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Abstract. In this paper, we study the geometric properties of a class of nonlinear poly-
nomial vector fields in R3. By virtue of their induced vector fields, their global topo-
logical structures are discussed and we get that there are at least 82 types of invariant
regions with different topological classification without considering the closed orbit.
Finally, we give a sufficient condition of the existence of a closed orbit of the vector
field.
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1 Introduction

It is very difficult to analyze the geometric properties of vector fields in R3 because their
geometric properties are more complex than those of planar vector fields such as the strange
attractor of the Lorenz equation. There are few results for vector fields in R3 such as the
criterion of the existence of closed orbits, homoclinic and heteroclinic orbit, etc. However,
most of the models of engineering and biology are higher dimensional systems [3]. Therefore,
it is worth for us to investigate the vector fields in R3.

The simplest vector field in R3 is a linear homogeneous system, its local geometric proper-
ties were first analyzed by Reyn [12], and its global topological structure was given by Zhang
and Liang [18]. For nonlinear vector fields in R3, Coleman in 1959 [5] first studied the geo-
metric properties of flows of homogeneous vector fields in the neighborhood of the origin in
R3. Later Sharipov [13] discussed the topological classifications of flows of homogeneous vec-
tor fields and gave seven types of different invariant cones of the homogeneous vector fields.
Camacho in 1981 [1] investigated the topological classifications of the tangent vector fields
induced by homogeneous vector fields of degree two in R3. Zhang et al. in 1999 [17] showed
that there are at least sixteen types of different invariant cones by global topological analyses.
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More works about homogeneous systems can be seen in [2, 9, 10]. For non-homogeneous vec-
tor fields in R3, Llibre and Zhang [11] studied the polynomial first integrals for n-dimensional
quasi-homogeneous system. Dumortier [6] used the quasi-homogeneous blow-up to investi-
gate the singularity of planar systems. Zhang et al. [19] gave the global dynamics of a class
of vector fields in R3. Huang and Zhao [8] studied the limit set of trajectories in a three-
dimensional quasi-homogeneous system. More works about non-homogeneous systems can
be seen in [14, 15, 16].

In this paper, we will investigate the following vector fields:

xF(x) + Q(x) ≡ (x1F1(x) + Q1(x), x2F2(x) + Q2(x), x3F3(x) + Q3(x)), (1.1)

where x = (x1, x2, x3) ∈ R3, and

Q1(λ
α1 x1, λα2 x2, λα3 x3) = λα1−1+δQ1(x1, x2, x3),

Q2(λ
α1 x1, λα2 x2, λα3 x3) = λα2−1+δQ2(x1, x2, x3),

Q3(λ
α1 x1, λα2 x2, λα3 x3) = λα3−1+δQ3(x1, x2, x3),

Fi(λ
α1 x1, λα2 x2, λα3 x3) = λmFi(x1, x2, x3),

F1(x)
α1

=
F2(x)

α2
=

F2(x)
α2

= f (x),

λ ∈ R, δ, α1, α2, α3 ∈ R+.

(1.2)

In Section 2, we set up a bridge between the vector field xF(x)+Q(x) in R3 and the tangent
vector field QT(u) on the two-dimensional manifold S2 = {u = (u1, u2, u3) : u2

1 + u2
2 + u2

3 = 1}.
In Section 3, we first discuss the relationship between the singular point of the vector field
xF(x) + Q(x) in R3 and the tangent vector field QT(u) in S2. In Section 4, we give the
classification of the vector field xF(x) + Q(x) and we prove that the vector field xF(x) + Q(x)
has at least 82 types of different topological classification without considering the number of
limit cycles. At last we obtain the sufficient condition of the existence of closed orbit of the
vector field xF(x) + Q(x) in R3.

2 Global properties of xF(x) + Q(x)

In this section, we will investigate the global properties of xF(x) + Q(x). For each
x ∈ R3 \ {(0, 0, 0)}, we make a transformation:

x = (x1, x2, x3) = (rα1 u1, rα2 u2, rα3 u3), u = (u1, u2, u3) ∈ S2, r ∈ R+

then vector field (1.1) in R3 \ {(0, 0, 0)} turns into

dr
dt

=
rm+1⟨u, ν⟩+ rδ⟨u, Q(u)⟩

⟨u, u⟩ ,

du
dt

=
rδ−1(⟨u, u⟩Q(u)− ⟨u, Q(u)⟩u)

⟨u, u⟩ .

(2.1)

where u = (α1u1, α2u2, α3u3), ν = (u1F1, u2F2, u3F3), ⟨·, ·⟩ is the Euclidean inner product.
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Introducing a new time τ by means of relation dτ = rδ−1

⟨u,u⟩ dt (the time variable is still
denoted by t), we could obtain

dr
dt

= rm+2−δ⟨u, ν⟩+ r⟨u, Q(u)⟩ D
== rm+2−δG(u) + rR(u), (2.2a)

du
dt

= ⟨u, u⟩Q(u)− ⟨y, Q(u)⟩y D
== QT(u). (2.2b)

where G(u) = ⟨u, ν⟩, R(u) = ⟨u, Q(u)⟩. The vector field (2.2b) is called the tangent vector
field of (1.1), and it is an independent system on S2.

Proposition 2.1. The flows of the vector field xF(x) + Q(x) in R3 are topologically equivalent to the
flows of system (2.2).

3 Global geometric properties of xF(x) + Q(x)

In this paper, we only discuss the geometric properties for case m + 1 − δ > 0 and the ge-
ometric properties for case m + 1 − δ < 0 is similar to case m + 1 − δ > 0. For conve-
nience of the following discussion, we first introduce several notations. We will write g,
γ, θ, Ωγ, Aγ to denote a singular point, a trajectory, a closed orbit, an ω-, α-limit set of
the trajectory γ of the vector field QT(u) on sphere S2, respectively. If we use the notation
S(l) = {(λα1 x1, λα2 x2, λα3 x3) | (x1, x2, x3) ∈ l ⊂ R3, λ ∈ R+} (l may be a point or a curve),
then S(γ) = {x | x ∈ ωγ, r0 ∈ R+}. We will write w, Ωw, Aw to denote a trajectory, an
ω-, α-limit set of the trajectory w of xF(x) + Q(x) on S(γ), write θ∗ to denote a closed orbit
of xF(x) + Q(x) on S(θ). At first we give some basic properties between the vector fields
xF(x) + Q(x) and QT(u).

Theorem 3.1. If E(x1, x2, x3) is a singular point of system (1.1), then g = (x1/rα1 , x2/rα2 , x3/rα3)

is a singular point of (2.2b), where r satisfies r−2α1 x2
1 + r−2α2 x2

2 + r−2α3 x2
3 = 1.

Proof. If E(x1, x2, x3) is a singular point of system (1.1), then E satisfies EF(E) + Q(E) = 0, or

xiFi(x1, x2, x3) + Qi(x1, x2, x3) = 0, i.e. αixi f (x1, x2, x3) + Qi(x1, x2, x3) = 0,

then we have

⟨g, g⟩Qi(g)− ⟨g, Q(g)⟩gi

=

(
α1x2

1
r2α1

+
α2x2

2
r2α2

+
α3x2

3
r2α3

)
r−αi+1−δQi(x1, x2, x3)−

[
x1

rα1
r−α1+1−δQ1(x1, x2, x3)

+
x2

rα2
r−α2+1−δQ2(x1, x2, x3) +

x3

rα3
r−α3+1−δQ3(x1, x2, x3)

]
αi

xi

rαi

=

(
α1x2

1
r2α1

+
α2x2

2
r2α2

+
α3x2

3
r2α3

)
r−αi+1−δQi(x1, x2, x3) +

[
α1x2

1
rα1

r−α1+1−δ +
α2x2

2
rα2

r−α2+1−δ

+
α3x3

rα3
r−α3+1−δ

]
αixi

rαi
f (x1, x2, x3)

=

(
α1x2

1
r2α1

+
α2x2

2
r2α2

+
α3x2

3
r2α3

)
r−αi+1−δ · [Qi(x1, x2, x3) + αixi f (x1, x2, x3)]

= 0.

Therefore g = (x1/rα1 , x2/rα2 , x3/rα3) is a singular point of vector field QT(u).
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Theorem 3.2. If g = (g1, g2, g3) is a singular point of the vector field QT(u) on the sphere S2,
then there is a singular point E of the vector field xF(x) + Q(x) on the invariant curve LOg =

{(λα1 g1, λα2 g2, λα3 g3) | (g1, g2, g3) = g, λ ∈ R+}, if and only if R(g)G(g) < 0. Moreover, we have
the following conclusions for all x0 ∈ LOg:

1. if R(g) > 0, G(g) > 0, limt→+∞ x(t, x0) = (g, ∞);

2. if R(g) < 0, G(g) < 0, limt→+∞ x(t, x0) = O;

3. if R(g) > 0, G(g) < 0, limt→+∞ x(t, x0) = E;

4. if R(g) < 0, G(g) > 0, limt→+∞ x(t) = O or (g, ∞).

Proof. We need only to prove the sufficient condition that the vector field xF(x) + Q(x) has a
singular point E(x1, x2, x3) ∈ LOg if R(g)G(g) < 0. The necessary condition is Theorem 3.1.

If g(g1, g2, g3) is a singular point of the vector field QT(u) and R(g)G(g) < 0, then
⟨g, g⟩Q(g) − ⟨g, Q(g)⟩g = 0. For any given point x0 ∈ LOg there is a λ ∈ (0, ∞) such that
x0 = (λα1 g1, λα2 g2, λα3 g3) and

x0F(x0) + Q(x0) = λαi giαi f (λα1 g1, λα2 g2, λα3 g3) + Qi(λ
α1 g1, λα2 g2, λα3 g3)

= αigiλ
αi+m f (g) + λαi−1+δGi(g)

= αigiλ
αi+m f (g) + λαi−1+δ αigiR(g)

⟨g, g⟩

= αigiλ
αi−1+δ

[
λm+1−δ f (g) +

R(g)
⟨g, g⟩

]
= αigiλ

αi−1+δ f (g)
[

λm+1−δ +
R(g)
G(g)

]
.

(3.1)

Equation λm+1−δ + R(g)
G(g) = 0 has only one positive root λ0 =

[
− R(g)/G(g)

] 1
m+1−δ . Therefore,

x0 is the only singular point of xF(x) + Q(x) on the invariant curve LOg.
If R(g) > 0, G(g) > 0, by the equation (2.2a) we have

drδ−m−1

dt
= (δ − m − 1)rδ−m−2[rm+2−δG(u) + rR(u)]

= (δ − m − 1)G(u)
[

1 + rδ−m−1 R(u)
G(u)

] (3.2)

Then, limt→+∞ rδ−m−1(t) = 0, limt→+∞ r(t) = ∞. Therefore, limt→+∞ x(t, x0) = (g, ∞).
Similarly, if R(g) < 0, G(g) < 0, we have limt→+∞ r(t) = 0, then limt→+∞ x(t, x0) = O;

if R(g) > 0, G(g) < 0, we have limt→+∞ r(t) = r0, then limt→+∞ x(t, x0) = E, where r0 is
the singular point of equation (3.2); if R(g) < 0, G(g) > 0, we have limt→−∞ r(t) = r0, then
limt→−∞ x(t, x0) = E (or limt→+∞ x(t, x0) = O or (g, ∞)).

Remark 3.3. We use (g, ∞) to denote a point at infinity along the invariant curve LOg.

Lemma 3.4 ([8]). If γ is a trajectory of the vector field QT(u) on the sphere S2, then S(γ) is an
invariant quasi-cone of the vector field xF(x) + Q(x).

Theorem 3.5. Let Ωγ = g1, Aγ = g2, γ = {u(t) | u(t) ∈ S2, t ∈ (−∞,+∞)}.



The global dynamics of nonlinear vector fields in R3 5

1. If R(g1) > 0, G(g1) < 0, then there is a singular point E1 of the vector field xF(x) + Q(x) such
that

lim
t→+∞

x(t, x0) = E1, ∀x0 ∈ S(γ)− LOg2 .

2. If R(g1) > 0, G(g1) > 0, then limt→+∞ x(t, x0) = (g, ∞), ∀x0 ∈ S(γ)− LOg2 .

3. If R(g1) < 0, G(g1) < 0, then limt→+∞ x(t, x0) = O, ∀x0 ∈ S(γ)− LOg2 .

4. If R(g1) < 0, G(g1) > 0, then limt→+∞ x(t) = O or (g, ∞)), ∀x0 ∈ S(γ)− LOg2 .

Proof. (1) If x0 ∈ LOg1 , then, the existence E1 as a singular point of vector field xF(x) + Q(x)
and limt→+∞ x(t, x0) = E1, ∀x0 ∈ S(γ)− LOg1 are obvious by the result of Theorem 3.2.

If x0 ∈ S(γ) − (LOg1 ∪ LOg2), let u0 = (x01/r2α1 , x02/r2α2 , x03/r2α3) (where r−2α1 x2
01+

r−2α2 x2
02 + r−2α3 x2

03 = 1), then u0 ∈ γ and limt→∞ u(t, u0) = g1. R(u), G(u) are continuous
functions of variables u = (u1, u2, u3). For all ε > 0, there is T1 = T1(ε, u0) such that for t > T1

R(g1)− ε < R(u(t, u0)) < R(g1) + ε,

G(g1)− ε < G(u(t, u0)) < G(g1) + ε.
(3.3)

By equation (3.2), we have

drδ−m−1

dt
= (δ − m − 1)G(u)

[
1 + rδ−m−1 R(u)

G(u)

]
We construct the following equation:

drδ−m−1
1
dt

= (δ − m − 1)(G(g1) + ε)

[
1 + rδ−m−1

1
R(g1) + ε

G(g1) + ε

]
,

drδ−m−1
2
dt

= (δ − m − 1)(G(g1)− ε)

[
1 + rδ−m−1

2
R(g1)− ε

G(g1)− ε

]
.

By the comparison theorem of ordinary differential equations [4, 7] and inequalities (3.3), we
have

r1(t, r0) < r(t, r0) < r2(t, r0).

when r2(t0) = r(t0) = r1(t0) and t0 > T1. Since

lim
t→∞

r1(t, r0) =

[
−R(g1) + ε

G(g1) + ε

] 1
m+1−δ

,

lim
t→∞

r2(t, r0) =

[
−R(g1)− ε

G(g1)− ε

] 1
m+1−δ

,

and ε could be a sufficient small positive number, we could obtain

lim
t→∞

r(t, r0) = [−R(u)/G(u)]1/(m+1−δ), lim
t→∞

x(t, x0) = E1.

The first part has been proved.
The proof of the remaining parts are similar to the first part, we omit it.

Corollary 3.6. Let Ωγ = g1, Aγ = g2, γ = {u(t) | u(t) ∈ S2, t ∈ (−∞,+∞)}. If R(g1) >

0, G(g1) < 0, R(g2) > 0, G(g2) < 0, then there are two singular points E1 (E1 ∈ LOg1), E2

(E2 ∈ LOg2) and a unique trajectory w∗ connected with saddles of xF(x) + Q(x) such that Ωw∗ =

E1, Aw∗ = E2.
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4 Classification of integral quasi-cones

For convenience of the following discussion, we first introduce some definitions and notations.
Similar to Remark 3.3, we define (θ, ∞), (G, ∞) for a closed orbit, a graph of xF(x) + Q(x) at
infinity respectively, where +∞ stands for r → +∞.

Definition 4.1. S(γ) is a parabolic quasi-cone of the 1st kind if each w ∈ S(γ) such that
Ωw = O, Aw = (g,+∞), or Ωw = (g,+∞), Aw = O; S(γ) is a parabolic quasi-cone of the 2nd
kind if each w ∈ S(γ) such that Ωw = O, Aw = (θ,+∞), or Ωw = (θ,+∞), Aw = O; S(γ) is
a parabolic quasi-cone of the 3rd kind if each w ∈ S(γ) such that Ωw = O, Aw = (G,+∞), or
Ωw = (G,+∞), Aw = O.

Definition 4.2. S(γ) is a hyperbolic quasi-cone of the 1st kind if each w ∈ S(γ) such that
Ωw = (g1,+∞), Aw = (g2,+∞);

S(γ) is a hyperbolic quasi-cone of the 2nd kind if each w ∈ S(γ) such that Ωw = (g,+∞),
Aw = (θ,+∞), or Ωw = (θ,+∞), Aw = (g,+∞);

S(γ) is a hyperbolic quasi-cone of the 3rd kind if each w ∈ S(γ) such that Ωw = (θ1,+∞),
Aw = (θ2,+∞);

S(γ) is a hyperbolic quasi-cone of the 4th kind if each w ∈ S(γ) such that Ωw = (g,+∞),
Aw = (G,+∞), or Ωw = (G,+∞), Aw = (g,+∞);

S(γ) is a hyperbolic quasi-cone of the 5th kind if each w ∈ S(γ) such that Ωw = (θ,+∞),
Aw = (G,+∞), or Ωw = (G,+∞), Aw = (θ,+∞);

S(γ) is a hyperbolic quasi-cone of the 6th kind if each w ∈ S(γ) such that Ωw = (G1,+∞),
Aw = (G2,+∞).

Definition 4.3. Let S(γ) be a center-type quasi-cone.
S(γ) is a quasi-cone of type P of the 1st kind if each w ∈ S(γ) such that Ωw = O, Aw = θ∗,

or Ωw = θ∗, Aw = O;
S(γ) is a quasi-cone type P of the 2nd kind if each w ∈ S(γ) such that Ωw = (g,+∞),

Aw = θ∗, or Ωw = θ∗, Aw = (g,+∞);
S(γ) is a quasi-cone type P of the 3rd kind if each w ∈ S(γ) such that Ωw = θ∗1 , Aw = θ∗2 ;
S(γ) is a quasi-cone type P of the 4th kind if each w ∈ S(γ) such that Ωw = θ∗, Aw =

(θ1,+∞), or Ωw = (θ1,+∞), Aw = θ∗;
S(γ) is a quasi-cone type P of the 5th kind if each w ∈ S(γ) such that Ωw = θ∗, Aw =

(G,+∞), or Ωw = (G,+∞), Aw = θ∗.

Definition 4.4. Let S(γ) be a quasi-cone with singular point without origin and at infinity.
S(γ) is a quasi-cone of type S of the 1st kind if each w ∈ S(γ) such that Ωw = O, Aw = E,

or Ωw = E, Aw = O;
S(γ) is a quasi-cone of type S of the 2nd kind if each w ∈ S(γ) such that Ωw = (g,+∞),

Aw = E, or Ωw = E, Aw = (g,+∞);
S(γ) is a quasi-cone of type S of the 3rd kind if each w ∈ S(γ) such that Ωw = E1, Aw = E2;
S(γ) is a quasi-cone of type S of the 4th kind if each w ∈ S(γ) such that Ωw = E,

Aw = (θ,+∞), or Ωw = (θ,+∞), Aw = E;
S(γ) is a quasi-cone of type S of the 5th kind if each w ∈ S(γ) such that Ωw = E,

Aw = (G,+∞), or Ωw = (G,+∞), Aw = E.

Definition 4.5. S(γ) is a P-S type quasi-cone if each w ∈ S(γ) such that Ωw = θ∗, Aw = E, or
Ωw = E, Aw = θ∗;
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Theorem 4.6. Let Ωγ = g1, Aγ = g2, γ = {u(t) : t ∈ (−∞,+∞)}. Then
(1) S(γ) is a quasi-cone of type S of the 1st or 2nd kind if R(g1) > 0, G(g1) < 0, R(g2) > 0,

G(g2) < 0; or R(g1) < 0, G(g1) > 0, R(g2) < 0, G(g2) > 0 (Figure 4.1.1);
(2) S(γ) is a quasi-cone of type S of the 3rd kind if R(g1) > 0, G(g1) < 0, R(g2) < 0, G(g2) > 0

(Figure 4.1.2);
(3) S(γ) is a hyperbolic quasi-cone of the 1st kind or a parabolic quasi-cone of the 1st kind or an elliptic

quasi-cone if R(g1) < 0, G(g1) > 0, R(g2) > 0, G(g2) < 0 (Figure 4.1.3);
(4) S(γ) is a hyperbolic quasi-cone of the 1st kind or a parabolic quasi-cone of the 1st kind if

R(g1) > 0, G(g1) > 0, R(g2) > 0, G(g2) < 0; or R(g1) < 0, G(g1) > 0, R(g2) < 0, G(g2) < 0
(Figure 4.1.4);

(5) S(γ) is a quasi-cone of type S of the 2nd kind if R(g1) > 0, G(g1) > 0, R(g2) < 0, G(g2) > 0; or
R(g1) > 0, G(g1) < 0, R(g2) < 0, G(g2) < 0 (Figure 4.1.5);

(6) S(γ) is a parabolic quasi-cone of the 1st kind or an elliptic quasi-cone if R(g1) < 0, G(g1) <

0, R(g2) > 0, G(g2) < 0; or R(g1) < 0, G(g1) > 0, R(g2) > 0, G(g2) > 0 (Figure 4.1.6);
(7) S(γ) is a quasi-cone of type S of the 1st kind if R(g1) < 0, G(g1) < 0, R(g2) < 0, G(g2) > 0; or

R(g1) > 0, G(g1) < 0, R(g2) > 0, G(g2) > 0 (Figure 4.1.7);
(8) S(γ) is a parabolic quasi-cone of the 1st kind if R(g1) > 0, G(g1) > 0, R(g2) > 0, G(g2) > 0; or

R(g1) < 0, G(g1) < 0, R(g2) < 0, G(g2) < 0 (Figure 4.1.8);
(9) S(γ) is a hyperbolic quasi-cone of the 1st kind if R(g1) > 0, G(g1) > 0, R(g2) < 0, G(g2) < 0

(Figure 4.1.9);
(10) S(γ) is an elliptic quasi-cone if R(g1) < 0, G(g1) < 0, R(g2) > 0, G(g2) > 0 (Figure 4.1.10);

Figure 4.1: The classification of integral quasi-cones of Ωγ = g1, Aγ = g2

The proof of this theorem is similar to the proof of Theorem 3.5, we omit it.
Let I(θ) =

∫ T
0 R(θ(s)) ds, H(θ) =

∫ T
0 G(θ(s)) ds, θ is a closed orbit of QT(u) on S2.

Theorem 4.7. Let Ωγ = θ, Aγ = g, γ = {u(t) : t ∈ (−∞,+∞)}, then
(1) S(γ) is a quasi-cone of type S of the 1st or 2nd kind if I(θ) > 0, H(θ) < 0, R(g) > 0, G(g) < 0;
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(2) S(γ) is a quasi-cone of type S of the 3rd kind if I(θ) > 0, H(θ) < 0, R(g) < 0, G(g) > 0;
(3) S(γ) is a hyperbolic quasi-cone of the 2nd kind or a parabolic quasi-cone of the 1st or 2nd kind or

an elliptic quasi-cone if I(θ) < 0, H(θ) > 0, R(g) > 0, G(g) < 0;
(4) S(γ) is a quasi-cone of type S of the 1st or 4th kind if I(θ) < 0, H(θ) > 0, R(g) < 0, G(g) > 0;
(5) S(γ) is a hyperbolic quasi-cone of the 2nd kind or a parabolic quasi-cone of the 2nd kind if one of

the following conditions holds:
(a) I(θ) > 0, H(θ) > 0, R(g) > 0, G(g) < 0;
(b) I(θ) = 0, limt→+∞

∫ t
0 R(u(s)) ds = +∞, R(g) > 0, G(g) < 0;

(6) S(γ) is a quasi-cone of type S of the 4th kind if one of the following conditions holds:
(a) I(θ) > 0, H(θ) > 0, R(g) < 0, G(g) > 0;
(b) I(θ) = 0, limt→+∞

∫ t
0 R(u(s)) ds = +∞, R(g) < 0, G(g) > 0;

(7) S(γ) is a parabolic quasi-cone of 1st kind or an elliptic quasi-cone if one of the following conditions
holds:
(a) I(θ) < 0, H(θ) < 0, R(g) > 0, G(g) < 0;
(b) I(θ) = 0, limt→+∞

∫ t
0 R(u(s)) ds = −∞, R(g) > 0, G(g) < 0;

(8) S(γ) is a quasi-cone of type S of the 1st kind if one of the following conditions holds:
(a) I(θ) < 0, H(θ) < 0, R(g) < 0, G(g) > 0;
(b) I(θ) > 0, H(θ) < 0, R(g) > 0, G(g) > 0;
(c) I(θ) = 0, limt→+∞

∫ t
0 R(u(s)) ds = −∞, R(g) < 0, G(g) > 0;

(9) S(γ) is a parabolic quasi-cone of the 2nd kind if one of the following conditions holds:
(a) I(θ) > 0, H(θ) > 0, R(g) > 0, G(g) > 0;
(b) I(θ) = 0, limt→+∞

∫ t
0 R(u(s)) ds = +∞, R(g) > 0, G(g) > 0;

(10) S(γ) is a hyperbolic quasi-cone of the 2nd kind if one of the following conditions holds:
(a) I(θ) > 0, H(θ) > 0, R(g) < 0, G(g) < 0;
(b) I(θ) = 0, limt→+∞

∫ t
0 R(u(s)) ds = +∞, R(g) < 0, G(g) < 0;

(11) S(γ) is an elliptic quasi-cone if one of the following conditions holds:
(a) I(θ) < 0, H(θ) < 0, R(g) > 0, G(g) > 0;
(b) I(θ) = 0, limt→+∞

∫ t
0 R(u(s)) ds = −∞, R(g) > 0, G(g) > 0;

(12) S(γ) is a parabolic quasi-cone of the 1st kind if one of the following conditions holds:
(a) I(θ) < 0, H(θ) < 0, R(g) < 0, G(g) < 0;
(b) I(θ) = 0, limt→+∞

∫ t
0 R(u(s)) ds = −∞, R(g) < 0, G(g) < 0;

(13) S(γ) is a quasi-cone of type S of the 2nd kind if I(θ) > 0, H(θ) < 0, R(g) < 0, G(g) < 0;
(14) S(γ) is a parabolic quasi-cone of the 2nd kind or an elliptic quasi-cone if I(θ) < 0, H(θ) >

0, R(g) > 0, G(g) > 0;
(15) S(γ) is a parabolic quasi-cone of the 1st kind or a hyperbolic quasi-cone of the 2nd kind if I(θ) <

0, H(θ) > 0, R(g) < 0, G(g) < 0;
(16) S(γ) is a quasi-cone of type P of the 1st kind if I(θ) = H(θ) = 0, limt→+∞

∫ t
0 R(u(s)) ds ̸=

±∞, R(g) > 0, G(g) > 0;
(17) S(γ) is a quasi-cone of type P of the 1st or 2nd kind if I(θ) = H(θ) = 0, limt→+∞

∫ t
0 R(u(s)) ds ̸=

±∞, R(g) > 0, G(g) < 0;
(18) S(γ) is a quasi-cone of type P − S if I(θ) = H(θ) = 0, limt→+∞

∫ t
0 R(u(s)) ds ̸= ±∞,

R(g) < 0, G(g) > 0;
(19) S(γ) is a quasi-cone of type P of the 2nd kind if I(θ) = H(θ) = 0, limt→+∞

∫ t
0 R(u(s)) ds ̸=

±∞, R(g) < 0, G(g) < 0.

Theorem 4.8. Let Ωγ = θ1, Aγ = θ2, γ = {u(t) : t ∈ (−∞,+∞)}, then
(1) S(γ) is a quasi-cone of type S of the 1st or 4th kind if one of the following conditions holds:

(a) I(θ1) > 0, H(θ1) < 0, I(θ2) > 0, H(θ2) < 0;
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(b) I(θ1) < 0, H(θ1) > 0, I(θ2) < 0, H(θ2) > 0;
(2) S(γ) is a quasi-cone of type S of the 3rd kind if I(θ1) > 0, H(θ1) < 0, I(θ2) < 0, H(θ2) > 0;
(3) S(γ) is a hyperbolic quasi-cone of the 3rd kind or a parabolic quasi-cone of the 2nd kind or an elliptic

quasi-cone if I(θ1) <, H(θ1) > 0, I(θ2) < 0, H(θ2) > 0;
(4) S(γ) is parabolic quasi-cone of the 2nd kind or a hyperbolic quasi-cone of the 3rd kind if one of the

following conditions holds:
(a) I(θ1) > 0, H(θ1) > 0, I(θ2) > 0, H(θ2) < 0;
(b) I(θ1) < 0, H(θ1) < 0, I(θ2) < 0, H(θ2) > 0;
(c) I(θ1) = 0, limt→+∞

∫ t
0 R(u(s)) ds = +∞, I(θ2) > 0, H(θ2) < 0;

(d) I(θ1) < 0, H(θ1) > 0, I(θ2) = 0, limt→−∞
∫ t

0 R(u(s)) ds = +∞;
(5) S(γ) is a quasi-cone of type S of the 4th kind if one of the following conditions holds:

(a) I(θ1) > 0, H(θ1) > 0, I(θ2) < 0, H(θ2) > 0;
(b) I(θ1) > 0, H(θ1) < 0, I(θ2) < 0, H(θ2) < 0;
(c) I(θ1) = 0, limt→+∞

∫ t
0 R(u(s)) ds = +∞, I(θ2) < 0, H(θ2) > 0;

(d) I(θ1) > 0, H(θ1) < 0, I(θ2) = 0, limt→−∞
∫ t

0 R(u(s)) ds = +∞;
(6) S(γ) is a parabolic quasi-cone of the 2nd kind or an elliptic quasi-cone if one of the following

conditions holds:
(a) I(θ1) < 0, H(θ1) < 0, I(θ2) > 0, H(θ2) < 0;
(b) I(θ1) < 0, H(θ1) > 0, I(θ2) > 0, H(θ2) > 0;
(c) I(θ1) = 0, limt→+∞

∫ t
0 R(u(s)) ds = −∞, I(θ2) > 0, H(θ2) < 0;

(d) I(θ1) < 0, H(θ1) > 0, I(θ2) = 0, limt→−∞
∫ t

0 R(u(s)) ds = −∞;
(7) S(γ) is a quasi-cone of type S of the 1st kind if one of the following conditions holds:

(a) I(θ1) < 0, H(θ1) < 0, I(θ2) < 0, H(θ2) > 0;
(b) I(θ1) > 0, H(θ1) < 0, I(θ2) > 0, H(θ2) > 0;
(c) I(θ1) = 0, limt→+∞

∫ t
0 R(u(s)) ds = −∞, I(θ2) < 0, H(θ2) > 0;

(d) I(θ1) > 0, H(θ1) < 0, I(θ2) = 0, limt→−∞
∫ t

0 R(u(s)) ds = −∞;
(8) S(γ) is a parabolic quasi-cone of the 2nd kind if one of the following conditions holds:

(a) I(θ1) > 0, H(θ1) > 0, I(θ2) > 0, H(θ2) > 0;
(b) I(θ1) < 0, H(θ1) < 0, I(θ2) < 0, H(θ2) < 0;
(c) I(θ1) = 0, limt→+∞

∫ t
0 R(u(s)) ds = +∞, I(θ2) > 0, H(θ2) > 0;

(d) I(θ1) = 0, limt→+∞
∫ t

0 R(u(s)) ds = −∞, I(θ2) < 0, H(θ2) < 0;
(e) I(θ1) > 0, H(θ1) > 0, I(θ2) = 0, limt→−∞

∫ t
0 R(u(s)) ds = −∞;

(f) I(θ1) < 0, H(θ1) < 0, I(θ2) = 0, limt→−∞
∫ t

0 R(u(s)) ds = +∞;
(g) I(θ1) = 0, I(θ2) = 0, limt→+∞

∫ t
0 R(u(s)) ds = +∞, limt→−∞

∫ t
0 R(u(s)) ds = −∞;

(i) I(θ1) = 0, I(θ2) = 0, limt→+∞
∫ t

0 R(u(s)) ds = −∞, limt→−∞
∫ t

0 R(u(s)) ds = +∞;
(9) S(γ) is a hyperbolic quasi-cone of the 3rd kind if one of the following conditions holds:

(a) I(θ1) > 0, H(θ1) > 0, I(θ2) < 0, H(θ2) < 0;
(b) I(θ1) = 0, limt→+∞

∫ t
0 R(u(s)) ds = +∞, I(θ2) < 0, H(θ2) < 0;

(c) I(θ1) = 0, I(θ2) = 0, limt→±∞
∫ t

0 R(u(s)) ds = +∞;
(d) I(θ1) > 0, H(θ1) > 0, I(θ2) = 0, limt→−∞

∫ t
0 R(u(s)) ds = +∞;

(10) S(γ) is an elliptic quasi-cone if one of the following conditions holds:
(a) I(θ1) < 0, H(θ1) < 0, I(θ2) > 0, H(θ2) > 0;
(b) I(θ1) = 0, limt→+∞

∫ t
0 R(u(s)) ds = −∞, I(θ2) > 0, H(θ2) > 0;

(c) I(θ1) = 0, I(θ2) = 0, limt→±∞
∫ t

0 R(u(s)) ds = −∞;
(d) I(θ1) < 0, H(θ1) < 0, I(θ2) = 0, limt→−∞

∫ t
0 R(u(s)) ds = −∞;
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(11) S(γ) is a quasi-cone of type P of the 1st kind if one of the following conditions holds:
(a) I(θ1) = H(θ1) = 0, limt→+∞

∫ t
0 R(u(s)) ds ̸= ±∞, I(θ2) > 0, H(θ2) > 0;

(b) I(θ1) = 0, I(θ2) = 0, limt→+∞
∫ t

0 R(u(s)) ds = −∞, limt→−∞
∫ t

0 R(u(s)) ds ̸= ±∞;
(c) I(θ1) = 0, I(θ2) = 0, limt→+∞

∫ t
0 R(u(s)) ds ̸= ±∞, limt→−∞

∫ t
0 R(u(s)) ds = −∞;

(d) I(θ1) < 0, H(θ1) < 0, I(θ2) = H(θ2) = 0, limt→−∞
∫ t

0 R(u(s)) ds ̸= ±∞;
(12) S(γ) is a quasi-cone of type P of the 1st or 4th kind if one of the following conditions holds:

(a) I(θ1) = H(θ1) = 0, limt→+∞
∫ t

0 R(u(s)) ds ̸= ±∞, I(θ2) > 0, H(θ2) < 0;
(b) I(θ1) = 0, I(θ2) = 0, limt→+∞

∫ t
0 R(u(s)) ds = +∞, limt→−∞

∫ t
0 R(u(s)) ds ̸= ±∞;

(c) I(θ1) = 0, I(θ2) = 0, limt→+∞
∫ t

0 R(u(s)) ds ̸= ±∞, limt→−∞
∫ t

0 R(u(s)) ds = +∞;
(d) I(θ1) < 0, H(θ1) > 0, I(θ2) = H(θ2) = 0, limt→−∞

∫ t
0 R(u(s)) ds ̸= ±∞;

(13) S(γ) is a quasi-cone of type P − S if one of the following conditions holds:
(a) I(θ1) = H(θ1) = 0, limt→+∞

∫ t
0 R(u(s)) ds ̸= ±∞, I(θ2) < 0, H(θ2) > 0;

(b) I(θ1) > 0, H(θ1) < 0, I(θ2) = H(θ2) = 0, limt→−∞
∫ t

0 R(u(s)) ds ̸= ±∞;
(14) S(γ) is a quasi-cone of type P of the 4th kind if one of the following conditions holds:

(a) I(θ1) = H(θ1) = 0, limt→+∞
∫ t

0 R(u(s)) ds ̸= ±∞, I(θ2) < 0, H(θ2) < 0;
(b) I(θ1) > 0, H(θ1) > 0, I(θ2) = H(θ2) = 0, limt→−∞

∫ t
0 R(u(s)) ds ̸= ±∞;

(15) S(γ) is a quasi-cone of type P of the 3rd kind if I(θ1) = H(θ1) = I(θ2) = H(θ2) = 0,
limt→±∞

∫ t
0 R(u(s)) ds ̸= ±∞, I(θ2) < 0, H(θ2) < 0.

Theorem 4.9. Let Ωγ = G, Aγ = g, γ = {u(t) : t ∈ (−∞,+∞)}, then
(1) S(γ) is a quasi-cone of type S of the 1st or 2nd kind if all gi ∈ G such that R(gi) > 0,

G(gi) < 0, R(g) > 0, G(g) < 0;
(2) S(γ) is a quasi-cone of type S of the 3rd kind if all gi ∈ G such that R(gi) > 0, G(gi) < 0,

R(g) < 0, G(g) > 0 ;
(3) S(γ) is a hyperbolic quasi-cone of the 4th kind or a parabolic quasi-cone of the 1st or 3rd kind or an

elliptic quasi-cone if all gi ∈ G such that R(gi) < 0, G(gi) > 0, R(g) > 0, G(g) < 0 ;
(4) S(γ) is a quasi-cone of type S of the 1st or 5th kind if all gi ∈ G such that R(gi) < 0,

G(gi) > 0, R(g) < 0, G(g) > 0;
(5) S(γ) is a parabolic quasi-cone of the 3rd kind or a hyperbolic quasi-cone of the 4th kind if all

gi ∈ G such that R(gi) > 0, G(gi) > 0, R(g) > 0, G(g) < 0; or limt→+∞
∫ t

0 R(u(s)) ds = +∞,
R(g) > 0, G(g) < 0;

(6) S(γ) is a quasi-cone of type S of the 5th kind if all gi ∈ G such that R(gi) > 0, G(gi) > 0,
R(g) < 0, G(g) > 0; or limt→+∞

∫ t
0 R(u(s)) ds = +∞, R(g) < 0, G(g) > 0;

(7) S(γ) is a parabolic quasi-cone of the 1st kind or an elliptic quasi-cone if all gi ∈ G such that
R(gi) < 0, G(gi) < 0, R(g) > 0, G(g) < 0; or limt→+∞

∫ t
0 R(u(s)) ds = −∞, R(g) > 0,

G(g) < 0;
(8) S(γ) is a quasi-cone of type S of the 1st kind if all gi ∈ G such that R(gi) < 0, G(gi) < 0,

R(g) < 0, G(g) > 0; or R(gi) > 0, G(gi) < 0, R(g) > 0, G(g) > 0; or limt→+∞
∫ t

0 R(u(s)) ds =
−∞, R(g) < 0, G(g) > 0;

(9) S(γ) is a quasi-cone of type S of the 2nd kind if all gi ∈ G such that R(gi) > 0, G(gi) < 0,
R(g) < 0, G(g) < 0;

(10) S(γ) is a parabolic quasi-cone of the 4th kind or an elliptic quasi-cone if all gi ∈ G such that
R(gi) < 0, G(gi) > 0, R(g) > 0, G(g) > 0;

(11) S(γ) is a parabolic quasi-cone of the 1st kind or a hyperbolic quasi-cone of the 4th kind if all gi ∈ G
such that R(gi) < 0, G(gi) > 0, R(g) < 0, G(g) < 0;

(12) S(γ) is a parabolic quasi-cone of the 3rd kind if all gi ∈ G such that R(gi) > 0, G(gi) > 0,
R(g) > 0, G(g) > 0; or limt→+∞

∫ t
0 R(u(s)) ds = +∞, R(g) > 0, G(g) > 0;
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(13) S(γ) is a hyperbolic quasi-cone of the 4th kind if all gi ∈ G such that R(gi) > 0, G(gi) > 0,
R(g) < 0, G(g) < 0; or limt→+∞

∫ t
0 R(u(s)) ds = +∞, R(g) < 0, G(g) < 0;

(14) S(γ) is an elliptic quasi-cone if all gi ∈ G such that R(gi) < 0, G(gi) < 0, R(g) > 0, G(g) > 0;
or limt→+∞

∫ t
0 R(u(s)) ds = −∞, R(g) > 0, G(g) > 0;

(15) S(γ) is a parabolic quasi-cone of the 1st kind if all gi ∈ G such that R(gi) < 0, G(gi) < 0,
R(g) < 0, G(g) < 0; or limt→+∞

∫ t
0 R(u(s)) ds = −∞, R(g) < 0, G(g) < 0.

Theorem 4.10. Let Ωγ = G, Aγ = θ, γ = {u(t) : t ∈ (−∞,+∞), then
(1) S(γ) is a quasi-cone of type S of the 1st or 4th kind if all gi ∈ G such that R(gi) > 0, G(gi) < 0,

I(θ) > 0, H(θ) < 0;
(2) S(γ) is a quasi-cone of type S of the 3rd kind if all gi ∈ G such that R(gi) > 0, G(gi) < 0,

I(θ) < 0, H(θ) > 0 ;
(3) S(γ) is a hyperbolic quasi-cone of the 5th kind or a parabolic quasi-cone of the 2nd or 3rd kind or

an elliptic quasi-cone if all gi ∈ G such that R(gi) < 0, G(gi) > 0, I(θ) > 0, H(θ) < 0 ;
(4) S(γ) is a quasi-cone of type S of the 1st or 5th kind if all gi ∈ G such that R(gi) < 0, G(gi) > 0,

I(θ) < 0, H(θ) > 0;
(5) S(γ) is a parabolic quasi-cone of the 3rd kind or a hyperbolic quasi-cone of the 5th kind if one of the

following conditions holds:
(a) all gi ∈ G such that R(gi) > 0, G(gi) > 0, I(θ) > 0, H(θ) < 0;
(b) limt→+∞

∫ t
0 R(u(s)) ds = +∞, I(θ) > 0, H(θ) < 0;

(6) S(γ) is a quasi-cone of type S of the 5th kind if one of the following conditions holds:
(a) all gi ∈ G such that R(gi) > 0, G(gi) > 0, I(θ) < 0, H(θ) > 0;
(b) limt→+∞

∫ t
0 R(u(s)) ds = +∞, I(θ) < 0, H(θ) > 0;

(7) S(γ) is a parabolic quasi-cone of the 2nd kind or an elliptic quasi-cone if one of the following
conditions holds:
(a) all gi ∈ G such that R(gi) < 0, G(gi) < 0, I(θ) > 0, H(θ) < 0;
(b) limt→+∞

∫ t
0 R(u(s)) ds = −∞, I(θ) > 0, H(θ) < 0;

(8) S(γ) is a quasi-cone of type S of the 1st kind if one of the following conditions holds:
(a) all gi ∈ G such that R(gi) < 0, G(gi) < 0, I(θ) < 0, H(θ) > 0;
(b) all gi ∈ G such that R(gi) > 0, G(gi) < 0, I(θ) > 0, H(θ) > 0;
(c) all gi ∈ G such that R(gi) > 0, I(θ) = 0, H(θ) ̸= 0, limt→−∞

∫ t
0 R(u(s)) ds = −∞;

(d) limt→+∞
∫ t

0 R(u(s)) ds = −∞, I(θ) < 0, H(θ) > 0;
(9) S(γ) is a quasi-cone of type S of the 4th kind if one of the following conditions holds:

(a) all gi ∈ G such that R(gi) > 0, G(gi) < 0, I(θ) < 0, H(θ) < 0;
(b) all gi ∈ G such that R(gi) > 0, I(θ) = 0, H(θ) ̸= 0, limt→−∞

∫ t
0 R(u(s)) ds = +∞;

(10) S(γ) is a parabolic quasi-cone of the 3rd kind or an elliptic quasi-cone if one of the following
conditions holds:
(a) all gi ∈ G such that R(gi) < 0, G(gi) > 0, I(θ) > 0, H(θ) > 0;
(b) all gi ∈ G such that R(gi) < 0, I(θ) = 0, H(θ) ̸= 0, limt→−∞

∫ t
0 R(u(s)) ds = −∞;

(11) S(γ) is a parabolic quasi-cone of the 2nd kind or a hyperbolic quasi-cone of the 5th kind if one of
the following conditions holds:
(a) all gi ∈ G such that R(gi) < 0, G(gi) > 0, I(θ) < 0, H(θ) < 0;
(b) all gi ∈ G such that R(gi) < 0, I(θ) = 0, H(θ) ̸= 0, limt→−∞

∫ t
0 R(u(s)) ds = +∞;

(12) S(γ) is a parabolic quasi-cone of the 3rd kind if one of the following conditions holds:
(a) all gi ∈ G such that R(gi) > 0, G(gi) > 0, I(θ) > 0, H(θ) > 0;
(b) all gi ∈ G such that R(gi) > 0, I(θ) = 0, H(θ) ̸= 0, limt→−∞

∫ t
0 R(u(s)) ds = −∞;

(c) limt→+∞
∫ t

0 R(u(s)) ds = +∞, I(θ) > 0, H(θ) > 0;
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(d) limt→+∞
∫ t

0 R(u(s)) ds = +∞, I(θ) = 0, limt→−∞
∫ t

0 R(u(s)) ds = −∞;
(13) S(γ) is a hyperbolic quasi-cone of the 4th kind if one of the following conditions holds:

(a) all gi ∈ G such that R(gi) > 0, G(gi) > 0, I(θ) < 0, H(θ) < 0;
(b) all gi ∈ G such that R(gi) > 0, I(θ) = 0, H(θ) ̸= 0, limt→−∞

∫ t
0 R(u(s)) ds = +∞;

(c) limt→+∞
∫ t

0 R(u(s)) ds = +∞, I(θ) < 0, H(θ) < 0;
(d) limt→+∞

∫ t
0 R(u(s)) ds = +∞, I(θ) = 0, limt→−∞

∫ t
0 R(u(s)) ds = +∞;

(14) S(γ) is an elliptic quasi-cone if one of the following conditions holds:
(a) all gi ∈ G such that R(gi) < 0, G(gi) < 0, I(θ) > 0, H(θ) > 0;
(b) all gi ∈ G such that R(gi) < 0, I(θ) = 0, H(θ) ̸= 0, limt→−∞

∫ t
0 R(u(s)) ds = −∞;

(c) limt→+∞
∫ t

0 R(u(s)) ds = −∞, I(θ) > 0, H(θ) > 0;
(d) limt→+∞

∫ t
0 R(u(s)) ds = −∞, I(θ) = 0, limt→−∞

∫ t
0 R(u(s)) ds = −∞;

(15) S(γ) is a parabolic quasi-cone of the 2nd kind if one of the following conditions holds:
(a) all gi ∈ G such that R(gi) < 0, G(gi) < 0, I(θ) < 0, H(θ) < 0;
(b) all gi ∈ G such that R(gi) < 0, I(θ) = 0, H(θ) ̸= 0, limt→−∞

∫ t
0 R(u(s)) ds = +∞;

(c) limt→+∞
∫ t

0 R(u(s)) ds = −∞, I(θ) < 0, H(θ) < 0;
(d) limt→+∞

∫ t
0 R(u(s)) ds = −∞, I(θ) = 0, limt→−∞

∫ t
0 R(u(s)) ds = +∞;

(16) S(γ) is a quasi-cone of type P of the 5th kind if one of the following conditions holds:
(a) all gi ∈ G such that R(gi) > 0, G(gi) > 0, I(θ) = H(θ) = 0, limt→−∞

∫ t
0 R(u(s)) ds ̸= ±∞;

(b) limt→+∞
∫ t

0 R(u(s)) ds = +∞, I(θ) = 0 = H(θ) = 0, limt→−∞
∫ t

0 R(u(s)) ds ̸= ±∞;
(17) S(γ) is a quasi-cone of type P− S if all gi ∈ G such that R(gi) > 0, G(gi) < 0, I(θ) = H(θ) = 0,

limt→−∞
∫ t

0 R(u(s)) ds ̸= ±∞;
(18) S(γ) is a quasi-cone of type P of the 1st or 5th kind if all gi ∈ G such that R(gi) < 0, G(gi) > 0,

I(θ) = H(θ) = 0, limt→−∞
∫ t

0 R(u(s)) ds ̸= ±∞;
(19) S(γ) is a quasi-cone of type P of the 1st kind if one of the following conditions holds:

(a) all gi ∈ G such that R(gi) < 0, G(gi) < 0, I(θ) = H(θ) = 0, limt→−∞
∫ t

0 R(u(s)) ds ̸= ±∞;
(b) limt→+∞

∫ t
0 R(u(s)) ds = −∞, I(θ) = H(θ) = 0, limt→−∞

∫ t
0 R(u(s)) ds ̸= ±∞;

Theorem 4.11. Let Ωγ = G1, Aγ = G2, γ = {u(t) : t ∈ (−∞,+∞)}, then
(1) S(γ) is a quasi-cone of type S of the 1st or 5th kind if all gi ∈ G1, gj ∈ G2 such that R(gi) > 0,

G(gi) < 0, R(gj) > 0, G(gj) < 0;
(2) S(γ) is a quasi-cone of type S of the 3rd kind if all gi ∈ G1, gj ∈ G2 such that R(gi) > 0, G(gi) < 0,

R(gj) < 0, G(gj) > 0 ;
(3) S(γ) is a hyperbolic quasi-cone of the 6th kind or a parabolic quasi-cone of the 3rd kind or an elliptic

quasi-cone if all gi ∈ G1, gj ∈ G2 such that R(gi) < 0, G(gi) > 0, R(gj) > 0, G(gj) < 0 ;
(4) S(γ) is a quasi-cone of type S of the 1st or 5th kind if all gi ∈ G1, gj ∈ G2 such that R(gi) < 0,

G(gi) > 0, R(gj) < 0, G(gj) > 0;
(5) S(γ) is a parabolic quasi-cone of the 3rd kind or a hyperbolic quasi-cone of the 6th kind if all

gi ∈ G1, gj ∈ G2 such that R(gi) > 0, G(gi) > 0, R(g) > 0, G(g) < 0;
(6) S(γ) is a quasi-cone of type S of the 5th kind if R(gi) > 0, G(gi) > 0, R(gj) < 0, G(gj) > 0;
(7) S(γ) is a parabolic quasi-cone of the 3rd kind or an elliptic quasi-cone if all gi ∈ G1, gj ∈ G2 such

that R(gi) < 0, G(gi) < 0, R(gj) > 0, G(gj) < 0;
(8) S(γ) is a quasi-cone of type S of the 1st kind if one of the following conditions holds:

(a) all gi ∈ G1, gj ∈ G2 such that R(gi) < 0, G(gi) < 0, R(g) < 0, G(g) > 0;
(b) all gi ∈ G1, gj ∈ G2 such that R(gi) > 0, G(gi) < 0, R(gj) > 0, G(gj) > 0;

(9) S(γ) is a quasi-cone of type S of the 5th kind if all gi ∈ G1, gj ∈ G2 such that R(gi) > 0, G(gi) < 0,
R(gj) < 0, G(gj) < 0;
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(10) S(γ) is a parabolic quasi-cone of the 3rd kind or an elliptic quasi-cone if all gi ∈ G1, gj ∈ G2 such
that R(gi) < 0, G(gi) > 0, R(gj) > 0, G(gj) > 0;

(11) S(γ) is a parabolic quasi-cone of the 3rd kind or a hyperbolic quasi-cone of the 6th kind if all
gi ∈ G1, gj ∈ G2 such that R(gi) < 0, G(gi) > 0, R(gj) < 0, G(gj) < 0;

(12) S(γ) is a parabolic quasi-cone of the 3rd kind if one of the following conditions holds:
(a) all gi ∈ G1, gj ∈ G2 such that R(gi) > 0, G(gi) > 0, R(gj) > 0, G(gj) > 0;
(b) all gi ∈ G1, gj ∈ G2 such that R(gi) < 0, G(gi) < 0, R(gj) < 0, G(gj) < 0;
(c) limt→+∞

∫ t
0 R(u(s)) ds = +∞, limt→−∞

∫ t
0 R(u(s)) ds = −∞;

(d) limt→+∞
∫ t

0 R(u(s)) ds = −∞, limt→−∞
∫ t

0 R(u(s)) ds = +∞;
(13) S(γ) is a hyperbolic quasi-cone of the 6th kind if one of the following conditions holds:

(a) all gi ∈ G1, gj ∈ G2 such that R(gi) > 0, G(gi) > 0, R(gj) < 0, G(gj) < 0;
(b) limt→+∞

∫ t
0 R(u(s)) ds = +∞, limt→−∞

∫ t
0 R(u(s)) ds = +∞;

(14) S(γ) is an elliptic quasi-cone if one of the following conditions holds:
(a) gi ∈ G1, gj ∈ G2 such that R(gi) < 0, G(gi) < 0, R(gj) > 0, G(gj) > 0;
(b) limt→+∞

∫ t
0 R(u(s)) ds = −∞, limt→−∞

∫ t
0 R(u(s)) ds = −∞.

Theorem 4.12. If the tangent vector field QT(u) has a closed orbit θ = θ(s) with period T on the sphere
S2 and

∫ T
0 R(θ(s)) ds ·

∫ T
0 e(δ−m−1)

∫ T
τ R(θ(s)) dsG(θ(τ)) dτ < 0, then the vector field xF(x) + Q(x)

has a closed orbit θ⋆(θ⋆ ∈ C(θ)) in R3. Furthermore, the closed orbit θ⋆ is an attractor for other
trajectories on S(θ) if

∫ T
0 R(θ(s)) ds > 0.

Proof. By the discussion in Section 2 we know that the flows of the vector field xF(x) + Q(x)
in R3 are topologically equivalent to the flows of systems (2.2), and system (2.2b) has a closed
orbit θ = θ(s) with period T. If system (2.2a) has only one periodic solution r(t, r⋆0) (r⋆0 > 0
is the initial value) with period T on the closed surface S(θ), then there is a closed orbit θ⋆ of
the vector field xF(x) + Q(x) in R3. As a matter of fact, the general solution of system (2.2a)
on the closed surface S(θ) is

r(t, r0) = e
∫ t

0 R(θ(s)) ds
[

rδ−m−1
0 + (δ − m − 1)

∫ t

0
e−(δ−m−1)

∫ τ
0 R(θ(s)) dsG(θ(τ)) dτ

] 1
δ−m−1

.

Then,

r(t + T, r0) =

[
(r0e

∫ T
0 R(θ(s)) ds)δ−m−1 + (δ − m − 1)

∫ T

0
e(δ−m−1)

∫ T
τ R(θ(s)) dsG(θ(τ)) dτ

+(δ − m − 1)
∫ t+T

T
e(δ−m−1)

∫ T
τ R(θ(s)) dsG(θ(τ)) dτ

] 1
δ−m−1

· e
∫ t

0 R(θ(s)) ds

=

[
(r0e

∫ τ
0 R(θ(s)) ds)δ−m−1 + (δ − m − 1)

∫ T

0
e(δ−m−1)

∫ T
τ R(θ(s)) dsG(θ(τ))d τ

+(δ − m − 1)
∫ t

0
e−(δ−m−1)

∫ τ
0 R(θ(s)) dsG(θ(τ))dτ

] 1
δ−m−1

· e
∫ t

0 R(θ(s)) ds.

By
∫ T

0 R(θ(s)) ds ·
∫ T

0 e(δ−m−1)
∫ T

τ R(θ(s)) dsG(θ(τ))dτ < 0 we know that there is a unique r⋆0 :

r⋆0 =

 (δ − m − 1)
∫ T

0 e(δ−m−1)
∫ T

τ R(θ(s)) dsG(θ(τ)) dτ

1 − e(δ−m−1)
∫ T

0 R(θ(s)) ds

 1
δ−m−1
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such that r(t + T, r⋆0) = r(t, r⋆0). Therefore, there is only one closed orbit θ⋆ of the vector field
xF(x) + Q(x) on the closed surface S(θ).

We will prove that the closed orbit θ⋆ is an attractor to all trajectories on S(θ) if∫ T
0 R(θ(s)) ds < 0.

For any initial value r0 > r∗0 , the Poincaré map of the solution r(t, r0) of equation (2.2a) on
the closed surface S(θ) is

rδ−m−1(T, r0)− rδ−m−1
0

=
[
e(δ−m−1)

∫ T
0 R(θ(s)) ds − 1

]
rδ−m−1

0

+ (δ − m − 1)e(δ−m−1)
∫ T

0 R(θ(s)) ds
∫ T

0
e−(δ−m−1)

∫ τ
0 R(θ(s)) dsG(θ(τ)) dτ.

Since r(T, r⋆0) = r⋆0 , we have

(δ − m − 1)e(δ−m−1)
∫ T

0 R(θ(s)) ds
∫ T

0
e−(δ−m−1)

∫ τ
0 R(θ(s)) dsG(θ(τ)) dτ

=
[
1 − e(δ−m−1)

∫ T
0 R(θ(s)) ds

]
r⋆(δ−m−1)

0 .

Then,

rδ−m−1(T, r0)− rδ−m−1
0 =

[
e(δ−m−1)

∫ T
0 R(θ(s)) ds − 1

] (
rδ−m−1

0 − r⋆(δ−m−1)
0

)
> 0

(since m + 1 − δ > 0, rδ−m−1
0 − r⋆(δ−m−1)

0 < 0). Therefore, we have r(T, r0) < r0.
The closed orbit attracts all the trajectories r(t, r0) on the S(θ) with initial condition r(0, r0) =

r0 > r∗0 .
For any initial value r0 < r∗0 , similarly, we have

rδ−m−1(T, r0)− rδ−m−1
0 =

[
e(δ−m−1)

∫ T
0 R(θ(s)) ds − 1

] (
rδ−m−1

0 − r⋆(δ−m−1)
0

)
< 0.

Therefore, we have that r(T, r0) > r0. The closed orbit attracts all the trajectories r(t, r0) on
the S(θ) with initial condition r(0, r0) = r0 < r∗0 .

This proves that the global orbit r(t, r∗0)θ(s) of the vector field xF(x) + Q(x) is a global
attractor of all trajectories of xF(x) + Q(x) on S(θ) if

∫ T
0 R(θ(s)) ds < 0.

Similarly, we can also get that the closed orbit θ⋆ is a repeller for other trajectories on S(θ)
if
∫ T

0 R(θ(s)) ds > 0.
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