
Acta Cybernetica 21 (2013) 53–73.

Application Oriented Variable Fixing Methods for

the Multiple Depot Vehicle Scheduling Problem

Balázs Dávid
∗
and Miklós Krész

†

Abstract

In this article, we present heuristic methods for the vehicle scheduling

problem that solve it by reducing the problem size using different variable

fixing approaches. These methods are constructed in a way that takes some

basic driver requirements into consideration as well. We show the efficiency

of the methods on real-life and random data instances too. We also give an

improved way of generating random input for the vehicle scheduling problem.

Keywords: vehicle scheduling, variable fixing

1 Introduction

The multitude of problems arising in public transportation forms a complex sys-
tem. These problems can be categorized into two main groups: vehicle scheduling
problems and driver scheduling problems. However, these two sets can not be con-
sidered totally independently of each other, as vehicle schedules are needed as the
basis of constructing driver schedules. Literature addresses the hierarchy between
these tasks either by using an integrated or a sequential approach.

Integrated models for the combined vehicle- and driver scheduling problem have
become more and more efficient lately [7, 11], and based on them, useful methods
exist for the long-term planning of a transportation company’s schedule. However,
these solutions are still not fast enough for being considered as part of an interactive
decision support system.

A sequential approach of the optimization problem breaks it down into a series
of different tasks, which are solved one after the other. Such a system can have
many different sub-problems, as the one seen in [4], but usually 3 phases have to
be carried out: vehicle scheduling, driver scheduling and driver rostering. Fast
methods that give efficient solutions exist for all these sub-problems. The main
drawback is that the majority of these methods consider solving a stand-alone
problem only, and does not deal with its integration into a larger system. However,
breaking down the main problem into different smaller tasks results in a flexible

∗University of Szeged, E-mail: davidb@inf.u-szeged.hu
†University of Szeged, E-mail: kresz@jgypk.u-szeged.hu

DOI: 10.14232/actacyb.21.1.2013.5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Szeged

https://core.ac.uk/display/147080321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

54 Balázs Dávid and Miklós Krész

system, so this approach can be an ideal choice to be used for interactive decision
support.

In this paper, we will deal with the vehicle scheduling problem as part of such a
system. We give a brief overview of the problem itself, and analyze the requirements
for real-life applications. We examine a heuristic by Gintner et al. [12], and develop
new algorithms using their idea as a basis. We provide test results for all examined
methods on real life and random data as well. We also introduce a new way
of creating random data based on a method by Carpaneto et al [9]. This new
algorithm is needed because the structure of the instances generated by the method
in [9] is different from real-life instances of Hungarian transportation companies.
We wanted to test our methods on random data that more closely resembles the
structure of real-life Hungarian instances.

2 The Vehicle Scheduling Problem

In this section, we present the vehicle scheduling problem, and give an overview of
its important models and methods from literature.

Let V be the set of vehicles, and T the set of trips. For each t ∈ T trip, let
dt(t) and at(t) be its departure and arrival time, and let sl(t) and el(t) denote
its starting and ending location respectively. Two trips i, j ∈ T are compatible if
there is enough time between at(i) and dt(j) to cover the distance between el(i)
and sl(j). A vehicle schedule can contain compatible trips only. A vehicle task is
called a deadhead trip if the vehicle changes its location without executing a trip.

The aim of the vehicle scheduling problem is to assign vehicles to execute the
trips of a given timetable. These assignments must satisfy certain conditions:

• Every trip must be executed exactly once.

• Trips assigned to a vehicle must be compatible with one another.

• The cost of the assignment must be minimal.

We examine the possible components of the cost function in the following sub-
section.

2.1 Costs of a Vehicle Schedule

One of the most important steps is to determine the costs arising in our problem.
There are several operational costs that can be taken into consideration for a vehicle:

• Trip distance cost: the cost of a vehicle to cover a unit distance (usually 1
km) while executing a trip.

• Deadhead distance cost: the cost of a vehicle to cover a unit distance
while executing a deadhead trip.

Variable Fixing Methods for the Multiple Depot Vehicle Scheduling Problem 55

• Daily cost of a vehicle: the cost of making a vehicle available for use on
the given day.

Trip and deadhead distance costs can easily be determined, as the gas consump-
tion of the vehicles is a known parameter. Daily costs are more difficult to give,
as they incorporate a number of different smaller costs (eg. maintenance, upkeep,
etc.), but the cost of renting a vehicle of the same type for one day can be a good
estimate. Using these operational costs only, the problem can be solved in different
ways:

• If only the daily costs are used in the objective, the number of vehicles will
be minimized.

• If only the deadhead costs are included, the amount of deadhead trips will be
minimized, thus minimizing the location changes.

• To get an overall operational cost, all of the above costs have to be included
in the objective function.

As we mentioned earlier, the solution of the vehicle scheduling problem alone
is just the basis of a daily schedule of a transportation company. Using the above
defined operational costs only does not necessarily give a good solution if we want
to use it in an ”application oriented” way. The vehicle schedules have to be assigned
to drivers, who also have a set of constraints for their driver schedules. Driver rules
have many different types, and the regulations also vary from country to country,
and from company to company. One of the most important constraints that all of
them have in common is the limitation of the maximum continuous driving time
of a driver. Because of this, vehicle drivers must be assigned a break after a fixed
amount of driving time at most.

If the solution of the vehicle scheduling problem produces too ”dense” schedules
(which do not have enough gaps between tasks to assign these breaks), then the
driver scheduling algorithms have to transform the schedules. This means extra
computation time for the driver algorithm, and it also means that the underlying
vehicle schedule will also be changed significantly, modifying its cost retroactively.
This aspect must also be considered, when solving the vehicle scheduling problem.

2.2 Single and Multiple Depot

In some cases the vehicles can also be classified into depots. A depot of a vehicle
can mean its starting geographical location, but it can also represent its vehicle
type. In both cases a depot-compatibility vector is given for every trip that shows
the types of vehicles able to execute the trip.

Complexity of the vehicle scheduling problem depends on the number of vehicle
depots. If all vehicles belong to the same depot, the problem is a single depot vehicle
scheduling problems (SDVSP). An SDVSP can be modeled as a minimum-cost flow
problem, thus even large-size (several thousand trips) instances are polynomially
solvable to an optimum. Such a formulation is given in [5].

56 Balázs Dávid and Miklós Krész

However, real life instances usually have 2 or more depots. These types of
problems are called multiple depot vehicle scheduling problems (MDVSP). The
MDVSP was first formulated by Bodin et al. [6], and its NP completeness was
proven by Bertossi et al. [3].

Solving the MDVSP results in a set of vehicle schedules, each assigned to a
vehicle from one of the depots. For every pair of trips i and j on any schedule, they
have to be compatible, and their depot-compatibility has to match the depot of the
vehicle assigned to the schedule. However, the solution itself can be constructed
with regards to many different costs and constraints.

2.3 Models and Methods for the MDVSP

Literature discusses three main types of models for the MDVSP: single commodity,
set partitioning, and multi-commodity. An overview of the different approaches
can be found in [8]. In this paper, we will be dealing with the multi-commodity
approach, which uses multi-commodity network flow models. In these models,
every depot has its own commodity layer in the network, and only those trips are
considered at a given layer, which can be executed from the corresponding depot.

The connection-based network gives every possible connection between the trips
of the problem. To define the problem, the following additional notations have to
be introduced: The set of depots that can execute a trip t is denoted by g(t). Let
Td ⊆ T be the set of trips that can be executed from depot d. Similar to the trips,
let every d depot have a starting location sl(d) and ending location el(d). The set
of nodes of our network will be the following:

N = {dt(t) ∪ at(t) ∪ sl(d) ∪ el(d)|t ∈ T, d ∈ D}.

Let

Ad = {(dt(t), at(t))|t ∈ Td}

be the set of trips that can be served by depot d, and let

Bd = {(at(t), dt(t′))|t, t′ ∈ Td are compatible}

be the possible deadhead trips of depot d.

Let

P d = {(sl(d), dt(t)), (at(t), el(d))|t ∈ Td}

be all the pull-in and pull-out edges of depot d.

The above sets give us the set of edges of the connection based network:

E = Ad ∪Bd ∪ P d ∪ {(el(d), sl(d))} for every d ∈ D.

Variable Fixing Methods for the Multiple Depot Vehicle Scheduling Problem 57

Based on the sets introduced above, a solution of the MDVSP can be determined
by using the network (N,E). We define an integer vector x for every edge of the
network. A vector component belonging to an edge e of depot d is denoted by xd

e .
The problem can be formalized in the following way:

∑

d∈g(t)

xd
dt(t),at(t) = 1, ∀t ∈ T (1)

∑

e∈n+

xd
e −

∑

e∈n−

xd
e = 0, ∀d ∈ D, ∀n ∈ N (2)

xd
e ∈ 0, 1, except for (el(d), sl(d)) (3)

where n+ is the set of outgoing, and n− is the set of incoming edges from node
n.

According to constraint (1) each trip has to be executed exactly once, while
(2) means that every vehicle arriving to a geographical location has to leave that
location. Constraints for the number of vehicles in each depot can be set as an upper
bound for the circulation edges of the corresponding depot. Any flow satisfying
the above conditions can give a feasible solution of the problem. For an optimal
solution, we have to minimize

∑

e

cexe,

where ce is the cost of edge e.
The main drawback of the connection based model comes from its size. The

number of compatible trips is high, even with a small number of trips in the problem,
and this results in a large number of possible deadhead trips. This makes the size
of the problem so large that it can not be used effectively on real-life data, where
the number of trips is a couple of thousands usually.

The time-space network has been introduced to vehicle scheduling by Kliewer et
al. [13]. It eliminates the drawback that comes from the size of the connection-based
network. This way, it is possible to solve larger-sized real-time MDVSP instances
efficiently. As we described earlier, the number of edges connecting compatible
trips in the connection based model is high, but only a few of these are actually
used in a feasible solution. However, if we left any of these connections from the
model, we would lose the optimality of the solution.

The time-space network efficiently reduces the number of edges. The model
arranges data in two dimensions: time and space. Space represents the set of ge-
ographical locations, while the timelines at each location represent a sequence of
events. The arrival and departure times of the tasks are denoted on the correspond-
ing timelines, and give the nodes of the model.

The time-space network is constructed using the above given nodes. Apart
from this difference, the set N of nodes of the network can be defined similar to the
connection based approach. The definition of Ad is also similar for each depot d ∈ D

58 Balázs Dávid and Miklós Krész

and P d is given with the help of the time-lines associated with the corresponding
depot.

The definition of deadhead trips is the other main difference between the two
models. The timelines used by the time-space network can be used to aggregate
deadhead trips by introducing so-called waiting edges. These edges connect ad-
jacent nodes on the timeline. This method reduces the size of the problem sig-
nificantly. Waiting edges always connect two adjacent nodes on the appropriate
timeline. Denoting the set of waiting edges with W d for every depot d ∈ D, the set
of edges of the time-space network is:

E = Ad ∪Bd ∪ P d ∪W d ∪ {(el(d), sl(d))} for every d ∈ D.

Using these, the IP model of the time-space network can be given in a similar
way to the connection based network:

∑

d∈g(t)

xd
dt(t),at(t) = 1, ∀t ∈ T (4)

∑

e∈n+

xd
e −

∑

e∈n−

xd
e = 0, ∀d ∈ D, ∀n ∈ N (5)

xd
e ≥ 0, (6)

xd
e integer (7)

Considerably bigger instances can be solved to optimality using the time-space
network. However, the running time can still be an issue, especially in the case
of larger real-life instances. Literature provides a variety of methods for solving
large MDVSP. Selected heuristics based on both mathematical programming and
combinatorial aspects can be found in [14]. However, these solve the standalone
vehicle scheduling problem, and do not consider the ”application oriented” structure
of the vehicle schedules discussed above. We will present a solution method that
takes this aspect into consideration also.

In [10], we present a collection of heuristic methods for the MDVSP found in
literature, and also analyze the ”application oriented” usefulness of their results.
Paper [10] partially studied the idea of variable fixing too, which research later
became the basic idea for this paper.

3 Reducing the MDVSP model size

In this section, we will give a heuristic to solve the MDVSP, taking into considera-
tion both operational costs, and the ”application oriented” structure of the vehicle
schedules. A solution with short running time and well structured schedules is
important for an interactive decision support system.

Gintner et al. [12] propose a two-phase heuristic to solve large instances of the
MDVSP by decreasing its model size. A number of variables of the model are fixed,

Variable Fixing Methods for the Multiple Depot Vehicle Scheduling Problem 59

and the resulting new problem is solved to optimality afterwards. Because of these
two steps, they call this approach fix-and-optimize. The idea behind their heuristic
is to solve a number of simplified models of the original problem, and decide on the
variables to be fixed based on their results. This is done by finding series of trips
that are common in all solutions. If such trips are found, it is presumed that they
are likely to appear in the global optimum in the same way. These trips are called
stable chains, and are used as single trips in the model of the MDVSP.

Their method decomposes the original MDVSP into an SDVSP for every depot.
This problem is constructed and solved in the following way:

• The capacity of the depot is equal to the sum of all depot-capacities of the
MDVSP.

• Only those trips are considered, which can be executed from depot.

After the SDVSP sub-problems are solved for each depot, their solutions are
used to create stable chains. If a sequence of trips appears in the same order in all
solutions, then they are considered as a chain. Using these stable chains as single
trips, a smaller MDVSP model is built that has the following properties:

• The number and capacity of the depots are the same as in the original prob-
lem.

• The set of trips of the new problem consists of the trips that are not included
in any of the stable chains, and a newly created trip for each stable chain.
Their costs are the sum of all the trips these chains represent. The departure
time and starting location of the first trip of the chain, and the arrival time
and ending location of the last trip of the chain are used for this new trip as
starting and ending data. These trips can be executed from any depot.

After this new MDVSP is solved, the trips in the stable chains have to be
substituted back instead of the new trips, to acquire the final solution.

We chose to develop a heuristic based on the idea of variable fixing, as it can
model the ”application oriented” aspect of the problem. This is done by fixing trips
in the same chain ”that should belong together in the final solution”. We can also
control the amount of time between two consecutive trips of a chain by not adding
a possible trip to a chain if that would leave too little, or too much gap in between.

As the basis of the method, we solved a simplified model of the problem that
we call a ”quasi-multiple depot” model. Though we use only a single depot in
this model, two trips are connected only if they would be connected in the multiple
depot case as well. This means that the trips have to be compatible, and they must
also share a common depot from which they can be served. The cost of the arc
between these two trips in our model is calculated using the cheapest possible cost
of all their common depots. The capacity of the depot is the sum of the capacities
of all depots in our original problem. Pull-out and pull-in arcs of the depot have
the weight of the minimal deadhead trip from and to any of the depot locations of

60 Balázs Dávid and Miklós Krész

the original problem. Once this ”quasi-multiple depot” model is constructed, it is
solved by an MILP solver.

We experimented with three different approaches for finding stable chains in
the solution of the above problem:

• Build chains with regards to depot costs.

• Fix trips with the same depot-compatibility in a chain.

• Assign trips of the same bus-line to a chain.

The methods will be presented in the following subsections. We also illustrate
on a small example their difference in building chains.

3.1 Building chains using depot costs

This was the first heuristic we developed for solving the MDVSP. Depots are ordered
into a list increasingly according to the following cost:

1
ǫ
∗ cost(daily) + cost(km)

where cost(daily) is the daily cost of a single vehicle from the depot, cost(km)
is the cost of that vehicle to travel 1 km, and ǫ > 0 is a parameter.

For every depot in this order, the algorithm examines all the vehicle schedules
in the result of the ”quasi-MDVSP”. If subsequent trips are found which can be
executed from this depot, they are considered together in stable chains. These trips
are flagged, and cannot be the part of other stable chains. The description of this
algorithm can be seen in Algorithm 1.

This algorithm is only the basis of finding the chains, further constraints can
be introduced:

• We can give a limit to the number of trips in the chains.

• The length of the chains can be maximized.

• The minimum/maximum gap in time between two trips of the chain can be
given.

Experience shows, that limiting the length of the stable chains with the above
constraints results in a solution with better cost, but has an increase in running
time. The running time of the heuristic was very fast, but the quality of the
solutions was far from what we have expected. Because of this further changes
have been experimented with to improve the cost of the solution, with a minimal
increase in the running time.

Variable Fixing Methods for the Multiple Depot Vehicle Scheduling Problem 61

Algorithm 1 Variable fixing using depot costs.

1: Determine the order D of depots
2: S ← ∅, V ← ∅, L← ∅
3: for each d ∈ D do

4: for all trips j /∈ V the solution do

5: while j can be executed from d do

6: L← j
7: V ← j
8: j = nexttrip(j)
9: end while

10: if |L| > 1 then

11: S ← L
12: end if

13: L← ∅
14: end for

15: end for

16: return S

3.2 Building chains based on depot-compatibility

Using our experience gained from the method presented above, we tried to find a
way to fix trips that have some property in common instead of using a cost function.
In our second method, we tried to construct stable chains based on similar depot-
compatibilities of the trips. We first examined those trips from the solution of
the ”quasi-MDVSP” that can be executed from all d depots. Then all that are
compatible with d− 1 depots, and so on. Two subsequent trips are assigned to the
same chain if they have exactly the same depot-compatibility in the solution. This
algorithm is described in Algorithm 2. The same additional extra constraints that
we have shown at Algorithm 1 can also be introduced here.

3.3 Building chains using trips of the same bus-line

This method of constructing the stable chains is closer to the schedule building
practice of transportation companies. A driver usually uses the same vehicle during
his shift, and he is carrying out consequent trips of the same bus-line. Some changes
might occur in his schedule, but their number remains low. However, when solving
the MDVSP using an MILP solver, the resulting vehicle schedules usually have a
high number of line changes. Though this can not be modeled in costs directly, it
puts some load on the driver itself.

We tried to build stable chains using this as a guideline. We fixed those trips
in a chain only that belong to the same bus-line. We also set a maximum time
limit of the gap between two such trips. If two subsequent trips belong to the same
bus-line, but are far from each other in time, then they are not fixed in the same
chain. The description of this method can be seen in Algorithm 3.

62 Balázs Dávid and Miklós Krész

Algorithm 2 Variable fixing based on depot compatibilities.

1: S ← ∅, V ← ∅, L← ∅
2: for d = numof(depots) downto 1 do

3: for all j /∈ V trips compatible with exactly d depots do
4: L← j
5: V ← j
6: k = nextrip(j)
7: while j and k have the same depot-compatibility do

8: L← k
9: V ← k

10: j = k
11: k = nexttrip(j)
12: end while

13: if |L| > 1 then

14: S ← L
15: end if

16: L← ∅
17: end for

18: end for

19: return S

Algorithm 3 Variable fixing based on same bus-lines.

1: S ← ∅, V ← ∅, L← ∅
2: for all j /∈ V trips do
3: L← j
4: V ← j
5: k = nextrip(j)
6: while line(j) = line(k) and dt(k)− at(j) < limit do
7: L← k
8: V ← k
9: j = k

10: k = nexttrip(j)
11: end while

12: if |L| > 1 then

13: S ← L
14: end if

15: L← ∅
16: end for

17: return S

Variable Fixing Methods for the Multiple Depot Vehicle Scheduling Problem 63

3.4 An illustrative example of building chains

In this subsection we show the differences between the three variable fixing methods
presented above. Let us consider a vehicle scheduling problem with 3 depots, 8 trips
and 4 geographical locations (A,B,C,D).

Table 1: Details of the trips.

Trip From To Departure Arrival Depots
1 C B 10 12 1,2,3
2 B A 12 14 1,2,3
3 B C 12 14 2,3
4 A B 14 16 1,2,3
5 B A 16 18 1,2
6 A B 18 20 1,2
7 C D 22 24 2,3
8 D C 24 26 2

Table 1 gives every detail of the trips, including their start and end geographical
locations, their departure and arrival times and the depots that they are compatible
with. Furthermore, suppose that trips between the same geographical locations
belong to the same bus-line. This gives us the following three lines:

• Line A-B: trips 2,4,5,6.

• Line B-C: trips 1,3.

• Line C-D: trips 7,8.

Let the deadhead distance between any pair of geographical locations, and the
pull-in and pull-out distance for all depots be 2 minutes. The depot costs of the
problem are the following:

• Depot 1: 100 daily cost and 10/minute distance cost

• Depot 2: 200 daily cost and 20/minute distance cost

• Depot 3: 300 daily cost and 30/minute distance cost

The structure of the above problem can be seen on Figure 1. The horizontal lines
represent the geographical locations, while the arrows between them correspond to
the trips. All three heuristics solve a quasi-multiple depot problem, which results
in the following two vehicle schedules:

• Schedule 1 executes trips 1,2,4,5,6.

• Schedule 2 executes trips 3,7,8.

64 Balázs Dávid and Miklós Krész

Figure 1: The structure of the problem

The heuristics will try to construct chains based on these schedules. Applying
the method based on depot costs, the cost function will give the depot order 1,2,3
for an arbitrary ǫ > 0. Using this order, the following chains are constructed:

• Chain 1: trips 1,2,4,5,6.

• Chain 2: trips 3,7,8.

If we build the chains with regards to depot-compatibility, first we examine trips
that are compatible with all 3 depots, then the trips compatible with 2 depots, and
finally the trips that are compatible with 1 depot only. This results in the following
chains:

• Chain 1: trips 1,2,4.

• Chain 2: trips 5,6.

• Chain 3: trips 3,7.

• Chain 4: trip 8.

Considering bus-lines when building the chains, we have to examine all 3 bus-
lines in the schedules. The method constructs the following chains:

• Chain 1: trips 2,4,5,6.

• Chain 2: trip 1.

• Chain 3: trip 3.

• Chain 4: trips 7,8.

Variable Fixing Methods for the Multiple Depot Vehicle Scheduling Problem 65

4 Random instances

Though we were provided with the real-life instances of the transportation company
of Szeged, that gives us only a limited database. As it is difficult to access real-life
instances from other companies, the easiest way to acquire more test data that has
the properties of the real-life input is to use an algorithm that generates it based
on our needs. Many papers from literature that deal with the vehicle scheduling
problem present the efficiency of their methods on random instances generated
according to an algorithm by Carpaneto et al. [9]. However, our test experience
shows that the structure of the data generated by their method was different from
real-life instances in many aspects. Because of this, we propose an improved way
of generating random data in this section. First, we describe the above method,
and then give a new variation for it.

4.1 Generation method by Carpaneto et al.

The input of the algorithm is the n number of trips, and the m number of depots.
The number of geographical locations is uniformly chosen from the interval [n3 ,

n
2],

their locations are chosen in a uniform random way on a 60∗60 grid. The deadhead
trips between geographical locations p and q correspond to their d(p, q) Euclidean
distance.

The properties of every ti trips is determined using the above. The start and
end sl(t) and el(t) geographical locations are chosen uniformly from [1, f]. These
locations determine the length of the trip, d(sl(t), el(t)). Trips can have two types:
short trip, or long trip.

There is a 40% chance that a t trip becomes a short trip. Its dt(t) departure
time is also chosen randomly:

• with a 15% chance uniformly from [420,480]

• with a 70% chance uniformly from [480,1020]

• with a 15% chance uniformly from [1020,1080]

The at(t) arrival time of a short trip is chosen uniformly from the interval
[dt(t) + d(sl(t), el(t)) + 5, dt(t) + d(sl(t), el(t)) + 40].

Long trips are generated with a 60% chance. Their dt(t) departure time is
chosen uniformly from [300, 1200], while their at(t) arrival time is chosen uniformly
from [dt(t) + 180, dt(t) + 300]. Long trips have the same start and end location,
which means that a value is assigned to sl(t) = el(t) uniformly from [1, f].

They also presented a possible placement of the depots for m = 2, 3. The
number of vehicles in each depot is determined uniformly from [3 + n

3m , 3 + n
2m].

4.2 Our new generation method

Our experience showed that the instances generated using the above method were
very differently structured from the real-life data we were dealing with. We decided

66 Balázs Dávid and Miklós Krész

to modify this method to become closer to those real-life instances. The main
difference of this model from our data was that trips had no pre-assigned depot-
compatibilities. For this, we introduced an additional input: a pi probability for
every 1 ≤ i ≤ m depot.

The pi value gives the probability that a trip can be executed from depot
i. When the trips are generated, they are assigned a v = (v1, ..., vm) depot-
compatibility vector. For every vi,

vi =

{

true with pi probability

false otherwise

If all components of the v recieve false values, then exactly one of them is set
as true. This is also decided using the given probabilities. A trip can be executed
only from those depots, whose corresponding components have a true value.

Analyzing the trips of the original generator, we found that the average length
of the trips was too high compared to our real-life data, and the trips were scattered
geographically. To address this, we introduced some further changes.

The number of generated geographical locations was also very high compared to
the number of trips, and two trips rarely followed each other at the same location
in a small timeframe. After experimenting, we found the [2n25 ,

3n
25] interval that gives

an acceptable number of locations. However, because of the decreased number of
geographical locations, we also had to decrease the area they are generated at. We
used a 30 ∗ 30 grid for this.

To address the problem of the too long average length of the trips, we slightly
modified the generation of the trips as well. The ratio of the long and short trips
has been exchanged, and we generated short trips with a 60% chance, and long
trips with only a 40% chance.

The length of the trips has been decreased. The at(t) arrival time of a short trip
is chosen uniformly from the interval [dt(t)+d(sl(t), el(t)), dt(t)+d(sl(t), el(t))+20],
while the at(t) arrival time of a long trip is chosen uniformly from [dt(t)+40, dt(t)+
60].

Using the modification above, the random generated instances we received re-
sembled more closely to the real-life data we were provided with by the transporta-
tion company of Szeged city.

5 Test Results

The different variable fixing approaches discussed earlier were tested on real-life
data instances from the city of Szeged, Hungary, as well as on random data gen-
erated by an algorithm described in the previous section. We present their results
below.

Variable Fixing Methods for the Multiple Depot Vehicle Scheduling Problem 67

5.1 Real-life instances

Our real-life instances were taken from the transportation company of the city of
Szeged, Hungary. The company uses 11 different day-types (called combinations)
over its planning period. To get a complete schedule for a normal planning period
(which is 2 months in the case of the company), the vehicle scheduling problem
has to be solved for all 11 combinations. The daily driver schedules will depend
on the combination type of the corresponding day. Of all the combinations 4 have
been selected as test cases. The properties of their optimal solutions can be seen
in Table 2. The combinations with higher number of trips (szeged1 and szeged4)
are workdays of the week, while szeged2 and szeged3 are instances taken from a
Sunday and Saturday respectively.

The running time given in the table is the running time in seconds needed to
find an optimal solution using the SYMPHONY solver on the time-space network
model of the problem.

Table 2: Optimal solution of the instances.

Instance Day type Running time(s) Vehicles Dense schedules
szeged1 Weekday 872 96 4
szeged2 Sunday 431 44 3
szeged3 Saturday 250 55 6
szeged4 Weekday 1179 96 3

As it is visible, the running times of the weekday instances can reach 20 minutes,
and solving all the 11 combinations of the company to optimality would take about
8500 seconds. The 2-2,5 hours of running time for calculating the vehicle schedules
is not acceptable from the perspective of a decision support system, as there are
the additional driver schedules and rosters that still have to be calculated for the
whole planning period (which is usually several weeks or months).

We will examine three aspects of the results given by the heuristics:

• The gap in cost of the result from the optimal solution of the MDVSP.

• The ratio of the running time of the heuristic compared to the running time
of the IP solver.

• The structure of the schedules.

When vehicle schedules are used as an input in driver scheduling, different driver
constraints have to be fulfilled. The most important of these are the maximum
consecutive driving time without any rest, and the total length of the schedule
given to a driver. We analyze the structure of the vehicle schedules using these
aspects. If a schedule violates any of the mentioned constraints, it is labelled as a
”dense” schedule.

68 Balázs Dávid and Miklós Krész

The results of the variable fixing heuristic of Gintner et al. can be seen in Table
3. Every solution shows a decrease in running time: the average running time of
the instances is about 40% of the original, which would mean a running time of
3000-3500 seconds (almost 1 hour) for all the vehicle schedules. The gap from the
optimum varies between 0,25%-0,40%.

Table 3: Solution of the variable fixing heuristic of Gintner et al..

Instance Gap from opt. Running time ratio Vehicles Dense schedules
szeged1 0,27% 57,45% 96 6
szeged2 0,41% 31,55% 44 3
szeged3 0,37% 42,80% 55 6
szeged4 0,25% 35,69% 96 4

The heuristic that uses a depot-cost function for building the chains decreases
the running time to around 8,8% of the time needed for the IP solver. This means
that a solution is obtained in a couple of minutes (which is at most 4-5 in all test
cases). The total running time for all 11 combinations is between 10-15 minutes,
which is really good. However, the gap from the optimal solution has risen signifi-
cantly: in some cases, it was greater than 2,5%. As opposed to the variable fixing
heuristic, the greedy method fixes significantly more trips (∼ 66% in comparison
with ∼ 33%) into stable chains, which greatly reduce the size of the problem. How-
ever, the method is less precies because of the fact that more trips are fixed in
chains. Limiting the chain construction with the before mentioned alternative con-
straints (e.g. limit the size/length of the chains, or the types of chosen trips) will
lead to a solution with a better cost. On the other hand, less fixed trips also mean
a greater problem size, which results in an increase in running time. The results of
this method can be seen in Table 4.

Table 4: Solution using chains based on depot costs.

Instance Gap from opt. Running time ratio Vehicles Dense schedules
szeged1 2,63% 9,29% 100 3
szeged2 1,20% 3,71% 46 5
szeged3 1,12% 10,40% 57 7
szeged4 2,32% 8,40% 98 3

Building the chains based on depot-compatibility shows a more ordered struc-
ture than the method discussed above. Though more trips remain single, which
comes with a slight increase in running time (in average 11,63% of the IP solution,
which is about 15-20 minutes for all the combinations), it is still acceptable. The
gap became also significantly smaller, it is at most around 1,25%. This value can

Variable Fixing Methods for the Multiple Depot Vehicle Scheduling Problem 69

be acceptable, though still seems a bit high. The cost can be improved in the same
way as in the previous case, but this will also result in an increase in running time.
However, the rate of decrease in the cost will be much smaller with the inclusion
of additional constraints. The results of this heuristic can be seen in Table 5.

Table 5: Solution based on depot-compatibility.

Instance Gap from opt. Running time ratio Vehicles Dense schedules
szeged1 1,14% 12,84% 97 2
szeged2 0,34% 6,50% 44 4
szeged3 0,38% 16,00% 56 8
szeged4 1,26% 19,42% 97 2

Taking into consideration the experience of the previous solution methods and
analyzing their difference from the solution of the IP solution, we decided to apply
a more structural method for building the chains. Using trips of the same bus-line
in a chain again leads to less fixed trips, which means an overall decrease in running
time to 24,41% of the original. This results in about 30-35 minutes to solve all the
combinations. On the other hand, the gap of the solutions from the optimum is
very favourable, not more than 0,60% in any of the instances, but there are much
lower ones around 0,20%, or even below. The results of this method are found in
Table 6.

Table 6: Solution using chains based on bus-lines.

Instance Gap from opt. Running time ratio Vehicles Dense schedules
szeged1 0,58% 16,28% 97 3
szeged2 0,03% 21,35% 44 5
szeged3 0,23% 26,00% 55 7
szeged4 0,59% 10,86% 97 3

The solution methods give about the same number of badly structured vehicle
schedules as the original IP solutions did. Using additional constraints that limit the
length of the chains, the number of the trips in the chains, or the minimal/maximal
idle time between two subsequent trips in a chain result in a lower number of
”dense” schedules besides the smaller gap from the optimum. However, this would
still affect the running time of the methods.

With the use of these ”dense” schedules we tried to give a formal way of evaluat-
ing the ”goodness” of the vehicle schedule structure with regards to driver schedul-
ing. While the number of badly structured schedules stays approximately the same
using any of the shown heuristics, the impact it has on a driver scheduling algo-
rithm can be really different depending on which vehicle heuristic is used. We

70 Balázs Dávid and Miklós Krész

experimented with several sequential vehicle and driver methods for the problem,
among which our most recent research can be found in [2]. Test results show that
using any of our proposed variable fixing methods gives a better cost at the end of
the driver scheduling phase than using either the optimal MDVSP solution, or the
heuristic of Gintner et al.

5.2 Solutions on random data input

As we mentioned earlier, we also tested the algorithms on random data instances.
We tried different problem sizes with 50, 250, 500 and 1000 trips respectively. Out
of the 4 methods above, the heuristic of Gintner et al. failed to find any chains in all
cases, while our heuristic using bus-lines rarely fixed any trips, and it always fixed
only less than 5 trips using these inputs. This means that both methods ended up
solving the original (or almost exactly the original) MDVSP, and thus their results
can not be analyzed properly.

The heuristic of Gintner et al. needs a large number of trips in the input that
can be executed from any of the depots. Besides this, these trips have to be close
enough to one another so that every solved SDVSP sub-problem schedules them in
the same sequence. If the trips that are compatible with every depot are scattered
on the timeline of the problem, then none or only some of the trips will be fixed in
chains. This scenario is likely to happen in the proposed random instances, which
explains the failure of the heuristic in finding chains.

The method based on bus-lines has the same problem on this randomly gener-
ated input. Real-life instances have different bus-lines, which roughly mean that
there are given p and q geographical locations, between which trips occur back and
forth with a given frequency. Random generated instances will not have this kind
of order in their timetable, thus this heuristic is likely to fail too.

The results of the other two heuristics can be seen in Table 7. The col-
umn marked with (cost) represent the heuristic that uses a cost function, while
the column marked with (depot) give results for the heuristic based on depot-
compatibility. The heuristic using a cost function arrived at about the same results,
as on the real-life instances, while the heuristic based on depot-compatibility also
fixed fewer trips than usual. As this method also depends on trips sharing the same
depot, it also has a more difficult time finding chains.

Table 7: Solution on random instances.

Instance Gap (cost) Gap (depot)
random 50 0% 0%
random 100 0% 0%
random 500 1,57% 9 ∗ 10−6%
random 1000 1,54% 0,02%

Test experience on the random instances show that the data generated by our

Variable Fixing Methods for the Multiple Depot Vehicle Scheduling Problem 71

method is still different from real-life instances in some structural aspects. Heuris-
tics that are based on structural properties appearing in real-life data (Gintner
et. al, bus-lines) can not be applied effectively to most of the generated input.
This means that we need a method that models the properties of real-life instances
more closely. The two main parts that have to be improved in the random gen-
erator are the possibility to create entire bus-lines randomly, and to model the
depot-compatibility distribution of trips in a better way.

6 Conclusions and Future Work

We examined the vehicle scheduling problem and its existing models and methods
in literature, to find one that fits the framework of an interactive decision support
system. Such a method is important, as transportation companies do not only need
to have an efficient long term planning software, but they must also have a way to
assist important decisions and give suggestions in a reasonable time. Running time
was an important criterion for such a method, but the value of the solution had to
stay close to the optimum as well.

We developed several solution approaches based on the core idea of an efficient
heuristic by Gintner et al. Each of our solution approaches became more refined
as the previous one, as their results were analyzed and taken into consideration at
every step. Our final heuristic comes with both an acceptable running time, and
a small gap from the optimal solution. Moreover, our test experience shows that
they also work well in a sequential decision support system.

We also examined the commonly used random generator method of Carpaneto et
al. However, our experience showed that the distribution of trips generated by their
algorithm was very different from real-time instances. We proposed an improved
version of this algorithm so that its output has a structure that is closer to real-life.
Extensive testing on these instances showed that some of our presented methods
also work nicely on random data as well, and produce an acceptable solution for it.

Test results show that the heuristic methods can be slightly improved. In order
to do this, more analysis has to be carried out into the structure of the solutions and
their differences from the schedules of the original IP solution. Further experiments
can also be made with the different parameters and limiting constraints discussed
in the paper.

The metric of ”dense” schedules that we introduced to measure the effect of our
algorithms on future driver schedules turned out to be poorly defined. A different
analysis has to be carried out into the interaction of vehicle and driver schedule.
We have to give another metric by identifying the exact types of schedules that are
expensive to transform in the driver phase.

The random data generating algorithm also has to be improved further. As
we have seen at our test cases, the structure of results on random instances differs
from real-life cases in important elements. The most important of these is the in-
clusion of bus-lines, which are crucial to methods that take this structural property
into consideration. This requires additional study of the original timetables of our

72 Balázs Dávid and Miklós Krész

real-life cases, and tuning the parameters that affect the number and position of
geographical locations, and the frequencies of the trips.

Acknowledgments.

This work was partially supported by the Szeged City Bus Company (Tisza
Volán, Urban Transport Division) and Gyula Juhász Faculty of Education, Univer-
sity of Szeged (project no. CS-004/2012).

The second author was partially supported by the European Union and co-
funded by the European Social Fund through project HPC (grant no.: TÁMOP-
4.2.2.C-11/1/KONV-2012-0010).

References

[1] Ahuja, R.K., Magnanti, T.L., Orlin, J.B. Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall, 1993.

[2] Árgilán, V., Balogh, J., Békési, J., Dávid, B., Krész, M., Tóth, A. Driver
scheduling based on driver-friendly vehicle schedules. in Proceedings of

OR 2011 International Conference on Operations Research, pages 323-328,
Springer-Verlag, 2011.

[3] Bertossi, A.A., Carraresi, P., Gallo, G. On Some Matching Problems Arising
in Vehicle Scheduling Models. Networks 17, pages 271–281, 1987.

[4] Békési, J., Brodnik, A., Pash, D., Krész, M. An integrated framework for bus
logistic management: case studies. in Logistik Management, pages 389-411,
Physica-Verlag, 2009.

[5] Bodin, L., Golden, B. Classification in vehicle routing and scheduling. Net-

works 11, pages 97–108, 1981.

[6] Bodin, L., Golden, B., Assad, A., Ball, M. Routing and Scheduling of Vehicles
and Crews: The State of the Art. Computers and Operations Research 10,
pages 63–212, 1983.

[7] Borndörfer, R., Löbel, A., Weider, S. A bundle method for integrated multi-
depot vehicle and duty scheduling in public transit. Computer-aided Systems

in Public Transport, pages 3-24, 2008.

[8] Bunte, S., Kliewer, N. An overview on vehicle scheduling models. Journal of

Public Transport 1(4), pages 299-317, 2009.

[9] Carpaneto, G., Dell’Amico, M., Fischetti, M., Toth, P. A branch and bound
algorithm for the multiple depot vehicle sheduling problem. Networks 19, pages
531-548, 1989.

[10] Dávid, B. Heuristics for the Multiple-Depot Vehicle Scheduling Problem. in
Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer

Science, pages 23-28, 2011.

Variable Fixing Methods for the Multiple Depot Vehicle Scheduling Problem 73

[11] Gintner, V., Kliewer, N., and Suhl, L. A Crew Scheduling Approach for Pub-
lic Transit Enhanced with Aspects from Vehicle Scheduling. Computer-aided

Systems in Public Transport, pages 25-42, 2008.

[12] Gintner, V., Kliewer, N., and Suhl, L Solving large multiple-depot multiple-
vehicle-type bus scheduling problems in practice. OR Spectrum 27, pages
507-523, 2005.

[13] Kliewer, N., Mellouli, T., Suhl, L. A time-space network based exact optimiza-
tion model for multi-depot bus shceduling. European Journal of Operational

Research 175, pages 1616-1627, 2006.

[14] Pepin, A.-S., Desaulniers, G., Hertz A., Huisman, D. Comparison of Heuristic
Approaches for the Multiple Depot Vehicle Scheduling Problem. Journal of

Scheduling 12, pages 17-30, 2009.

