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Abstract. Using techniques from singular perturbations we show that for any n ≥ 6
and m ≥ 2 there are Liénard equations {ẋ = y− F(x), ẏ = G(x)}, with F a polynomial
of degree n and G a polynomial of degree m, having at least 2[ n−2

2 ] + [m
2 ] hyperbolic

limit cycles, where [·] denotes “the greatest integer equal or below”.
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1 Introduction

The paper deals with a popular model of generalized Liénard equations

ẍ + f (x)ẋ + g(x) = 0,

with f and g polynomials of respective degree n − 1 and m. A representation in the phase
plane of this scalar second order differential equation is given by{

ẋ = y

ẏ = − f (x)y− g(x).

If we write G(x) = −g(x) and introduce the new variable ȳ = y + F(x), where F(x) =∫ x
0 f (s) ds, then the above planar vector field changes into a representation of the scalar second

order Liénard differential equation in the so-called Liénard plane:{
ẋ = y− F(x)

ẏ = G(x),
(1.1)

where we denote ȳ by y. F and G are polynomials in x of respective degree n and m. When
m = 1, equation (1.1) is called a classical Liénard equation (of degree n). When m > 1, we call
(1.1) a generalized Liénard equation (of type (n, m)).
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The second part of Hilbert’s 16th problem asks for a uniform bound for the maximum
number of limit cycles of a planar polynomial vector field {ẋ = P(x, y), ẏ = Q(x, y)}, uni-
formly in terms of degree of real polynomials P and Q (see [23]). It remains unsolved even
for quadratic polynomials. Liénard equations (1.1) form a subclass of planar polynomial vec-
tor fields for which one considers a simplified version of Hilbert’s 16th problem: Determine
the maximum number L(n, m) of limit cycles in (1.1) in terms of the two degrees n and m. Part of
Smale’s 13th problem deals with this simplified problem restricted to classical (polynomial)
Liénard equations, i.e. the case G(x) = −x in (1.1) (see [33]). Moreover Smale suggested that
the maximum number L(n, 1) of limit cycles for classical Liénard equations grows at most by
an algebraic law of type nd = (deg F)d where d is a universal constant. In 1977 Lins, de Melo
and Pugh conjectured for classical Liénard equations of degree n that the number of limit
cycles is at most [ n−1

2 ], where [·] denotes “the greatest integer equal or below” (see [26] where
the conjecture has been proved for n = 2, 3). For n = 4 this conjecture has been proved in a
recent paper [25]. The conjecture was shown to be false in 2007 (see [14]) for degrees n ≥ 7
and in 2011 (see [7]) for n ≥ 6. In the first paper, [ n−1

2 ] + 1 limit cycles were shown to appear,
and in the second paper, [ n−1

2 ] + 2 limit cycles were shown to appear. The conjecture for n = 5
is still open. In a recent paper [8], lower bounds for the number of limit cycles for polynomial
classical Liénard equations have been improved: there can be at least n− 2 (hyperbolic) limit cy-
cles in a classical Liénard equation of degree n except for n ∈ {4, 5}. For n ≥ 6, these lower bounds
are reasonable enough to be conjectured as optimal.

The maximum number L(n, m) of limit cycles for generalized Liénard equations (m > 1)
is, like in the classical case, only known in some very low-degree cases. Coppel proved that
L(2, 2) = 1 (see [6]), Dumortier, Li and Rousseau proved that L(2, 3) = 1 (see [11] and [15]),
Dumortier and Li proved that L(3, 2) = 1 (see [12]), and Wang and Jing proved that L(3, 3) = 3
(see [34]). Besides that, lower bounds of L(n, m) for generalized Liénard equations have been
widely investigated (see e.g. [2, 4, 5, 13, 16–22, 24, 27–31, 35–38]). A short overview of results
obtained in the above-mentioned papers can be found in [19] and [27] where in addition new
lower bounds have been reached.

Let us state now the main theorem of this paper and explain how it improves the existing
results on lower bounds for generalized Liénard equations.

Theorem 1.1. Let n ≥ 6 and m ≥ 2. Then there exist a polynomial F(x) of degree n and a polynomial
G(x) of degree m so that the system of differential equations{

ẋ = y− F(x)

ẏ = G(x)

has at least 2[ n−2
2 ] + [m

2 ] hyperbolic limit cycles.

In [27], it has been shown that there exist generalized Liénard equations (1.1) of type
(n, m), n ≥ 2 and m ≥ 2, having at least [ n+m−2

2 ] limit cycles. Clearly, the result in Theorem
1.1 improves this lower estimate

(
2[ n−2

2 ] + [m
2 ] > [ n+m−2

2 ] for all n ≥ 6 and m ≥ 2
)
.

In [20], it has been proved further that

ln,m := max
{[m− 2

3

]
+
[2n− 1

3

]
,
[n− 3

3

]
+
[2m + 1

3

]}
≤ L(n, m)

for all n ≥ 2 and m ≥ 2. On one hand, it is not hard to show that ln,m ≥ [ n+m−2
2 ], with

strict inequality for infinitely many pairs (n, m) (see [20]). Thus, [20] is a recent improvement
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of [27]. On the other hand, comparing the coefficients in front of n in the expression ln,m with
the coefficient in front of n in 2[ n−2

2 ] + [m
2 ], it is clear that for each fixed m ≥ 2 there exists

n0 ≥ 6 such that ln,m < 2[ n−2
2 ] + [m

2 ] for all n ≥ n0. When m = 2, then ln,2 = [ 2n−1
3 ] < 2[ n−2

2 ] + 1
for all n ≥ 6. Recall that it has been proved in [18] that [ 2n−1

3 ] ≤ L(n, 2) for all n ≥ 2.
To our knowledge, there are no other results on lower bounds for generalized Liénard

equations beside [20] and [27] for arbitrary n and m.
In [19], new lower bounds of L(n, m) are found for many integers n and m giving the

m ln m asymptotic growth of L(n, m) with some conditions on n. For small m, Theorem 1.1
improves the lower bounds of L(n, m) given in [19]. For example, it has been shown in
[19] that 2[ n−2

4 ] + [ n−2
2 ] ≤ L(n, m), for m ∈ {3, 4} and n ≥ 4. It can be easily seen that

2[ n−2
4 ] + [ n−2

2 ] < 2[ n−2
2 ] + [m

2 ] for m ∈ {3, 4} and n ≥ 6.
In Section 2, using well known singular perturbation techniques for planar slow-fast sys-

tems we reduce the proof of Theorem 1.1 to the computation of simple integrals which appear
in an expression for slow divergence integral. In Section 3, we use mathematical induction on
degree m to finish the proof of Theorem 1.1.

2 Singular perturbations

Theorem 1.1 will be shown using techniques from singular perturbations (see [7, 8, 14]). Sin-
gular perturbations arise when the coefficients of F are very large, so that after applying a
rescaling, a small parameter appears in front the ẏ equation (see also [3, 9, 32]):{

ẋ = y− F(x)

ẏ = εG(x).
(2.1)

In this paper, we will also use this setting, together with the assumption that

F(0) = F′(0) = 0, ∀x ∈ [−M, M] :
F′(x)

x
> 0. (2.2)

Limit cycles of (2.1) are generally members of ε-families of limit cycles that tend to certain
limit periodic sets for ε = 0. The limit periodic sets are called slow-fast cycles, and are of the
form

ΓY := { (x, F(x)) : F(x) ≤ Y } ∪ { (x, Y) : F(x) ≤ Y }.
The second component is a heteroclinic (fast) connection for ε = 0, connecting two singular-
ities on the curve of singular points y = F(x), whereas the first component is the part of the
parabolic curve beneath the fast orbit (see Figure 2.1). In this paper, we will parameterize the
slow-fast cycles with its rightmost x-coordinate:

Γx := ΓF(x), x > 0.

In order to state the principal tool that we will use in the proof, we define the fast relation,
which relates an x > 0 to an L(x) < 0 so that F(x) = F(L(x)). In other words, (L(x), Y) and
(x, Y) are two end points of the same fast orbit at height Y = F(x).

We then have (using [10]) the following theorem.

Theorem 2.1. Let the function x 7→ L(x) be described as above, and consider system (2.1) with the
condition (2.2) and with the extra condition

G(0) = 0,
G(x)

x
< 0, ∀x ∈ [−M, M].
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Define the so-called slow divergence integral associated to Γx:

I(x) = −
∫ L(x)

x

F′(s)2

G(s)
ds, x ∈

]
0, min{M, L−1(−M)}

]
. (2.3)

Suppose that I(x) has exactly k simple zeros, then there exists a smooth function λ = λ(ε) with
λ(0) = 0, so that the perturbed system{

ẋ = y− F(x)

ẏ = ε [λ(ε) + G(x)]
(2.4)

has exactly k + 1 periodic orbits (provided ε > 0 is small enough), all of them are isolated and hyper-
bolic.

Proof. (sketch) Let x1 < x2 < · · · < xk be the k simple zeros of I(x), and define x̃i = L(xi).
Choose and fix xk+1 > xk arbitrary but so that xk+1 < M and L(xk+1) > −M. Since the
origin is a slow-fast Hopf point, the parameter λ can be used as a breaking parameter. Hence
there exists a λ = λ(ε) with λ(0) = 0 so that (2.4) has a limit cycle Hausdorff close to Γxk+1 .
We can refer to [10], but even early results on canards like in [1] can be used to see this
statement. The cycle Γxk+1 is considered a long canard, and when a long canard is present,
smaller canard cycles are located at zeros of the above integral. In other words, there are k
additional canard cycles, Hausdorff close to Γxi , for i = 1, . . . , k. For details we refer to [10].
We note that the same conclusions can be drawn using the entry-exit relation introduced in [1]
(along the long canard we have so-called “tunnel” behaviour). Here we just present a heuristic
argument. When orbits are integrated inside the big canard cycle, they will either spiral
inwards or spiral outwards after one iteration around the Hopf point. During one iteration,
the orbits travel a distance along the critical curve. Near this curve, the orbit experiences
exponential attraction towards the long canard, and it will steer away from this canard after
it has experienced equally strong long repulsion (after passing the Hopf point). Orbits at the
interior of the long canard cycle will be attracted to an O(ε)-neighbourhood of the long canard
at a point (xentry, F(xentry)) and will exit this O(ε)-neighbourhood at a point (xexit, F(xexit)).
Before the entry point and after the exit point, the orbit more or less follows a horizontal path
(fast dynamics). It is clear that the orbit is spiraling inwards when F(xexit) < F(xentry) and
outwards when F(xexit) > F(xentry). From the entry-exit relation deduced as early as in [1],
we know that ∫ xexit

xentry

F′(s)2

G(s)
ds = 0.

Figure 2.1: The dynamics of (2.1) for ε = 0. The blue closed curve is a slow-fast cycle.
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As a consequence, at zeros of I(x), orbits go from spiraling inwards to spiraling outwards or
vice-versa and therefore at each zero of I(x) there should be an additional canard cycle.

Using a perturbative approach we compute the slow divergence integral I(x) in general-
ized Liénard equations near centers. For a suitable choice of polynomials F and G, we show
that dominant part of the slow divergence integral is an integral of a polynomial function. We
will assume that

F(x) = Fe(x) + δFo(x) (2.5)

and
G(x) = −x + δg(x), (2.6)

where Fe is even, Fo is odd, Fe(0) = F′o(0) = g(0) = g′(0) = 0 and where δ is a small
perturbation parameter. Centers are obtained when δ = 0.

Proposition 2.2. The slow divergence integral (2.3) of a cycle Γx is given under these conditions by

I(x) = 2δI1(x) + O(δ2)

with

I1(x) =
∫ x

0

(
f ′e(s)Fo(s)− fe(s)F′o(s)−

g(s) + g(−s)
2

fe(s)2
)

ds,

where fe(x) := F′e(x)/x. Simple zeros of I1(x) will persist as simple zeros of I(x), for nonzero but
small δ.

Proof. We first asymptotically determine the fast relation function L(x), from its defining prop-
erty F(x) = F(L(x)), L(x) < 0 < x. Clearly, L(x) = −x + δL1(x) + O(δ2). By plugging this
form into the defining property we obtain

Fe(x) + δFo(x) = Fe(−x + δL1(x)) + δFo(−x) + O(δ2)

= Fe(−x) + δF′e(−x)L1(x) + δFo(−x) + O(δ2),

so using the symmetry properties of Fe and Fo we find L1(x) = − 2Fo(x)
F′e(x) . Next we consider

I(x) = −
∫ L(x)

x
F′(s)2

G(s) ds. We obtain

I(x) = −
∫ −x+δL1(x)+O(δ2)

x

(F′e(s) + δF′o(s))2

−s + δg(s)
ds

= −
∫ −x

x

F′e(s)2 + 2δF′e(s)F′o(s)
−s + δg(s)

ds + δL1(x)
F′e(−x)2

−x
+ O(δ2)

= −
∫ −x

x

F′e(s)2

−s + δg(s)
ds + δ

[∫ −x

x

2F′e(s)F′o(s)
s

ds− L1(x)
F′e(x)2

x

]
+ O(δ2)

= δ

[∫ −x

x

F′e(s)2g(s)
s2 ds +

∫ −x

x

2F′e(s)F′o(s)
s

ds− L1(x)
F′e(x)2

x

]
+ O(δ2)

= 2δ

[
1
2

∫ −x

x

F′e(s)2g(s)
s2 ds +

∫ −x

x

F′e(s)F′o(s)
s

ds +
Fo(x)F′e(x)

x

]
+ O(δ2).

If we write fe(x) := F′e(x)
x , then I(x)

2δ = I1(x) + O(δ) with

I1(x) = −2
∫ x

0
fe(s)F′o(s) ds + Fo(x) fe(x)−

∫ x

0
fe(s)2 g(s) + g(−s)

2
ds.

In one half of the first integral appearing in I1 we apply partial integration to obtain the
result.
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Proposition 2.2 and Theorem 2.1 allow to prove the main theorem (Theorem 1.1), provided
we find convenient functions fe, Fo and g that satisfy the conditions and that produce an
integral function I1 with a sufficient amount of simple zeros. In the classical case (g = 0), the
following result has been proven in [8].

Proposition 2.3. Let k ≥ 3. There exist an even polynomial αk of degree 2k − 2, αk(s) > 0 for all
s ∈ R, and an odd polynomial βk of degree 2k− 1 and of order 3 such that the function

Hk(x) :=
∫ x

0
(α′k(s)βk(s)− αk(s)β′k(s)) ds

has 2k − 3 simple zeros on {x > 0}. As a corollary, the function F(x) = Fe(x) + δFo(x), with
Fo(x) = βk(x), fe(x) = αk(x) and Fe(x) =

∫ x
0 s fe(s) ds, satisfies the conditions of Proposition 2.2

and Theorem 2.1, giving an example of classical Liénard equation of even degree n = 2k, k ≥ 3, with
n− 2 hyperbolic limit cycles.

Remark 2.4. Since αk(s) > 0 for all s ∈ R, the highest order coefficient is strictly positive.
Using simple rescalings we can put the highest order coefficients of αk and βk to 1.

Remark 2.5. In the next section, the general case deg G = m ≥ 2 will be treated. We will use
Proposition 2.3 in the proof of Theorem 1.1 as the basis step of mathematical induction on m.

The following proposition shows that the method used in this paper cannot give more
limit cycles than stated in Theorem 1.1.

Proposition 2.6. Let F(x) and G(x) be polynomials of the form (2.5) and (2.6) and of degree n and
m (m ≥ 2), respectively. Then the function I1 in Proposition 2.2 has at most 2[ n−2

2 ] + [m
2 ]− 1 zeros

on {x > 0}, counting multiplicity. Therefore, the application of Theorem 2.1 cannot provide examples
with strictly more than 2[ n−2

2 ] + [m
2 ] cycles.

Proof. It is clear that deg g(·)+g(−·)
2 ≤ 2[m

2 ]. Suppose n is even. Then deg Fe = n, deg fe = n− 2
and deg Fo ≤ n− 1. It implies that I′1 has degree at most 2n− 4 + 2[m

2 ]. Hence, I1 has at most
2n− 3 + 2[m

2 ] zeros counting multiplicity. Since I1 is odd and Fo(0) = F′o(0) = g(0) = 0, we
see that I1 has at least a triple zero at the origin. Given furthermore the symmetry, it follows
that there are at most 2n−3+2[m

2 ]−3
2 = n− 3 + [m

2 ] = 2[ n−2
2 ] + [m

2 ]− 1 zeros on {x > 0}. Now
assume that n is odd. Then deg Fo = n and deg fe ≤ n − 3. Hence, I′1 has degree at most
2n− 6 + 2[m

2 ]. It implies that I1 has at most 2n− 5 + 2[m
2 ] zeros counting multiplicity. Hence,

I1 has at most 2n−5+2[m
2 ]−3

2 = n− 4 + [m
2 ] = 2[ n−2

2 ] + [m
2 ]− 1 zeros on {x > 0}.

3 Proof of Theorem 1.1

The perturbative approach presented in the previous section will be used to treat the case of
even degree n (Section 3.1); the case of odd degree n (Section 3.2) will be easy to study due to
hyperbolicity of limit cycles obtained in Section 3.1.

3.1 Generalized Liénard equations with n even

In this section, we prove the following statement:
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For each k ≥ 3 and l ≥ 1 there exists an even polynomial gk,l of degree m = 2l, with
gk,l(0) = 0, such that the function

H̃k,l(x) := Hk(x)−
∫ x

0
gk,l(s)αk(s)2 ds

=
∫ x

0

(
α′k(s)βk(s)− αk(s)β′k(s)− gk,l(s)αk(s)2) ds

has 2k− 3 + l simple zeros on {x > 0}, where αk and βk are given in Proposition 2.3.

If we now take F(x) = Fe(x) + δFo(x), with Fo(x) = βk(x), fe(x) = αk(x) and Fe(x) =∫ x
0 s fe(s) ds, and G(x) = −x + δg(x), with g(x) = gk,l(x), then the above result implies that

the expression for I1 in Proposition 2.2 has 2k − 3 + l simple zeros on {x > 0}, leading to
generalized Liénard equations of type (n, m) = (2k, 2l) with 2k− 2 + l hyperbolic limit cycles
(see Theorem 2.1). Noting that the expression for I1 remains unchanged if we use g(x) =

gk,l(x) + ρx2l+1, ρ 6= 0, instead of g(x) = gk,l(x), we have, again by Theorem 2.1, existence of
generalized Liénard equations of type (n, m) = (2k, 2l + 1) with 2k − 2 + l hyperbolic limit
cycles.

For each k ≥ 3, we use induction on l to prove the above statement. Let us assume we
have an example corresponding to l, for l ≥ 0, with an even polynomial gk,l of degree 2l and
gk,l(0) = 0, and with αk and βk of respective degrees 2k− 2 and 2k− 1, given in Proposition 2.3,
such that H̃k,l has 2k− 3 + l simple zeros on {x > 0}. As a direct consequence of Proposition
2.3, this can be performed for l = 0 (gk,0 ≡ 0). For l ≥ 1, we can write gk,l = · · ·+ γ0x2l , with
γ0 6= 0.

We now state
gk,l+1(x) := gk,l(x) + γ1µ2x2l+2,

where γ1 = −1 for l = 0 and γ1 = − sgn(γ0) for l ≥ 1. Here sgn(x) denotes the sign function.
Such a choice of gk,l+1 leads to a vector field with (n, m) = (2k, 2l + 2), i.e. 2 degrees higher in
G than for µ = 0. It is clear that for small values of µ the 2k− 3 + l simple zeros of H̃k,l+1 that
appear for µ = 0 will persist. Besides that, we show that one additional positive simple zero
appears in the O(1/µ) range. It can be easily seen that

Lemma 3.1.

H̃k,l+1

(
X
µ

)
=

1
µ4k+2l−3

[
h̃(X) + O(µ)

]
,

where

h̃(X) =

{
− 1

4k−3 X4k−3 + 1
4k−1 X4k−1, l = 0,

− γ0
4k+2l−3 X4k+2l−3 + sgn(γ0)

4k+2l−1 X4k+2l−1, l ≥ 1.

Hence, additional zeros can be created by looking at simple zeros of h̃(X). Clearly, h̃ has

a positive simple zero given by X =
√

4k−1
4k−3

(
resp. X =

√
|γ0| 4k+2l−1

4k+2l−3

)
for l = 0 (resp. l ≥ 1).

Thus, H̃k,l+1 has 2k− 3 + l + 1 simple zeros on {x > 0}. This finished the inductive step and,
therefore, the proof of Theorem 1.1 for even degrees n ≥ 6.

3.2 Generalized Liénard equations with n odd

Let n = 2k + 1, k ≥ 3, and m ≥ 2. Based on Theorem 2.1 and Section 3.1, we can choose a
polynomial F of degree 2k and of the form (2.5), and a polynomial G of degree m and of the
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form (2.6) such that the system {
ẋ = y− F(x)

ẏ = ε0 [λ0 + G(x)]
(3.1)

has 2k− 2 + [m
2 ] hyperbolic limit cycles positioned near the long canard and the simple zeros

of the corresponding slow divergence integral, for some ε0 and λ0. If we change F(x) in (3.1)
by F(x) + ρx2k+1, for ρ sufficiently small, then the 2k− 2 + [m

2 ] hyperbolic limit cycles persist.
It follows that for degree n = 2k + 1, there are at least n− 3 + [m

2 ] = 2[ n−2
2 ] + [m

2 ] isolated and
hyperbolic periodic orbits. Hence, we have finished the proof of Theorem 1.1 for odd degrees
n ≥ 7.
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