
Acta Cybernetica 20 (2012) 459–481.

Model-Driven Diagnostics of Underperforming

Communicating Systems∗

Levente Erős† and Tibor Csöndes‡

Abstract

This paper proposes methods for improving the performance of a commu-

nicating system that has failed its performance test. The proposed methods

extend our earlier published model-driven performance testing method, which

automatically determines whether the tested system is able to serve the speci-

fied number of requests within a second in worst case while serving a specified

number of users simultaneously. The underperformance diagnostic methods

presented in this paper are given as an input the formal performance model

representing the system under test, which was built up by our performance

testing method in the performance testing phase. The presented methods

aim at improving the performance of the system under test to the desired

level at minimal cost. One of the methods presented in this paper is a binary

linear program, while the other is a heuristic method which, according to our

simulation results, performs efficiently.

Keywords: performance testing, performance diagnostics, complexity the-

ory, optimization, approximation algorithms

1 Introduction

Testing is the last phase of the development of a system implementing a communi-
cation protocol. The kinds of tests run on a communicating system can be several,
but two of the most important kinds of tests are conformance tests and performance
tests. When performing a black-box test on a communicating system, the test en-
viroment (or tester) does not know anything about the internal structure of the
system under test (SUT) and can only investigate the SUT through its responses
(outputs) given for different requests (inputs). Black-box conformance testing ex-
amines whether the SUT implements the communication protocol that it should

∗This paper has been (partially) supported by HSNLab, Budapest University of Technology
and Economics, http://www.hsnlab.hu.

†Department of Telecommunications and Media Informatics, Budapest University of Tech-
nology and Economics, H-1117. Magyar tudósok krt. 2. Budapest, Hungary, E-mail:
eros@tmit.bme.hu

‡Ericsson Hungary, H-1117. Irinyi József u. 4-20. Budapest, Hungary, E-mail:
tibor.csondes@ericsson.com

DOI: 10.14232/actacyb.20.4.2012.1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Szeged

https://core.ac.uk/display/147080313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

460 Levente Erős and Tibor Csöndes

implement, according to its conformance requirements. During a conformance test,
the SUT is compared to a Finite State Machine (FSM) based formal model which
is created according to the written conformance specifications of the SUT [1]. A
performance test can be executed on the SUT once it has passed its conformance
test that is, once it has been found to correspond to the FSM model representing
its conformance requirements. During a performance test, the tester tries to deter-
mine whether the SUT meets its different kinds of performance requirements. One
possible performance requirement is the number of request messages that the SUT
has to be able to process within a second in worst case while serving a specified
number of users in parallel.

If the SUT fails the performance test run on it, its performance has to be
improved. If the SUT fails the performance test because the number of requests it
can serve within a second in worst case while serving a specified number of users
simultaneously is lower than the number of messages specified as a requirement, the
number of request messages it is able to serve within a second has to be increased.
In this paper, we present underperformance diagnostic methods that, given such a
system, attempt to determine how to improve its performance to the desired level
at minimal cost.

The rest of the paper goes as follows: In Section 2, we give a summary on the
related work in the subject. In Section 3, we briefly review our performance testing
method which is the basis of the presented underperformance diagnostic methods.
In Section 4, we deal with the worst-case underperformance diagnostics problem.
Within Section 4, in Subsection 4.1 we define the worst-case underperformance
diagnostics problem, in Subsection 4.2 we prove that the problem is NP-complete,
in Subsection 4.3 we formulate the problem as a binary linear program, while in
Section 4.4 we give a heuristic solution for the problem. In Section 5, we evaluate
the efficiency of our heuristics by analyzing simulation results. We close the paper
with a summary in Section 6, and a few words on our future work in Section 7.

2 Related Work

Conformance testing of communicating systems has a well-developed scientific back-
ground [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], and many papers have been
written in the field of modeling the performance of a system which implements
a communicating protocol as well. In [16], Kemper et al. present a performance
model for communicating systems, based on SDL (Specification and Description
Language) [17]. Youness et al. [18] use a stochastic Petri net [19] while El-Karaksy
et al. [21] use a timed Petri net [20] for modeling the performance of a communi-
cation protocol. Marsan et al. model the performance of CSMA/CD bus LANs by
a timed Petri net based model [22]. These papers also verify the models presented
that is, they analytically prove that their models correspond to the specifications
however, neither of them examine whether a physical system corresponds to its per-
formance requirements that is, neither of these papers deal with the validation of
communicating systems, which has been our goal during our earlier research work.

Model-Driven Diagnostics of Underperforming Communicating Systems 461

There are a few papers in the literature dealing with the performance vali-
dation of communicating systems. Schieferdecker et al. propose PerfTTCN [23].
PerfTTCN is a language extension of TTCN-2 (Tree and Tabular Combined Nota-
tion ver. 2) [24]. It introduces new language elements for describing performance
testing environments and for conducting performance tests. As a language exten-
sion of TTCN-3 (Testing and Test Control Notation ver. 3) [25], Grabowski et al.
introduce TimedTTCN [26], which tests the response delays of the SUT. Mingwei
et al. [27] extend concurrent TTCN [28] (which is a version of TTCN-2) to be able
to test the performance of communication protocols. These three papers introduce
useful tools and language extensions for TTCN but unfortunately, neither of them
deals with how to generate the performance test itself, based on the performance
requirements of the SUT.

To sum up the above, during our earlier work, we were unable to find any
automatic, black-box methods in the literature that validate the performance of
communicating systems. Thus, we have proposed an automatic model-driven per-
formance testing method. Our performance testing method is given as an input the
number of requests the SUT has to be able to serve in worst case while serving a
given number of users in parallel. The method automatically determines whether
the SUT meets this performance requirement [29]. The underperformance diag-
nostic methods presented in this paper are the extensions of this earlier published
performance testing method, which is briefly discussed in Section 3.

3 A Model-Driven Performance Testing Method

for Communicating Systems

In this section, we briefly introduce an automatic performance testing method.
The method is given as an input CWRusr , which is the worst-case number of
requests the SUT has to process within a second (worst-case number of messages per
second), while serving usr users simultaneously. The performance testing method
automatically determines, whether the SUT meets this performance requirement.
More precisely, our performance testing method calculates CW usr , which is the
number of messages the SUT is able to process within a second while serving usr
users. The method surveyed in this section is presented in [29] in more detail.

For the performance testing method presented in this section, we have created a
performance model, the so-called Timed Communicating Finite Multistate Machine
(TCFMM), which is capable of modelling the above mentioned two performance
requirements of a communicating system. During testing, our performance testing
method creates a TCFMMmodel representing the SUT. This model is created using
the information known about the SUT prior to testing, and using measurements
performed on the SUT during the testing phase. From the so created performance
model, the method derivesCW usr in an analytical way. The Timed Communicating
Finite Multistate Machine can be described as follows:

TCFMM = (S, T, I, O, U, s0)

462 Levente Erős and Tibor Csöndes

s0

s1 s2

s3

a/z/0.01 b/y/0.02

c/v/0.05

b/w/0.03

b/z/0.02 a/v/0.01

Figure 1: The TCFMM model

In the above definition, S is the set of states with s0 ∈ S being the initial state
of the TCFMM, T is the set of transitions, I is the set of inputs, O is the set of
outputs, and U is the set of tokens in the TCFMM. Each transition ti ∈ T is a
quintuple (sfromi

, stoi
, ii, oi, di), where sfromi

∈ S is the originating state, stoi
∈ S

is the destination state, ii ∈ I is the input, oi ∈ O is the output, and di is the
delay of the transition. Each token uj ∈ U represents a protocol instance run by
the SUT. Each uj has a current state scurrentj , which is the current state of that
protocol instance of the SUT, which communicates with user j. The transitions
work as follows. Let us assume that scurrentj = sfromi

. If user j sends ii to the
system represented by the TCFMM, token uj is removed from sfromi

and placed
to stoi

and oi is sent to the user in response. The time elapsed between the user
sending ii to and receiving oi from the system represented by the TCFMM is di.
In the beginning, for each uj ∈ U , scurrentj = s0. Figure 1 shows a TCFMM. The
transition parameters are written on each transition in the form input/output/delay.
All the tokens of the TCFMM reside in s0.

As the first step, our performance testing method creates the structure of the
TCFMM representing the SUT. In the rest of the paper, by the structure of the
TCFMM, we mean the complete TCFMM without its transition delays di. In the
testing phase, the tester measures all transition delays of the SUT and completes
this TCFMM model. During testing, the structure of the TCFMM is used for
tracing the state of the SUT.

The structure of the TCFMM is based on the FSM model to which the SUT cor-
responds, according to its conformance test. Each state of the TCFMM corresponds
to a state of the FSM, while each of its transitions correnspond to a transition in the
FSM. The input and output value of a transition in the TCFMM equals the input
and output value of the corresponding transition in the FSM, respectively. Two
states in the TCFMM are connected by a transition exactly if the corresponding
states are connected by the corresponding transition in the FSM. The originating
and destination states of each transition in the TCFMM are the originating and

Model-Driven Diagnostics of Underperforming Communicating Systems 463

Figure 2: Redirecting transitions from terminating states

destination states of the corresponding transition in the FSM, respectively. After
creating the states and transitions, usr tokens are placed to s0 in the TCFMM.
Placing these tokens to state s0 in the TCFMM means that during the performance
measurement, the tester will emulate the maximal number of users the SUT has to
be able to handle. During testing, moving token uj along transition ti from state
sfromi

to state stoi
corresponds to the tester sending input ii to the SUT and then

waiting to receive output oi from the SUT, in the name of user j.
To complete the structure of the TCFMM, all the transitions leading to sink

states (i.e. states that have no outgoing transitions) have to be redirected to s0,
and the sink states have to be elliminated. The reason for this modification is that
if there were sink states in the TCFMM used for conducting the performance test
and a token ui reached one of these sink states, then the tester would not be able
to send any request messages (inputs) to the SUT in the name of user i that is,
the effective number of users the SUT has to serve would be decreased by one due
to this stuck token ui. In other words, token ui would go inactive. If however,
the transition leading ui to this sink state is redirected to s0, every time a token
goes through this transition, it reappears at s0 instead of going inactive. This is
identical to the situation when for each user that sends its last request to the SUT
and goes inactive, a new user appears. With this modification, the number of users
that the SUT has to serve simultaneously is usr for the whole duration of the test.
Figure 2 shows two TCFMMs. The TCFMM in the right side of the figure is the
TCFMM in the left side of the figure, after its transitions leading to the only sink
state s3 got redirected to s0.

After creating the structure of the TCFMM, the tester measures the yet un-
known transition delay values di on the SUT. During testing, each user emulated
by the tester sends one request after another to the SUT. Thus, upon receiving a
response from the SUT, the user sends the next request right away, and this way
the SUT is continuously stressed by usr requests from usr users. Once each di is
known, the TCFMM is a complete performance model of the SUT. Based on this
TCFMM, CW usr can be calculated.

Before going on with calculating CW usr , let us define what it means that a

464 Levente Erős and Tibor Csöndes

system is able to process CWRusr messages per second in worst case.

Definition 1. Let F s
t denote the number of state transitions of the SUT measured

for time length t while the SUT is fed by s. Then the SUT is said to be able to
process CWRusr messages per second if for an arbitrary infinite input sequence s,

lim
t→∞

F s
t

t
≥ CWRusr (1)

The above fraction is the reciprocal of the average amount of time needed to
process one input message of s. Since the amount of time needed to process any
input sequence of s equals a transition delay which takes its value from a finite set,
this average delay does have a limit and thus, the limit in the above formula exists
too.

According to the above definition, a system is said to be able to process CWRusr

messages per second in worst case if it processes at least CWRusr messages per
second when induced by an arbitrary and infinite sequence of inputs, measured for
a relatively long (optimally infinite) period of time.

In the following, ci represents a cycle of transitions in the TCFMM, while |ci|
represents its length. The following is a sufficient and necessary requirement of a
system that processes CWRusr messages per second in worst case: A system is able
to process CWRusr messages per second in worst case if and only if, for each ci of
the TCFMM of the system:

∑

tj∈ci

dj ≤
|ci|

CWRusr

(2)

As a consequence of the above, the number of messages the SUT is able to
process within a second in worst case can be calculated as follows, where C is the
set of all transition cycles in the TCFMM:

CW usr = min
ci∈C

{
|ci|
∑

tj∈ci

dj
} (3)

4 The Worst-Case Underperformance Diagnostics

Problem

After the above introduction, we are going to show how to increase the performance
of a communicating system for which, CWRusr > CW usr (in other words, the
system is unable to process CWRusr messages per second in worst case).

Increasing CW usr is achieved by reducing the transition delays of the SUT. We
are going to assume that transition delays are not reducible by arbitrary amounts.
Moreover, each transition delay di is reducible by amounts di

Gr
, 2 di

Gr
, . . . , (Gr−1) di

Gr
,

where Gr (the so-called granularity) is a positive integer. Each transition delay
reduction has a cost. The objective of the methods presented in this section is

Model-Driven Diagnostics of Underperforming Communicating Systems 465

to correct (some of the) transition delays of the SUT, so that at the end of the
correction CWRusr ≤ CW usr and to carry out this correction at minimal cost.

4.1 Definition of the Worst-Case Underperformance Diag-

nostics Problem

The worst-case underperformance diagnostics problem is defined as follows:
Given are the set T = {ti} of transitions, and the set C = {Ci} of cycles. Each

cycle Ci = {tj} is a set of transitions, and each transition tj has a delay value dj .
Given are a positive integer Gr , a positive number CWRusr , a positive number K,
and a variable 0 < qi ≤ 1 assigned to each transition ti. Given is furthermore, a
monotonic decreasing function Cost(x) for which Cost : (0, 1] → R

+, Cost(1) = 0
measured by discrete equidistant points of the domain. The question to be answered
is as follows: Is it possible to choose the value of each qi so that qi =

ni

Gr
, where

0 < ni ≤ Gr is an integer and the following inequalities are true?

∀ci ∈ C :
∑

j:tj∈ci

djqj ≤
|ci|

CWRusr

(4)

∑

i:ti∈T

Cost(qi) ≤ K (5)

To further explain the above, qi is a factor representing the reduction of di
(a correction factor from now on). The reduced delay of each ti ∈ T is diqi.
∑

i:ti∈T

Cost(qi) is the total cost of delay reduction. Cost(1) = 0, because if qi = 1,

the delay of ti is not reduced, and so the delay reduction does not cost anything.
Finally, K is an upper bound for the cost of correcting the delays of all transitions.
Formula 4 corresponds to Formula 2 thus, it expresses that after the performance
correction, CW usr ≥ CWRusr . Formula 5 requires the cost of the correction to be
under K.

4.2 Complexity of the Worst-case Underperformance Diag-

nostics Problem

In this subsection, we are going to prove the NP-completeness of the worst-case
underperformance diagnostics problem by reducing an arbitrary instance of the
NP-complete knapsack problem to an instance of the worst-case underperformance
diagnostics problem, using the Karp reduction.[30]

Proof. Before beginning the proof, let us redefine the worst-case underperformance
diagnostics problem using the attributes of the first definition:

Given are the set T = {tj} of transitions, and the set C = {Ci} of cycles. Each
cycle Ci = {tj} is a set of transitions. Each transition tj = {(djk , cjk)} is a set of
delay-cost pairs, where djk = dj

k
Gr

, cjk = Cost(k
Gr

), and 1 ≤ k ≤ Gr is an integer
(∀(tj ∈ T) : |tj | = Gr). The question to be answered is as follows: Is it possible

466 Levente Erős and Tibor Csöndes

to choose exactly one delay-cost pair (d̂j , ĉj) ∈ tj from each transition tj so that

∀(i : Ci ∈ C) :
∑

j:tj∈Ci

d̂j ≤ |Ci|
CWRusr

and
∑

j:tj∈T

ĉj ≤ K? To further explain the

above, for each transition ti, di|ti| is the measured delay di of the transition and

ci|ti| = Cost(|ti|
Gr

) = Cost(Gr
Gr

) = Cost(1) = 0.

A set T̂ of the chosen (d̂j , ĉj) pairs is an appropriate witness, since given this set

(containing |T | elements), checking whether the elements of T̂ give an appropriate

solution can be done by summing up the d̂j values and checking whether the sum

is lower than or equal to |Ci|
CWRusr

, and by summing up the ĉj values and checking
whether their sum is lower than or equal to K. This operation can be carried out in
O(|T ||C|) time that is, in polynomial time. Thus, the worst-case underperformance
diagnostics problem is in NP.

Now, we have to reduce an arbitrary instance of the knapsack problem to an
instance of the worst-case underperformance diagnostics problem. The knapsack
problem is defined as follows:

Given are a set G, for all of its elements gj a v(gj) and a w(gj) value and positive
integers V and W . The question to be answered is as follows: Is there a subset
G′ ⊆ G such that the following inequalities are true?

∑

gj∈G′

w(gj) ≤ W (6)

∑

gj∈G′

v(gj) ≥ V (7)

Let us now take this definition of the knapsack problem and reduce it to an
instance of the worst-case underperformance diagnostics problem. First of all,
to each gj ∈ G of the knapsack problem, a transition tj is assigned, such that
tj = {(dj1 , cj1), (dj2 , cj2)}, and

⋃

j

tj = T . The variables of the resulting worst-case

underperformance diagnostics problem are as follows:

dj1 = v(gj)
cj1 = w(gj)
dj2 = 2v(gj)
cj2 = 0
C = {C1}
C1 = T

CWRusr = |G|
2

∑

gi∈G

v(gi)−V

K = W

According to the assignments above, in the resulting graph there will be exactly
one cycle containing all the transitions. Furthermore, each transition tj will have
two delay-cost pairs. Choosing pair (dj1 , cj1) in the worst-case underperformance
diagnostics problem corresponds to including gj in G′ in the knapsack problem,
while choosing pair (dj2 , cj2) corresponds to not including gj in G′.

Model-Driven Diagnostics of Underperforming Communicating Systems 467

Now we have to show that the knapsack problem is solvable if and only if the
corresponding worst-case underperformance diagnostics problem is solvable.

Let us assume that the above defined worst-case underperformance diagnostics
problem is solvable. This means that for each tj ∈ T there is a (d̂j , ĉj) ∈ tj pair
such that the following inequalities are true:

∑

j:tj∈C1

d̂j ≤
|C1|

CWRusr

(8)

∑

j:tj∈T

ĉj ≤ K (9)

Using the assignments defined earlier in this proof, Inequality 8 can be trans-
formed as follows:

2
∑

gi∈G

v(gi)−
∑

gi∈G′

v(gi) ≤

≤ |C1|
|G|

2
∑

gi∈G
v(gi)−V

(10)

The reason for transforming the left side of Inequality 8 as above is the following:
According to the assignments defined earlier in the proof, dj1 = v(gj) = 2v(gj)−

v(gj). Thus, each d̂j value includes a 2v(gj) component either if it equals dj1 or dj2 .

Thus, by summing up the d̂j values on the left side of Inequality 8, a 2
∑

gj∈G

v(gj)

component will appear on the left side of Inequality 10. A d̂j value has a further

−v(gj) component exactly if it equals dj1 . A d̂j value equals dj1 exactly if gj ∈ G′.
Thus −v(gj) has to be added to the left side of Inequality 10 for each gj ∈ G′.

Since |G| = |C1|, Inequality 10 can be reduced as follows:

2
∑

gi∈G

v(gi)−
∑

gj∈G′

v(gj) ≤ 2
∑

gi∈G

v(gi)− V (11)

V ≤
∑

gj∈G′

v(gj) (12)

According to the assignments defined earlier in this proof, Inequality 9 can be
transformed as follows:

∑

gj∈G′

w(gj) ≤ W (13)

The explanation for the left side of Inequality 13 is the following:
ĉj = cj2 = 0 exactly if gj /∈ G′ and ĉj = cj1 = w(gj) exactly if gj ∈ G′.

Thus, the left side of Inequality 13 will be the sum of those w(gj) values for which,
gj ∈ G′.

As a consequence of the transformations of Inequalities 8 and 9, our worst-case
underperformance diagnostics problem will be solvable exactly if Inequalities 12 and

468 Levente Erős and Tibor Csöndes

13 are true. However, as Inequality 12 is identical to Inequality 7 and Inequality 13
is identical to Inequality 6, our worst-case underperformance diagnostics problem
is solvable if and only if the corresponding knapsack problem is solvable.

Since the transformation of the knapsack problem to an instance of the worst-
case underperformance diagnostics problem can be carried out in O(|G|) that is, in
linear time and the knapsack problem is solvable if and only if the corresponding
worst-case underperformance diagnostics problem is solvable, the knapsack problem
is Karp reducible to the worst-case underperformance diagnostics problem.

And finally, since the knapsack problem is Karp reducible to the worst-case
underperformance diagnostics problem and the worst-case underperformance diag-
nostics problem is in NP, the worst-case underperformance diagnostics problem is
NP-complete.

4.3 ILP formulation of the Worst-Case Underperformance

Diagnostics Problem

Since the worst-case underperformance diagnostics problem is NP-complete, the
most effective known way to find its optimal solution is formulating it as an integer
linear program, and solving it. The optimal solution in our case is the solution
with the minimal cost. The integer linear program in our case will be the binary
linear program (BLP) formulated in this subsection.

The binary program formulating the worst-case underperformance diagnostics
problem is as follows, where crr i =

i
Gr

, and cst i = Cost(i
Gr

):
Minimize:

∑

i:ti∈T

Gr
∑

j=1

qij cst j (14)

Subject to:

∀(i : ti ∈ T) :
Gr
∑

j=1

qij = 1 (15)

∀ci ∈ C :
∑

j:tj∈ci

dj

Gr
∑

k=1

qjkcrrk ≤
|ci|

CWRusr

(16)

∀(i : ti ∈ T) : ∀(j = 1, 2, . . . ,Gr) :
qij ∈ {0, 1}

(17)

When solving the program, the values of the qij variables are being searched
for. The value of each qij has to be set to 0 or 1 (Equation 17). Variables qij ,
where j = 1, . . . ,Gr are used for choosing the value of correction factor qi. As a
solution of the BLP above, for each transition ti, there is exactly one qij variable
with the value of 1. All the other qij variables of transition ti are set to 0. This is

Model-Driven Diagnostics of Underperforming Communicating Systems 469

a consequence of Equations 15 and 17. If the value of qij is 1 then qi equals
j

Gr
,

and thus, correcting the delay of ti costs Cost(
j

Gr
).

As mentioned above, Equations 15 and 17 are responsible for choosing the value
of qi legally. According to these equations, each qij is 0 or 1 and for each ti, exactly
one qij equals 1, while the others equal 0. On the left side of Inequality 16, coefficient
Gr
∑

k=1

qjkcrrk equals qj the value of which is chosen from among the crrk values by

the appropriate qjk variable set to 1. Thus, Inequality 16 means that the corrected

delay of each cycle ci has to be lower than or equal to |ci|
CWRusr

(this corresponds

to Inequality 4). Finally, in the objective function (Formula 14),
Gr
∑

j=1

qij cst j equals

Cost(qi), which is the cost of correcting the delay of transition ti. The value of
Cost(qi) is chosen from among the cst j values by the appropriate qij variable set
to 1. Thus, the objective function expresses that the total cost of transition delay
correction should be minimal.

Note: The problem can also be interpreted as a maximalization problem, where
the maximal cost K is given and the task is to maximize CW usr . Using the above
notation, this problem can be formulated as follows:

Maximize:

CW usr (18)

Subject to:

∑

i:ti∈T

Gr
∑

j=1

qij cstj ≤ K (19)

∀(i : ti ∈ T) :

Gr
∑

j=1

qij = 1 (20)

∀ci ∈ C :
∑

j:tj∈ci

dj

Gr
∑

k=1

qjkcrrk ≤
|ci|

CW usr

(21)

∀(i : ti ∈ T) : ∀(j = 1, 2, . . . ,Gr) :
qij ∈ {0, 1}

(22)

The above formulation differs from the first formulation in two things. First, it
sets an upper limit for the total cost and second, while it still requires each cycle

delay to be lower than or equal to |ci|
CW usr

, its objective is to maximize CW usr . In
the simulations presented in Section 5, we use the first formulation.

470 Levente Erős and Tibor Csöndes

4.4 A Heuristic Solution for the Worst-Case Underperfor-

mance Diagnostics Problem

In this subsection, we introduce a heuristic algorithm for solving the worst-case
underperformance diagnostics problem. The algorithm is optimized for the case
when Cost(x) = − loga x (x ≤ 1), an its objective is to minimize the cost by which
CW usr can be made greater than or equal to CWRusr . Algorithm 1 shows how our
heuristic method works. In the algorithm, r is the so called refreshing granularity
(a large integer).

Algorithm 1: Heuristics for solving the worst-case underperformance diag-
nostics problem

input : T , C, Gr , CWRusr , r
output:

⋃

i:ti∈T

qi

1 foreach i : ti ∈ T do

2 clisti := {j|ti ∈ cj};
3 foreach i : ti ∈ T do

4 period i := ⌈|clisti |dir⌉;
5 foreach i : ti ∈ T do

6 qi :=
1
Gr

;

7 if ∃(ci ∈ C) :
∑

j:tj∈ci

dj

Gr
≤ |ci|

CWRusr
then

8 return ”unsolvable”;
9 iteration := 1;

10 while

∃(i : ti ∈ T) : (qi < 1∧∀(j ∈ clist i) : (
∑

k:tk∈cj∧k 6=i

qkdk)+(qi+
1
Gr

)di ≤
|cj|

CWRusr
)

do

11 foreach i : ti ∈ T do

12 if iteration mod period i = 0∧

qi < 1∧ ∀(j ∈ clist i) : (
∑

k:tk∈cj∧k 6=i

qkdk) + (qi +
1
Gr

)di ≤
|cj |

CWRusr
) then

13 qi := qi +
1
Gr

;

14 iteration := iteration + 1;

15 return
⋃

i:ti∈T

qi;

The algorithm first sets each correction factor qi to its minimal value 1
Gr

and
then it increases each of these factors by 1

Gr
more or less frequently, in a round

robin manner, e.g. some of the correction factors might be increased in each round
while some of the others might only be increased in every other round, etc. The
key step of the algorithm is determining how frequently each qi should be increased
in order to keep the total cost minimal, while still keeping the delay of each cycle

ci lower than or equal to |ci|
CWRusr

.

In the following, we are going to explain the algorithm in detail.

Model-Driven Diagnostics of Underperforming Communicating Systems 471

In lines 1 and 2, to each transition ti, a set clist i is constructed, which stores
references to each of the cycles that include ti.

Lines 4 and 5 are the key steps of the algorithm. In these steps, for each
transition ti, we determine the value of period i which is the number of iterations
that have to pass between two subsequent increasements of qi. To explain why
∀ti : period i := ⌈|clisti |dir⌉, let us look at the following example.

Let us take a TCFMM consisting of two states s0, and s1, and two transitions
t0, and t1, such that t0 is originated in s0 and destinated in s1 while t1 is originated
in s1 and destinated in s0. Thus, in this TCFMM there is exactly one directed
cycle. Let b denote the maximal allowed cycle delay we would like to achieve by

correcting delays d0, and d1. In our case, b = |c1|
CWRusr

= 2
CWRusr

. Let us furthermore
assume that in this example, the co-domains of q0 and q1 are continuous and the
cost function is Cost(x) = − loga x.

Because of the continuous co-domains and the single directed cycle in the
TCFMM, for the most cost-effective solution the corrected cycle delay will be equal
to b and not lower than it. Thus, d0q0 + d1q1 = b. The latter equation means that
q1 = b−d0q0

d1
.

The objective of the problem is to choose the appropriate qi values that minimize
∑

i:ti∈c1

Cost(qi). In our case this formula equals min
q0,q1

(−(loga q0+loga q1)). The latter

formula, using that q1 = b−d0q0
d1

, can be further transformed as follows:

min
q0,q1

(−(loga q0 + loga q1)) → min
q0,q1

(− loga q0q1) →

min
q0

(

− loga

(

− d0

d1
q20 +

q0b

d1

))

→ max
q0

(

− d0

d1
q20 +

q0b

d1

)

→

min
q0

(

d0

d1
q20 −

q0b

d1

)

→ min
q0

(√

d0

d1
q0 −

b
2d1

√

d1

d0

)2

− b2

4d2
1

d1

d0

Since the second component of the above formula does not contain q0, it is

minimal if the first component
(√

d0

d1
q0 −

b
2d1

√

d1

d0

)2

is minimal. Since the first

component is a square, it is minimal if it equals 0 that is, if q0 = b
2d1

√

d1

d0

√

d1

d0
=

b
2d1

d1

d0
= b

2d0
. In this case q1 = b−d0q0

d1
= b

2d1
.

Thus, the cost of correcting the two transition delays will be minimal if d1q1 = b
2 ,

and d0q0 = b
2 , that is if the corrected delay values (d0q0, and d1q1) are equal.

Based on this, we can suspect that in the case of a directed cycle which consists of
more than two transitions, the cost of correcting the cycle delay is minimal if each
corrected delay diqi value is equal. If however, the corrected transition delays of the
cycle are equal, they equal 1

CWRusr
. This is the consequence of Inequality 4, which

takes the following shape for the optimal qi values of this continuous problem (c1
denotes the only transition cycle in the TCFMM):

∑

i:ti∈c1

diqi =
|c1|

CWRusr

(23)

472 Levente Erős and Tibor Csöndes

As a consequence of the above, in the continuous case with a single directed
cycle, qi =

1
d0CWRusr

.

Let us now return to the non-continuous case that our heuristic algorithm deals
with. More precisely, let us see how to set the value of period i optimally. If the
TCFMM consists of a single directed cycle, the appropriate correction factor for
transition ti can be achieved if the initial value 1

Gr
of qi is incremented in every

⌈dir⌉-th round of the algorithm (see the explanation for r later). For example, if d1
is twice as large as d0 and thus, q0 has to be around 2x and q1 has to be around x
then q0 has to be incremented twice as frequently as q1. To fulfill this requirement,
one coefficient of period i is di which is responsible for making the corrected delay
values approximately equal to each other.

Let us now assume that the TCFMM has multiple cycles and some of its tran-
sitions are included in more than one of these cycles (this is the general case). In
this case, it is more cost-effective if we reduce the delays of transitions included in
many cycles by a bigger amount than the delays of transitions included in fewer
cycles. The reason for this is that if we reduce the delay of a transition, which is
included in n cycles, then n cycle delays will be reduced. This way the left side
of n instances of Inequality 4 will be reduced, while the cost of this reduction will
not be multiplied by n. Based on this, we can suspect that by adding |clist i| as a
coefficient to period i for each transition ti, the total cost of delay reduction will be
closer to optimal. We have confirmed this suspicion by running simulations.

The reason for including refreshing granularity r in period i is that in order to
make period i an integer value, the ceiling value of |clist i|di is taken. We have chosen
the ceiling value instead of the floor value to avoid the illegal case when period i = 0.
If |clist i|di is a small integer, then by taking its ceiling value, some of the accuracy
of |clist i|di is lost. If however, we multiply |clist i|di by r and then take the ceiling
value of |clist i|dir, then the bigger r is, the more of this otherwise lost accuracy
can be preserved. The value to be chosen for r is however, not independent from
|clist i|di. As the smaller |clist i|di is, the greater r has to be to preserve the same
amount of accuracy. During our simulations presented in Section 5, we required r
to be larger than or equal to ⌈ 100

min
i:ti∈T

|clisti|di
⌉.

After setting the value of period i, in lines 6 and 7, the algorithm initializes each
qi to its smallest possible value 1

Gr
. Then in lines 8 and 9, the algorithm checks

whether using these lowest possible values of the correction factors, Inequality 4
is fulfilled for each cycle or not. If not, the problem is unsolvable, since each qi
has taken its smallest possible value and thus, no transition delay can be further
reduced.

From line 10, the algorithm runs iterations. While there exists a transition ti
the correction factor qi of which can be augmented by 1

Gr
without violating any

instances of Inequality 4 and without qi getting bigger than 1 (which is the greatest
possible value of each qi), the algorithm starts a new iteration. In each iteration,
the algorithm selects each transition ti for which the iteration count is divisible by
period i. If for a selected transition, qi is yet lower than 1, and qi can be increased
by 1

Gr
without violating any instances of Inequality 4, qi is increased by 1

Gr
. The

Model-Driven Diagnostics of Underperforming Communicating Systems 473

Figure 3: Costs of solutions, Gr = 2, CWRusr = 1.0

iterations go on until no further correction factor can be increased.

5 Simulation Results

In this subsection, we present simulation results comparing the efficiency of our
heuristic algorithm (denoted by H in the figures) to that of solving the fisrt BLP
(denoted by BLP in the figures) formulated in Subsection 4.2, which always finds
the optimal solution that is, the lowest cost solution.

The simulations were run on multiple TCFMMs, each one having 10 states. The
structure of the TCFMMs (i.e. their states and state transitions without the delays
assigned to each transition) were built incrementally. The first TCFMM structure
has 10 transitions, while each of the others were constructed by taking the previous
TCFMM structure and adding 10 random transitions to it. The largest structure
has 50 transitions. From each TCFMM structure, we have generated 10 different
TCFMMs by assigning random transition delay values to the structures. In the
following, a group of TCFMMs means the TCFMMs having the same number of
transitions.

During the simulations, we have measured the average time and cost needed
to correct the transition delays of the TCFMMs using each method, as a function
of the number of transitions in the TCFMM. The average cost and running time
values were calculated for each group of TCFMMs. Since the set of cycles is an
input parameter for both the BLP and the heuristic algorithm, all cycles in the
TCFMMs had to be found before executing any of the methods. Thus, each time
value plotted in the following figures is the average amount of time needed to run
the methods plus the amount of time needed to find the cycles in the corresponding
group of TCFMMs. For finding the cycles, we used an iterative deepening depth-
first search. Transition delays were generated with uniform distribution on interval
[0.5, 1.5] that is, the mean transition delay is dmean = 1.0.

During the simulations, Cost(x) = − lnx.

474 Levente Erős and Tibor Csöndes

Figure 4: Costs of solutions, Gr = 2, CWRusr = 1.5

Figure 5: Costs of solutions, Gr = 4, CWRusr = 1.0

Figure 3 shows the average costs of correcting the transition delays using each
method, where Gr = 2, and CWRusr = 1.0. Figure 4 plots the average costs of
each method, where Gr = 2, and CWRusr = 1.5. According to Figure 3, where
CWRusr = 1

dmean
, there is no significant difference between the cost-efficiency of the

two methods. The cost of the heuristic solution is by 5,4 percent higher than the
optimal cost, in average. In the case of Figure 4 where CWRusr = 1.5

dmean
however,

the cost of the heuristic algorithm is only by 0,7 percent higher than the optimum,
in average.

Figure 5 shows the average costs of the two different methods, where Gr = 4,
and CWRusr = 1.0. Figure 6 shows the average costs of the solutions found by
each method, where Gr = 4, and CWRusr = 1.5. According to Figure 5, the cost
obtained by the heuristics is by 14 percent higher than the optimum, in average.
However, as can be seen in Figure 6, if CWRusr = 1.5

dmean
then the cost of the

heuristics is higher than the optimal cost by only 5 percent.

Figure 7 shows the costs obtained by the two methods in the case whereGr = 10,

Model-Driven Diagnostics of Underperforming Communicating Systems 475

Figure 6: Costs of solutions, Gr = 4, CWRusr = 1.5

Figure 7: Costs of solutions, Gr = 10, CWRusr = 1.0

Figure 8: Costs of solutions, Gr = 10, CWRusr = 1.5

476 Levente Erős and Tibor Csöndes

Table 1: Rates of costs, Cost(x) = − lnx

Gr CWRusr
C(heuristics)

C(BLP)

2 1.0 1.0545
2 1.5 1.007
4 1.0 1.1408
4 1.5 1.0497
10 1.0 1.1815
10 1.5 1.0598

Figure 9: Running times of the heuristic algorithm

and CWRusr = 1.0 = 1
dmean

, while Figure 8 shows tis comparison for the case where
Gr = 10, and CWRusr = 1.5. As can be seen in Figure 7, if CWRusr = 1.0, the
cost of the solution obtained by the heuristic method is higher by 18 percent than
the optimal cost, in average. According to Figure 8, in average, the cost of the
heuristics is by only 6 percent higher than the optimal cost.

Table 1 shows the average rates of costs of the two methods. In the table, C
denotes cost.

Figure 9, and Table 2 show the average running time of the heuristic solution
(plus the amount of time needed for finding the transition cycles in the TCFMMs)

Table 2: Running times of the heuristic algorithm in seconds
CWRusr Gr |T | = 10 |T | = 20 |T | = 30 |T | = 40 |T | = 50

1, 0 2 0, 006 0, 0108 0, 2592 4, 9084 64, 4324
1, 0 4 0, 006 0, 0112 0, 2592 4, 9204 64, 5144
1, 0 10 0, 0064 0, 012 0, 264 4, 9516 64, 712
1, 5 2 0, 0068 0, 0113 0, 259 4, 909 64, 432
1, 5 4 0, 0064 0, 0112 0, 258 4, 914 64, 4692
1, 5 10 0, 0064 0, 012 0, 26 4, 9376 64, 6112

Model-Driven Diagnostics of Underperforming Communicating Systems 477

Figure 10: Running times of the BLP

Table 3: Running times of the BLP in seconds
CWRusr Gr |T | = 10 |T | = 20 |T | = 30 |T | = 40 |T | = 50

1, 0 2 0, 0096 0, 0208 0, 4932 8, 9786 263, 681
1, 0 4 0, 0084 0, 0428 7, 85 1132, 38
1, 0 10 0, 0292 0, 196 221, 1 35018, 4
1, 5 2 0, 012 0, 0513 0, 415 5, 695 94, 842
1, 5 4 0, 01 2, 7813 564, 205 49765, 9
1, 5 10 0, 0348 138, 793 942004, 119

as a function of the number of transitions in the TCFMMs, for different simulation
scenarios. In the table, |T | denotes the number of transitions in the TCFMM. As
it can be seen in the figure and the table, the running time of the heuristic solution
does not differ significantly for the different simulation scenarios (the markers of
each curve are almost exactly on top of each other). The reason for this is that the
running time of the heuristic algorithm itself is overweighed by the amount of time
needed to find the transition cycles in the TCFMMs. As it can also be seen, the
running time of the heuristics is reasonable even for extremely dense TCFMMs.

Figure 10 having a logarithmic vertical axis, and Table 3 show the average
amount of time needed for solving the BLP (plus the amount of time needed for
finding the transition cycles in the TCFMMs) as a function of the number of tran-
sitions in the TCFMMs. As the figure and the table show, the running time of the
BLP increases significantly as Gr or CWRusr grows. Thus, solving the BLP is only
a reasonable choice for lower Gr and CWRusr values. However, in the cases where
the running time of the BLP is the highest, the heuristic algorithm is capable of
calculating a solution the cost of which is not significantly higher than that of the
BLP.

478 Levente Erős and Tibor Csöndes

6 Summary

In this paper, we have proposed performance diagnostic methods. These methods
attempt to determine how to increase the performance of the SUT if according
to its performance test, it is unable to serve the required worst-case number of
messages per second.

The increasement is achieved by decreasing transition delays and thus, increas-
ing the number of messages per second that the SUT is able to process in worst
case. Each transition delay can be decreased by discrete amounts and each delay
reduction has a cost, which should be as low as possible. The reduced delay of
transition ti will be diqi, where qi is the so-called correction factor of transition ti.

By reducing an arbitrary instance of the NP-complete knapsack problem, we
have proven that this, so-called worst-case underperformance diagnosctics problem
is NP-complete and formulated it as a binary linear program. We have also given
a heuristic approach which works by first choosing the lowest possible (and most
expensive) value of each correction factor and then by incrementing the correction
factors more or less frequently. By incrementing correction factors, the cost of
performance correction is decreased. The number of iterations that has to elapse
between two subsequent increasements of a given transition is determined by a
weight assigned to the transition.

We have compared the efficiency of solving the binary linear program to those
of our heuristics and found that the latter performs efficiently in those cases where
the former has an unreasonable running time.

7 Future Work

In our future work, we are going to extend the worst-case underperformance di-
agnostics problem for a more general case, in which the legal correction factors qi
vary for different transitions (e.g. the legal correction factor values for transition
t1 are 0.6 and 0.8, while the legal correction factor values for transition t2 are 0.1,
0.15 and 0.3, etc).

We are also going to deal with another extension of the worst-case underper-
formance diagnostics problem in which, instead of decreasing transition delays, the
performance of resources of the system can be increased by different amounts. As a
result of increasing the performance of a resource, the delays of a set of transitions
decrease by different amounts. Each resource performance increasement has a cost,
and the task is to determine how to increase the performance of each resource in
order to make the system meet Inequality 2 at minimal cost.

Acknowledgments

This paper has been (partially) supported by HSNLab, Budapest University of
Technology and Economics, http://www.hsnlab.hu.

Model-Driven Diagnostics of Underperforming Communicating Systems 479

References

[1] Lee, D. and Yannakakis, M. Principles and Methods of Testing Finite State
Machines – A Survey In Proceedings of the IEEE vol. 84 issue 8, pages 1090–
1123, 1996.

[2] Cavalli, A. R., Dorofeeva, R., El-Fakih, K., Maag, S. and Yevtushenko, N.
FSM-based conformance testing methods: A survey annotated with experi-
mental evaluation In Information and Software Technology vol. 52 issue 12.,
pages 1286–1297, 2010.

[3] Feng, C., Lombardi, F., Shen, Y. and Sun, X. Advanced Series in Electrical
and Computer Engineering - Vol. 12, Protocol Conformance Testing Using
Unique Input/Output Sequences World Scientific Publishing, River Edge, NJ,
1997.

[4] ISO/IEC 9646-1: Information Technology - Open Systems Interconnection -
Conformance testing methodology and framework - Part 1: General concepts,
1994.

[5] Chul, K. and Song, J. S. Test Sequence Generation Methods for Protocol Con-
formance Testing In Proc. of the Eighteenth Annual International Computer
Software and Applications Conference, pages 169–174, 1994.

[6] ITU-T ITU-T Recommendation Z.500 – Framework on formal methods in
conformance testing, 1997.

[7] Boroday, S., Groz, R. and Petrenko, A. Confirming configurations in EFSM
In Proc. of the IFIP TC6 WG6.1 Joint International Conference on Formal
Description Techniques for Distributed Systems and Communication Proto-
cols (FORTE XII) and Protocol Specification, Testing and Verification (PSTV
XIX), pages 5–24, 1999.

[8] Lee, D. and Yannakakis, M. Testing Finite-State Machines: State Identifica-
tion and Verification In IEEE Transactions on Computing vol. 43 issue 3.,
pages 306–320, 1994.

[9] Aho, A.V. and Lee, D. Efficient algorithms for constructing testing sets, cov-
ering paths, and minimum flows In AT&T Bell Laboratories Technical Mem-
orandum, 1987.

[10] Tretmans, G. J. Test Generation with Inputs, Outputs, and Quiescence In
Proc. Tools and Algorithms for Construction and Analysis of Systems, Second
International Workshop, TACAS, pages 127–146, 1996.

[11] Brinksma, E., Tretmans, J. and Verhaard, L. A Framework for Test Selection
In Proc. IFIP WG6.1 11th Int. Symp. on Protocol Specification, Testing, and
Verification, pages 233–248, 1991.

480 Levente Erős and Tibor Csöndes

[12] Amalou, M., Fujiwara, S., Ghedamsi, A. and Khendek, F. Test Selection Based
on Finite State Models In IEEE Transactions on Software Engineering vol. 17
issue 6., pages 591–603, 2002.

[13] Dahbura, A.T., Sabnani, K.K. and Uyar, M.U. Formal Methods for Generating
Protocol Conformance Test Sequences In Proceedings of the IEEE vol. 78 issue
8, pages 1317–1326, 2002.

[14] Csopaki, G., Kovacs, G., Pap, Z. and Tarnay, K. Iterative Automatic Test
Generation Method for Telecommunication Protocols In Computer Standards
& Interfaces vol. 28 issue 4., pages 412–427, 2006.

[15] Bochmann, G.V., Dssouli, R. and Ghedamsi, A. Multiple Fault Diagnosis for
Finite State Machines In INFOCOM’93. Proc. Twelfth Annual Joint Con-
ference of the IEEE Computer and Communications Societies. Networking:
Foundation for the Future. IEEE, pages 782–791, 2002.

[16] Bause, F., Kabutz, H., Kemper, P. and Kritzinger, P. SDL and Petri Net
Performance Analysis of Communicating Systems In Proc. of the 15th Inter-
national Symposium on Protocol Specification, Testing and Verification, pages
269–282, 1995.

[17] ITU-T Recommendation Z.100 – Specification and Description Language
(SDL), 1994.

[18] El-Kilani, W. S., El-Wahed, W. F. A. and Youness, O. S. A Behavior and Delay
Equivalent Petri Net Model for Performance Evaluation of Communication
Protocols In Computer Communications, vol. 31 issue 10., pages 2210–2230,
2008.

[19] Marsan, M. A. Stochastic Petri Nets: An Elementary Introduction In Advances
in Petri Nets, Lecture Notes in Computer Science, vol. 424, pages 1–29, 1990.

[20] Murata, T. Petri Nets: Properties, Analysis and Applications In Proceedings
of the IEEE vol. 77. issue 4., pages 541–580, 1989.

[21] Al-Obaidan, A., El-Karaksy, M. R. and Nouh, A. S. Performance Analysis of
Timed Petri Net Models for Communication Protocols: A Methodology and
Package In Computer Communications vol. 13 issue 2., pages 73–82, 1990.

[22] Chiola, G., Fumagalli, A. and Marsan, M. A. Timed Petri Net Model for
the Accurate Performance Analysis of CSMA/CD Bus LANs In Computer
Communications vol 10. issue 6., pages 304–312, 1987.

[23] Schieferdecker, I., Stepien, B. and Rennoch, A. PerfTTCN, a TTCN Language
Extension for Performance Testing In Proc. of the IFIP TC6 10th International
Workshop on Testing of Communicating Systems, pages 21–36, 1997.

Model-Driven Diagnostics of Underperforming Communicating Systems 481

[24] ISO/IEC 9646-1: Information Technology - Open Systems Interconnection -
Conformance Testing Methodology and Framework - Part 3: The Tree and
Tabular Combined Notation, 1995.

[25] ETSI ES 201 873-1 ver. 4.2.1: Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Lan-
guage 2010.

[26] Dai, Z. R., Grabowski, J. and Neukirchen, H. TimedTTCN-3 - A Real-Time
Extension for TTCN-3 In Testing of Communicating Systems, pages 407–424,
Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002.

[27] Mingwei, X. and Jianping, W. A formal approach to protocol performance
testing In Journal of Computer Science and Technology vol. 14 issue 1, pages
81–87, 1999.

[28] ISO/IEC 9646-3 AM. 1: Information technology - OSI conformance testing
methodology and framework - Concurrent TTCN, 1993.

[29] Csondes, T. and Eros, L. An Automatic Performance Testing Method Based on
a Formal Model for Communicating Systems In Proc. of the 18th International
Workshop on Quality of Service (IWQoS), 2010.

[30] Garey, M. R. and Johnson, D. S. Computers and Intractability; A Guide to
the Theory of NP-Completeness W. H. Freeman & Co., San Francisco, CA,
1990.

Received 23rd May 2011

