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Abstract. In this paper, we establish a new Lyapunov-type inequality for quasilinear sys-
tems. Our result in special case reduces to the result of Watanabe et al. [J. Inequal. Appl.
242(2012), 1–8]. As an application, we also obtain lower bounds for the eigenvalues of
corresponding systems.
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1 Introduction

In 1907, Lyapunov [23] obtained the following remarkable inequality

4
b− a

≤
∫ b

a
f1 (z) dz, (1.1)

if Hill’s equation
u′′1 + f1 (x) u1 = 0 (1.2)

has a real nontrivial solution u1(x) such that the Dirichlet boundary conditions

u1(a) = 0 = u1(b) (1.3)

hold, where a, b ∈ R with a < b consecutive zeros, u1 is not identically zero on [a, b], and f1 is
a real-valued positive continuous function defined on R. We know that the constant 4 on the
left-hand side of inequality (1.1) cannot be replaced by a larger number (see [19, p. 345]).

Since the appearance of Lyapunov’s fundamental paper, various proofs and generalizations
or improvements have appeared in the literature under the Dirichlet boundary conditions. For
example, for authors who are interested in the Lyapunov-type inequalities, we refer to Elia-
son [16], Harris and Kong [18], Hartman [19], Kwong [21], and Reid [33]. We should also
mention here that inequality (1.1) has been generalized to second order nonlinear differential
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equations by Eliason [16] and Pachpatte [26,27], to delay differential equations of the second or-
der by Dahiya and Singh [13] and Eliason [17], to third order differential equations by Parhi and
Panigrahi [29], to certain higher order differential equations by Çakmak [7], He and Tang [20],
Pachpatte [25], Panigrahi [28], Parhi and Panigrahi [30], Yang [38], and Yang and Lo [39], and to
systems by Aktaş [3], Aktaş et al. [4], Bonder and Pinasco [5], Çakmak and Tiryaki [8, 9], Çak-
mak [10], Çakmak et al. [11], Napoli and Pinasco [24], Tang and He [34], Tiryaki et al. [35–37],
and Yang et al. [40, 41]. Lyapunov-type inequalities can be found in Pachpatte’s paper [27] for
the Emden-Fowler type equations, and were obtained for the first time by Elbert [15] for the
half-linear equation, but the proof of its extension can be found in the book of Došlý and Ře-
hák [14]. Lyapunov-type inequalities for the half-linear equation have been rediscovered by
Lee et al. [22] and Pinasco [31, 32].

Recently, Aktaş et al. [2], Çakmak [12] and Wang [42] obtained the Lyapunov-type inequal-
ities under the anti-periodic boundary conditions.

More recently, by using the clamped-free boundary conditions, Watanabe et al. [43] ob-
tained a new Lyapunov-type inequality for 2n-th order differential equation as follows.

Theorem A [43, Theorem 1]. If f1 ∈ C ([−s, s] , R) and u1 (x) is a nontrivial solution on [−s, s] for
the following 2n-th order differential equation

(−1)n u(2n)
1 = f1(x)u1 (1.4)

with the clamped-free boundary conditions

u(i)
1 (−s) = 0 = u(n+i)

1 (s) (1.5)

for i = 0, 1, . . . , n− 1, then the inequality

[(n− 1)!]2 (2n− 1)

(2s)2n−1 <
∫ s

−s
f +
1 (z)dz (1.6)

holds, where f+1 (x) = max {0, f1(x)} is the nonnegative part of f1(x).

In this paper, we prove a new Lyapunov-type inequality for the following system

(
rk (x) φpk

(
u′k
))′

+ fk(x)φαkk (uk)
n

∏
i=1
i 6=k

|ui|αki = 0, (1.7)

where n ∈ N, φγ (u) = |u|γ−2 u, γ > 1, fk,rk ∈ C ([−s, s] , R), rk(x) > 0 for k = 1, 2, . . . , n
and x ∈ R, (u1(x), u2(x), . . . , un(x)) is a real nontrivial solution of system (1.7) such that the
boundary conditions

uk (−s) = 0 = u′k (s) (1.8)

hold for k = 1, 2, . . . , n, uk for k = 1, 2, . . . , n are not identically zero on [−s, s], 1 < pk < ∞ and
αki for k, i = 1, 2, . . . , n are nonnegative constants.

As an application, we have also investigated the lower bounds on the generalized eigen-
value (λ1, λ2, . . . , λn) of the following problem

(
rk (x) φpk

(
u′k
))′

+ λkr(x)φαkk (uk)
n

∏
i=1
i 6=k

|ui|αki = 0 (1.9)
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with the boundary conditions (1.8) for k = 1, 2, . . . , n and r(x) ∈ C ([−s, s] , R).
As usual, it is easier to find upper bounds for eigenvalues than lower bounds. In fact, they

can be obtained by using elementary inequalities. Finding the estimated lower bounds is based
on giving a suitable Lyapunov inequality for the corresponding systems. For readers who are
interested in the existence of the generalized eigenvalues for the special case of system (1.9),
we refer to the paper by Napoli and Pinasco [24].

Note that if we take αkk = pk, k = 1, 2, . . . , n, and for i 6= k, αki = 0 for i = 1, 2, . . . , n, then
we obtain uncoupled equations, i.e. the half-linear second order differential equations(

rk (x) φpk

(
u′k
))′

+ fk(x)φpk (uk) = 0 (1.10)

for k = 1, 2, . . . , n from system (1.7). However, the equation (1.4), which was considered by
Watanabe et al. [43], does not reduce to the equation (1.10). Moreover, when n = 1 in the
problem (1.7)–(1.8) with r1 (x) = 1 and p1 = 2 or (1.4)–(1.5), we have the following linear
problem {

u′′1 + f1(x)u1 = 0,
u1 (−s) = 0 = u′1 (s) .

(1.11)

Thus, we obtain the following inequality

1
2s

<
∫ s

−s
f +
1 (z)dz (1.12)

from Theorem A with n = 1 given by Watanabe et al. [43].
In this paper, our motivation comes from the recent papers of Çakmak and Tiryaki [9], Yang

et al. [40], and Watanabe et al. [43]. We prove a new Lyapunov-type inequality for system (1.7)
with the boundary conditions (1.8).

Since our attention is restricted to the Lyapunov-type inequality for the quasilinear systems
of differential equations, we shall assume the existence of the nontrivial solution of system
(1.7). For readers who are interested in the existence of the solution of this type of systems, we
refer to the paper by Afrouzi and Heidarkhani [1].

2 Main results

We prove a lemma which we will use in the proof of our main result.

Lemma 2.1. If (u1 (x) , u2 (x) , . . . , un (x)) is a nontrivial solution of system (1.7) satisfying the con-
dition uk (−s) = 0 = u′k (s) for k = 1, 2, . . . , n, then we have

|uk (z)| <
(∫ s

−s
r1/(1−pk)

k (v) dv
)(pk−1)/pk

(∫ s

−s
rk (v)

∣∣u′k (v)∣∣pk dv
)1/pk

(2.1)

for z ∈ [−s, s] and k = 1, 2, . . . , n.

Proof. Let uk (−s) = 0 = u′k (s) for k = 1, 2, . . . , n where n ∈N and uk for k = 1, 2, . . . , n are not
identically zero on [−s, s]. By using uk (−s) = 0 and Hölder’s inequality, we get

|uk (z)| =
∣∣∣∣∫ z

−s
u′k (v) dv

∣∣∣∣ ≤ ∫ z

−s

∣∣u′k (v)∣∣ dv ≤
∫ s

−s

∣∣u′k (v)∣∣ dv =
∫ s

−s
r−1/pk

k (v) r1/pk
k (v)

∣∣u′k (v)∣∣ dv

≤
(∫ s

−s
r−1/(pk−1)

k (v) dv
)(pk−1)/pk

(∫ s

−s
rk (v)

∣∣u′k (v)∣∣pk dv
)1/pk

(2.2)
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for z ∈ [−s, s] and k = 1, 2, . . . , n. We claim that

|uk (z)|pk <

(∫ s

−s
r−1/(pk−1)

k (v) dv
)pk−1 (∫ s

−s
rk (v)

∣∣u′k (v)∣∣pk dv
)

(2.3)

for z ∈ [−s, s] and k = 1, 2, . . . , n. In fact, if (2.3) is not true, then it follows from (2.2) that

(∫ s

−s

∣∣u′k (v)∣∣ dv
)pk

=

(∫ s

−s
r−1/(pk−1)

k (v) dv
)pk−1 (∫ s

−s
rk (v)

∣∣u′k (v)∣∣pk dv
)

, k = 1, 2, . . . , n,
(2.4)

which, together with the Hölder’s inequality, implies that there exists a constant c such that

rk (x)
∣∣u′k (x)

∣∣pk = cr−1/(pk−1)
k (x) (2.5)

for −s ≤ x ≤ s and k = 1, 2, . . . , n. If c = 0, then u′k (x) = 0 for x ∈ [−s, s], it follows from
(2.2) that uk (z) = 0, which contradicts the fact that uk (z) 6= 0 for z ∈ [−s, s] and k = 1, 2, . . . , n.
If c 6= 0, then

∣∣u′k (x)
∣∣ > 0 for x ∈ [−s, s], it follows that u′k (z) 6= 0 for z ∈ [−s, s] and k =

1, 2, . . . , n, which contradicts the fact that u′k (s) = 0 for k = 1, 2, . . . , n. Therefore, the inequality
(2.1) for z ∈ [−s, s] and k = 1, 2, . . . , n holds.

Now, we give the main result of this paper.

Theorem 2.2. Assume that there exist nontrivial solutions (e1, e2, . . . , en) of the following linear ho-
mogeneous system

ek

(
1− αkk

pk

)
−

n

∑
i=1
i 6=k

αik

pk
ei = 0, (2.6)

where ek ≥ 0 for k = 1, 2, . . . , n. If fk ∈ C ([−s, s] , R) for k = 1, 2, . . . , n and (u1 (x) , u2 (x) , . . . , un (x))
is a nontrivial solution on [−s, s] for problem (1.7)-(1.8), then the inequality

1 <
n

∏
k=1

[∫ s

−s
f+k (z)

n

∏
i=1

(∫ s

−s
r1/(1−pi)

i (v) dv
)αki(pi−1)/pi

dz

]ek

(2.7)

holds, where f+k (x) = max {0, fk(x)} for k = 1, 2, . . . , n.

Proof. Let uk (−s) = 0 = u′k (s) for k = 1, 2, . . . , n where n ∈N and uk for k = 1, 2, . . . , n are not
identically zero on [−s, s]. Multiplying the k-th equation of system (1.7) by uk, integrating from
−s to s, and by using boundary conditions (1.8), we get

∫ s

−s
rk (z)

∣∣u′k(z)∣∣pk dz =
∫ s

−s
fk(z)

n

∏
i=1
|ui (z)|αki dz (2.8)
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for k = 1, 2, . . . , n. By using the inequality (2.1) in (2.8), we obtain∫ s

−s
rk (z)

∣∣u′k(z)∣∣pk dz

≤
∫ s

−s
f+k (z)

n

∏
i=1
|ui (z)|αki dz

<
∫ s

−s
f+k (z)

n

∏
i=1

[(∫ s

−s
r1/(1−pi)

i (v) dv
)αki(pi−1)/pi

(∫ s

−s
ri (v)

∣∣u′i (v)∣∣pi dv
)αki/pi

]
dz

=

[
n

∏
i=1

(∫ s

−s
ri (z)

∣∣u′i (z)∣∣pi dz
)αki/pi

]

×
[∫ s

−s
f+k (z)

n

∏
i=1

(∫ s

−s
r1/(1−pi)

i (v) dv
)αki(pi−1)/pi

dz

]
(2.9)

for k = 1, 2, . . . , n. Now, we prove that 0 <
∫ s
−s rk (z)

∣∣u′k (z)∣∣pk dz for k = 1, 2, . . . , n. If the in-
equality 0 <

∫ s
−s rk (z)

∣∣u′k (z)∣∣pk dz is not true, then
∫ s
−s rk (z)

∣∣u′k (z)∣∣pk dz = 0 for k = 1, 2, . . . , n.
If
∫ s
−s rk (z)

∣∣u′k (z)∣∣pk dz = 0, then it follows that

u′k (x) ≡ 0 (2.10)

for−s ≤ x ≤ s and k = 1, 2, . . . , n. Combining (2.2) with (2.10), we obtain that uk(z) = 0, which
contradicts uk(z) 6= 0 for z ∈ [−s, s] and k = 1, 2, . . . , n. Therefore,

0 <
∫ s

−s
rk (z)

∣∣u′k (z)∣∣pk dz (2.11)

for k = 1, 2, . . . , n holds. Thus, from (2.9) and (2.11), we have

(∫ s

−s
rk (z)

∣∣u′k(z)∣∣pk dz
)1− αkk

pk
<

 n

∏
i=1
i 6=k

(∫ s

−s
ri (z)

∣∣u′i (z)∣∣pi dz
) αki

pi


×
[∫ s

−s
f+k (z)

n

∏
i=1

(∫ s

−s
r1/(1−pi)

i (v) dv
)αki(pi−1)/pi

dz

]
(2.12)

for k = 1, 2, . . . , n. Raising both sides of the inequality (2.12) to the power ek for each k =

1, 2, . . . , n, respectively, and multiplying the resulting inequalities side by side, we obtain

n

∏
k=1

(∫ s

−s
rk (z)

∣∣u′k (z)∣∣pk dz
)(1− αkk

pk

)
ek

<
n

∏
k=1

 n

∏
i=1
i 6=k

(∫ s

−s
ri (z)

∣∣u′i (z)∣∣pi dz
) αki

pi


ek

×
n

∏
k=1

[∫ s

−s
f+k (z)

n

∏
i=1

(∫ s

−s
r1/(1−pi)

i (v) dv
)αki(pi−1)/pi

dz

]ek

(2.13)

and hence

n

∏
k=1

(∫ s

−s
rk (z)

∣∣u′k (z)∣∣pk dz
)(1− αkk

pk

)
ek

<

 n

∏
k=1

(∫ s

−s
rk (z)

∣∣u′k (z)∣∣pk dz
) n

∑
i=1
i 6=k

αik
pk

ei


×

n

∏
k=1

[∫ s

−s
f+k (z)

n

∏
i=1

(∫ s

−s
r1/(1−pi)

i (v) dv
)αki(pi−1)/pi

dz

]ek

. (2.14)
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Thus, we have

n

∏
k=1

(∫ s

−s
rk (z)

∣∣u′k (z)∣∣pk dz
)θk

<
n

∏
k=1

[∫ s

−s
f+k (z)

n

∏
i=1

(∫ s

−s
r1/(1−pi)

i (v) dv
)αki(pi−1)/pi

dz

]ek

,

(2.15)

where

θk = ek

(
1− αkk

pk

)
−

n

∑
i=1
i 6=k

αik

pk
ei

for k = 1, 2, . . . , n. By assumption, system (2.6) has nontrivial solutions (e1, e2, . . . , en) such
that θk = 0 for k = 1, 2, . . . , n, where ek ≥ 0 for k = 1, 2, . . . , n and at least one ej > 0 for
j = {1, 2, . . . , n}. Choosing one of the solutions (e1, e2, . . . , en), we obtain the inequality (2.7)
from (2.15). This completes the proof.

The proof of the following result proceeds along the lines of that of Corollary 1 in Yang et
al. [40] and hence is omitted.

Corollary 2.3. Assume that
n

∑
i=1

αik = pk (2.16)

for k = 1, 2, . . . , n. If fk ∈ C ([−s, s] , R) for k = 1, 2, . . . , n and (u1 (x) , u2 (x) , . . . , un (x)) is a
nontrivial solution on [−s, s] for problem (1.7)–(1.8), then the inequality

1 <
n

∏
k=1

[∫ s

−s
f+k (z)

n

∏
i=1

(∫ s

−s
r1/(1−pi)

i (v) dv
)αki(pi−1)/pi

dz

]
(2.17)

holds, where f+k (x) = max {0, fk(x)} for k = 1, 2, . . . , n.

Remark 2.4. If we take n = 1 and α11 = p1 in the problem (1.7)–(1.8), then we obtain the
following half-linear problem{ (

r1 (x) φp1 (u
′
1)
)′
+ f1(x)φp1 (u1) = 0,

u1 (−s) = 0 = u′1 (s) .
(2.18)

Thus, we have the following inequality(∫ s

−s
r1/(1−p1)

1 (v) dv
)1−p1

<
∫ s

−s
f+1 (z) dz (2.19)

from the inequality (2.17) in Corollary 2.3. In addition to this, if we take p1 = 2 and r1 (x) = 1 in
the problem (2.18), then the inequality (2.19) reduces to the inequality (1.12) given by Watanabe
et al. [43].

Now, we present an application of the Lyapunov-type inequality obtained for system (1.7).
We obtain the following result which gives lower bounds for the n-th component of any

generalized eigenvalue (λ1, λ2, . . . , λn) of problem (1.9)–(1.8). The proof of the following theo-
rem is based on above generalization of the Lyapunov-type inequality, as in that of Theorem 9
of Çakmak and Tiryaki [9] and hence is omitted.
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Theorem 2.5. Assume that there exist nontrivial solutions (e1, e2, . . . , en) of system (2.6). Then there
exists a function h1(λ1, λ2, . . . , λn−1) such that

h1(λ1, λ2, . . . , λn−1) < |λn| (2.20)

for any generalized eigenvalue (λ1, λ2, . . . , λn) of problem (1.9)–(1.8), where

h1(λ1, λ2, . . . , λn−1)

=

{[
n−1

∏
k=1
|λk|ek

] [
n

∏
k=1

(∫ s

−s
|r (z)|

n

∏
i=1

(∫ s

−s
r1/(1−pi)

i (v) dv
)αki(pi−1)/pi

dz

)ek
]}− 1

en

.
(2.21)

Remark 2.6. Since h1 is a continuous function, then h1(λ1, λ2, . . . , λn−1) → +∞ as any com-
ponent of eigenvalue λk → 0 for k = 1, 2, . . . , n− 1. Therefore, there exists a ball centered in
the origin such that the generalized spectrum is contained in its exterior. Also, by rearranging
terms in (2.20) we obtain

n

∏
k=1

[∫ s

−s
|r (z)|

n

∏
i=1

(∫ s

−s
r1/(1−pi)

i (v) dv
)αki(pi−1)/pi

dz

]−ek

<
n

∏
k=1
|λk|ek . (2.22)

It is clear that when the interval collapses, left-hand side of (2.22) goes to infinity.
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