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Improving the Construction of the DBM Over

Approximation of the State Space of Real-time

Preemptive Systems∗

Abdelli Abdelkrim†

Abstract

We present in this paper an algorithm allowing an efficient computation
of the tightest DBM over-approximation of the state space of preemptive
systems modeled by using Time Petri Nets with inhibitor arcs. First of all,
we propose an algorithm that reduces the effort of computing the tightest
DBM over-approximated graph. For this effect, each class of this graph is
expressed as a pair (M, D̃), where M is a marking and D̃ is the system of all
DBM inequalities even the redundant ones. We thereby make it possible to
compute the system D̃ straightforwardly in its normal form, without requiring
to compute the intermediary polyhedra. Hence, we succeed to remove the er-
rors reported in the implementation of other DBM approximations. Then we
show that by relaxing a bit in the precision of the DBM approximation, we
can achieve to construct more compact graphs while reducing still more the
cost of their computation. We provide for this abstraction a suitable equiv-
alence relation that contract yet more the graphs. The experimental results
comparing the defined constructions with other approaches are reported.

Keywords: Preemptive Systems, Time Petri Nets, Stopwatch Inhibitor arcs,
State class graph, DBM over-approximation

1 Introduction

Nowadays, real-time systems are becoming more and more complex and are often
critical. Therefore, their verification has to be performed thoroughly in order to
prove the correctness of their behaviors. These systems consist of several tasks that
are interacting and sharing one or more resources (e.g processors, memory). Hence,
the problem is to determine, for instance, whether these actions can be scheduled
in such a way that their constraints are satisfied.

Furthermore, the correctness proofs of such systems are demanding much theory
regarding their increasing complexity. We may need, for instance, to consider formal
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models requiring the specification of time preemption; concept where execution of a
task may be stopped for a while and later resumed at the same point. This notion of
suspension requires to extend the semantics of timed clocks in order to handle such
behaviors. For this effect, Cassez et al have introduced the stopwatch mechanism
[10] and hence many models have been defined, as for instance, hybrid automata
(LHA) [2] and stopwatch automata (SWA) [10]. Time Petri nets (TPN) have also
been considered in several works including Preemptive-TPN [7], Stopwatch-TPN
[5], Inhibitor-TPN [15], and Scheduling-TPN [13].

The verification of qualitative and quantitative properties of such a system on
its formal description involves the investigation of a part of or the whole set of its
reachable states that determines its state space. As the state space is generally
infinite due to dense time semantics, we need therefore to compute finite abstrac-
tions of it, that preserve properties of interest. In these abstractions, states are
grouped together, in order to obtain a finite number of these groups. These groups
of states are, for instance, regions and zones for timed automata, or state classes[4]
for time Petri nets. Hence, the states pertaining to each group can be described by
a system of linear inequalities, noted D, whose set of solutions determines the state
space of the group. Hence, if the model does not use any stopwatch, then D is of a
particular form, called DBM (Difference Bound Matrix) [8]. However, when using
stopwatches, the system D becomes more complex and does not fit anymore into
a DBM . In actual fact, D takes a general polyhedral form whose canonical form
[1] is given as a conjunction of two subsystems D = D̃ ∧ D̂, where D̃ is a DBM

system and D̂ is a polyhedral system that cannot be encoded with DBMs .
The major shortcoming of manipulating polyhedra is the performance loss in

terms of computation speed and memory usage. Indeed, the complexity of solving
a general polyhedral system is exponential in the worst case, while it is polynomial
for a DBM system. Furthermore, the reachability is proved to be undecidable for
both SWA and LHA [10] [2][11], as well as for TPN extended with stopwatches
[5] even when the net is bounded. As a consequence, the finiteness of the graph
cannot be guaranteed.

In order to speed up the state space computation, an idea is to leave out the
subsystem D̂, to keep only the system D̃ approximating thus the space of D to the
DBM containing it, see [7][15] for details. The obvious consequence of the over-
approximation is that we add states in the computed group that are not reachable
indeed. However, this could prevent the graph computation to terminate, by mak-
ing the number of computed markings unbounded. Conversely, this can also make
the computation of the approximated graph terminate by cutting off the polyhe-
dral inequalities that prevent the convergence. It is noteworthy that since the
resulted graph encompasses the exact one, only a subset of properties of interest
are preserved.

In order to perform efficiently the exact analysis of the over-approximated
graph, Bucci et al [7] have proposed to use the DBM over-approximation as a
pre-computing before cleaning up the graph from its additional sequences that have
been added due to over-approximation. This is done by constraining each sequence
reachable in the over-approximated graph by a linear system that reproduces the
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original timing constraints of the model. Hence, if there is no solution that makes
the sequence be firable according to the time constraints of the system, then the
sequence has been introduced by the over-approximation and can be cleared up,
otherwise the solution set makes it possible to determine the feasible timings of this
sequence.

Furthermore, in order to settle a compromise between both techniques, a hybrid
approach has been proposed by Roux et al [14]. The latter puts forward a sufficient

condition that determines the cases where the subsystem D̂ becomes redundant in
D. Hence, the combination of both DBM and polyhedral representations makes
it possible to build the exact state class graph faster and with lower expenses in
terms of memory usage comparatively to the polyhedra based approach [13]. More
recently, Berthomieu et al have proposed an over-approximation method based on
a quantization of the polyhedral system D [5]. The latter approach ends in the
exact computation of the graph in almost all cases faster than the hybrid approach
[14]. Nevertheless, this technique is more costly in terms of computation time and
memory usage comparatively to DBM over-approximation although it yields much
precise graphs.

We consider in this paper real time preemptive systems modeled by using ITPN
(Time Petri Nets with inhibitor arcs) [15]. This model extends TPN with inhibitor
arcs to control the progression and the suspension of stopwatches.

First of all, we propose a new algorithm to compute the tightest DBM over-
approximation of the state class graph of preemptive systems. For this effect, we
express each class, noted Ẽ, of the approximated graph as a pair (M, D̃) where

M is a marking and D̃ is the system of all DBM constraints, even the redundant
ones. We show that by maintaining a complete representation of D̃ and avoiding to
compute its minimal form, we achieve to define an efficient algorithm that computes
a normalized class in a square time in the number of enabled transitions. Besides, we
prove that the systems D̃ and D̂ are equivalent; this ensures that D̃ is the tightest
DBM over-approximation that one can derive from D. Unlike the other approaches
[15][7], our algorithm avoids the computation of the intermediary polyhedra D. We
thereby avoid its computation and its manipulation and remove all the costs induced
by the derivation of the normal form, even the minimal form of D̃. This allows to
improve significantly the calculation of a class, and to remove the drawbacks that
stand in the implementation of other DBM over-approximations.

In the second part of the paper, we propose another abstraction of the state
space of an ITPN . We show that by relaxing a bit in the precision of the constraints
of the system D̃, we can compute smaller graphs with a minimal cost. However,
although this abstraction is less precise than the former, it preserves all the firing
sequences of the model and may be sufficient to model check the properties of the
ITPN . To improve once more this construction, we provide a suitable equivalence
relation that contracts the size of the resulted graphs while reducing the effort
of their computation. For this effect, we show that for specific transitions, the
computation of their firing distances can be useless, and we prove that the equality
between these distances is not required in the class equivalence test. This result is
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important since it makes it possible to gather in a same node unequal classes that
are indeed bisimilar. This contraction leads to an efficient construction of DBM
approximated graphs that can be in certain cases more appropriate to use to model
check the linear properties of the model. Moreover, the experiments show that both
constructions are faster in all cases while providing, in general, smaller graphs than
other fellow approaches [15][7].

The remainder of this paper is organized as follows: In Section 2 we present
the syntax and the formal semantics of the ITPN model. Then, in Section 3
we introduce formally our approach. In Section 4 we define a new construction
of an abstraction of the state space of an ITPN . In Section 5 we give some
experimental results that compare the performances of our algorithms with those
of other approaches.

2 Time Petri Net with Inhibitor Arcs

Time Petri nets with inhibitor arcs (ITPN) [15] extend time Petri nets [9] with
Stopwatch inhibitor arcs. Formally, an ITPN is defined as follows:

Definition 1. An ITPN is given by the tuple (P, T,B, F,M0, I, IH) where: P and
T are respectively two nonempty sets of places and transitions; B is the backward
function 1 : B : P ×T −→ N = {0, 1, 2, ..}; F is the forward function F : P ×T −→
N ; M0 is the initial marking mapping M0 : P −→ N ; I is the delay mapping
I : T −→ Q+ × Q+ ∪ {∞} , where Q+ is set of non negative rational. We write
I(t) = [tmin(t), tmax(t)] such that 0 ≤ tmin(t) ≤ tmax(t) ; IH : P × T −→ N
is the inhibitor arc function; there is an inhibitor arc connecting the place p to the
transition t, if IH(p, t) 6= 0.

Figure 1: An ITPN model

For instance, let us consider the ITPN model shown in Figure 1, already pre-
sented in [15]. Therein, the inhibitor arc is the arc ended by a circle that connects

1N denotes the set of positive integers. In the graphical representation, we represent only arcs
of non null valuation, and those valued 1 are implicit.
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the place p7 to the transition t3. Initially, the place p3 is marked but not the place
p7; hence t3 is enabled but not inhibited. Therefore, t3 is progressing, as t4 which
is also enabled for the initial marking. However, the firing of the transition t4 con-
sumes the token in the place p4 and produces a new one in p2 and another one in
p7. Therefore, the inhibitor arc connected to t3 is activated and hence the clock
of t3 is suspended (t3 is thus inhibited); this time suspension lasts as long as p7
remains marked. For more details, the formal semantics of the ITPN model is
introduced in the next section.

Let RT := (P, T,B, F,M0, I, IH) be an ITPN.

- We call a marking the mapping, noted M, which associates with each place a
number of tokens: M : P → N.

- A transition t is said to be enabled for the marking M, if ∀p ∈ P,B(p, t) ≤M(p);
the number of tokens in each input place of t is greater or equal to the
valuation of the arc connecting this place to the transition t. Thereafter, we
denote by Te(M) the set of transitions enabled for the marking M .

- A transition t is said to be inhibited for a marking M, if it is enabled and if
there exists an inhibitor arc connected to t, such that the marking satisfies its
valuation (t ∈ Te(M)) ∧ ∃p ∈ P, 0 < IH(p, t) ≤ M(p). We denote by T i(M)
the set of transitions that are inhibited for the marking M .

- A transition t is said to be activated for a marking M, if it is enabled and not
inhibited, (t ∈ Te(M))∧ (t /∈ T i(M)); we denote by Ta(M) the set of
transitions that are activated for the marking M .

- Let M be a marking ; two transitions ti and tj enabled for M are said to be
conflicting for M , if ∃p ∈ P, B(p, ti) +B(p, tj) > M(p).

- We note Conf(M) the relation built on Te(M)2 such that (t1, t2) ∈ Conf(M),
iff t1 and t2 are in conflict for the marking M .

For instance, let us consider again the ITPN of Figure 1 ; its initial marking is
equal to M0 : {p1, p3, p4} → 1; {p2, p5, p6, p7} → 0; the sets of enabled, inhibited,
and activated transitions for M0 are respectively Te(M0) = {t1} , T i(M0) = ∅,
and Ta(M0) = Te(M0).

Remark 1. We assume in the sequel a monoserver semantics, which means that
for a given marking a transition can be enabled at most once .

We define the semantics of an ITPN as follows:

Definition 2. The semantics of an ITPN is defined as a LTS (labeled transition
system), ST = (Γ, e0,→), such that:
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• Γ is the set of reachable states: Each state, noted e, pertaining to Γ is a
pair (M,V ) where M is a marking and V is a valuation function that asso-
ciates with each enabled transition t of Te(M) a time interval that gives the
range of relative times within which t can be fired. Formally we have : ∀t
∈ Te(M), V (t) := [x(t), y(t)]

• e0 = (M0, V 0) is the initial state, such that: ∀t ∈ Te(M0), V 0(t) := I(t) :=
[tmin(t), tmax(t)].

• →∈ Γ× (T ×Q+)× Γ is a transition relation, such that

((M,V ), (tf , tf ), (M
↑, V ↑)) ∈→, iff:

(i) tf ∈ Ta(M).

(ii) x(tf ) ≤ tf ≤ MIN
∀t∈Ta(M)

{y(t)} .

and we have:

∀p ∈ P, M↑(p) :=M(p)−B(p, tf ) + F (p, tf ).

∀t ∈ Te(M↑)

if t /∈ New(M↑):

[x↑(t), y↑(t)] := [MAX(0, x(t)− tf ), y(t)− tf ] t ∈ Ta(M)

[x↑(t), y↑(t)] := [x(t), y(t)] t ∈ T i(M)

if t ∈ New(M↑)

[x↑(t), y↑(t)] := I(t) = [tmin(t), tmax(t)]

– where New(M↑) denotes the set of transitions newly enabled for the
marking M↑. These transitions are those enabled forM↑ and not for
M , or those enabled for M↑ and M but are conflicting with tf for the
marking M . Otherwise, an enabled transition which does not belong to
New(M↑) is said to be persistent.

If t is an enabled transition for a state e, we note t the clock associated with t
that takes its values in Q+. t measures the residual time of the transition t relatively
to the instant where the state e is reached. The time progresses only for activated
transitions, whereas it is suspended for inhibited transitions. Therefore, a transition
tf can be fired at relative time tf from a reachable state e, if (i) tf is activated for

the marking M , and if (ii) the time can progress within the firing interval of tf
while satisfying the time constraints of other activated transitions. After firing tf
the reachable state, noted e↑, is obtained:

• by consuming a number of tokens in each input place p of tf (given by the
value B(p, tf )), and by producing a number of tokens in each output place p
of tf (given by the value F (p, tf));
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• by shifting the interval of a persistent activated transition with the value of
the firing time of tf . However, the intervals of persistent inhibited transitions
remain unchanged. Finally, newly enabled transitions are assigned their static
firing intervals.

Similarly as for TPN, the behavior of an ITPN can be defined as a timed se-
quence of pairs (tf , δ), where tf is a transition of the net and δ ∈ Q+. Therefore, the
timed sequence S ∗ = ((t1f , δ

1), (t2f , δ
2), .., (tnf , δ

n)) denotes that t1f is fired after t1f=

δ1 time units, then t2f is fired at relative time t2f=δ
2 and so on, such that tnf is fired at

relative time tnf=δ
n after an absolute time

∑n

i=1 δ
i. Moreover, we often express the

behavior of the net as an untimed sequence, denoted by S, obtained from a timed
sequence S t by removing the firing times: If S ∗ = ((t1f , δ

1), (t2f , δ
2), ..., (tnf , δ

n)),

then S = (t1f , t
2
f , .., t

n
f ). Furthermore, a marking M is said to be reachable in ST

if there exists an untimed sequence S in ST, going from the initial marking M0

towards M . As the set of time values is assumed to be dense, the model ST is
infinite. In order to analyze this model, we need to compute an abstraction of it
that saves the most interesting properties. The symbolic graph construction [12]
preserves the untimed sequences of ST, and makes it possible to compute a finite
graph in almost all cases. However, this contraction might be infinite too when
the number of reachable markings is unbounded. As this last property is unde-
cidable for ITPN [15], there is no guarantee to compute a finite graph. We show
hereafter how to compute the state class graph of the ITPN that preserves the
linear properties of the model.

3 ITPN state space construction

For a TPN [9], the state class graph method [4] computes a symbolic graph that
preserves mainly the linear properties of the model. Similarly, this construction can
be applied to an ITPN . This consists in regrouping in a same class all the states
reachable after firing the same untimed sequence of transitions; all the states of a
same class have the same marking M . Hence, a class is defined by the pair (M,D)
where M is the common marking of all the states of the class, and D is a set of
inequalities encoding the firing space of the class. D is of a general form, normal

form of which is expressed as a conjunction of two subsystems
−→
D ∧ D̂. Actually,

−→
D

contains only DBM constraints and D̂ contains all other constraints than DBM .

In the sequel, we refer to
−→
D as the tightest DBM system that over-approximates

the system D. More formally, a class is defined as follows:

Definition 3. Let ST = (Γ, e0,→) be the LTS associated with an ITPN . A class
of states of an ITPN , noted E, is the set of all the states pertaining to Γ that are
reachable after firing the same untimed sequence S = (t1f , .., t

n
f ) from the initial state

e0. A class E is defined by (M,D), whereM is the marking reachable after firing S,
and D is the firing space encoded as a set of inequalities. For Te(M) = {t1, .., ts},

we have : D = D̂ ∧
−→
D
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−→
D :=




∧i6=j (tj − ti ≤ dij)

∧i≤s (di• ≤ ti ≤ d•i)

with (tj, ti) ∈ Te(M)2 dij ∈ Q ∪ {∞} , d•i ∈ Q+ ∪ {∞} , di• ∈ Q+

D̂ :=∧ k=1..p (α1kt1 + ..+ αskts ≤ dk)
with dk ∈ Q ∪ {∞} , (α1k, .., αsk) ∈ Zs, p ∈ N and2

∀k,∃(i, j), (αik, αjk) /∈ {(0, 0), (0, 1), (0,−1), (1,−1)}

We denote by the element {•} the instant at which the class E is reached.
Therefore, the value of the clock ti expresses the time relative to the instant •, at
which the transition ti can be fired. To each valuation ψ satisfying the system D,
corresponds a unique state e = (M,V ) reachable in ST after firing the sequence S.

In case of a TPN , the system D is reduced to the subsystem
−→
D. The inequalities

of the latter have a particular form, calledDBM (Difference Bound Matrix )[8]. The
coefficients, d•i, di• and dij are respectively, the minimum residual time to fire the
transition ti, the maximum residual time to fire the transition ti, and the maximal
firing distance of the transition ti relatively to tj . It should be noticed that the
value of d•i and di• are always positive or null, whereas the value of dij can be
negative, thus denoting that there exists no state e reachable in E, such that ti can
be firable from e.

For a TPN , the firing space of a class can be always encoded as a DBM
system. This form makes it possible to apply an efficient algorithm to compute
the reachable class from a class E. The overall complexity of this algorithm is
O(m3), where m is the number of enabled transitions in E. However, for a TPN
augmented with stopwatches, the state space of a class may require polyhedra
to be encoded, manipulation of which induces an exponential complexity in the
worst case. The exact state class graph of an ITPN is computed by enumerating
and exploring all the classes reachable from the initial class E0. However, as the
number of reachable classes may be unbounded, the termination of the algorithm
is undecidable. Formally, the exact state class graph of an ITPN can be defined
as follows [5]:

Definition 4. The exact state class graph of an ITPN , denoted by GR, is the
tuple (CE,E0, 7−→) where:

• CE is the set of classes reachable in GR;

• E0 = (M0, D0) is the initial class;
D0 =

{
∀ti ∈ Te(M0), tmin(ti) ≤ ti ≤ tmax(ti)

}

• 7−→ is the transition relation between classes defined on CE × T ×CE, such
that ((M,D), tf , (M

↑, D↑)) ∈7−→, iff:

a) tf is activated and the system D augmented with the firing constraints of
tf that we write Da = D ∧ (∀t ∈ Ta(M), tf ≤ t) holds.

2Z denotes the set of relative integers.
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b) ∀p ∈ P, M↑(p) :=M(p)−B(p, tf ) + F (p, tf ).

c) The system D↑ is computed from D, as follows:

1. In the system Da, replace each variable t (related to an enabled transition

that is not inhibited for M), by: t := tf + t′, thus denoting the time

progression.

2. Eliminate then by substitution the variable tf as well as all the variables

relative to transitions disabled by the firing of tf ;

3. Add to the system thus computed, the time constraints relative to each
newly enabled transition for M↑:

∀ti ∈ New(M↑), tmin(ti) ≤ ti≤ tmax(ti)

The last definition shows how the exact state class graph of an ITPN is built.
Being given a class E = (M,D) and a transition tf activated for M , the computa-
tion of a class E↑ = (M↑, D↑) reachable from E by firing tf consists in computing
the reachable marking M↑ and the firing space induced by the new system D↑.
The class E can fire the transition tf , if there exists a valuation that satisfies D (a
state of E), such that tf can be fired before all the other activated transitions. The
firing of tf produces a new class E↑ = (M↑, D↑) which gathers all the states reach-
able from those of E. The system D↑ that encodes the space of E↑ is computed
from the system D augmented with the firing constraints of tf . The substitution
of variables relative to activated transitions allows shifting the time origin to the
instant at which the new class E↑ is reached. Then, a new system is computed
wherein the variables of transitions disabled following the firing of tf are removed.
Finally, the time constraints relative to newly enabled transitions are added.

The complexity of the firing test and the step 2 of the algorithm, depends on the
form of the system D. If D includes polyhedral constraints, then the complexity of
the algorithm is exponential, otherwise it is polynomial. The initial system D0 is
always in DBM form, and polyhedral constraints may appear in reachable classes
only when inhibited and activated transitions are both persistently enabled in a
firing sequence [7].

Knowing how to compute the successors of a class, the state class graph compu-
tation is based on a depth-first or breadth-first strategy. Then the state class graph
is given as the quotient of GR by a suitable equivalence relation. This equivalence
relation may be equality: two classes (M,D) and (M,D′) given in their minimal
form are equal if D = D′, or inclusion; in other terms, if ⌉D⌈ denotes the set
of solutions for the system D, then we have : ⌉D⌈ ⊆ ⌉D′⌈ . It should be noticed
that the equality preserves mainly the untimed language of the model, whereas the
inclusion preserves the set of reachable markings. In order to speed up the class’
equivalence test, the reachable systems are computed in their minimal form; this
implies that all redundant inequalities are removed. Moreover, it is proved, as for
DBM systems [4], that the minimal form of a polyhedral system is unique [1]. This
property is very important as it permits to detect equivalent classes by comparing
their minimal form.
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The algorithm given in Definition 4 can be applied to a TPN with the partic-
ularity that the system D is always encoded in DBMs. Besides, Berthomieu et
al proved that the number of equivalent DBM systems computed for a TPN is
finite [3]. This implies that the resulted graph is necessarily finite, if the number
of reachable markings is bounded.

For TPN augmented with stopwatches, the DBM over-approximation tech-
nique has been proposed as an alternative solution to analyze preemptive real time
systems [15][7]. This approach consists in cutting off the inequalities of the subsys-

tem D̂ when they are generated in D. It thereby keeps only those of the subsystem
−→
D to represent an over-approximation of the space of D. This solution makes it
possible to build an approximated graph with lesser expenses in terms of computa-
tion time and memory usage. In addition, the DBM over-approximation ensures
that the number of computed DBM systems is always finite, whereas that of poly-
hedral systems may be infinite. Therefore, we can compute a finite approximated
graph when the computation of the exact graph does not terminate. However, the
DBM over-approximation may compute an infinity of unreachable markings while
the exact construction is indeed bounded. For a better understanding of how this
technique works, we apply the state class graph method to the ITPN example of
Figure 1. Let E′ = (M ′, D′) be the class reachable in the exact graph after firing
the sequence S = (t4, t1, t5) from the initial class E0 = (M0, D0).

E0=




M0 : p1, p3, p4 → 1

D0 :





3 ≤ t1 ≤ 3
2 ≤ t3 ≤ 4
0 ≤ t4 ≤ 2

E ′=




M ′ : p1, p4, p6 → 1

D′ :

{
0 ≤ t2 ≤ 4 4≤ t6 ≤4
0 ≤ t3 ≤ 4 1 ≤ t2 + t3 ≤ 6

We notice that the transition t6 is not firable from E′ since t2 or t3 should be
fired before. Put in other way, the firing of t6 requires that the system D′ ∧ (t6 ≤
t3)∧(t6 ≤ t2) admits at least one solution; we should check whether (t2 = t3 = t6 =
4) ∧ (t2 + t3 ≤ 6) holds, or not. As this last inequality is not satisfied, therefore t6
cannot fire. The system D′ contains a polyhedral constraint that cannot be reduced
to a DBM . The DBM over-approximation consists in cutting off the polyhedron
1 ≤ t2 + t3 ≤ 6 to leave only DBM constraints to represent the state space of
E′. However, by doing this, t6 becomes firable since t6 = 4 holds. Therefore, the

system D̃′ =
−→
D′ denotes an over-approximation of the system D′. In other words,

we add new states in the class E ′ that are not reachable indeed. Nevertheless, this
construction makes it possible to preserve a subset of properties.

The computation of the tightest DBM over-approximation of a class E can be
obtained by applying different algorithms [15][7]. To reduce the memory usage and
to ease the equivalence test, the previous algorithms compute the DBM system
of each class in its minimal form. These approaches proceed first to compute
the polyhedra, then eliminate the non DBM constraints while normalizing the
remaining ones. Then the process terminates by computing the final system in its
minimal form.

However, the implementation of the algorithm defined [15] in ROMEO [17] has
revealed a loss in the precision of the DBM approximation. This is due to some
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improvements in the computation of normalized systems. On the other side, the
computation of the graphs in ORIS [16] (which implements the approach defined
[7]), reports very slow times although the resulted graphs are correct.

We show in the sequel that by maintaining all the DBM constraints, even the
redundant ones, we succeed to compute the tightest DBM approximated class in
o(m2). In concrete terms, we show that by avoiding to calculate the minimal form,
we succeed to define an algorithm that computes straightforwardly a normalized
DBM system. We thereby eliminate the computation and the manipulation of the
intermediary polyhedra that stand in the other algorithms. Moreover, we improve
greatly the implementation of the graph construction and remove the bugs reported
in ROMEO.

Formally, a DBM over-approximated class of an ITPN can be defined as fol-
lows:

Definition 5. (Approximated Class). A DBM over-approximated class of an

ITPN , noted Ẽ, is the pair (M, D̃) such that : M is a marking and D̃ is the full
system of all DBM normalized inequalities, involving all variables of transitions
enabled for M :

D̃ =




∧∀(ti,tj)∈Te(M)2 (tj − ti ≤ d̃ij)

∧∀ti∈Te(M) (d̃i• ≤ ti ≤ d̃•i)

with (tj 6= ti), d̃ij ∈ Q ∪ {∞} , d̃•i ∈ Q+ ∪ {∞} , d̃i• ∈ Q+:

such that each inequality is in the normal form:

∀x, y, z ∈ Te(M),
(
d̃xy ≤ d̃xz + d̃zy

)
∧
(
d̃xy ≤ d̃•y − d̃x•

)
.

The space of a DBM over-approximated class is encoded by the system D̃.
Besides, we assume that the system D̃ is given in its normal form. As for the
minimal form3, it is proved that this form is unique for a DBM system [7] ; all
equivalent systems have the same normal form.

In the sequel, we encode the system D̃ as a square matrix where each line and
corresponding column, are indexed by an element of Te(M) ∪ {•} . In concrete
terms, we have:

∀(ti, tj) ∈ Te(M)2 ∧ (ti 6= tj), D̃[•, ti] := d̃•i; D̃[ti, •] := −d̃i• ;

D̃[ti, tj ] := d̃ij ; D̃[ti, ti] := 0 ; D̃[•, •] := 0.

These matrix notations are used to represent the coefficients of the system D̃.

For example, the matrix shown in Table 1 encodes the system D̃0 = D0 associated
with the initial class of the exact graph of the ITPN of Figure 1. It is noteworthy

that the approximated class Ẽ0 = (M0, D̃0) is in the normal form, and represents an
exact over-approximation of the initial class E0 = (M0, D0) of the graph GR. The

minimal form of the system D̃0 is given by: (t1 = 3)∧ (2 ≤ t3 ≤ 4)∧ (0 ≤ t4 ≤ 2).

3The minimal form of a DBM system is obtained from its normal form by cutting off all
redundant inequalities.



358 Abdelli Abdelkrim

Table 1: The matrix representation of the system D̃0.

D̃0 • t1 t3 t4

• 0 3 4 2

t1 -3 0 1 -1

t3 -2 1 0 0

t4 0 3 4 0

Taking on the previous definition, if E = (M,D) is a class reachable in GR,

then the class Ẽ = (M, D̃) is an over-approximation of E, if the space of states of

E is included in that of Ẽ, and we have: ⌉D⌈ ⊆
⌉
D̃
⌈
. Hence, by substituting Ẽ

for E in the graph GR, it results that the class Ẽ may derive additional sequences
that are not firable from E in GR. We thereby obtain an over-approximation of
the graph GR, that we build as defined next:

Definition 6. The graph of DBM over-approximated classes of an ITPN , denoted

by G̃R, is the tuple (C̃E, Ẽ0, ), such that :

• C̃E is the set of approximated classes reachable in G̃R ;

• Ẽ0 = (M0, D̃0) ∈ C̃E is the initial class, such that:

D̃0 :=

{
∀ti ∈ Te(M0), tmin(ti) ≤ ti ≤ tmax(ti)
∀ti 6= tj ∈ Te(M0), tj − ti ≤ tmax(tj)− tmin(ti)

•  is a transition relation between approximated classes defined on C̃E×T ×

C̃E, such that((M, D̃), tf , (M
↑, D̃↑)) ∈ , iff :

– (tf ∈ Ta(M)) ∧ (β̃[tf ] ≥ 0) such that: ∀x ∈ Te(M) ∪ {•} , β̃[x] =

MIN
∀t∈Ta(M)

{
D̃[x, t]

}
.

– ∀p ∈ P, M↑(p) :=M(p)−B(p, tf ) + F (p, tf ).

– The coefficients of the DBM inequalities of the system D̃↑ are computed
from those of D̃ by applying the following algorithm:

∀t ∈ Te(M↑)

D̃↑ [t, t] := 0; D̃↑ [•, •] := 0;

If t is persistent

If t ∈ T i(M) (t is inhibited for M)

D̃
↑ [t,•]:=MIN


 D̃[t,•]

D̃[tf ,•]+β̃[t]
D̃↑[•,t]:=MIN




D̃[•,t]

D̃[tf ,t]+β̃[•]
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If t /∈ T i(M) (t is not inhibited for M)

D̃↑[•, t] := D̃[tf , t] ; D̃↑ [t, •] := β̃[t].

If t is newly enabled.

D̃↑[•, t] := tmax(t) ; D̃↑ [t, •] := −tmin(t).

∀(t1, t2) ∈ (Te(M↑))2 ∧ (t1 6= t2)

If t1 or t2 are newly enabled.

D̃↑[t1, t2] := D̃↑[•, t2] + D̃↑ [t1, •].

If t1 and t 2 are persistent.

If (t1, t2) /∈ (T i(M))2 (t1 and t2 are not inhibited for M)

D̃↑[t1, t2] :=MIN(D̃[t1, t2], D̃↑ [•, t2] + D̃↑ [t1, •]).

If (t1, t2) ∈ (T i(M))2 (t1t2 are inhibited for M)

D̃↑[t1, t2] :=MIN(D̃[t1, t2], D̃↑ [•, t2] + D̃↑[t1, •]).

If (t1 ∈ T i(M)) ∧ (t2 /∈ T i(M)) (Only t1 is inhibited for M).

D̃↑[t1, t2] :=MIN(D̃[t1, t2] + D̃[tf , •], D̃↑[•, t2] + D̃↑ [t1, •]).

If (t1 /∈ T i(M)) ∧ (t2 ∈ T i(M)) (Only t2 is inhibited for M)

D̃↑ [t1, t2] :=MIN(D̃[t1, t2] + β̃[•], D̃↑[•, t2] + D̃↑ [t1, •]).

If t is an activated transition, then β̃[t] denotes the minimal time distance

between its firing time and any other firable transition. Further, β̃[•] represents

the maximal dwelling time in the class Ẽ. Therefore, an activated transition tf
is not firable from Ẽ, if β̃[tf ] < 0. In other words, it does not exist any state

reachable in Ẽ such that the valuation of the clock associated with tf can overtake
the minimal bound tmin(tf). For a better understanding, the Figure 2.a. depicts

the computation of the coefficients β̃[ta], D̃↑[•, ta] and D̃↑[ta, •] for ta ∈ Ta(M).
Moreover, we notice that the maximal residual time of an inhibited transition th

can decrease after firing tf . Besides, the minimal residual time of th can increase.
To clarify this point, let us consider the ITPN of Figure 1. Initially t3 is activated
with D̃[t3, •] = −2, and the model can fire the transition t4 between [0, 2]. After
this firing, the place p7 becomes marked, and t3 is inhibited for the first time; we
have D̃[t3, •] = 0. Then, to fire the newly enabled transition t2, it needs to let
time progress at least with tmin(t2) = 2, while the absolute time must not surpass
tmax(t1) = 3. This last constraint restricts the state space of the class reachable
after firing t2 only to states that have fire initially t4 during [0, 1]. As a result, the
minimal residual time of t3 increases after the firing of t2 (see Figure 2.b)

In other respects, the firing distance D̃[ta, th] between an activated transition
ta and an inhibited transition th can only increase after firing tf , with the maximal
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dwelling time4 in Ẽ. Also, the distance D̃[th, ta] can only decrease after firing tf
with the the minimal dwelling time5 in Ẽ.

TIME

(a) (b)

Figure 2: Computing the DBM coefficients.

It is noteworthy that if Ẽ is an over-approximation of the exact class E, then
all the transitions firable from E are also firable from Ẽ. However, a transition
which is not firable from E can, on the other hand, be firable6 from Ẽ. Actually,
as the class Ẽ contains all the states of E, we can find at least one state e of Ẽ
non reachable in E, such that e can fire tf . We prove hereafter that the algorithm
given in Definition 6 computes in all cases the tightest DBM over-approximation
of the exact graph defined in Definition 4.

Theorem 1. The graph G̃R = (C̃E, (M0, D̃0), ) is the tightest DBM over-
approximation that we can compute from the graph GR = (CE, (M0, D0), 7−→).

Proof. We should prove that:

1.
⌉
D0
⌈
⊆
⌉−→
D0
⌈
=
⌉
D̃0
⌈
.

2. Let be S = (t1f , .., t
n
f ); if (M

0, D0)
t1f
7−→ ..

tnf
7−→ E = (M,D) and (M0, D̃0)

t1f
 

..
tnf
 Ẽ = (M, D̃), such that ⌉D⌈ ⊆

⌉−→
D
⌈
=

⌉
D̃
⌈
; we have, if E

tf
7−→ E↑ =

4This time denotes the maximal time that has elapsed for ta and during which th has remained
suspended.

5This time denotes the minimal time that has elapsed for ta and during which th has remained
suspended.

6Conversely, if tf is not firable from Ẽ, then it is not firable from E.
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(M↑, D↑), then Ẽ
tf
 Ẽ↑ = (M↑, D̃↑) and

⌉
D↑

⌈
⊆

⌉−→
D↑

⌈
=

⌉
D̃↑

⌈
.

The clause (1) holds since the system D0 is in DBM ; we have by definition :⌉
D0

⌈
=

⌉−→
D0

⌈
=

⌉
D̃0

⌈
. Let us prove now the clause (2). For this effect, we write:

tf the transition to fire, th an inhibited transition of T i(M), and ta an activated

transition of Ta(M)− {tf}. The system D stands as D =
−→
D ∧ D̂, and wherein we

suppose that the system
−→
D is the full system of all DBM normalized inequalities,

given as follows:



C1 :

{
∀th1 6= th2 th2 -th1≤

−→
D [th1 , th2 ]

∀th −
−→
D [th, •] ≤th≤

−→
D [•, th]

C4 :

{
∀ta ta-tf≤

−→
D [tf , ta]

∀ta tf -ta≤
−→
D [ta, tf ]

C2 :

{
∀ta1 6= ta2 ta2 -ta1≤

−→
D [ta1 , ta2 ]

∀ta −
−→
D [ta, •] ≤ta≤

−→
D [•, ta]

C5 :

{
∀th th-tf≤

−→
D [tf , th]

∀th tf -th≤
−→
D [th, tf ]

C3 :

{
∀ta, th ta-th≤

−→
D [th, ta]

∀ta, th th-ta≤
−→
D [ta, th]

C6 : −
−→
D [tf , •] ≤tf≤

−→
D [•, tf ]

Besides, D̃ is the tightest DBM over-approximation of D; hence the next prop-

erty holds (P ) :
⌉
D̃
⌈
=

⌉−→
D
⌈
.

Let us consider now the firing of the transition tf from E to reach the class
E↑ = (M↑, D↑). The calculation of the system D↑ is performed by application of
the algorithm given in Definition 4. We extend D to the firing constraints of tf
, C7 : ∀ta ta-tf≥ 0.

Therefore, if tf is firable from E, then the system ⌉D ∧ C7⌈ 6= ∅, and we have the

coefficients
−→
D [tf , ta] ≥ 0 and by using the property (P ), we deduce that D̃[tf , ta] ≥

0, hence β̃[tf ] ≥ 0. Consequently, tf is also firable from the class Ẽ. However, it

remains to prove that
⌉−→
D↑

⌈
=

⌉
D̃↑

⌈
.

The computation of the system D↑ is performed by replacing each variable ta
associated with an activated transition ta ∈ Ta(M)− {tf} by t

′

a + tf . To ease the

sketch of the proof, we suppose that all transitions of T i(M↑)∪Ta(M↑)−{tf} are
persistent after firing tf . Further, we limit the proof to the manipulation of DBM
constraints, since we aim at computing the tightest DBM over-approximation that
can be derived from D subsequently to the firing of tf . It should be noticed that

the manipulation of the constraints D̂ produces only new polyhedral constraints
that cannot be reduced to DBMs [7]. So, after substitution, the constraints of the

subsystem
−→
D ∧ C7 are as follows:




C1 ∧ C5 C′
7 : − t′a≤ 0

C′
2 :

{
∀ta1 6= ta2 t′a2

-t′a1
≤

−→
D [ta1 , ta2 ]

∀ta −
−→
D [ta, •] ≤t′a+tf≤

−→
D [•, ta]

C′
4 :

{
∀ta t′a≤

−→
D [tf , ta]

∀ta -t′a≤
−→
D [ta, tf ]

C′
3 :

{
∀ta, th t′a+tf -th≤

−→
D [th, ta]

∀ta, th th-t
′
a-tf≤

−→
D [ta, th]

C6 : −
−→
D [tf , •] ≤tf≤

−→
D [•, tf ]

By operating an intersection of the constraints C′
7 and C

′
2, we obtain the system:
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C1∧C′
2∧C′

3∧C′
4∧C5∧C6∧C′

7

C8:∀ta1 6=ta2 t′a2
-t′a1

≤
−→
D [ta1 ,ta2 ]

C12:





∀ta1 -t′a1
≤ MIN

∀ta1 6=ta2

{
−→
D [ta1 ,ta2 ]}≤0

tf≤MIN∀ta{
−→
D [•,ta]}

Then by intersection and using the property
−→
D [ta, ta] = 0, the constraints of

C12,C6 C
′
4 change into C′

6 and C”
4 ; we obtain:





C1 ∧ C′
2 ∧ C′

3 ∧ C5 ∧ C′
7 ∧ C8

C′
6 : −

−→
D [tf , •] ≤tf≤ MIN

∀t∈Ta(M)

{−→
D [•, t]

}

C”
4 : ∀ta − MIN

∀t∈Ta(M)

−→
D [ta, t] ≤ t′a ≤

−→
D [tf , ta]

We write:





(F1) : ∀ta
−→
D↑[•, ta] :=

−→
D [tf , ta]

(F2) :
−→
D↑[ta, •] := MIN

∀t∈Ta(M)

{−→
D [ta, t]

}
.

Then by using C8 and C”
4 , we obtain:

{
C1 ∧ C′

2 ∧ C′
3 ∧ C”

4 ∧ C5 ∧ C′
6 ∧ C′

7

C′
8 : ∀ta1 6= ta2 t′a2

-t′a1
≤ MIN(

−→
D [ta1 , ta2 ],

−→
D↑[•, ta2 ] +

−→
D↑[ta1 , •])

We put

(F3) : ∀ta1 6= ta2

−→
D↑[ta1 , ta2 ] :=MIN(

−→
D [ta1 , ta2 ],

−→
D↑[•, ta2 ] +

−→
D↑[ta1 , •]).

At this stage, when the model does not contain inhibitors arcs, the system D

stands as
−→
D , and the constraints C1∧C′

3∧C5 are eliminated and those of C′
2∧C

′
6∧C

′
7

can be removed as they are redundant. Therefore, the new systemD↑ is given by the
constraints C”

4 ∧C′
8, to which we add the constraints of newly enabled transitions.

The system D̃↑ obtained from the system D̃ after firing tf can be computed in

the same way as shown previously. Assuming that, if we have D = D̃, then the
algorithm given in Definition 6 computes an exact approximation of the system D,

since the coefficients D̃↑[ta1 , ta2 ] D̃
↑[•, ta] and D̃↑[ta, •] are computed also by using

respectively the formulae F3, F1 and F2.

On the other hand, in presence of inhibited transitions, we need to operate
additional manipulations on constraints C1, C

′
2, C

′
3 and C5 :

By intersection of the constraints of C′
6 and those of C5, of C

′
3 and those of C′

7,
and finally, of C′

3 and those of C′
6; we obtain respectively the new constraints C′

5,
C9 and C10:





C1∧C′
2∧C′

3∧C”
4∧C′

6∧C′
7∧C′

8 C9:∀th tf−th≤
−→
D [th,ta]

C′
5:





∀th th≤
−→
D [tf ,th]+

−→
β [•]

∀th -th≤
−→
D [th,tf ]+

−→
D [tf ,•]

C10:





∀ta,th t′a-th≤
−→
D [th,ta]+

−→
D[tf ,•]

∀ta,th th-t′a≤
−→
D [ta,th]+

−→
β [•]

with ∀x ∈ Te(M) ∪ {•} ,
−→
β [x]= MIN

∀t∈Ta(M)

{−→
D [x, t]

}

Then by intersection of the constraints of C9 with those of C′
6, we obtain the

constraints C”
9 :{

C1 ∧ C′
2 ∧ C′

3 ∧ C”
4 ∧ C′

5 ∧ C′
6 ∧ C′

7 ∧ C′
8 ∧ C10

C”
9 : ∀th, −th ≤

−→
D [th, ta] +

−→
D [tf , •]

By using the constraints of C”
9 ,C

′
5 and C1 we obtain:
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C′
2 ∧ C′

3 ∧ C”
4 ∧ C′

6 ∧ C′
7 ∧ C′

8 ∧ C10

C′
1 :

{
∀th1 6= th2 th2 -th1≤ D↑[th1 , th2 ]

∀th −
−→
D↑[th1 , •]) ≤th≤

−→
D↑[•, t

h2 ]

with

F4 : ∀th,
−→
D

↑

[th, •] := MIN

( −→
D [th, •]
−→
D [tf , •] +

−→
β [th]

F5 : ∀th,
−→
D↑[•, th] := MIN




−→
D [•, th]

−→
D [tf , th] +

−→
β [•]

F6 : ∀th1 6= th2

−→
D↑[th1 , th2 ] := MIN(

−→
D [th1 , th2 ],

−→
D↑[•, th2 ] +

−→
D↑[th1 , •]).

To achieve the proof, we proceed to the intersection of the constraints of C10

with those of C′
1 and C”

4 ; we obtain the constraints C′
10:




C′
1 ∧ C′

2 ∧ C′
3 ∧ C”

4 ∧ C′
6 ∧ C′

7 ∧ C′
8

C′
10 :

{
∀ta, th t′a-th≤

−→
D↑[th, ta]

∀ta, th th-t
′
a≤

−→
D↑[ta, th]

(F7) : ∀th∀ta
−→
D↑[th, ta] := MIN(

−→
D [th, ta] +

−→
D [tf , •],

−→
D↑[•, ta] +

−→
D↑[th, •]).

(F8) : ∀th∀ta
−→
D↑[ta, th] := MIN(

−→
D [ta, th] +

−→
β [•],

−→
D↑[•, th] +

−→
D↑[ta, •]).

The remaining manipulations allow to eliminate the transition tf , thereby pro-
ducing only polyhedral constraints that cannot fit into DBMs. These manipula-
tions consists in the intersection of the constraints wherein the variable tf occurs:

C′
2, C

′
3 and C

′
6. Therefore, the system

−→
D↑ is by construction the much preciseDBM

system that we can derive from
−→
D subsequently to the firing of the transition tf .

Further, assuming that the same algorithm is used to compute the coefficients of the

system
−→
D↑ as well as those of the system D̃↑, then it is obvious that

⌉
D̃↑

⌈
=

⌉ −→
D↑

⌈
;

the property (P ) holds for the systems D̃↑ and
−→
D↑. What is more, by assuming the

formulae given previously, we prove that if D̃ is in its normal form then the system

D̃↑ is also in normal form. Put in other way, as the initial class is in normal form,
this guarantees, on a hand, that the DBM over-approximation is the tightest that
we can compute from D̃ subsequently to the firing of tf . On the other hand, this
implies also that the number of DBM that the algorithm can compute is finite,
since all reachable approximated classes of the graph are in normal form [7].

Furthermore, the last algorithm should be provided with class equivalence con-
ditions, in order to put an end to the enumeration process when the net is bounded.
These conditions are based generally on the equality of markings and systems, as
defined next:

Definition 7. Two classes Ẽ = (M, D̃) and Ẽ′ = (M ′, D̃′), reachable in G̃R

satisfying the following conditions, are equivalent, and we write Ẽ = Ẽ′:
(i) M =M ′ (ii) ∀x, y ∈ (Te(M) ∪ {•})2 D̃[x, y] = D̃′[x, y].
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It should be noticed that the finiteness of the exact state class graph is unde-
cidable even for bounded nets [5]. However, the graph obtained by DBM over-
approximation is ensured to be finite when the net is bounded. This makes it
possible to compute a finite DBM over-approximation when the exact one does
not terminate. The approaches defined in [7][15] admit also that the DBM over-
approximation that they compute, are the tightest possible. Nevertheless, these
techniques have an additional cost comparatively to our algorithm. Concretely,
these approaches proceed first to compute the polyhedra in its normal form (whose
representation in memory and manipulation are costly), before removing the non
DBM constraints and normalizing the DBMs. Then the process ends by com-
puting the minimal form of the final DBM system. The normalization and the
minimization induce a non neglectable computation effort. This affects the perfor-
mances of the implementation of the DBM over-approximation.

Furthermore, the implementation in ROMEO [17] of the approach defined in
[15] does not compute the tightest DBM over-approximation in much of the cases.
In actual fact, ROMEO computes, first, the system D in its minimal form, to apply
then the normalization to the set of DBM constraints. This makes it impossible
to improve the performances of the tool but at the expenses of the precision of the
DBM over-approximation. To highlight this point, let us consider the example of
Figure 3 already introduced in [7]. This example models three independent tasks
that are conflicting for a common resource (CPU): Two periodic tasks 1 and 3
(of period 50 and 150 time units), and one sporadic task with a minimum and
maximum inter-arrival times of [100, 150]. The task 1 (modeled by the transitions
t1 and t4), has a higher priority than that of two other tasks, and the sporadic task
has a higher priority than that of the third task. The priorities are modeled by
using inhibitor arcs.

So, starting from the initial class, the firing of the sequence (t4, t5, t1, t4, t6, t1, t2,
t4, t5, t1, t3, t4, t6, t1, t2, t4, t5, t1, t4, t1, t3, t4, t6, t2, t5,t1,t4,t1, t4,t1, t3, t4, t2) yields

the classes Ẽ , Ẽ” and E by using respectively, the algorithm introduced in this
paper, the DBM over-approximation implemented in the tool ROMEO and finally
the exact approach based on polyhedral representation [13] implemented also in
ROMEO.

Ẽ= E=Ẽ”=



M:p2,p3→1

D̃ • t1 t2 t3 t5 t6

• 0 40 150 140 20 28

t1 -18 0 132 100 2 -2

t2 -100 -60 0 40 -80 -72

t3 -118 -100 32 0 -98 -102

t5 -18 22 132 122 0 10

t6 0 20 150 120 20 0




M:p2,p3→1

D̃”:




18 ≤ t1≤ 40 t3−t6≤ 120
100 ≤ t2≤ 150 0 ≤t6≤ 28
118 ≤ t3≤ 140 t6−t1≤ -2
18 ≤ t5≤ 20 t6−t3≤ -102
t1−t3≤ -100
t1−t6≤ 20
t3−t1≤ 100

We notice at this stage that all the resulted classes induce the same firing space
whatever the approach we use. In the obtained classes, only the transition t6 is
inhibited and its maximal residual time is evaluated to 28. Now, let us consider the
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Figure 3: ITPN modeling two periodic tasks and a sporadic one.

firing of the transition t1 from the previous classes to reach respectively the classes

Ẽ1 , Ẽ”1 and E1 .

Ẽ1= E1=




M1 : p1, p2, p3 → 1

D̃1 • t1 t2 t3 t4 t5 t6

• 0 50 132 100 20 2 18

t1 -50 0 82 50 -30 -48 -32

t2 -80 -30 0 20 -60 -80 -62

t3 -100 -50 32 0 -80 -98 -82

t4 -10 40 122 90 0 -8 8

t5 0 50 132 100 20 0 18

t6 0 50 132 100 20 2 0




M1 : p1, p2, p3 → 1

D1 :



50 ≤ t1 ≤ 50
t2 ≤ 132
100 ≤ t3 ≤ 100
t5 + t6 ≤ 18
t5 − t2 ≤ -80
0 ≤ t5 ≤ 2
10≤ t4 ≤ 20
0≤ t6
t2 + t6 ≤ 148

Ẽ”1=




M1 : p1, p2, p3 → 1

D̃”1 :





50 ≤ t1 ≤ 50 0 ≤ t5 ≤ 2
80 ≤ t2 ≤ 132 0 ≤ t6 ≤ 28
100 ≤ t3 ≤ 100 t5 − t2 ≤ -80
10 ≤ t4 ≤ 20

At this stage, the persistence of the inhibited transition t6 induces polyhedral
constraints that are non redundant, as represented in the system D1. Therefore,
the DBM restriction induces an over-approximation of the exact class E1 . How-
ever, we notice that the implementation of our algorithm computes a tighter over-
approximation. Concretely, the maximal residual time of the inhibited transition
t6 has decreased to 18. This value is exactly approximated by our algorithm, while
it stands at 28 by using ROMEO. If we look to the system D1 given in its minimal
form, we notice that this time distance is worked out from the constraints 0 ≤ t5
and t5 + t6 ≤ 18. This latter which is of a polyhedral form is removed, as well

as the constraint t2 + t6 ≤ 148, to determine the system D̃”
1. The normalization

is then applied to the set of DBM constraints, whereas it should be done before
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removing the polyhedral constraints. By proceeding in this way, the DBM over-
approximation implemented in ROMEO improves the complexity of the approach
defined in [15], but at the expenses of the precision of the over-approximation.

Let us take a look at Figure 4 to explain why the residual time of the transition
t6 has decreased during its inhibition. This figure depicts the temporal scenario of
the firing sequence (t3, t4, t2, t1) leading to the class Ẽ1.

From the class enabling t1 for the first time, the transition t3 is fired without
any delay. Subsequently, the newly enabled transition t6 is inhibited, and we have
D̃[•, t6] = 28. The firing of t4 between [10, 20] yields a new class. There, t6 becomes

activated for the first time and its maximal residual time D̃[•, t6] = 28 stands as it
was. The transition t6 is then inhibited again after the firing of t2 during [0, 22].

Then, to be able to fire the persistent transition t1 it needs to let time progress
with minimum tmin(t1) = 50 from the start of the sequence. Within this intention,
only the states (valuations), that fire t2 during [10, 22] (while t6 was activated), are
satisfying the firing constraints of t1. This restriction implies that the maximal
residual time of t6 decreases of 10 units (from 28 to 20), after the firing of t1.

Figure 4: Temporal scenario of the firing sequence (t3, t4, t2, t1).

The loss of precision reported in the DBM over-approximation implemented in
the tool ROMEO can have an impact on the firability of yet persistent transitions.
To illustrate this point, let us consider, for instance, the firing of the sequence

(t4, t5) from the classes Ẽ1 , Ẽ”1 and E1 , leading respectively to the classes Ẽ2,Ẽ”2

and E2 .
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Ẽ2=




M2 : p3 → 1

D̃2 • t1 t2 t3 t6

• 0 40 122 90 18

t1 -28 0 82 50 -10

t2 -60 -30 0 20 -42

t3 -78 -50 32 0 -60

t6 0 40 122 90 0

Ẽ”2 := E2 :=



M2 : p3 → 1

D̃”2 :



28 ≤ t1 ≤ 40 t1 − t3 ≤ -50
60 ≤ t2 ≤ 122 t2 − t1 ≤ 82
78 ≤ t3 ≤ 90 t2 − t3 ≤ 32
0 ≤ t6 ≤ 28 t3 − t1 ≤ 50
t1 − t2 ≤ -30 t3 − t2 ≤ 20




M2 : p3 → 1

D2 :



t1 − t3 ≤ -50 t6 ≤ 18
28≤ t1 ≤ 40 0≤ t6
t1 − t2 ≤ -30 60≤ t2
t6 + t2 − t1 ≤ 98 t6 − t1 ≤ -12
t2 − t1 ≤ -82

We notice that the transition t1 is firable from the approximated class Ẽ”2,
while it is not from the exact class E2 (since t6 − t1 ≤ -12), as well as when using

our algorithm (since D̃2[t1, t6] = −10 < 0). This ensures that our construction
yields a less coarse over-approximation than that implemented in ROMEO.

Comparatively to the implementation of the approach of [7] in ORIS tool [16],
the resulted DBM systems are equivalent to the ones computed by our algorithm.
Actually, the implemented algorithm in ORIS proceeds by normalizing the pre-
computed systems before removing the non DBM constraints. However, by pro-
ceeding in this way the durations needed to compute the graphs are higher as we
will see in section 5 when reporting the simulation results. Moreover, although
the graphs computed by ORIS are different, they are bisimilar to those computed
by our algorithm. Actually, a class is expressed in ORIS as a tuple (M, D̃,New)
where New is a boolean function which indicates whether each transition enabled
in the class is persistent or not. As the equivalence test implemented in ORIS is
based on the equality of all the three parameters7, this construction therefore yields
coarser graphs.

In respect to the approach defined in [5], the latter proceeds by quantization,
to over-approximate the exact polyhedra by another one. This approach is con-
figurable, namely the precision of the approximation (grid), can be fixed before
the graph computation. When using the thinnest grid, this approach succeeds to
compute the exact graph in almost all cases but with the highest cost in terms of
computation time and memory usage. However, as this technique still manipulates
general polyhedra, it undergoes a higher computation complexity comparatively to
DBM over approximation.

To sum up, the exact computation as well as the K-grid approximation of the
graph of the net of Figure 3 yield 320 classes. On the other hand, the DBM

7Only the equality of the parameters M and D̃ is needed to decide the equivalence, as evidenced
in Definition 7.
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over-approximation computed by ROMEO contains 403 classes and that by using
ORIS produces 429 classes. The implementation of the construction defined in
this paper produces a more precise and compact graph of 394 classes.

We explore in the next section how to improve the construction of the DBM
over-approximation. This is achieved by reducing still more its size and the effort
of its computation, but however while relaxing a little bit in the precision of the
over-approximation.

4 Efficient construction of a DBM over-approxi-

mation

We have proposed in the last section an efficient algorithm to compute the tightest
DBM over-approximation of an ITPN . We have shown that the firing interval
[−D̃[t, •], D̃[•, t] of a persistent inhibited transition may narrow along a firing se-
quence. However, in almost all cases this interval remains unchanged. Therefore,
we propose in the sequel to relax a little bit the DBM constraints so that to com-
pute more compact graphs while reducing their computation effort. However, as
this new abstraction is not as precise as that defined in Definition 6, it may therefore
contain additional sequences. On the other hand, it makes it possible to compute
in many cases, with lesser expenses, more compact graphs that are indeed bisimilar
to G̃R and GR. Formally, this construction is defined as follows:

Definition 8. The contracted DBM over-approximation graph of an ITPN , de-

noted by G̃RC, is the tuple

(C̃EC, Ẽ0
c , →֒), such that :

• C̃EC is the set of DBM over-approximated classes reachable in G̃RC ;

• Ẽ0
c = (M0, D̃0

c) ∈ C̃EC is the initial class such that D̃0
c = D̃0 = D0.

• →֒ is a transition relation between DBM over-approximated classes defined

on C̃EC × T × C̃EC, such that ((M, D̃c), tf , (M
↑, D̃↑

c )) ∈ , iff :

– (tf ∈ Ta(M)) ∧ (β̃c[tf ] ≥ 0) such that: ∀x ∈ Te(M) ∪ {•} , β̃c[x] =

MIN
∀t∈Ta(M)

{
D̃c[x, t]

}
.

– ∀p ∈ P, M↑(p) :=M(p)−B(p, tf ) + F (p, tf ).

– The coefficients of the DBM inequalities of the system D̃↑
c are computed

from those of D̃c by applying the following algorithm:

∀t ∈ Te(M↑)

D̃↑

c [t, t] := 0; D̃↑

c [•, •] := 0.

If t is persistent
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If t ∈ T i(M) D̃↑

c [t, •] := D̃c[t, •]; D̃↑
c [•, t] := D̃c[•, t].

If t /∈ T i(M) D̃↑
c [•, t] := D̃c[tf , t] ; D̃↑

c [t, •] := β̃c[t].

If t is newly enabled.

D̃↑
c [•, t] := tmax(t) ; D̃↑

c [t, •] := −tmin(t).

∀(t1, t2) ∈ (Te(M↑))2 ∧ (t1 6= t2)

If t1 or t2 are newly enabled. D̃↑
c [t1, t2] := D̃↑

c [•, t2] + D̃↑

c [t1, •].

If t1 and t2 are persistent.

If (t1, t2) /∈ (T i(M))2 or (t1, t2) ∈ (T i(M))2

D̃↑
c [t1, t2] :=MIN(D̃c[t1, t2], D̃↑

c [•, t2] + D̃↑

c [t1, •]).

If (t1, t2) /∈ (T i(M))2 ∧ (t1 ∈ T i(M)) ∨ (t2 ∈ T i(M))

D̃↑
c [t1, t2] := D̃↑

c [•, t2] + D̃↑

c [t1, •].

Compared to the construction introduced in Definition 6, the last algorithm
relaxes the constraints of persistent inhibited transitions. The firing interval of the
latter is assumed unchanging, while the dwelling time in the class Ẽc is neglected
when computing the firing distance between a persistent inhibited transition and
a persistent activated transition. However, although this construction relaxes the
constraints of each class of G̃R, we need to prove formally that it computes in all
cases an over-approximation of G̃R, and hence of GR.

Theorem 2. The graph G̃RC = (C̃E, (M0, D̃0
c), →֒) is a DBM over-approxima-

tion of the graph GR = (CE, (M0, D0), 7−→).

Proof. The proof is conducted in the same way as for the proof of Theorem.1.

First of all, we notice that
⌉
D0

⌈
=

⌉−→
D0

⌈
=

⌉
D̃0

⌈
=
⌉
D̃0

c

⌈
.

Then by performing the same manipulations on the system
−→
D we determine the

system:



C1∧C′
2∧C′

3∧C”
4∧C′

6∧C′
7∧C′

8 C9:∀th tf−th≤
−→
D [th,ta]

C′
5:





∀th th≤
−→
D [tf ,th]+

−→
β [•]

∀th -th≤
−→
D [th,tf ]+

−→
D[tf ,•]

C10:





∀ta,th t′a-th≤
−→
D [th,ta]+

−→
D [tf ,•]

∀ta,th th-t′a≤
−→
D [ta,th]+

−→
β [•]

Then the constraints of the system D̃↑
c are obtained by cutting off the constraints

of C′
5 and C10. Hence we obtain a system that is less precise than D̃↑ and

−→
D↑ and

which defines an over-approximation of the system
−→
D↑ :

⌉ −→
D↑

⌈
=

⌉
D̃↑

⌈
⊆

⌉
D̃↑

c

⌈
.

We show in the sequel how the construction of the graph G̃RC, as defined in
Definition 8, can be improved still more by reducing as well as its size as the effort
of its computation. For this effect, we explore hereafter an equivalence relation
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that is less restrictive than the equality which we prove to be a bisimulation. This
means that the graphs resulted by using this bisimulation induces the same firing
sequences as when using the equality.

We first give clues about the concepts used in this bisimulation, then we define
it formally:

1. From Definition 8, we notice that the firing condition of a transition tf de-

pends only on the sign of the coefficients D̃c[tf , t]. Furthermore, the compu-

tation formulae of the system D̃↑
c from D̃c does not use the elements D̃c[•, t]

as well as D̃c[t, •] for t ∈ Ta(M). Therefore, as the latter coefficients are not
involved in the firing tests, we need not to compare them when performing
the class’ equivalence test. This property makes it possible to gather classes

that are not equal in the graph G̃RC but which enjoy indeed the same firing
sequences.

2. Let us explore now other firing distances that are useless for the enumeration
process. In order to investigate this point, first we need to introduce the
following notation:

• A transition ti is said to be inhibiting tj , if ∃p ∈ P, 0 < IH(p, ti) ≤
B(p, tj). This means that if the transition tj is enabled for a given mark-
ing, then tj cannot be activated for this marking. We denote hereafter
by Inhib the relation defined on T 2, such that (ti, tj) ∈ Inhib, if tj is
inhibiting ti. Note that the relation Inhib is not symmetric; however if
(ti, tj) and (tj , ti) ∈ Inhib, then this means that ti and tj are always
inhibited when they are enabled together.

Let us consider two transitions that cannot be activated for a same marking

(namely, t′ is inhibiting t). When building the graph G̃RC, it seems obvious
that the time constraints of the transition t have no impact on the firing of
t′, and conversely. Therefore, the distances D̃c[t

′, t] and D̃c[t, t
′] are useless

since they are not required in the firing test since t and t′ cannot be activated
together. Moreover, we need not even to compute these distances and to
compare them when performing the equivalence test.

3. We explore now whether some distances can be left out when dealing with
conflicting transitions. Before discussing this point, we need to introduce the
following notations:

• We note AT the set of transitions of T that are not connected to any
inhibitor arc: t ∈ AT, if ∄p ∈ P, IH(p, t) 6= 0.

• Two transitions ti and tj are said to be twin, if ∀p ∈ P, IH(p, ti) =
IH(p, tj). This means that if two transitions are enabled for a given
marking, then they are both either inhibited or activated for this mark-
ing. We denote hereafter by Twin the relation defined on T 2, such that
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(ti,tj) ∈ Twin, if ti and tj are twin. Note that AT
2 ⊆ Twin and we have

if (ti,tj) ∈ Twin, then (tj ,ti) ∈ Twin.

In [6] the authors proposed to contract the state class graph of a TPN .
They proved that the firing distances between two conflicting transitions are
useless when their values stand positive. Furthermore, they show that it is
not required to re-compute these distances in reachable classes as long as the
conflicting transitions are not disabled ahead in the firing sequence.
In actual fact, within the context of TPN , if we have D̃c[t, t

′] ≥ 0, then the
transition t′ has no impact on the firing of t as long as both remain persistent.
However, if t is fired, then t′ is disabled afterwards.

For an ITPN , the enforcement of this property may be inconsistent when
dealing with conflicting transitions that are likely to be inhibited ahead in
the firing sequence. For such transitions, the problem occurs, for instance,
when we have two conflicting transitions t′ and t activated for two different
classes Ẽc and Ẽ′

c such that D̃c[t, t
′] 6= D̃c[t, t

′] ≥ 0. If we consider these two
classes as equivalent, they might not be bisimilar indeed. To be concrete, let
us assume that a sequence is fired from both Ẽc and Ẽ′

c during which t is

inhibited. Then t becomes activated in the reachable classes Ẽ↑
c and Ẽ↑′

c . At

this stage, the distance D̃↑
c [t, t′] may change to negative in Ẽ↑

c but there is no

guarantee that the distance D̃↑′
c [t, t′] may change too in Ẽ↑′

c . Hence, t may not

be firable from Ẽ↑
c , while it might be from Ẽ↑′

c . Therefore, at first glance, we
should restrict the application of this property only to conflicting transitions
of AT ; those which are not connected to any inhibitor arc. However, we show
that under some assumptions the application of this property can be also
extended to inhibited transitions. Actually, to validate this contraction as
a bisimulation, we need to ensure that both transitions have been inhibited
during the same periods of time. To guarantee that the last condition holds,
we need only to assume that the conflicting transitions t′ and t are twin .

To illustrate this bisimulation, let us consider the ITPN of Figure 5.a where we
have Inhib = {(t4, t3), (t5, t3)}. According to the previous discussion, the distances

D̃c[t4, t3], D̃c[t3, t4], D̃c[t3, t5] and D̃c[t5, t3] should be left out during the compu-
tation of any class of the graph as well as when performing the equivalence test.
Furthermore, we have AT = {t1, t2, t3, t6} and Twin = AT 2 ∪ {(t4, t5), (t5, t4)}.
However, among elements of Twin, only transitions t1 and t2, on a hand, and t4
and t5, on the other hand, are in conflict for the initial marking. Therefore, since

the distances D̃0
c [t1, t2], D̃

0
c [t2, t1], D̃

0
c [t4, t5] and D̃

0
c [t5, t4] are positive, we need not

to re-compute their values as long as the related transitions remain persistent. Fur-
thermore, as the firing of t1 (resp, t4), disables t2 (resp, t5), and conversely, we
need not too to consider these distances for the equivalence test.

The exact construction GR, the tightest DBM over-approximation G̃R and the

abstraction G̃RC produce all the same graph shown in Figure 5.b. However, the
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Figure 5: An ITPN model with twin and inhibiting transitions, with its reacha-
bility graphs.

application of the last properties makes it possible to contract further the graph

G̃RC, as depicted in Figure 5.c. Although it is smaller, the resulted graph still
remains bisimilar to the former, as it allows gathering classes that derive from

the same firing sequences8. For instance, firing t1 (resp, t2), in G̃RC from the

initial class Ẽ0
c leads to the class9 Ẽ1

c (resp, Ẽ6
c ). In actual fact, the distances

D̃c[•, t3], D̃c[t4, t3] and D̃c[t5, t3] which impede the equality to hold, are useless

since t3 is inhibiting t4 and t5. Furthermore, the classes Ẽ2
c and Ẽ8

c are equivalent
since the value of the minimal residual time of t4 can be left out. Finally, the classes

Ẽ10
c and Ẽ9

c can be gathered since the positive distances D̃c[t1, t2] can be ignored;

8These classes are not equal, but they are bisimilar indeed.
9The class Ẽi

c corresponds to the node numbered (i) in the graph.
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t1 and t2 are two twin conflicting transitions. Hence we obtain a more compact
graph of 8 nodes and 16 edges, whereas the other constructions produce a graph of
11 classes and 22 edges.

Ẽ0
c =




M0 : p1, p2, p3 → 1

D̃0
c • t1 t2 t3 t4 t5
• 0 2 3 2 3 2

t1 0 0 3 2 3 2

t2 -1 1 0 1 2 1

t3 0 2 3 0 3 2

t4 -1 2 2 1 0 1

t5 0 2 3 2 3 0

Ẽ1
c =




M1 : p2, p3, p4 → 1

D̃1
c • t3 t4 t5
• 0 2 3 2

t3 0 0 3 0

t4 1 1 0 1

t5 0 2 3 0

Ẽ6
c =




M6 : p2, p3, p4 → 1

D̃6
c • t3 t4 t5
• 0 1 3 2

t3 0 0 3 0

t4 1 0 0 1

t5 0 1 3 0

Ẽ2
c =




M2 : p4 → 1; p4 → 2

D̃2
c • t4 t5 t6
• 0 3 2 ∞

t4 -1 0 1 ∞

t5 0 3 0 ∞

t6 0 3 2 0

Ẽ8
c =




M8 : p4 → 1; p4 → 2

D̃8
c • t4 t5 t6
• 0 3 2 ∞

t4 0 0 1 ∞

t5 0 3 0 ∞

t6 0 3 2 0

Ẽ9
c =




M9 : p1, p4 → 1

D̃9
c • t1 t2
• 0 1 2

t1 0 0 2

t2 0 1 0

Ẽ10
c =




M10 : p1, p4 → 1

D̃10
c • t1 t2
• 0 2 3

t1 0 0 3

t2 0 1 0

More formally, we introduce this contraction as an equivalence relation, defined
as given next:

Definition 9. Let ≃ be a relation over state classes of the graph G̃RC, defined by:
((M, D̃c), (M

′, D̃′
c)) ∈≃ iff:

(i) M =M ′

(ii) ∀t ∈ T i(M) D̃c[•, t] = D̃′
c[•, t], D̃c[t, •] = D̃′

c[t, •]
(iii) ∀(t, t′) ∈ Twin ∩Conf(M)

.

{
sg(D̃c[t, t

′]) = sg(D̃′
c[t, t

′])

D̃c[t, t
′] = D̃′

c[t, t
′] If sg(D̃c[t, t

′]) =<0

(iv) ∀(t, t′) ∈ Te(M)2 − (Twin ∩ Conf(M)) such that (t′, t), (t, t′) /∈ Inhib,

D̃c[t, t
′] = D̃′

c[t, t
′].
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where sg(v) is a function which gives the sign of the value v, sg : Q∪ {∞} −→
{≥0, <0} such that ≥0 (resp, <0), denotes ”positive or null” (resp, strictly nega-
tive).

In concrete terms, two classes (M, D̃c) and (M ′, D̃′
c) are in the relation ≃, iff:

(i) they enjoy the same marking; (ii) the maximum and the minimum residual
times of any inhibited transition must be equal in both classes; (iii) for any pair of
conflicting twin enabled transitions, the firing distances involving both transitions
in both classes hold the same sign, and these distances must be equal in both classes
only when they are negative; (iv) For all other pairs of enabled transitions that are
not in the relation Inhib, the firing distance involving both transitions must be
equal. Let us prove now that the relation ≃ is a bisimulation over the classes of

the graph G̃RC.

Theorem 3. The relation ≃ is a bisimulation over the graph G̃RC.

Proof. We should prove that if (Ẽc, Ẽ′
c) satisfies the hypotheses of Definition 9,

then we have:

1 : If an activated transition tf can fire from Ẽc, then tf can fire from Ẽ′
c too.

2 : If Ẽc

tf
→֒ Ẽ↑

c ∧ Ẽ′
c

tf
→֒ Ẽ′↑

c , then (Ẽ↑
c , Ẽ

′↑
c ) ∈≃; Ẽ↑

c and Ẽ′↑
c satisfy Definition

9.

1. Let us assume that the transition tf is firable from Ẽc = (M, D̃c). As Ẽc and

Ẽ′
c are in the relation ≃, then the hypotheses of Definition 9 are satisfied.

Basing on the firing condition, we need to prove that (A1): if β̃c[tf ] ≥ 0,

then β̃′
c[tf ] ≥ 0, namely that MIN

∀t′∈Ta(M)

{
D̃′

c[tf , t
′]
}
≥ 0. As tf and t′ are both

activated, then (tf , t
′), (t′, tf ) /∈ Inhib. Hence, from hypotheses (iii) and (iv)

of Definition 9 we determine the property (A1); tf is firable from Ẽ′.

2. We have to prove that the hypotheses of Definition 9 are satisfied for (Ẽ↑
c , Ẽ

′↑
c )

(a) It is obvious that as M =M ′, we have M↑ =M ′↑.

(b) Let us prove that ∀t ∈ T i(M↑), D̃c[•, t] = D̃′↑
c [•, t]. Let us replace D̃

↑
c [•, t]

with its computation formula according to the status of t, as given in
Definition 8.

if t ∈ New(M↑), then we have :D̃↑
c [•, t] = D̃′↑

c [•, t] = tmax(t).
if t /∈ New(M↑), then we should consider whether t is inhibited for M
or not.

• If t /∈ T i(M), then we need to prove that D̃c[tf , t] = D̃′
c[tf , t]. This

last property holds since (tf , t) /∈ Twin ∩ Conf(M), otherwise t
should be disabled after firing tf . Furthermore, (tf , t) /∈ Inhib oth-
erwise tf should be inhibited for M . Also (t, tf ) /∈ Inhib, otherwise
t should be inhibited for M .
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• If t ∈ T i(M), then the proof is obvious from the hypothesis (ii).

Notice that likewise we can also prove that ∀t ∈ Ta(M↑), D̃c[•, t] =

D̃′↑
c [•, t].

(c) We should prove that ∀t ∈ T i(M↑), D̃↑
c [t, •] = D̃′↑

c [t, •]. Let us replace

D̃↑
c [t, •] with the suitable computation formula according to the status

of the transition t.

if t ∈ New(M↑), then we have D̃↑
c [t, •] = D̃′↑

c [t, •] = −tmin(t).
if t /∈ New(M↑), then we should consider whether t is inhibited for M
or not.

• If t /∈ T i(M), then we need to prove that β̃↑
c [t] = β̃′↑

c [t], namely that

MIN
∀t′∈Ta(M)

{
D̃c[t, t

′]
}
= MIN

∀t′∈Ta(M)

{
D̃′

c[t, t
′]
}
.

If (t, t′) /∈ (Twin ∩ Conf(M)) ∪ Inhib, then we have D̃c[t, t
′] =

D̃′
c[t, t

′]. However, (t′, t) /∈ Inhib (resp, (t, t′) /∈ Inhib), otherwise t′

must be inhibited (resp, t must be inhibited), for M .

If (t, t′) ∈ Twin∩Conf(M), then we have sg(D̃[t, t′]) = sg(D̃′[t, t′])

and yet more D̃c[t, t
′] = D̃′

c[t, t
′] when sg(D̃[t, t′]) =<0. As t ∈

Ta(M) and D̃c[t, t] = 0, then MIN
∀t′∈Ta(M)

{
D̃c[t, t

′]
}

≤ 0. Therefore the

value of D̃c[t, t
′] has no effect on the calculation of the minimum

when sg(D̃c[t, t
′]) =≥0; hence the equality holds.

• If t ∈ T i(M), then the proof is stemmed from the hypothesis (ii).

Notice that likewise we can also prove that ∀t ∈ Ta(M↑), D̃↑
c [t, •] = D̃′↑

c [t, •].

(d) We have to prove that (A2):∀(t, t′) ∈ Twin ∩ Conf(M↑){
sg(D̃↑

c [t, t′]) = sg(D̃′↑
c [t, t′])

D̃↑
c [t, t′] = D̃′↑

c [t, t′] If sg(D̃↑
c [t, t′]) =<0

As we deal with safe nets, we can easily show that if two persistent tran-
sitions are in conflict forM, then they remain in conflict forM↑. Hence,
Conf(M↑) consists of all the pairs of transitions (t, t′) ∈ Conf(M) that
are persistent in M↑ to which we add the pairs of conflicting transitions
for M↑ where at least one transition is newly enabled. First of all, it is
obvious that if t ∈ New(M↑) or t′ ∈ New(M↑), then (t, t′) satisfies the
hypothesis (A2).
Let us discuss the case where two twin conflicting transitions are persis-
tent, (t, t′) /∈ (New(M↑))2. Therefore, according to Definition 8, we
have:

D̃↑
c [t, t′] =MIN(D̃c[t, t

′], D̃↑
c [t, •] + D̃↑

c [•, t′]).

As it is assumed that sg(D̃c[t, t
′]) = sg(D̃′

c[t, t
′]), and we have already
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proved through (b), (c) that (A3): ∀ t ∈ Te(M), D̃↑
c [•, t] = D̃′↑

c [•, t]

and D̃↑
c [t, •] = D̃′↑

c [t, •], we can easily determine that sg(D̃↑
c [t, t′]) =

sg(D̃′↑
c [t, t′]).

Furthermore, if sg(D̃↑
c [t, t′]) = sg(D̃′↑

c [t, t′]) =<0, then we should prove

that D̃↑
c [t, t′] = D̃′↑

c [t, t′]; two cases can be seen:

• D̃↑
c [t, t′] = D̃c[t, t

′] : as D̃c[t, t
′] = D̃′[t, t′] when sg(D̃c[t, t

′]) =<0,

we guarantee that D̃↑
c [t, t′] = D̃′↑

c [t, t′].

• D̃↑
c [t, t′] = D̃↑

c [t, •] + D̃↑
c [•, t′] : the property (A3) guarantees that

D̃↑
c [t, t′] = D̃′↑

c [t, t′].

(e) We have to prove that (A4): ∀(t, t′) ∈ Te(M↑)2 − ((Twin ∩Conf(M↑)),

such that (t, t′), (t′, t) /∈ Inhib, D̃↑
c [t, t′] = D̃′↑

c [t, t′].
If t ∈ New(M↑) or t′ ∈ New(M↑), then by using property (A3) we
prove that,

D̃↑
c [t, t′] = D̃′↑

c [t, t′] = D̃↑
c [t, •] + D̃↑

c [•, t′] = D̃′↑
c [t, •] + D̃′↑

c [•, t′].
Let us discuss the case where both transitions are persistent; we have
either

D̃↑
c [t, t′] = MIN(D̃c[t, t

′], D̃↑
c [t, •] + D̃↑

c [•, t′]) or D̃↑
c [t, t′] = D̃↑

c [t, •] +

D̃↑
c [•, t′].

As (t, t′) /∈ (Twin ∩ Conf(M↑) ∪ Inhib, then D̃c[t, t
′] = D̃′

c[t, t
′]; hence

the property (A4) holds.

4.1 Discussion

By avoiding, on one hand, to compute some distances when working out each
reachable class, and on the other hand, to compare them during the equivalence
test, we succeed in reducing the computation effort of the approximated graph

G̃RC. This construction achieves, in general, to significantly reduce the size of the
graphs, but however loses a bit in the precision of the approximation. In fact, the

relaxation of some DBM constraints in the abstraction G̃RC allows to gather many
classes as equivalent even when they are not equal. On the other hand, these classes
are not considered as equivalent in the other constructions GR and G̃R although
they often stand bisimilar.

For example, let us go back to the net of Figure.3 and let us consider again the

sequence leading to the classes Ẽ2,Ẽ”2 and E2 (see page 20). Through the same

sequence we reach the class Ẽ2
c in the graph G̃RC. As it is the case for the DBM

over-approximation defined in [15], the class Ẽ2
c allows the firing of transition t1.

On the other hand, the exact construction [13], the K-grid approximation [5], the
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algorithm introduced in Definition.6 as well as the approach defined in [7] do not.
Actually, the firing of the transition t1 is due to the relaxation of the constraints of

the transition t6 in Ẽ2
c
. However, despite that the abstraction G̃RC does not build

the tightest DBM over-approximation, it succeeds in some cases to compute much
compact graphs than other approaches. For instance, the resulted graph obtained
for the net of Figure.3 contains only 309 classes.

Ẽ2
c
=




M2 : p3 → 1

D̃2
c • t1 t2 t3 t6
• 0 40 122 90 28
t1 -28 0 82 50 0
t2 -58 -30 0 20 -30
t3 -78 -50 32 0 -50
t6 0 40 122 90 0

To illustrate this fact, let us consider the firing of the transition t6 from the

previous classes Ẽ2,Ẽ2
c , Ẽ

”2 and E2 to reach respectively the classes Ẽ3,Ẽ3
c , Ẽ

”3

and E3 .

Ẽ3=




M3 :→ 0

D̃3 • t1 t2 t3
• 0 40 122 90

t1 -10 0 82 50

t2 -42 -30 0 20

t3 -60 -50 32 0

Ẽ3
c =




M3 :→ 0

D̃3
c • t1 t2 t3
• 0 40 122 90

t1 -28 0 82 50

t2 -30 -30 0 20

t3 -50 -50 32 0

E3 := Ẽ”3:=




M3 :→ 0
D3 :{

12 ≤ t1 ≤ 40 t1 − t3 ≤ -50
t1 − t2 ≤ -30 t2 − t1 ≤ 82




M3 :→ 0

D̃”3 :



0≤ t1 ≤ 40 t1 − t2 ≤ -30
32≤ t2 ≤ 122 t1 − t3 = -50
50≤ t3 ≤ 90 t3 − t2 ≤ 20

As we can see, all the resulted classes contain only DBM constraints. How-
ever the ones computed by the exact approach and the K-grid based approxima-
tion are the tighter ones (see the class E3 ). On the other side, the DBM over-

approximations introduced in Definition.6 and in [7] produce the same class Ẽ3,

whereas the one defined in [15] as well as the construction G̃RC compute less

precise DBM systems (see Ẽ”3 and Ẽ3
c
). Although all these classes are unequal,

they still derive the same firing sequences. Furthermore, the classes Ẽ3,Ẽ”3 and E3

stand unique and are not equal to any other reachable class in their related graphs.
However, the use of the equivalence ≃ rather than the equality in the construction

of G̃RC makes it possible to gather in a same node four other classes that stand

bisimilar to Ẽ3
c in the graph G̃RC. Actually, according to Definition 9, the con-

straints 0≤ t1 ≤ 40, 32≤ t2 ≤ 122 and 50≤ t3 ≤ 90 in the class Ẽ3
c
are not needed
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to carry out the equivalence test. Therefore, despite the loss of precision in the

over-approximation (which may induce additional sequences in the graph G̃RC),
this construction still computes a much compact graph than all other approaches.

Consequently, the abstraction over the classes of the graph G̃RC is the quotient

graph of G̃RC w.r.t the relation≃. It preserves, markings and both firing sequences

while it is, in general, smaller. The G̃RC may be more appropriate than G̃R to
check over linear properties of the model, especially when the number of additional
sequences that have been added due to constraint relaxation is limited. However,

when the graph G̃RC provides a too coarse over-approximation, it may yield a
larger graph than G̃R; the additional sequences are too numerous to be wrapped

by the contraction. Indeed, the construction of G̃RC is more convenient to build
when many inhibiting and conflicting transitions are reported in the net, otherwise
the construction of G̃R should be considered. In other respects, it should be noticed

that all the sequences firable in GR are preserved in G̃R and hence in the G̃RC.

5 Experimental results

We have implemented the algorithm using C + + builder language on a Windows
workstation. The graph construction is based on breadth-first graph generation
search strategy. The experiments have been performed on a Pentium V with a
processor speed of 2, 7 GHZ and 1, 9 GB of memory capacity. The different tests
have been carried out by using different tools: TINA tool[18], ROMEO tool[17],
ORIS tool[16] and our tool named ITPNT .

The performances of the experiments are assessed by considering three parame-
ters, the number of classes, the number of edges, and finally in terms of computation
times. It is noteworthy that ROMEO and ORIS tool do not bring out some pa-
rameters; we denote that by the notation NA (Not Available). Also, we denote by
NF (Not Finished) the tests that had led to memory overflows or to a big time
computation; more than 5 minutes.

Through the first experiments we have checked whether the TPN graph con-

Figure 6: TPN used in the experiments.
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Table 2: Results of experiments performed on TPN .
Examples Tools TINA ROMEO ORIS ITPNT

Classes 2 2 2 2
Proc 1 Edges 2 2 NA 2

Times (ms) 0 NA 0 0

Classes 186 186 188 186
Proc 1 2 Edges 262 262 NA 262

Times (ms) 0 NA 16 0

Classes 958 958 1038 958
Proc 1 2 3 Edges 1506 1506 NA 1506

Times (ms) 1 NA 391 3

Classes 5.219 5.219 6.029 5.219
Proc 1 2 3 4 Edges 8.580 8.580 NA 8.580

Times (ms) 31 NA 2.719 38

Classes 42.909 42.909 52.452 42.909
Proc 1 2 3 4 5 Edges 73.842 73.842 NA 73.842

Times (ms) 734 NA 30000 786

struction by using our algorithm is conforming with that of other tools. For this
effect, we have considered the combination of the TPN shown in Figure 6 . First,
we started by testing the net Proc1, then by combining it with Proc2, and so on.
The results of these experiments are reported in Table 2 . The latter shows that
when assuming the equality as equivalence relation, the computed graphs are iden-
tical whatever the tool we use. However, as the expression of a class is extended to
the parameter NEW in ORIS, the graphs computed by using this tool are coarser.

In the second series of tests, we aim at comparing the graph constructions de-
fined in this paper with other fellow approaches. First of all, we have considered
the ITPN given in Figure 3 while varying the intervals of transitions t2,t3 and t6.
The results of the tests are given in Table 3 . We notice that for all the tests per-
formed, our algorithms outperform the other tools in terms of computation time.

P4

T2
[0,2]

P1

T1

[1,3]

P2

T4 [1,3]

P3

T3 [0,2]

T7[?,?]

2 T6

[?,?]

T8[?,?]

T5 [0,2]

Figure 7: ITPN used in the experiments.
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Indeed, the optimization in the computation of DBM systems makes it possible to
speed up the construction of ours graph, faster than in the other tools. Comparing
to ORIS (which is assumed to compute the tightest DBM over-approximation
as in ITPNT ), the computation times are reduced approximatively by 30. Con-
cerning the tool ROMEO, besides that the computed graphs are less precise than
ours, it seems also that the times needed for that are slower, even though they
are not revealed. Moreover, the exact construction of the graph GR needed high
computation times to achieve (more than 1 minute in average), even failed in many
cases as evidenced in the fourth test of Table.3. However, in some other cases (see
the two final tests in Table.3), the exact construction succeeds to compute finite
graphs whereas all DBM -over approximations techniques fail. This happens when
the additional sequences (due to over-approximation), compute persistently new
markings that stand unbounded in the graph.

Table 3: Results of experiments performed with ITPN of Figure 3
TOOLS TINA ROMEO ITPNT ORIS

Examples Methods K-grid Exact DBM G̃R(=) G̃RC(≃) DBM

t2 [100,150] Classes 4.489 4.489 5.431 5.378 5.098 5.538
t3 [160,160] Edges 6.360 6.360 7.608 7.530 7.251 NA
t6 [20,28] Times(ms) 1632 NA NA 51 45 1578

t2 [100,150] Classes 320 320 403 394 309 429
t3 [150,150] Edges 460 460 575 562 446 NA
t6 [20,28] Times(ms) 110 NA NA 2 1 156

t2 [100,150] Classes 4.142 4.142 5.034 4.982 4.759 5140
t3 [140,140] Edges 5.889 5.889 7.095 7.014 6.781 NA
t6 [20,28] Times(ms) 1502 NA NA 41 37 1765

t3 [80,120] Classes 28 392 NF 47.622 40.842 43.462 NF
t5 [155,155] edges 41.452 NF 67.309 57.766 60.951 NF
t6 [20,28] Times (ms) 15703 NA NA 878 886 NF

t2 [80,120] Classes 7.018 7.018 12.379 10.004 10.888 10.400
t3 [140,140] Edges 10.242 10.242 17.829 14.406 15.490 NA
t6 [20,28] Times(ms) 2834 NA NA 178 162 3.516

t2 [100,150] Classes 11.351 11.351 16.354 15.178 16.646 15.318
t3 [135,135] Edges 15.649 15.649 22.230 20.486 23.225 NA
t6 [20,28] Times(ms) 4907 NA NA 220 236 4765

t2 [100,150] Classes 17.612 17.612 21.857 21.626 22.290 21.942
t3 [155,155] Edges 24.522 24.522 30.065 29.711 31.151 NA
t6 [20,28] Times(ms) 7951 NA NA 285 289 5594

t2 [100,150] Classes 12.874 12.874 NF NF NF NF
t3 [135,135] Edges 18.424 18.424 NF NF NF NF
t6 [20,38] Times(ms) 2340 NA NF NF NF NF

t2 [100,150] Classes 19.827 19.827 NF NF NF NF
t3 [155,155] Edges 28.532 28.532 NF NF NF NF
t6 [20,39] Times(ms) 3635 NA NF NF NF NF
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Comparing to TINA which implements the K-grid based approximation, there
are points in our favor and other against. As the results reported with TINA
are obtained with the highest level grid, this construction achieves to build the
exact graphs in almost all cases sensibly faster than ROMEO. However, although
ours graphs are more coarse, they needed less time to be built (approximatively

25 times less). In other respects, the construction of the abstraction G̃RC seems

to be more appropriate than that of G̃R when dealing with smaller graphs (less
than 10.000 nodes). Otherwise the additional sequences due to the precision loss

in G̃RC overwhelms the benefits of the contraction. However, the contraction is
supposed to be more important in presence of conflicting transitions as we will see
in the next experiments.

In the last experiments, we intend to advocate the benefits of building G̃RC
rather than G̃R when dealing with both conflicting and inhibiting transitions. For
this effect, we have considered the ITPN given in Figure 7 while varying the
intervals of transitions t6,t7 and t8; the results of these experiments are reported
in Table 4 .

All the experiments show that the graph computation times are in favor of our

constructions, yet more when computing the abstraction G̃RC. Furthermore, in
the first two experiments, the construction of the graph G̃R succeeds to build the
exact graph, unlike the DBM over-approximations implemented in ROMEO.

On the other side, the construction of the abstraction G̃RC achieves to reduce
significantly the size of the graphs as well as their computation effort. Moreover,
this contraction has provided very compact graphs which are even smaller than
those computed by the exact approach. However, this does not mean that the

graphs G̃RC are more precise in the approximation than G̃R, but denote that many
classes that stand unequal in G̃R and GR are bisimilar indeed. The application of
the equivalency ≃ makes it possible to gather these bisimilar classes, and therefore
to compact sensibly the graphs.

Furthermore, we notice that for the last four tests in Table.4, the exact com-
putation of the graph as well as the K-grid approximation fail to build the graphs,
unlike DBM over-approximation approaches. This happens when the number of
different polyhedra computed in the exact graph is unbounded, while the number
of DBM systems obtained by approximation is always bounded.

6 Conclusion

We have proposed in this paper an efficient algorithm to construct the tighter
DBM over-approximation of the state class graph of preemptive systems modeled
by using the ITPN model. Similarly as in [7][15], our approach is based on over-
approximating the polyhedron of each reachable class by relaxing its non DBM
constraints. For this effect, we have proposed to shun the computation of the
intermediary polyhedra, and have provided an algorithm that computes efficiently
and straightforwardly the full DBM system in its normal form. We have thereby
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Table 4: Results of experiments performed with ITPN of Figure 7.
TOOLS TINA ROMEO ITPNT

Examples Methods K-grid Exact DBM G̃R(=) G̃RC(≃)

t6 [2,5] Classes 1.035 1.035 1.318 1.035 842
t7 [22,35] Edges 1.830 1.830 2.323 1.830 1.471
t8 [20,30] Times(ms) 312 NA NA 8 4

t6 [2,5] Classes 750 750 1.685 750 742
t7 [12,15] Edges 1.363 1.363 3.106 1.363 1.356
t8 [10,20] Times(ms) 219 NA NA 4 3

t6 [4,8] Classes 2.346 2.346 3.398 2.402 1.880
t7 [14,20] Edges 4.969 4.969 7.198 5.090 4.118
t8 [10,20] Times(ms) 1312 NA NA 19 12

t6 [4,10] Classes 3.203 3.203 4.451 3.238 2.648
t7 [16,22] Edges 6.603 6.603 9.184 6.756 5.758
t8 [10,18] Times(ms) 1.594 NA NA 28 19

t6 [4,8] Classes NF NF 20.638 19.739 16.981
t7 [16,22] Edges NF NF 46.216 43.378 38.338
t8 [10,15] Times(ms) NA NF NA 426 363

t6 [4,10] Classes NF NF 20.875 20.048 17.272
t7 [16,25] Edges NF NF 46.945 44.261 39.137
t8 [10,18] Times(ms) NA NF NA 440 361

t6 [4,10] Classes NF NF 20.451 19.636 16.891
t7 [16,25] Edges NF NF 45.993 43.338 38.237
t8 [10,20] Times(ms) NA NF NA 425 342

t6 [4,10] Classes NF NF 19.092 18.481 15.915
t7 [16,27] Edges NF NF 43.116 40.941 36.085
t8 [10,28] Times(ms) NA NF NA 403 324
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succeeded to remove the drawbacks due to the manipulation of the intermediary
polyhedra, and improved significantly the graph construction by removing the cost
of the normalization and the minimization of the DBM system.

Then, in the second part of this work, we have proposed a new approach to
compute an abstraction of the state space of an ITPN . For this effect, we showed
that by relaxing a little bit in the precision of the DBM over-approximation, we
can compute graphs that can be more appropriate, in certain cases, to model-check
the linear properties of the ITPN . We have discussed how this construction can
be improved yet more by leaving out all the distances that are useless for the class
computation process. Hence, we have put forward an equivalence relation that
makes it possible to contract sensibly the size of the graphs as well as to reduce the
effort of their computation. Experimental results have been reported to advocate
the benefits of both constructions.
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