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Abstract. In this paper, we study existence of solutions to a Cauchy problem for non-
linear ordinary differential equations involving two Caputo fractional derivatives. The
existence and uniqueness of solutions are obtained by using monotonicity, continuity
and explicit estimation of Mittag-Leffler functions via fixed point theorems. Further, we
present Ulam–Hyers stability results by using direct analysis methods. Finally, exam-
ples are given to illustrate our theoretical results.
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1 Introduction

In the past decades, fractional differential equations have been proved to be valuable tools
to describe nonlinear oscillations of earthquakes, seepage flow in porous media and fluid
dynamic traffic model. There are many monographs on this interesting topic [3, 9, 13, 16, 17,
19, 23, 26, 27, 33] and a large amount of papers on quality analysis for nonlocal problems,
impulsive problems, Ulam–Hyers stability and stable manifolds problems as well as control
problems [1, 2, 4–8, 10, 14, 15, 20–22, 25, 28–30, 32, 34]) and the references therein.

In [17, Chapter 5], Kilbas et al. studied the solvability of a Cauchy problem for nonlin-
ear ordinary differential equations involving two Caputo fractional derivatives of the type:
cDα

t x(t)− λcDβ
t x(t) = f (t), where λ ∈ R, cDα

t and cDβ
t denote the Caputo fractional deriva-

tives of order α, β with the lower limit zero, respectively (see Definition 2.1). Further, Wang
and Li [30] discussed Eα-Ulam–Hyers stability of fractional differential equations of the type:
cDα

t x(t) = λx(t) + f (t, x(t)) on finite time interval via the properties of Mittag-Leffler func-
tions Eα(z) := ∑∞

k=0
zk

Γ(kα+1) and Eα,α(z) := ∑∞
k=0

zk

Γ(αk+α)
for z ≤ 0 (see [29, Lemma 2]) and a

singular Gronwall type integral inequality (see [31, Theorem 1]). Very recently, Cong et al. [6]
explored some asymptotic behavior on Eα(z) and Eα,α(z) for z > 0 by using [11, Theorem 2.3],
which inspired the reader to study further estimation and asymptotic behavior on Eα,β(z).
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However, the development of existence and Ulam’s type stability theory for nonlinear or-
dinary differential equations involving two Caputo fractional derivatives is still in its infancy.
One of the reasons for this fact might be that asymptotic property of Eα,β(z) have not been
explored completely.

Motivated by [6,17,30], we consider the following Cauchy problem for nonlinear differen-
tial equations involving two Caputo fractional derivatives:{

cDα
t x(t)− λcDβ

t x(t) = f (t, x(t)), 0 < β < α ≤ 1, t ∈ J := [0, 1],

x(0) = x0, x0 ∈ R,
(1.1)

where λ ∈ R \ {0}, f : J ×R → R is a continuous function. By [17, p. 324, (5.3.75)–(5.3.76)],
the solution x ∈ C(J, R) of (1.1) is given by

x(t) =
[

Eα−β(λtα−β)− λtα−βEα−β,α−β+1(λtα−β)

]
x0

+
∫ t

0
(t− s)α−1Eα−β,α(λ(t− s)α−β) f (s, x(s)) ds,

(1.2)

with the two parameter Mittag-Leffler function Eα,β(z) := ∑∞
k=0

zk

Γ(αk+β)
.

Before we deal with existence of solutions and Ulam–Hyers stability, the key step is to dis-
cuss the elementary properties of Mittag-Leffler functions. By virtue of integrable expansion
of Mittag-Leffler functions in [6], we give monotonicity, continuity and explicit estimation of
Mittag-Leffler functions Eα(z) and Eα,β(z) for z > 0 and z < 0, which extend the previous
results in [29, Lemma 2] and [6, Lemma 3].

The first purpose of this paper is to discuss existence of solutions to the equation (1.1) by
using fixed point theorems. The second purpose of this paper is to present that the equation
(1.1) is Ulam–Hyers stable on the time interval J. When we discuss existence theorems and
Ulam-Hyers stability theorems, the new derived properties of Mittag-Leffler functions Eα(z)
and Eα,β(z) for z > 0 and z < 0 are widely used in this paper. Meanwhile, these properties
will help the researcher to study other fractional ODEs with constant coefficients.

The rest of this paper is organized as follows. In Section 2, we recall some notations and
give some useful properties of the two-parameter Mittag-Leffler function. In Section 3, we
apply fixed point theorems to derive the existence of solutions. In Section 4, Ulam–Hyers sta-
bility theorems are presented. Examples are given in Section 5 to demonstrate the application
of our main results.

2 Preliminaries

Let C(J, R) be the Banach space of all continuous functions from J into R with the norm
‖z‖∞ = sup {|z(t)| : t ∈ J}.
Definition 2.1 ([17]). The Caputo derivative of order γ for a function f : [0, ∞) → R can be
written as

cDγ
t f (t) = LDγ

t

(
f (t)−

n−1

∑
k=0

tk

k!
f (k)(0)

)
, t > 0, n− 1 < γ < n,

where LDγ
t f denotes the Riemann–Liouville derivative of order γ with the lower limit zero for

a function f , which given by

LDγ
t f (t) =

1
Γ(n− γ)

dn

dtn

∫ t

0

f (s)
(t− s)γ+1−n ds, t > 0, n− 1 < γ < n.
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We recall the famous integrable expansion of two differential parameters Mittag-Leffler
function.

Lemma 2.2 (see [11, Theorem 2.3]). Let α ∈ (0, 1], β ∈ R and β < 1 + α be arbitrary. Then the
following statements hold.

(i) For all z > 0, we have

Eα,β(z) =
1
α

z
1−β

α exp(z
1
α ) +

∫ ∞

0
K(r, z) dr,

where

K(r, z) =
1

πα
r

1−β
α exp(−r

1
α )

r sin(π(1− β))− z sin(π(1− β + α))

r2 − 2rz cos(πα) + z2 .

(ii) For all z < 0, we have

Eα,β(z) =
∫ ∞

0
K(r, z) dr.

For more details on expression on the Mittag-Leffler functions, one can see [12].
Next, we need monotonicity and continuity results for Mittag-Leffler functions.

Lemma 2.3 ([24, Lemma 2.3]). Let α ∈ (0, 1], β ∈ R and β < 1 + α be arbitrary. The functions
Eα(·) and Eα,β(·) are nonnegative and have the following properties.

(i) For all λ > 0 and t1, t2 ∈ J and t1 ≤ t2,

Eα(tα
1λ) ≤ Eα(tα

2λ), Eα,β(tα
1λ) ≤ Eα,β(tα

2λ).

(ii) For all λ > 0 and t1, t2 ∈ J,

Eα(tα
1λ)→ Eα(tα

2λ) as t1 → t2,

Eα,β(tα
1λ)→ Eα,β(tα

2λ) as t1 → t2.

Remark 2.4. The symmetrical results for Eα(z) and Eα,β(z) for z ≤ 0 have been reported by
Wang et al. [29, Lemma 2].

Next, we give explicit estimation of Mittag-Leffler functions Eα(z) and Eα,β(z) for z > 0,
which extend the previous results in [6, Lemma 3].

Lemma 2.5. Let λ > 0 be arbitrary. For any α ∈ (0, 1], β ∈ R and β < 1 + α. We define

m(α, β, λ) = max{m1(α, β, λ), m2(α, β, λ)},

where

m1(α, β, λ) =

∣∣ sin(πβ)
∣∣ ∫ ∞

0 r
1−β+α

α exp(−r
1
α ) dr

sin2(πα)παλ2
,

m2(α, β, λ) =

∣∣ sin(π(β− α))
∣∣ ∫ ∞

0 r
1−β

α exp(−r
1
α ) dr

sin2(πα)παλ
.
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(i) For all t > 0, we have∣∣∣∣tβ−1Eα,β(λtα)− 1
α

λ
1−β

α exp(λ
1
α t)
∣∣∣∣ ≤ m1(α, β, λ)

t2α−β+1 +
m2(α, β, λ)

tα−β+1

≤ m(α, β, λ)

(
1

t2α−β+1 +
1

tα−β+1

)
.

In particular, ∣∣∣∣Eα(λtα)− 1
α

exp(λ
1
α t)
∣∣∣∣ ≤ m(α, 1, λ)

tα
.

(ii) For all t > 0, we have∣∣∣∣tβ−1Eα,β(−λtα)

∣∣∣∣ ≤ m1(α, β, λ)

t2α−β+1 +
m2(α, β, λ)

tα−β+1

≤ m(α, β, λ)

(
1

t2α−β+1 +
1

tα−β+1

)
.

In particular, ∣∣∣∣Eα(−λtα)

∣∣∣∣ ≤ m(α, 1, λ)

tα
.

Proof. (i) By virtue of Lemma 2.2 (i), we have∣∣∣∣tβ−1Eα,β(λtα)− 1
α

λ
1−β

α exp(λ
1
α t)
∣∣∣∣

=

∣∣∣∣tβ−1
∫ ∞

0

1
πα

r
1−β

α exp(−r
1
α )

r sin(π(1− β))− (λtα) sin(π(1− β + α))

r2 − 2r(λtα) cos(πα) + (λtα)2 dr
∣∣∣∣.

It follows the fact
r2 − 2r(λtα) cos(πα) + (λtα)2 ≥ sin2(πα)λ2t2α,

we obtain∣∣∣∣tβ−1Eα,β(λtα)− 1
α

λ
1−β

α exp(λ
1
α t)
∣∣∣∣

≤
∣∣∣∣ tβ−1

πα sin2(πα)λ2t2α

∫ ∞

0
r

1−β
α exp(−r

1
α )(r sin(βπ)− λtα sin(π(β− α))) dr

∣∣∣∣
≤ 1

t2α−β+1

∣∣ sin(πβ)
∣∣ ∫ ∞

0 r
1−β+α

α exp(−r
1
α ) dr

sin2(πα)παλ2

+
1

tα−β+1

∣∣ sin(π(β− α))
∣∣ ∫ ∞

0 r
1−β

α exp(−r
1
α ) dr

sin2(πα)παλ

=
m1(α, β, λ)

t2α−β+1 +
m2(α, β, λ)

tα−β+1

≤ m(α, β, λ)

(
1

t2α−β+1 +
1

tα−β+1

)
,

which proves the part (i).
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In particular, ∣∣∣∣Eα(λtα)− 1
α

exp(λ
1
α t)
∣∣∣∣ ≤ m2(α, 1, λ)

tα
≤ m(α, 1, λ)

tα
.

(ii) By virtue of Lemma 2.2 (ii) for the case z < 0, we obtain that∣∣∣∣tβ−1Eα,β(−λtα)

∣∣∣∣
≤
∣∣∣∣ tβ−1

πα sin2(πα)λ2t2α

∫ ∞

0
r

1−β
α exp(−r

1
α )(r sin(βπ) + λtα sin(π(β− α))) dr

∣∣∣∣
≤ 1

t2α−β+1

∣∣ sin(πβ)
∣∣ ∫ ∞

0 r
1−β+α

α exp(−r
1
α ) dr

sin2(πα)παλ2

+
1

tα−β+1

∣∣ sin(π(β− α))
∣∣ ∫ ∞

0 r
1−β

α exp(−r
1
α ) dr

sin2(πα)παλ

=
m1(α, β, λ)

t2α−β+1 +
m2(α, β, λ)

tα−β+1

≤ m(α, β, λ)

(
1

t2α−β+1 +
1

tα−β+1

)
.

In particular, ∣∣∣∣Eα(−λtα)

∣∣∣∣ ≤ m2(α, 1, λ)

tα
≤ m(α, 1, λ)

tα
.

The proof is completed.

To end this section, we recall the famous Krasnoselskii–Zabreiko fixed point theorem.

Lemma 2.6 ([18]). Let (X, ‖ · ‖) be a Banach space, and K : X → X be a completely continuous
operator. Assume that L : X → X is a bounded linear operator such that 1 is not an eigenvalue of L
and

lim
‖x‖→∞

‖Kx− Lx‖
‖x‖ = 0.

Then K has a fixed point in X.

3 Existence results

3.1 Case of λ > 0

We introduce the following assumptions:

(H1) f : J ×R→ R is continuous.

(H2) There exists a constant L > 0 such that

| f (t, x)− f (t, y)| ≤ L|x− y|, for each t ∈ J, and all x, y ∈ R.

(H3) Let 0 < Lρ < 1 where

ρ =

(
(3β− α)m(α− β, α, λ)

β(2β− α)
+

1
α− β

λ
−α

α−β exp
(
λ

1
α−β
))

> 0

and α < 2β, and m(α− β, α, λ) is defined in (2.5).
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Define M = max{| f (t, 0)| : t ∈ J} and Br = {x ∈ C(J, R) : ‖x‖∞ ≤ r}, where

r ≥
ρM + Eα−β(λ)|x0|+ λEα−β,α−β+1(λ)|x0|

1− Lρ
. (3.1)

Theorem 3.1. Assume that (H1)–(H3) are satisfied. Then the equation (1.1) has a unique solution.

Proof. Define an operator Q : Br → C(J, R) by

(Qx)(t) =
[

Eα−β(λtα−β)− λtα−βEα−β,α−β+1(λtα−β)

]
x0

+
∫ t

0
(t− s)α−1Eα−β,α(λ(t− s)α−β) f (s, x(s)) ds.

(3.2)

Note that Q is well defined on C(J, R) due to (H1).
Step 1. We prove that Q(Br) ⊂ Br.
Now, take t ∈ J and x ∈ Br. By using (H2) via Lemma 2.3 and Lemma 2.5 (i), we obtain

|(Qx)(t)|

≤
∣∣∣∣[Eα−β(λtα−β)− λtα−βEα−β,α−β+1(λtα−β)

]
x0

∣∣∣∣
+

∣∣∣∣∫ t

0
(t− s)α−1Eα−β,α(λ(t− s)α−β) f (s, x(s)) ds

∣∣∣∣
≤
∫ t

0

∣∣∣(t− s)α−1Eα−β,α(λ(t− s)α−β) f (s, x(s))
∣∣∣ ds + Eα−β(λ)|x0|+ λEα−β,α−β+1(λ)|x0|

≤
[ ∫ t

0

∣∣(t− s)α−1Eα−β,α(λ(t− s)α−β)− 1
α− β

λ
1−α
α−β exp(λ

1
α−β (t− s))

∣∣
×
∣∣ f (s, x(s))− f (s, 0) + f (s, 0)

∣∣ ds

+
∫ t

0

1
α− β

λ
1−α
α−β exp(λ

1
α−β (t− s))

∣∣ f (s, x(s))− f (s, 0) + f (s, 0)
∣∣ ds
]

+Eα−β(λ)|x0|+ λEα−β,α−β+1(λ)|x0|

≤
[ ∫ t

0
m(α− β, α, λ)

(
1

(t− s)α−2β+1 +
1

(t− s)−β+1

)
[| f (s, x(s))− f (s, 0)|+ | f (s, 0)|] ds

+
∫ t

0

1
α− β

λ
1−α
α−β exp(λ

1
α−β (t− s))[| f (s, x(s))− f (s, 0)|+ | f (s, 0)|] ds

]
+Eα−β(λ)|x0|+ λEα−β,α−β+1(λ)|x0|

≤ ρ[L‖x‖∞ + M] + Eα−β(λ)|x0|+ λEα−β,α−β+1(λ)|x0|
≤ ρ[Lr + M] + Eα−β(λ)|x0|+ λEα−β,α−β+1(λ)|x0|
≤ r.

Step 2. We check that Q is a contraction mapping.
For x, y ∈ Br and for each t ∈ J, by using Lemma 2.3 and Lemma 2.5 (i), we obtain

|(Qx)(t)− (Qy)(t)|

≤
∫ t

0

∣∣(t− s)α−1Eα−β,α(λ(t− s)α−β)
∣∣∣∣ f (s, x(s))− f (s, y(s))

∣∣ ds
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≤ L
∫ t

0

∣∣(t− s)α−1Eα−β,α(λ(t− s)α−β)
∣∣ ds‖x− y‖∞

≤ L
[ ∫ t

0

∣∣(t− s)α−1Eα−β,α(λ(t− s)α−β)− 1
α− β

λ
1−α
α−β exp(λ

1
α−β (t− s))

∣∣ ds

+
∫ t

0

1
α− β

λ
1−α
α−β exp(λ

1
α−β (t− s)) ds

]
‖x− y‖∞

≤ Lρ‖x− y‖∞,

which implies that ‖Qx−Qy‖∞ ≤ Lρ‖x− y‖∞.
From (H3), one can obtain the conclusion of theorem by the contraction mapping principle.

The proof is completed.

Next, we apply Krasnoselskii’s fixed point theorem to derive the existence result.

(H4) There exists a nondecreasing function v ∈ C([0, ∞), R+) such that | f (t, x)| ≤ v(‖x‖∞)

for all (t, x) ∈ J ×R and 0 < ρ lim
r→∞

inf v(r)
r < 1.

Theorem 3.2. Assume that (H1) and (H4) are satisfied. Then the equation (1.1) has at least one
solution.

Proof. For some r′ > 0, define two operators G and H on Br′ given by

(Gx)(t) =
∫ t

0
(t− s)α−1Eα−β,α(λ(t− s)α−β) f (s, x(s))ds,

(Hx)(t) =
[

Eα−β(λtα−β)− λtα−βEα−β,α−β+1(λtα−β)

]
x0.

We show that (G + H)(Br′) ⊂ Br′ . If it is not true, then for each r′ > 0, there would exist
xr′ ∈ Br′ and tr′ ∈ J such that |(Gxr′)(tr′) + (Hxr′)(tr′)| > r′. By repeating the same process of
Step 1 of Theorem 3.1, we have

r′ < |(Gxr′)(tr′) + (Hxr′)(tr′)|

≤ Eα−β(λ)|x0|+ λEα−β,α−β+1(λ)|x0|+
∫ t

0

∣∣(t− s)α−1Eα−β,α(λ(t− s)α−β)
∣∣v(r′)ds

≤ Eα−β(λ)|x0|+ λEα−β,α−β+1(λ)|x0|+ ρv(r′)

Dividing both sides by r′ and taking the lower limit as r′ → +∞, we obtain 1 ≤ ρ lim
r′→∞

inf v(r′)
r′ ,

which contradicts with (H4). Thus, for some positive number r′, (G + H)(Br′) ⊂ Br′ .
We observe that H is a contraction with the constant zero and the continuity of f implies

that the operator G is continuous. Moreover, G is uniformly bounded on Br′ . Now we need
to prove the compactness of the operator G. Define fmax = sup{| f (t, x)| : t ∈ J, x ∈ Br′}. For
any t2 < t1, by using Lemma 2.3 (ii), we have

|(Gx)(t2)− (Gx)(t1)|

≤
∣∣∣∣ ∫ t2

0

[
(t2 − s)α−1 − (t1 − s)α−1]Eα−β,α(λ(t2 − s)α−β) f (s, x(s)) ds

∣∣∣∣
+

∣∣∣∣ ∫ t2

0
(t1 − s)α−1[Eα−β,α(λ(t2 − s)α−β)−Eα−β,α(λ(t1 − s)α−β)

]
f (s, x(s)) ds

∣∣∣∣
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+

∣∣∣∣ ∫ t1

t2

(t1 − s)α−1Eα−β,α(λ(t1 − s)α−β) f (s, x(s)) ds
∣∣∣∣

≤ Eα−β,α(λ) fmax

∣∣∣∣ ∫ t2

0

[
(t2 − s)α−1 − (t1 − s)α−1] ds

∣∣∣∣
+ fmax

∫ t2

0
(t2 − s)α−1∣∣Eα−β,α(λ(t2 − s)α−β)−Eα−β,α(λ(t1 − s)α−β)

∣∣ ds

+Eα−β,α(λ) fmax

∣∣∣∣ ∫ t1

t2

(t1 − s)α−1 ds
∣∣∣∣

≤ 3(t1 − t2)α

α
Eα−β,α(λ) fmax +

fmaxtα
2

α
O(|t1 − t2|),

which tends to zero as t2 → t1.
This yields that G is equicontinuous. So G is relatively compact. Hence, G is compact. At

last, we can conclude that G + H is a condensing map on Br′ . By using the Krasnoselskii fixed
point theorem, the problem has at least one solution. The proof is completed.

Next, we apply the Krasnoselskii–Zabreiko fixed point theorem to derive the existence
result.

(H5) The function f (t, 0) 6= 0 for some t ∈ J and

lim
‖x‖∞→∞

f (t, x)
x

= k(t).

(H6) ksup := supt∈J |k(t)| <
1
ρ .

Theorem 3.3. Assume that (H1), (H5) and (H6) are satisfied. Then the equation (1.1) has at least
one solution.

Proof. Choose r ≥ ρ fmax + Eα−β(λ)|x0|+ λEα−β,α−β+1(λ)|x0|. Then we consider the operator
Q defined in (3.1) again. By repeating the similar computations of Theorems 3.1 and 4.4,
we know that the operator Q : Br → Br is continuous and Q(x) is uniformly bounded and
equicontinuous for all x ∈ Br. Consequently Q is relatively compact.

Next we consider the problem (1.2) as a linear problem by setting f (t, x(t)) = k(t)x(t).
Define the operator L : Br → Br by

(Lx)(t) =
[
Eα−β(λtα−β)− λtα−βEα−β,α−β+1(λtα−β)

]
x0

+
∫ t

0
(t− s)α−1Eα−β,α(λ(t− s)α−β)k(s)x(s) ds.

Now, we claim that

sup
t∈J
|Lx(t)| ≤ ksup ρ‖x‖∞ + [Eα−β(λ) + λEα−β,α−β+1(λ)]|x0| < ‖x‖∞. (3.3)

If not, one can derive the fact

ksup ρ = lim
‖x‖∞→∞

ksup ρ‖x‖∞ + [Eα−β(λ) + λEα−β,α−β+1(λ)]|x0|
‖x‖∞

≥ 1,

which contradicts with (H6). Therefore, (3.3) implies that 1 is not an eigenvalue of the opera-
tor L.
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Finally we will show that ‖Qx−Lx‖∞
‖x‖∞

vanishes as ‖x‖∞ → ∞. In fact,

|(Qx)(t)− (Lx)(t)| =
∣∣∣∣ ∫ t

0
(t− s)α−1Eα−β,α(λ(t− s)α−β) f (s, x(s)) ds

−
∫ t

0
(t− s)α−1Eα−β,α(λ(t− s)α−β)k(s)x(s) ds

∣∣∣∣
≤
∫ t

0
(t− s)α−1Eα−β,α(λ(t− s)α−β)

∣∣∣∣ f (s, x(s))
x(s)

− k(s)
∣∣∣∣ ds‖x‖∞.

This means that

‖Qx− Lx‖∞

‖x‖∞
≤
∫ t

0
(t− s)α−1Eα−β,α(λ(t− s)α−β)

∣∣∣∣ f (s, x(s))
x(s)

− k(s)
∣∣∣∣ ds.

Then, we can get

lim
‖x‖∞→∞

‖Qx− Lx‖∞

‖x‖∞
= 0

due to (H5).
Consequently, the proof is completed by virtue of Lemma 2.6.

3.2 Symmetrical results for λ < 0

In this section, we give symmetrical existence results for Section 3.

(H7) 0 < L$ < 1 where $ = (3β−α)m(α−β,α,−λ)
β(2β−α)

> 0 and α < 2β and m(α− β, α,−λ) is defined
in (2.5), L is defined in (H2).

Recall the above definition of M and Br, where

r ≥
$M + |x0| − λ

Γ(α−β+1) |x0|
1− L$

. (3.4)

Now we are ready to give the following result.

Theorem 3.4. Assume that (H1), (H2), (H7) are satisfied. Then the equation (1.1) has a unique
solution.

Proof. Like in Theorem 3.1, consider Q : Br → C(J, R) again, where r is chosen in (3.4). We
prove that Q(Br) ⊂ Br. Now, take t ∈ J and x ∈ Br. By using (H2) via Lemma 2.5 (ii), we
obtain

|(Qx)(t)| ≤
∫ t

0
m(α− β, α,−λ)

(
1

(t− s)α−2β+1 +
1

(t− s)−β+1

)
[L|x(s)|+ | f (s, 0)|] ds

+ |x0| −
λ

Γ(α− β + 1)
|x0|

≤ $[L‖x‖∞ + M] + |x0| −
λ

Γ(α− β + 1)
|x0|

≤ $[Lr + M] + |x0| −
λ

Γ(α− β + 1)
|x0|

≤ r.
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We check that Q is a contraction mapping. For x, y ∈ Br and for each t ∈ J. By using
Lemma 2.5 (ii), we obtain

|(Qx)(t)− (Qy)(t)| ≤ L
∫ t

0
m(α− β, α,−λ)

(
1

(t− s)α−2β+1 +
1

(t− s)−β+1

)
ds‖x− y‖∞

≤ L$‖x− y‖∞,

which implies that ‖Qx−Qy‖∞ ≤ L$‖x− y‖∞.
By (H7) and the contraction mapping principle, one can complete the proof.

(H8) There exists a nondecreasing function v ∈ C([0, ∞), R+) such that | f (t, x)| ≤ v(‖x‖∞)

for all (t, x) ∈ J ×R and 0 < $ lim
r→∞

inf v(r)
r < 1.

Theorem 3.5. Assume that (H1) and (H8) are satisfied. Then the equation (1.1) has at least one
solution.

Proof. We consider the operators G and H in Theorem 3.2 again. We use proof by contradiction
to show that (G + H)(Br′) ⊂ Br′ for some positive number r′. By repeating the same process of
Step 1 of Theorem 3.4, we have r′ < |(Gxr′)(tr′) + (Hxr′)(tr′)| ≤ |x0| − λ

Γ(α−β+1) |x0|+ $v(r′),

which implies that 1 ≤ $ lim
r′→∞

inf v(r′)
r′ , contradicts (H8). To prove the compactness of the

operator G, we only need to check equicontinuity, for any t2 < t1, by using Remark 2.4
([29, Lemma 2 (ii)]), we have |(Gx)(t2)− (Gx)(t1)| ≤ 3(t1−t2)

α

Γ(α+1) fmax +
fmaxtα

2
α O(|t1 − t2|), which

tends to zero as t2 → t1.
The rest of the proof is the same as that of Theorem 3.2. So we omit it here.

(H9) ksup := supt∈J |k(t)| <
1
$ , where k(t) defined in (H5).

Theorem 3.6. Assume that (H1), (H5) and (H9) are satisfied. Then the equation (1.1) has at least
one solution.

Proof. Choose r ≥ $ fmax + |x0| − λ
Γ(α−β+1) |x0|. Similar to the proof of Theorem 3.3, one can

obtain the result.

4 Ulam–Hyers stability results

4.1 Case of λ > 0

In this part, we will discuss Ulam–Hyers stability of the equation (1.1) for the case λ > 0 on
the time interval J.

Let ε > 0. Consider the equation (1.1) and below inequality

|cDα
t y(t)− λcDβ

t y(t)− f (t, y(t))| ≤ ε, t ∈ J. (4.1)

Definition 4.1. The equation (1.1) is Ulam–Hyers stable if there exists c > 0 such that for
each ε > 0 and for each solution y ∈ C(J, R) of the inequality (4.1) there exists a solution
x ∈ C(J, R) of the equation (1.1) with

|y(t)− x(t)| ≤ cε, t ∈ J.



Existence and Ulam–Hyers stability of ODEs 11

Remark 4.2. A function y ∈ C(J, R) is a solution of the inequality (4.1) if and only if there
exists a function g ∈ C(J, R) (which depend on y) such that (i) |g(t)| ≤ ε, t ∈ J, (ii) cDα

t y(t)−
λcDβ

t y(t) = f (t, y(t)) + g(t), t ∈ J.

Indeed, by Remark 4.2, the solution of the equation

cDα
t y(t)− λcDβ

t y(t) = f (t, y(t)) + g(t), t ∈ J

can be formulated by

y(t) =
[
Eα−β(λtα−β)− λtα−βEα−β,α−β+1(λtα−β)

]
y(0)

+
∫ t

0
(t− s)α−1Eα−β,α(λ(t− s)α−β) f (s, y(s)) ds

+
∫ t

0
(t− s)α−1Eα−β,α(λ(t− s)α−β)g(s) ds, t ∈ J.

Then we have the following estimation.

Remark 4.3. Let y ∈ C(J, R) be a solution of the inequality (4.1). Then y is a solution of the
following integral inequality∣∣∣∣y(t)− [Eα−β(λtα−β)− λtα−βEα−β,α−β+1(λtα−β)

]
y(0)

−
∫ t

0
(t− s)α−1Eα−β,α(λ(t− s)α−β) f (s, y(s)) ds

∣∣∣∣
=

∣∣∣∣ ∫ t

0
(t− s)α−1Eα−β,α(λ(t− s)α−β)g(s) ds

∣∣∣∣
≤
∫ t

0

∣∣(t− s)α−1Eα−β,α(λ(t− s)α−β)
∣∣∣∣g(s)∣∣ ds

≤ ε
∫ t

0

∣∣(t− s)α−1Eα−β,α(λ(t− s)α−β)
∣∣ ds

≤ ερ, t ∈ J, (4.2)

where we use Remark 4.2, Lemma 2.5 (i) and the fact∫ t

0

∣∣(t− s)α−1Eα−β,α(λ(t− s)α−β)
∣∣ ds ≤ ρ;

ρ is defined in (H3).

Now we are ready to state our Ulam–Hyers stability result.

Theorem 4.4. Assume that (H1), (H2) and (H3) are satisfied. Then the equation (1.1) is Ulam–Hyers
stable on J.

Proof. Let y ∈ C(J, R) be a solution of the inequality (4.1). Denote by x the unique solution of
the Cauchy problem {

cDα
t x(t)− λcDβ

t x(t) = f (t, x(t)), t ∈ J,

x(0) = y(0),
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that is,

x(t) =
[
Eα−β(λtα−β)− λtα−βEα−β,α−β+1(λtα−β)

]
y(0)

+
∫ t

0
(t− s)α−1Eα−β,α(λ(t− s)α−β) f (s, x(s)) ds.

By using Lemma 2.5 (i) and (4.2), we have

|y(t)− x(t)| ≤
∣∣∣∣y(t)− [Eα−β(λtα−β)− λtα−βEα−β,α−β+1(λtα−β)

]
y(0)

−
∫ t

0
(t− s)α−1Eα−β,α(λ(t− s)α−β) f (s, x(s)) ds

∣∣∣∣
≤
∣∣∣∣y(t)− [Eα−β(λtα−β)− λtα−βEα−β,α−β+1(λtα−β)

]
y(0)

−
∫ t

0
(t− s)α−1Eα−β,α(λ(t− s)α−β) f (s, y(s)) ds

∣∣∣∣
+

∣∣∣∣ ∫ t

0
(t− s)α−1Eα−β,α(λ(t− s)α−β)( f (s, y(s))− f (s, x(s))) ds

∣∣∣∣
≤ ερ + L

∫ t

0

∣∣(t− s)α−1Eα−β,α(λ(t− s)α−β)
∣∣ ds‖x− y‖∞

≤ ερ + Lρ‖x− y‖∞,

which yields that
‖x− y‖∞ ≤ ερ + Lρ‖x− y‖∞.

Thus,
(1− Lρ)‖x− y‖∞ ≤ ερ.

As a result,
|y(t)− x(t)| ≤ ερ

1− Lρ
, t ∈ J.

The proof is completed.

4.2 Symmetrical results for λ < 0

Next, we apply the same method to investigate Ulam–Hyers stability of the equation (1.1) for
the case λ < 0 on the time interval J.

By Remark 4.2 and Lemma 2.5 (ii), one can give a similar result according to Remark 4.3.

Remark 4.5. Let y ∈ C(J, R) be a solution of the inequality (4.1). Then y is a solution of the
following integral inequality∣∣∣∣y(t)− [Eα−β(λtα−β)− λtα−βEα−β,α−β+1(λtα−β)

]
y(0)

−
∫ t

0
(t− s)α−1Eα−β,α(λ(t− s)α−β) f (s, y(s)) ds

∣∣∣∣
≤ εm(α− β, α,−λ)

∫ t

0

(
1

(t− s)α−2β+1 +
1

(t− s)−β+1

)
ds

≤ ε$, t ∈ J, (4.3)

where $ is defined in (H7).
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Next, we give our second Ulam–Hyers stability result.

Theorem 4.6. Assume that (H1), (H2) and (H7) are satisfied. Then the equation (1.1) is Ulam–Hyers
stable on J.

Proof. The process is very similar to the proof of Theorem 4.4. So we only present the main
difference in the computation. By using Lemma 2.5 (ii) and (4.3), we have

|y(t)− x(t)| ≤ ε$ + L
∫ t

0

∣∣(t− s)α−1Eα−β,α(λ(t− s)α−β)
∣∣ ds‖x− y‖∞

≤ ε$ + L$‖x− y‖∞.

This yields that

|y(t)− x(t)| ≤ ε$

1− L$
, t ∈ J.

The proof is completed.

5 Examples

In this section, examples are given to illustrate our theoretical results.

Example 5.1. Let α = 1
2 , β = 1

3 and λ = 1. We consider{
cD

1
2
t x(t)− cD

1
3
t x(t) = x(t)+1

t2+c , t ∈ [0, 1], c > 0,

x(0) = 0.
(5.1)

Define f (t, x(t)) = x(t)+1
t2+c for t ∈ [0, 1]. Set M = L = 1

c . Further, we choose c = 18m( 1
6 , 1

2 , 1) +
12 exp(1), where

m
( 1

6 , 1
2 , 1
)
= max

{
4
π Γ( 5

6 ),
2
√

3
π Γ( 2

3 )
}

.

Now Lρ = L
(
9m( 1

6 , 1
2 , 1) + 6 exp(1)

)
= 1

2 < 1. Then (H1)–(H3) are satisfied.
By Theorem 3.1, the equation (5.1) has a unique solution.

Example 5.2. Let α = 1
2 , β = 1

3 and λ = 1. We considercD
1
2
t x(t)−c D

1
3
t x(t) = arctan |x(t)|

1+|x(t)| , t ∈ [0, 1],

x(0) = 0.
(5.2)

Define f (t, x(t)) = arctan |x(t)|
1+|x(t)| for t ∈ [0, 1]. Then, (H1) holds and | f (t, x(t))| ≤ 1. Moreover,

ρ lim
r→∞

inf
1
r
=
(
9m( 1

6 , 1
2 , 1) + 6 exp(1)

)
lim
r→∞

inf
1
r
= 0 < 1,

where
m( 1

6 , 1
2 , 1) = max

{
4
π Γ( 5

6 ),
2
√

3
π Γ( 2

3 )
}

,

which implies (H4) holds.
By Theorem 3.2, the equation (5.2) has at least one solution.
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Example 5.3. Let α = 1
2 , β = 1

3 and λ = 1. We considercD
1
2
t x(t)− cD

1
3
t x(t) = |x(t)|

(t+1)2+c , t ∈ [0, 1], c > 0,

x(0) = 0.
(5.3)

Define f (t, x(t)) = |x(t)|
(t+1)2+c for t ∈ [0, 1]. Then, (H1) holds and lim‖x‖∞→∞

f (t,x)
x = 1

(t+1)2+c :=

k(t). Set ksup = 1
c . Further, we choose c = 18m( 1

6 , 1
2 , 1) + 12 exp(1), where

m( 1
6 , 1

2 , 1) = max
{

4
π Γ( 5

6 ),
2
√

3
π Γ( 2

3 )
}

.

Then, ksupρ = ksup
(
9m( 1

6 , 1
2 , 1) + 6 exp(1)

)
= 1

2 < 1. Now (H5)–(H6) are satisfied.
By Theorem 3.3, the equation (5.3) has at least one solution.

Example 5.4. Let α = 1
2 , β = 1

3 and λ = 1. We consider

cD
1
2
t x(t)−c D

1
3
t x(t) =

1
l

sin x(t), t ∈ [0, 1], l > 0, (5.4)

and the inequality ∣∣∣∣cD
1
2
t y(t)−c D

1
3
t y(t)− 1

l
sin y(t)

∣∣∣∣ ≤ ε, t ∈ [0, 1]. (5.5)

Let y ∈ C([0, 1], R) be a solution of the inequality (5.5). Then there exists a function
g(t) = εet−1 ∈ C([0, 1], R) such that |g(t)| ≤ ε, t ∈ [0, 1], and

cD
1
2
t y(t)−c D

1
3
t y(t) =

1
l

sin y(t) + g(t), t ∈ [0, 1].

Define f (t, x(t)) = 1
l sin x(t) for t ∈ [0, 1] and set L = 1

l . Then (H1) and (H2) hold. More-
over, we choose l = 18m( 1

6 , 1
2 , 1) + 12 exp(1), where

m( 1
6 , 1

2 , 1) = max
{

4
π Γ( 5

6 ),
2
√

3
π Γ( 2

3 )
}

.

Then
0 < 1− 1

l

(
9m( 1

6 , 1
2 , 1) + 6 exp(1)

)
= 1

2 < 1,

which implies that (H3) holds.
By Theorem 4.4, we have

|y(t)− x(t)| ≤ 2
(
9m( 1

6 , 1
2 , 1) + 6 exp(1)

)
ε, t ∈ [0, 1].

Thus, the equation (5.4) is Ulam–Hyers stable on [0, 1] with c = 2
(
9m( 1

6 , 1
2 , 1) + 6 exp(1)

)
.
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