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Some Remarks on Directable Automata* 

B. Imreh* M. Steinby* 

Abstract 
A finite automaton is said to be directable if there exists a word, a di-

recting word, which takes the automaton from every state to the same state. 
After some general remarks on directable automata and their directing words 
we present methods for testing the directability of an automaton and for find-
ing the least congruence of an automaton which yields a directable quotient 
automaton. A well-known conjecture by J. Cera? claims that any n-state 
directable automaton has a directing word of length <(n-x)5, but the best 
known upper bounds are of the order 0(re*). However, for special classes 
of automata lower bounds can be given. We consider a generalized form of 
Cern?'s conjecture proposed by J.-E. Pin for the classes of commutative, def-
inite, reverse definite, generalized definite and nilpotent automata. We also 
establish the inclusion relationships between these classes within the class of 
directable automata. 

1 Introduction 
A finite automaton is directable if there is an input word, a directing word, which 
takes the automaton from every state to the same state. (Directable automata and 
directing words are also called synchronizable automata and synchronizing words, 
respectively.) In this paper we discuss a variety of questions concerning directable 
automata and their directing words. After the preliminaries and general remarks 
of Sections 2 and 3, we present in Section 4 a method for testing the directability 
of an automaton. The algorithm is based on the mergeability relation of states, 
and for computing effectively this relation the inverted transition table of the au-
tomaton is used. A congruence of an automaton is directing if the corresponding 
quotient automaton is directable. Such congruences were considered (under a dif-
ferent name) by Ito and Duske [ItD83] who noted that every automaton has a 
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minimal directing congruence. It gives the largest directable homomorphic image 
of the automaton. In Section 5 we describe an algorithm for computing the smallest 
directing congruence. 

Cern^ [Cer64j conjectured that an n-state directable automaton must have a 
directing word of length < (n — l)2 . So far, this has been neither proved nor 
disproved, and the conjecture remains the main problem in the area. The best 
known upper bounds for the length of the shortest directing word are of the order 
0 (n 3 ) (cf. [Sta69,£PR71,Pin78], for example). On the other hand, even better 
bounds than (n — l)2 can be given for some special classes of automata [Pin79]. 
Recently, Rystsov [Rys94] proved that for commutative automata the exact bound 
is n — 1. In Section 6 we give a short elementary proof of a generalized form 
of Rystsov's result. The generalization corresponds to an extension of Cerny's 
conjecture proposed by Pin [Pin78]. An automaton is r- directable, for some r > 1, 
if it has an r- directing word which takes the automaton from every state to one of 
r states which depend on the word only. Pin's conjecture claims that if 1 < r < n, 
then any n-state r-directable automaton has an r-directing word of length < (n—r)2; 
for r = 1 this is fierny's conjecture. In Section 7 we consider the directability and 
the directing words of definite, reverse definite, generalized definite and nilpotent 
automata. In each case we can give exact bounds for the lengths of the minimal 
r-directing words. We also consider the inclusions and the intersections between 
these classes when restricted to directable automata. In particular, it is noted that 
every directable generalized definite automaton is definite. 

2 Preliminaries 
Although most of our notation is quite standard, some of it will be explained here 
along with some general notions we shall need. The cardinality of a set A is denoted 
by |A|. If / : A —• B is a mapping, the value f(a) of an element a & A is often 
denoted by af. Similarly, we may write Hf for f(H) = {af : a 6 H} when 
H C A. The composition of two mappings / : A —* B and g : B —* C is the 
mapping fg:A-^C,a>-t (af)g, and the product of two relations 6 C Ax B and 
p C B x C is the relation 

6 p = {(a, c) e A x C : (36 <= B) o06, bpc} 

from A to C; that (a, 6) E 6 holds is also expressed by writing aQb. The set of 
equivalence relations on a set A is denoted by Eq(A). If 6 £ Eq(A), the ©-class of 
an element a of A is denoted by a©, and the set of all such ©-classes, the quotient 
set with respect to 6 , is denoted by A / 6 . For any set A, Eq(A) contains the 
diagonal relation Ax = {(a, a) : a G A} and the universal relation V^ = A X A. 
These are the smallest and the greatest element, respectively, of the complete lattice 
(Eq(A),C) (cf. [BuS8l], for example). 

In this paper X is always a finite nonempty alphabet. The set of all (finite) 
words over X, also called X- words, is denoted by X* and the empty word by e. 
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For the length of a word w we use the notation lg(tu). For any integer k > 0, Xk 

denotes the set of all X-words of length k, and also let 

X<K = G X* : lg(u>) < Jfc}, 

X-k = G X* : lg(u;) < Jfc}, 

X^k = {u; G X* : lg(tu) > Jfc}. 
The prefix of length Jfc and the suffix of length k of a word to are denoted by 

preffc(tv) and sufffc(io), respectively. 
An automaton, or an X-automaton - to be more specific, is a system A = 

(A, X, 5), where A is the finite nonempty set of states, X is the input alphabet, 
and S : A X X —• A is the transition function. The transition function is extended 
to Ax X* in the usual way. Each word to G X* defines then a unary operation 
w : A —• A, a 5(o, u;), on the state set, and the state 8(a, w) into which the input 
word w takes A from state a is usually denoted by aw. This notation is extended 
also to subsets of A : if H C A, then Hw = {atu : a G H}. 

Subsets of X* are called X-languages, or just languages. An X-recognizer is a 
system A = (A, X, 6, ao, F) which consists of an X-automaton (A,X,S), an initial 
state ao (G A) and a set F (C A) of final states. We say that A is based on the X -
automaton (A, X,S). The language recognizedby A is ¿(A) = {u; G X* : aow € F}. 
An X-language is recognizable, or regular, if it is recognized by an X-automaton. 
The set of recognizable X-languages is denoted by Rec(X). 

Next we define some basic algebraic notions for automata. These could be taken 
directly from general algebra by construing automata as unary algebras, but we use 
the usual definition of an automaton. Nevertheless, for in- depth treatments of these 
ideas one should consult texts on universal algebra such as [BuS81], for example. 
An X-automaton (B,X,RJ) is a subautomaton of the X-automaton A = (A, X, S) 
if B C A and R)(b,x) = S(b,x) for all 6 € B and x G X. An equivalence 0 € 
Eq(A) is a congruence of A — (A, X, 5) if for all a,b € A and x G X, a&b implies 
axQbx. The set of congruences of A is denoted by Con(>l). It is well-known that 
Con(yl) forms a sublattice of the lattice (Eq(A),C). Moreover, € Con(X). 
If 9 G Con(X), the quotient automaton A/Q = (A/Q,X,SQ) is defined so that 
5©(o9,x) = 5(a, i )8 for all a© G A / 9 and x G X. A morphism of X-automata 
from A = (A, X, 6) to B = (B,X,RI) is a mapping <p : A —• B such that for all 
o G A and x & X, ¿(a, x)<p = ij(a<p,x). We write <p : A —* B to indicate that 
<p : A —* B is a morphism. An epimorphism is a surjective morphism. If there 
exists an epimorphism <p : A —* B, then B is an image of A. The direct product 
of A = (A, X, <5) and B = (B, X, RJ) is the X-automaton A x B = (A x B, X, 7) in 
which t((o, 6), x) = (5(a, x),RJ(b, z)) for any (o, 6) G A X B and x G X. 

If K is a class of automata, then K (X ) denotes the class of X-automata belong-
ing to K. A nonempty class of X-automata is called a variety of X-automata if it 
is closed under the operations of forming subautomata, images and (finite) direct 
products. 
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3 Directable automata and directing words 
A word w £ X* is a directing word of an X- automaton A = (A, X, S) if it takes A 
from every state to the same state, i.e. if | Au>| = 1, and we call A directable if it 
has a directing word. The set of directing words of A is denoted by DW(>t). The 
class of all directable automata is denoted by Dir. 

It is obvious that every directing word of an X- automaton A is a directing 
word of every subautomaton of A, too. If <p : A —» 8 is an epimorphism from 
A = (A,X,S ) onto B = (B,X,r}), then DW(/J) C DW(3). Indeed, let to be a 
directing word of A. If b, b' € B, then b = a<p and b' = a'<p, for some a, a' 6 A, and 
therefore 

rj(b, w) = r)(a<p, w) = 6(a, w)<p = 6(a', w)<p = . . . = ry(fc', to). 

Similarly, u e DW()1) and v £ DW(fl) imply that uv £ DW(>I x 8). These 
observations lead to the following conclusion. 

Remark 3.1. For any alphabet X, Dir(X) is a variety of X-automata. 

If w is a directing word of an X-automaton A, then so is uwv for any X-words 
u and v. This yields the next remark. 

Remark 3.2. For any X-automaton A, X'DW(A)X* = DW (A) . 

With any X-automaton A = (A, X, ¿) we associate an X-automaton Ad = 
(B,X,r)), where B = {Aw : w £ X* } and rj(Aw,x) = Awx for all w £ X* and 
i € X. This Ad is the part of the usual subset automaton of A accessible from 
state A. For any to £ X*, r)(A,w) = Aw. Hence to is a directing word of A iff 
rj(A, u;) is a singleton. This means that DW(>i) is recognized by the X-recognizer 
(B, X,rj, A, F), where F = {Ato : to £ X*, |Ato| = 1}, and we can state the following 
conclusion. 

Remark 3.3. For any X-automaton A, DW(.4) £ Rec(X). 

If A is a directable automaton, let d(^) = min{lg(to) : to € DW(>1)}, and for 
any n > 1, we define the number 

d(n) = max{d(>i) : A £ Dir, |A| = n}. 

Cerny's conjecture may now be formulated as the claim that d(n) = (n — l ) 2 for 
all n > 1. In [CPR71] it was shown that the hypothesis holds for n < 5. For 
the general case only upper bounds of the order 0(n3) are known (cf. [Sta69, 
CPR71,Pin78], for example). On the other hand, there are examples showing that 
d(n) > (n — l)2 for all n > 1 (cf. [Cer64,Sta69]). We consider some modifications 
of the problem concerning Cerny's conjecture. First of all, the question may be 
restricted to concern some subclass of Dir. If K is some class of automata, we set 

d K ( n ) = max{d(>i) J e K f l Dir,\A\ = n}. 
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Pin [Pin79] has shown that dj^(n) = (n — l)2 for all prime n when K is the class 
of automata in which some input letter defines a circular permutation. As we shall 
see, there are even classes K for which dj^(n) < (n — l)2 . 

For any r > 1, we call w E X* an r- directing word of an X-automaton A = 
(A,X, 6), if \Aw\ < r. Let DW(A,r) denote the set of r-directing words of A. If 
|A| = n, then 

X* = DW(X, n) D DW(A, n - 1) 2 . . . 2 DW(X, 1) = DW(>1). 

It is clear that Remarks 3.2 and 3.3 apply also to the languages DW(>t, r). We say 
that A is r-directable if DW(X,r) ^ 0. For each r > 1, let Dirr denote the class 
of r-directable automata. Clearly, Dir = Dir* c Dira C . ... Note that for r > 2 
and any X, Dir r (X) is not a variety of X-automata; it is not closed under direct 
products. 

For any r > 1 and A € Dir r , let d(X,r) = min{lg(tu) : w £ DW(/(, r)}, and for 
1 < r < n, let 

d(n, r) = max{d(A, r) : A € Dir r , = n}. 

In [Pin78] Pin put forward the following generalization of Cerny's conjecture which 
we call Pin's conjecture: d(n, r) = (n — r)2 for all 1 < r < n. For any class K of 
automata, we write 

d K ( " . r ) = max{d(>(, r) : A € K n D i r r , |A| = n}, 
and one can again consider modifications of Pin's conjecture which apply to the 
numbers r) for various classes K. 

4 Testing for directability 
Let A = (X, A, S) be an automaton, and suppose |A| = n and |X| = m. To find 
out whether A is directable or not by constructing the state set {Aw : w E X* } of 
Ad can be quite time-consuming: there may be almost 2" sets to consider, and for 
each new set Aw one should form all sets Awx (z E X) and compare them with 
the previously found sets. If no essential improvements can be found, the worst 
case estimate for this method is at least of the order 0 (m • 2"). Ito and Duske 
[ItD83] noted that the directability of A can be tested by applying an input word 
t which contains all words over X of length d(n) as subwords; obviously A £ Dir 
iff |Ai| = 1. They show how one can construct such a word t, but the mere length 

+ d(n) — 1 of the word renders the test unpractical even for small values of n 
and m. If we assume that Cerny's conjecture holds, which is the best we can hope 
for, the length of the test word will be of the order ). We present here 
a simple 0 (m • n2)-algorithm for solving the directability problem. 

For any A; > 0, the relation (¿¿(h) of k-mergeability on the state set A of it is 
defined so that for a,b £ A, (o,6) £ HA(k) iff aw = bw for some w £ Two 
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states a and b are mergeable if they are k- mergeable for some k > 0. We denote 
fij( = AM ^ ^ well-known (cf. [Sta69]) that an automaton is directable iff 
all pairs of its states are mergeable. This and some other obvious facts about the 
relations fiA{A;) and ha are stated in the following proposition. 

Proposition 4.1. Let A = (A,X,6) be an n-state automaton. 

(a) A is directable iff HA = A-

(b) The relations haW are reflexive and symmetric (k > 0). 

(c) Aa=HA(0) C M „ ( 1 ) c ...CMA. 

(d) The relations /¿»(A:) can be computed as follows: 

1. /¿¿(0) = AA; 
2. /¿¿(A:) = nA(k- 1) U {(a,b) : (3i e X) (ax,bx) e fiA(k ~ 1)} for k > 0. 

(e) If HA (A:) = HA (k — l) for some k > 0, then HA (A:) = HA (k + 1) = ... = HA. 

(f) A A = HA(0) C /ix(l) C . . . C ^jt(k) = FIA(k + 1) = HA for some k, where 
0 < k < (j). 

Proposition 4.1 suggests that the directability of A can be tested by computing 
successively px(0),/iy|(l),/ix(2),... until HA(^) = HAI^ ~ !)• The most direct way 
jf doing this leads to an 0(m • n4)- algorithm, but by organizing the work better, 
we get an algorithm which operates in time 0(m • n2). A great part of the saving 
is achieved by using the inverse transition table of A instead of the transition table 
itself. Also, we do not form explicitly each HA(k) although they appear in the 
sequence of relations that are computed. 

The algorithm employs two auxiliary data structures, a Boolen n x n-matrix 
M and a list NewPair of pairs of states. To simplify the notation, we assume that 
A = {1 ,2 , . . . , n}. Then M[t, j] = 1 means that the pair i, j (e A) is known to be 
mergeable. Since it suffices to consider just the pairs (t, j), where 1 < t < j < n, we 
actually need just the upper part of M. A pair appears in NewPair when t and j 
have found to be mergeable, but this fact has not yet been used for finding further 
mergeable pairs. The inverted transition table 

I = (l[a,x])a€AiX€X 

is defined so that I[a, 1] = {t S A : ix = a}, for any a 6 A, x e X. The steps of the 
algorithm are as follows. 

Step 1. (Initialize M and NewPair) M[», j ] := 0 for all 1 < t < j < n, and 
NewPair := e (the empty list). 
Step 2. Form the inverted transition table I. 
Step 3. Find all pairs (a, 1) (& A X. X) for which |I[a, x]| > 1. For every such 
(a, x) consider each pair t, j £ I[a, x] with t < j. If M[t, j\ = 0, let M[», j] := 1 and 
append (i,j) to NewPair. 
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Step 4. Until NewPair = e do the following. Delete the first pair from New Pair, 
suppose it is (a, b). Prom I find all pairs (t, j), i < j, such that for some x G X, 
i G I[a, i ] and j G I[fc, x], or »' € I[6, x] and j € I[o, x]. If M[t, j} = 0, let M[t, j] := 1 
and append (»',;') to NewPair. 
Step 5. If M[»,y] = 1 whenever 1 < t < J < n, then A is directable, otherwise not. 

Step 1 takes time 0 ( i2 ) - If A is given as a transition table, Step 2 can be carried 
out in time 0 ( m n). In Step 3 one has to consider for each of the m input symbols 
altogether n(n — 1)/2 pairs (», j ) , therefore the step takes time 0[m • n2). In Step 
4 each pair (»,j) will be considered at most once for each x G X, and this happens 
when the pair (a, 6) for which {ix,jx} = {0,6} is removed from NewPair. Hence, 
the time bound is 0 ( m • n2). Since Step 5 can be carried out in time 0{n2), the 
time bound for the whole algorithm is 0 (m • n2). 

5 Directing conguences 
We call a congruence p of an automaton A = (A,X,S) directing if the quotient 
automaton A/p is directable. The set of directing congruences of A is denoted by 
Con<j(yl). The following observations are easily verified. 
Lemma 5.1. For any automaton A, Cond(X) is a filter of the congruence lattice 
Con(yl), i.e. (1) Con^iX) ^ 0, (2) 0 C p, 0 G Con^X) and p G Con(X) imply 
p e Con<j(X), and (S) 0 n p e Cond(A) for all 0 , p G Cond(yl). 

Corollary 5.2. Every automaton A has a unique minimal directing congruence, 
which we denote by p», Cond(X) is the principal filter [px) of Con(A), and every 
directable image of A is an image of A/PA-

Let p G Eq(-A). We call two states o and b of the automaton A — (A, X, 6) p-
mergeable if (aw,bw) G p for some w G X*. The following obvious lemma shows 
that our directing congruences are the same as the 'cofinal congruences' of Ito and 
Duske [ItD83]. 
Lemma 5.3. A congruence p of A is directing iff all pairs of states of A are 
p-mergeable. 

For computing the minimal directing congruence we present a sharper condition 
for a congruence to be directing. Since any two mergeable states are p-mergeable 
for every congruence p, it suffices to consider the nonmergeable pairs of states. 

For any automaton A = {A, X, 6), let Gj = [V, E) be the directed graph defined 
as follows. The vertex set V = {{a, 6} : o, b G A, (a, 6) 0 /¿yj} consists of all un-
ordered pairs of nonmergeable states of A. The edge set is E = {({a, 6}, {ax, 6x}) : 
{a, 6} eV,x G X). Note that {ax,bx} G V if {a, 6} G V and x G X. It is clear 
that a congruence which identifies all pairs in V is directing, but it actually suffices 
to consider a subset of V, the trap T of G& which is the union of (the vertex sets 
of) all strongly connected components of G& from which no edges lead outside the 
component (cf. [DDK85]). 
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Lemma 5.4. A congruence p of an automaton A = (A,X,6) is directing iff apb 
for every pair {a, 6} which belongs to the trap T of G A. 
Proof . For any pair c,d (6 A) of nonmergeable states there is a word tu ( g X ' ) 
such that {cto, du;} g T. Hence p is directing if it satisfies the condition of the 
lemma. Suppose now that p € Con<j(>i) and consider any pair {0,6} e. T. By 
Lemma 5.3 there is a word w such that (aw, bw) G p. Since {atu, ¿tu} is in the same 
strongly connected component as {a, 6}, {auiu, 6um} = {a, 6} for some u 6 X*. 
This shows that also (a, b) £ p. 

For any a,b e A (a b), let Q(a,b) be the principal congruence generated by 
the pair (a, 6) (cf. [BuS81]). The last part of the previous proof shows also that 
6 (a,b) = 6(c ,d) whenever {a,b} and {c,d} are in the same strongly connected 
component of G Although it will not be used here, we note that Lemma 5.4 
yields the following description of the minimal directing congruence. 

Corollary 5.5. For any automaton A = (A,X,6), 

pA = ©(oi.fci) V... V©(a
fc
,6

fc
), 

for any set { {a j , bi},..., {a*, fcfc}} of representatives of the strongly connected com-
ponents which form the trap of GA. 

Since the reflexive closure rA = Aa U {(a, 6) : {a, 6} 6 T} of the relation corre-
sponding to the trap T of GA is invariant with respect the state transitions of A, 
then so is its transitive closure r j . Since is the equivalence generated by the 
pairs in the trap, this means by Lemma 5.4 that rA = pa- These observations lead 
to the following algorithm for-finding the minimal directing congruence for a given 
automaton A = (A,X, 5). 

Step 1. Compute HA using the method described in Section 4. 
Step 2. Form the graph GA = (V, E); the vertex set is obtained from HA • 
Step 3. Compute the strongly connected components forming the trap T of GA 

using the algorithm of [DDK85]. 
Step 4. Form the relation rA and compute the transitive closure; ta — pA. 

We know that the computation of HA takes time 0(m • n2). The vertex set V 
is then obtained in time 0(n2), and computing the set E of edges can be done in 
time 0(m n2). In [DDK85] Tarjan's algorithm [Tar72] for computing the strongly 
connected components of a directed graph is modified to yield the trap. The al-
gorithm works in time 0(is + e), where v is the number of vertices and e is the 
number of edges. In the present case 1/ < n(n — l ) /2 and e < m • n(n — l ) /2 , for 
n = |A| and m = Hence, also Step 3 can be carried out in time 0 ( m • n2). 
Step 4 takes time 0(n3 ) if we use Warshall's algorithm (cf. [AHU83], for example) 
for computing the transitive closure. The total time used by algorithm is therefore 
bounded by 0(m • n2 + n3). 
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6 Directable commutative automata 
An automaton A = (A, X, S) is called commutative if axy = ayx for all a € A and 
x, y £ X. Let C o m denote the class of commutative automata. Rystsov [Rys94] 
has shown that d Q o m ( n ) = n — 1 for every n > 1. We give a simple proof for a 
generalization of this fact. The generalization corresponds to Pin's conjecture. 

Proposition 6.1. d Q o m ( n , r) = n — r whenever 1 < r < n. 
Proof . Suppose A = (A,X,S) is commutative and r-directable, where 1 < r < 
n = |A|. Let w = xi ...xm (Xi 6 X ) be an r-directing word of A of minimal 
length. The commutativity of A implies that Auv = (Av)u C Au for all u, u € 
X*. Hence A D Axj D Ax 1X2 2 ••• 2 Aw. All of these inclusions must be 
proper as A x i . . . x , _ i = A x i . . . x,_ixj, for some 1 < i < m, would imply that 
A x i . . . Zi - ix ( '+ i . . . xm = Aw, contradicting the assumption that ty is of minimal 
length. Therefore 

n = |A| > |Axi| > . . . > |Ax!. . .xm_i| > r, 

and this implies that m < n — r. To see that equality is possible in all cases, it 
suffices to consider the automata A(n, X) = ( { 1 , . . . , n}, X, £), where n > 1, X is 
any alphabet and S(i, x) = min{t + 1, n} for all t e { 1 , . . . , n} and x e X. 

7 Definiteness, nilpotency and directability 
Let Jb > 0. An automaton A = (A,X,S) is weakly k-definite if aw = bw for all 
w € Xk and all a, b € A, and it is definite if it is weakly fc-definite for some A:. If A 
is definite and k is the smallest number for which it is weakly A:-definite, then A is 
k-definite [Kle56,PRS63], Let Def denote the class of all definite automata. 

It is clear that every definite automaton is directable. Moreover, if an X-
automaton A is weakly k-definite, then DW(X) = P U X-k for some P C X<k. 
In [PRS63] it was shown that an n-state definite automaton is k- definite for some 
k < n — 1. This shows that d j j e f (n) < n — 1 for every n > 1. That actually 
d j ) e f (n) = n — 1, is again witnessed by the automata A(n, X). This observation 
can be generalized to read as follows. 

Proposition 7.1. d j ) e f (n , r) = n — r whenever 1 < r < n. 
Proof . Let A = (A, X, 5) be a given automaton. For every t > 0, we define on A 
a relation pi so that for any a,b e A, 

apib iff (Vu; € X*) aw = bw. 

It is easy to see (cf. [Ste69]) that these relations are congruences of A, and that A 
is Jb-definite (fc > 0) iff 

1. AA = PO C p i C . . . C pfc_i C p f c = Vx. 



32 B. Imreh, M. Stein by 

Suppose now that A has n states and is k- definite. It is clear that if 0 < t < k and 
w € X\ then awpk-ibw for all a, 6 6 A. On the other hand, by ( l ) the number 
of /^-¿-classes is at least t + 1. Hence \Aw\ < n — t for every w € X1. Moreover, 
|i4ti>| = 1 whenever lg(tü) > k. This means that if 1 < r < n and w e Xn~r, then 
|Atu| < r. Hence dj^gf (n,r) < n — r. That the bound is exact, can be seen by 
considering again the automata A(n, X). 

Definite automata correspond to definite languages [Kle56,PRS63]. Next we 
consider automata that correspond to reverse definite languages [Brz63,Gin66]. An 
automaton A = (A,X, S) is weakly reverse k-definite (Ac > 0) if awx = aw for 
all o € A,w 6 Xk and x £ X. Reverse definite and reverse k-definite automata 
are now defined in the natural way. Let RDef be the class of reverse definite 
automata. If A = (A,X,S) is weakly reverse fc-deiinite, then for all a € A and 
w € X-k, aw is a 'dead state', i.e. awx = aw for every x & X. This means 
that A is directable exactly in case it has just one such dead state. Recall that an 
automaton A = (A, X, S) is nilpotent (cf. [GeP72]) if there is a state ao € A, called 
the absorbing state, and a bound k > 0 such that aw = oo whenever a & A and 
lg(tu) > k. Let Nil denote the class of nilpotent automata. 

Proposition 7.2. RDef n Dir = Nil, and (n, r) = dj^jj(n, r) = n — r for 
alll<r<n. 
Proof . Any nilpotent automaton is clearly both reverse definite and directable, 
and the converse we noted already above. Hence RDef n Dir = Nil holds. Since 
Nil C Def , we get dj^jj (n,r) < d j ) e f (n , r) = n — r for all 1 < r < n. Once 
more, equality is seen to hold by considering the automata A (n, X) which are also 
nilpotent. 

An X-language L is generalized definite [Gin66] if it has a representation 

L = P U QIX'RI U . . . U QMX*RM, 

where m > 0 and the sets P, QI and R+ are finite. Let us call an automaton A — 
(A,X,6) generalized definite if there are integers h, k > 0 such that osui = asvt, 
for all a € A, s € Xh, t € Xk and u,v € X*. This definition is justified by the 
following facts. 

Proposition 7.3. Let A = (A, X, S,a0,F) be an X-recognizer based on a given 
X-automaton A = (A,X,S). 

(a) If L(A) is a generalized definite language and A is its minimal recognizer, 
then the automaton A is generalized definite. 

(b) If the automaton A is generalized definite, then the language L(A) is also 
generalized definite. 

Proof . Suppose first that 1(A) = PLX^X*RXU.. .UQ M X*R M , where m > 0 and 
all of the sets P, QI and R{ are finite, and that A is a minimal recognizer of L(A). 
We may then assume that P C X<H+K, QU--.,QMQXH and R1,...,RMCXK, 
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for some h,k>0. Consider any o 6 A, s € Xh, t G Xk and u,v G X*. Since A is 
minimal, there is a word r G X* such that o = oor. For any tu G X*, 

lg(rsutio), lg(rstitto) > h + k and 

prefh(rsuito) = prefh(rst;iu;), sufffc(rsutto) = sufffc(rsvtty), 

and hence rsutw G L[A) iff rsvtw G L(A). This shows that a^rsut = asut and 
aorsvt = asvt are equivalent states, and since A is minimal, asut = asvt must 
hold. Hence A is generalized definite. 

Assume now that A is generalized definite and let h, k > 0 be such that asut = 
asvt whenever a G A, s G Xh, r G Xk and u, t> G X*. Consider any words u, v G X* 
such that lg(u), lg(u) > h + k, prefh(u) = preffc(t>) and sufffc(u) = sufffc(u). We 
may then write u = su't and v = sv't, where s G Xh and t G Xk. Now 

u G 1 (A) O a0su'v G F O a0sv't G F O v G 1 (A) , 

which shows that L(A) is generalized definite. 

Let GDef denote the class of generalized definite automata. Clearly, Def C 
GDef and RDef C GDef , but it turns out that all directable generalized definite 
automata are definite. 

Proposition 7.4. GDef n D i r = Def , and hence dQj ) e f (n , r) = n — r for all 
1 < r < n. 
Proof . Let A = (A,X,S) be a directable generalized definite automaton, and let 
h, k > 0 be such that asut = asvt whenever a G A, s G Xh, t G Xk an̂ l u, v G X*. 
Let u be a directing word of A. If to G Xh+k, we may write w = st with s G Xh 

and t G Xk. Then for any o, b G A, 

aw = ast = as et = asut = fcatii = . . . = fcto. 

Hence A is definite. The converse inclusion is obvious. 

If we add to Propositions 7.2 and 7.4 the obvious fact Def fl RDef = Nil, we 
get the following complete description of the inclusion relationships between and 
the intersections of the classes Def, RDef , GDef and Nil. 

Proposition 7.5. 

1. Nil c Def c Dir .Def c GDef , Nil C RDef c GDef , 

2. GDef n Dir = Def, and 

3. Dir n RDef = Def n RDef = Nil. 

The relations of Proposition 7.5 are summarized by the inclusion diagram of 
Figure 1. 
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Figure 1 

Finally, we note that within the intersection Dir fl C o m all of the classes Def, 
RDef , G D e f and Nil are equal. This follows from the next observation. 

Remark 7.6. Dir n C o m n G D e f - C o m n Nil. 
Proo f . If A = (A, X, S) e Dir n C o m n GDef , then A is fc-definite for some k > 0. 
Then for any a,b € A and u, v € X-k, au = bvu = buv — bv, which shows that A 
.is nilpotent. The converse inclusion follows from Proposition 7.5. 
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