quality changes and which lower.
We found clear connection between version control operations and the vari-
ance of the maintainability changes. File Additions and file Deletions caused
significantly higher variance in maintainability changes compared to file Up-
dates. Commits containing higher number of operations – regardless of the
type of the operation – caused higher variance in maintainability changes
than those commits containing lower number of operations.

As a practical conclusion, it is recommended to pay special attention to
the quality of commits containing new file additions, e.g. with the help of a
mandatory code review.

Keywords: software maintainability, software erosion, source code version
control, variance test, ISO/IEC 9126, case study

1 Introduction

Maintainability is one of the six sub-characteristics of software quality, as defined
originally in the ISO/IEC 9126 standard [13]. Software maintenance consumes huge

∗University of Szeged Department of Software Engineering, Árpád tér 2. H-6720 Szeged,
Hungary, E-mail: farago@inf.u-szeged.hu

DOI: 10.14232/actacyb.22.1.2015.4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Szeged

https://core.ac.uk/display/147085565?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

36 Csaba Faragó

efforts – based on the experiences, about half of the total amount of software devel-
opment costs are spent on this activity. As maintainability has a direct connection
with maintenance costs, our motivation is to investigate the effect of development
process on maintainability. The goal is to explore typical patterns causing simi-
lar changes in software quality, which could either help to avoid software erosion,
or provide information about how to better allocate efforts spent on improving
software quality.

At first we focus on the information we can gain from the version control systems
(VCS). The main rationale behind this is that calculating the maintainability is
not trivial, furthermore, effort consuming, but obtaining information from VCS is
relatively straightforward. By finding connections between these two data, we will
be able to conclude on maintainability (hard to obtain) using VCS information
(easy to obtain).

We already performed some research work in this topic. In an earlier paper [9]
we presented that strong connection exists between the version control operations
and the maintainability of the source code. A previous study [8] revealed that file
additions have rather positive, file updates have rather negative effect on maintain-
ability, while a clear effect of file deletions was not identified.

Maintainability

average
value of

maintain-
ability

change

variance of
maintain-

ability
change

Version Control

operations

file name

author

date

difference

comment

Figure 1: Overview

In this paper we examine the variances of the maintainability changes caused
by version control operations. Figure 1 provides an overview how this study fits
into our longer term research. The solid line illustrates the the current study, and
the dotted line the previous ones.

We decided to investigate this for several reasons.
First of all, if the net effect of one commit set is similar to another one, the

difference in amplitudes can be important. The limited amount of efforts allowed

Variance of the Quality Change of the Source Code 37

to spent on source code quality improvements could be better allocated by focusing
on those commits which cause higher maintainability change. This is analogous
with the greenhouse effect. In the greenhouses the temperature is high because
it does not decrease overnight. In software development, the elimination of the
drastic maintainability decreases would result in a net maintainability increase.
Therefore it is recommended to pay special attention to those commits which are
likely to cause higher change of maintainability (high variance), compared to those
likely causing lower change (low variance). A simulation of the possible gain of this
strategy can be found in section 4.3.

Second, discovering other dimensions of the connection between version control
operations and quality change could help in fine-tuning the results of our long-term
research. We were especially interested in the variance caused by file deletions, as in
our earlier studies we found no clear impact of this operation on the maintainability.

Lastly, by discovering new connections new questions may raise. These potential
new questions lead to new research that might bring us closer and closer to our
final goal; to create a formula describing the impact of developer’s interactions on
the quality of the source code.

Concisely, in this paper we investigate the following research questions:
RQ1: What is the impact of operation Add on the variance of maintainability

change? We strongly assumed that the presence of this operation increases the
variance, meaning that both the maintainability increase and decrease are mostly
caused by this operation.

RQ2: What is the impact of operation Update on the variance of maintainabil-
ity change? Our assumption was that the presence of this operation reduces the
maintainability deflection.

RQ3: What is the impact of operation Delete on the variance of maintainability
change? We hoped that we would find a clear connection between operation Delete
and the variance of the maintainability change. We assumed that the presence of
this operation increases it.

The remaining of the paper is organized as follows. Section 2 introduces works
that are related to this one. In Section 3 the methodology used to test the variance
of maintainability change caused by version control operations is presented. In
Section 4 we discuss the results of the performed statistical tests and summarize
the findings. Section 5 lists the possible threats to the validity of the results, while
in Section 6 we conclude the paper.

2 Related Work

Any connection between the version control operations and software quality – ac-
cording to our knowledge – has not been studied directly before. However, this
study lies between two widely investigated areas, namely software quality and min-
ing software repositories. It is not possible to present all the papers from these
areas, therefore we only give an overview of the somehow interesting or important
studies that are closely related to ours.

38 Csaba Faragó

2.1 Software Quality and Fault Prediction

Several paper deal with various software metrics based fault prediction, most of
them are object-oriented ones. The quality model used by us relies on such metrics
that have been proven to highly correlate with fault occurrences.

Brito and Melo [5] examined in their study how metrics of object-oriented de-
sign can be used for fault prediction. Among the 6 checked metrics 4 showed a
strong negative correlation (method hiding factor, method inheritance factor, at-
tribute inheritance factor, polymorphism factor), with the fault numbers, one of
them showed a strong positive correlation (coupling factor), and one (attribute
hiding factor) did not show any significant result. The results were evaluated using
programming languages C++ and Eiffel. The metrics used in that study were quite
different from the ones we are using, however, this relatively early study in this field
pointed out an important direction.

Briand et al. [4] also examined the impact of the object-oriented metrics on
faults. They made a case study with the help of 8 groups of students, who im-
plemented the same task in C++. They found that the coupling and inheritance
measures are strongly related to the probability of fault detection in a class. They
did not find significant impact of cohesion on fault proneness. Among others, the
quality model used by us uses these factors, and other studies showed significant
correlation between all the mentioned metrics and fault density in Java program-
ming language.

Subramanyan and Krishnan [22] examined the connection between the number
of defects and the following object-oriented metrics: methods per class, coupling
between objects, depth of inheritance tree and number of children. They validated
the theory using both C++ and Java programming language. All of these metrics
are applied by the quality model used by us.

In their study [11], Gyimóthy et al. examined how various object-oriented
metrics [7] can be used for fault prediction. They found a strong positive correlation
between the number of faults and the following metrics: number of methods per
class, depth of inheritance tree, response for class, coupling between objects, lack of
cohesion and number of logical lines of code. Although the validation was performed
on C++ programs, the results can be applied for Java as well. The quality model [1]
used in this paper relies heavily on these previous results.

Nagappan et al. [17] presented an universal quality model using software metrics.
They used it for bug prediction; however, the method is adaptable to arbitrary
measure of quality, i.e. maintainability as well. They found no single set of metrics
that fitted all projects. The model used by us was shown to be an adequate one
for several projects.

Moser et al. [15] presented a comparative analysis of the predictive power of two
different sets of metrics for defect prediction. The described methodology provided
a classification of Java sources, based on if they are defective or defect-free, with
high precision and high recall. The authors found that process metrics are more
effective in defect prediction than code metrics. The quality model used by us
currently relies on code metrics only, and the above study shows us a possible

Variance of the Quality Change of the Source Code 39

direction for fine-tuning the model.
Software quality has also a direct impact on the cost of software development

and maintenance. Bakota et al. [2] showed a converse exponential relationship be-
tween the maintainability of a software system and the overall cost of development
supported by an empirical validation. This result is very important for this study
as well, as we point out where great maintainability decrease might happen, and the
above study shows that this maintainability decrease will cost more in the future.

An earlier study of the cost of software quality was done by Slaughter et al. [21],
financially justifying the investments in software quality. We go one step further
by arguing how these investments can be used more efficiently.

In this research we analyzed Java source code as the applied quality model han-
dles that programming language. However, a quality model for C# was presented
by Hegedűs [12], which makes it possible to perform these studies in the future on
C# projects as well.

2.2 Mining Software Repositories

Mining software repositories is another large and evolving area that is related to
this study. In the annual conference of MSR [16] a great number of studies appear
in connection with this research field.

Kagdi et al. provide a taxonomy of articles in this area [14], based on the follow-
ing aspects: software evolution, purpose, representation and information sources.

Gall et al. introduce their Relation Analysis [10] that performs a deep analysis
of logical coupling of modules. With the evaluation of 28 releases of an industrial
software, without analyzing the source code, they were able to discover design flaws
like god classes or spaghetti code. We, on the other hand, analyzed the source code
and considered the number of operations of every available revisions and commits
of 4 systems.

In the study [3] of Breu and Zimmermann a history-based aspect mining method
is presented. Using version history, the aspect candidates (e.g. locking concerns) are
identified. The precision increased with the size of the projects, e.g. for Eclipse they
reached 90% for the top ten candidates. The quality model used by us considers
lower level metrics of source code, which is aggregated to assess the maintainability.

Papers of Ying et al. [24] and Zimmermann et al. [26] describe methodologies
for determining change patterns (based on the change history), i.e. sets of files that
were changed together frequently in the past. Similar investigation was done in the
study by Rysselberghe and Demeyer [23] – frequently applied changes were mined
from version control systems. Our study deals with commit type patterns, which
is based on the number of commit operations.

In the work [19] of Ratzinger et al. an empirical study of predicting refactoring
is presented, based on historical data found in version control system. We, on the
other hand, try to predict an aspect of the future maintainability change.

Zaidman et al. investigate [25] whether production code and the accompanying
tests co-evolve by exploring a project’s versioning system, code coverage reports

40 Csaba Faragó

and size-metrics. This study provides a good future direction candidate for further
evolving the quality model used by us.

Canfora et al. [6] present a method to derive the set of source files impacted by
proposed change requests, based on data in version control (CVS) and issue track-
ing (Bugzilla) systems. Similar to us, they evaluated their concept on 4 software
systems.

In study [20] Robbes presents an alternative information repository, based on
the IDE interactions, along with their implementation. They found it especially
useful at refactoring detection.

Utilization of data gained from the IDE and issue tracking system is also among
out longer term plans.

3 Methodology

3.1 Maintainability Change

The estimation of the subject systems’ maintainability for each revision was per-
formed by the ColumbusQM probabilistic software quality model [1] that is based
on the ISO/IEC 9126 standard [13]. The model calculates an aggregate measure of
the following source code metrics: logical lines of codes, the number of ancestors,
the maximum nesting level, the coupling between object classes, clone coverage,
number of parameters, McCabe’s cyclomatic complexity, number of incoming invo-
cations, number of outgoing invocations, and number of coding rule violations. The
calculation is based on expert weights and a statistical aggregation algorithm that
uses a so-called benchmark as the basis of the qualification. The resulting main-
tainability value is expressed by a real number between 0.0 and 1.0. The higher
number indicates better maintainability.

We wanted to perform variance tests on the absolute change of maintainabil-
ity, therefore we transformed the maintainability values provided by the model to
absolute maintainability changes. It was done as follows:

• The original value was transformed to an absolute one with the help of the
quantile function calculated by the qnorm() R function [18]. Figure 2 illus-
trates how the quantile transformation works. Furthermore, the necessity of
this step is illustrated as well: a step close to the middle is lower in absolute
than the same size of step close to the margins.

• The difference of the absolute maintainability value of the actual and the
preceding commit was calculated. The maintainability change of the first
commit is defined as 0.0.

• The difference was multiplied with the actual size (Logical Lines of Code;
LLOC) of the system. This was necessary for the following reason: without it
the same amount of maintainability change (e.g. introducing 10 coding rule
violation) would cause much bigger change compared to the same change in

Variance of the Quality Change of the Source Code 41

qnorm(y)

y

−3 −2 −1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.
10

0
0.

20
2

1.
55

5

2.
05

4

0.54
0.58

0.94
0.98

Figure 2: Illustration why quantile conversion is necessary

a bigger system. In order to make the maintainability change values really
comparable, a normalization with the actual size of the systems was necessary,
and we found the multiplication with LLOC as a straightforward and proper
method.

More details about this transformation can be found in our earlier paper [8].

3.2 Version Control Operation Based Divisions

The basis of the statistical tests performed on the maintainability changes was the
number of version control operations. We considered the number of Java source
code additions, updates and deletions in each commit. Commits containing no Java
related operations (e.g. updating an xml file) were removed at the very beginning
of the process.

Based on these data triples (i.e. number of additions, updates and deletions)
we formed two subsets of the commits in various manners. We performed the tests
on each subset-pair combination. For every considered operation (Add, Update,
Delete) we defined the divisions based on the existence, the absolute number and
the proportion of the operation, considering either all commits, commits containing
at least one such operation or commits containing exclusively that operation. By
eliminating the trivial divisions the following 7 remained:

• DIV1: Take all commits, divide them into two based on the absolute median
of the examined operation. It checks if commits containing high number of the
checked operation have better effect on maintainability than those containing
low number of the same operation

42 Csaba Faragó

• DIV2: Take all commits, divide them into two based on the relative median
of the examined operation. It checks if the commits, in which the propor-
tion of the examined operation is high, have better effect on maintainability
compared to those where the proportion of the examined operation is low.
To illustrate the difference between DIV1 and DIV2 consider a commit con-
taining 100 operations, 10 of them are the examined operation (the absolute
number is high but the proportion is low) and a commit containing 3 opera-
tions, 2 of them are the examined operation (the absolute number is low, but
the proportion is high).

• DIV3: The first subset consists of those commits which contain at least one
of the examined operations, and the second one consists of the commits with-
out the examined operation. It checks if commits containing the examined
operation have better effect on the maintainability than those containing no
examined operation at all.

• DIV4: Considering only those commits where at least one examined oper-
ation exists, divide them into two based on the absolute median of the ex-
amined operation. This is similar to DIV1 with the exception that those
commits which do not contain any examined operation are not considered.
This kind of division is especially useful for operation Add, as this operation
is relatively rare compared to file modification, therefore this provides a finer
grained comparison.

• DIV5: Considering only those commits where at least one examined opera-
tion exists, divide them into two based on the relative median of the examined
operation. Similar to DIV2; see the previous explanation.

• DIV6: The first subset consists of those commits which contain the examined
operation only, and the second one consists of the commits with at least one
another type of operation. This checks if commits containing the examined
operation exclusively have better effect on the maintainability compared to
those containing at least one non examined operation. This division is also
especially useful in case of file updates.

• DIV7: Considering only those commits where all the operations are of the
examined type, divide them into two based on the absolute median of the
examined operation. This division is used to find out if it is true that commits
which contain more file additions result better maintainability compared to
those containing less number of additions. It is especially useful in case of file
updates, as most of the commits contain exclusively that operation.

Considering all 3 operations results in 3*7=21 combinations for every examined
software system. More details about these divisions can be found in our previous
paper [8].

Variance of the Quality Change of the Source Code 43

3.3 Handling Extreme Values

The variance test is very sensitive to the extreme values. A few, unusual commits
(e.g. merging the resulting code of a development performed on another branch,
adding code developed in another version control system or renaming a huge number
of source files in two steps) cause drastic increase in variance. To neutralize this bias,
the commits with very high absolute maintainability change values were eliminated
from the analysis. Therefore we omitted commits where the absolute value of the
maintainability change exceeded a considerably high value.

We checked the absolute maintainability change values of these extraordinary
commits, and we found they were at the magnitude of 10,000. On the other hand,
the typical absolute maintainability change value is at the magnitude of 100 or
lower. Therefore we omitted commits having maintainability change value higher
than 1,000.0. Only a few commits per software system caused higher absolute
maintainability change than this value (see the outliers in Table 2). We performed
the tests with other limits, like 500.0 or 2,000.0, and the results were similar,
therefore we found that the limit of round 1,000.0 is a sound one.

3.4 Variance Test

F-tests are a family of statistical tests. One of them is the F-test of equality
of variances, which checks if two normal populations have the same or different
variance.

This test was performed on each division combinations using the var.test()

function in R [18]. This function calculates both the ratio of variances, and the p-
value under the null-hypothesis that the variances are the same. The result of this
test is the ratio of variances of the values in the sets defined by the divisions, along
with the p-value. The p-value indicates the probability of the ratio of variance
being at least as extreme as the calculated one, provided that the variances are
equivalent. More specifically, the null-hypothesis is that the ratio of variances is
1.0.

For better illustration the geometric mean of the ratios (per division basis,
taking all the analyzed software) were also calculated. The variance test was not
performed on the cases where the size of at least one of the subsets was below 5,
because if the number of observations is low, then there is a high risk that the result
is false.

4 Results

4.1 Examined Software Systems

The tests were performed on the same 4 software systems which we used in our
earlier studies ([8], [9]) and which we use in studies parallel to this one.

The original selection criteria were the following:

44 Csaba Faragó

• Enough number of observations: the available number of commits containing
at least one Java-related operation should be at least 1,000.

• Significant code increase: the ratio of the maximum logical lines of code (this
is typically the size of the system after the last available commit) and the
minimum one (which is typically the size of the initial commit) should be at
least 3.0.

We analyzed the following 4 systems that fulfilled these criteria:

• Ant – a command line tool for building Java applications.1

• Gremon – a greenhouse work-flow monitoring system (commercial).2

• Struts 2 – a framework for creating enterprise-ready java web applications.3

• Tomcat – an implementation of the Java Servlet and Java Server Pages
technologies.4

Table 1 shows basic statistics of the selected systems, primarily related to the
number of operations:

• the name of the project,

• the minimal and the maximal logical lines of code,

• the total number of available commits,

• the number of commits affecting at least one Java file,

• the total number of each operations (3 columns),

• number of commits affecting at least one particular operation (3 columns),
and

• the number of commits consisting of that operation exclusively (3 columns).

Table 1: Analyzed systems
Name Min. Max. Total Java Total number of Rev. with 1+ Rev. with only

TLLOC5 Commits A U D A U D A U D

Ant 2,887 106,413 6,118 6,102 1,062 20,000 204 488 5,878 55 196 5,585 19

Gremon 23 55,282 1,653 1,158 1,071 4,034 230 304 1,101 89 42 829 8

Struts 2 39,871 152,081 2,132 1,452 1,273 4,734 308 219 1,386 94 41 1,201 12

Tomcat 13,387 46,606 1,330 1,292 797 3,807 485 104 1,236 77 32 1,141 23

Table 2 contains maintainability related statistics:
1http://ant.apache.org
2http://www.gremonsystems.com
3http://struts.apache.org/2.x
4http://tomcat.apache.org
5Total Logical Lines Of Code – Number of non-comment and non-empty lines of code

Variance of the Quality Change of the Source Code 45

• the name of the project,

• mean of all the maintainability changes,

• variance of all the maintainability changes,

• mean of maintainability changes without outliers,

• variance of maintainability changes without outliers,

• standard deviation of maintainability changes without outliers,

• number of outliers, and

• percentage of outliers.

Table 2: Maintainability statistics
With outliers Without outliers Number of Percentage of

Name Mean Variance Mean Variance SD outliers

Ant 1.408 15,274.2 1.782 5,663.9 75.26 10 0.164%

Gremon -5.505 11,136.0 -5.493 8,662.5 93.07 2 0.173%

Struts 2 -22.801 985,767.8 0.957 6,762.7 82.24 7 0.400%

Tomcat -4.719 138,819.5 -0.555 3,431.7 58.58 10 0.774%

With the outliers both the means and the variances are very hectic. There are
outliers in all of the projects with similar magnitudes. By removing the outliers both
the means and the variances tend to have similar magnitude of values. Without
the outliers the distribution of the data is close to normal.

Note that the means are close to 0, compared with the magnitude of standard
deviation. Furthermore, the means of all subdivisions are close to 0 as well. There
are significant differences between the means as indicated in [8], but these are much
lower than their variances. This is an important information for interpreting the
results.

4.2 Results of the Variance Tests

The variance tests were performed on all the defined 21 combinations for all the
4 analyzed systems. First, we examine the visual representation of the results
illustrated in Figure 3.

The figure was generated with the help of R and it contains 3 bar diagrams,
one for each operation (Add, Update, Delete). The bars are divided into 7 subsets
in all 3 cases, one for each division. In case of every operation division pair there
are 5 bars: 4 indicating the results for each project (the thin gray ones), and one
for their geometric mean (the thick black one).

The data are illustrated on a logarithmic scale diagram. By using a normal
scale, one could hardly see the difference between small absolute values, even could
not see if it is above or below 1.0. The starting-point of the bars is at 1.0. This

46 Csaba Faragó

DIV1 DIV2 DIV3 DIV4 DIV5 DIV6 DIV7

Add

0.01

0.1

1

10

100

DIV1 DIV2 DIV3 DIV4 DIV5 DIV6 DIV7

Update

0.01

0.1

1

10

100
Ant
Gremon
Struts 2
Tomcat
Geometric mean

DIV1 DIV2 DIV3 DIV4 DIV5 DIV6 DIV7

Delete

0.01

0.1

1

10

100

Figure 3: Illustration of variances

means the ratio of variances higher than 1.0 are represented with a bar on the
positive direction (above 1.0), and those of less than 1.0 are represented with a bar
on the negative direction (below 1.0).

On this diagram the most important information, i.e. if the ratio of variances is
above or below 1.0 is the most spectacular. Furthermore, one can really compare the
same magnitude but opposite direction values: for example, the ratio of variance
of 5.0 and 0.2 are practically the same magnitude with opposite direction; the
logarithm scale diagram represents these values with the same absolute size of
bars, one located above and the other located below 1.0.

The results can be learned informally even from this diagram, without the
necessity of studying the numerical values. In cases of operation Add and operation

Variance of the Quality Change of the Source Code 47

Delete, almost all the bars are located on the positive part of the diagram, meaning
that these operations increase the variance. On the other hand, in case of operation
Update the picture is mixed. Some of the bars (DIV1, DIV4 and DIV7) are
positive, while the others are negative.

In almost all cases the results are similar (i.e. the sizes and the directions of
the bars are similar) for all the 4 projects. However, there are some exceptions; the
most spectacular one is DIV5 in case of operation Delete.

If the data is not available (operation Delete, DIV7, project Gremon), then a
small empty gap can be found on this bar diagram. Note the difference between the
value close to 1.0 (e.g. operation Update, DIV1, project Struts 2) and the missing
result.

Now we examine the results more formally. Table 3 contains the ratio of vari-
ances, where the last columns show the geometric means (GM) of the values in the
rows.

Table 3: Ratio of variances

Operation Division Ant Gremon Struts 2 Tomcat GM

Add

DIV1 8.74 3.13 10.01 4.18 5.82
DIV2 8.74 3.13 10.01 4.18 5.82
DIV3 8.74 3.13 10.01 4.18 5.82
DIV4 2.68 2.63 2.37 2.63 2.57
DIV5 1.54 1.4 1.95 2.2 1.74
DIV6 5.73 1.87 8.16 0.868 2.95
DIV7 2.47 12.36 34.17 2.63 7.24

Update

DIV1 1.91 1.46 0.97 5.29 1.94
DIV2 0.091 0.107 0.043 0.099 0.08
DIV3 0.132 0.218 0.084 0.745 0.21
DIV4 2.98 3.05 5.32 6.08 4.14
DIV5 0.093 0.117 0.063 0.071 0.084
DIV6 0.091 0.107 0.043 0.099 0.08
DIV7 2.72 3.8 8.43 8.8 5.26

Delete

DIV1 9.08 6.55 8.02 9.8 8.27
DIV2 9.08 6.55 8.02 9.8 8.27
DIV3 9.08 6.55 8.02 9.8 8.27
DIV4 10.64 7.78 4.78 5.27 6.76
DIV5 3.61 1.21 1.41 0.407 1.26
DIV6 22.19 11.3 11.2 2.18 8.85
DIV7 26.04 NA 11.72 4.7 11.28

Table 4 contains the calculated p-values that represent the chances of the results
being at least as extreme as in the table, provided that the null-hypothesis is true,
i.e. the variances are the same. Please note that instead of executing a two-tailed
test, we executed two times a one tailed test, and took the better result. The

48 Csaba Faragó

differences between the two methods can be neglected in most of the cases. We
treat the p-values lower than 0.01 to be significant, which is indeed 0.02 in case of
executing a two-tailed test.

0.0 means that the calculated p-value was so low that the R package was not
able to handle it and resulted in zero. The lower limit R can handle is about 10−350.
In case of very low values the exponential format is used as the exponent of 10. All
the values are rounded up.

From this point on, to increase the readability, the term variance of maintain-
ability change is simply referred to as variance.

Table 4: p-values of the variance tests

Operation Division Ant Gremon Struts 2 Tomcat

Add

DIV1 0.0 0.0 0.0 0.0

DIV2 0.0 0.0 0.0 0.0

DIV3 0.0 0.0 0.0 0.0

DIV4 10
−13

10
−8

10
−6

0.00037

DIV5 0.00040 0.019 10
−4

0.0032

DIV6 0.0 0.00098 0.0 0.34

DIV7 10
−4

10
−6

0.0 0.039

Update

DIV1 0.0 10
−5

0.35 0.0

DIV2 0.0 10
−147

0.0 10
−124

DIV3 10
−187

10
−22

10
−159

0.062

DIV4 0.0 0.0 0.0 0.0

DIV5 0.0 10
−126

10
−242

10
−131

DIV6 0.0 10
−147

0.0 10
−124

DIV7 0.0 0.0 0.0 0.0

Delete

DIV1 0.0 0.0 0.0 0.0

DIV2 0.0 0.0 0.0 0.0

DIV3 0.0 0.0 0.0 0.0

DIV4 10
−8

10
−9

10
−8

10
−6

DIV5 0.0013 0.27 0.11 0.0049

DIV6 0.0 10
−11

0.0 0.0029

DIV7 10
−4 NA 10

−4
0.014

Operation Add. All the values, with one exception, are higher than 1.0 and
almost all of them are significant, meaning that operation Add increases variance.
This is true for all kinds of occurrences – the simple presence, the high absolute

Variance of the Quality Change of the Source Code 49

number and high proportion as well.
For DIV1, DIV2 and DIV3 all the values within a project are the same, which is

spectacular in the diagram as well. The reason is that the occurrence of operation
Add is relatively low in the commits compared to operation Update. Therefore
these are practically the cases where the first subset contains those commits which
include at last one file addition, and the second one are those containing no file
addition at all. This is the definition of DIV3; for the definitions of DIV1 and
DIV2 see Section 3.2. These values are very high (the geometric mean of the values
is 5.82, which is among the higher values in the table), meaning that the existence
of operation Add heavily increases the variance.

Among commits containing at least one file addition, the higher number of ad-
ditions still increases the variance, see the values in row DIV4. The values found in
this case (geometric mean of 2.57) is lower than those in the previous case; however,
this is still significantly greater than 1.0.

Considering the high proportion of operation Add within commits containing at
least one Add, it increases the variance a bit, see the results of DIV5. All the values
found in that row are slightly higher than 1.0 with a geometric mean of 1.74. One
of the values had a lower significance (one-tailed p-value of 0.019). It is interesting
that these values are much lower than those in case of absolute median division.

Next row (DIV6) is a slightly contradictory: there is both a high value (8.16)
and a value lower than 1.0 (0.868); however, the latter one is not significant. The
relatively weak conclusion of this is that commits containing operation Add exclu-
sively have a higher variance compared to those commits containing at least one
other operation.

Finally, based on the results of DIV7, among commits containing exclusively file
additions the higher number of affected files resulted higher variance. The values
are located on a wide scale. The highest value in the table (34.17) is found here,
while 2 of the 4 values are around 2.5. The smaller values could be the effect of
the natural fact that higher number of any operation causes higher variance (i.e.
higher amount of work is more likely to cause code quality change compared to
a one line modification). Furthermore, this is a good example why calculating
geometric mean (7.24) was a better choice than arithmetic mean (that would be
12.91); the former one expresses the common result much better.

Based on the above results, the answer of RQ1 is that the higher number of
operation Add results in a higher variance in maintainability change.

Operation Update. In case of the Update operation there are many values
significantly lower than 1.0. The first row (DIV1) presents hectic results, containing
a high value (5.29) and a value lower than 1.0 (0.97, not significant) as well. The
geometric mean (1.94) meaningfully expresses the results, namely that the high
number of operation Update slightly increases the variance. This result is caused by
a mixture of two factors. First, higher number of operations increase the variance
– having more lines of code changed it is more likely that the net maintainability
change would be bigger. Second, operation Update basically lowers the variance in

50 Csaba Faragó

itself; for comparison see the results of operation Add above and operation Delete
below. This hectic behavior is the root of these two contradicting factors.

Next, DIV2 contains significantly lower values than 1.0, meaning that commits
containing higher proportion of Updates cause a lower variance in maintainabil-
ity change, compared to those containing lower proportion of them. For example,
knowing the fact that the mean value of maintainability changes are close to 0,
compared with their variance, this generally means that commits containing at
least 80% Updates cause significantly lower absolute maintainability change than
those of containing only at most 20% of Updates.

Values in the next (DIV3) row are still significantly lower than 1.0, indicating
that commits containing at least one file update cause lower variance compared to
those containing no file updates at all. However, the values are higher (i.e. closer
to 1.0, meaning less significant) than those found in case of DIV2. This result is
surprising, a lower value (higher reciprocal) was expected.

Based on values in row DIV4 it can be concluded that among commits containing
at least one update, those of containing higher number of updates cause higher
absolute maintainability changes. The values are relatively high (geometric mean
is 4.14), and we have similar values in all cases. Comparing the values with those
of DIV1, in DIV4 only one of the 2 factors described above is present – the higher
number of operations; the other one is not, as all the commits contain Updates per
definition.

Values in row DIV5 are similar to values of DIV2, among commits containing
at least one file Update, high proportion of the operation reduces the variance.

Examining values found in row DIV6 we find that these are the same as those
in row DIV2. This is because most of the commits contain at least one Update,
and the relative median division is made with a 100% threshold (DIV2). This is
exactly the same as the definition of DIV6. Reformatting the sentence learned
based on this definition, commits containing exclusively Update operation causes
lower variance compared with variance caused by those commits containing at least
one other type of operation.

Finally, the third kind of absolute median division (DIV7) also resulted values
significantly higher than 1.0, meaning that among commits consisting of operation
Update only, higher number of files affected causes significantly higher variance
in maintainability change, compared with those of affecting lower number of files.
Comparing the values first with other absolute median divisions of operation Up-
date (DIV1 and DIV4), all the values are positive; second, with the results of DIV7
tests of operation Add, the variance of the values is similarly high.

Taking into consideration all of the above results we can answer RQ2 as well.
The presence of operation Update decreases the variance of the maintainability
change. Absolute median division is an exception – commits containing more up-
dates increase the variance compared to those commits containing less updates.

Operation Delete. Operation Delete basically increases the ratio of variances.
The first 3 division tests (DIV1, DIV2 and DIV3) gave the same results in all cases;
the reason of this is the same as described in the case of file addition. The resulting

Variance of the Quality Change of the Source Code 51

values are high, even higher than in the case of operation Add, meaning that the
presence of operation Delete causes even higher variance of maintainability change
than caused by operation Add.

Values in DIV4 are even higher, meaning that among commits containing at
least one delete those containing higher number of this operation cause significantly
higher variance.

The values in the next row (DIV5) are controversial, having one significantly
higher value than 1.0, one significantly lower than 1.0, and 2 of non-significant
results. This means that based on these data we cannot formulate any statement
about the variance caused by higher proportion of operation Delete among commits
containing at least one of this operation. The geometric mean of the values is
slightly above 1.0.

Finally, DIV7 contains even higher values, meaning that among those commits
containing Delete operation exclusively the higher absolute number causes signifi-
cantly higher variance. The values are so high that it cannot be explained simply
by “the more the higher” rule (i.e. more work causes higher variance), as it was the
case with operation Update. Furthermore, the scale of variances is also high in this
case. Please note the NA (not available) value in case of Gremon – since we found
only 8 commits of this type (see Gremon row and last column of Table 1), we de-
cided not to include this result. We left it out also when calculating the geometric
mean.

Based on the values above, we can answer RQ3 so that operation Delete in-
creases the variance of maintainability change. The highest ratio of variances were
caused by the presence of operation Delete.

4.3 Utilization of the Results

This section illustrates how the results can be utilized in practice. We try to
simulate the maintainability tendency of software development.

Suppose that we have a fixed budget for a deeper investigation of 10% of the
program source code changes by an expert (beyond the normal code review). We
expect that with the help of the expert’s hints the effect of maintainability decreas-
ing changes will be reduced by 50%, but there will be no effect of the review on
commits resulting maintainability increase anyway. The question is, how to use the
limited budget most efficiently.

In the below example we have 1,000 commits of 2 types: high number of low
variance commits with negative expected value, and low number of high variance
commits with positive expected value. For this reason, we generated 200 random
numbers of normal distribution with a mean of +1.0 and standard deviation of 10.0,
and 800 random numbers of normal distribution with a mean of -0.25 and standard
deviation of 1.0. In this example these numbers represent the numeric value of
maintainability change of the commit in question, i.e. the normalized difference of
the maintainability value of the new and the actual revision.

We can see that the sum of the low variance values is expected to be around
-200, and the sum of the high variance values is expected to be around +200,

52 Csaba Faragó

therefore the sum of all the values together is expected to be about 0.
Now let us check the possibilities how the effort of reviewing 100 commits (the

10% of total commits) can be distributed.

1. In the naive case the distribution of the review budget will be random, at
least from the variance point of view. In this scenario the reviewed commits
could be influenced by the following factors: the availability of the expert,
the actual approach of the management and so on. We simulate this case by
randomly choosing 100 commits for review.

2. One could argue that it is most likely to gain useful information if we focus
only on the cases with negative expected value. We simulate this by selecting
100 random cases out of the 800 values of low variance and negative expected
value.

3. We argue that the values of high variance should be considered, because by
eliminating high decreases we gain much more, even along with the “missed
shots”, compared to the previous cases (provided that the expected value is
close to 0, compared with the amplitude of the variance, i.e. it is likely to
have large negative values). Therefore we select 100 random cases out of the
200 values of high variance and positive expected value.

Table 5: Results of simulation

Nr. Initial Random Negative Mean Value High Variance

1 52.3 124.6 81.6 181.7
2 74.8 130.4 105.0 227.5
3 220.5 254.1 247.3 406.5
4 -170.5 -118.6 -140.4 7.8
5 118.5 170.9 145.7 286.7
6 -61.6 -9.9 -33.9 132.8
7 -159.0 -99.9 -130.7 52.7
8 91.3 155.4 114.0 289.8
9 11.4 57.6 35.6 156.7

10 -102.3 -56.1 -80.2 80.2

We executed the simulation (programmed in R) of the above three strategies 10
times. Table 5 illustrates the results of these simulations. First column indicates
the sequence number of the execution, the second one is the case without the code
review (the total amount of maintainability change of the 1000 commit), the third
one is the random case, the fourth focuses on the negative values, and the fifth
focuses on the high variance.

We can see that it was a waste of efforts focusing on the low variance com-
mits with negative expected values comparing with the totally random base case

Variance of the Quality Change of the Source Code 53

(compare the values of the third and fourth columns), but the best strategy was
to concentrate exclusively on the values with high variance (compare values in the
last column with the other ones). Therefore knowing the expected variance of the
values can help us using the limited efforts more efficiently.

5 Threats to Validity

Almost all the results of the research are statistically significant and in almost all
cases the values calculated for all examined systems are similar. However, there
are factors that might threaten the validity of the results presented above.

There is a case where the test results are totally diverging (one of the seven
divisions when investigating operation Delete) – we get significantly high values in
one case but significantly low in the other. This divergence is caused most probably
by the low cardinality of operation Delete; in case of low number of observations,
even a few causal cases could lead to unexpected result. Therefore, we think this
does not affect the final conclusion regarding that operation.

There are some cases where for 3 out of the 4 projects the results are similar, but
the fourth one does not support this, or at least not as strongly as the others. These
cuckoo eggs also threaten the general validity of the results. But there might be
other, not yet discovered correspondence which might provide a better explanation.

The number of examined software systems is relatively low, which might lead
to one-sided results, and potentially hide important differences between systems of
various domains. Considering greater number of software systems, and examining
the differences between them could be a direction of future investigations. Never-
theless, the global tendency of the results is convincing even with this number of
systems.

6 Conclusions and Future Work

In this study a further step was made towards discovering the effect of the de-
velopers’ interactions on the maintainability of the source code. Specifically, the
magnitude of the maintainability changes caused by commits were examined, re-
gardless of the direction of these changes. In this research only the number of
operations were considered from the available commit related data.

The commits were partitioned based on the number of operations from several
aspects. All of the resulting divisions were formed such a way to find out if higher
number of an operation in the commits have significantly different effect on the
variance of maintainability change compared to those commits containing lower
number of this operation.

As we described in paper [8], operation Update has negative effect on maintain-
ability, operation Add has significantly better impact, and we could not find clear
effect of operation Delete on maintainability.

This research provided the following results. Operation Add and operation
Delete increases, while operation Update decreases the variance of maintainability

54 Csaba Faragó

change. Higher absolute number of any operation causes higher variance.
These results help us better allocating the efforts spent on code quality, as de-

scribed in Section 4.3. It is recommended to pay special attention on commits
containing operations which could cause drastic changes in maintainability. These
are those of containing higher number of file Additions and file Deletions, especially
if the proportion of these operation within the commit is question is high, or com-
mits affecting several files anyhow (regardless by which operation). For example, it
is recommended to mandate code review at least for these developments; or, if the
code review is mandatory anyway, then it is recommended to do this in these cases
with more strict rules. Note that the number of commits containing file Additions
is relatively low compared to all the commits, and this is especially true for commits
containing file Additions exclusively.

In the next steps other available version control data is planned to be considered
in the analysis: the files the operation was performed on, the magnitude of changes,
the date of commit, the author, the comment, and maybe other direct or derived
data as well.

Finally, we plan to create a tool (most probably an IDE-plugin) which will
discover the hot areas of the source code and indicate the likely effect of the actual
commit on maintainability, warning the developers in the most critical ones. The
results described in this study is planned to be integral part of the theory behind
that utility.

Acknowledgments

This work was supported by Lufthansa Systems Hungary. The author would like
to thank Rudolf Ferenc and Péter Hegedűs for providing advices to this article.

References

[1] Bakota, Tibor, Hegedűs, Péter, Körtvélyesi, Péter, Ferenc, Rudolf, and Gy-
imóthy, Tibor. A probabilistic software quality model. In Software Mainte-
nance (ICSM), 2011 27th IEEE International Conference on, pages 243–252.
IEEE, 2011.

[2] Bakota, Tibor, Hegedűs, Péter, Ladányi, Gergely, Körtvélyesi, Péter, Ferenc,
Rudolf, and Gyimóthy, Tibor. A cost model based on software maintainability.
In Software Maintenance (ICSM), 2012 28th IEEE International Conference
on, pages 316–325. IEEE, 2012.

[3] Breu, Silvia and Zimmermann, Thomas. Mining aspects from version history.
In Automated Software Engineering, 2006. ASE’06. 21st IEEE/ACM Interna-
tional Conference on, pages 221–230. IEEE, 2006.

Variance of the Quality Change of the Source Code 55

[4] Briand, Lionel C, Wüst, Jürgen, Daly, John W, and Victor Porter, D. Explor-
ing the relationships between design measures and software quality in object-
oriented systems. Journal of systems and software, 51(3):245–273, 2000.

[5] Brito e Abreu, Fernando and Melo, Walcelio. Evaluating the impact of object-
oriented design on software quality. In Software Metrics Symposium, 1996.,
Proceedings of the 3rd International, pages 90–99. IEEE, 1996.

[6] Canfora, Gerardo and Cerulo, Luigi. Impact analysis by mining software and
change request repositories. In Software Metrics, 2005. 11th IEEE Interna-
tional Symposium, pages 9–pp. IEEE, 2005.

[7] Chidamber, Shyam R and Kemerer, Chris F. A metrics suite for object oriented
design. Software Engineering, IEEE Transactions on, 20(6):476–493, 1994.

[8] Faragó, Csaba, Hegedűs, Péter, and Ferenc, Rudolf. The impact of version
control operations on the quality change of the source code. In Computational
Science and Its Applications–ICCSA 2014, pages 353–369. Springer, 2014.

[9] Faragó, Csaba, Hegedűs, Péter, Végh, Ádám Zoltán, and Ferenc, Rudolf. Con-
nection between version control operations and quality change of the source
code. Acta Cybernetica, 21:585–607, 2014.

[10] Gall, Harald, Jazayeri, Mehdi, and Krajewski, Jacek. Cvs release history data
for detecting logical couplings. In Software Evolution, 2003. Proceedings. Sixth
International Workshop on Principles of, pages 13–23. IEEE, 2003.

[11] Gyimóthy, Tibor, Ferenc, Rudolf, and Siket, István. Empirical validation of
object-oriented metrics on open source software for fault prediction. Software
Engineering, IEEE Transactions on, 31(10):897–910, 2005.

[12] Hegedűs, Péter. A Probabilistic Quality Model for C# – an Industrial Case
Study. Acta Cybernetica, 21(1):135–147, 2013.

[13] ISO/IEC. ISO/IEC 9126. Software Engineering – Product quality 6.5.
ISO/IEC, 2001.

[14] Kagdi, Huzefa, Collard, Michael L, and Maletic, Jonathan I. A survey and
taxonomy of approaches for mining software repositories in the context of
software evolution. Journal of Software Maintenance and Evolution: Research
and Practice, 19(2):77–131, 2007.

[15] Moser, Raimund, Pedrycz, Witold, and Succi, Giancarlo. A comparative anal-
ysis of the efficiency of change metrics and static code attributes for defect
prediction. In Software Engineering, 2008. ICSE’08. ACM/IEEE 30th Inter-
national Conference on, pages 181–190. IEEE, 2008.

[16] Mining Software Repositories (MSR) conference.
http://www.msrconf.org.

56 Csaba Faragó

[17] Nagappan, Nachiappan, Ball, Thomas, and Zeller, Andreas. Mining metrics to
predict component failures. In Proceedings of the 28th international conference
on Software engineering, pages 452–461. ACM, 2006.

[18] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2013.

[19] Ratzinger, Jacek, Sigmund, Thomas, Vorburger, Peter, and Gall, Harald. Min-
ing software evolution to predict refactoring. In Empirical Software Engineer-
ing and Measurement, 2007. ESEM 2007. First International Symposium on,
pages 354–363. IEEE, 2007.

[20] Robbes, Romain. Mining a change-based software repository. In Proceedings of
the Fourth International Workshop on Mining Software Repositories, page 15.
IEEE Computer Society, 2007.

[21] Slaughter, Sandra A, Harter, Donald E, and Krishnan, Mayuram S. Evaluating
the cost of software quality. Communications of the ACM, 41(8):67–73, 1998.

[22] Subramanyam, Ramanath and Krishnan, Mayuram S. Empirical analysis of
ck metrics for object-oriented design complexity: Implications for software
defects. Software Engineering, IEEE Transactions on, 29(4):297–310, 2003.

[23] Van Rysselberghe, Filip and Demeyer, Serge. Mining version control systems
for facs (frequently applied changes). In Proceedings of International Workshop
on Mining Software Repositories (MSR’04), pages 48–52, 2004.

[24] Ying, Annie TT, Murphy, Gail C, Ng, Raymond, and Chu-Carroll, Mark C.
Predicting source code changes by mining change history. Software Engineer-
ing, IEEE Transactions on, 30(9):574–586, 2004.

[25] Zaidman, Andy, Van Rompaey, Bart, Demeyer, Serge, and Van Deursen, Arie.
Mining software repositories to study co-evolution of production & test code.
In Software Testing, Verification, and Validation, 2008 1st International Con-
ference on, pages 220–229. IEEE, 2008.

[26] Zimmermann, Thomas, Zeller, Andreas, Weissgerber, Peter, and Diehl,
Stephan. Mining version histories to guide software changes. Software En-
gineering, IEEE Transactions on, 31(6):429–445, 2005.

