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ABSTRACT 

Unambiguous informations on the location and structure of metal particles ex-

ceeding super cage size in faujasite matrices are summarized. Current ideas on the 

possible nucleation and growth mechanisms are presented. The structures of encaged 

chelates are illustrated by means of the examples nickel dimethylglyoxime and cobalt 

phthalocyanine with regard to requirements and expections for the catalytic activi-

ty of zeolite encapsulated metal complexes. Established applications, prospective 

uses and promising reactions of metal-containing zeolites in catalysis are regarded 

exemplarily. 

METAL PHASES WITHIN THE ZEOLITE MATRIX 

Zeolites, namely X and Y type faujasites are suitable supports for the prepa-

ration of well defined monodispersed metal phases, i.e. metal phases located exclu-

sively within the framework of the faujasite matrix. 

Narrow particle size distributions can be achieved due to the restrictions im-

posed by the zeolite channels and cages on the growth of the metal agglomerates. In 

most cases monodispersed metal phases are found within the supercages [1-6] and a 

number of excellent tools have been developed and adapted for the study of the phy-

sical properties of such highly dispersed metals, of their location and of their 

interactions with the zeolite support and with suitable probe molecules. 

The location of charged clusters of silver atoms [7,8] and of Pd atoms [9,10] 

on the lattice sites in Y zeolites has been determined from single crystal and 

powder X-ray diffraction data. Fraissard et al. [11-13] applied the nuclear magne-

tic resonance of adsorbed Xe to the investigation of Pt dispersions and demonstra-

ted the capability of the method to detect Pt particles consisting of fewer than 

10 atoms within the supercages of Y zeolites. Small angle X-ray scattering (SAXS) 

has been used to determine the size distributions of Pt crystallites in Y zeolites 

[14,15] and impressive results could be obtained from evaluating the radial electron 



distribution from X-ray diffration data, e.g. the changes of interatomic distances 

in 1 nm Pt particles supported in Y zeolites upon the adsorption of molecules [14, 

16, 17]. Mossbauer spectroscopy in combination with measurements of the spontaneous 

magnetization has been successfully applied to characterize small iron clusters 

supported in zeolite A [18,19] and to rule out electron transfer from the metal to 

the support in this case. Electron deficiency has been observed in other cases, e.g. 

Pd [9] and Pt [20,21]. This is important information with regard to the role of 

particle size effects in catalysis. The application of static magnetic methods and 

of ferromagnetic resonance is restricted to ferromagnetic metals and has been ap-

plied especially in the case of Ni-loaded zeolites in order to evaluate the size 

distribution of the metal particles [22-26]. Curve fitting and the interference of 
2+ 

Ni -ions in partially reduced samples,however, require the application of comple-

mentary methods for reliable interpretations of the experimental data. Direct ob-

servation of metal agglomerates of and beyond supercage dimension by electron mi-

croscopy is the method suited best to determine size, location and distribution of 

metal agglomerates supported by zeolites. The existence of 2 nm Pd and Pt partic-

les in Y zeolites was demonstrated by this technique [27,28]. In modern electron 

microscopes the power of the electron beam can be reduced to a point were modifi-

cations of the particle size due to overheating the substrate can be avoided [29]. 

Recently,metal phases with crystallite sizes by far exceeding supercage di-

mensions were found to exist within a faujasite X framework for a number of metals, 

namely Pt [30] , Ru [31-33] , Pd [5,34] and Ni [23,35]. Particle siies ranging 

from 3 nm for Pd [5] up to 10 nm for Pt and Pd [34,36] and even 15 nm in the case 

of Ni [37] were determined mainly by electron microscopy. The location inside the 

zeolite matrix has been confirmed by XPS measurements [38]. It was shown by elec-

tron diffraction from selected areas and single particles in the case of Pd, Pt 

and Ni [34,36,37] that such aggregates are single crystals. Phase contrast imaging 

and electron diffraction patterns of the zeolite lattice revealed that the struc-

ture of the host lattice is maintained in the neighborhood of the metal crystalli-

tes. It was proposed that the growth mechanism of the metal single crystals in-

volves atomic rearrangements of the zeolite lattice in analogy to the process of 

steam stabilization [37]. A variation of the particle size with the Si/Al ratio of 

the support can be anticipated. The recrystal 1ization of the zeolite lattice du-

ring the growth of the metal phase could be inferred from an increase in the tempe-

rature of the lattice breakdown and an increase of the N2 physisorption capaci-

ties [36]. 

The monodispersed metal phases with narrow particle size distributions could 

be achieved for Ni as well- as for Pd and Pt even though the reduction of ion-ex-

changed samples follows quite different paths. In the case of Ni the dehydrated 

ion-exchanged samples were reduced by hydrogen, while Pd and Pt metal phases were 
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formed by autoreduction of the respective exchanged tetrammine complexes in the 

course of the dehydration process [39,40]. 

Nucleation in the latter cases must be restricted to the supercages were the 

big tetrammine complexes are located following the ion-exchange. In the case of 

platinum a preferred orientation relationship < 100>pt//< 1 0 0 > z e Q ^ i t e has been obser-

ved [36]. Relatively high metal loadings were required for these investigations. 

The existence of a preferred orientation of the Pt crystallites can be explained 

by assuming an orientated growth of the fee platinum within the cubic faujasite 

structure starting from an orientation imposed by the geometry of the supercage 

on the growing nucleus. 

The observed orientation of the platinum crystals can in turn be taken as ad-

ditional proof that the metal crystals must have been grown in an intact zeolite 

matrix and not in a priori voids formed under steaming conditions, as is stated re-

peatedly [41]. Nucleation and growth of the metal phases from atomic dispersions 

of the reduced metal (Jf from preformed clusters ¿eem to be the decisive steps. Ac-

cording to the theory of nucleation [42] nuclei of critical radius r c are formed 

at a rate 
J = B-exp(-AGc/kT) (1) 

per unit volume. The free enthalpy of formation AG r of a nucleus of critical size 
2 

is proportional to l/(Ay) . The super saturation Ay is assumed to be high at least 

in the case of noble metals under the experimental conditions used in the prepara-

tion of the metal phases. In heterogeneous nucleation B is proportional to the 

coefficient of surface diffusion of single adatoms and to their density on the sur-

face. 

According to Wynblatt [43] no barrier exists for the nucleation of 3-dimen-

sional Pt clusters on the surface of an AlgO^ substrate. The formation of metal 

phases preferentially or even exclusively inside the zeolite matrix indicates that 

a similar favourable situation for the formation of nuclei should exist within the 

channels and cages of the zeolite. The zeolite lattice offers a number of singular 

points, where an existing potential barrier for the formation of a critical nucleus 

could be lowered or where metal atoms could be trapped. Such centers are non-redu-

cible cations, where the agglomeration of metal atoms results in a reduction of the 

electrostatic energy. Finer dispersions of the metal phase are often observed if 

non-reducible transition metal ions, e.g. C r 3 + [44], F e 3 + [45], C e 3 + [6] are present 

in the zeolite framework during the reduction process, operating as preferred nu-

cleation sites. Other centers for nucleation are ions not yet reduced and available 

for the formation of charged clusters. Nucleation results from the collision of 

migrating adatoms and of the two alternatives 

Me 0 + Me 0 = Me^ (2) 

Me 0 + M e n + = M e ^ (3) 

the initiating step (3) should be favoured. 



The free enthalpy of nucleation will be less for charged as compared to uncharged 

nuclei. The difference in the free enthalpies of nucleation corresponds to the dif-

ference in the enthalpies of formation for the two nuclei. The enthalpy of forma-

tion for nucleation step (3) will roughly correspond to the difference of the first 

and the nth ionization potential, i.e. 5-15 eV for n = 2. The formation enthalpy 

for process (2) will be close to the evaporation enthalpy, i.e. 2-7 eV and is thus 

smaller. 

The nucleation process should therefore be promoted by a high density of tran-

sition metal ions populating the migration paths of the metal atoms as collision 

partners. A nuleus Me^ > stabilized in the zeolite framework by electrostatic for-

ces can grow by further collision with Me 0 forming charged clusters, which have 

been observed in the case of silver exchanged zeolites [46]. 

In case a barrier of nucleation does not exist [43] singular points will still 

act as centers for nucleation. The rate of nucleation,however,will not be affected 

by the exponential term in equation 1. The number of nuclei formed will be propor-

tional to the number of centers and to the number of metal atoms. A high density 

of nucleation centers exists in calcined platinum exchanged faujasites [5] and a 

high density of metal atoms can be expected in calcined Ni exchanged faujasites 

undergoing reduction with atomic hydrogen [47]. High dispersities of the metal 

within the zeolite matrix were obtained as a consequence. The generally observed 

bi-dispersities in the case of Ni-loaded faujasites, i.e. large fractions of re-

duced nickel at the outer surface and another fraction of smaller aggregates in-

side the zeolite crystal could be due to a relatively low ion density in the mi-

gration path of Ni° and a small density of metal atoms due to a low rate of reduc-

tion. 

In the case of the autoreductive decomposition of Pd-tetrammine complexes 

within a faujasite X an almost linear correlation between the degree of ion ex-

change and the number of Pd crystallites formed has been established from the eva-

luation of a large number of electron micrographs (Table 1) [48]. 

Table 1: Number of Pd crystallites within a faujasite X matrix in dependence 

on the degree of ion-exchange 

Pd content mean diameter of number of Pd crystallites 

wtS Pd crystallites (nm) per g catalyst X 10" 1 6 

14,7 10 2,34 

4,4 10 0,71 

2,4 10 0,38 

Under constant experimental conditions the density of metal atoms should be pro 

portional to the degree of ion exchange, determining the rate of nucleation 

rather than the rate of growth. 
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Fig. 1. Platinum particle size distribution by decomposition of Pt(NH 3) 4X in 

oxygen (a) or in argon (b) - -

Under precise experimental conditions monodisperse metal phases with narrow par-

ticle size distribution can be grown on a zeolite support (Fig. 1). Promising systems 

can be obtained for the study of the effects of metal particle size and of metal-

support interactions on selectivity in catalyzed reactions. The possibility to 

modify the properties of the crystalline support by controlling the Si/Al ratio, 

the acidity and by co-exchanging non-reducible cations add another advantage to 

the system. 

On the other hand, fundamental studies regarding the activity of the metal 

phase are not straightforward due to the catalytic activity of the support itself. 

FAUJASITE ENCAGED METAL COMPLEXES 

The field of transition metal complexes in zeolite matrices has been reviewed 

repeatedly [49-52]. The following section will focus on some aspects relevant to 

the catalytic activity of metal chelates incorporated in a zeolite framework. Limi-

tations in the catalytic application of such complexes with space filling ligands 

have been pointed out by Lunsford [49]. 

Howe and Lunsford [53,54] and Schoonheydt and Pelgrims [55] synthesized com-

plexes of Co(II) with ethylenediamine and could demonstrate the formation of the 
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superoxo adduct, i.e. the catalytic activation of molecular oxygen. The complex 

exhibited, however, the tendency to form the coordinatively saturated tris-ethy-

lenediamine variant. The ligand ethylenediamine is obviously so strong that the 

octahedral coordination is favoured and that only a small fraction of the planar 

low-spin complex is formed. Fully coordinated complexes, however, are of little 

importance in catalysis and it would therefore be of interest to find ind to synthe-

size complexes exhibiting free coordination sites, which cannot be occupied by the 

chelate ligands. Furthermore, a distortion of such a stable chelate by partial co-

ordination to zeolite lattice sites [55], which might be favourable for the cata-

lytic activity of the complex, should be expected. These requirements will be met, 

first of all, by the class of planar complexes. [CoX^] 2 + and [NiX^] 2 + low-spin com-

pounds with neutral ligand systems, forming planar-quadratic complexes, will be 

favourable candidates [56,57,58]. Especially the [CoX^] 2 + system with D ^ symnetry 

should be of interest, because of its unpaired electron in the ground state. Octa-

hedral complexes with a high tendency for tetrahedral distortion might also be 

taken into consideration. Such complexes can be formed with the ions F e 3 + and Co^ +, 

if different ligands of similar and relatively weak field strength are used. 

Fig. 2. Possible tetrahedral intermediate in the formation of zeolite encaged 

cobalt dimethylglyoxime . 



The most straightforward way to prepare complexes with planar coordination 

is the use of four-dentate ligands, like tetrapyridyl, porphyrine or bis-dimethyl-

glyoxime. The large ligands might be incorporated into the zeolite framework either 

by diffusion or by in situ synthesis from smaller molecules. Charged complexes can 

be stably fixed to the carrier by strong electrostatic interactions with the zeo-

lite lattice. 

Neutral complexes with weak van der Waals interactions with the zeolite can 

be stably fixed to the carrier only by steric hindrance. This means that the che-

late complex should have diameters exceeding those of the super cage window. In 

this case, the in situ preparation of the ligand within the cavities is the method 

to be chosen. 

Faujasite encaged bis-dimethylglyoximato complexes were obtained by dehy-
2+ • 2+ 

dration of Ni and Co exchanged zeolites and gas phase diffusion of dimethyl-

glyoxime into the cavaties of the support [59-61]. NiidmgH^ is directly formed in 

this way in the super cages as a planar-quadratic complex. In the cobalt exchanged 

faujasite, however, intermediate tetrahedral complexes with C^ v and distortion 

are formed (Fig. 2) [61,62]. 

400 500 600 700 

• \/ nm 

Fig. 3. Bathochromic shift of the 524 nm band of zeolite encaged nickel di-

methyl glyoxime during the uptake of water 
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Different coordination properties of the transition metal ions might result 

in different strengths of interaction between the chelate compounds and the zeolite 

lattice. Another type of interaction between the faujasite framework and the chelates 

which is due to the space filling property of the ligand system can be demonstrated 

in the case of encaged and hydrated nickel bis-dimethylglyoxime. Hydration of the 

yellow Ni[dmH]?X leads to a bathochromic shift of the growing and characteristic 

^ \ / nm 

Fig. 4. Bathochromic shift of the 524 nm band of a nickel dimethylglyoxime film 

in a high pressure diamond-anvil cell (P Q-P 4 - 0.1 MPa - 3.1 GPa) 

green band at 524nm which refers to an electron transition perpendicular to the plane 

of the molecule (Fig.3) [63]. In zeolites a maximum shift of about 10 nm could be ob-

served for the hydrated complex. This shift can be simulated by a p-essure cf 0.74 *bar 

exerted on a film of NiidmgH^ [64] using a high pressure diamond-anvil cell (Fig.4) 

[65,66]. The spectroscopic properties of the encaged complexes lend support to the 

conclusion that chemical interactions within the zeolite framework proceed under 

high pressure. Such a hypothesis was already put forward by Fraissard [67]. 

The distortion of the symmetry, which chelates incorporated in the zeolite 

framework can suffer, leads to the expectation that these complexes might exhibit 

enhanced catalytic activities and selectivities in the cavities of the support. 

This hypothesis might be studied exemplarily for a class of chelates having rigid 
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Fig. 5. Scheme of a faujasite encaged cobalt phthalocyanine molecule 

planar structures of high stability. The metal phthalocyanines are favourable can-

didates for such investigations due to the strongly conjugated n-electron system 

of these compounds. The phthalocyanine molecule is larger than the opening of the 

super cage window, so that it cannot be incorporated by diffusion (Fig.5). However, the 

in situ synthesis of these chelates could be achieved [68,69] and their location inside 

the super cages could be proven [70,71]. The distortion, which the zeolite environ-

ment exerts on the electronic structure of the phthalocyanine molecule can be ob-

served by means of the band doublett at about 620 and 660 nm, which corresponds to 

the electronic vibration transition of the macrocycle [63]. The observed shift of 

this doublett with respect to the band positions of phthalocyanine in a liquid acid 

solution corresponds to one obtained by a pressure of about 30 kbar imposed on a 

metal phthalocyanine film [61,72] and a strong influence of the zeolite cages on the 

electronic structure of the porphyrine type chelates can be inferred. 

Romanovsky and co-workers have shown that faujasite supported phthalo-

cyanines exhibit a variety of marked catalytic properties [68]. The encaged chelates 

are thermally very stable and, therefore, represent an interesting class of immo-

bilized homogeneous catalysts. Since a large number of variants can be derived for 

the porphyrine type chelates, the properties of which might be modified by incor-



poration into the zeolite matrix,it is worthwhile to evaluate the potential of this 

system with regard to its catalytic activity still further. 

CATALYSIS BY METAL-LOADED ZEOLITES 

Established Applications. The application of transition metal-containing 

zeolites in petrochemical processes, like e.g. cracking, isomerization, hydrocrack-

ing or hydrodewaxing, is of high economic importance and has been reviewed repeat-

edly [73-76]. Zeolite catalysts, which contain non-reducible metal ions, e.g. rare 

earth metals or rhenium, or reduced metals, e.g. platinum, palladium or nickel, are 

used for reforming processes. The catalytic function of the transition metal ions 

consists in the formation of additional Bronsted acid sites, due to the hydrolysis 

of water molecules [77-79]. Reduced metal phases supported by acidic carriers like 

zeolites will strongly increase the hydrogenation and dehydrogenation properties of 

the catalyst by the enhanced formation of olefin intermediates in the isomerization 

of paraffins [80]. Since the isomerization reaction proceeds via carbenium ion and 

carbonium ion intermediates on strong Bronsted sites, it should be favored by an 

increase of the proton activity [81]. Figure 6 depicts a scheme of the polyfunc-

tional reaction including the suggestions of Weisz for a dual site isomerization [82] 

and of Olah for carbonium ion intermediates in super acids [83]. 

Fig. 6. Scheme of the bifunctional isomerization of paraffins 

Zeolite catalysts containing reduced metals generally exhibit reduced 

rates of deactivation by coke deposition, which might be due to an enhanced hydro-

genation of coke precursers, like olefins and aromatics [84]. However, a hydro- \ 

genation of hydrocarbons via the activation of molecular hydrogen proceeds on the 
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strong acid sites of transition metal-free zeolites as well. The non-classical hydro-

nium ion Hj, which has been proposed by Olah [85] might be the hydrogen activating 

intermediate in this reaction. The relatively rapid deactivation of this hydro-

génation route is obvious, since the protons of the strong Bronsted sites are con-

stituents of coke precursors. 

Prospective Uses. The direct conversion of synthesis gas in a combined 

process of Fischer-Tropsch synthesis and shape-selective hydrocarbon conversion to 

gasoline seems to be very promising [86-88]. This two stage reaction proceeds by con-

verting FT products, like olefins and oxygen-containing compounds, to high-grade gaso-

line, which is rich in isomers and aromatics. The fraction of aromatics can be en-

hanced by a factor of three if the two catalyst components are mixed in such a way 

that they can be used in a one-stage process. In this case, the strong acid sites of 

the zeolite will be located proximate to the FT sites increasing the probability of 

the formation of carbenium ions from the a-olefins, primarily formed in the FT reac-

tion. Consequently, the fraction of intermediates entering the route of cyclization, 

aromatization and disproportionation,respectively,is increased resulting in the forma-

tion of light aromatics, which are favoured by the restricted transition state-type 

selectivity of the zeolite [89]. 

The synthesis gas to gasoline conversion might favorably be carried out by 

a one-stage process in the liquid phase, i.e. in a slurry reactor, at temperatures 

below 300°C where the coking rates are low. A regeneration at low temperatures, 

around 350°C, seems to be successful and not to affect the FT component [90]. 

The selective FT synthesis, which has repeatedly been reported for differ-

ent metal-loaded zeolites and which is characterized by deviations from the Schulz-

Flory distribution of the products, might in many cases be referred to a variety of 

secondary effects, caused by long formation periods, keeping the catalyst far from 

steady states [91]. Such transient states are, presumably, favoured by the zeolite 

support. The existence of true selectivity effects, which can unambiguously be re-

ferred to the geometric or electronic peculiarities of the zeolite matrix, is still 

open to discussion in view of the large number of factors, which may effect the 

properties of a zeolite supported metal, e.g. particle size and geometry, metal 

reducibility, location of metal, pore structure, strength and activity of Bronsted 

acid sites, nature and strength of Lewis acid sits, nature and location of addi-

tional cations, etc. 

The aromatization of ethane on a metal-containing shape-selective zeolite 

is of interest, because it offers a method for obtaining valuable products from a 

readily available lowcost feedstock. The metal, e.g. platinum, enhances the dehy-

drogenation of the ethane to ethene, which can enter the route of cyclization and 

aromatization [92]. 
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The catalytic production of high-grade fuel from biomass compounds by 

shape-selective catalysis [93] is promising in view of the increasing demand to 

improve the utilization of rapidly growing amounts of wastes and sewage sludges. 

Platinum-loaded shape-selective zeolites, which exhibit lower coking rates as 

compared to the hydrogen forms/might favourably be used, if they are not affected 

by volatile metals, like Zn, Cd or Hg, which, might be evolved in the pyrolysis of 

the refuse derived biomass. 

The use of platinum group metals incorporated in zeolites for the oxi-

dative cleaning of exhaust gases might be expected in the future with respect to 

the lower amount of precious metals, which is needed for the oxidation of carbon 

monoxide and hydrocarbons on this type of catalyst. Presumably, the catalytic 

activity is favourably influenced by the strong Bronsted acidity of the support [94] 

resulting in a synergistic action of the catalyst. 

Promising Reactions. Rhodium and iridium exchanged zeolites were found to 

show interesting catalytic activities for the carbonylation of methanol to methyl-

acetate [95-100]. The zeolites exhibited more stable activities than other in-

organic or polymer type carriers or carbon. Cations in lower oxidation states seem 

to be the active sites in parallel to the homogeneously catalyzed reaction. Catalyst 

deactivation by reduction to zero valent metal occurs around 250°C. 

Also the hydroformylation of olefins has repeatedly drawn attention [101-103 

Presumably, only ethene can be hydroformylated in the pores of the zeolite ma-

trix [103]. A scheme of this metal ion catalysed reaction is depicted in Figure 7. 
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Fig. 7. Scheme of the hydroformylation of olefins by rhodium complexes 
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The low temperature water gas shift activity of ruthenium zeolites [104] 

is proposed to proceed on Ru(l) intermediates [105]. The water gas conversion 

extends to the Kolbel-Engelhardt reaction, if the metal component is reduced to 

a finely dispersed metal phase, which hydrogenates chemisorbed carbon monoxide 

[104,106]. The latter reaction requires elevated temperatures (> 330°C), likely, 

in order to avoid the formation of deactivating surface carbide layers on the 

metal phase. 

Many of the promising reactivities of metal-containing zeolites are based 

on the property of the microporous matrix to act as a solid solvent for tran-

sition metal complexes resulting in heterogenized homogeneous catalysts. Most of 

these, catalysts are based on the faujasite-type zeolites, because of their re-

latively large internal free space and the three-dimensional pore arrangement. 

Moreover, the matrix can act as a polydentate ligand and provides«discrete 

domains where distinct steric and electronic configurations can be formed. The 

zeolite matrix affords the highest metal ion dispersion in comparison with 

other supports and high stabilization for cations in low oxidation states. The 

reactions can be carried out at much lower pressures than those required by other 

homogeneous catalysts in liquid phase. These unique properties will draw con-

tinuous future attention to the structures and reactivities of zeolite supported 

metals and metal complexes. 
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