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Abstract. The goal of this paper is to study approximate controllability for control sys-
tems driven by abstract second order nonlinear evolution hemivariational inequalities in
Hilbert spaces. First, the concept of a mild solution of our problem is defined by using
the cosine operator theory and the generalized Clarke subdifferential. Next, the exis-
tence and the approximate controllability of mild solutions are formulated and proved
by means of the fixed points strategy. Finally, an example is provided to illustrate our
main results.
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1 Introduction

Let H be a separable Hilbert space and J = [0, b] be a real interval, where b > 0. The
purpose of this paper is to consider the solvability and approximate controllability of a system
governed by the following hemivariational inequality{

〈−x′′(t) + Ax(t) + Bu(t), v〉H + F0(t, x(t); v) ≥ 0, t ∈ J,

x(0) = x0, x′(0) = y0,
(1.1)

where A : D(A) ⊂ H → H is a closed, linear and densely defined operator which generates a
strongly continuous cosine family {C(t) | t ∈ J} on H. The notation F0(t, ·; ·) stands for the
generalized Clarke directional derivative (cf. [5]) of a locally Lipschitz function F(t, ·) : H → R,
u ∈ L2(J, U) is a control function, the admissible control set U is also a Hilbert space, and B
is a bounded linear operator from U into H.
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The variational inequalities in the elliptic and parabolic cases were introduced by Lions
and Stampacchia in [20], while the hyperbolic variational inequalities were introduced by
Lions in [14]. Many important physical applications were given in the monographs [8]
and [16], whose introductions contain many historical details, and a good survey is given
in the paper [17]. Concerning the control-theoretical aspects, we would also like to mention
the books [15] and [18,19], considered to be the most important references on control of linear
partial differential equations. They also contain numerous results closely related to the subject
of the present paper.

It is well known that many problems from mechanics (elasticity theory, semipermeability,
electrostatics, hydraulics, fluid flow), economics and so on can be modeled by subdifferential
inclusions or hemivariational inequalities, and we refer to [32] for more applications of hemi-
variational inequalities. Recently, the existence of solutions for hemivariational inequalities
has been proved by many authors. For instance, the authors of [12, 22] considered the prob-
lems with elliptic hemivariational inequalities, and in [4, 21, 27–30], the researchers discussed
the problems of parabolic hemivariational inequalities. However, to our knowledge, only a
few results on existence of solutions were obtained for hyperbolic hemivariational inequali-
ties, and this is one of our motivation for the study of such hemivariational inequality (1.1) in
the present work.

It is well know that the importance of the wave equation is not only because it is the most
relevant hyperbolic partial differential equation but also relies on the fact that it models a large
class of vibrating phenomena such as vibrations of elastic bodies and the sound propagation.
For example, let Ω ⊂ Rn and ∆ be the Laplace operator, the wave equation

∂2x/∂t2 − ∆x + f = 0 in Ω× (0, b),

(here x = x(t, θ) is the displacement function and f is an arbitrary external forcing func-
tion) provides a good application for the amplitude vibrations of an elastic string or a flexible
membrane occupying the region Ω under a force acting on the vibrating structure. In appli-
cations of mathematical methods to physics, one is often concerned with the study of more
complicated nonlinear wave equations such as the Klein–Gordon equation of the form

∂2x/∂t2 − ∆x + µ2x + η2x3 = 0,

where µ, η ∈ R. A large number of work has been devoted to the study of the Cauchy
problem for the nonlinear Klein–Gordon equation. One of the nonlinear equations of greatest
interest in the development of theoretical physics is the following

∂2x/∂t2 − ∆x + f (t, x, xt) = 0,

where f (t, x, xt) depends nonlinearly on x and xt and is, in a sense, close to a “monotone”
function. Equations of this type arise naturally in many contexts, for instance, in classical
mechanics, fluid dynamics, quantum field theory (cf. [37]) and have been extensively studied
in the last decade (cf. [10, 13, 37, 38, 40]). Motivated by the aforementioned contributions, we
are interested in the following model which is met in contact mechanics and can be described
by the Clarke subdifferential of a nonconvex function

∂2x/∂t2 − ∆x + F = 0 in Ω× (0, b). (1.2)

It is supposed that F is a known function of the external force of the form

− F(t, θ) ∈ ∂j(t, θ, x(t, θ)) a.e. (t, θ) ∈ (0, b)×Ω. (1.3)
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Here ∂j(t, θ, η) denotes the generalized gradient of Clarke (cf. [5]) with respect to the third
variable of a function j : (0, b)×Ω×R→ R which is assumed to be locally Lipschitz in η. The
multivalued function ∂j(t, θ, ·) : R→ 2R is generally nonmonotone and it includes the vertical
jumps. In a physicist’s language, it means that the law is characterized by the generalized
gradient of a nonsmooth potential j. The system (1.2), (1.3) can serve as a prototype of a
dynamic model of nonmonotone skin friction in plane elasticity. For a description of such
problems which include beams in adhesive contact, Kirchhoff plates, and other engineering
applications, we refer to [26, 31–33]. We underline that due to the lack of convexity of the
function j(t, θ, ·), the above problem cannot be formulated as a variational inequality. Its
variational formulation leads to a hyperbolic hemivariational inequality, a simple version of
the problem (1.1) with Ay = ∆y.

The first goal of our work is to study the existence of solutions for the system (1.1). Sec-
ondly, we are also curious about the fact whether or not the system (1.1) can get a good
behavior as desired under the proper action of the law of supply. That is, the main properties
of hyperbolic hemivariational inequalities such as time-reversibility and the lack of regulariz-
ing effects, have some very interesting and important consequences in control problems, too.
At present, optimal control problems for hemivariational inequalities have been examined
in a number of publications. In particular, we refer to Haslinger and Panagiotopoulos [11]
on the existence of optimal control pairs for a class of coercive hemivariational inequalities,
Migórski and Ochal [28] about the optimal control problems with the parabolic hemivaria-
tional inequalities, J. Park and S. Park [35] on the optimal control problems for the hyperbolic
linear systems, and to Tolstonogov [41, 42] about the optimal control problems for subdif-
ferential type differential inclusions. Very recently, Liu and Li [23] studied the approximate
controllability for a class of first order hemivariational inequalities. However, there is still
little information available on the approximate controllability of hyperbolic hemivariational
inequalities like (1.1). Therefore, it is worth to extend the main results of our previous paper
in [23] to the control system (1.1).

The paper is organized as follows. In Section 2 we recall the notation and some basic
definitions, and preliminary facts, we use throughout the paper. In Section 3, we are concerned
with the existence of mild solutions of the system (1.1). The approximate controllability of our
problems is analyzed in Section 4, while Section 5 is devoted to a concrete application of our
main results.

2 Preliminaries

For a Banach space E with the norm ‖ · ‖E, E∗ denotes its dual and 〈·, ·〉E the duality pairing
between E∗ and E. The symbol L(X, Y) denotes the space of bounded linear operators from a
Banach space X to a Banach space Y. C(J, E) is the Banach space of all continuous functions
from J = [0, b] into E equipped with the norm ‖x‖C(J,E) = supt∈J‖x(t)‖E and W1,2(J, E) =

{x | x, x′ ∈ L2(J, E)} denotes the Sobolev space with the norm ‖x‖W1,2(J,E) =
(
‖x‖2

L2(J,E)+

‖x′‖2
L2(J,E)

)1/2, where x′ stands for the generalized derivative of x, i.e.,∫
J

x′(t)φ(t) dt = −
∫

J
x(t)φ′(t) dt for all φ ∈ C∞

0 (J).

Let P(E) be the set of all nonempty subsets of E. We will use the following notation

Pcv(E) = {Ω ∈ P(E) | Ω is convex}, Pcp(E) = {Ω ∈ P(E) | Ω is compact}.
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Moreover, Br(0) and Br(0) denote, respectively, the open and the closed balls in a Banach
space E centered at origin and of radius r > 0.

The key tool in our main results is the following fixed point theorem stated in [7].

Theorem 2.1. Let A : Br(0)→ E and B : Br(0)→ Pcv,cp(E) be two operators such that

(a) A is a single-valued contraction with contraction constant k < 1
2 , and

(b) B u.s.c. and compact.

Then, either

(i) the operator inclusion x ∈ Ax + Bx has a solution in Br(0), or

(ii) there exist an element u ∈ E with ‖u‖ = r such that λu ∈ Au + Bu for some λ > 1.

Next, we recall some concepts of nonsmooth analysis (see [5] for more details). Let
j : E→ R be a locally Lipschitz function on a Banach space E. The Clarke generalized di-
rectional derivative j0(x; v) of j at the point x ∈ E in the direction v ∈ E is defined by

j0(x; v) = lim sup
λ→0+, ζ→x

j(ζ + λv)− j(ζ)
λ

.

The generalized gradient of j at x ∈ E is the subset of E∗ given by

∂j(x) = {x∗ ∈ E∗ | j0(x; v) ≥ 〈x∗, v〉 for all v ∈ E}.

In the sequel, we shall study the existence of mild solutions and approximate controllabil-
ity of the following second order evolution inclusion{

x′′(t) ∈ Ax(t) + Bu(t) + ∂F(t, x(t)) for t ∈ J,

x(0) = x0, x′(0) = y0,
(2.1)

where H is a separable Hilbert space, A : D(A) ⊂ H → H is a closed, linear and densely
defined operator which generates a strongly continuous cosine family {C(t) | t ∈ J} on H.
The notation ∂F stands for the generalized Clarke subdifferential (cf. [5]) of a locally Lipschitz
function F(t, ·) : H → R and B ∈ L(U, H). The control function u ∈ L2(J, U) where U is a
Hilbert space of admissible controls.

We remark that, by the definition of the generalized Clarke subdifferential, problem (2.1)
is equivalent to the hemivariational inequality (1.1){

〈−x′′(t) + Ax(t) + Bu(t), v〉H + F0(t, x(t); v) ≥ 0 for a.e. t ∈ J, and all v ∈ H,

x(0) = x0, x′(0) = y0.

Therefore, if we want to prove the solvability of the hemivariational inequality (1.1), we only
need to deal with the inclusion (2.1). Similarly to [23], we say that x ∈W1,2(J, H) is a solution
of (2.1), if there exists f ∈ L2(J, H) such that f (t) ∈ ∂F(t, x(t)) for a.e. t ∈ J and{

x′′(t) = Ax(t) + Bu(t) + f (t) for a.e. t ∈ J

x(0) = x0, x′(0) = y0.
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From now on, in order to obtain the solution to problem (2.1), let us consider the following
abstract second order initial value problem{

x′′(t) = Ax(t) + h(t) for a.e. t ∈ J

x(0) = x0, x′(0) = y0.

The following basic results concerning strongly continuous cosine operator can be found in
the books [1, 9] and in the papers [2, 34, 36, 39].

Definition 2.2. A strongly continuous operator C : R → L(H) is called a cosine operator, if
C(0) = I (identity operator) and

C(t + s) + C(t− s) = 2C(t)C(s) for all t, s ∈ R.

The linear operator A defined by

D(A) = {x ∈ H | C(t)x ∈ C2(R; H)}

and

Ax =
d2

dt2 C(t)x
∣∣∣
t=0

for x ∈ D(A)

is the generator of the strongly continuous cosine operator C, D(A) is the domain of A.

It is known that the generator A is a linear, closed, and densely defined operator on H.
Next, let C be a cosine operator on H with generator A. The sine operator S : R → L(H)

associated with the strongly continuous cosine operator C is defined by

S(t)x =
∫ t

0
C(s)x ds for all t ∈ R, x ∈ H.

In the sequel, we collect some further properties of a cosine operator C and its relations
with both the generator A and the associated sine operator S.

Proposition 2.3. The following assertions hold.

(i) There exist MA ≥ 1 and ω ≥ 0 such that ‖C(t)‖ ≤ MAeω|t| and ‖S(t)‖ ≤ MAeω|t|.

(ii) A
∫ r

s S(u)x du = (C(r)− C(s))x for all 0 ≤ s ≤ r < ∞.

(iii) There exists N ≥ 1 such that ‖S(s)− S(r)‖ ≤ N|
∫ r

s eω|s| ds| for all 0 ≤ s ≤ r < ∞.

The uniform boundedness principle, together with Proposition 2.3 (i), implies that C(t)
and S(t) are uniformly bounded on J by some positive constants MC and MS, respectively.

Now, from the argument above, we may introduce the following concept.

Definition 2.4. For each u ∈ L2(J, U), a function x ∈ C(J, H) is called a mild solution of the
system (2.1) if there exists f ∈ L2(J, H) such that f (t) ∈ ∂F(t, x(t)) for a.e. t ∈ J and

x(t) = C(t)x0 + S(t)y0 +
∫ t

0
S(t− s)(Bu(s) + f (s)) ds for all t ∈ J.

Throughout this paper, by a solution of system (2.1), we mean the mild solution.
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3 Existence of mild solutions

The purpose of this section is to state the existence of mild solutions for problem (2.1).
We list the following standing hypotheses of this paper.

H(F1) : the function x 7→ F(t, x) is locally Lipschitz for all t ∈ J,

H(F2) : the function t 7→ F(t, x) is measurable for all x ∈ H,

H(F3) : there exist a function k ∈ L2(J, R+) and a constant l > 0 such that

‖∂F(t, x)‖H = sup{‖ f ‖H | f ∈ ∂F(t, x)} ≤ k(t) + l‖x‖H a.e. t ∈ J, and all x ∈ H,

H(S) : the sine operator S(t) associated with the operator A is compact for all t ≥ 0.

Next, we define a multivalued operator N : L2(J, H)→ 2L2(J,H) by

N (x) = {w ∈ L2(J, H) | w(t) ∈ ∂F(t, x(t)) a.e. t ∈ J} for all x ∈ L2(J, H). (3.1)

From [31, Lemma 5.3], we know that the multifunction N has nonempty, convex and
weakly compact values for each x ∈ L2(J, H). Moreover, we have the following lemma.

Lemma 3.1 ([30, Lemma 11]). If H(F1)–H(F3) hold, then the operator N satisfies: if xn → x in
L2(J, H), wn → w weakly in L2(J, H) and wn ∈ N (xn), then w ∈ N (x).

In the sequel, for any x ∈ C(J, H) ⊂ L2(J, H), we can define a multivalued operator
B : C(J, H)→ 2C(J,H) as follows

B(x) =
{

ϕ ∈ C(J, H) | ϕ(t) =
∫ t

0
S(t− s) f (s) ds, f ∈ N (x)

}
. (3.2)

The following property of the multivalued operator B is an essential result for proving the
existence of mild solutions for system (2.1).

Lemma 3.2. For each u ∈ L2(J, U), under the hypotheses H(F1)–H(F3) and H(S), the multivalued
operator B : C(J, H)→ 2C(J,H) is completely continuous, u.s.c., and has compact and convex values.

Proof. Firstly, for all x ∈ C(J, H), the convexity of values of the operator B(x) is obvious by
the convexity of N (x). Next, for convenience, we divide the proof into two steps.

Step 1: We show that the multivalued operator B is completely continuous and has compact
values.

First, we show that the operator B is bounded, i.e., for all x ∈ Br(0) with r > 0, B(Br(0))
is bounded in C(J, H). In fact, for all x ∈ Br(0), ϕ ∈ B(x), by using H(F3) and the Hölder
inequality, we obtain, for all t ∈ J

‖ϕ(t)‖H ≤
∫ t

0
‖S(t− s) f (s)‖H ds ≤ MS

∫ t

0
(k(s) + l‖x(s)‖H) ds

≤ MS

(
‖k‖L2(J,R+)

√
b + lrb

)
.

Therefore, B(Br(0)) is a bounded subset in C(J, H).
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Next, we prove that {B(x) | x ∈ Br(0)} is equicontinuous. To this end, let 0 < τ1 < τ2 ≤ b
and δ > 0 be small enough. Then, we obtain

‖ϕ(τ2)− ϕ(τ1)‖H ≤
∫ τ1

0
‖[S(τ2 − s)− S(τ1 − s)] f (s)‖H ds +

∫ τ2

τ1

‖S(τ2 − s) f (s)‖H ds

≤
∫ τ1

0
‖S(τ2 − s)− S(τ1 − s)‖(k(s) + lr) ds + MS

∫ τ2

τ1

(k(s) + lr) ds

≤ sup
s∈[0,τ1−δ]

‖S(τ2 − s)− S(τ1 − s)‖
(
‖k‖L2(J,R+)

√
b + lrb

)
+ MS

(
‖k‖L2(J,R+)(2

√
δ +
√

τ2 − τ1) + lr(2δ + τ2 − τ1)
)

.

Since Proposition 2.3 (iii) implies the continuity of S(t) in the uniform operator topology, it
can be easily seen that the right-hand side of the above inequality is independent of x ∈ Br(0)
and tends to zero, as τ2 → τ1. Hence, we obtain that {B(x) | x ∈ Br(0)} is an equicontinuous
subset of C(J, H).

Finally, from the assumption H(S) and by the definition of a relatively compact set, it is
not difficult to check that {ϕ(t) | ϕ ∈ B(Br(0))} is relatively compact in H. Thus, by the
generalized Ascoli–Arzelà Theorem, we get that B is a multivalued compact map.

Step 2: The operator B has a closed graph.
Let xn ∈ C(J, H), yn ∈ B(xn) be such that xn → x and yn → y. We will prove that y ∈ B(x).

Thus yn ∈ B(xn) implies that there exists fn ∈ N (xn) such that for all t ∈ J, we have

yn(t) =
∫ t

0
S(t− s) fn(s) ds.

Define the linear continuous operator G : L2(J, H)→ C(J, H) by

(G f )(·) =
∫ ·

0
S(· − s) f (s) ds for f ∈ L2(J, H).

Since xn → x, it follows from Lemma 3.1 and the compactness of the operator (G f )(·) =∫ ·
0 S(· − s) f (s) ds that

y(t) =
∫ t

0
S(t− s) f (s) ds

for some f ∈ N (x), i.e., B has a closed graph. Therefore, since B takes compact values, by
Proposition 3.3.12(2) of [31], we know that B is u.s.c. The proof of the lemma is complete.

We are now in a position to obtain the main result of this section.

Theorem 3.3. For each u ∈ L2(J, U), if the hypotheses H(F1)–H(F3) and H(S) are satisfied, then the
system (2.1) has a mild solution on J.

Proof. It is clear that the multivalued map z : C(J, H)→ 2C(J,H) defined by

z(x) =
{

h ∈ C(J, H) | h(t) = C(t)x0 + S(t)y0 +
∫ t

0
S(t− s)( f (s) + Bu(s)) ds, f ∈ N (x)

}
has nonempty values, since N (x) 6= ∅. In view of the definition of z, the problem of finding
mild solutions of (2.1) is equivalent to obtaining fixed points of z. To prove this, we set
z = A+ B, where B is defined by (3.2) and A is given by

A(x) = C(t)x0 + S(t)y0 +
∫ t

0
S(t− s)Bu(s) ds for t ∈ J.
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According to Theorem 2.1, it is sufficient to show that there exists no element x ∈ C(J, H)

with ‖x‖ = r such that λx ∈ Ax + Bx for some λ > 1.
Indeed, let λx ∈ A(x) + B(x) with λ > 1, and suppose that there exists f ∈ N (x) such

that

λx(t) = C(t)x0 + S(t)y0 +
∫ t

0
S(t− s) f (s) ds +

∫ t

0
S(t− s)Bu(s) ds.

Then, by the assumptions, we obtain

‖x(t)‖H ≤ ‖C(t)x0‖H + ‖S(t)y0‖H +

∥∥∥∥∫ t

0
S(t− s) f (s) ds

∥∥∥∥
H
+

∥∥∥∥∫ t

0
S(t− s)Bu(s) ds

∥∥∥∥
H

≤ MC‖x0‖H + MS‖y0‖H + MS

∫ t

0
(k(s) + l‖x(s)‖H) ds + MS‖B‖

∫ t

0
‖u(s)‖U ds

≤ ρ + MSl
∫ t

0
‖x(s)‖H ds,

where
ρ = MC‖x0‖H + MS

(
‖y0‖H +

(
‖k‖L2(J,R+) + ‖B‖‖u‖L2(J,U)

)√
b
)
.

Applying the Gronwall inequality, from the last expression, we obtain

‖x(t)‖H ≤ ρeMS lt,

which implies
‖x‖C ≤ ρeMS lb =: r.

We set
Kr = {x ∈ C(J, H) | ‖x‖C < r + 1}.

Clearly, Kr is an open subset of C(J, H). As an immediate consequence of Lemma 3.2, B : Kr →
Pcv,cp(H) is u.s.c. and compact and it is not difficult to get that A : Kr → H is a single-valued
contraction with k < 1

2 . Furthermore, from the choice of Kr, there is no x ∈ C(J, H) with
‖x‖ = r such that λx ∈ Ax + Bx for some λ > 1.

Thus, by Theorem 2.1, we obtain that the operator inclusion x ∈ Ax + Bx has a solution
in Kr which is a mild solution of system (2.1). The proof of the theorem is complete.

4 Approximate controllability results

Controllability is one of the fundamental concepts in mathematical control theory. This is a
qualitative property of dynamical control systems and it is of particular importance in con-
trol theory. In recent years, controllability problems for various types of nonlinear dynamical
systems in infinite dimensional spaces by using different kinds of approaches have been con-
sidered in many publications, see [2,3,23–25,34,36] and the references therein. In this section,
we turn our attention to approximate controllability of second order evolution inclusion (2.1).
Following [6], we recall the following notions.

Definition 4.1.
(a) Control system (2.1) is said to be exactly controllable on J if, for all x0, x1 ∈ H, there

exists u ∈ L2(J, U) such that the mild solution to system (2.1) satisfies x(0; u) = x0 and
x(b; u) = x1.

(b) Control system (2.1) is approximately controllable on J if, for every x0, x1 ∈ H, and for
every ε > 0, there exists a control u ∈ L2(J, U) such that the mild solution x of the problem
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(2.1) satisfies x(0) = x0 and ‖x(b)− x1‖ < ε. Equivalently, we may say that the attainable set
of system (2.1) with the initial value x0 at the terminal time b, i.e., Kb(F) = {x(b) ∈ H | x(·) is
a mild solution of system (2.1) corresponding to u ∈ L2(J, U)} is dense in H.

In order to analyze the approximate controllability of problem (2.1), we shall consider the
linear system which is associated with (2.1), namely{

x′′(t) = Ax(t) + Bu(t) for t ∈ J,

x(0) = x0, x′(0) = y0.
(4.1)

The controllability map corresponding to the linear system (4.1) is defined by

Γb
0 =

∫ b

0
S(b− s)BB∗S∗(b− s) ds,

which is a nonnegative, bounded, and linear operator on H. Here B∗ denotes the adjoint of B
and S∗(t− s) is the adjoint of S(t− s). Therefore, the inverse of εI + Γb

0 exists, for any ε > 0,
so the resolvent

R(ε,−Γb
0) = (εI + Γb

0)
−1

is well defined. The resolvent is useful in the study of the controllability properties of system
(4.1). In this respect, we state a useful characterization of the approximate controllability for
(4.1) in terms of the resolvent.

Lemma 4.2 ([3, Theorem 2]). The linear system (4.1) is approximately controllable on J if and only
if εR(ε,−Γb

0)→ 0, as ε→ 0+ in the strong operator topology.

At this point, we develop our fixed point approach. For any x ∈ C(J, H) ⊂ L2(J, H), there
holds N (x) 6= ∅, where N is defined by (3.1). Hence, for every ε > 0, we can define the
multivalued map zε : C(J, H)→ 2C(J,H) as follows

zε(x) =
{

h ∈ C(J, H) | h(t) = C(t)x0 + S(t)y0 +
∫ t

0
S(t− s) ( f (s) + Buε(s)) ds, f ∈ N (x)

}
for x ∈ C(J, H), where

uε(t) = B∗S∗(b− t)R(ε, Γb
0)

(
x1 − C(b)x0 − S(b)y0 −

∫ b

0
S(b− s) f (s) ds

)
for t ∈ J.

Similarly, as in the proof of Theorem 3.3, we decompose zε in the following way

zε = Aε + Bε,

where

Aε(x) = C(t)x0 + S(t)y0 +
∫ t

0
S(t− s)BB∗S∗(b− s)R(ε, Γb

0)
(
x1 − C(b)x0 − S(b)y0

)
ds,

and

Bε(x) =
{

ϕ ∈ C(J, H)
∣∣∣ ϕ(t) =

∫ t

0
S(t− s)

(
f (s)− BB∗S∗(b− s)R(ε, Γb

0)

×
∫ b

0
S(b− τ) f (τ) dτ

)
ds, f ∈ N (x)

}
for x ∈ C(J, H). The following property of the multivalued operator Bε is an essential result
for obtaining the main results of this section.
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Lemma 4.3. Suppose that hypotheses H(S), H(F1) and H(F2) are satisfied. Moreover, we assume that

H(F4) : there exists a multivalued function G : J → 2H with weakly compact values which is square
integrable such that

∂F(t, x) ⊂ G(t) for a.e. t ∈ J, all x ∈ H.

Then for all ε > 0 the operator Bε : C(J, H) → 2C(J,H) is completely continuous, u.s.c., and has
compact and convex values.

Proof. The proof is similar to the one of Lemma 3.2 and for this reason we omit it here.

Theorem 4.4. Suppose all of the hypotheses of Lemma 4.3. Then for all ε > 0 the map zε has a fixed
point on J provided the system (4.1) is approximately controllable.

Proof. From the decomposition of zε, our problem is reduced to find the solutions of the
operator inclusion x ∈ Aεx +Bεx. According to Theorem 2.1, it is sufficient to show that there
is no element x ∈ C(J, H) with ‖x‖ = R such that λx ∈ Aεx + Bεx for some λ > 1.

Indeed, let λx ∈ Aεx + Bεx with λ > 1, and assume that there exists f ∈ N (x) such that

λx(t) = C(t)x0 + S(t)y0 +
∫ t

0
S(t− s) ( f (s) + Buε(s)) ds,

where

uε(t) = B∗U∗(b, t)R(ε, Γb
0)

(
x1 − C(b)x0 − S(b)y0 −

∫ b

0
S(b− s) f (s) ds

)
for t ∈ J.

From the assumption H(F4), we know that there exists g ∈ L2(J, R+) such that ‖∂F(t, x)‖H =

sup{‖ f ‖H | f ∈ ∂F(t, x)} ≤ g(t) for a.e. t ∈ J. Then, we obtain

‖x(t)‖H ≤ ‖C(t)x0‖H + ‖S(t)y0‖H +

∥∥∥∥∫ t

0
S(t− s) f (s) ds

∥∥∥∥
H
+

∥∥∥∥∫ t

0
S(t− s)Buε(s) ds

∥∥∥∥
H

≤ MC‖x0‖H + MS‖y0‖H + MS

∫ t

0
g(s) ds

+
∫ t

0

M2
S‖B‖2

ε

(
‖x1‖H + MC‖x0‖H + MS‖y0‖H + MS

∫ b

0
g(τ) dτ

)
ds

≤
(

1 +
M2

S‖B‖2b
ε

)
$ +

M2
S‖B‖2b

ε
‖x1‖H =: R,

where $ = MC‖x0‖H + MS

(
‖y0‖H + ‖g‖L2(J,R+)

√
b
)

. We set

KR = {x ∈ C(J, H) | ‖x‖C < R + 1} .

Clearly, KR is an open subset of C(J, H). As an immediate consequence of Lemma 4.3,
Bε : KR → Pcv,cp(H) is u.s.c. and compact and it is also easy to see that Aε : KR → H is a
single-valued contraction with contraction constant k < 1

2 . Moreover, by the choice of KR,
there is no x ∈ C(J, H) with ‖x‖ = R such that λx ∈ Aεx + Bεx for some λ > 1.

Thus, by Theorem 2.1, the operator inclusion x ∈ Aεx + Bεx has a solution in KR which is
also a fixed point of zε on J. The proof is complete.



Approximate controllability for second order hemivariational inequalities 11

From now on, with the aforementioned theorems in mind, we deliver the second main
result of this paper.

Theorem 4.5. Assume the hypotheses of Lemma 4.3. Then system (2.1) is approximately controllable
on J if the system (4.1) is approximately controllable on J.

Proof. From Theorem 4.4, we know that the operator zε has a fixed point in C(J, H) for all
ε > 0. Let xε be a fixed point of zε in C(J, H). It is easy to see that any fixed point of zε is a
mild solution of (2.1) for control uε. Therefore, there exists f ε ∈ N (xε) such that

xε(t) ∈ C(t)x0 + S(t)y0 +
∫ t

0
S(t− s)

(
f ε(s) + BB∗S∗(b− s)

× R(ε, Γb
0)

(
x1 − C(b)x0 − S(b)y0 −

∫ b

0
S(b− τ) f ε(τ)dτ

))
ds.

Now, denote

G( f ε) = x1 − C(b)x0 − S(b)y0 −
∫ b

0
S(b− τ) f ε(τ)dτ.

Then, by the property I − Γb
0R(ε, Γb

0) = εR(ε, Γb
0), we obtain

xε(b) = x1 − εR(ε, Γb
0)G( f ε).

This fact, combined with hypothesis H(F4) and the Dunford–Pettis Theorem, guarantees that
the set { f ε(·)} is weakly compact in L2(J, H). Thus, there is a subsequence, still denoted by
{ f ε(·)} that converges weakly in L2(J, H) to f (·). We set

Q = x1 − C(b)x0 − S(b)y0 −
∫ b

0
S(b− τ) f (τ) dτ.

It is easy to see that

‖G( f ε)−Q‖ ≤
∥∥∥∥∫ b

0
S(b− τ) ( f ε(τ)− f (τ)) dτ

∥∥∥∥ ≤ ∫ b

0
‖S(b− τ) ( f ε(τ)− f (τ)) ‖ dτ → 0,

as ε→ 0+ due to the compactness of the operator

f 7→
∫ ·

0
S(· − τ) f (τ) dτ : L2(J, H)→ C(J, H).

Moreover, from the last inequality, we get

‖xε(b)− x1‖ = ‖εR(ε, Γb
0)G( f ε)‖

≤ ‖εR(ε, Γb
0)(Q)‖+ ‖εR(ε, Γb

0) (G( f ε)−Q) ‖
≤ ‖εR(ε, Γb

0)(Q)‖+ ‖G( f ε)−Q‖ → 0, as ε→ 0+,

which implies that system (2.1) is approximately controllable on J. The proof is complete.
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5 An example

In this section we provide an example which illustrates the abstract results of this paper.
We consider a controlled system modeled by an evolution partial differential equation. The
system is described by the classical wave equation involving a multivalued subdifferential
term.

Let Ω be a bounded open subset of Rn with boundary ∂Ω of class C2. The system reads
as follows 

ytt = ∆y + u + f , (x, t) ∈ Ω× (0, b)

y(t, x) = 0, (x, t) ∈ ∂Ω× [0, b]

y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ Ω,

(5.1)

where f is a known multivalued function of y of the form

− f (x, t) ∈ ∂F(x, t, y(x, t)) a.e. (x, t) ∈ Ω× (0, b). (5.2)

Here ∂F(x, t, ξ) denotes the Clarke’s generalized gradient with respect to the last variable of
a function F : Ω × (0, b) ×R → R which is assumed to be locally Lipschitz in ξ. The mul-
tivalued function ∂F(x, t, ·) : R → 2R is generally nonmonotone and it includes the vertical
jumps. Dynamic problems modeled by (5.1) and (5.2) arise in the theory of contact mechanics
for elastic bodies in many engineering applications. In such problems, the set Ω represents
a plane deformable purely elastic body which remains in contact with another medium in-
troducing frictional effects. In the framework of small deformations, the body is subjected to
nonmonotone friction skin effects (skin friction, adhesion, etc.), f is the reaction force of the
constraint introducing the skin effect (e.g. due to the gluing material), y is the displacement
field, and u is interpreted as the given external loading (a control variable). The condition
(5.2) describes a possibly multivalued reaction-displacement law. Since the function F(x, t, ·)
is not convex in general, the relation (5.2) models the interior nonmonotone contact condition
which provides a realistic description of friction and adhesive laws. More details on modeling
and applications can be found in [26, 31–33] and references therein.

In our example, we denote

H = L2(Ω), D(A) = H2(Ω) ∩ H1
0(Ω), Ay = ∆y.

Let moreover A = i(−A)1/2. It is known that A generates a C0-group of operators eAt on H.
The strongly continuous operator-valued function

C(t) =
1
2

(
eAt + e−At

)
for t ∈ R,

is called the cosine operator generated by A. It is convenient to introduce the operators

S(t) =
A−1

2

(
eAt − e−At

)
for t ∈ R.

The operator S(t) is called the sine operator associated with C(t). For more properties of the
operators C(t) and S(t), we refer to [34].

Next, we consider the function F : (0, b)× H → R be given by

F(t, y) =
∫ b

0
j(x, t, y(x)) dx for a.e. t ∈ (0, b), all y ∈ H,
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where
j(x, t, z) =

∫ z

0
φ(x, t, θ) dθ for (x, t) ∈ Ω× (0, b), z ∈ R.

We admit the following assumptions. The function φ : Ω× (0, b)×R→ R is such that

(i) for all x ∈ Ω, z ∈ R, φ(·, x, z) : (0, b)→ R is measurable,

(ii) for all t ∈ (0, b), z ∈ R, φ(t, ·, z) : Ω→ R is continuous,

(iii) for all z ∈ R, there exists a constant c1 > 0 such that |φ(·, ·, z)| ≤ c1(1 + |z|),

(iv) for every z ∈ R, φ(·, ·, z± 0) exists.

If φ satisfies condition (iii), then we have ∂j(z) ⊂ [φ(z), φ(z)] for z ∈ R (we omit (x, t)
here), where φ(z) and φ(z) denote the essential supremum and essential infimum of φ at z
(see [5, p. 34]).

If φ satisfies conditions (i)–(iv), then the function j defined above is such that

(i) for all x ∈ Ω, z ∈ R, j(·, x, z) is measurable and j(·, ·, 0) ∈ L2(Ω× (0, b)),

(ii) for all t ∈ (0, b), z ∈ R, j(t, ·, z) : Ω→ R is continuous,

(iii) for all (x, t) ∈ Ω× (0, b), j(x, t, ·) : R→ R is locally Lipschitz,

(iv) there exists a constant c2 > 0 such that

|η| ≤ c2(1 + |z|) for all η ∈ ∂j(x, t, z), (x, t) ∈ Ω× (0, b),

(v) there exists a constant c3 > 0 such that

j0(x, t, z;−z) ≤ c3(1 + |z|) for all (x, t) ∈ Ω× (0, b).

Thus, combining (5.1) with (5.2), we arrive to problem (1.1). Finally, it is known (see [43],
p. 358) that the linear system corresponding to (5.1) is approximately controllable on J = [0, b].
Therefore, all the hypotheses of Theorem 4.5 are satisfied, and the system (5.1) is approxi-
mately controllable on J.
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