CORF

brought to you

BRONZE AGE CERAMICS AND SLAG FROM THE LĂPUŞ NECROPOLIS (NW ROMANIA)

HOECK, V.^{1*}, IONESCU, C.², METZNER-NEBELSICK, C.³, NEBELSICK, L.D.⁴ & KACSÓ, C.⁵

¹ Dept. of Geography and Geology, Salzburg University, 34 Hellbrunner Str., A-5020 Salzburg, Austria

² Dept. of Geology, Babeş-Bolyai University, 1, Kogălniceanu Str., RO-400084 Cluj-Napoca, Romania

- ³ Ludwig Maximilian University, Munich, Germany
- ⁴ Cardinal Stefan Wyszynski University, Warsaw, Poland
- ⁵ County Museum, Baia Mare, Romania
- * E-mail: volker.hoeck@sbg.ac.at

The Bronze Age (13th-12th century BC) necropolis and cult area from Lăpuș is situated in NW Romania. Large amounts of potshards as well as scattered slag pieces were found in a multi-phased cult building in the center of the necropolis as well as in burial mounds. The ceramic shards are interpreted as intentionally destroyed vessels during funerary celebrations as an act of ritual violence. The potshards display a large range of colours (from creamy, orange or red, to grey or black) and fabrics (from coarse to semifine, rarer fine). Signs of burning, such as cracked black surface, partial melting and deformed shape, are not uncommon. For comparison and provenance study, samples of soil and daub, ceramics and slag were mineralogically and chemically analyzed by optical microscopy, electron microprobe (EMPA) and ICP-MS.

Here we will focus on the chemical similarities and differences among these categories, i.e. "clay" (including soil and daub), slag and ceramics. Questions which should be addressed by chemical investigation include the relation between ceramics and slag: is the slag over-fired ceramics or clay, or a completely different material? Is the local soil ("clay") the raw material for the ceramics?

Variation diagrams among several major element oxides and SiO₂, on a LOI-free basis, show a wide range of SiO₂ for the whole data set, from 60–82 wt%, suggesting a continuous transition from ceramics (60– 77 wt%) over slag (71–76 wt%) to clays (74–82 wt%). The increasing SiO₂ is combined with a continuous decrease of Al₂O₃ and Fe₂O₃, and some increase of Na₂O. On the first sight this would suggest a genetic relationship among clay, slag and ceramics. The similarity of REE and some spider diagrams point in the same direction.

However, the distribution of other major and trace elements shows clear differences. For example, TiO_2

displays a weak negative correlation with increasing SiO₂ for ceramics and slag but significant higher contents for clays. Equally, trace elements such as Zr, Hf and Yb are substantially higher in the clay group compared with the others. The SiO₂ content of the slag on the other hand is lower than in the clavs and in the same range as in the ceramics. The MgO is slightly higher at a given SiO₂, the K₂O and CaO increase significantly. Additionally, Zr and Hf are higher in slag than in ceramics. The clays finally are relatively low in SiO₂ but rich in Al₂O₃ and Fe₂O₃. MgO, K₂O and CaO are relatively depleted compared to the slag. On the other hand, the ceramics are enriched in transition elements such as V and Sc, relative to slag and clays. In terms of mineralogy, the difference between ceramics and slag can be explained by a higher content of Ca-rich and K-rich feldspars in the latter, while the former are dominated by illitic clay. Chemically, this difference is expressed by higher K₂O/Al₂O₃ ratios and CaO/Al₂O₃ ratios in the slag, compared with the ceramics.

Despite some undisputable similarities in the chemistry of all three groups, the compositional difference excludes a genetic relation among them. For example, mixing of the clays with the raw material of ceramics and slag is not feasible. Also the source material of ceramics and slag is significantly different ad characterized by an increase of feldspar content in the slag raw material. Summarizing, the clay found at the site was neither used for manufacturing the ceramics nor for the items which became later on slag. Both were manufactured from different materials, most likely at some other places but in the same area.

Acknowledgements. The study was supported by DFG Program granted to C.M.-N. and ID-2241/2008 and PN-II-ID-PCE-2011-3-0881 projects, granted to C.I. (Romanian Ministry of Education and Research).