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Abstract. We consider half-linear Euler type differential equations with general periodic
coefficients. It is well-known that these equations are conditionally oscillatory, i.e., there
exists a border value given by their coefficients which separates oscillatory equations
from non-oscillatory ones. In this paper, we study oscillatory properties in the border
case. More precisely, we prove that the considered equations are non-oscillatory in this
case. Our results cover the situation when the periodic coefficients do not have any
common period.
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1 Introduction

The so-called conditional oscillation of differential equations has been present in research
papers for more than hundred years. In the last decades, many researchers have paid their at-
tention to the half-linear (both differential and difference) equations and to the corresponding
dynamic equations on time scales. Therefore, the conditional oscillation has become topical
once again. It is worth to mention that a lot of results are not only generalizations of theorems
from the linear case, but they give new results for linear equations as well.

Let us recall the conditional oscillation for half-linear differential equations in detail. We
say that the equation of the form[

R(t)Φ
(
x′
)]′

+ γS(t)Φ(x) = 0, Φ(x) = |x|p−1 sgn x, p > 1, (1.1)

where R and S are continuous functions, R is positive, and γ ∈ R, is conditionally oscillatory
if there exists a (positive) constant Γ such that (1.1) is oscillatory for γ > Γ and non-oscillatory
for γ < Γ. The constant Γ is called the critical constant of (1.1). Of course, the critical constant
is dependent on coefficients R and S.
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The first result concerning the conditional oscillation was obtained by A. Kneser in [20],
where the famous oscillation constant Γ = 1/4 was found for the linear equation

x′′ +
γ

t2 x = 0. (1.2)

Next, we mention [15, 29], where the critical constant

Γ =
α2

4

 α∫
0

dτ

r(τ)

−1 α∫
0

s(τ)dτ

−1

was identified for the equation [
r(t)x′

]′
+

γs(t)
t2 x = 0 (1.3)

with positive α-periodic coefficients r, s. We should also mention, at least as references, papers
[21, 22, 23, 30] containing more general results (see also [13, 14]). Note that the critical case
γ = Γ of (1.3) was solved as non-oscillatory (see [30]).

We turn our attention to the half-linear equations. For the overview of the basic theory, we
refer to books [1, 10]. It comes from [11] (see also [12]) that the equation[

Φ
(
x′
)]′

+
γ

tp Φ(x) = 0

has the critical constant

Γ =

(
p− 1

p

)p

.

Further, we mention [16, 18, 36], where this result was extended up to the case of coefficients
r and s having mean values in the equation[

r1−p(t)Φ
(
x′
)]′

+
γs(t)

tp Φ(x) = 0. (1.4)

For the discrete counterpart concerning the conditional oscillation of the corresponding dif-
ference equations, we refer to [4, 17, 24, 35].

Nevertheless, there remains still an open problem. It is not known whether (1.4) with
positive α-periodic coefficient r and β-periodic coefficient s is oscillatory or not in the critical
case (r and s do not need to have any common period, e.g., α = 1, β =

√
2). In this paper,

we prove that (1.4) is non-oscillatory in this case. We point out that coefficient s can change
its sign (in contrary to the situation common in the literature) and we remark that, according
to our best knowledge, the result presented in this paper is new in the half-linear case as well
as in the linear one (i.e., for p = 2). In addition, to prove our current result, we use another
method than in previous works [16, 18, 36] which give the basic motivation for this paper.

The oscillation of half-linear equations is a subject of researches in the field of difference
equations and dynamic equations on time scales as well. The discrete case is studied (and
literature overviews are given), e.g., in [6, 19, 25, 38] and the dynamic equations on time
scales are treated, e.g., in [26, 27, 28]. We add that the discrete counterpart of our current
result is not known in the linear case.

Another direction of researches, which is related to the one presented here, is based on the
oscillation of Euler type equations generalizing (1.2) in a different way. We point out at least
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papers [2, 3, 31, 32, 37], where the equations of the following form (and generalizations of this
form)

x′′ + f (t)g(x) = 0

are considered and oscillation theorems are proved.
The paper is organized as follows. In the next section, we shortly mention the half-linear

Riccati equation and we recall the concept of the half-linear trigonometric functions. Then,
based on [9], we introduce the modified half-linear Prüfer transformation which is the main
tool in our paper. Section 3 is devoted to lemmas and remarks which are necessary to prove the
announced result. All results together with concluding remarks and examples are collected in
Section 4.

2 Preliminaries

In this section, we mention the used form of studied equations together with the corres-
ponding Riccati equation, the notion of half-linear trigonometric functions, the concept of the
modified Prüfer angle, and the definition of the mean value of functions. These tools will be
applied in Sections 3 and 4.

It appears that it is useful to consider (1.1) in the Euler form, i.e., with S(t) = s(t)/tp for
a continuous function s (see also Introduction). Analogously, it is advantageous to consider
coefficient R in the form R ≡ r−p/q, where r is a continuous function and q > 1 is the number
conjugated with p (see the below given identity (2.6)). Altogether, we study the equation[

r−
p
q (t)Φ

(
x′
)]′

+
s(t)
tp Φ(x) = 0, Φ(x) = |x|p−1 sgn x, p > 1, (2.1)

where r, s : Ra → R, Ra := [a, ∞), a ≥ e (e denotes the base of the natural logarithm log).
Henceforth, let function r be bounded and positive and s be such that lim supt→∞ |s(t)| < ∞.
For further use, we denote

r+ := sup{r(t); t ∈ Ra}, s+ := sup{|s(t)|; t ∈ Ra}. (2.2)

Let us recall the concept of the Riccati equation associated to (2.1). We define the function

w(t) = r−
p
q (t)Φ

(
x′(t)
x(t)

)
,

where x is a non-trivial solution of (2.1). Note that, whenever x(t) 6= 0, function w is well
defined. By a direct computation, we can verify that w solves the so-called Riccati equation

w′ +
s(t)
tp + (p− 1)r(t)|w|q = 0 (2.3)

associated to (2.1).
Now we mention the basic theory of the half-linear trigonometric functions. For more

comprehensive description, we refer, e.g., to [10, Section 1.1.2]. The half-linear sine function,
denoted by sinp, is defined as the odd 2πp-periodic extension of the solution of the initial
problem [

Φ
(
x′
)]′

+ (p− 1)Φ(x) = 0, x(0) = 0, x′(0) = 1, (2.4)
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where

πp :=
2
p

B
(

1
p

,
1
q

)
=

2Γ
(

1
p

)
Γ
(

1
q

)
pΓ
(

1
p +

1
q

) =
2π

p sin π
p

. (2.5)

In the definition of πp, we use the Euler beta and gamma functions

B(x, y) =
1∫

0

τx−1(1− τ)y−1 dτ, x, y > 0, Γ(x) =
∞∫

0

τx−1 e−τ dτ, x > 0,

and the formula
Γ(x)Γ(1− x) =

π

sin[πx]
, x > 0,

together with the identity (the conjugacy of the numbers p and q)

1
p
+

1
q
= 1, i.e., p + q = pq. (2.6)

The derivative of the half-linear sine function is called the half-linear cosine function and it
is denoted by cosp. Note that the half-linear sine and cosine functions satisfy the half-linear
Pythagorean identity

| sinp t|p + | cosp t|p = 1, t ∈ R. (2.7)

Especially, the half-linear trigonometric functions are bounded. Therefore, there exists L > 0
such that

| cosp y|p < L,
∣∣Φ(cosp y) sinp y

∣∣ < L, | sinp y|p < L, y ∈ R. (2.8)

In fact, (2.8) is valid for any L > 1.
Using the notion of the half-linear trigonometric functions, we can introduce the modified

half-linear Prüfer transformation

x(t) = ρ(t) sinp ϕ(t), x′(t) =
r(t)ρ(t)

t
cosp ϕ(t). (2.9)

Denote v(t) = tp−1w(t), where w is a solution of (2.3). Considering the transformation given
by (2.9), we get

v = Φ
(

cosp ϕ

sinp ϕ

)
. (2.10)

From the fact that sinp solves the equation in (2.4), we have

v′ = (1− p)
[

1 +
∣∣∣∣cosp ϕ

sinp ϕ

∣∣∣∣p] ϕ′. (2.11)

On the other hand, applying the Riccati equation (2.3), we obtain

v′ =
[
tp−1w

]′
= (p− 1)tp−2w + tp−1w′ =

p− 1
t

[
v− s(t)

p− 1
− r(t)

∣∣∣∣cosp ϕ

sinp ϕ

∣∣∣∣p] . (2.12)

Putting (2.11) and (2.12) together and using (2.10), we have

(1− p)
[

1 +
∣∣∣∣cosp ϕ

sinp ϕ

∣∣∣∣p] ϕ′ =
p− 1

t

[
Φ
(

cosp ϕ

sinp ϕ

)
− s(t)

p− 1
− r(t)

∣∣∣∣cosp ϕ

sinp ϕ

∣∣∣∣p] . (2.13)
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Then, by a direct calculation starting with (2.13) and taking into account (2.7), we obtain the
equation for the Prüfer angle ϕ associated to (2.1) as

ϕ′ =
1
t

[
r(t)| cosp ϕ|p −Φ(cosp ϕ) sinp ϕ + s(t)

| sinp ϕ|p

p− 1

]
. (2.14)

For details, we can also refer to [9].
Finally, we recall that the mean value M( f ) of a continuous function f : Ra → R is defined

as

M ( f ) := lim
t→∞

1
t

b+t∫
b

f (τ)dτ,

if the limit is finite and if it exists uniformly with respect to b ≥ a.

3 Auxiliary results

To prove the announced result, we will use the following lemmas. The first four of them deal
with (2.14).

Lemma 3.1. For a solution ϕ of (2.14) on [a, ∞), it holds

lim sup
t→∞

∣∣∣∣ ϕ(t)
log t

∣∣∣∣ < ∞,

i.e., there exists N > 0 with the property that

|ϕ(t)| < N log t, t ≥ a.

Proof. Considering (2.2) and (2.8), one can directly calculate

lim sup
t→∞

∣∣∣∣ ϕ(t)− ϕ(t0)

log t

∣∣∣∣ ≤ lim sup
t→∞

 1
log t

t∫
t0

∣∣ϕ′(τ)∣∣dτ


≤ lim sup

t→∞

[
1

log t

t∫
t0

1
τ

(
r(τ)| cosp ϕ(τ)|p

+
∣∣Φ(cosp ϕ(τ)) sinp ϕ(τ)

∣∣+ |s(τ)| | sinp ϕ(τ)|p

p− 1

)
dτ

]

≤ lim sup
t→∞

 1
log t

t∫
t0

1
τ

(
r+L + L +

s+L
p− 1

)
dτ

 = K lim sup
t→∞

log t− log t0

log t
= K,

where t0 ∈ Ra is arbitrarily given and

K := r+L + L +
s+L

p− 1
. (3.1)
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Lemma 3.2. If ϕ is a solution of (2.14) on [a, ∞), then the function ψ : Ra → R defined by

ψ(t) :=
t+
√

t∫
t

ϕ(τ)√
τ

dτ, t ≥ a, (3.2)

satisfies

|ϕ(t + s)− ψ(t)| ≤ C log t√
t

, t ≥ a, s ∈
[
0,
√

t
]

, (3.3)

for some C > 0.

Proof. At first, we consider the function

ψ̃(t) :=
1√

t

t+
√

t∫
t

ϕ(τ)dτ, t ≥ a,

and we estimate its difference from ψ. For t ≥ a, we have

|ψ̃(t)− ψ(t)| =

∣∣∣∣∣∣∣
1√

t

t+
√

t∫
t

ϕ(τ)dτ −
t+
√

t∫
t

ϕ(τ)√
τ

dτ

∣∣∣∣∣∣∣
≤

t+
√

t∫
t

|ϕ(τ)|
(

1√
t
− 1√

τ

)
dτ

≤
√

t +
√

t−
√

t
t

t+
√

t∫
t

N log τ dτ ≤
√

t +
√

t−
√

t√
t

N log
(

t +
√

t
)

,

where N is taken from the statement of Lemma 3.1. Evidently, it holds

lim
t→∞

√
t +
√

t−
√

t =
1
2

, lim
t→∞

log
(

t +
√

t
)

log t
= 1.

Thus, there exists K̃ > 0 for which

|ψ(t)− ψ̃(t)| ≤ K̃ log t√
t

, t ≥ a. (3.4)

Since ϕ is continuous, we have that, for any t ≥ a, there exists t0 ∈
[
t, t +

√
t
]

such that
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ψ̃(t) = ϕ(t0). Hence, we have

|ϕ(t + s)− ψ̃(t)| = |ϕ(t + s)− ϕ(t0)| ≤
t+
√

t∫
t

|ϕ′(τ)| dτ

≤ 1
t

 t+
√

t∫
t

r(τ)| cosp ϕ(τ)|p +
∣∣Φ(cosp ϕ(τ)) sinp ϕ(τ)

∣∣ dτ

+

t+
√

t∫
t

| sinp ϕ(τ)|p

p− 1
|s(τ)| dτ


≤ 1

t

t+
√

t∫
t

(
Lr+ + L +

Ls+

p− 1

)
dτ ≤ K√

t
, t ≥ a, s ∈

[
0,
√

t
]

,

(3.5)

where K is given in (3.1) (r+, s+ are defined in (2.2) and L is from (2.8)). Combining (3.4)
and (3.5), we obtain (3.3) for C = K̃ + K.

Remark 3.3. From the above lemmas, it follows that there exists U > 0 for which

|ψ(t)| < U log t, t ≥ a, (3.6)

where ψ is defined in (3.2) for a solution ϕ of (2.14) on [a, ∞).

Lemma 3.4. Let ϕ be a solution of (2.14) on [a, ∞). Then, there exist P, $ > 0 such that the function
ψ : Ra → R defined in (3.2) satisfies the inequalities

ψ′ ≤ 1
t

 | cosp ψ|p
√

t

t+
√

t∫
t

r(τ)dτ −Φ(cosp ψ) sinp ψ +
| sinp ψ|p

(p− 1)
√

t

t+
√

t∫
t

s(τ)dτ +
P
t$

 (3.7)

and

ψ′ ≥ 1
t

 | cosp ψ|p
√

t

t+
√

t∫
t

r(τ)dτ −Φ(cosp ψ) sinp ψ +
| sinp ψ|p

(p− 1)
√

t

t+
√

t∫
t

s(τ)dτ − P
t$

 . (3.8)

Proof. For arbitrarily given t > a, we have

ψ′(t) =
(

1 +
1

2
√

t

) ϕ
(

t +
√

t
)

√
t +
√

t
− ϕ(t)√

t
=

1
2
√

t
·

ϕ
(

t +
√

t
)

√
t +
√

t
+

t+
√

t∫
t

[
ϕ(τ)√

τ

]′
dτ

=
1

2
√

t
·

ϕ
(

t +
√

t
)

√
t +
√

t
+

t+
√

t∫
t

ϕ′(τ)

τ
1
2
− ϕ(τ)

2τ
3
2

dτ

=

t+
√

t∫
t

1

τ
3
2

[
r(τ)| cosp ϕ(τ)|p −Φ(cosp ϕ(τ)) sinp ϕ(τ) +

| sinp ϕ(τ)|p

p− 1
s(τ)

]
dτ

+
1

2
√

t
·

ϕ
(

t +
√

t
)

√
t +
√

t
−

t+
√

t∫
t

ϕ(τ)

2τ
3
2

dτ.

(3.9)
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Since

lim
t→∞

(
t +
√

t
) 3

2 − t
3
2

t
=

3
2

,

there exists V > 0 for which

(
t +
√

t
) 3

2 − t
3
2

t
5
2

<
V

t
3
2

, t ≥ a. (3.10)

Thus, it holds (see again (2.2), (2.8), (3.1))

∣∣∣∣∣∣∣
t+
√

t∫
t

1

τ
3
2

[
r(τ)| cosp ϕ(τ)|p −Φ(cosp ϕ(τ)) sinp ϕ(τ) +

| sinp ϕ(τ)|p

p− 1
s(τ)

]
dτ

− 1

t
3
2

t+
√

t∫
t

[
r(τ)| cosp ϕ(τ)|p −Φ(cosp ϕ(τ)) sinp ϕ(τ) +

| sinp ϕ(τ)|p

p− 1
s(τ)

]
dτ

∣∣∣∣∣∣∣
≤

t+
√

t∫
t

[
r+L + L +

s+L
p− 1

] [
1

t
3
2
− 1

τ
3
2

]
dτ

≤ K

(
t +
√

t
) 3

2 − t
3
2

t
5
2

≤ KV

t
3
2

, t ≥ a.

(3.11)

We have (see (3.3) in Lemma 3.2 and (3.6) in Remark 3.3)

∣∣∣∣∣∣ 1
2
√

t
·

ϕ
(

t +
√

t
)

√
t +
√

t
− ψ(t)

2t

∣∣∣∣∣∣
=

1
2t

∣∣∣∣∣∣
ϕ
(

t +
√

t
)

√
1 + 1√

t

− ψ(t)

∣∣∣∣∣∣
≤ 1

2t

∣∣∣∣∣∣
ϕ
(

t +
√

t
)
− ψ(t)√

1 + 1√
t

∣∣∣∣∣∣+
∣∣∣∣∣∣ψ(t)

1− 1√
1 + 1√

t

∣∣∣∣∣∣


≤ 1
2t

∣∣∣ϕ (t +
√

t
)
− ψ(t)

∣∣∣+ |ψ(t)|
√

1 + 1√
t
− 1√

1 + 1√
t


≤ 1

2t

C log t√
t

+
U log t√

t
· 1√

1 + 1√
t

(√
1 + 1√

t
+ 1
)


≤ Q1

t
4
3

(3.12)
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for some Q1 > 0 and for all t ≥ a. We also have (see again (3.3), (3.6) with (3.10))∣∣∣∣∣∣∣
ψ(t)

2t
−

t+
√

t∫
t

ϕ(τ)

2τ
3
2

dτ

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

t+
√

t∫
t

ψ(t)

2t
3
2
− ϕ(τ)

2τ
3
2

dτ

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
t+
√

t∫
t

ψ(t)

2t
3
2
− ψ(t)

2τ
3
2

dτ

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

t+
√

t∫
t

ψ(t)

2τ
3
2
− ϕ(τ)

2τ
3
2

dτ

∣∣∣∣∣∣∣
≤ U log t

2

t+
√

t∫
t

(
1

t
3
2
− 1

τ
3
2

)
dτ +

t+
√

t∫
t

C log t
√

t 2τ
3
2

dτ

≤ U log t
2
·

(
t +
√

t
) 3

2 − t
3
2

t
5
2

+
C log t

2t
3
2
≤ (VU + C) log t

2t
3
2

≤ Q2

t
4
3

(3.13)

for a number Q2 > 0 and for all t ≥ a. Considering (3.12) and (3.13), we get∣∣∣∣∣∣∣
1

2
√

t
·

ϕ
(

t +
√

t
)

√
t +
√

t
−

t+
√

t∫
t

ϕ(τ)

2τ
3
2

dτ

∣∣∣∣∣∣∣ ≤
Q1 + Q2

t
4
3

, t ≥ a. (3.14)

It means (see also (3.9) and (3.11)) that it suffices to consider the expression

1
t

 1√
t

t+
√

t∫
t

r(τ)| cosp ϕ(τ)|p −Φ(cosp ϕ(τ)) sinp ϕ(τ) +
| sinp ϕ(τ)|p

p− 1
s(τ) dτ


and that, to prove the statement of the lemma, it suffices to obtain the following inequalities∣∣∣∣∣∣∣

| cosp ψ(t)|p
√

t

t+
√

t∫
t

r(τ)dτ − 1√
t

t+
√

t∫
t

r(τ)| cosp ϕ(τ)|p dτ

∣∣∣∣∣∣∣ ≤
A1 log t√

t
, (3.15)

∣∣∣∣∣∣∣Φ(cosp ψ(t)) sinp ψ(t)− 1√
t

t+
√

t∫
t

Φ(cosp ϕ(τ)) sinp ϕ(τ)dτ

∣∣∣∣∣∣∣ ≤
A2

t$
, (3.16)

∣∣∣∣∣∣∣
| sinp ψ(t)|p
√

t

t+
√

t∫
t

s(τ)dτ − 1√
t

t+
√

t∫
t

s(τ)| sinp ϕ(τ)|p dτ

∣∣∣∣∣∣∣ ≤
A3 log t√

t
(3.17)

for some constants A1, A2, A3 > 0, for a number $ > 0, and for all t ≥ a.
Since the half-linear trigonometric functions are continuously differentiable and periodic,

there exists B > 0 with the property that∣∣| cosp y|p − | cosp z|p
∣∣ ≤ B|y− z|, y, z ∈ R, (3.18)∣∣ cosp y− cosp z
∣∣ ≤ B|y− z|, y, z ∈ R, (3.19)∣∣| sinp y|p − | sinp z|p
∣∣ ≤ B|y− z|, y, z ∈ R, (3.20)∣∣ sinp y− sinp z
∣∣ ≤ B|y− z|, y, z ∈ R. (3.21)
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If p ≥ 2, then function Φ has the Lipschitz property, i.e., there exists B̃ ≥ 2 for which

|Φ(y)−Φ(z)| ≤ B̃|y− z|, y, z ∈ (−L, L). (3.22)

If p ∈ (1, 2), then ∣∣∣yp−1 − zp−1
∣∣∣ ≤ |y− z|p−1, y, z ∈ [0, L), (3.23)

and
|y|p−1 + |z|p−1 ≤ 2|y + z|p−1, y, z ∈ [0, L). (3.24)

Considering (3.23) and (3.24), for p ∈ (1, 2), we have

|Φ(y)−Φ(z)| ≤ 2|y− z|p−1, y, z ∈ (−L, L). (3.25)

Thus, for all p > 1, (3.22) and (3.25) give

|Φ(y)−Φ(z)| ≤ B̃2L|y− z|ρ, y, z ∈ (−L, L), (3.26)

where ρ := min{1, p− 1} and where we use

|y− z| ≤ 2L|y− z|ρ, y, z ∈ (−L, L). (3.27)

Altogether, it holds (see (2.8), (3.19), (3.21), (3.26), and (3.27))∣∣Φ(cosp y) sinp y−Φ(cosp z) sinp z |
≤
∣∣Φ(cosp y) sinp y−Φ(cosp z) sinp y

∣∣+ ∣∣Φ(cosp z) sinp y−Φ(cosp z) sinp z
∣∣

≤ L
∣∣Φ(cosp y)−Φ(cosp z)

∣∣+ Lp−1 ∣∣sinp y− sinp z
∣∣

≤ 2L2B̃Bρ |y− z|ρ + 2LpB|y− z|ρ

(3.28)

for all y, z ∈ R and p > 1. Of course, (3.28) guarantees the existence of B > 0 such that∣∣Φ(cosp y) sinp y−Φ(cosp z) sinp z
∣∣ ≤ B |y− z|ρ , y, z ∈ R. (3.29)

Inequality (3.15) follows directly from (see (2.2), (3.3), and (3.18))∣∣∣∣∣∣∣
1√

t

t+
√

t∫
t

r(τ)
(
| cosp ψ(t)|p − | cosp ϕ(τ)|p

)
dτ

∣∣∣∣∣∣∣
≤ 1√

t

t+
√

t∫
t

r(τ)B|ψ(t)− ϕ(τ)|dτ ≤ r+BC log t√
t

, t ≥ a.

(3.30)

Applying (3.3) and (3.29), we have∣∣∣∣∣∣∣Φ(cosp ψ(t)) sinp ψ(t)− 1√
t

t+
√

t∫
t

Φ(cosp ϕ(τ)) sinp ϕ(τ)dτ

∣∣∣∣∣∣∣
≤ 1√

t

t+
√

t∫
t

∣∣Φ(cosp ψ(t)) sinp ψ(t)−Φ(cosp ϕ(τ)) sinp ϕ(τ)
∣∣dτ

≤ 1√
t

t+
√

t∫
t

B |ψ(t)− ϕ(τ)|ρ dτ ≤ 1√
t

t+
√

t∫
t

BCρ logρ t

t
ρ
2

dτ =
BCρ logρ t

t
ρ
2

, t ≥ a,
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i.e., (3.16) is true for some A2 > 0 and $ ∈ (0, ρ/2). Analogously as in (3.30) (consider (2.2),
(3.3), and (3.20)), one can obtain (3.17) using∣∣∣∣∣∣∣

| sinp ψ(t)|p
√

t

t+
√

t∫
t

s(τ)dτ − 1√
t

t+
√

t∫
t

s(τ)| sinp ϕ(τ)|p dτ

∣∣∣∣∣∣∣
≤ 1√

t

t+
√

t∫
t

|s(τ)|B|ψ(t)− ϕ(τ)|dτ ≤ s+BC log t√
t

, t ≥ a.

From the above calculations, we get (3.7) and (3.8) for a number P > 0 and any $ such that
$ ∈ (0, ρ/2) = (0, min{p− 1, 1}/2) and $ < 1/3 (see (3.14)).

Lemma 3.5. Let function r be α-periodic and s be β-periodic for arbitrary α, β > 0. Let ϕ be a solution
of (2.14) on [a, ∞). Then, there exist P̃ > 0 and $̃ > 0 such that the function ψ : Ra → R defined by
(3.2) satisfies the inequality

ψ′ ≤ 1
t

[
| cosp ψ|p M(r)−Φ(cosp ψ) sinp ψ + M(s)

| sinp ψ|p

p− 1
+

P̃
t$̃

]
. (3.31)

Proof. From Lemma 3.4 (see (3.7)), we know that ψ satisfies the inequality

ψ′ ≤ 1
t

 | cosp ψ|p
√

t

t+
√

t∫
t

r(τ)dτ −Φ(cosp ψ) sinp ψ +
| sinp ψ|p

(p− 1)
√

t

t+
√

t∫
t

s(τ)dτ +
P
t$

 (3.32)

for some P > 0 and $ ∈ (0, 1/3). Let t ≥ a be arbitrarily given. Let n ∈ N ∪ {0} be such that
nα ≤

√
t < (n + 1)α. Using the periodicity of function r and (2.2), we obtain∣∣∣∣∣∣∣

1√
t

t+
√

t∫
t

r(τ)dτ −M(r)

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣

1√
t

t+
√

t∫
t

r(τ)dτ − 1√
t

t+nα∫
t

r(τ)dτ

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1√
t

t+nα∫
t

r(τ)dτ − 1
nα

t+nα∫
t

r(τ)dτ

∣∣∣∣∣∣
≤ r+α√

t
+

(
1

nα
− 1√

t

)
nαM(r) ≤ [r+ + M(r)] α√

t
.

(3.33)

Analogously, we can obtain∣∣∣∣∣∣∣
1√

t

t+
√

t∫
t

s(τ)dτ −M(s)

∣∣∣∣∣∣∣ ≤
[s+ + M(s)] β√

t
. (3.34)

Obviously, inequalities (3.32), (3.33), and (3.34) give the statement of the lemma.

Next, we deal with a perturbed equation and we state the equation for its Prüfer angle.
We also mention a consequence of Lemma 3.4, as the below given Lemma 3.7, which will be
essential in Section 4.



12 P. Hasil and M. Veselý

Lemma 3.6. There exists ε > 0 such that the equation(1 +
ε

log2 t

)− p
q

Φ
(
x′
)′ + Φ(x)

tp

(
q−p +

ε

log2 t

)
= 0 (3.35)

is non-oscillatory.

Proof. The lemma follows from [7, Theorem 4.1] (see also [8]).

Considering (2.14), the equation for the Prüfer angle η associated to (3.35) is

η′ =
1
t

[(
1 +

ε

log2 t

)
| cosp η|p −Φ(cosp η) sinp η +

(
q−p +

ε

log2 t

)
| sinp η|p

p− 1

]
. (3.36)

Lemma 3.7. Let η be a solution of (3.36) on [a, ∞). Then, there exist P̂ > 0 and $̂ > 0 such that the
function ζ : Ra → R defined as

ζ(t) :=
t+
√

t∫
t

η(τ)√
τ

dτ, t ≥ a,

satisfies the inequality

ζ ′ ≥ 1
t

[
| cosp ζ|p

(
1 +

ε

log2 [t +√t
])−Φ(cosp ζ) sinp ζ

+
| sinp ζ|p

p− 1

(
q−p +

ε

log2 [t +√t
])− P̂

t$̂

]
.

(3.37)

Proof. Since (3.35) is a special case of (2.1) for

r(t) = 1 +
ε

log2 t
, s(t) = q−p +

ε

log2 t
,

we can use the above lemmas for ζ which corresponds to ψ.
Especially, from Lemma 3.4 (see (3.8)), we have

ζ ′ ≥ 1
t

 | cosp ζ|p
√

t

t+
√

t∫
t

(
1 +

ε

log2 τ

)
dτ −Φ(cosp ζ) sinp ζ

+
| sinp ζ|p

(p− 1)
√

t

t+
√

t∫
t

(
q−p +

ε

log2 τ

)
dτ − P

t$


≥ 1

t

[
| cosp ζ|p

(
1 +

ε

log2 [t +√t
])−Φ(cosp ζ) sinp ζ

+
| sinp ζ|p

p− 1

(
q−p +

ε

log2 [t +√t
])− P

t$

]
.

It means that it suffices to put P̂ = P and $̂ = $ in (3.37).
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4 Results

Now we can prove the announced result.

Theorem 4.1. If function r is α-periodic and has mean value M(r) = 1 and if function s is β-periodic
and has mean value M(s) = q−p, then (2.1) is non-oscillatory.

Proof. Taking into account the half-linear Pythagorean identity (see (2.7)), we observe

max
{
| sinp y|p, | cosp y|p

}
≥ 1

2
, y ∈ R.

Hence, for ε > 0 from the statement of Lemma 3.6, there exists δ > 0 with the property that

ε
∣∣cosp y

∣∣p + ε
∣∣sinp y

∣∣p
p− 1

> δ, y ∈ R;

i.e., the inequality

ε
∣∣cosp y

∣∣p
log2

[
t +
√

t
] + ε

∣∣sinp y
∣∣p

(p− 1) log2
[
t +
√

t
] >

D
t$

, y ∈ R, (4.1)

holds for any constant D > 0 and $ > 0 and for all sufficiently large t.
Let ϕ be a solution of (2.14) which is associated to (2.1). Lemma 3.5 says that the function

ψ defined by (3.2) satisfies inequality (3.31). Thus, considering (4.1), where D = P̃ + P̂ and
$ = min{$̃, $̂}, we have

ψ′ ≤ 1
t

[
| cosp ψ|p −Φ(cosp ψ) sinp ψ + q−p | sinp ψ|p

p− 1
+

P̃
t$̃

]

<
1
t

[
| cosp ψ|p

(
1 +

ε

log2 [t +√t
])−Φ(cosp ψ) sinp ψ

+
| sinp ψ|p

p− 1

(
q−p +

ε

log2 [t +√t
])− P̂

t$̂

] (4.2)

for sufficiently large t. It is well-known that the non-oscillation of (2.1) is equivalent to the
boundedness from above of the Prüfer angle ϕ (given by (2.14)). We can refer, e.g., to [10,
Section 1.1.3], [9], [30] (or consider directly (2.9) together with (2.14) when sinp ϕ = 0). We
remark that the space of all values of ϕ is unbounded if and only if limt→∞ ϕ(t) = ∞. It
follows from the periodicity of the half-linear sine function and the right-hand side of (2.14)
for values ϕ satisfying sinp ϕ = 0 (when the derivative is positive).

Considering Lemma 3.6, we know that the Prüfer angle η given by (3.36) is bounded.
Lemma 3.2 says that ϕ is bounded if and only if ψ is bounded. In particular, ζ is bounded,
because η, ζ are special cases of ϕ, ψ. Thus, Lemma 3.7 together with (4.2) guarantees that
the considered solution ϕ (given by (2.14)) is bounded, i.e., (2.1) is non-oscillatory. Indeed, it
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suffices to consider the solutions µ, ν of the equations

µ′ =
1
t

[
| cosp µ|p −Φ(cosp µ) sinp µ + q−p | sinp µ|p

p− 1
+

P̃
t$̃

]
,

ν′ =
1
t

[
| cosp ν|p

(
1 +

ε

log2 [t +√t
])−Φ(cosp ν) sinp ν

+
| sinp ν|p

p− 1

(
q−p +

ε

log2 [t +√t
])− P̂

t$̂

]

determined by the same initial condition µ(T) = ν(T) = 0, where T is sufficiently large. We
have ν(t) ≥ µ(t), t ≥ T. Therefore (see again (3.3)),

lim sup
t→∞

ζ(t) = lim sup
t→∞

η(t) < ∞

gives
lim sup

t→∞
ϕ(t) = lim sup

t→∞
ψ(t) < ∞.

We recall the following known result.

Theorem 4.2. Let r be an α-periodic function having mean value M(r) = 1 and let s be a β-periodic
function. Equation (2.1) is oscillatory if M(s) > q−p; and (2.1) is non-oscillatory if M(s) < q−p.

Proof. See [36, Theorem 4] (and also [18]).

Remark 4.3. In fact, the non-oscillatory part of Theorem 4.2 is also a consequence of our
Theorem 4.1 and the half-linear Sturm comparison theorem (see, e.g., [10, Theorem 1.2.4]).

Using Theorem 4.2, we can improve Theorem 4.1 in the next form common in the literature.

Theorem 4.4. Let function f be α-periodic, positive, and continuous and let function h be β-periodic
and continuous for arbitrary α, β > 0. Consider the half-linear equation

[
f (t)Φ

(
x′
)]′

+
h(t)
tp Φ(x) = 0. (4.3)

Let

γ := q−p
[

M
(

f 1−q
)]1−p

= q−p

1
α

α∫
0

f 1−q(τ)dτ

1−p

. (4.4)

(i) If M(h) > γ, then (4.3) is oscillatory.

(ii) If M(h) ≤ γ, then (4.3) is non-oscillatory.

Proof. We rewrite (4.3) as [[
f 1−q(t)

]− p
q

Φ
(
x′
)]′

+
h(t)
tp Φ(x) = 0,



Non-oscillation of periodic half-linear equations 15

i.e., it takes the form of (2.1) for

r(t) =
f 1−q(t)

M ( f 1−q)
, s(t) =

[
M
(

f 1−q
)] p

q h(t).

Theorems 4.1 and 4.2 give that (4.3) is non-oscillatory if and only if

M(s) =
[

M
(

f 1−q
)] p

q M(h) =
[

M
(

f 1−q
)]p−1

M(h) ≤ q−p.

Using γ given in (4.4), we can reformulate this observation as follows. Equation (4.3) is non-
oscillatory if and only if M(h) ≤ γ.

Remark 4.5. Let us consider the case when M(h) = γ. Note that it is not possible to generalize
the result obtained above (see Theorem 4.4 or directly Theorem 4.1) for general function h
having mean value. It follows, e.g., from the main result of [9]. We conjecture that such a
generalization is not true even for limit periodic and almost periodic functions in the place of
h. Our conjecture is based on the constructions mentioned in [34] (or see [33, Theorem 3.5]
together with [5, Theorem 1.27]).

Immediately, Theorem 4.4 guarantees the conditional oscillation of general periodic linear
equations which is explicitly embodied in the corollary mentioned below.

Corollary 4.6. Let g1, g2 be periodic and continuous functions and let g1 be positive. The equation[
x′

g1(t)

]′
+

g2(t)
t2 x = 0

is oscillatory if and only if M (g1) M (g2) > 1/4.

Proof. It suffices to put p = 2 in Theorem 4.4.

Remark 4.7. If M (g1) M (g2) 6= 1/4 and if g2 is positive, then the statement of Corollary 4.6
follows from many known results (see Introduction).

To illustrate Theorem 4.4 and Corollary 4.6, we give the following two examples which
are not generally solvable using known oscillatory criteria. We recall (see also Introduction)
that the most general result concerning the conditional oscillation of (2.1) comes from [36].
In that paper, the conditional oscillation of equations with coefficients having mean values is
analysed. The critical constant is found, but the critical case remains unsolved. Remark 4.5 is
devoted to the description of this problem.

On the other hand, the critical case is studied in papers [8, 9], where the coefficients in
the considered equations have the same period. The critical case with different periods of
coefficients has not been analysed in the literature.

Example 4.8. Let α > 1/2, β1, β2 6= 0, p = 3/2. The coefficients of the half-linear equation[
Φ (x′)

α + cos [β1t] sin [β1t]

]′
+

(cos [β2t] sin [β2t])2

t
3
2

Φ(x) = 0 (4.5)

satisfy the conditions of Theorem 4.4. Since

M
(
(cos [β2t] sin [β2t])2

)
=

1
8
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and (see (4.4))

γ = 3−
3
2

[
M
(
(α + cos [β1t] sin [β1t])2

)]− 1
2
=

1√
27
(
α2 + 1

8

) ,

(4.5) is non-oscillatory if and only if 1+ 8α2 ≤ (8/3)3. We remark that this equivalence is new
for all β1, β2 6= 0 satisfying β1/β2 /∈ Q, because, in this case, the coefficient in the differential
term and the coefficient in the potential of (4.5) do not have any common period.

Example 4.9. Let σ(1), σ(2) > 1 be arbitrary. The linear equations[
x′

2 + sinσ(1) t

]′
+

1 + sinσ(2) t
8t2 x = 0, (4.6)[

x′

2 + sinσ(1) t

]′
+

1 + cosσ(2) t
8t2 x = 0, (4.7)[

x′

2 + cosσ(1) t

]′
+

1 + sinσ(2) t
8t2 x = 0, (4.8)[

x′

2 + cosσ(1) t

]′
+

1 + cosσ(2) t
8t2 x = 0 (4.9)

are in the so-called border case M (g1) M (g2) = 1/4 (see Corollary 4.6), because

M (c + d sinσ t) = M (c + d cosσ t) = c, c, d ∈ R, σ > 1.

Nevertheless, we actually know that these equations are non-oscillatory. This fact does not fol-
low from any previous result for, e.g., σ(1) = 2, σ(2) = 3. Indeed, in this case, the coefficients
in the differential terms of (4.6), (4.7), (4.8), and (4.9) have the period 2π2 = 2π and the coeffi-
cients in the potentials have the period 2π3 = 8π

√
3/9 (see (2.5)). Since π3/π2 = 4

√
3/9 6∈ Q,

the coefficients do not have any common period for σ(1) = 2, σ(2) = 3.

Applying known comparison theorems, we can obtain several new results which follow
from Theorem 4.4. We mention at least one known comparison theorem and a new result as
Corollary 4.11 with the below given Example 4.12.

Theorem 4.10. Let r : Ra → R be a continuous positive function satisfying
∞∫

a

r1−q(τ)dτ = ∞ (4.10)

and s1, s2 : Ra → R be continuous functions satisfying

∞∫
t

s2(τ)dτ ≥

∣∣∣∣∣∣
∞∫

t

s1(τ)dτ

∣∣∣∣∣∣ , t ≥ T, (4.11)

for some T ≥ a, where the integrals
∫ ∞

T s1(τ)dτ,
∫ ∞

T s2(τ)dτ are convergent. Consider the equations[
r(t)Φ

(
x′
)]′

+ s1(t)Φ(x) = 0, (4.12)[
r(t)Φ

(
x′
)]′

+ s2(t)Φ(x) = 0. (4.13)

If (4.13) is non-oscillatory, then (4.12) is non-oscillatory as well.
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Proof. See [10, Theorem 2.3.1].

Corollary 4.11. Let function r be α-periodic, positive, and continuous and let function s be β-periodic
and continuous for arbitrary α, β > 0. Consider the equation[

r−
p
q (t)Φ

(
x′
)]′

+ z(t)Φ(x) = 0, (4.14)

where z : Ra → R is a continuous function satisfying∣∣∣∣∣∣
∞∫

a

z(τ)dτ

∣∣∣∣∣∣ < ∞. (4.15)

If

M(s) =
1
β

β∫
0

s(τ)dτ ≤ q−p [M (r)]1−p = q−p

1
α

α∫
0

r(τ)dτ

1−p

(4.16)

and if there exists t0 ≥ a for which

∞∫
t

s(τ)
τp dτ ≥

∣∣∣∣∣∣
∞∫

t

z(τ)dτ

∣∣∣∣∣∣ , t ≥ t0, (4.17)

then (4.14) is non-oscillatory.

Proof. The corollary follows from Theorem 4.4, (ii) and Theorem 4.10. At first, we discuss the
assumptions of Theorem 4.10. Putting s1(t) = z(t), s2(t) = s(t)/tp for t ≥ a, we consider
(4.14) as (4.12) and the equation[

r−
p
q (t)Φ

(
x′
)]′

+
s(t)
tp Φ(x) = 0 (4.18)

as (4.13), i.e., we replace function r by r−p/q. Since

∞∫
a

[
r−

p
q (τ)

]1−q
dτ =

∞∫
a

r(τ)dτ = lim
n→∞

n
a+α∫
a

r(τ)dτ = ∞,

condition (4.10) from Theorem 4.10 is fulfilled. The integral
∫ ∞

a s1(τ)dτ is convergent due
to (4.15). The periodicity together with the continuity of function s implies its boundedness.
Therefore (consider that p > 1), we have∣∣∣∣∣∣

∞∫
a

s(τ)
τp dτ

∣∣∣∣∣∣ ≤
∞∫

a

|s(τ)|
τp dτ < ∞.

Hence, the integral
∫ ∞

a s2(τ)dτ is convergent as well. Moreover, (4.17) gives (4.11).
To finish the proof, it suffices to show that (4.18) is non-oscillatory which implies the

non-oscillation of (4.14) (consider Theorem 4.10). Putting f (t) = r−p/q(t) and h(t) = s(t) in
Theorem 4.4, we can see that (4.16) ensures the validity of the inequality in Theorem 4.4, (ii).
Indeed, it holds

1
α

α∫
0

f 1−q(τ)dτ =
1
α

α∫
0

[
r−

p
q (τ)

]1−q
dτ =

1
α

α∫
0

r(τ)dτ.

Thus, (4.18) is non-oscillatory and, consequently, (4.14) is non-oscillatory as well.
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Example 4.12. Let a, b 6= 0 be arbitrarily given. We define

z(t) :=
(

π

4q

)p

(|sin [bt]|+ |cos [bt]|+ z̃(t)) , t ∈ R3,

where

z̃(t) :=



(t− 2n)
n− 1

n
, t ∈

[
2n, 2n +

1
4

)
, n ∈N \ {1};(

2n +
1
2
− t
)

n− 1
n

, t ∈
[

2n +
1
4

, 2n +
1
2

)
, n ∈N \ {1};

−2
(

t− 2n − 1
2

)
n− 1

n
, t ∈

[
2n +

1
2

, 2n +
3
4

)
, n ∈N \ {1};

−2 (2n + 1− t)
n− 1

n
, t ∈

[
2n +

3
4

, 2n + 1
]

, n ∈N \ {1};

0, t ∈ R3 \
⋃

n∈N\{1}
[2n, 2n + 1] .

We consider the equation[
(|sin [at]|+ |cos [at]|)−

p
q Φ

(
x′
)]′

+
z(t)
tp Φ(x) = 0 (4.19)

which is in the form of (4.14) for z(t) = z(t)/tp. It is seen that

0 ≤
∞∫

t

z(τ)dτ =

∞∫
t

|z(τ)|dτ ≤
∞∫

t

H
τp dτ < ∞, t ≥ 3, (4.20)

for some H > 0. We put

s(t) :=
(

π

4q

)p

(|sin [bt]|+ |cos [bt]|) , t ∈ R3.

Directly from limt→∞
( t

t+1

)p
= 1, we get

∞∫
t

z̃(τ)
τp dτ < 0, i.e.,

∞∫
t

s(τ)
τp dτ >

∞∫
t

z(τ)dτ,

for all sufficiently large t. Hence (see also (4.20)), we have (4.17). Since

M(s) =
(

π

4q

)p 4
π

= q−p
[

4
π

]1−p

= q−p [M (|sin [at]|+ |cos [at]|)]1−p ,

inequality (4.16) is satisfied as well. Finally, applying Corollary 4.11, we obtain the non-oscil-
lation of (4.19) which does not follow from any known theorem.
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[10] O. Došlý, P. Řehák, Half-linear differential equations, Elsevier, Amsterdam, 2005.
MR2158903

[11] Á. Elbert, Oscillation and nonoscillation theorems for some nonlinear ordinary dif-
ferential equations, Ordinary and partial differential equations, Dundee, 1982, Lecture Notes
in Math., Vol. 964, Springer, Berlin, 1982, 187–212. MR693113

[12] Á. Elbert, Asymptotic behaviour of autonomous half-linear differential systems on the
plane, Studia Sci. Math. Hungar. 19(1984), No. 2–4, 447–464. MR874513
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