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A theorem on diophantine approximation with application
to Riemann zeta-function

By P. TURAN in Budapest

To the sixtieth birthday of my fiiend Prof. L. Rédei

1. In a recent paper!) I proved among others the following theorem.
If for n > n, none of the Dirichlet-polynomials

(1) Un(s)= D w ¢ (s=o0-+it)
vanishes in a half-strip

3
(1.2) 0§1+m—g-l—l Y EL= vt ev

Vo~
with a suitable real y,, then RIEMANN’s conjecture is true.

Also a sort of converse theorems was proved in the above quoted pa~
per. The aim of the present note is to improve the above quoted theorem by
proving that Riemann’s conjecture follows even from the weaker assumption
that for n > n, the polynomials U,(s) do not vanish in the half-strip

3

3 3
log L s=t=yate”

Vn
with a suitable real y,.
Probably the half-strip (1.3) could be replaced in the theorem by the
half-strip

(1.3) o=1+4

3 .
(1.4) ozl—l—mvg—fn, Yo St =ypte

n
with a suitable ¢;, where ¢, — and later ¢, ¢;, ... — stand for positive nu-

merical constants.

1) P, Tur&n, Nachtrag zu meiner Abhandlung “On some approximative Dirichlet
polynomials in the theory of zeta-function of Riemann”, Acta Math. Acad. Sci. Hung., 10
(1959), 277—298.
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Again an infinite number of cxceptional polynomials U,(s) vanishing
in every half-strip of the form (1.3), could have been admitled, supposing
that the number of such indices not exceeding x is o(log x) for x— co. We
shall omil this as well as the similar theorcms for

C=Z(1— ) weO=X 0,

=0 v _n

Wa(s)= 2 (—1)"(2r—1)"*

VEEN

and the proof that U,(s) does not vanish for n > ¢, in the domain

i
(1. 5) ozl, g=t="",

Bul I do emphasize again as I did in my above quoted paper two facts.
First that in order to verify the condition in (1.3) it would suffice to prove

Nu(T) _ it

(1. 6) lim T

>

where N, (7) stands tor the number of zeros of U,(s) for
log®n
Vn '’

and for which to prove e.g. the inequality

O=t=T

(1.7) o=1+4

5 T
[Vn(T)<C57

is easy. Secondly though the proofs work ‘essentially” also for all func-
tions f(s) which are representable for o>1 by an absolutely convergent
Dirichlet-series

N (n

= n’

with positive monotonical coefficients @, and also by an Euler-product

1/ ! 5 (b, real),

these three properties already characterize £(s) up to a translation of s, per-
haps surprisingly for the first minute, owing to the existing big literature of
ihe characterisation-problem.
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2. The improvement is furnished by a lemma which belongs to the
theory of diophantine approximation; a theory to which REDEI made valuable
contributions. This will be the

Lemma. [If 2=p,<p.<-:--<px Stand for the first N primes,
d, 6, By, ..., 6n for arbitrary real numbers and o is an integer =4, then
there is a t, with

(2. 1) ad= L= d_l_ plioNlog2 ¥

such that for v==1,2,..., N the inequalities

1 T
= P (e, integers)

(2. 2) |t0 10g pqr_ﬂql_evp
hold®), if only N> c(>€"), N> w.

The half-strip (1. 3) could be replaced by the one in (1.4) if the in-
terval in (2.1) could have been replaced by

d=th=d+ o

-say (which would be essentially best-possible).
For the proof of the lemma we make first some preparations. Let

(2. 3) —[log N] (=30), m=[ew] (>4),
1
{ (sin mzx\ ’
(2.4) A= | t sin 22x
0
and
1 (sinmmax\*
(2.5) P(x):X'( sinzx ) :

Since after FEJER’s formula we have

. 9 m-1
i(sm mrex)' % (1_ 171 ) e
m\ sinzx p="m-1) m !

we get
(m-=1)k .
(2. 6) Px)=" 2> ae™"
y=-(m~1)k
with positive a; satisfying
2.7 a'y,=a, and ab==1.

2) In the previous form the exponent in (2.1) was 3(Nw)2log2 Nw.
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It is casy {o verify from (2.6) and (2.5) that

(m-1)k

I 1 2m—1 2
i a,z? = —— z-n-1k ( ) .
(2 8) 1'=—%',- 1313 ! A 2—1

Finally we shall need the simple inequality from (2. 4)

mac

1
; ok . 2%
A>J(smnmx) d L et [(smz‘ s,
X 7t . t
0

Q

K s

”l2h—<1 Sin [ I3 ”lflh—l
> dt >
JT t 3k
0

i.e.
”1276—1
2.9 A>
(2.9) Ty
(and obviously = 2).
3. Let
(3 1) T — el7oN log’ ¥

and modifying an idea of H. BoHR and B. Jessen®) devised by them for the
proof of KRONECKER’s theorem we consider the funclion

(3.2) Kn(t) = J_ZJP(z‘ log p;—8)

with fixed ;. If the lemma would be false then for all d =t=d+ T for
a suitable index »=w»(f) we would have

1
|t log py—By—e,| > e

for all integer e, and thus, using also (2.3), (2.9) and (2.5),
1 1 3xfk 1

O=)P(tlog p,—B,) <

o%-1
(3.3) A sin2’”% & sin”"%
< 3w log N L 3o Jlog N < 37t Jlog'N <L
(—2——”1)21': N-i N3 N2 )
w

8) H. Bonr—B. Jessen, Zum Kroneckerschen Satz, Rendiconti del Circolo Mat. Palermo,
57 (1933), 123—129.
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if ¢, is sufficiently large. Hence for this # we had

1 75 of 1
Kn(t) <z L1 P(tlog p,—8)% — Kw(t)
N =1 N
JE
and thus owing to the nonnegativily of P(x)

1 ==
Kn(t)< 57z % Ky (t)

would hold throughout [0, 7). Integrating we would obtain
a+r a+ia

1 N N
(3. 4) Jy & f/(N(t)dt < “N_Zl Jlﬂw(z‘)dtf‘é“f Nigl Jw.
d .

a

4. In order to deduce a contradiction from (3.4) we have to estimate

Jw and the Jy, ’s. To do it simultaneously let
(h,(]z,---,(]r lsléN

be r different primes, y;, ¢y, ..., 7 real,

@1 G.()— I Pt10g 3, —)
and '
(4.2) | 6 (tyat=H,.

d
Then (2.6) gives owing to the rational independence of the log q; ’s and (2. 7)

—97ti(wyysbetiry)  Oait log (q’i’l Pl q;’r)
e

Gr(t) =1+ > a,a, ...a,e
—(m-Dk=p,;=(nm-1)k

=1,2,.. »

=9=1,
JL

liA

and thus with a 9, _L
gt

43 H=T+y > B T 97,

~(m- .1)7.1:<:{1;',§(m~1)]c IlOg ((]1 qs ... q';”)

J=dy 300047

In order to obtain an upper bound for Z we consider first with an [, 1=[=r,

the partial sum | |
Zﬁfzn-jl (1 éjl < vee <Jl = f)

of Z, consisting of the terms where exactly the summation variables
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Vi Vigy « + o, ¥, have values different from 0. IHence owing {o (2.7) we have

-l -l 1
(4. 4) Z'l fyrendy = Qe Qry o o o O, 8y%  8uky N
A léx._—‘:’z('m-l)k ey ;% |log (g5 7™ . .. g™
(i=1,..,,1) (i==1,..00)
Since for integer a > b =1
a—0b 1
log —Eln— log——l = log | 1 -|-——) > 50

we get for the inner sum in (4.4) at once the upper bound
2(1+gi) (1 -+iz) - (1443
Putting this into (4.4) we get the inequality
l
Zin<2 [ ai-+ap <2 1|2
and thus

z<2]Tj1+2 > a,,qus<2172§ 2 L, O
=

l~—<_%‘u§(m—-l)h n=1 —(m-1)=x p__(m 1)k

a"quﬁg
I—EM[L§(1)L—1)IC 1=x <(m 1)k

Using the identity (2. 8) this gives

2 ¥ 1 ” q'm__l
z<2(3) (=)
(g .. q) " rﬂl qu—1

and roughly

1
» T m 2’7 e
4. 5) < 2((]1(12 cei (m-1)k l l e <20(010s . .. qr (m-1)k p p=1 ©
it 1 q1q:
=t __1
m

Applying it with
l.:M (ql, qz’...’qr):(pl} pz;..., pN)) Y;:ﬁ;
resp.
I.=N_1, (ql, CCIRRRY q’) Z(pl)p2; ceoy Dr-1, Drgty oo ey pN)7 yj:ﬂi

(r=1,2,...,N) we get from (3.4), (4.3) and (4.5)
N o, )
Z.‘pq, 1

T_7(l71172 e pN)("‘“l)ke’l':I = 1
i. e. roughly

-1

NT+ 7N(171p2 _— pN)(m 1)]re,l _11’1/

¥ o

1 Z‘pr
? T < 11 (p1p2 . pN)(m—l)keV:I .
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But as well-known, choosing ¢s sufficiently large, it follows
_%__ T < 11 ]0g2 N. eQNlog Ne«(m-Dk < 11 ]0g2 NEZGQwNIOgQN'

Hence, if ¢ is large enough,
T <22 10g2 N . elboNlog? N ~ el7leog2N’
in contradiction to (3. 1). Hence the lemma is proved.
5. Since the other parts of the proof are unchanged, as it is given

317

in

my above quoted paper, a sketch of it will suffice, for the sake of comple-

teness. Let A(v) stand for LIOUVILLE’s symbol, further for n > ¢;

(5. 1) Gu(s)= 2 4(»)r
and :4
(5.2) g 108 L,

n

we shall use the well-known estimation
(5. 3) |B(x)|£2| 2 A(v)] < xe-Vioge,

With this ¢; (5. 3) gives easily that
(5' 4) |Gn(s)| < Gy
in the domain

o=1—2 1 lt| =1,

~ 3 Jiogn'
if only n sufficiently large. Supposing now that G.(s) has a real zero

log log n
between .(1 4 20d) and (1 +3 log 1

and putting

(5. 5) ‘ Gn(s) = é dl (S"“OO)Z:

CaucHy’s coefficient-estimation, applied to the circle

gives from (5. 4) the estimation

1
(5. 6) |di| < (¢ log n)® .
Further from

> A(») log »

[0y
=n pro

|d1|=

)

Oy
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from (5.3) and simple propertics of £(s) we get the lower bound
6.7 \d| >%=.
From (5. 5), (5.6) and (5.7) we gel the estimation
5.9) 1Gu9) >

on the circle |s—ay|=0J. Application of the lemma with

n
log n

N==y7(n) (< 2 ), Br=Po =1+ =L = %, W= [5—0—13& ”] +1

gives to every real d the existence of a 7; with

511 n n

200 o B . lop?
d= T = d—F(,’ 710g2n 2logn lo

22 0 . 1
=d--(e"* —1) s
(if ¢; is large enough) such that

i 1 0 . !
Talog p— 5| < B0 Tog"n (ep integer)

for all p = n. From this one can deduce that if ¢, is large enough than for
n>c and o =1 we have
(5.9) | Gu(8) — Un(s + 2 7wia)| < %6.

Then by an adaptation of a reasoning of BOHR one can deduce from our
assumption (1.3) that for n >¢; the inequality

_1_2l9g411
(5. 10) D@y ¥u =0
r=n
holds. Using (5. 3) this gives easily the inequality
4 1
(5.11) Lt > A0) o 08X e
V= 4 Vx
for x >c1(8), ¢ arbitrarily small positive. Since for o >1 the identity
(] ~Lie
(5.12) J Le+x* £(2s) n 1
X (s—1)&(s) 1
1 S— "2‘ —&

holds, (5. 11) gives owing to a theorem of LANDAU that the “outstanding”
singularity of the right hand side of (5.12) is on the real axis. But this
proves the theorem.

(Received April 26, 1960)



