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This lecture is dedicated to the momory of THEODOR FORSTER, whose work has been
highly esteemed and continued by scientists throughout the world.

The time dependence of the acceptor fluorescence is governed by Dawson’s function if the
lifetime of the acceptor is shorter than that of the donor.

Measurements with the system pyrene (donor)/perylene (acceptor) in liquid solutions of various
viscosities necessitated a generalization of Forster’s theory, taking diffusion into account. New
formulae have been derived for the experimental fluorescence characteristics of long range energy
transfer combined with spatial diffusion, which are easily applied and shown to be valid under
various conditions.

In order to deal with the kinetics of energy transfer in general, the decay functions under ex-
citation by a pulse of negligible duration should first be known. The fluorescence time dependence
can then be calculated by convolution for any given time dependence of excitation intensity. The
new concept of ‘convolution kinetics’ can be applied to any mechanism involving energy transfer,
whereas the treatment by differential equations is of limited validity. <

Introduction

For the rate constant n,_; of energy transfer from an initially excited donor
molecule to an acceptor molecule

A*+ B2 44 B*
the following expression [1, 2] was derived by Th. Forster in 1947
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Here F4(9) is the fluorescence quantum™spectrum of the donor normalized to unity
and eg(¥) is the molar decadic extinction coeﬂicwnt of the acceptor. n, denotes the
rate constant of spontaneous emission of the donor i.e. its reciprocal natural fluores-

cence lifetime. The relative orientation of donor and acceptor is taken into account
by the dimensionless factor »?; for sufficiently fast Brownian rotation the average
value »%2=2/3 may be used, but another average value applies for random but
fixed orientations {3]). N, denotes Avogadro’s number and »,, the refractive index of
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the medium. The most important quantity in eq. (1) is the distance R between donor
and acceptor on whose sixth power the dipole-dipole interaction depends.

If the donor and acceptor molecules existed in pairs with fixed distance and no
transfer between the molecules of different pairs took place, the kinetics of energy
transfer could be described as a monomolecular process the rate of which would be
given by eq. (1). In fact this case is very rare. In most practical energy transfer systems
the molecules are randomly distributed; a correct description of energy transfer
thus involves statistical considerations [2, 7]. Generally it is a serious mistake to
identify R in eq. (1) with the average distance of acceptor molecules since this gives a
wrong dependence of ‘n,_, , on the acceptor concentration [9]. The result of Forster’s
ingéniously simple treatment [2] of the statistics -of dipole-dipole energy- transfer-in
the case of homogeneous three dimensional distribution is given in eq. (2)

47
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Here f,« denotes the ratio of the concentration of excrted donor molecules, [47],
at time 7 to the initial concentration, provided no.further excitation takes place when
t=0. f4« is also the ratio of donor fluorescence intensities at times ¢ and zero. The
sum of the rate constants of all processes except energy. transfer contrlbutmg to the
depopulation of A* is denoted by n,. the recrprocal ﬂuorescence decay time of the
donor:(n=1y7). - 1 o S
T y = B]
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3
18 ihe tatio of the unexcrted acceptor concentratlon [B] to its so0- called cr1t1cal con-
centration [B],, which we consider to be merely a function of the constant parameters
of the theory defined as follows: Let R, be the intermolecular distance in an isolated
donor-acceptor pair at which the transfer rate n,_ 5 in eq. (1) is equal to n, the sum
of the depopulation constants without energy transfer. The critical radius R, may be
obtained formally by replacing #,_ 5 by n and R by R, in eq. (1). We define the cri-
tical concentration [B];, which appears in eq. (3) and implicitly in eq. (2),. by
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We emphasnse the formal character of [B); and R,, because ascrrbmg too much
significance to these parameters has caused many erroneous work on energy transfer.

Forster’s derivation of eq. (2) has often been doubted atid disparaged though
the famous author M. D. Galanin had confirmed [4], and generalized [5] it. A re-
view [2, 4] together with a new-derivation based on pair probabilities [6] is glven in
ref. {7]. A treatmént’of molecular arrangements of different drmensronalmes is glven
in another lecture on this conference 8].

" Fifteen years passed after the first publication of eq. (2) until BENNETT [10] con-
firmed it directly by measuring the fluorescence decay function of thé donor after
excitation by a light flash of negligible duration, at various concentrations of the
acceptor; the donor was pyrene and the acceptor sevron yellow. According to the
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Yt — term in eq. (2) the logarithm of the relative fluorescence intensity does not
depend linearly on time but decays much faster at the beginning. MATAGA et al. [11]
obtained the same type of decay function with the system donor pyrene, acceptor
perylene. Both authors [10, 11] used solid solutions in order to prevent any influence
of diffusion.

Energy transfer kinetics of the acceptor

The primary result of energy transfer is the excitation of acceptor molecules B*
irrespective of consecutive fast deactivation processes which may make the experi-
mental proof of transient acceptor excitation extremely difficult. But if the acceptor
can fluoresce, energy transfer leads to sensitized acceptor -fluorescence i.e. a definite
transient concentration of excited acceptor [B*]. The calculation of [B*] (¢) is simpli-
fied by making use of eq. (2) instead of a new statistical derivation [5]. According to
the rules of reaction, klnetlcs we get .

In the first term on the right hand side n’ denotes the sum-of th& rate constants of
all processes deactivating B*(n’=1/7" is the reciprocal -acceptor fluoréscence decay
time); the second term describes the rate of formation of B* by energy transfer in
‘accordance with eq. (2) which also gives [4*] as an explicit function of time. ﬂ“he
integration of eq.-(5) is performed by conventlonal methods

B

fB* = 7R 2y Vn sexp — (n t) f exp [(n’ —n).9 -2y W]ds 6)

i
The calculatron of the 1ntegra1 is quite different in the cases n’>n and n’ =n;
the solution of the latter case is straightforward and has been given by BIRKS [12]
The. qualitative result may be seen without mathematics, for if the decay of the donor
.A* is much faster than that of the acceptor B*, the formation of B* is limited to a
time interval at the beginning, which will not exceed th¢ lifetime of 4*, and after
‘that: the acceptor decay function 1s simply exponennal as if B* had been directly
excited by a light flash. In the case  n’>n, which is realized e.g. with-the system donor
-pyrene;- acceptor perylene the problem is more interesting as the 1ntegra1 in eq. (6)
diverges. The expression eq. (6) retains its sense, however, due to the exponential
funiction before the integral and can be calculated in closed form with aid of Dawson’s

function (of the second order).-We get
+D[ l/ ] -exp — (n t)

{ [m—v
)

i fn*= 2y

Dawson’s function [13] is shown in Fig. 1. It is deﬁned as foHows

D(z) =exp—(z?) f exp(p“)dp.‘ - _A (®)
A K4 o R,
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Fig. 1. Dawson’s function of the second order cf. eq. (8)

The shape of fp« depends strongly especially on the parameters nand »’. In Fig. 2 the
functions f« and fB. were calculated for n=6-108s—1, n’=2.10s*"1, The parameter
B replacing 7 is defined* in eq. (9)

))
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In Fig. 2 we use n,=1.4-10°%s~1; the values of
the three chosen parameters correspond to the
case pyrene/perylene.

Curves beginning with 1 represent the time
dependence of donor fluorescence v.s. excited
donor concentration such as were measured by
MaTtaca[ll1]. If we compare the acceptor curves

e P - with the donor omes we notice a behaviour
/ which is impossible in ordinary reaction kinetics:
The concentration of the product B* changes
faster than that of the educt A* from which it is
formed! The reason for this strange feature of
0001 —3 3 = e  energy transfer kinetics can be seen from eq. (5).
) » . At =0 the rate of formation of B* is extre-
gg;oi- f;rl::;a‘ﬁ (;“gzc‘igg’:d;’e‘glsegg mely fast, formally infinite; this portion decays
n\V2 with a Jarge time constant r’ still faster than

cf. eqs. (2) and (7); |—| :[Ble= can be seen from Fig. 2 since the decay is partly
29.10-3 M; n=6-10° 51 compensated by energy transfer. In the course
na=1.4:10s-1 and n’=2-108s-1 of time the influence of the initial period dec-

01 1SR,

* The calculation of the factor of the ¥7 — term in eq. (2) shows that ¥ cancelsand ¥Vn,
appears instead of it. Indeed energy transfer does not depend on all the processes contained in n,
but it depends physically on n, which is a measure of donor transition dipole strength. For these
reasons we would prefer not to use [B), and y parameters defined more appropriately. However
the use of R,, [B), and y is widespread in literature [15].
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V Fig. 3. Calculated and.measured time dependence
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reases more and more; the shape of the acceptor curves becomes then similiar to
that of the donor curves as is the case in ordinary kinetics, where rate constants do
not depend on time.

In experimental tests of eq. (7), precautions must be taken agamst other mecha-
nisms of energy transfer [14]). Excitation of the acceptor by s1mple absorption of
donor fluorescence can be prevented by thin layer probes and in some cases by a
sufficiently high donor concentration, thus limiting the penetration depth of exciting
radiation. The prevention of diffusion is a much more difficult problem, see below.
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Fig. 4. Calculated and measured time
dependence of the donor.

of the acceptor. Parameters are the same as in,
. Parameters are the same as in Fig. 2.

Fig. 2.

Fig. 3 shows the measured time dependence of acceptor perylene with the donor
pyrene 10~2 M in highly viscous paraffin oil**. The values are normalized to-equal
ordinates at the maxima. The solid curve was calculated from eq. (6) and similiarly
normalized. At values of the concentration [B]<[B], (i.e. at small values of y or §),

. the shape of the curves is approximately 1ndependent of [B], and B or ¥, respectively.

The half width of the excitation flash was 2-10~%s from which result the small

*+ The influence of pyrene excimer formation was negligible under these conditions (less than

1%). .
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‘deviations at the very- beginning. Until 2-10-8s after the excitation the measured
values fit well to the theoretical curve; the obvious deviations are caused by the
influence of diffusion which inevitably must be taken into account in the case of
acceptor fluorescence even at a viscosity of approximately- 10 poise. As can be seen
in Fig. 4, the deviations are negligible in the case of the donor. The average contri-
bution of energy transfer to thé deactivation of the donor at [B]=9-107*M s
.about 10% without diffusion and approximately 12% with diffusion. The visible
influence of diffusion in Fig. 4 is therefore only 2% (from the curve according to
eq. (2),) but in Fig. 3 approximately 20%. In spite of the low efficiency of energy
transfer in the case of Fig. 3 and 4, the fluorescence intensities of pyrene and perylene
are of the same magnitude at [B]=9.10"¢ M, because pyrene is strongly quenched
by dissolved oxygen and perylene is not. (This can not be seen, of course, from the nor-
malized curves). The dash-dot line in Fig. 3 corresponds to"the decay of directly
excited perylene; there is no influence of this type on the measured values

Energy transfer combined with diffusion

The 1nvest1gat10n of acceptor tlme dependence in particular- showed that even
in very highly viscous solvents the intermolecular distances are not constant in
energy transfer. Several authors have dealt with this problem, see refs. [16, 17). The two
phenomena do not act like parallel ‘processes but form a dynamlc combination.
Our treatment is based upon an ab initio statistical model using pair- proba-
bilities; the calcula‘uons were published elsewhere [17] in detail. Here we report on
our ﬁrst apphcatlons of the theoretical results.

The fundatherital result is again the expression for the time dependence of the
exc1ted donor N :

[4"] '
faor = 75 = exp—= [(n+9 n,[BDt+2y- 1/—] : (10)

g
;
-

The ,only difference to eq. (2) is the term €-n[B] which is added to . If diffusion
contributed to the deactivation of the donor like an independent process of ‘collisional
energy transfer’ [18] we would expect a term n,[B], like in ordinary Stern-Volmer
kinetics. The content of the theory is found in the dimensionless entity

o=TE o1, T

Tap

r,p denotes the collision radius of 4* and B which in'many cases may be assumed to

be 5...6 A, and . .
. 4 .
_ n-R; :
ﬁ_mmyjr, C o (12)

must be calculated from the known critical radius R,, n of the donor and the mutual
diffusion coefficient D. If rgfr,g<1 the theory is not valid because diffusion then
predominates and other theories should be applied [19]. Having reached this stage
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we can calculate the time dependence of the acceptor in the same manner as above,
cf eqgs. (2), (5) and (6). Analogously to eq. (5) we find

W —w-onimymio )2 (13)

omitting the expression corresponding to eq. (6) we ﬁnally -Obtain

fB*-_z:7{2yV;(n’—n)[D[VE—yV—) A*+D[ V—] ~exp—(w’ t)]+

+0-n,[B]- [fA*—eXp (n D1} ' (14)
with a=n"—n—0-n [B]>0

Fig. 5. Measured and calculated time dependence of the donor ¢f. eq. (10)

Solvent paraﬂin oil with D=10"7em? s-';n,=5.100M~-ts"1,

1/2
e

—1 [B].=8-10"*M. Concentrations of the -unexcited acceptor
n .

a)0,b) 1, ¢)2, d)4, e) 8 £) '20-10‘3M. n=7-108s"%, n’=2.10%s"1

As can be seen in Figs.. 5—8 the measured values fit well to the calculated curves.

The values of the parameters used for the calculation are mentioned with the figures.

The diffusion controlled t4te ‘constant n, was obtained from measured viscosity and

proved with the aid of pyrene excimer kinetics [23]. In Figs. 7 and 8, where the vis-

cosity is ten times lower thanin Figs. 5 and 6, the curves are similiar to ordinary excited

state kinetics [20], where the curves consist of simple exponential functions with

~ time-independent rate constants, cf. the ‘second row term’ in eq. (14). Nevertheless

there is no collision transfer [18] what can be seen from the large average rates of
transfer in Figs. 7 and 8.
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Fig. 6. Measured and calculated time dependence of
the acceptor cf. eq. (14). Parameters are the same as in Fig. 5.
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Fig. 7. Measured and calculated time dependence of the donor ¢f. eq. (10).

Solvent 70% paraffin 0il/30% 1-Methylnaphthalin with D=10-%cm?s—?
n,=5.-108 M-1s5-1,a) 0,b)1.5,c)3, d1)/6’e) 20-10~* M. n=12:10%5"1,
’ .

n =2:108 s"-(n—') =8.10-*M
n
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200 tlnsec]

Fig. 8. Measured and calculated time dependence of
the acceptor. Parameters are the same as in Fig. 7.

The influence of the time dependence of excitation
and the treatment of energy transfer in multiprocess mechanisms

The excitation intensity may be constant or time dependent, but in most experi-
ments on fluorescence and related phenomena it cannot be taken as a é-function.
Thus excitation and deactivation happen at the same time. In the ordinary kinetics
of excited states, where the rate constants do not depend on time, the excitation
energy I,(¢) may be dealt with as ‘inhomogeneity’ in the kinetic differential equations.
This procedure has proved valid for example in excimer kinetics [16) but it is easily
shown that it is not applicable to energy transfer kinetics. From €q. (2) follows by

differentiation
di4* _ * noox
= =y A (14)

If we add a term I,=1I,=const. at the right hand sidé and try to calculate [4*].,
in the photostationary state by allowing t—<c, we get the absurd result, that energy
transfer plays no role at all (!) To derive the right result we remember first that eq.
(2) has proved valid for excitation by a light flash of negligible duration, a -function.
The time dependent intensity 7,(f) may be thought of as continouous sequence of
S-pulses I,(t) ~dt, each of which generates an increment of excited molecules decaying
with the function of, say, eq. (2) in our case (and with the appropriate d-response
function in the general case), ¢f. Fig. 9.
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We are interested in the total amount of excited molecules [4*] as a function of
time. This can be calculated by ‘convolution’:

(4= [ L(t—9) (DI = L fye =frox 1, (15)
8=0

(We also introduce the usual symbol “#’ for convolution and using this symbol we
express that convolution is commutative.)

dd

/ Ndﬁ I{
| |

d[A]ylt-

[«

dlAlgi-3,)

Ji

t

Fig. 9. Explanation of the ‘convolution kinetics’

Treating the problem of the photostationary state with the method of eq. (15)
we get from eq. (2) and with 7,=1,,=const.

(A% = oo * S = 222 [1 = VT 3+ exp () erfe(] (16,

inaccordance with FORSTER s result [21], which was derived from other considerations.

In our derivation of convolution kinetics we made no restriction on a certain
decay law. If the new kinetics is correct it must be generally applicable. Indeed, with
all problems without time dependent rate constants the differential-equation-method
gives the same results as the convolution kinetics. But only the convolution kinetics
is claimed to be universely applicable. Convolution in the case where the excitation
cannot be takenas a J-function was probably introduced to photophysics by BENNETT
[22]. Moreover, if a species B is not excited by irradiation but is formed by a chemical
or physical process such as energy transfer, we get [B*](¢) by convolution of its ‘ideal
decay function’, i.e. the response on J-excitation, with the rate function of its forma-
tion. Thus the expression for f5+ in eq. (6) can also be derived as follows

[B*] = exp (—n’t)akl/?? [4%].
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Here exp (—n’t) is the ideal decay function of B* and the rate of formation function.
can be taken as explicitly given function of time, using eq. (2). In such case a solving
eq. (5) involves the same integral as the convolution. Generally th1s is not the case
and convolution must be applied.
Finally let us look at examples of how energy transfer can be dealt with in multi-
process mechanisms.
I, =500 A* M, gET Bere C*.

(*—)

nr

First we neglect the process with rate constant »n,. The species 4* is formed by.
3-flash excitation (at time 1=0) and will decay simply exponential if all its depopu-
lation processes have time-independent rate constants the sum of which is #. One of
these processes is the formation fo B* with the rate constant n,. The depopulation of
B* happens both analogously to 4* with the sum of rate constants »” and by energy
transfer ng_.. — With the decay function of 4* which is g,=exp—(nt) the time
dependence of B* can easily be calculated using eq. (2) for simplicity

gy = n,exp— (nt)xexp—(n't+2y - Vn'r).

Now we ask for the expressions corresponding to g,« and g« if the back reaction
from B* to A* with rate constant n; takes place additionally. We get two simultaneous
integral equations .

h,» = exp—(nt) *[n,« hgs+6(0)]

hge = exp—(n't+2y - Vn't)*n, b

because the time function s, cannot be calculated without the knowledge of /g«
and vice versa. — The simpler one of our examples can be realized with an excimer
system without excimer dissociation (e.g. pyrene) and the more complicated case
with most other excimer systems; in both cases the excimer has to play the role of
the donor in energytransfer to a convenient acceptor (e. 8 one of the various rhoda-
mines if the pyrene excimer is the donor).

*
#* 3k
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BPEMEHHAS 3ABUCUMOCTH JAJIBHOAEUCTBYIOYETO NEPEHOCA
SHEPTHUA

M. Xaysep, P. Ppeu, Y. K. A. Kaenu u . I'ézene

Ecm Bpems 3aTyxaHHs (DIIyOpDEeCUSHIIHA AKIENTOpa MEHBOIE Y€M Y AOHOPA, TOrAA 3aBHCH-
MOCTb BpeMeHH (JIyopecHeHIMN aKuenTopa ormceisaercs ¢pyakuueit JJABCOHA.

ITpu AccnemoBaHUM CHCTEMBI MAPEH (JOHOP) H NepHIeH (AKHEenTOp) B BOAULIX PaCTBOpax MmpH
Pa3jiMYHBIX BA3KOCTAX CTANI0 HeoOxomumbmM o6o6uerne Teoput PEPCTEPA, u HyxHO 6110
Y THIBATE Anbdy3HOE ABMKEHHE MO 00BbeMy.

IIpm omucaHuW KAHETHKH NEPEHOCA IHEPTHA IPAMEHEH METOZ KOHBOJIOUMOHON KHHETHKH.
Hosyio Teopuio MOXHO 00Jiee LTMPOKO UCOOIB30BATh, YeM O0LIENPUHATYIO, 10 MeToay Auddepen-
ILAAJIbHBIX YPAaBHEHUIA.



