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BY EMPLOYING THE SEMIEMPIRICAL QUANTUM CHEMICAL ASED-MO METHOD, ADSORPTION OF 
CARBON MONOXIDE MOLECULES ON STEPPED PT SURFACES BASED ON ( i l l ) TERRACES OF FCC (775), 
( 7 5 5 ) AND ( 5 3 3 ) STRUCTURES HAS BEEN INVESTIGATED AND, ON BASIS OF THE CALCULATED 
ELECTRONIC DATA, FAVOURABLE SITES OF ADSORPTION HAVE BEEN PREDICTED. 

To understand the elementary steps of heterogeneous catalysis it is important to 

investigate the chemisorption of small molecules on single crystal surfaces of metals. 

Theoretical studies promote such investigations and support the explanations of expe -

rimental observations. The adsorption of carbon monoxide on a Pt surface is one of 

the best model both for experimental [1—5] and theoretical [6—10] examinations. Most 

of the studies are concerned with smooth surfaces, and only a limited number of theo -

retical works has been dealing with surfaces having terraces, steps, kinks, etc. on 

them. By the present paper, our aim is to calculate the electronic properties of carbon 

monoxide molecules chemisorbed on stepped P t ( l l l ) surfaces so being able to predict 

the most favourable adsorption sites and orientations for CO molecules. Another aim 
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of our work is to determine the minimum size of the substrate—adsorbate system and 

especially that of the metal cluster which should be used for such model calculations. 

Three relatively simple types of stepped surfaces, based on (111) terraces, have 

been chosen. One of them has step faces of (111) orientation, as with fcc(775), and the 

other two have step faces of (100) orientation, as with fcc(755) and fcc(533). The bulk 

cubic Pt lattice parameter of 392.39 pm (nearest—neighbour distance of 277.46 pm) 

has been used [11] in all the electronic structure calculations by employing the atom 

superposition and electron derealization (ASED—MO) method [12] with its modified 

parameter sets [13]. One—fold top-site positions have been assumed for the CO 

molecules, preferentially chemisorbed with a constant Pt—C bond length of 198 pm 

from the surface (carbon end down), with a frozen C—0 distance of 115 pm, being 

based on a structure determination by LEED of CO on P t ( l l l ) [14]. The geometries 

of the system composed of the substrate and the adsorption overlayer were determined 

by the computer program PSD [15]. Predictions based on electronic properties could 

be compared and checked with experimental data available so far only for the 

orientation of CO molecules on stepped Pt(533) surface, obtained by a NEXAFS study 

[16]. However, it should be mentioned that the surface structures and so the electronic 

structures of fcc(533) and fcc(755) are similar therefore it is expected that the 

corresponding experimental observations would be nearly the same for fcc(755). 

By the program PSD, first a metal cluster was separated from the appropriate 

crystal lattice having the chara£teristic features: terraces and steps. The size of the 

cluster was chosen so that it could easily- he handled by the ASED—MO method, not 

consuming too much computing time. In the starting compulations a maximum of 45 

Pt atoms in three layers (beneath each other) and 6 CO molecules in predetermined 

axrays were included. Then the numbers of Pt atoms and CO molecules were reduced 
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systematically to the point when relative values of electronic properties (net charges, 

overlap populations, sum of one—electron energies, etc.), and trends in them, began to 

change substantially. The determination of the smallest possible cluster size to be used 

in the calculations, employing the same model, allows us the later use of more sophis-

ticated quantum chemical (e.g. "ab initio") methods. When doing calculations on any 

of the three stepped surfaces it was found [17] that a cluster composed of 15 Pt atoms 

(three Pt atoms in rows) placed in one layer and 3 CO molecules on top of the Pt 

atoms in a row supplied the same overall electronic picture (relative values and 

trends) as the much larger system. Therefore the detailed calculations were carried out 

with the reduced size metal cluster having the characteristic features of the fcc(775), 

fcc(755) and fcc(533) structures, respectively. The 3 CO molecules with collinear Pt— 

- C — 0 axis were placed on one row of Pt atoms parallel to the step edges in different 

specified positions (on terrace atoms, or at the outside and inside step sites, respec-

tively), and the differences in total electronic energies (the sums of one—electron 

energies) of the whole substrate—adsorbate system and that of the metal cluster and 

the 3 COs separately were considered and compared. The dependence of the electronic 

data on the tilting angle of the CO molecules (the collinear Pt—C—0 axis) to the 

terrace normal has also been investigated, by gradually tilting the CO molecules by 

the same polar angle at zero azimuth (parallel and zig-zag or fish—bone tilting 

regarded). 

It has been found [17] that layers lying deeper beneath the top layer Pt atoms do 

not modify significantly the overall electronic picture of the system in any of the three 

stepped structures, at the approximation level used. In other cases — e.g. when c a l -

culating fcc( l lO) crystal lattice [10]— even the presence of third layer atoms in addi— 
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tion to the top layer ones are quite important for the CO orientation. CO bonding to 

the surfaces is predominantly a result of 5<r stabilization due to mixing with the metal 

orbitals having s and d character and back-donation to the CO n* orbitals from the 

metal d-orbitals. Our calculations give the orientation of adsorbed CO at both step 

and terrace sites on stepped Pt(533) surface in accordance with the experimental study 

of SOMERS et al. [16]. The angular dependence of both the 2r intensity and the cr/2k 

intensity ratio indicates that the terrace CO is bonded essentially normal to the 

terrace and that the step CO is tilted away by only a few degrees towaxds the m a c -

roscopic surface normal. A dramatically large angle of tilt for CO on stepkink sites as 

observed in the system CO/Pt(321) [18] was not found. The energy of the <r—resonan-

ce is identical for both step and terrace CO indicating that there is lilile change in 

the C—0 overlap population (bond order) even though temperature programed desorp— 

tion shows that the step species is more strongly bond by ~ 20 kJ m o H (~ 0.2 eV 

molecule -1) than terrace COs. This means that the carbon—to—metal bond strength is 

~ 20 kJ mol"1 higher for CO adsorbed at the steps than at terrace sites. 

The lowest total energies in any of the three stepped substrate—adsorbate systems 

investigated are related always with COs in "outside" step (i.e. step—edge) positions, 

at any angles. In "inside" step (step—bottom) positions a tilting angle of 45 degree (off 

the step) is favoured. Almost exactly the same energies have been found in positions 

at the ends of the metal cluster. The terrace COs are bonded essentially normal to the 

terrace. Except "outside1! and "inside" step sites the energies are at maximum when 

the tilting angle is nearly 30°. The lowest energies can always be attributed to the 

fish—bone (zig-zag) tilting of COs, in any location of them, on the surface. At tilting 

angles between 60—70 degrees the energy of the system has been found to be almost 

exactly the same whatever are the positions of COs and it approached the minimum. 
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When the three CO molecules have been placed at random on the surface the total 

energy is always larger than at row positions. In accordance with those discussed 

above, in view of heterogeneous catalysis the adsorption sites on step edges (at any 

angles) and any sites on terraces of the structures examined (at tilting angles 60—70° 

to the terrace normal) are favoured and preferred to other sites and angles. 

Geometry data, numerical results and details of the calculations are available on 

request. 
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