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A theorem on diophantine approximation with application! 
to Riemann zeta-function 

By P. TURÀN in Budapest 

To the sixtieth birthday of my fiiend Prof. L. Rédei 

1. In a recent paper1) I proved among others the following theorem. 
If for n > n0 none of the Dirichlet-polynomials 

(1) Un(s)=£vs (s = o + it) 

vanishes in a half-strip 

(1.2) ffs 1 + ^ , y n ^ t ^ Y n + e"' 
1In 

with a suitable real /„ , then R I E M A N N ' S conjecture is true. 
Also a sort of converse theorems was proved in the above quoted pa -

per. The aim of the present note is to improve the above quoted theorem by 
proving that Riemann's conjecture follows even from the weaker assumption 
that for 11 > n„ the polynomials Ua{s) do not vanish in the half-strip 

it a (1 .3) a s Y n ^ t ^ Y n + e 

with a suitable real /„. 
Probably the half-strip (1.3) could be replaced in the theorem by the 

half-strip 

(1.4) 7 n ^ t ^ Y n + ec'n 

\jn 

with a suitable cu where cx — and later c 2 , c 8 , . . . — stand for positive nu-
merical constants. 

!) P. TURÂN, Nachtrag zu meiner Abhandlung "On some approximative Dirichlet 
polynomials in the theory of zeta-function of Riemann", Acta Math. Acad. Set. Hung., :0< 
( 1 9 5 9 ) , 2 7 7 - 2 9 8 . 
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Again an infinite number of exceptional polynomials U„(s) vanishing 
in every half-strip of the form (1.3), could have been admitted, supposing 
that the number of such indices not exceeding x is o( logx) for x—yoo. We 
shall omit this as well as the similar theorems for 

Z f l — s - f r ) ' " - , V„(s) = 2 ( - i y l l v ' , v 11 \ 1 J V -.11 

and the proof that U„(s) does not vanish for n > c2 in the domain 

(1 .5 ) ff^l, 

But I do emphasize again as I did in my above quoted paper two facts. 
First that in order to verify the condition in (1 .3) it would suffice to prove 

(1.6) lim < e 
T—yca * 

where Nn{T) stands tor the number of zeros of U„(s) for 

(1 .7) 0 g i ^ T 
1In 

and for which to prove e. g. the inequality 

Nn(T)<c6T. 

is easy. Secondly though the proofs work "essentially" also for all func-
tions f(s) which are representable for a > 1 by an absolutely convergent 
Dirichlet-series 

m n 

¿k if ' 
with positive monotonical coefficients a„ and also by an Euler-product 

n—v reai). 
V j 

ps 

these three properties already characterize K(s) up to a translation of s, per-
haps surprisingly for the first minute, owing to the existing big literature of 
the characterisation-problem. 
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2 . The improvement is furnished by a lemma which belongs to the 
theory of diophantine approximation; a theory to which RfiDEi made valuable 
contributions. This will be the 

Lemma. If 2 = p1<pi< <pN stand for the first N primes, 
d, A, $>,..., fa for arbitrary real numbers and to is an integer 4, then 
there is a t0 with 

(2 .1) d ^ U ^ d + e « » » * * * 

such that for v = 1, 2 , . . . , N the inequalities 

(2 .2 ) 1101 og pv—/?„—ev | ^ ™ (er integers) 

hold*), if only 1V> c 6(> e31), N > w. 

The half-strip (1 .3) could be replaced by the one in (1 .4) if the in-
terval in (2 .1 ) could have been replaced by 

d ^ u d+ (oN 

-say (which would be essentially best-possible). 

For the proof of the lemma we make first some preparations. Let 

(2. 3) k = [ log N] ( g 30), m = [e2rt>] ( > 4) , 

i 
f i s in trtji xY,! , 

< 2 ' 4 ) ^ J I sin ^ J 
0 

and 

Since after FEJER'S formula we have 

1 ( s i n m ? c x Y J ^ 1 (< \v\ 
m v s i n n x ) r = ~ - i ) V m 

we get 
(ni-y/c 

(2.6) P(x)^ 2 a're27Cm: 

with positive a'v satisfying 
(2 .7) a'v = a'v and a'0 ----- 1. 

2) In the previous form the exponent in (2.1) was 3(/V<u)alog2Nta. 
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It is easy to verify from (2.6) and (2. 5) th at 

(»¡¿if i fzm—1 
(2.8) 2 = 

r=-0»-l)fc A V Z—1 

Finally we shall need the simple inequality from (2. 4) 
1 myC 

Лsill mnx\ 
nx ) 

\ it | 
A > | | -| dx 

0 (i 

sin t 
t dt> 

m 
> 

n J I t J 3yr f k 

m2k-l 

( 2 - 9 ) 

(and obviously is 2). 

3 . Let 
(3. 1) T=etfc»N\og> N 

and modifying an idea of H . BOHR and B. JESSEN3) devised by them for the 
proof of KRONECKER'S theorem we consider the function 

(3. 2) KN(t) = lJP(t log pj-(ij) 
j= i 

with fixed If the lemma would be false then for all d g / ^d+T for 
a suitable index v = v(t) we would have 

\t \ogpv—/?„—ev\ > ^ 

for all integer ev and thus, using also (2.3), (2 .9) and (2. 5), 

(o )P(t log />„- /? , ) < • ! _ ! _ < — L _ < 
o x sin2;c— sin® — 

(o. o) o> o> 

3 ^ 0 ? y i o g N 3 ^ a t o f l o g /V / l o g ' N 1 
< tn^m < pji < yy-3 < № ' 

3 ) H . B O H R — B . JESSEN, Zum Kroneckersclien Satz, Rendiconti del Circolo Mat. Palermo, 
57 (1933), 123—129. 
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if c0 is sufficiently large. Hence for this t we had 

I<N(t) < P ( t l o g p j — f i j ) M ~ K N v { t ) 
j¥=r 

and thus owing to the nonnegativity of P(x) 

would hold throughout [0, 7]. Integrating we would obtain 

ii+T a+T 

(3.4) J 

4 . In order to deduce a contradiction from (3.4) we have to estimate 
JN and Ihe JNv 's. To do it simultaneously let 

be /' different primes, y2>..., yr real, 
r 

(4.1) G,(t) = n P ( t \ o g q - Y ] ) 
3=i 

and 
g+T 

(4.2) f G, (t)dt=jHr. 
à 

Then (2. 6) gives owing to the rational independence of the log qj 's and (2. 7) 

0 , ( 0 = 1 + 2 
3=l,2,.."r 

¿'I'X ' ' ' ''l e 

and thus with a 5-, — , y/; n 

(4.3) / / , . = 7 + 5 - 2 I, | 
-(«-iv,s^k(«-i)7C ¡log ( t f i V • • • qr')\ j—l, 2,..,,)• 

In order to obtain an upper bound for Z we consider first with an /, 1 ^ l ^ r , 
the partial sum 

Zhh-h 

of Z, consisting of the terms where exactly the summation variables 
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vh> i'h> • • •> vii ' i a v c values different from 0. Hence owing to (2.7) we have 

(4.4) Z j i h - h 2 - • • a*l 2 I | n n . „ai«f\ I • !=£»,==(>»-!)/< B(=-J:l 1108 v/,<i Qh • • • Q j i ) I 

Since for integer ct> 

log log-

we get for the inner sum in (4.4) at once the upper bound 

2(1 
Putting this into (4 .4) we gel the inequality 

Z h h : . i i < 2 ' n 2 ax /1=1 [ l)/c 
<277)2 2 

/<=1 [ 

and thus 

. Z < 2 i j ! l + 2 2 < ^ | < 2 7 7 ' 2 Í 2 
«=1 l^X/iSt'»-!)'1 ' /1=1 (-(»t-l^^áO»-!^ 

Using the identity (2 .8) this gives 

2 V 1 
Z<2 n 

2 k 

and roughly 

1 
r Ml 

(4. 5) Z<2(q1q2... q,)^" 2 7 < 20 (<m2 . . . ^ ( ' » " ^ e " . 
U=1 , I 1 — 

q» 
Applying it with 

r = N, (qi,q2,..., qr) = (pi,p2,..., pN), Y.i = fij 

resp. 

r = N— 1, (qi,q2,...,q,) = (pi,P2,...,Pv-i,pv+i,...,pN), Yi = P< 

(v= 1,2,..N) we get from (3.4), (4.3) and (4.5) 
A' 
2 1 \ 2 

T—l(pxp2... <-¿¡2) NT+lN(jhp» • • • pN^'-^e—1 

i. e. roughly 
N -1 1 1 
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But as well-known, choosing ce sufficiently large, it follows 

— T< 11 log2 A?. log.,V•(«! !);; <- ] ] ] 0 g 2 f_ 
2 

Hence, if cB is large enough, 
T < 2 2 l o g 2 / V ' e^ajYloga jY ena>Nlog»iV^ 

in contradiction to (3. 1). Hence the lemma is proved. 

5 . Since the other parts of the proof are unchanged, as it is given in 
my above quoted paper, a sketch of it will suffice, for the sake of comple-
teness. Let Z(v) stand for LIOUVILLE'S symbol, further for n > en 

(5.1) 0 » ( s ) = ^ l ( v)v-

and 

(5.2) 
1In 

we shall use the well-known estimation 

(5.3) № ) l = l X 

With this c3 (5. 3) gives easily that 

(5.4) | a ( s ) | < c 9 

in the domain 

3 [/logn 

if only n sufficiently large. Supposing now that G„(s) has a real zero 

between ,(1 + 26) and | l + 3 and putting 

CO 

(5.5) , Gn(s) = £ ch (s—o0)1, 
i=i 

CAUCHY'S coefficient-estimation, applied to the circle 

8 f l o g n 
\s — a0| -

gives from (5. 4) the estimation 

(5.6) |afj| < (c0 log n) 
Further from 
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from (5 .3) and simple properties of £(s) we gel the lower bound 

(5 .7) >1. 

From (5. 5), (5.6) and (5. 7) we gel the estimation 

(5 .8 ) | G » ( s ) I > 4 

on the circle \s—a 0 | = d. Application of the lemma with 

N=fc(n)(<2ToglS")* A = ^ = = ® = 

gives to every real d the existence of a Ta with 
» , („„A N JL 1 

d is Ttl =i d+e loea" loe» =g d+(en a —1)-^-
JL 

(if c7 is large enough) such that 

50 log2/; 
Ő + 1 

Ta log p — \ — e p <WW7i ^ i n t eS e 1 ' ) 

for all p ^ n. From this one can deduce that if c7 is large enough than for 
n > c7 and » s i we have 

(5 .9) | G„(s)-Un(s+2m„)| < g A 

Then by an adaptation of a reasoning of BOHR one can deduce from our 
assumption (1 .3) that for n > c 7 the inequality 

„ -i-olSi4^ 
(5 .10) £ l ( < v ) v K g O 

holds. Using (5 .3) this gives easily the inequality 

(5.11) L ( x ) ^ 2 ^ - > - c 1 0
l ( p > - X - ^ 

for :x:>cii(s), s arbitrarily small positive. Since for o> 1 the identity 

(5.12) f Z , ( s ) + * 2 g(2 s) , 1 
J a x ( s - l ) £ ( s ) + 1 

holds, ( 5 . 11 ) gives owing to a theorem of LANDAU that the "outstanding" 
singularity of the right hand side of (5. 12) is on the real axis. But this 
proves the theorem. 

(Received April 26, I960) 


