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ABSTrACT                        Elevated expression of heat shock proteins (HSPs) has been demonstrated following 
various forms of stress, such as heat, heavy metal or ethanol treatment, hypoxia, ischemia, and 
they are also upregulated in several diseases and infections, as their most important function 
is to protect cells from the harmful effects of stress. As molecular chaperones they regulate the 
biosynthesis, folding/unfolding, transport and assembly of cellular proteins. Following cellular 
stress, they protect uncorrectly folded proteins against aggregation, facilitate the refolding of 
misfolded proteins. In addition, these proteins also can assist in the proteasomal degradation 
of peptides that cannot be refolded. They also have crucial role in membrane quality control 
by binding to lipid rafts maintaining the membrane stability during stress conditions. More-
over, HSPs can inhibit certain steps of the apoptotic pathway and they also can decrease the 
damaging effect of oxidative stress. These properties enable them to have protective effects 
in different pathological conditions. Here, we summarize our current view on the role of HSPs 
in human diseases like myocardial infarction, ischemic stroke, different neurodegenerative 
disorders, diabetes or cancer. Acta Biol Szeged 59(Suppl.1):121-141 (2015)

Key wordS

cancer
diabetes
ethanol toxicity
HSP families
ischemia/reperfusion
neurodegeneration

Submitted Jan 6, 2015; Accepted April 28, 2015
*Corresponding author. E-mail: toth.erzsebetmelinda@brc.mta.hu

121

Heat shock proteins

Heat shock proteins (HSPs), also called stress proteins, are 
ubiquitously expressed, evolutionarily conserved chaperone 
proteins. The first observation of the heat shock response 
was the discovery of heat-induced chromosomal puffings on 
the Drosophila buscii salivary gland chromosomes (Ritossa 
1962). Later it was observed that heat shock treatment led to 
the synthesis of new proteins that were similar in different 
tissues of Drosophila melanogaster, while the levels of other 
proteins were reduced (Tissieres et al. 1974). A number of 
specific proteins, called HSPs were later identified that are 
upregulated in different types of organisms in response to 
elevated temperature. It subsequently turned out that not only 
heat shock, but other stressors too can induce the expression 
of HSPs and they are therefore also called stress proteins. 
They can be induced by various forms of stress, such as heat, 
heavy metal or ethanol treatment, hypoxia, ischemia, and the 
genes of these proteins are also upregulated in several diseases 
and infections. HSPs are rapidly induced in response to cel-
lular stress because their most important function is to protect 
cells from the harmful effects of stress. The synthesis of HSPs 
contributes to the development of a transient thermotolerance. 

A mild, sublethal heat-stress can induce the expression of 
HSPs and increase cell survival after a subsequent, normally 
lethal heat treatment. This phenomenon, called precondi-
tioning, is observed in different cell types and tissues. Other 
stress factors such as hypoxia or ethanol treatment also can 
enhance HSP expression and transient stress resistance. In-
terestingly, thermotolerance is also induced when the initial 
heat-treatment drastically suppresses total protein synthesis 
(Li and Werb 1982). Under heat shock conditions overall 
protein synthesis is reduced, while HSP mRNA and protein 
synthesis is increased in the first few hours of hyperthermia 
(Hickey and Weber 1982). At high temperatures some steps 
of protein synthesis, such as RNA splicing, are inhibited. 
Compensating, HSP RNAs often do not contain introns 
(Csermely and Yahara 2002). 

Most of the stress-induced proteins are molecular chaper-
ones, that mediate the correct folding and assembly of other 
proteins, but they are not a component of the final structures 
(Ellis 1990). Recently, the term “proteostasis’ is used to de-
scribe the function of chaperones controling protein synthesis, 
folding, trafficking, aggregation, disaggregation, and degra-
dation (Powers et al. 2009). They also participate in antigen 
presentation by chaperoning and transferring antigenic pep-
tides (Li et al. 2002). Some HSPs, especially members of the 
HSPC (HSP90) family, are also implicated in different signal 
transduction pathways (Csermely et al. 1998).

During stress conditions partially denatured, misfolded 
proteins accumulate and their exposed hydrophobic regions 
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dispose them to aggregate. HSPs help to prevent the change 
of the conformation of other proteins, and they protect un-
correctly folded proteins against aggregation. Upon recovery 
they facilitate the refolding of misfolded proteins, but they 
also can assist in the proteasomal degradation of peptides 
that cannot be refolded (Becker and Craig 1994) (Fig. 1). 
HSPs also have roles in membrane protection during stress 
conditions (Horvath et al. 2008). Moreover, they have anti-
apoptotic functions, for example HSPA (HSP70) can block 
stress kinases (Gabai et al. 1998), while small HSPs (HSPBs) 
have caspase-inhibiting effects (Garrido et al. 1999).

The most extensively studied members of the HSPs are 
the heat-inducible ones (like HSPB1 (HSP27) and HSPA1 
(HSP70)), but it emerged, that most HSP families contain 
several members, among others constitutively expressed 
proteins, e.g. HSPA8 (HSC70). The increasing number of 
HSPs led to inconsistencies in their nomenclature. Originally, 
most of the HSPs were grouped by molecular weight, but 
Kampinga and co-workers (2009) proposed a new guideline 

to the nomenclature of human HSP families. Accordingly, 
human HSPs are classified into the following groups: HSPH 
(HSP110), HSPC (HSP90), HSPA (HSP70), DNAJ (HSP40), 
HSPB (small HSP) and the chaperonin families HSPD/E 
(HSP60/HSP10) and CCT (TRiC) (Table 1).

HSPB (Small heat shock protein) family

The small heat shock proteins (sHSPs/HSPBs), with mo-
lecular weights in the range 16-40 kDa, are characterized by 
a conserved C-terminal domain of 100 amino acids, referred 
to as the α-crystallin domain (de Jong 1998). Mammalian 
HSPB family consists of at least 10 members. The heat induc-
ible HSP16.2 was proposed as the 11th member of the human 
HSPB family, as it has a low molecular weight and chaperone-
like activity, however the presence of the α-crystallin domain 
is not documented, therefore the classification of this protein 

Figure 1. Chaperone functions of HSPs. During stress conditions, unfolded proteins accumulate and form large aggregates because of their 
exposed hydrophobic amino acids. However some HSPs, like HSPBs (sHSPs) can bind to unfolded proteins preventing their irreversible aggre-
gation, maintaining them in a refolding competent state in an ATP-independent manner. Upon recovery after stress when the ATP level has 
been restored, the sequestered unfolded peptides can be transferred to ATP-dependent chaperone machineries, like the HSPA/DNAJ (HSP70/
HSP40) complex, which are able to facilitate their refolding. On the other hand they also can assist in the proteasomal degradation of proteins 
that cannot be refolded.
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is controversial (Kappe et al. 2010). HSPBs usually form 
homo- or heterooligomeric complexes up to ~700 kDa and 
can undergo post-translational modifications, often involv-
ing the phosphorylation of serine residues. The best-studied 
members of this family are HSPB1 (HSP27), HSPB4 (αA-
crystallin) and HSPB5 (αB-crystallin). Although HSPBs are 
highly conserved they do vary a little in molecular weight in 
different species (e.g. the equivalent of the 27-kDa HSPB1 in 
human is a 25-kDa isoform in the mouse). Both HSPB1 and 
HSPB5 are constitutively expressed in a variety of tissues; 
however their expression is up-regulated under stress condi-
tions and in several diseases. HSPB4 found mainly in the eye 
lens (Horwitz et al. 1999). Crystallins are the major structural 
proteins in the lens and have an important role in maintaining 
the transparency (Kumar et al. 2007). Some members, like 
HSPB5, HSPB1, HSPB2 (MKBP), are expressed highly in 
cardiac and skeletal muscles (Golenhofen et al. 2004; Kamp-
inga et al. 2009). The HSPBs can protect cells from apoptosis 
and oxidative stress and can also bind to the cytoskeleton and 
membranes, stabilize them and protect them against stress 
(Sun and MacRae 2005). However, their most characteristic 
function is that they can bind to unfolded, partially denatured, 
damaged proteins and, thus, preventing their irreversible ag-
gregation, maintaining them in a refolding competent state 
(Nakamoto and Vígh 2007). As the ATP level of the cells can 
decrease seriously during stress conditions, these HSPBs act 
in an ATP independent manner. Upon recovery after stress 
when the ATP level has been restored, the sequestered dam-
aged proteins can be transferred to ATP-dependent chaperone 
machineries, like the HSPA/DNAJ (HSP70/HSP40) complex, 
which can facilitate the refolding or the degradation of these 
proteins (Garrido et al. 2003; Kappe et al. 2003; Sun and 
MacRae 2005) (Fig. 1).

HSPA (HSP70) family

The human HSP70 family has 13 members with similar 
structural and functional properties. HSPA1A (HSP70-1) 
and HSPA1B (HSP70-2) only differ in two amino acids, 
and probably they are completely interchangeable proteins 
usually referred as HSPA1 (HSP70) (reviewed in Kampinga 
et al. 2009). HSPA6 (HSP70B’) gene has 77% sequence 
similarity to the HSPA1 gene, and similarly to HSPA1, it 
is also a heat inducible protein, although expressed only at 
higher temperature (Leung et al. 1990). HSPA8 (HSC70) is 
constitutively expressed in different cell types, and under 
unstressed conditions it has important roles in the folding 
of newly synthesized proteins and in the facilitation of 
protein transport across intracellular membranes. There are 
also compartment specific members of the HSPA family: 
HSPA9 (GRP75) is found in the mitochondria (Kampinga 
et al. 2009) while HSPA5 (GRP78), the glucose-regulated 
endoplasmatic-reticulum (ER) protein, is a central regulator 
of ER stress (Lee 2005).

During stress conditions one of the most important role 
of HSPA proteins is the refolding of the denatured proteins. 
HSPA proteins contain two functional units: the N-terminal 
regulatory ATPase domain, and the C-terminal substrate-
binding domain that binds hydrophobic regions of polypep-
tides (Gragerov et al. 1994; Zhu et al. 1996). Hydrophobic 
amino acids are exposed in unfolded polypeptides, and bind-
ing of HSPA can prevent the aggregation of these proteins. 
In the absence of ATP (ADP bound state), HSPA strongly 
binds protein substrate, but if ATP binds to the N-terminal 
region, the HSPA-peptide complex dissociates (Gragerov 
et al. 1994). Repeated binding and release of the protein 

Table 1. The heat shock protein families based on Kampinga et al. 2009

Family Number of members in 
human

Best studied members Most important functions

HSPB (sHSP) 11 HSPB1 (HSP27), HSPB5 (αB-crystallin), 
HSPB4 (αA-crystallin)

Stabilizing unfolded proteins in ATP inde-
pendent manner (holdase function)

HSPA (HSP70) 13 HSPA1 (HSP70), HSPA8 (Hsc70), 
HSPA9 (GRP75), HSPA5 (GRP78)

Folding of new proteins, refolding of da-
maged proteins, protein transport across 
membranes

DNAJ (HSP40) ~50 Regulation the activity of other chape-
rones (for example promoting HSPA 
ATP-ase activity)

HSPC (HSP90) 5 HSPC1 (HSP90), HSPC4 (GRP94) Stabilizing protein aggregates, folding 
signalling molecules

HSPH (HSP110) 4 Stabilizing unfolded proteins; promoting 
nucleotide exchange of HSPA
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substrate is necessary for its refolding; this cyclic process 
proceeds until hydrophobic regions are no longer exposed 
in the polypeptide. HSPA proteins usually have very low 
basal ATPase activity, and ATP binding and hydrolysis are 
regulated by co-chaperons. For example DNAJ (HSP40) 
promote ATP hydrolysis and substrate binding, while 
nucleotide exchange factors, like BAG-1 or the members 
of HSPH (HSP110) family catalyze the release of ADP and 
the binding of ATP (Qiu et al. 2006; Dragovic et al. 2006). 
Another co-chaperon, CHIP (C-terminus of heat-shock 
cognate 70 stress protein-interacting protein) binds to HSPA 
reducing its ATPase and chaperone activity (Ballinger et al. 
1999). CHIP has E3 ubiquitin ligase activity, and selectively 
ubiquitylates misfolded proteins in cooperation with HSPA 
(or HSPC (HSP90)) promoting their proteasomal degrada-
tion (Murata et al. 2001).

Under heat shock conditions a portion of HSPA proteins 
migrates to the nucleus, while upon recovery it returns to the 
cytosol (Welch and Feramisco 1984; Zeng et al. 2004). It is 
proposed that HSPA translocates to the nucleus to facilitate 
DNA repair and protect cells against single-strand DNA 
brakes (Kotoglou et al. 2009).

dNAJ (HSP40) family

This is the largest human HSP family containing at least 
50 members, categorized into three subgroups (DNA-
JA, DNAJB and DNAJC; Kampinga et al. 2009). DNAJ 
(HSP40) proteins are characterized by a conserved, usually 
N-terminal J-domain, through which they bind to HSPA 
proteins. They are important in protein folding, refolding 
and translocation as they are responsible for the stimula-
tion of HSPA ATPase activity (Qiu et al. 2006; Kampinga 
et al. 2009). DNAJ proteins can bind substrate peptides and 
transfer them to HSPA, while the J-domain promotes ATP 
hydrolysis. Certain members of DNAJ family also regulate 
the activity of other HSPs, like HSPC proteins. They can 
be found in different cell compartments, such as cytosol, 
nucleus, ER, mitochondria, endosomes and ribosomes. 
Some of them show tissue specific expression (reviewed 
in Qiu et al. 2006). 

HSPH (HSP110) family

The human HSPH (HSP110) family consists of three 
cytosolic and one ER specific members. They are highly 
homologous to HSPA proteins, but they have a longer linker 
region between the N-terminal ATPase domain and the C-
terminal peptide-binding domain (Kampinga et al. 2009). 

Like HSPBs they act as ‘holdases’, they recognize and bind 
denatured proteins maintaining them in a refolding-compe-
tent state (Oh et al. 1997). A yeast HSP110 family member 
has been described as a cochaperone for HSP90 (Liu et al. 
1999). HSPH family members also cooperate with HSPA 
in protein folding, as they function as nucleotid exchange 
factors, removing ADP after ATP hydrolysis. Interestingly 
the ATPase domain and the peptide binding domain both 
necessary for the nucleotide exchange function of HSPH 
(Dragovic et al. 2006). 

HSPC (HSP90) family

A genome-wide study revealed six functional genes encod-
ing HSP90 proteins, however HSP90N was found to be a 
chimeric gene (Chen et al. 2005), therefore, later Kamp-
inga and co-workers (2009) defined five members of the 
family, HSPC1-5. HSPH members are the most abundant 
proteins in cells, producing 1-2% of total cellular proteins 
(Csermely et al. 1998). They can be found in different cell 
copmpartment such as cytosol, endoplasmatic reticulum 
(ER) and the mitochondria. Most studied members of this 
group are the cytoplasmic isoforms and the ER specific 
HSPC4 (Grp94). In the cytosol there are two isoforms of 
the protein, the inducible HSPC1 (HSP90AA1) and the 
constitutive HSPC3 (HSP90AB1). The N-terminal of HSPC 
and the highly charged central region are responsible for the 
binding of different target proteins. A binding site for ATP/
ADP also can be found in the N-terminal region, while the 
C-terminal domain contains a dimerization site (reviewed 
in Csermely et al. 1998). The main function of HSPC pro-
teins is to suppress the aggregation of unfolded proteins. 
They also can disaggregate loose protein aggregates, and 
enhance the refolding of partially denatured proteins, as 
they maintain them in a refolding competent state for HSPA 
members (Myata and Yahara 1992; Freeman and Morimoto 
1996; reviewed in Csermely et al. 1998). HSPC has a crucial 
role in cellular signalling, as it participates in the folding 
of steroid hormone receptors, protein kinases and other 
signalling components. 

Transcriptional regulation of heat shock 
proteins

The stress induced expression of HSPs is mediated by 
special transcription factors, called heat shock factors 
(HSFs). Under stress conditions these regulators activate 
the heat shock genes by binding to the heat shock elements 
(HSEs) that are located in the promoter region of the HSP 
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genes. The genom of invertebrates such as Saccharomyces 
or Drosophila, encodes only one HSF, whereas higher eu-
karyotes express different types of HSFs (Morimoto et al. 
1992; Morimoto 1998). In vertebrates, at least four members 
of the HSF family can be detected. The earliest-discovered 
and most widely studied HSF is HSF1, which is function-
ally analogous to yeast and Drosophila HSF as it plays a 
major role in the heat shock response (Morimoto 1998), 
while other members of the family are mainly involved in 
normal development, cell differentiation and life span regu-
lation. HSF1 is expressed in most tissues and cell types, it 
is activated in response to different cellular stressors, such 
as heat shock, oxidative stress, heavy metal and ethanol 
treatment, and it regulates the expression of HSPs. HSF2 
operates mostly during differentiation and development, 
but it has also been shown to interact with HSF1 during 
the stress response (He et al. 2003; Akerfelt et al. 2010; 
Björk and Sistonen 2010). Interestingly, HSF2 is activated 

by specific inhibitors of the ubiquitin-dependent protein 
degradation machinery, and it induces the same set of HSPs 
as HSF1 during heat stress (Mathew et al. 1998). HSF3 
originally was detected only in avians, where it is activated 
by different stressors like HSF1, but only upon more severe 
stress conditions (Tanabe et al. 1997). Later HSF3 was also 
identified in mouse, where it is translocated to the nucleus 
during heat shock and activates stress-induced genes other 
than classical heat shock genes (Fujimoto et al. 2010). The 
expression of HSF4 is restricted to only a few tissues (Björk 
and Sistonen 2010) and plays a role in the modulation of 
the constitutive expression of heat shock genes (Tanabe 
et al. 1999). HSFs are varied in size, but all of them con-
tain an N-terminal DNA-binding domain, a hydrophobic 
oligomerization domain, and a C-termial transactivation 
domain (Morimoto 1998).

Yeast HSF binds constitutively to DNA and is phos-
phorylated following heat treatment, thereby increasing its 

Figure 2. Transcriptional regulation of heat shock proteins. The inactive, monomeric form of HSF is sequestered in the cytoplasm of unstressed 
cells by binding to different HSPs, such as HSPC (HSP90), HSPA (HSP70) or DNAJ (HSP40). During stress conditions, the amount of partially dena-
tured proteins increases (1), which can bind to HSPs, thereby liberating the HSFs (2). The released HSFs undergo trimerization, phosphorylation 
and translocate to the nucleus (3), where they bind to the HSE of the promoters of heat shock induced genes and activate them (4). The newly 
synthesized HSPs than associate with HSF, thereby negatively regulate their own expression via an autoregulatory loop (5). On the other hand 
there is an alternative, membrane-associated “thermosensor” that can initiate heat shock gene activation. During heat stress, the membrane 
fluidity rapidly increases (6), which can activate stress sensing and signaling pathways leading to the elevated expression of HSPs, and this 
transcription activation is also mediated by HSF1 (7).
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transcriptional activity (Jakobsen and Pelham 1988). In higher 
eukaryotes the inactive, monomeric form of HSF is seques-
tered by different HSPs, such as HSPC, HSPA or DNAJ, in 
the cytoplasm of unstressed cells. During stress conditions, 
the amount of partially denatured proteins gradually increas-
es, and these proteins upon binding to HSPs, liberate HSFs. 
The released HSFs undergo trimerization, phosphorylation 
and translocate to the nucleus, where they bind to the HSE of 
the promoters of heat shock induced genes and activate them. 
This activation is rapid, the DNA-binding form of HSF can be 
detected within minutes following heat treatment (Morimoto 
et al. 1992; Morimoto 2002; Sőti et al. 2005). The activation 
of heat shock genes leads to the increased expression of HSPs, 
which than associate with HSF. In this way HSPs negatively 
regulate the expression of heat shock genes via an autoregula-
tory loop (Morimoto et al. 1992) (Fig. 2). 

Several studies show that different stress factors can lead 
to HSP induction without protein denaturation, suggesting 
that there is an alternative, membrane-associated “thermosen-
sor” that can initiate heat shock gene activation (Vígh et al. 
1998; Horváth et al. 2012; Balogh et al. 2013). According to 
the “membrane sensor” hypotheses the physical properties 
and microdomain organization of the membrane might have 
a crutial role in heat shock response activation. During heat 
stress, the membrane fluidity rapidly increases, leading to 
the elevated expression of HSPs (Vígh et al. 1998; Balogh et 
al. 2013) (Fig. 2). Increasing the fluidity of membranes with 
membrane fluidizers like benzyl alcohol or heptanol leads to 
the activation  of different HSPs without measurable protein 
denaturation, and this transcription activation is mediated 
by HSF1 (Nagy et al. 2007; Balogh et al. 2005). Like heat 
shock, benzyl alcohol treatment resulted in the reorganiza-
tion of cholesterol-rich membrane microdomains, which can 
activate stress sensing and signaling pathways (Vígh et al. 
2007a, 2007b).

role of HSPs during stress conditions

There are several properties of HSPs that enables them to 
have protective effects in different pathological conditions. As 
molecular chaperones they have central role in cellular protein 
quality control. Certain HSPs such as HSPBs or HSPH family 
members can bind partially denatured proteins in an ATP-
independent manner, preventing their irreversible aggregation 
with each other or with different cell components, like cellular 
membranes. HSPBs are unable to restore misfolded proteins, 
but they can transfer them to ATP-dependent chaperones, like 
HSPA1, that promote their refolding. In addition HSPA1, 
in cooperation with its co-chaperons, also can facilitate the 
proteasomal degradation of damaged proteins. Thus, the heat 
shock protein network and the protein degradation systems 

are together responsible for the maintaining of the normal 
protein homeostasis which is essential to proper cellular 
function. However, protein quality control is weakening dur-
ing aging and in different neurodegenerative diseases, which 
eventually leads to the accumulation of misfolded proteins 
(Sőti and Csermely 2002). 

HSPs also have a crucial role in membrane quality con-
trol. Increasing evidence suggests that a pool of HSPs binds 
to lipid membranes, especially to lipid rafts, increasing their 
physical order, maintaining the membrane stability and 
restoring membrane functionality under stress conditions. 
Beside their membrane protein-protecting activity, HSPs can 
bind to membrane lipids directly, stabilizing the lipid phase 
of the membranes. It seems that the membrane association 
of HSPs can antagonize the membrane perturbing effects of 
stress conditions, therefore HSPs may play a role in cellular 
stress management (reviewed in Nakamoto and Vígh 2007 
and Horváth et al. 2008). On the other hand several disorders 
like neurodegenerative diseases, diabetes or cancer are asso-
ciated with altered membrane lipid composition, which can 
be related to suboptimal HSP expression. Therefore, altering 
membrane properties and normalizing HSP expression by 
“membrane lipid therapy” pharmaceuticals may provide po-
tential treatment of certain diseases (Crul et al. 2013).

Increased oxidative stress was observed during aging and 
different human diseases, like neurodegenerative disorders, 
stroke, atherosclerosis or myocardial infarction. Several 
studies suggest that HSPs have protective effects against 
oxidative stress. For instance, HSPBs can decrease the level 
of reactive oxygen species (ROS) and regulate intracellular 
redox homeostasis, thereby protect cytoskeleton, which is a 
sensitive target for oxidative stress. Furthermore as molecular 
chaperons they prevent aggregation and promote proteasomal 
degradation of the oxidized proteins (Arrigo et al. 2005; 
Mymrikov et al. 2011).

Apoptotic and necrotic cell death both have been reported 
in different pathological conditions (Takayama et al. 2003). In 
the intrinsic pathway of apoptosis, changes in the inner mito-
chondrial membrane resulted in the release of pro-apoptotic 
proteins, like cytochrome c, into the cytosol. Cytochrome c 
then binds to Apaf-1 and procaspase-9 forming the so called 
apoptosome, leading to the activation of caspase-9, which in 
turn activates caspase-3 and initiates the apoptotic protease 
cascade (Elmore 2007). Interestingly, certain HSPs can inhibit 
different stages of this process (Latchman 2001). For example 
overexpression of HSPB1 can protect cells against different 
apoptotic stimuli by binding to cytochrome c and inhibiting 
apoptosome formation, and this antiapoptotic effect seems 
to depend on the oligomeric status of HSPB1 (Mehlen et al. 
1996; Garrido et al. 1999; Bruey et al. 2000, reviewed for 
example in Latchman 2001; Takayama et al. 2003). HSPC can 
also prevent the formation of the apoptosome, by forming a 
cytosolic complex with Apaf-1 (Pandey et al. 2000). HSPA 
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can inhibit the recruitment of procaspase-9 to the apoptosome 
complex (Beere et al. 2000), but it also can inhibit apoptosis 
later in the cell death signaling pathway, downstream of cas-
pase activation (Jaattela et al. 1998). 

ischemia/reperfusion injury

Ischemia/reperfusion injury is characteristic for myocardial 
infarction or ischemic stroke. During ischemia, the oxygen 
and nutrient supply of cells is inhibited, while certain toxic 
metabolites can accumulate in the tissues. Due to oxygen 
deprivation, ATP production rapidly decreases, which is 
compensated with anaerobic glycolysis, but later this is sup-
pressed by intracellular acidosis. The calcium homeostasis 
of the cells is also affected and results in calcium accumula-
tion. These events finally lead to abnormal ROS production, 
mitochondrial dysfunctions, and loss of membrane integrity. 
Restoration of blood supply can results in additional ROS 
generation and calcium overload causing further damage 
to tissues, referred to as reperfusion injury (reviewed in 
Nishizawa and Nagata 2000). 

Several reports showed the increased expression of dif-
ferent HSPs in the heart after ischemia/reperfusion injury. 
Repeated ischemia/reperfusion episodes increased the level of 
HSPB1, HSPA and HSPC mRNA in isolated rat hearts (Das 
et al. 1993). Like heat shock, ischemia/reperfusion injury 
activates HSF1. The activation of HSF can be detected in 
minutes during global ischemia in heart, but then it is rapidly 
attenuated. However, the post-ischemic reperfusion induced 
a more significant activation of HSF. It was also showed, that 
the expression rate of HSPs differs between heat shock and 
ischemia/reperfusion injury. A greater expression of HSPA 
was found in heat shock compared to ischemia/reperfusion in-
jury, while the level of HSPC mRNA was significantly higher 
in post-ischemic reperfusion than in heat shock (Nishizawa et 
al. 1996). Certain members of the HSPB family, like HSPB5 
or HSPB2 show a constitutive high level expression in muscle 
tissues, and have important myofibrillar stabilizing functions 
during stress conditions. HSPB5 is associated with the desmin 
filaments of the Z-lines in cardiomyocites, and its binding af-
finity to actin and desmin increases during stress conditions 
(Longoni et al. 1990; Bennardini et al. 1992). In response 
to ischemic treatment, HSPB5 rapidly translocates from the 
cytosol to the Z-lines of the myofibrils (Chiesi et al. 1990; 
Golenhofen et al. 1998). This redistribution was also observed 
in the case of other small heat shock proteins, like HSPB1, 
HSPB2, HSPB7 and HSPB8 (Golenhofen et al. 2004).

Several studies have shown that induction of HSPs with 
mild stress stimuli has protective effect against a subsequent 
more severe stress in the heart. First, Currie et al. demon-
strated that there is an association between heat shock re-

sponse and enhanced post-ischemic recovery. In this study, 
rats were heat shock treated, then 24 hours later hearts 
were isolated and contractility was examined during and 
after global ischemia on a Langerdorff perfusion apparatus. 
Contractility during ischemia was not affected by the prior 
heat treatment, but upon recovery, heat-shocked heart had 
significantly improved recovery in contractile force and rate 
of contraction. After 30 minutes of reperfusion they found 
reduced ultrastructural injury of mithocondria, and increased 
expression of HSPA in the heat-shocked hearts (Currie et al. 
1988). Later, this protective effect of heat shock treatment was 
also demonstrated in intact animals (reviewed in Latchmann 
2001). Heat shock pretreatment significantly reduced the 
infarct size after a left coronary artery occlusion, correlating 
with a marked increase of HSPA expression (Donelly et al. 
1992). Later, it was demonstrated that not only heat shock 
but a sublethal ischemic pretreatment also can reduce the 
infarct volume following coronary artery ligation in rabbits. 
In this study heat and ischemic pretreatments resulted in a 
similar level of HSPA expression, while HSPD1 (HSP60) was 
induced moderately only by ischemia (Marber et al. 1993). 
Moreover, it was shown, that the amount of induced HSPA 
is directly correlated with the degree of infarct size reduction 
(Hutter et al. 1994). These results suggest that the induction of 
HSPs is responsible for the protective effects of the different 
stress pretreatments, which was further confirmed by studies, 
in which individual HSPs were overexpressed (reviewed in 
Latchmann 2001). Overexpression of HSPA protects primary 
rat cardiac myocytes and coronary endothelial cells against 
ischemia (Cumming et al. 1996; Suzuki et al. 1998). However, 
rather interestingly, overexpression of HSPD1 or HSPC had 
no such a protective effect against ischemic stress (Cumming 
et al. 1996). Later, overexpression of HSPBs, HSPB1 and 
HSPB5 was also proved to be protective against hypoxic 
stress in rat cardiomyocyte cultures, and shown that decreas-
ing the level of endogenous HSPB5 resulted in increased 
damage after ischemia (Martin et al. 1997; Brar et al. 1999). 
HSPB5/HSPB2 deficiency affects cardiac function, as iso-
lated hearts and papillary muscles of HSPB5/HSPB2 double 
knock-out mice showed contractile dysfunction, reduced 
recovery and increased cell death after ischemia reperfusion 
(Morrison et al. 2004; Golenhofen et al. 2006), while elevated 
expression of HSPB5 can preserve postischemic contractile 
function and decrease the level of oxidative stress and myo-
cardial apoptosis (Ray et al. 2001). Transgenic overexpression 
of HSPB1 protected the heart from an ischemia-reperfusion 
injury by decreasing the effects of oxidative stress in mice 
(Hollander et al. 2004). High level, constitutive expression of 
the inducible HSPA in the myocardium of transgenic mice led 
to the protection of hearts against ischemia/reperfusion injury 
(Plumier et al. 1995; Marber et al. 1995; Radford et al. 1996; 
reviewed in Latchmann 2001). Pharmacological induction of 
HSPs by a hidroxylamine derivative, Bimoclomol, also had 
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cytoprotective effects in a murine model of ischemia (Vígh 
et al. 1997). Moreover, increasing the expression level of 
HSPA by exercise training reduced the degree of myocardial 
lipid peroxidation following short-term ischemia-reperfusion 
(Demirel et al. 1998).

The protective effect of ischemic preconditioning was also 
demonstrated in the brain of a rodent model of bilateral cere-
bral ischemia. Repetitive, short periods of ischemia before a 
5 min bilateral occlusion of carotids resulted in a decreased 
neuronal cell death in the CA1 region of hippocampus 
(Kitagawa et al. 1991). After transient middle cerebral artery 
occlusion, HSPA was expressed in neurons, microglia and 
endothelial cells, but not in astrocytes, in the penumbral area 
around the focal ischemic center. Expression level of HSPA 
positively correlated with the duration of ischemia (Li et al. 
1992). Constitutive transgenic overexpression of HSPA can 
reduce the neuronal damage following cerebral ischemia in 
mice (Plumier et al. 1997). This result was confirmed also in 
rats using viral overexpression of HSPA (Yenari et al. 1998). 
Injecting the HSP inducer geldanamycin into cerebral ven-
tricles 24 h before ischemia successfully reduced infarct size, 
brain edema and the number of apoptotic cells, and improved 
behavioral outcomes, while protein levels of HSPA in neurons 
and HSPB1 in glial cells were increased (Lu et al. 2002). 
Later, it was also shown that HSPA has an anti-inflammatory 
role in cerebral ischemia. In the ischemic brain of HSPA 
overexpressing transgenic mice the number of activated mi-
croglia/macrophages was reduced, and the microglia-induced 
astrocyte death was prevented while several pro-inflammatory 
genes were downregulated (Zheng et al. 2008). Small heat 
shock proteins also have beneficial properties during ischemic 
stroke. HSPB5 deficiency leads to increased infarct size after 
middle cerebral artery occlusion, while recombinant HSPB5 
treatment can reduce the lesion size in HSPB5 knock-out and 
wild type mice as well (Arac et al. 2011). 

Cytotoxic effects of ethanol

Ethanol has several cell type-independent cytotoxic effects, 
thus alcohol consumption impairs almost all tissues in the 
human organism (reviewed in Baker and Kremer 1999; 
Tóth et al. 2014). Ethanol can increase the fluidity of the 
plasma membrane, membranes of endoplasmic reticulum, 
mitochondria and liposomes (Goldstein 1986). Alterations 
in the physical structure of membranes as well as the di-
rect interaction with ethanol can influence the functions of 
membrane-associated proteins such as receptors, ion chan-
nels and enzymes, and can therefore alter cellular processes, 
like membrane transport, enzymatic reactions and signaling 
pathways (Fadda and Rossetti 1998; Escriba et al. 2008). 

Ethanol administration resulted in an increased generation 
of ROS and decreased activity of the protective antioxidant 
system, leading to the oxidative damage of different cell com-
ponents, like cellular membranes, DNA or the cytoskeleton 
(Wu and Cederbaum 2003). For example lipid peroxidation 
can alter the structure and function of membranes and dif-
ferent membrane proteins (Mason et al. 1997; Vígh et al. 
2005; Escriba et al. 2008), while the oxidative stress induced 
protein denaturation leads to protein aggregation and the 
loss of enzymatic activity. Therefore oxidative stress plays 
central roles in the pathogenesis of alcoholic liver disease 
(Wu and Cederbaum 2003) but increased free radical produc-
tion and lipid peroxidation also have been demonstrated in 
extrahepatic tissues such as the heart and brain (reviewed in 
Nordmann et al. 1990).

Similarly, ethanol can induce apoptosis in different tis-
sues, such as the liver and the brain. Even a single day of 
binge ethanol treatment can induce apoptotic cell death in the 
liver (Zhou et al. 2001). Neurons are extremely sensitive to 
the cytotoxic effect of ethanol in the developing mammalian 
brain during the synaptogenesis, which occurs prenatally in 
human and after birth in rodents. The acute ethanol treatment 
of 7-day-old rats led to extensive neuronal apoptosis in dif-
ferent brain regions (Ikonomidou et al. 2000).

Like heat shock and other stress factors, ethanol adminis-
tration activates HSFs and induces the expression of HSPs in 
the liver, brain and inflammatory cells. In vitro ethanol treat-
ment promotes the translocation of HSF1 from cytoplasm to 
the nucleus in cultured cortical neuronal cells (Pignataro et al. 
2007), as well as in macrophages and monocytes (Mandrekar 
2008), increasing its DNA-binding activity, and inducing 
the expression of different HSPs, such as HSPB1, DNAJ or 
HSPA. Both acute and chronic ethanol consumptions resulted 
in elevated level of HSPA in the hippocampus, cerebellum, 
cortex, striatum and liver of rats (Calabrese et al. 1996; Ca-
labrese et al. 1998). In the different brain regions, the amount 
of HSPA protein correlated negatively with the level of lipid 
peroxidation. Maternal ethanol consumption also leads to 
increased expression of HSPA in different brain regions of 
rat pups (Holownia et al. 1995).

It has been demonstrated, that a mild ethanol administra-
tion, similar to heat shock or ischemia, can induce precon-
ditioning, probably due to the elevated expression of HSPs. 
For example, ethanol pretreatment resulted in enhanced 
resistance against subsequent heat shock and H

2
O

2 
exposure 

in cell cultures (Su et al. 1998) or against cerebral ischemia/
reperfusion injury in gerbils (Wang et al. 2007).

Several studies have demonstrated that pharmacological 
inductions of HSPs had protective effects against ethanol 
induced toxicity, especially in ethanol induced gastric le-
sions. Pretreatment of gastric mucosal cell cultures with an 
anti-ulcer drug, geranylgeranylacetone (GGA) that have been 
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demonstrated to induce the expression of HSPA, can prevent 
ethanol induced apoptotic cell death in a dose-dependent 
manner (Mizushima et al. 1999). Pretreatment with ginseng, 
which can increase HSPB1 and HSPA expression, prevented 
the ethanol-induced gastric lesions and apoptotic cell death 
in the rat gastric mucosa in vivo (Yeo et al. 2008). Other plant 
extracts were also proved to be effective in the prevention 
of ethanol induced gastric ulcer, while upregulating HSPA. 
Moreover, omeprazole, a gastroprotective drug used as con-
trol in these studies, also induced HSPA protein expression 
(Golbabapour et al. 2013; Sidahmed et al. 2013). 

The protective effects of HSPs against ethanol induced 
toxicity were also showed in brain and hepatic cells. In 
primary astrocyte cultures ethanol treatment led to oxida-
tive stress and a significant increase in the level of HSPA. 
However, blocking HSPA using antisense oligonucleotides 
resulted in an additional significant decrease in cell viabil-
ity, and increase in ROS formation, lipidperoxidation and 
apoptotic DNA fragmentation, suggesting that HSPA has 
beneficial effect against ethanol induced cell damage (Russo 
et al. 2001). Indeed, increasing HSPA expression by GGA 
treatment can suppress ethanol induced apoptosis in primary 
cultures of rat hepatocytes (Ikeyama et al. 2001). Curcumin 
pretreatment, that can activate HSP expression, also reduced 
the level of ethanol induced oxidative stress, lipid peroxida-
tion and toxicity in liver slice culture (Naik et al. 2004).

In our lab we investigated the neuroprotective effects of 
HSPB1 against acute and chronic ethanol administrations 
in HSPB1-overexpressing transgenic mice. After a single 
intraperitoneal ethanol injection, the ethanol treated wild-
type mice exhibited ataxia and incoordination, whereas 
the overexpression of HSPB1 protein significantly reduced 
these harmful effects. HSPB1 overexpression also resulted 
in a significantly lower number of degenerating neurons in 
different brain regions of ethanol treated mice compared to 
wild type littermates after long term ethanol consumption 
(Tóth et al. 2010).

Aging and neurodegenerative disorders

In the aging cells several post-translational protein modifica-
tions occur, such as deamidation, methionine oxidation or 
protein glycation. These age-related modifications lead to 
conformational changes that can influence protein function 
and facilitate protein aggregation. As a compensatory mecha-
nism, the levels of several HSPs are constitutively increased 
during aging; however their inducibility and chaperone 
activity are impaired (reviewed by Sőti and Csermely 2002). 
Moreover, HSPs are sequestered within the protein aggregates 
which may reduce their availability. Aging is accompanied by 

a decrease in the activity of the protein degradation systems, 
and as aggregated proteins can not be degraded properly, 
ubiquitinated proteins and components of the ubiquitin-
proteasome system are also enriched in protein aggregates 
(Perry et al. 1987; Choi et al. 2004; Ross and Pickart 2004; 
Wyttenbach and Arrigo 2009). The weakening of the capac-
ity of the chaperone and protein degradation system in aged 
organisms finally can lead to massive protein aggregation 
and the development of neurodegenerative diseases termed 
protein-misfolding disorders (Sőti and Csermely 2002). These 
neurodegenerative diseases are characterized by the accumu-
lation of different aggregation-prone proteins that show some 
similarities, for example they are highly insoluble and can 
fold into β-sheet-rich structures (Haass and Selkoe 2007). 

Alzheimer’s disease (AD) is one of the most common 
neurodegenerative diseases which is characterized by progres-
sive memory loss, formation of senile plaques and neurofi-
brillary tangles, induction of oxidative stress and neuronal 
cell death. The major component of senile plaques, the Aβ 
protein, probably has a central role in the disease pathology. 
This 4 kDa polypeptide is generated from the intramembrane 
amyloid precursor protein (APP) by the proteolytic cleavage 
of β- and γ-secretases. According to the amyloid cascade 
hypothesis the enhanced production or reduced clearance of 
the peptide leads to the relative increase in Aβ

42
 level, which 

enhances oligomer formation (Haass and Selkoe 2007). The 
intracellular, soluble Aβ oligomers can interact with differ-
ent cell components such as cytoplasmic proteins and lipid 
membranes, leading to the induction of apoptosis or several 
other detrimental changes in the cell for example in synap-
tic structure and plasticity. Therefore, the intracellular Aβ 
hypothesis emphasizes the primary role of intracellular Aβ 
in initiating the disease (Penke et al. 2012). In parallel, Aβ

42
 

polymerizes into insoluble fibrils resulting in the formation 
of extracellular amyloid plaques that do not appear to be as 
neurotoxic as the soluble oligomers, however they can initiate 
a chronic inflammation in the brain (Khandelwal 2011).

Aβ peptides can interact with membrane lipids, pro-
teoglycans and  proteins (reviewed in Verdier et al. 2004), 
thereby influencing the condition of the plasma membrane 
and membranes of subcellular organelles, however the exact 
effect of Aβ on the membrane fluidity might depend on the 
membrane composition, such as the cholesterol content (Yip 
et al. 2001). Because amyloidogenic APP processing and 
Aβ fibrillogenesis are membrane attached events, changed 
membrane fluidity can affect these processes as well (Peters 
et al. 2009). According to the amyloid channel hypothesis, 
at neurotoxic concentration Aβ can form cation selective 
ion channels in cell membranes resulting in abnormal neu-
ronal ion (especially Ca2+) homeostasis (Arispe et al. 1993; 
reviewed by Shirwany et al. 2007). Moreover, not only Aβ, 
but other neurotoxic proteins also have been demonstrated 



130

Tóth et al.

to exert pore-like activities, such as polyglutamine proteins 
(Monoi et al. 2000) or α-synuclein protofibrils (Rochet et 
al. 2004). 

During aging, the level of reactive oxygen species is 
increasing, while the ability of cells to respond to oxidative 
damage is decreasing, leading to enhanced level of oxida-
tive protein alterations which can result in a greater degree 
of protein misfolding and impaired degradation (reviewed 
by Andersen 2004). On the other hand, the overexpression 
of aggregation-prone proteins like Aβ, α-synuclein, mutant 
huntingtin or SOD1 might themselves can increase the level 
of ROS (Behl et al. 1994; Hsu et al. 2000; Wyttenbach et al. 
2002; Lee et al. 2001). Therefore, oxidative stress is char-
acteristic of the different protein misfolding diseases, lipid 
peroxidation and protein oxidation have been reported in 
the brain of patients with AD, PD or HD and in the spinal 
cord of patients with ALS (reviewed by Andersen 2004 and 
Reed 2011).

Oxidative stress, disturbed calcium homeostasis, mi-
tochondrial and cytoskeletal dysfunctions all can induce 
neuronal cell death, therefore apoptosis have been reported 
in different neurodegenerative diseases (for reviews, see 
Mattson 2000; Friedlander 2003; Wyttenbach and Arrigo 
2009). Toxic Aβ peptide or α-synuclein can directly induce 
apoptosis in cultured neurons and transgenic mice (Loo et 
al. 1993; LaFerla et al. 1995; Forloni et al. 1996; El-Agnaf 
et al. 1998).

The levels of different HSPs are increased in the brain 
of neurodegenerative disease patients (for reviews see Sun 
and MacRae 2005; Wilhelmus et al. 2007; Brownell 2012). 
Moreover different HSPs have been found to be associated 
with the abnormal protein aggregates. For example several 
members of the HSPB family were observed in senile plaques 
and cerebral amyloid angiopathy, the pathological lesions 
of AD (Wilhelmus et al. 2006), and α-synuclein containing 
Lewy bodies. HSPA1 also colocalized with Aβ peptides 
and α-synuclein, while HSPA8 was found in intracellular 
inclusions in ALS (reviewed in Muchowski and Wacker 
2005). Members of the DNAJ and HSPA families have been 
demonstrated to interact with huntingtin in a polyglutamine 
length-dependent manner (Jana et al. 2000). A DNAJ family 
member was found to be localized to ataxin-1 inclusions in 
the brain of spinocerebellar ataxia (SCA1) patient and SCA1 
transgenic mice (Cummings et al. 1998). 

Several studies suggest that the elevated level of HSPs 
has protective function in these neurodegenerative diseases. 
Overexpression of members of DNAJ protein family can sup-
press the nuclear aggregation of mutant ataxin-1 and ataxin-3 
decreasing their toxicity in cell culture model (Cummings et 
al. 1998; Chai et al. 1999). HSPA overexpression decreased 
polyglutamine induced neurodegeneration in a Drosophila 
model of polyglutamine disease (Warrick et al. 1999) and 
in SCA1 transgenic mice (Cummings et al. 2001, reviewed 

in Turturici et al. 2011). HSPB1 has been shown to decrease 
polyglutamine toxicity without suppressing protein aggrega-
tion by protecting cells against oxidative stress (Wyttenbach 
et al. 2002). Overexpression of HSPB1 has a potent preven-
tive anti-apoptotic effect against the damaging effects of 
α-synuclein (Zourlidou et al. 2004). HSPA expression can 
reduce α-synuclein aggregation in vitro and in vivo, and can 
decrease α-synuclein induced toxicity in cell culture and 
Drosophila model of PD (Klucken et al. 2004; Auluck et al. 
2001; reviewed in Turturici et al. 2011). In SOD1/HSPB1 
double transgenic mice Sharp et al. (2008) demonstrated a 
delayed decline in motor strength and an improved survival 
of the spinal motor neurons. Increased expression of HSPA 
reduced the aggregation and toxicity of mutant SOD1 and 
prolonged cell survival in primary motor neurons (Bruen-
ing et al. 1999). However, elevated expression of multiple 
HSPs resulted in enhanced protection against mutant SOD-1 
compared to HSPB1 or HSPA expressed alone (Batulan et 
al. 2006). Transgenic overexpression of HSPA can reduce 
Aβ plaque formation, neuronal loss and cognitive deficits in 
a mouse model of AD (Hoshino et al. 2011). HSPB1, HSPB5 
and HSPB6 are able to bind to Aβ inhibiting its fibril forma-
tion, therefore decreasing its toxicity in cultured cerebrovas-
cular cells (Wilhelmus et al. 2006b).

We have investigated the effect of HSPB1 on cogniti-
ve, memory and synaptic functions, Aβ accumulation, and 
neurodegeneration in a mouse model of AD. We found that 
learning abilities were impaired in AD model mice but this 
was rescued by HSPB1 overexpression (Tóth et al. 2013). 
Synaptic abnormalities, like increased excitability and im-
paired long-term potentiation, were normalized in HSPB1 
overexpressing AD model mice as well. Using anti-amyloid 
antibody, we counted significantly less amyloid plaques in 
the cortical and hippocampal brain regions of AD/HSPB1 
animals compared to AD model mice. These results suggest 
that overexpression of HSPB1 protein might ameliorate cer-
tain symptoms of AD (Tóth et al. 2013).

Different HSP inducers also have been shown to be effec-
tive in moderating of the symptoms of certain neurodegenera-
tive diseases. Treatment of a mouse model of polyglutamine 
disease with GGA can prevent pathogenic protein aggregation 
and alleviate the related phenotype (Katsuno et al. 2005). 
Drosophila models of HD and spinocerebellar ataxia treated 
with a geldanamycin derivative showed reduced polyglu-
tamine-induced neurodegeneration and lethality (Fujikake et 
al. 2008). Treatment with a HSP coinducer, Arimoclomol can 
improve hind limb muscle function and motoneuron survival, 
leading to an increase in lifespan in a mouse model of ALS 
(Kieran et al. 2004).

These studies suggested that elevated expression of 
HSPs exert a protective function in these neurodegenerative 
diseases. However, it should be noted that not all type of 
HSPs appeared to be effective in all of the diseases. Rather, 
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each of the disorders can be characterized by a different set 
of HSPs that ameliorate the symptoms (reviewed by Kakkar 
et al. 2014).

obesity and diabetes

Obesity, metabolic syndrome and diabetes share certain 
similarities with aging, as they represent a chronic stress 
state, where disturbed protein homeostasis can be found 
with a concomitant decline in the stress response. Metabolic 
disturbances can lead to the loss of stability and function of 
different cellular proteins as their post-translational modifica-
tions accumulate during the disease (reviewed in Dancsó et al. 
2010). The level of sugars and their derivatives are elevated 
in different tissues of diabetic patients, which favors the non-
enzymatic glycation of proteins. Glycation of α-crystallins of 
the eye lens resulted in significant conformational changes 
and decreased chaperone activity, finally leading to the de-
velopment of diabetes related cataract (Kumar et al. 2007). 
Chronic high level of glucose can cause oxidative stress and 
endoplasmic reticulum stress especially in insulin expressing 
pancreatic β-cells, leading to protein misfolding, aggregation 
and apoptotic cell death. Indeed, large aggregates of ubiquit-
inated proteins can be found in certain tissues, like pancreas, 
liver or the hippocampus, isolated from the obese Zucker 
diabetic fatty rat. This rat strain is a validated model of diabe-
tes, which exhibit obesity and the related diabetic phenotype 
due to a mutation in the leptin receptor. The clearance of the 
hyperglycemia induced protein aggregates is seems to be 
mediated mainly by autophagy rather than proteasomal deg-
radation (Kaniuk et al. 2007). The accumulation of misfolded 
proteins normally imply the activation of HSPs. Elevated 
levels of HSF1, HSPA and HSPC family members were found 
in the pancreatic tissues of type 2 diabetes mellitus (t2DM) 
monkeys and pancreas of human patients express high level 
of the ER chaperon HSPA5 (Kavanagh et al. 2009, Laybutt et 
al. 2007). The increased level of chaperon proteins probably 
represents a compensatory mechanism for the altered protein 
homeostasis (Dancsó et al. 2010). In contrast, hepatic cells 
of diabetic monkey have 50% lower level of HSF1, HSPA 
and HSPC compared to control (Kavanagh et al. 2009). 
Similarly, the level of HSPs and their inducibility are low in 
the liver, the skeletal and cardiac muscle of hyperglycemic 
rodents (Atalay et al. 2004; Ooie et al. 2005), and reduced 
expression of HSPA was also found in the skeletal muscle 
of insulin resistant and diabetic patients, where the level of 
HSPA correlates with the rate of insulin-stimulated glucose 
uptake and glucose tolerance (Kurucz et al. 2002; Chung et al. 
2008). High-fat diet induced insulin resistance also resulted 
in a reduced HSPA expression in the arteries of rats (Karpe 
and Tikoo, 2014). The finding that the level of HSPs and their 

response to stress stimuli are decreased in insulin responsive 
tissues in diabetes suggests that the loss of cellular stress 
response is a central event in the pathogenesis of the disease 
(Hooper et al. 2014). 

Indeed, exercise training, which induces HSP expression, 
can improve the whole-body insulin sensitivity and glucose 
tolerance, and have anti-inflammatory effects in obese and 
diabetic patients (reviewed in Hooper et al. 2014). Moreover, 
mimicking the physiological effects of exercise by warming 
skeletal muscle is also effective. Treating t2DM patients 
with daily hot tub submersion for 3 weeks led to improved 
fasting glucose, a trend toward weight loss, and the relief 
of neuropathic symptoms (Hooper 1999). The phenomenon 
was also confirmed in several animal models (reviewed in 
Hooper et al. 2014). Whole body hyperthermia induced by 
far infrared light therapy, improved obesity related insulin 
resistance in diabetic mice (Kokura et al. 2007). Increasing 
body temperature can induce the expression of certain HSPs, 
like HSPA, HSPB1, and mitochondrial HSPD1 in the skel-
etal muscle, liver and adipose tissue, resulting in improved 
glucose tolerance, insulin-stimulated glucose transport, and 
increased insulin signaling in high-fat-diet rats (Gupte et al. 
2009). Later, it was showed that, at least in part, the elevated 
level of HSPA is responsible for the protective effect, as not 
only heat treatment, but transgenic overexpression of HSPA 
in the skeletal muscle also can prevent high-fat-diet induced 
hyperglycemia, hyperinsulinemia, glucose intolerance and 
insulin resistance in mice (Chung et al. 2008; Henstridge et 
al. 2014). HSPA transgenic mice seem to be resistant to the 
high-fat-diet induced obesity, which is probably related to an 
elevated whole body energy utilization and increased number 
of mitochondria (Henstridge et al. 2014). Pharmacological 
induction of HSPs is also effective. Diabetes can be induced 
in rodents with a single injection of a pancreatic β-cell toxin, 
streptozoicin. A Bimoclomol derivative, BRX-220, was able 
to improve insulin sensitivity and diabetes-related deficits in 
muscle motor and sensory nerve functions in streptozoicin-
treated rats (Kürthy et al. 2002). Treatment with another 
hydroximic acid derivative, BGP15 can reduce fasting levels 
of glucose and insulin in leptin-deficient obese mice, and this 
protection was associated with the blocking of inflammation 
(Chung et al. 2008). BGP15 increased insulin sensitivity and 
the number of mitochondria in the skeletal muscle of a rat 
model of diabetes (Henstridge et al. 2014). BGP-15 was also 
successfully applied in human patients. BGP-15 administra-
tion has significantly improved insulin sensitivity in insulin-
resistant, non-diabetic human patients, while adverse drug 
effects were not observed (Literáti-Nagy et al. 2009). It is 
known from the literature that treatment of different psy-
chiatric diseases, such as schizophrenia or bipolar disorder, 
with atypical antipsychotic drugs, like olanzapine, leads to 
metabolic side effects, obesity and insulin resistance. How-
ever, BGP15 can also prevent the olanzapine induced insulin 
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resistance (Literáti-Nagy et al. 2010, 2012). Impaired wound 
healing is a common symptom of diabetic patients. Expres-
sion of HSPA, HSPD1 and HSPB1 is rapidly induced during 
wound healing in different animal models, suggesting that 
is has a role in this process (reviewed in Atalay et al. 2009). 
Indeed, treatment with Bimoclomol containing cream can 
improve wound healing on the skin of streptozoicin treated 
diabetic rats (Vígh et al. 1997). Treatment with a HSPC 
inhibitor, that can upregulate HSPA, ameliorated diabetic 
peripheral neuropathy in a mouse model of diabetes, and this 
was correlated with improved sensory neuron mitochondrial 
bioenergetics. As the drug was ineffective in HSPA knockout 
mice, the authors suggested, that modulating HSPA is neces-
sary for its function (Ma et al. 2014).

These studies suggest that restoration of heat shock re-
sponse and the level of HSPs in insulin responsive tissues 
may be an effective therapeutic strategy for improving insulin 
sensitivity and reducing the complications of diabetes.

Cancer

The microenvironment of a tumor is rather stressful, because 
they have poor blood supply resulted in inadequate glucose, 
oxygen and pH level. The various forms of chemotherapies 
and other cancer treatments, such as radiotherapy can also 
induce stress response, therefore the expression level of dif-
ferent HSPs is elevated in several types of cancers, and HSP 
overexpression usually leads to a poor prognosis in survival 
and response to therapy. However, it is rather difficult to con-
clude a general role of HSPs in tumor progression, as there 
are a number of different cancers and a tumor tissue usually 
consists of mixed clones (reviewed for example in Sőti and 
Csermely 1998). Elevated level of HSPC2 was found in 
breast cancer cells, which may play a role in cell proliferation 
(Yano et al. 1996). HSPB1 expression is correlated with bad 
prognosis for example in gastric, liver, prostate cancer, and 
osteosarcomas (reviewed in Ciocca and Calderwood 2005) 
and also in pancreatic cancer patients (Baylot et al. 2011). 
Malignant ovarian tumors have been showed to express higher 
level of HSPB1 compared to benign tumors (Langdon et al. 
1995). HSPB1 is upregulated in a highly metastatic variant 
of a human breast cancer cell line (Li et al. 2006). On the 
other hand, it has been demonstrated that overexpression 
of HSPB1 can decrease the osteolytic bone metastases of 
breast cancer cells (Lemieux et al. 1999), and high level of 
the same chaperone has been associated with good prognosis 
in endometrial adenocarcinomas, oesophageal cancer, and in 
malignant fibrous histiocytomas. High HSPA expression is 
correlated with poor prognosis in breast cancer, endometrial 
cancer, uterine cervical cancer, and transitional cell carcinoma 
of the bladder. In contrast, elevated expression of HSPA has 

been associated with good prognosis in oesophageal cancer, 
pancreatic cancer, renal cancer, and melanoma (reviewed in 
detail by Ciocca and Calderwood 2005). They suggest that 
the role of certain HSPs in the disease prognosis may depend 
on the unique molecular context of each cancer type.

Elevated expression of HSPs has also been proposed to be 
predictive of poor response to different anticancer therapies 
(reviewed in Ciocca and Calderwood 2005; Vidyasagar et al. 
2012).  In breast cancer patients treated with combination 
chemotherapies, the high nuclear expression of HSPA was 
correlated with drug resistance, and the increased level of 
HSPB1 was associated with a shorter disease-free survival 
(Vargas-Roig et al 1998). Elevated expression of HSPB1 has 
been also showed to be associated with increased resistance 
to chemotherapy in the case of ovarian cancer (Langdon et 
al. 1995) and leukemia (Kasimir-Bauer et al. 1998). High 
level of HSPA predicted lower response of breast cancers 
to radiation and hyperthermia (Liu et al. 1996). On the 
other hand, in lung cancer cells only a weak correlation was 
found between HSPA expression and drug resistance (Volm 
and Rittgen 2000), while HSPA expressing osteosarcomas 
responded better to neoadjuvant chemotherapy compared to 
HSPA negative tumors (Trieb et al. 1998, reviewed by Ciocca 
and Calderwood 2005).

HSPs overexpression can lead to resistance to cancer 
therapies by several ways like preventing apoptotic cell death 
of the tumor cells, refolding denatured proteins damaged 
by cytotoxic drugs, and improving DNA repair (Ciocca and 
Calderwood 2005). In breast cancer, the epidermal growth 
factor receptor (EGFR)-related tyrosine kinase Her2 is an 
important therapeutic target. Herceptin treatment can decrease 
the level of Her2 in different human breast cancer cell lines, 
probably through the degradation of Her2 protein. However, 
the response rates to Herceptin monotherapy are low, and 
in most cases resistance develops within 1 year. It has been 
demonstrated that HSPB1 is upregulated in a Herceptin 
resistant human breast cancer cell line. Moreover, using co-
immunoprecipitation study, HSPB1 has been shown to bind 
to Her2, suggesting that HSPB1 is responsible for Herceptin 
resistance, probably by binding to Her2 and stabilizing it. 
Indeed, suppression of HSPB1 by siRNA transfection resulted 
in increased susceptibility to Herceptin (Kang et al. 2008). 
In another study it was shown that HSPB1 overexpression 
can inhibit doxorubicin-induced apoptosis in human breast 
cancer cells (Hansen et al. 1999). Cancer stem cells, that ex-
hibit increased resistance to different cytotoxic agents, also 
showed increased level of HSPB1 and decreased apoptotic 
response to chemotherapeutic treatment (Hsu et al. 2011). 
Therefore, inhibition or downregulation of HSPs seems to be 
a possible treatment additional to traditional chemotherapy. In 
a mouse model of lung cancer it has been demonstrated, that 
quercetin, an inhibitor of HSPB1, combined with traditional 
chemotherapeutics, was more effective in inhibition of tumor 
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progression than the traditional chemotherapeutics alone (Hsu 
et al. 2011). OGX-427 is a modified antisense oligonucleotide 
complementary to HSPB1 that inhibits HSPB1 expression 
and enhances drug efficacy in cancer models. OGX-427 can 
significantly reduce tumor volume and enhance the apoptotic 
effect of gemcitabine treatment in a mouse model of pan-
creatic cancer. Phase II clinical trials using OGX-427 are in 
progress in the United States and Canada for different type 
of cancers such as breast, ovarian, bladder, prostate and lung 
cancer (Baylot et al. 2011). Interestingly, certain viruses are 
oncolytics. Remarkably, viruses like Newcastle Disease Virus 
kills cancer cells in humans and animal cancer models, yet 
are not toxic to non-malignant tissues. Indeed, the oncolytic 
viruses appear to selectively knock out tumor HSPs, promot-
ing cancer cell death while improving host survival in most 
malignant of cancers like pancreatic cancer and malignant 
melanoma (Hooper et al. 2012). 

On the other hand HSPs can also participate in the elimi-
nation of tumor cells. Certain HSPs like HSPA and HSPC 
family members were found to be expressed on the surface of 
different cancer cells as tumor-specific antigens. Interestingly, 
HSPs are expressed on the surface of tumor cells, similarly to 
virally or bacterially infected cells, but not on the surface of 
normal cells (Multhoff and Hightower 1996). These surface 
expressions of HSPs results in the sensitization of tumor cells 
against the immune system through the enhanced recognition 
by the natural killer cells (reviewed by Csermely and Yahara 
2002; Sreedhar and Csermely 2004). The protein structure 
of the surface expressed HSPs isolated from different tumors 
were similar, however their immunogenicity were different. 
Srivastava first proposed that not HSPs themselves, rather 
the tumor specific peptides, carried by the chaperones, are 
responsible for the immunogenicity. It was also suggested, 
that HSPs help to present these peptides to the MHC-I com-
plex, inducing a cytotoxic T-cell response (Srivastava et al. 
1994, reviewed in Csermely and Yahara 2002; Sreedhar and 
Csermely 2004). This facilitates to induce an anti-tumor im-
mune response by vaccination with HSP-peptide complexes. 
Immunization with autologous cancer-derived HSP prepara-
tions resulted in a reduced growth rate of the primary tumor, a 
decreased metastatic potential, and increased life span in mice 
(Tamura et al. 1997). HSP-peptide complex prepared from 
resected colorectal liver metastasis significantly increased 
T-cell response against colon cancer, and the occurrence of 
immune response resulted in a better tumor-free survival in 
human patients (Mazzaferro et al. 2003).

Conclusion

HSPs are classified into five families that consist of proteins 
with different structure and more or less different functions. 

Functionally, they are similar in their role in proteostasis. 
They assist in the folding of the newly synthesized proteins as 
well as in the facilitation of protein degradation, thereby they 
have important roles in maintaining the protein homeostasis 
during normal cellular functions. Under stress conditions, 
the increased level of unfolded proteins and the increased 
membrane fluidity can activate the stress signalling pathway 
finally leading to an elevated expression of the HSPs. In turn, 
HSPs protect the different cell components against stress, as 
they can prevent protein aggregation, maintain the membrane 
stability, inhibit certain steps of the apoptotic pathway, and 
decrease oxidative stress. Therefore it is not surprising, that 
the levels of HSPs can be increased in different diseases 
protecting tissues. While in other diseases, HSPs are under 
expressed, resulting in tissues vulnerable to stress and injury. 
Modulation of HSPs can open vast therapeutic opportunities 
to treat previously untreatable diseases. 
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