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Based on the paper of Bunp6 and KETSKEMETY we derived a general equation which describes
the shape of the fluorescence spectrum of multi-component solutions as a function of-the emission-,
absorption- and quantum yield spectrum of each component. Both radiative and non-radiative
excitation energy transfers were taken into account. This equation is discussed for the cases of
one-, two- and three-component solutions.

The problem of excitation energy transfer in luminescent multi-component
solutions appears frequently in the literature. In many cases [1—7] considerable
enhancement of the generated energy of dye lasers could be achieved by applying
multicomponent systems. Recent experiments [8] threw light onto the excitation
energy migration in the phycoerythrin — phycocyanin — chlorophyll a system
of plant chloroplasts. More detailed chromatographic investigations revealed that
some dyes, widely applied to luminescence investigations are, in fact, mixtures of
several components. Thus, the problem of luminescence of multi-component solutions

" can be regarded as a theoretical and experimental topic [9—12].

Radiative energy transfer in multi-component solutions

The general equations which describe the shape of the fluorescence spectrum
of a two- and three-component solution was given in our previous papers [9—11].
These expressions take into account the influence of reabsorption and secondary
emission on the shape of the spectrum but neglect the contribution of higher order
emissions as small one. Quite recently we demonstrated [12] that emission of at
least third order should be additionally taken into account to obtain satlsfactory
agreement with certain experimental data.

These expressions can be generalized for arbitrary number of components
under the same assumptions and formalism as given elsewhere [9. 13]. Let us assume
that the luminescence of an n-component solution will be excited by a parallel light-
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beam with a cross-section of R%m, perpendicular to the front face of the sample.
The luminescence light will be reversely directed starting from the centre of the
excitation region. Its crosssection is small as compared to R®m and, thus, when
computing the intensity of the fluorescence we can limit ourselves to the direct
neighbourhood of the straight line which passes through the central point of the
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excitation region. In this case the illuminated part of the solution forms a cylindef

(base radius R and height=the thickness of the. sample —/) whose axis coincides
with the z-axis of the coordinate system Oxyz (Fig. 1). The exciting light which.

enters the solution has an intensity of E, at the front (z=0) of the sample. From
this light available an arbitrary elementary volume 4V at deepth z absorbs in each
second the amount of quanta :
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-where k(A) is the absorption coefficient of the solution at this wavelength (4). If no
chemical reactions occur in the solution then we can assume [12] that

kD = 2 k), | @

where k;(1) denote the absorption coefficient of each component. Let us denote the
normalized true fluorescence quantum-spectrum of the successive components and
their effective quantum yield* with £;(1) and n;(4) respectively, then the magnitude
-and spectral distribution of the first order photoluminescence quantum flux (depending
on wavelength 1") which is emitted from the volume element dV1 can be described
by the following expression:

dop(l, 7, 2) = E;e s D=1kl 3 mi()f,(X) AV di’ =
i=1

= E,e®nk() 3 P, V) dV;dX )
i=1 :
where
Py X)) = LS, (). (4

The number of quanta emitted by first order photoluminescence, B(4, 1),dA’ in
unit time and from unit.area in. unitary solid andle and, in the range (4, A"+dX’),
can be obtained by integrating expression (3) along the whole thickness of the sample.
Taking into account the reabsorption of the emitted quanta inside the cuvette we
obtain:

i B, M)pd¥ = 2_E, f e~ DA (2) 5 PR, M) dzy d =

)
= CG, %) 3 P, Xy d2,
i=1

where g is a coefficient which takes into account the radiation losses caused by the
partial reflection from the front wall of the cuvette, # is the refractive index of the
solution, and C(4, 1) is defined as

co, ) = % (e, ©)

47n? I;" x4+

‘where a=k(4)-/ and f=k(1)-l. Similarly, the magnitude and the spectral distri-
bution of the second order emission from the element dV, (appearing as a result

* Effective qunatum yield 5;(1) means the ratio of the number of quanta if emitted from element
dV by the i-th component to the number of quanta absorbed in this element by all components of
the solution from the light at wavelength A.
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of radiative excitation energy transfer to this element from the other part of the
excitation region) can be described by the following expression

d*o,(, 7, z) = [ [E;e k() Z'P,,(A 27y X

it v, (7)
X —l- k(2")e~*(3"s 2P, AN dV,dAT dv dA.
4ns? = ii
Since
21 Py(4, A7)+ 21 ;(l”, A= _Z Py(2, X)Py(2", A7), ®
= R ;J_
we may write
dro (A, X, z)) = )
o( ) )

- -k().’)s k(4)zs
E.k(}) 2 P37 f e A”)k()/’)Tded)”] v, dx.

i, j=1

The intensity and the spectral distribution of the second order emission B(4, 1),
can be obtained by integration (as for B(4, 1),)

1
B(LY) = 5 Q E,lk()) A I XORS f (;.", 2 f e~ k(1) X

i, j=1

(10)

o-KINs—k(Dze ' .
X f Vzdll”] dz, = 4 _E k()] }_7 P.;(2, 29 S (X),
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where S;; denotes

S = [5G0 H i e_kmz,( k() f
A* 0

Eq. (11) is identical with Eq. (11) from our previous paper [13]. Introducmg the
following,notation

—k(A")s— k(i.)zz

V2) dZI] dz”.  (11)

. +8
x5 = WT—%WSJ"- | (12)
we obtain
B,(2, \)=C(, 1) ZP,J(Z ))4 (13)
-Inserting Eq. (4) to Eq. (13) we may write
B(2, X)) = C(4, ) Z’ M: (Dt £5(2). : (14)

i, j=1

On the basis of Egs. (16), (17), (19) and (26) from the paper [13] we can easily prove
that:

oo
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The function M (1"} is given by
(@+p)(1—e(1-eh

M@ == pi—ewpy — DECEm) =B+
(16)
+m_—;-‘<ﬁﬁ[x(a, N+ 1B, v)+e ty(a, v)+e Y (B, ),
where y = k(A")l, m = R/l and
" E(x)=05772...+In |x]+x+2 5 %+

b (x ) = ——[G( ) -Gy +x), B A7)

1G5 1) = LIG()—G(—y -

G(x) is defined as G(x)=E;(x)—In|x|.

A presice computation of the spectral distribution and the intensity of the third
order emission of a multi-component solution is connected with great difficulties.
According to Bup6 and KETSKEMETY [13] this can be done by assuming that the
ratio of emission intensity of the (m+1) th order of the kth component (excited
by the radiative energy transfer of the mth order emission of the ith component)
is independent of m and this ratio is equal to the ratio of the primary and secondary
emission intensities in the same system. Comparing Egs. (5) and (14) it can be seen
that this assumption is .equivalent with the premise that Eq. (15) not only describes
the energy transfer to secondary emission but also the energy transfer to higher order
emissions. Thus, according to -Eq. (14) for third:order emission we may write

Bt(j'a )'/) = ()"9 '1’) 2 n; (A)%l_]'fjkfk(} ) (18)
i, j,k=
The shape of the fluorescence spectrum B(4, A’), of an n- component solution taking
into account first, second and third order emissions can be given as a sum of Egs.
(5), (15) and (18)

B(/l )= C@, X) Z[n. A+ 2'77,(/1)%,,+ 2 nk(/t)%k, x ) fi(). (19)

By applymg this. procedure subsequently we could easily find the approximate
expressions which takes into account the contributions of the emission of arbitrary
order to the fluorescence spectrum of a solution of arbitrary number of components.
From Eq. (19) we can see that the successive terms with x; form in the expression
of B(4, ") a decreasing geometrical progression with a quotient of x;;. Therefore,
we can write another expression for B(A, 1) which is a better approximation of the
real luminescence spectrum for multicomponent solutions than Eq. (19)

B0, 1) = 0. 3[ni+ Zmnt 3 niagelio. o

. jk=1
(j#i) (G=k=jsi)
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Introducing the terms of non-radiative energy transfer into.the theory
of radiative transfer

In the case of a solution in which the emission spectra of the acceptors does
not overlap with the absorption spectra of the donors according to Eq. (16), all
values »x;; for i>j vanish and then Eq. (20) becomes:

86, > €0, 3 [Emni+ En@mt 3 immfion. e

(1<|) (J k<l)

Under these conditions we apply the definition of the effective quantum yield and
denote the transition probability of the ith component molecule to the electronic
excited state by 77 (1), and so we obtain the following expressions

m) = k()) =5 ki DKy,
nz(A) = k(/l) o e I () Ko + ke (O0f (D Koo Ko, - (22)

’1:’;('1) k()) [ka('l)ﬂa (;)Ks‘}'kl())'h (DK K3+ Kp2 Kpg Ky) + ko (2)n3 (A) Ky Ks)-

The constants K; and Kj, denote the quantum yield of each component and the
yield of non-radiative excitation energy transfer between the ith and kth component.
We can easily see that for the effective quantum yield of the-ith component the
following equation holds

, K;
i) = ps Km0+ 2 k0o [k 3 Kukt
(J<|) ()<k<|) (23)
+ “2_'1 I<ijklI(li+"'+K12K23'---'Ki—2,i—1Ki-1,i]}f

(j<l;<l<l')

[n the particular case of monocomponent solutions Eq. (21) can be written according
to Eq. (25) from [13]

B(, /)= C(, (K 5

), )

For two-component solutions we obtain:

— 152 a1+ e 12029
es)

BO, 2) = COu o i1 + [
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And for three-component solutions

-

B@, ¥) = C(, ,1’){ -

+lis

This equation is 1dentlca1 w1th those published previously [12].
Substituting Eq. (22) into Eq. (16) we obtain the following expressions for the
x;;’s for one-, two- and three-component solutions:

DA+ [ — n;<z)+x1_2<1+u22)n1(z)]f2<x'>+

'13(}-) + 293 (L + 299+ %33) ’12('1) + (%13 + 7‘13 K33+ K12 Moz + K11 %13) 'h('l)] fs(X) } -
(26)

~

sy = Ky Ryy,

iz = Ky Ry + Ko Ko Ry, |

2 = Ky Rt Ko Ky Ry + Ko Ko K Rys + Koo Ko Rz,

o2 = K, Roy ' . : Q@)
g = Ky Rog+ KoKy Rog

. #33 = Kz Ry
~where '

- [ ((j,, GESeIMENG )
As seen from Egs. (23)—(28) to the calculationvof B(4, A’) values for concrete solu-
tions, apart from the absorption-, the emission-, and the absolute quantum yield
- spectrum of each component, is is necessary to know the yield values K; and Kj;.

~ Thesé yields can be computed from the expressions obtained for the non-radiative
excitation energy transfer in multi-component solutions. To this problem, however
a separate paper will be devoted [14].

“We should emphasize that Eq. (26) was supported by our previous experimental -
data [12]. The investigations were carried out on two series of three-component
solutions with a constant concentration of the first and third component varying
the concentration of the second component. Yields X; and K;; were computed from
the expressions obtained by generalizing the non-radlatlve exc1tat10n energy transfer
theory of BoJarskl and DomsTA [15] for the multi-component case. For both solu-

tion series the agreement between Eq. (26) and the experimental data was satis- - . .

factory.
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TMEPE/IAYA DHEPTUM BO3BYXKJAEHUSA B MHOIOKOMITOHEHTHBIX
JIIOMMHECLIEHTHBIX PACTBOPAX

H. Keuxe memu u H. Kywoéa

OcHoBascp Ha pabotax Byao u KeukemeTH npeacrasnena obas dopMyna, OmACHBAIOLIAs
CMeIIeHre CrnekTpoB (GIiyopecueHvHd, KaK GyHKIKs IMUCCHOHHOTO M a0COPOIIMOHHOrO COEKTPOR U
KBaHTOBOTO BBIXOJIAa KaXKIOTO M3 COCTABIISIOMAX KOMIOHEHTOB. IIpHHATH BO BHMMAaHHE KaK M3/y-
YaTeibHBIE, TaK WM Oe3bI3yyaTeNbHbIE MEPEnavd 3Heprud Bo3Oyxnenus. IlpeacTaBieHHOE ypaB-
HEHME PaCCMOTPEHO A7t ONHO-, ABYX- H TPEXKOMIIOHEHTHBIX PaCTBOPOB.



