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ABSTRACT 

Coke formation during dealkylation of ethylbenzene and reaction of 

ethylene over dealuminated mordenites was followed by simultaneous 

in-situ IR spectroscopic and conversion measurements as well as by 

in-situ EPR s p e c t r o s c o p y . 

A close correlation emerged between the Si/Al r a t i o , the number of 

Brtfnsted acid sites and the coking tendency of the mordenite c a t a l y s t s . 

The rate of deactivation was similar for two catalysts with different 

Si/Al r a t i o s , in agreement with TPD results according to which these 

catalysts had sites of similar s t r e n g t h . EPR results suggest that at 

low reaction temperatures ( T < 373 K ) , oligomeric radicals had f o r m e d , 

indicated by a signal at g=2.0028 with hyper-fine s t r u c t u r e , whereas at 

higher temperatures a single coke signal a p p e a r e d . It cannot be ex-

cluded that the oligomeric radicals were precursors of the coke; how-

e v e r , no simple relationship between both species was e s t a b l i s h e d . Coke 

formation seemed to proceed via a carbenium ion rather than a radical 

mechani s m . 

INTRODUCTION 

With most hydrocarbon reactions catalysed by z e o l i t e s , deacti-

vation of the catalyst due to coke deposition is a serious p r o b l e m . 

More r e c e n t l y , reinforced efforts were made to elucidate the nature of 

coke as well as the parameters which influence coke formation (1 - 5 ) . 

A particularly interesting question is that of the mechanism of coke 

f o r m a t i o n . IR studies on coke formation are particularly u s e f u l , since 

they simultaneously may provide information about changes in the pro-

perties of the catalyst (e.g. concentration and involvement of surface 

OH g r o u p s ) , constituents of the deposited coke (e.g. saturated or 

aromatic hydrocarbons) and the amount of the carbonaceous deposits 

present on the surface (measured, e . g . , through the intensity of the 

so-called coke band around 1585 cm~^ (3,6)). H o w e v e r , there have been 

not too many of such i n v e s t i g a t i o n s , and they generally were designed 
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for static c o n d i t i o n s . Only a very few in-situ experiments have been 

r e p o r t e d , where the zeolite catalyst was studied under o n - s t r e a m con-

ditions (4,7 - 9). S i m i l a r l y , all the EPR experiments which were con-

cerned with deactivation of zeolites via coke deposition seem to be 

conducted under static c o n d i t i o n s . T h u s , Kucherov and Slinkin (10-11) 

recently reported interesting results of olefin adsorption and static 

interaction with m o r d e n i t e . Typical EPR signals with remarkable h y p e r -

-fine structure (hfs) were observed and their changes with t e m p e r a t u r e 

were f o l l o w e d . As is well-known from the literature ( 1 2 - 1 3 ) , at h i g h e r 

temperatures coking of organic material usually results in the appear-

ance of a typical single EPR line with a g-value close to that of free 

electrons (2.0023). It seemed worthwhile to investigate both the radi-

cals with h f s , which may or may not be precursors of the c o k e , and the 

coke itself in dynamic e x p e r i m e n t s , i.e. on catalysts under s t r e a m . The 

aim of the current study was to test the in-situ technique and to 

correlate dynamic IR and EPR r e s u l t s . This paper presents first results 

of that a p p r o a c h . 

EXPERIMENTAL 

Materi a l s . Commercial hydrogen m o r d e n i t e , HM (No.l, Si/Al = 6 . 8 ) , 

was purchased from Norton C o m p . , M a s s . Dealuminated hydrogen m o r d e n i t e 

was prepared in the laboratory of Professor F e t t i n g , TH D a r m s t a d t , via 

treatment of sodium mordenite with hydrochloric acid; the sodium mor-

denite had been supplied by Norton C o m p . 

Two differently dealuminated HM samples were used ( N o . 2 , Si/Al = 

12 and No.3, Si/Al = 3 9 ) . Ethylene (99.95 vol.*) was purchased from 

M e s s e r - G r i e s h e i m , Düsseldorf; ethylbenzene was obtained from M e r c k , 

D a r m s t a d t , and carefully purified using a distilling c o l u m n . 

Apparatus and p r o c e d u r e . The IR flow reactor c e l l , which was 

integrated into a set-up for catalytic e x p e r i m e n t s , has been d e s c r i b e d 

in detail elsewhere (8). Operation of the cell...and e x p e r i m e n t a l pro-

cedure w e r e , h o w e v e r , somewhat m o d i f i e d . After activation of the ca-

talyst wafer in high vacuum at 673 K and subsequent cooling to 350 K , a 

stream of ethylbenzene (0.8 kPa) in He, containing 2 vol-% C H ^ as an 

internal s t a n d a r d , was passed under normal pressure through the w a f e r . 

At such a low t e m p e r a t u r e , practically no reaction o c c u r r e d , in par-

ticular no c o k i n g . When a steady state was reached as shown by the gas 

Chromatograph (constant CH^ reference peak) the temperature was raised 

to 550 K within three m i n u t e s . Immediately, dealkylation of e t h y l b e n -

zene started a n d , as a result of subsequent reaction of e t h y l e n e , 
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leactivation due to coke formation set i n . This was followed by GC 

letermination of the conversion of ethylbenzene (and the yield of 

lenzene and d i e t h y l b e n z e n e s ) . The deactivation was also traced via the 

R s p e c t r a , which were simultaneously scanned in short time intervals 

iy a computerized Perkin-Elmer Model 580B s p e c t r o m e t e r . 

Figure 1. 

Flow reactor for EPR in-situ m e a s u r e m e n t s . 

(1) reactor t u b e ; (2) Dewar; (3) cap with 

rubber sealing; (4) t h e r m o c o u p l e ; (5) heating 

w i r e ; 0.05 mm d i a m . Pt; (6) catalyst s a m p l e ; 

(7) high vacuum (8) inlet; (9) o u t l e t . 

EPR measurements were carried out at X - b a n d 

frequency with a Varian Model V-4502-15 spec-

t r o m e t e r , equipped with a Digital MF-211 

c o m p u t e r . A double cavity T E ^ was e m p l o y e d . 

T h u s , two modulation frequencies (100 kHz and 

400 Hz) could be u s e d , which allowed inde-

pendent measurements of the signal of the 

sample (e.g. c o k e , at 100 kHz) and the signal 

of the reference (e.g. D P P H , at 400 H z ) . This 

arrangement greatly enhanced the accuracy of 

the measurements of intensities and g - v a l u e s . 

In-situ EPR measurements have been rendered possible by a par-

icularly designed r e a c t o r , which could be placed into the resonance 

avity of the s p e c t r o m e t e r . A schematic drawing of the reactor is 

resented in Figure 1. 

The reactor permitted reactions to be carried out within a tem-

erature range from 300 to 800 K . The zeolite catalyst was activated 

nside the reactor in a flow of N 2 . The sample (0.01 g) was heated at a 

ate of 200 K/hour to 673 K and kept at this temperature for two h o u r s , 

u b s e q u e n t l y , the reactor was cooled to the reaction temperature and a 

ixture of 8 voli ethylene in nitrogen was passed under normal pressure 

hrough the catalyst b e d . EPR spectra were taken at certain time inter-

a l s , in order to follow the progress of the r e a c t i o n . 



RESULTS AND DISCUSSION 

IR in-situ e x p e r i m e n t s . Figure 2 demonstrates the time o n - s t r e a 

behaviour of two hydrogen mordenite catalysts with s i g n i f i c a n t l y dif 

ferent Si/Al r a t i o s , as measured at 550 K in the IR flow reactor c e l l . 
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Figure 2 A . Figure 2 B . 

Time-on-stream behaviour of two hydrogen mordenite catalysts (HM N o . 

and No.3) upon dealkylation of ethylbenzene at 550 K . 

In the case of the higher Si/Al ratio (39, HM No.3) the c o n v e r 

sion-versus-time curve dwells at a substantially lower conversion leve 

than with Si/Al = 12 (HM N o . 2 ) . The drop of the c o n v e r s i o n , x , w i t 

time on s t r e a m , h o w e v e r , proceeds with roughly the same r a t e , as i 

both cases plots of In x v s . time on stream provide straight lines w i t 

slope k = 0.5 i 0.2 h"^ (see Figure 2A and 2 8 ) . These results sugges 

that (i) the conversion of ethylbenzene over acidic m o r d e n i t e s i 

proportional to the number of active s i t e s , N ( t ) , in a g r e e m e n t w i t 

earlier observations (14) and (ii) the deactivation reaction is firs 

order w . r . t . N(t) according to 

N(t) = N(t=o) • e " k , t (1) 

Since the rate constant k is almost equal for both c a t a l y s t s , one ha 

to conclude that the rate of deactivation is not affected by the Si/A 

r a t i o . The difference in time-on-stream behaviour is merely due to th 

fact that the initial numbers of active sites of both catalysts d i f f e r 

they do not d i f f e r , h o w e v e r , in s t r e n g t h . 

642 



This conclusion is confirmed not only on the simultaneous in-situ 

R measurements (see Figure 3 ) , but also by the IR determination of the 

lumber of sites and by the TPD experiments evaluating the strength of 

;he Brtfnsted c e n t e r s . To start with the latter, TPD of ammonia from 

ioth mordenite samples (HM No.2 and N o . 3 ) , activated at 673 K, produced 

;he TPD peaks due to N H 3 desorption from Brtfnsted sites (15) at the 

;ame desorption t e m p e r a t u r e , v i z . 680±5 K. This indicated similar 

¡trength of the sites of both c a t a l y s t s . Static IR e x p e r i m e n t s , which 

lere carried out as described elsewhere (16-17), showed that hydrogen 

lordenite No.2 exhibited a markedly higher number of Brtfnsted sites 

;han sample No. 3 , as could be expected as a consequence of the lower 

• i/A1 ratio of HM N o . 2 . The maximum absorbances of the OH bands at 3610 

:m~1 (acidic OH groups (16)), were A m (OH) = 0.40 and A m a (OH) = 0.25 
ilia X m a X 

'or sample No.2 and N o . 3 , respectively. C o r r e s p o n d i n g l y , the absorb-

inces of the pyridinium ion band at 1542 c m " ^ , being indicative of 

icidic Brtfnsted sites (16) were A m a v ( H P y t ) = 0.20 and A m a v ( H P y t ) = 0.10 III a X ill a X j 

Figure 3 shows the absorbance of the coke b a n d , A(1585 cm" ), as a 

unction of time on s t r e a m . Figure 4 relates the conversion to the 

imount of deposited c o k e . These plots again demonstrate that on the 

:atalyst with the higher number of sites(HM N o . 2 , Si/Al = 12) the 

mount of coke deposited during dealkylation of ethylbenzene is signi-

icantly higher than with the much shorter-1ived catalyst HM N o . 3 . This 

•esult is supported by the observation t h a t , after almost complete 

lehydroxylation at 973 K in high v a c u u m , i . e . after removal of acidic 

¡rtfnsted s i t e s , hydrogen mordenite exhibited only a very low activity 

owards coke f o r m a t i o n . 

Figure 3 . 

Coke deposition as measured by the in-

tegrated absorbance of the coke band at 

1585 c m - 1 , as a function of time on 

s t r e a m . 

o 
o 

TIME ON STREAM [h] 

2 6 8 

It is interesting to note from 

Figure 4 that over a wide range of coke 

d e p o s i t i o n , the decrease in conversion is 

directly proportional to the amount of 

deposited c o k e . This holds for both 

catalysts irrespective of the Si/Al 

ratio. H o w e v e r , a significant and repro-
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25 ducible difference in the slopes ol 

the straight lines was o b s e r v e d 

i.e. the activity is much mori 

affected in the case of the catalysi 

with higher Si/Al r a t i o . 

Figure 4 . 

o 

Conversion of e t h y l b e n z e n e relatei 

to coke d e p o s i t i o n , as m e a s u r e d b; 

the integrated absorbance of thi 

band at 1585 c m " 1 ; d i f f e r e n t experi' 

ments are represented by d i f f e r e d 

o 6 8 10 s y m b o l s . 

INTEGRATED ABSORBANCE OF THE COKE BAND 

In-situ EPR e x p e r i m e n t s . EPR spectroscopy provided three contri 

butions to the current investigations into the coke p r o b l e m , v i z . thi 

study of (i) formation of oligomeric radicals upon ethylene interactioi 

with the catalyst at low temperatures (373-423 K ) , (ii) formation o 

coke radicals at higher temperatures (T > 423 K ) , and (iii) annihila 

tion and generation of radicals during oxidative regeneration of cokei 

c a t a l y s t s . 

01jgpme_ric „ r a d i c a l s . When a flow of nitrogen and e t h y l e n e wa 

passed through the catalyst sample at room t e m p e r a t u r e , no EPR signa 

was o b s e r v e d . At 373 K , h o w e v e r , a weak signal with h y p e r - f i n e struc 

ture (hfs) a p p e a r e d . When the reaction temperature was raised to 423 K 

the signal intensified and exhibited a w e l l - r e s o l v e d hfs with seve 

lines, the parameters of the spectrum being g = 2.0028 and a = 1 . 4 - 1 . 

mT (hyper-fine splitting c o n s t a n t ) . This spectrum differs s i g n i f i c a n t l 

from the spectrum obtained by Kucherov and Slinkin (10-11) in that th 

hyper-fine splitting constant is about twice as large as the constan 

reported by these a u t h o r s . 

Since the spectrum comprises more than five l i n e s , it c a n n o t b 

due to an ethylene r a d i c a l . However, e t h y l e n e polymerizes on aci 

m o r d e n i t e s , even at room temperature (2). At h i g h e r t e m p e r a t u r e s 

subsequent cracking may o c c u r . T h u s , the signal is probably indicativ 

of an oligomeric radical generated via polymerization and subsequen 

homolytic s p l i t t i n g . 



In view of the value of the hfs c o n s t a n t , the signal could be 

ascribed to alkenic or allylic radicals; alkyl radicals appear to be 

much less likely. A detailed study upon formation of oligomeric radi-

cals due to olefin reaction on zeolites will be published elsewhere 

(18). 

£oke_ radj c a j s . When the temperature was Increased to 453 K, the 

hfs started to v a n i s h , and in a slow process a symmetrical single line 

at g = 2.0024 e m e r g e d , which is generally ascribed to species generated 

upon coking of organic material (12-13). T h u s , the appearance of this 

line indicated the onset of coke f o r m a t i o n . With increasing tempera-

t u r e , the intensity of the coke signal was markedly e n h a n c e d . At 473 K , 

the hfs had completely d i s a p p e a r e d , the Intensity of the single line 

corresponded to c a . 1 0 1 ^ spins«(g c a t a l y s t ) " ^ , the line width was A H = 

1.0-1.5 m T , and the g-factor still equalled 2 . 0 0 2 4 . This coke signal 

with g = 2.0024 immediately d e v e l o p e d , I . e . without a preceding oligo-

meric signal when freshly activated hydrogen mordenite was contacted 

with ethylene at 473 K . H e n c e , it seems to be rather unlikely that 

those oligomers are inevitable precursors of the c o k e . 

The intensity of the coke signal steadily i n c r e a s e d , but finally 
1 9 

(after 15 hours on stream) approached a constant v a l u e , v i z . 1.2x10 

s p i n s « g " ^ . The line width was nearly c o n s t a n t , and the g-value remained 

The initial rate of coking strongly depended on the reaction 

t e m p e r a t u r e . This is demonstrated by Figure 5 , where the intensities of 

the coke signal were plotted versus time on stream for three different 

reaction t e m p e r a t u r e s . It is evident from this figure that the initial 

increase of the intensity of the coke signal is steeper the higher the 

reaction t e m p e r a t u r e . 

2 . 0 0 2 4 . 

x10" 

1.5 Figure 5 . 
# 573 K 

The intensity of the EPR coke signal 

at three different, reaction tempera-

tures as a function of time on 

stream (solid lines are calculated 

curves, eq.3) , 

20 W 60 80 100 120 

TIME ON STREAM [ h 1 



After some t i m e , the intensities seem to approach a final l e v e l , 

and the data of Figure 5 may be represented by a first order relation-

ship 

n(t) = n(t=eo) (1 - e " K , t ) (3) 

For the experiments at higher temperatures ( T
r e a c t = 5 2 3 , 573 K) the 

final levels coincide (see Table 1) 

Table 1 Final intensities of the coke signal at various 
reaction temperatures (eq.3) 

T n (t = oo ) K 

(K) ( s p i n s . g " 1 ) ( h _ 1 ) 

473 0 . 2 0 x 1 0 " 1 9 0.005 

523 1 . 18x 10" 1 9 0.11 

573 1 . 2 0 x 1 0 " 1 9 0.50 

The results in Figures 3 and 5 indicated that after d e p o s i t i o n of 

a certain amount of c o k e , which depended on the t e m p e r a t u r e , all the 

active sites (acidic Brtfnsted centers) were poisoned or b l o c k e d , and 

coke formation s t o p p e d . Indeed, the IR experiments confirmed t h a t the 

OH bands at 3610 c m - 1 had not completely disappeared when the conver-

sion (dealkylation of e t h y l b e n z e n e ) dropped to zero and the coke band 

at 1585 cm" 1 had virtually ceased to g r o w . T h e r e f o r e , deactivation is 

not solely caused by poisoning or consumption of acidic OH g r o u p s , but 

also to some extent by pore b l o c k i n g . N e v e r t h e l e s s , from the IR and EPR 

results it had become evident that a higher number of acidic OH groups 

corresponded to a greater amount of coke deposit (vide s u p r a ) . Hence 

one would conclude that coke formation requires Brtfnsted acid sites and 

proceeds via a carbenium ion m e c h a n i s m . Coke formation through a radi-

cal m e c h a n i s m , involving the radicals indicated by g = 2 . 0 0 2 4 , is less 

likely for the following r e a s o n . 

A high number of radicals due to coke were present on the c a t a l y s t 

at 573 K (see Figure 5) and a fraction of them must have formed on the 

external surface of the zeolite c r y s t a l s , where coke species block the 

openings of the p o r e s . H o w e v e r , in spite of presence and a c c e s s i b i l i t y 

of these r a d i c a l s , coke formation levelled o f f , which was also indi-

cated by the IR and conversion measurements in the IR flow r e a c t o r 

eel 1. 
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Çoke_oxi_d a tjon_and_catal y.s t_régénérâtion_. When a stream of oxygen 

was passed through the c a t a l y s t , which had been coked upon ethylene 

reaction at 573 K, oxidation of the coke at 673 K seemed to occur very 

r a p i d l y . After about one h o u r , 90% of the initial intensity of the coke 

signal was g o n e . S i m u l t a n e o u s l y , the g-value shifted from 2.0024 to 

2.0035 and the line width decreased from 0.8 to 0.6 m T . After 40 hours 

of oxidation a very small signal (about 2 x 1 0 ^ 7 s p i n s . g " 1 ) was left. 

The g-value of 2.0035 is similar to that of semiquinones of polyaro-

matics (19-20). T h u s , it may indicate that oxidation of coke results in 

formation not only of COg but also of oxygen containing molecules with 

high délocalisation of e l e c t r o n s . H o w e v e r , the present results do not 

permit an unambiguous identification of the species formed upon coke 

o x i d a t i o n . 

CONCLUSIONS 

(1) Coke formation upon reaction of olefins on acidic mordenites is 

strongly influenced by the number of Brtfnsted sites in that a higher 

density of sites corresponds to a higher yield of c o k e . 

(2) Over a wide range of coke d e p o s i t i o n , the decrease in conversion of 

ethylbenzene on acidic mordenites is directly proportional to the 

amount of deposited c o k e . 

(3) Coke formation proceeds through a carbenium ion mechanism rather 

than via r a d i c a l s . 

(4) It is unlikely that oligomeric radicals are necessary precursors of 

c o k e . No simple relationship exists between the concentration of such 

radicals formed at low temperatures and the concentration of coke 

radicals generated by heating oligomeric radicals at higher tempera-

t u r e s . 

(5) As in-situ IR measurements s h o w , deactivation of hydrogen mordenite 

catalysts due to coke formation upon olefin reaction proceeds not 

solely through poisoning or consumption of acidic OH g r o u p s , but also 

to a marked extent by pore b l o c k i n g . 

ACKNOWLEDGMENTS 

The authors wish to thank M r s . Erika Popovié and M r . Walter Wachsmann 

for excellent experimental a s s i s t a n c e . They are grateful for financial 

support by the Bundesminister für Forschung und Technologie (Project 

N o . 03C 111 0) 

642 



R o l l m a n n , L.D., J . C a t a l . 4 7 , 113 (1977) 

K a r g e , H . G . , L a d e b e c k , J . , P r o c . of the Symp.on Z e o l i t e s , S z e g e d , 

Hungary, S e p t . 1 1 - 1 4 , 1978 (P.Fejes,Ed.) Acta Phys.et C h e m . , N o v a , 

Ser.24, 161 (1978) 

R o l l m a n n , L.D., W a l s h , D . E . , J - Cata 1 . 5jB, 139 ( 1979) 

Eisenbach, D . , G a l l e i , E., J.Catal.56^, 377 ( 1979) 

W o l f , E.E., A l f a n i , F . , Catalysis Rev.-Sei . E n g . ,24, 329 ( 1982) 

Eberly, P . E . , J r . , J . P h y s . C h e m . 7 ^ , 1717 ( 1967) 

W a r d , J., J . C a t a l . _ H , 259 ( 1968) 

K a r g e , H . G . , A b k e , W . , B o l d i n g h , E . P . , t a n i e c k i , M . , Proc.of the 

9th Iberoamerican Symp.on C a t a l y s i s , L i s b o n , P o r t u g a l , July 1 6 - 2 1 , 

1984 (M.F. P o r t e l a , Ed.) J . F e r n a n d e s , Lisbon 1 9 8 4 , p.582 

Fetting, F . , G a l l e i , E., K r e d e l , P . , German C h e m . E n g . 7 , 32 (1984) 

K u t c h e r o v , A . V . , S l i n k i n , A . A . , in: Studies in Surface Science and 

Catalysis (Structure and Reactivity of Modified Z e o l i t e s ) , E l s e v i e r 

(P.A. Jacobs et a l . , Eds.) J_8, 77 ( 1984) 

K u c h e r o v , A . V . , S l i n k i n , A . A . , Kinetika i K a t a l i z , 2 3 , 1172 (1982) 

Lewis, J . C . , S i n g e r , L.S., "Electron Spin Resonance and the Mech-

anism of C a r b o n i z a t i o n " , in: Chemistry and Physics of C a r b o n , 

17, 1 (P.L. W a l k e r , J r . and A . T h r o w e r , Ed.) D e k k e r , New York 1981 

G u t s z e , A . , O r z e s z k o , S . , J . Colloid Interface Sei.,(in p r e s s ) . 

K a r g e , H . G . , L a d e b e c k , J . , Sarbak, Z . , H a t a d a , K . , Zeolites 2, 93 

(1982) 

K a r g e , H . G . , S c h w e c k e n d i e k , J . , Proc.of the 5th Int.Symp.Hetero-

geneous C a t a l y s i s , V a r n a , B u l g a r i a , O c t . 1 - 6 , 1983 (D. Shopov et 

a l . , Eds.) P u b l . House B u l g . A c a d . S e i . , S o f i a , 1983, p . 429 

K a r g e , H . , Z . P h y s . C h e m . Neue F o l g e , _76, 133 (1971 ) 

K a r g e , H.G., Z . P h y s . C h e m . Neue F o l g e , | 2 2 , 103 (1980) 

K a r g e , H . G . , L a n g e , J . - P . , Gutsze A . , to be published in "Zeo-

lites" 

Bersohn, M . , B a i r , J . C . , "An Introduction to Electron Paramagnetic 

Resonance; Benjamin Inc., 1966, New Y o r k , Amsterdam 

H a r r i m a n , J . E . , "Theoretical Foundations of Electron Spin Reso-

nance; Academic P r e s s , 1978, New Y o r k , San F r a n c i s c o , London 

648 


