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Abstract. On infinitesimally short time intervals various processes contributing to pop-

ulation change tend to operate independently so that we can simply add their contri-
butions (Metz and Diekmann, The dynamics of physiologically structured populations,

1986, p. 3). This is one of the cornerstones for differential equations modeling in gen-

eral. Complicated models for processes interacting in a complex manner may be built
up, and not only in population dynamics. The principle holds as long as the various

contributions are taken into account exactly. In this paper we discuss commonly used
approximations that may lead to non-removable dependency terms potentially affect-

ing the long run qualitative behavior of the involved equations. We prove that these

terms do not produce such effects in the simplest and most interesting biological case,
but the general case is left open.

Our main result is a rather complete analysis of an important limiting case. Once com-

plete knowledge of the qualitative properties of simple models is obtained, it greatly
facilitates further studies of more complex models. A consequence of our analysis is

that standard methods can be applied. However, the application of those methods is
far from straightforward and require non-trivial estimates in order to make them valid

for all values of the parameters. We focus on making these proofs as elementary as

possible.
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1 Introduction

A number of ecological phenomena can be studied under chemostat conditions, cf. Smith

and Waltman [39, p. xi]. For instance, a lake ecology may have rivers transferring a limiting

resource to the lake and rivers diluting this resource. A phenomenological model containing
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such a situation is given by

ṡ = CD − Ds −
axs

1 + abs
,

ẋ =
maxs

1 + abs
− Dx −

Axy
1 + ABx

,

ẏ =
AMxy

1 + ABx
− Dy.

(1.1)

Here s > 0 is the substrate, x > 0 is the prey having the substrate s as its limiting resource

and y > 0 is a predator feeding on the prey x. The parameters C > 0, D > 0, a > 0, b > 0,

m > 0, A > 0, B > 0, and M > 0 stand for concentration, dilution rate, search rate for the prey,

handling time for the prey (cf. Holling [18]), conversion factor for the prey, search rate for the

predator, handling time for the predator and conversion factor for the predator, respectively.

A logistic approximation is often made when studying (1.1) and related systems, cf. Kooi,

Boer, and Kooijman [23] and references therein. More precisely, consider the function

H(s, x, y) = ms + x +
y
M

− mC.

It satisfies Ḣ = −DH meaning that the surface H = 0 is asymptotically invariant for (1.1). A

study of the system on this surface allows for reducing it to a planar predator-prey system as

follows

ẋ =
ax(mC − x −

y
M )

1 + ab
m (mC − x −

y
M )

− Dx −
Axy

1 + ABx

ẏ =
AMxy

1 + ABx
− Dy

(1.2)

Such reductions can be made rigorously under certain conditions, see Smith and Waltman

[39, Appendix F]. See also Thieme [41] for a nice example describing how such reductions

may break down. If b 6= 0, then the growth function of (1.2) is non-logistic and given by

h(x) =
ax(mC − x)

1 + ab
m (mC − x)

− Dx

=
(m

b
− D

)

x +
m2

ab2
−

m2

ab2 (1 + abC)
ab
m

( m
ab + mC − x

) (1.3)

in the absence of predators. The second equality of (1.3) explicitly clarifies its vertical and

oblique asymptotes, respectively. The growth function is concave down at the left-hand side

of its vertical asymptote. Therefore, it is unimodal (has one local maximum) on the interval



0,
amC

(

1 − D
m/b

)

− D

a(1 − D
m/b )





provided

D <
amC

1 + abC
<

m
b

.

The last inequality is identically true. Thus, no qualitative differences can occur in the single

species case when doing logistic approximations. The above expressions should be compared
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to the corresponding expressions in the logistic case. When b → 0 the function is unimodal

on [0, (amC − D)/a] when D < amC. The growth rate and carrying capacity parameters are

thus, given by r = amC − D and K = (amC − D)/a, respectively, cf. Fitzsimmons, Schoustra,

Kerr, and Kassen [8], and are strongly related.

Equivalents of the predator-prey system (1.2) have been studied in Smith and Waltman

[39, Sections 3.2–3.6] and Kuang [25]. The results were that local stability implies global

stability and that uniqueness of limit cycles was proved for a certain range of parameters.

However, it is still not known whether the limit cycle is unique for all parameters of the

system.

If the handling time for the prey is small b ≈ 0, the denominator in the first term of the

first equation in (1.2) vanishes and a logistic approximation is often made for the growth rate

of the prey feeding on the substrate. We get

ẋ = ax(mC − x)− Dx −
axy
M

−
Axy

1 + ABx
,

ẏ =
AMxy

1 + ABx
− Dy.

(1.4)

In this context, the system

ẋ = ax(mC − x)− Dx −
Axy

1 + ABx
,

ẏ =
AMxy

1 + ABx
− Dy.

(1.5)

has often been used as an approximation of the system (1.4). Note that the coupling term
axy
M is set to zero in this procedure, too. This is entirely in concordance with well-established

principles in differential equation modeling. As soon as logistic growth is accepted for the

prey-population x, then one is expected to add the contributions of the predation process to

the resulting equations. The equations (1.5) contain the result of such a procedure. The long-

run qualitative dynamical properties including possibilities for limit cycle bifurcations of (1.5)

are well-known trough a number of well-established results (cf. Cheng, Hsu, and Lin [3], Liou

and Cheng [32] and Kuang and Freedman [26]). The objective of this paper is to elucidate

the influence of the above coupling term on those results. The numerical part of the work by

Kooi, Boer, and Kooijman [23] reported differences in fixed point bifurcations for still longer

food-chains as consequences of similar simplifications.

The methods used in this paper are the Lyapunov functions introduced by Ardito and

Ricciardi [1] and LaSalle’s [28] theorem, cf. Hale [14, p. 317], Hirsch, Smale, and Devaney

[17, p. 199], and Wiggins [42, Section 8.3]. We use the Kuang and Freedman [26] version of

Zhang’s [46] theorem (see also Cherkas and Zhilevich [4]) for proving uniqueness of limit

cycles. The result is that the qualitative properties of the bifurcation diagram are robust with

respect to the coupling term mentioned above.

However, it is not straightforward to do the estimates required for application of these

methods in particular cases. We have therefore limited the presentation here to the simplest

and most interesting case (logistic growth combined with Holling [18] specialist predator

functional response). In the presentation of the proofs we have focused on finishing the

relevant inequalities to the best forms whereas chains of equalities that involve extensive but

elementary algebra have been given low priority. Our impression is that equalities are more

straightforward to check than inequalities.
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2 Reparametrization

We begin our study of the qualitative differences between the systems (1.5) and (1.4) by

reparametrizing the systems in order to eliminate some of the parameters involved (cf. Keener

[22]). We put

ξ =
a

amC − D
x,

η =
A

amC − D
y,

τ = (amC − D)t,

ǫ =
a

MA
,

β =
AB
a

(amC − D),

µ =
A
a
(M − BD),

λ =
Da

A(amC − D)(M − BD)
,

and the system under consideration takes the form

ξ̇ = ξ(1 − ξ)− ǫξη −
ξη

1 + βξ
,

η̇ = ηµ
ξ − λ

1 + βξ
.

(2.1)

The known system (1.5) corresponds to (2.1) with ǫ = 0 and seven parameters have been

reduced to four. We assume in the rest of the paper that all parameters and variables are

non-negative. Non-negative variables can be assumed, since by uniqueness of solutions, no

solutions can intersect the solutions at ξ = 0 and η = 0. The parameters C and D were those

used as bifurcation parameters in Kooi, Boer, and Kooijman [23].

3 Isocline form and equilibria

Most of the theorems and results regarding the system (2.1) are formulated for its isocline

form

ξ̇ = f (ξ)(F(ξ) − η),

η̇ = ηψ(ξ),
(3.1)

ξ, η ≥ 0. The involved functions are required to meet some conditions. We specify them as

follows:

(A-I) f , ψ, and F are C1([0, ∞)),

(A-II) f (0) = 0, f (ξ) > 0 for ξ > 0,

(A-III) (ξ − 1)F(ξ) < 0 for ξ 6= 1,

(A-IV) (ξ − λ)ψ(ξ) > 0, ξ 6= λ > 0.
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Condition (A-I) grants the local existence and uniqueness of solutions. In fact, only Lipschitz

conditions are needed for this conclusion. However, we may need continuous derivatives

of higher orders for some results below. These conditions are valid anyway for the specific

system (2.1). Indeed, for (2.1), we have

f (ξ) = ǫξ +
ξ

1 + βξ
,

F(ξ) =
(1 + βξ)(1 − ξ)

1 + ǫ + ǫβξ
,

ψ(ξ) = µ
ξ − λ

1 + βξ
.

(3.2)

These functions meet the conditions (A-I)–(A-IV) above. We first have

Theorem 3.1. Assume (A-I)–(A-IV). The solutions of (3.1) remain positive and bounded.

Proof. By uniqueness of solutions, the solutions of (3.1) cannot intersect the solutions at η = 0

and ξ = 0. Therefore, the solutions remain positive. For boundedness, note first that all

solutions enter the region 0 < ξ < 1 by (A-II)–(A-III) and that we have η̇ < 0 for 0 < ξ < λ by

(A-IV). Next consider the function (cf. Lindström) [30])

V(ξ, η) =
∫ ξ

λ

dξ∗
f (ξ∗)

+
∫ η

F(λ)

dη∗
η∗

.

The last integral diverges as η → ∞. Therefore, all level curves of this function intersect the

line ξ = λ. The derivative along the solutions of (3.1) for the above function is

V̇ = F(ξ)− η + ψ(ξ).

Since F(ξ) + ψ(ξ) is bounded on λ < ξ < 1, this quantity is negative for η large enough. That

is, select κ such that V̇ < 0 for V(ξ, η) > κ and we have a trapping region ensuring bounded

solutions according to Figure 5.1(a).

Remark 3.2. Because all positive solutions enter the region 0 < ξ < 1 by the above argument, we
usually check the conditions of the theorems alluded to below in that interval.

We make a summary of the local bifurcation results.

Theorem 3.3. Assume (A-I)–(A-IV). If λ ≥ 1, the system (3.1) has two equilibria, the origin and
(1, 0). The origin is a saddle and (1, 0) is globally asymptotically stable. If 0 < λ < 1, the system
(3.1) has three equilibria, the origin, (1, 0), and (λ, F(λ)). The first two are saddles and the last one is
asymptotically stable when F′(λ) < 0 and unstable when F′(λ) > 0.

Proof. Existence and number of equilibria follow from (A-II)–(A-IV). The Jacobian matrix of

(3.1) takes the form

J(ξ, η) =

(

f ′(ξ)F(ξ) + f (ξ)F′(ξ)− η f ′(ξ) − f (ξ)
ηψ′(ξ) ψ(ξ)

)

meaning that the Jacobian matrices evaluated at the first two equilibria take diagonal or tri-

angular forms. Figure 5.1(b) demonstrates the techniques used for proving global asymptotic

stability in the case λ ≥ 1. The stability properties of the last equilibrium follows from the

trace-determinant criterion, see e.g. Hirsch, Smale, and Devaney [17, Section 4.1] or Strang

[40, p. 270–271].
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The stability properties of the last equilibrium are usually referred to as the Rosenzweig–

MacArthur [38] criterion. It shows that the properties of F′ are important. Returning to (3.2),

this function can be written in two forms

F′(ξ) =
β − 1 − ǫ − 2βξ − 2βǫξ − β2ǫξ2

(1 + ǫ + ǫβξ)2
=

−(ξ − ξ+)(ξ − ξ−)

ǫ
(

ξ − ξ++ξ−
2

)2
, (3.3)

where the latter one makes use of the zeroes

ξ± =
−1 − ǫ ±

√

1 + ǫ + βǫ

βǫ

of the numerator. We note that ξ− < 0. Moreover, ξ+ is a strictly increasing function of β

that takes the value zero when β = 1 + ǫ. Thus, the numerator of (3.3) has a positive zero if

β > 1 + ǫ, otherwise not.

Theorem 3.3 implies that λ can be used as a bifurcation parameter and λ ≥ 1 implies (1, 0)

locally stable, max(0, ξ+) < λ ≤ 1 implies (λ, F(λ)) to be locally stable, and

0 < λ < ξ+ (3.4)

implies that all equilibria are unstable. Standard analysis gives now that

ξ+ < lim
ǫ→0

ξ+ =
β − 1

2β
<

1

2
.

This relates our results to (2.1) with ǫ = 0. The coupling term in the system (2.1) therefore

stabilizes the system locally. If the term containing ǫ > 0 is present, then λ must be smaller

in order to ensure possibilities for all non-negative equilibria to be unstable. The local bifur-

cation routes are qualitatively the same (as λ decreases, possible destabilization occurs), only

quantitative differences occur (the parameter λ must be still smaller to ensure destabilization

to take place as ǫ > 0). This phenomenon is usually called the “Paradox of enrichment” in the

biological literature, cf. Rosenzweig [37]. We conclude this section by proving the following

lemma.

Lemma 3.4. Assume (A-I)–(A-IV) and 0 < λ < 1. All solutions of (3.1) starting in the positive
quadrant must have some part of the cross-section ξ = λ and 0 < η ≤ F(λ) in its ω-limit set.

Proof. By Theorem 3.1 all solutions remain bounded and positive. The unstable manifold of

(1,0) can therefore not intersect the stable manifold of itself or the origin. The Butler–McGehee

theorem (Smith and Waltman [39, Section 1.3]) implies that no ω-limit set can contain (1,0)

or the origin. By the Poincaré–Bendixson theorem the ω-limit set is either the fixed point

(λ, F(λ)) or a limit cycle that must surround (λ, F(λ)) by index theory, see e.g. Jordan and

Smith [21, Chapter 3] or Dumortier, Llibre, and Artés [7, Chapter 6]. In both cases, trajectories

starting in the positive cone have some part of the ray ξ = λ, 0 < η ≤ F(λ) in their limit

set.

4 Global stability

We now continue with global stability. Our results follow from the results in Smith and

Waltman [39, Section 3.5] in a limiting case but our method is different (and simpler) anyway.
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For θ ≥ 0, we introduce the range of Lyapunov functions

Wθ(ξ, η) = ηθ
∫ ξ

λ

ψ(ξ∗)

f (ξ∗)
dξ∗ +

∫ η

F(λ)
ηθ
∗

η∗ − F(λ)
η∗

dη∗ (4.1)

see Ardito and Ricciardi [1] and Lindström [31]. We introduce

F̄θ(ξ) = F(λ)− θ

∫ ξ

λ

ψ(ξ∗)

f (ξ∗)
dξ∗

and deduce that the total derivative of Wθ along the solutions of (3.1) is given by

Ẇθ = ηθψ(ξ)(F(ξ) − F̄θ(ξ)).

Therefore, the sign condition

(F(ξ)− F̄θ(ξ)) (ξ − λ) > 0, ξ 6= λ (4.2)

implies that LaSalle’s [28] invariance principle can be applied. We also note that Wθ is a first

integral of

ξ̇ = f (ξ) (F̄θ(ξ)− η)

η̇ = ηψ(ξ)
(4.3)

and that (4.3) is a rotation of the vector field (3.1) if (4.2), ξ, η > 0, cf. Ye et al. [44, Chapter 3].

The sign condition (4.2) means basically that the prey-isoclines of the systems (3.1) and (4.3)

are compared to each other. For θ = 0, all solutions (4.3) in the positive quadrant are closed

orbits, and hence the level curves of (4.1), see Figure 5.1(c). For θ > 0, (4.3) has non-closed

solutions in the positive cone. However, all solutions intersecting the ray ξ = λ, 0 < η ≤

F(λ) are closed orbits. See Figure 5.1(d) and cf. Lemma 3.4. We point out that this was not

mentioned in the original paper by Ardito and Ricciardi [1].

If F(ξ)− F̄θ(ξ) decreases, then the sign-condition (4.2) is clearly satisfied. We differentiate

and obtain the requirement (cmp. e.g. (3.2) and (3.3))

F′(ξ)− F̄′
θ(ξ) = F′(ξ) + θ

ψ(ξ)

f (ξ)

=
−(ξ − ξ+)(ξ − ξ−)

ǫ
(

ξ − ξ++ξ−
2

)2
+

θµ(ξ − λ)

ǫβξ
(

ξ − ξ++ξ−
2

) < 0,

0 < ξ < 1. If β > 1 + ǫ, we can choose θµ = 2ξ+β > 0 and the above inequality is equivalent

to

− ξ3 + (3ξ+ + ξ−)ξ
2 + (−2ξ+ξ− − ξ2

+ − 2ξ+λ)ξ + ξ+λ(ξ+ + ξ−)

= 2ξ+(ξ+ − λ)

(

ξ −
ξ+ + ξ−

2

)

− (ξ − ξ+)
2 (ξ − (ξ− + ξ+)) < 0,

on 0 < ξ < 1. It is straightforward to check the equality above and it can be derived using a

Taylor expansion around ξ = ξ+. The inequality holds since λ ≥ ξ+ and

ξ+ + ξ− <
ξ+ + ξ−

2
< 0 < ξ < 1.

We can thus, formulate the following theorem.
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Theorem 4.1. Consider (3.1) with (3.2). If either

(a) ξ+ ≤ 0 < λ or

(b) 0 < ξ+ ≤ λ

then (min(λ, 1), max(0, F(λ))) is globally asymptotically stable in the cone ξ > 0, η > 0.

Proof. The case λ ≥ 1 has been treated in Theorem 3.3. Assume therefore, 0 < λ < 1. Put

θ = max(0, 2ξ+β/µ) ≥ 0 in (4.1). If β ≤ 1 + ǫ, then F is decreasing on [0, 1] and the choice

θ = 0 is sufficient. All level curves of (4.1) are closed in the positive quadrant, see Figure 5.1(c),

and global stability follows from LaSalle’s [28] invariance principle. If β > 1 + ǫ then we use

θ = 2ξ+β/µ > 0 in (4.1). All level curves of (4.1) in the positive quadrant are not closed,

see Figure 5.1(d), but all non-negative trajectories of (3.1) with (3.2) will have some part of

the cross-section ξ = λ and 0 < η ≤ F(λ) in their limit set by Lemma 3.4. If the limit set

is (λ, F(λ)) we are done, and if not, the trajectory enters a closed level curve of (4.1). Global

stability follows by LaSalle’s invariance principle again.

5 Uniqueness of limit cycles

If F′(λ) > 0, then there exists at least one limit cycle for (3.1) with (A-I)–(A-IV) due to the

Poincaré–Bendixson theorem and Theorem 3.1. If ǫ = 0, then this limit cycle is unique by

Theorem 4.3 in Kuang and Freedman [26] for (3.1) with (3.2). The theorem basically shows

that Zhang’s [46] theorem for Liénard equations can be applied to the predator–prey sys-

tem (3.1) after a sequence of coordinate transformations. The conditions are stronger than

(A-I)–(A-IV) in order to validate the coordinate transformations and uniqueness. Alternative

methods for obtaining reminiscent conditions are given by Cheng [2], Liou and Cheng [33],

and Ding [6].

Other methods for proving uniqueness of limit cycles for Liénard systems have since then

been made available through various coordinate transformations, including Sansone’s method

(Xiao and Zhang [43]). A nice survey on how to choose between various methods was given

by Hasík [15]. However, the lack of examples carried out carefully in this paper demon-

strates a clear difficulty. Although a large variety of methods exist, all of them tend to lead

to formidable algebraic estimations when checking the essential criteria as they are applied to

important special cases of biological relevance. This holds especially as one tries to verify the

conditions for all possible parameter values. In our case the essential condition is verifying

constant sign of a quartic polynomial for all possible values of the three involved parame-

ters. We encountered a similar problem already when proving global stability, but then the

polynomial was cubic.

We shall use Kuang and Freedman’s [26] theorem to prove that the limit cycle is unique

for ∀ǫ > 0. It is difficult to verify its crucial condition for all relevant parameter values. Using

(3.3) it takes the form

d
dξ

(

f (ξ)F′(ξ)

ψ(ξ)

)

=
d

dξ

(

ξ
(

β − 1 − ǫ − 2βξ − 2βǫξ − β2ǫξ2
)

µ(ξ − λ)(1 + ǫ + βξǫ)

)

≤ 0 (5.1)

for ξ 6= λ in 0 ≤ ξ ≤ 1. The criterion states that the divergence integrated around an assumed

outer limit cycle is smaller than if it was integrated around an assumed inner limit cycle. The
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remaining conditions are satisfied for our selection of involved functions (3.2). It is sufficient

to check that the numerator of (5.1) is negative. In our case, this condition is equivalent to

− ǫ2β3ξ4 − 2ǫβ2 (1 + ǫ − λǫβ) ξ3

− β ((1 + ǫ)(2 + ǫ) + ǫβ − 5λǫβ(1 + ǫ)) ξ2

+ 4λβ (1 + ǫ)2
ξ − λ(1 + ǫ) (β − (1 + ǫ)) ≤ 0

(5.2)

that after Taylor expansion around ξ = λ is equivalent to

βǫλ

(

λ +
1 + ǫ

βǫ

)

(λ − ξ−)(λ − ξ+)

+ 2βǫλ(λ − ξ−)(λ − ξ+)(ξ − λ)

− (1 + ǫ)

(

λ +
1 + ǫ

βǫ
+

1

βǫ

)

(ξ − λ)2

− (ξ − λ)2

(

1 + 2βǫ

(

λ +
1 + ǫ

βǫ

)

(ξ − λ) + βǫ(ξ − λ)2

)

≤ 0.

(5.3)

Straightforward computations verify the expressions above. The last term of (5.3) is negative

definite since

1 + 2βǫ

(

λ +
1 + ǫ

βǫ

)

(ξ − λ) + βǫ(ξ − λ)2

= 1 − 2(1 + ǫ)λ − βǫλ2 + 2(1 + ǫ)ξ + βǫξ2

> 1 − 2(1 + ǫ)λ − βǫλ2
> 0.

We remark that the last inequality holds because

λ < ξ+ <
−1 − ǫ +

√

1 + 2ǫ + ǫ2 + βǫ

βǫ
.

It remains to prove that the three first terms of (5.3) form a negative contribution. This

quadratic expression has negative leading term and may be estimated from above by lines

tangent to it at ξ = 0 and ξ = λ. These two lines are given by

L0(ξ) = λ
1 + ǫ

ǫβ2
(4β(1 + ǫ)ξ − (β − (1 + ǫ)))

= λ (1 + ǫ) (−2(ξ+ + ξ−)ξ + ξ+ξ−)

(from (5.2) and (3.3)) and

Lλ(ξ) = βǫλ(λ − ξ−)(λ − ξ+)

(

−λ +
1 + ǫ

βǫ
+ 2ξ

)

(from (5.3)), respectively. We evaluate L0 and Lλ at points allowing for simple computations

as follows

L0

(

ξ+
2

)

= −(1 + ǫ)λξ2
+ < 0,

Lλ

(

λ

2

)

= λ(λ − ξ−)(λ − ξ+) (1 + ǫ) < 0.

Now, since λ < ξ+, the three first terms in (5.3) give a negative total contribution. Therefore,

the limit cycle existing for 0 < λ < ξ+ is unique. We have thus, proved the following theorem.

Theorem 5.1. Consider (3.1) with (3.2). If 0 < λ < ξ+ then (3.1) possesses a unique limit cycle that
is stable.
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Figure 5.1: (a) Trapping region formed for system (3.1) by the level curve V(ξ, η) = κ in the

interval λ < ξ < 1. (b) The fixed point (1, 0) is globally asymptotically stable if λ ≥ 1. (c) For

θ = 0, all solutions of (4.3) are closed orbits. (d) For θ > 0 there may be non-closed solutions of

(4.3), but all solutions passing the cross-section ξ = λ, 0 < η ≤ F(λ) are closed. The ×-marks

denote two saddles in a heteroclinic loop.
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6 Discussion

We have considered the system (2.1) in this paper. This system was derived from a three-

trophic level (resource–prey–predator) chemostat model possessing an asymptotically invari-

ant plane that allows reduction to two trophic levels (prey and predator). If the prey is

unsaturated, logistic growth follows but a coupling term affecting the predators functional

response cannot be removed. We prove that λ can be used as a bifurcation parameter and

that (1, 0) is globally stable for λ ≥ 1, (λ, F(λ)) is globally stable for ξ+ ≤ λ ≤ 1, and that

a unique stable limit cycle exists for 0 < λ < ξ+. The bifurcations occurring at λ = 1, and

at λ = ξ+ are a transcritical bifurcation, and a supercritical Hopf bifurcation, respectively, see

e.g. Guckenheimer and Holmes [13, Section 3.4] or Kuznetsov [27, Section 3.4]. The result was

that this destabilizing bifurcation pattern remains identical to the well-known case without

coupling term, but that smaller values of λ are needed for destabilization.

The analysis shows it to be far from trivial in general to deduce what kind of effects

such coupling terms might have on the existence of possible limit cycles. Obvious cases

that are left open are saturated prey (giving rise to a non-logistic growth function that de-

pends on the predator), generalist predator functional responses (Hassell [16, p. 39], Britton

[45, p. 61] or the discontinuous variants in Krebs and Davies [24, p. 61]), and group defence

cases cf. Geritz and Gyllenberg [9, 10]. In several cases, results granting global stability or

uniqueness of limit cycles exist if logistic growth is assumed and coupling terms are ne-

glected, see e.g. Lindström [29], Hwang [19, 20], and Qiu and Xiao [36]. Some authors are,

however, critical to the foundation for some of the investigated functional responses, see e.g.

Oksanen, Moen, and Lundberg [35], Diehl, Lundberg, Gardfjell, Oksanen, and Persson [5],

and Gleeson [11].

We remark that examples demonstrating complicated limit cycles bifurcations have been

created without considering the dependency terms considered here, see e.g. González-Olivarez

and Rojas-Palma [12]. It is therefore not evident that uniqueness of limit cycles is granted in

predator-prey systems when they exist or that local stability implies global stability. Since

such results are not granted even when the dependency terms are neglected, makes it even

more complicated to elucidate the long-term dynamical effects of these terms in the general

case.

Our analysis shows that a detailed investigation of many of these cases require further

development of the methods, but this is usually difficult to do as long as a reasonable set of

well-known special cases does not exist. Despite that many of the available methods provide

possibilities for analyzing the different cases by elementary calculus methods, the arising

expressions usually give rise to extensive algebraic manipulations when doing the required

estimates. In this case we solved many of these problems through a careful selection of the

quantities computed.
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