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This lecture is dedicated to the momory of THEODOR FÖRSTER, whose work has been 
highly esteemed and continued by scientists throughout the world. 

The time dependence of the acceptor fluorescence is governed by Dawson's function if the 
lifetime of the acceptor is shorter than that of the donor. 

Measurements with the system pyrene (donor)/perylene (acceptor) in liquid solutions of various 
viscosities necessitated a generalization of Forster's theory, taking diffusion into account. New 
formulae have been derived for the experimental fluorescence characteristics of long range energy 
transfer combined with spatial diffusion, which are easily applied and shown to be valid under 
various conditions. 

In order to deal with the kinetics of energy transfer in general, the decay functions under ex-
citation by a pulse of negligible duration should first be known. The fluorescence time dependence 
can then be calculated by convolution for any given time dependence of excitation intensity. The 
new concept of 'convolution kinetics' can be applied to any mechanism involving energy transfer, 
whereas the treatment by differential equations is of limited validity. 

Introduction 

For the rate constant nA_B of energy transfer from an initially excited donor 
molecule to an acceptor molecule 

A * + B ^ A + B* 

the following expression [1, 2] was derived by Th. Förster in 1947 

9000-In 10 x*-ne r ... ... dv 
= 1 2 8 . « » . V g T f r ' J ^ « " ' M - F - ( 1 ) 

Here FA(v) is the fluorescence quantunTspectrum of the donor normalized to unity 
and eB(v) is the molar decadic extinction coefficient of the acceptor. ne denotes the 
rate constant of spontaneous emission of the donor i.e. its reciprocal natural fluores-
cence lifetime. The relative orientation of donor and acceptor is taken into account 
by the dimensionless factor x2; for sufficiently fast Brownian rotation the average 
value k 2 =2/3 may be used, but another average value applies for random but 
fixed orientations [3]. Nh denotes Avogadro's number and nm the refractive index of 
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the medium. The most important quantity in eq. (1) is the distance R between donor 
and acceptor on whose sixth power the dipole-dipole interaction depends. 

If the donor and acceptor molecules existed in pairs with fixed distance and no 
transfer between the molecules of different pairs took place, the kinetics of energy 
transfer could be described as a monomolecular process the rate of which would be 
given by eq. (1). In fact this case is very rare. In most practical energy transfer systems 
the molecules are randomly distributed; a correct description of energy transfer 
thus involves statistical considerations [2, 7]. Generally it is a serious mistake to 
identify R in eq. (1) with the average distance of acceptor molecules since this gives a 
wrong dependence of nA^B on thé acceptor concentration [9]. The result of Fôrster's 
ingeniously simple treatment [2] of the statistics of dipole-dipole energy transferin 
the case of homogeneous three dimensional distribution is given in eq. (2) 

Here fA* denotes the ratio of the concentration of excited donor molecules, [A*], 
at time t to the initial concentration, provided no further excitation takes place when 
/ > 0 . fA* is ajso the ratio of donor fluorescence intensities at times t and zero. The 
sum of the rate constants of all processes except energy transfer contributing to the 
depopulation of A* is denoted by n,. the reciprocal fluorescence decay time of the 
"donor>(n = V/r). " i • ' • :• -

is the ratio of the unexcited acceptor concentration [B] to.its so-called critical con-
centration [fi]k, which we consider to be merely a function of the constant parameters 
of the theory defined as follows: Let Rk be the intermolecular distance in an isolated 
donor-acceptor pair at which the transfer rate nA^B in eq. (1) is equal to n, the sum 
of the depopulation constants without energy transfer. The critical radius Rk may be 
obtained formally by replacing; nA_tB by n and R by Rk in eq. (1). We define the cri-
tical concentration [S]t, which appears in eq. (3) and implicitly in eq. (2),. by 

We emphasise the formal character of [B]k and Rk, because ascribing too much 
significance to these parameters has caused many erroneous work on energy transfer. 

Forster's derivation of eq. (2) has often been doubted arid disparaged though 
the famous author M. D. Galanin had confirmed [4], and generalized [5] it. A re-
view [2, 4] together with a new derivation based on pair probabilities [6] is given in 
ref. [7]. A treatment 'of molecular arrangements of different dimensionalities" is given 
in another lecture on this conference [8]. ' 

Fifteen years passed after the first publication of eq. ( 2 ) until B E N N E T T [ 1 0 ] con-
firmed it directly by measuring the fluorescence decay function of the donor after 
excitation by a light flash of negligible duration, at various concentrations of the 
acceptor; the donor was pyrene and the acceptor sevron yellow. According to the 

f.A* = 77*f =i exp-(/U + 2y • fiû7). (2) 

(4) 
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i t — term in eq. (2) the logarithm of the relative fluorescence intensity does not 
depend linearly on time but decays much faster at the beginning. M A T A G A et al. [ 1 1 ] 
obtained the same type of decay function with the system donor pyrene, acceptor 
perylene. Both authors [10, 11] used solid solutions in order to prevent any influence 
of diffusion. 

Energy transfer kinetics of the acceptor 

The primary result of energy transfer is the excitation of acceptor molecules B* 
irrespective of consecutive fast deactivation processes which may make the experi-
mental proof of transient acceptor excitation extremely difficult. But if the acceptor 
can fluoresce, energy transfer leads to sensitized, acceptor fluorescence i.e. a definite 
transient concentration of excited acceptor [5*]. The calculation of [B*] (t) is simpli-
fied by making use of eq. (2) instead of a new statistical derivation [5]. According to 
the rules of reaction, kinetics we get 

. ^ t"®*] ¿ T D * 1 I „ 1/ " r ^ * ' 
d t J / 7 M * ] . (5) 

In the first term on the right hand side n' denotes the sum of thé rate constants of 
all processes deactivating B*(n' = 1/t' is the reciprocal acceptor fluorescence dècay 
time); the second term describes the rate of formation of B* by energy transfer in 
accordance with eq. (2) which also gives [A*] as an explicit function of time. [The 
integration of eq.>(5) is performed by conventional methods î 

• ' • ' v- YA lo • 0 ' ... ! 
. ; „ . ' . - . ' < • . . . " j 
. The calculation of the integral is quite different in the cases and n' \cni 

the, solution of the latter case is straightforward and has been given by BIRKS [12]. 
The qualitative result may be seen without mathematics, for if the decay-of the donor 
•A* is much faster than that of the acceptor B*, the formation of B* is limited to a 
time interval at the beginning, which will not exceed the lifetime of A*, and after 
that the acceptor decay function is simply exponential as if B* had been directly 
excited by à light flash. In the case n which is realized e.g. with-the system donor 
-pyrene, acceptor perylene, the problem is more interesting as the integral in eq. (6) 
diverges. The expression eq. (6) retains its sense, however, due to the exponential 
function before the integral and can be calculated in closed form with aid of Dawson's 
function (of the second order). We get 

• = jz) r - f ^ D [v f ^ ] • exp - ( „ ' , ) } • 

Dawson's function [13] is shown in Fig. 1. It is defined as follows 

D ( z ) = e x p - ( z a ) / e x p ( p 2 ) d p . (8) 
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Fig. 1. Dawson's function of the second order cf. eq. (8) 

The shape of / B . depends strongly especially on the parameters n and »'. In Fig. 2 the 
functions fA* and / B . were calculated for « = 6 • 106^_1, n'=2- 10i8 - 1 . The parameter 

P replacing y is defined* in eq. (9). 

«.01 

. «¿.IB'J/IA'l. 

=9.10"® M ; 7i=6'10* s - 1 ; 
« . = 1 . 4 - 1 0 » i - 1 and n ' = 2 - 1 0 8 i ~ 1 

"Vf P. (9) 

Fig. 2. Calculated time dependences of 
donor pyrene and acceptor perylene 

i n V7 1 

cf. eqs. (2) and (7); — • [*]„= 

In Fig. 2 we use ne—1.4 • 106 s _ 1 ; the values of 
the three chosen parameters correspond to the 
case pyrene/perylene. 

Curves beginning with 1 represent the time 
dependence of donor fluorescence v.s. excited 
donor concentration such as were measured by 
M A T A G A [ 1 1 ] . If we compare the acceptor curves 
with the donor ones we notice a behaviour 
which is impossible in ordinary reaction kinetics: 
The concentration of the product B* changes 
faster than that of the educt A* from which it is 
formed! The reason for this strange feature of 
energy transfer kinetics can be seen from eq. (5). 
At f = 0 the rate of formation of B* is extre-
mely fast, formally infinite; this portion decays 
with a large time constant n' still faster than 
can be seen from Fig. 2 since the decay is partly 
compensated by energy transfer. In the course 
of time the influence of the initial period dec-

* The calculation of the factor of the ]ft — term in eq. (2) shows that Yn cancels and Yn^ 
appears instead of it. Indeed energy transfer does not depend on all the processes contained in n, 
but it depends physically on n. which is a measure of donor transition dipole strength. For these 
reasons we would prefer not to use [5]» and y parameters defined more appropriately. However 
the use of Rk, and y is widespread in literature [15]. 
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reases more and more; the shape of the acceptor curves becomes then similiar to 
that of the donor curves as is the case in ordinary kinetics, where rate constants do 
not depend on time. 

In experimental tests of eq. (7), precautions must be taken against other mecha-
nisms of energy transfer [14]. Excitation of the acceptor by simple absorption of 
donor fluorescence can be prevented by thin layer probes and in some cases by a 
sufficiently high donor concentration, thus limiting the penetration depth of exciting 
radiation. The prevention of diffusion is a much more difficult problem, see below. 

Fig. 3. Calculated and measured time dependence Fig. 4. Calculated and measured time 
of the acceptor. Parameters are the same as in dependence of the donor. 

Fig. 2. Parameters are the same as in Fig. 2. 

Fig. 3 shows the measured time dependence of acceptor perylene with the donor 
pyrene 10~3 M in highly viscous paraffin oil**. The values are normalized to equal 
ordinates at the maxima. The solid curve was calculated from eq. (6) and similiarly 
normalized. At values of the concentration [B]«~[B]k (i.e. at small values of y or /3), 
the shape of the curves is approximately independent of [5], and /? or y, respectively. 
The half width of the excitation flash was 2 - 1 0 _ 9 i from which result the small 

** The influence of pyrene excimer formation was negligible under these conditions (less than 
1%). 
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deviations at the very beginning. Until 2- 10~8i after the excitation the measured 
values fit well to the theoretical curve; the obvious deviations are caused by the 
influence of diffusion which inevitably must be taken into account in the case of 
acceptor fluorescence even at a viscosity of approximately 10 poise. As can be seen 
in Fig. 4, the deviations are negligible in the case of the donor. The average contri-
bution of energy transfer to thé deactivation of the donor at [ f i ] = 9 - 1 0 _ 4 M is 

•about 10% without diffusion and approximately 12% with diffusion. The visible 
influence of diffusion in Fig. 4 is therefore only %2% (from the curve according to 
eq. (2),) but in Fig. 3 approximately 20%. In spite of the low efficiency of energy 
transfer in the case of Fig. 3 and 4, the fluorescence intensities of pyrene and perylene 
are of the same magnitude at [B]=9 • 10 - 4 M, because pyrene is strongly quenched 
by dissolved oxygen and perylene is not. (This can not be seen, of course, from the nor-
malized curves). The dash-dot line in Fig. 3 corresponds to the decay of directly 
excited perylene; there is no influence of this type on the measured values. 

Energy transfer combined with diffusion 
i 

The investigation of a/ceptor time dependence in particular-showed that even 
in very highly viscous solvents the intermolecular distances are not constant in 
energy transfer. Several authors have dealt with this problem, see refs. [16,17]. The two 
phenomena do not act like parallel processes but form a dynamic combination. 
Our treatment is based upon an ab initio statistical model using pair proba-
bilities; the calculations were published elsewhere [17] in detail. Here we report on 
our first applications of the theoretical results. 

The fundaiiierital result is again the expression for the time dependence of the 
excited donor' ' : 

/ • /x* = = e x p - [ ( « + 0 . n a [ f i ] ) i + 2 r fiTtl (10) 
/ / L^ Jo 

The only difference to eq. (2) is the term 9 • na[B] which is added to n. If diffusion 
contributed to the deactivation of the donor like an independent process of'collisional 
energy transfer' [18] we would expect a term. na[B], like in ordinary Stern-Volmer 
kinetics. The content of the theory is found in the dimensionless entity 

0 = (11) 
rAB 

rAB denotes the collision radius of A* and B which in many cases may be assumed to 
be 5...6 A, and 

r f = 0 . 6 7 6 ] / ^ , (12) 

must be calculated from the known critical radius Rk, n of the donor and the mutual 
diffusion coefficient D. If rF/rAB< 1 the theory is not valid because diffusion then 
predominates and other theories should be applied [19]. Having reached this stage 
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we can calculate the time dependence of the acceptor in the same manner as above, 
cf. eqs. (2), (5) and (6). Analogously to eq. (5) we find 

= -{n'-e-na[B]}[B*]+y^[A*l (13) 

omitting the expression corresponding to eq. (6) we finally obtain 

fa* = I (n'-n) ^ V t - y ^ - f ^ + D ^ ^ ) • e x p - ( n ' t ) ] + 

+ 0-na[B]'[fA*-exp-(n't)]} (14) 

with a-n'-n-9-na[B]>0". 

- tin see] 

Fig. 5. Measured and calculated time dependence of the donor cf. eq. (10). 
Solvent paraffin oil with D = 10 - ' cm2 i " 1 ; « a = 5-107 M _ 1 

("<, V 2 

—'I [B]fc = 8-10~3 M. Concentrations of the unexcited acceptor 

a) 0, b) 1, c) 2, d) 4, e) 8, f) 20-10-3M. « = 7 - 1 0 6 i - 1 , « ' = 2 - 1 0 8 J - 1 

As can be seen in Figs. -5—8, the measured values fit well to the calculated curves. 
The values of the parameters used for the calculation are mentioned with the figures. 
The diffusion controlled rate constant na was obtained from measured viscosity and 
proved with the aid of pyrene excimer kinetics [23]. In Figs. 7 and 8, where the vis-
cosity is ten times lower than in Figs. 5 and 6, the curves are similiar to ordinary excited 
state kinetics [20], where the curves consist of simple exponential functions with 

~ time-independent rate constants, cf. the 'second row term' in eq. (14). Nevertheless 
there is no collision transfer [18] what can be seen from the large average rates of 
transfer in Figs. 7 and 8. 
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t [ n s e c ] — • » 

Fig. 6. Measured and calculated time dependence of 
the acceptor cf. eq. (14). Parameters are the same as in Fig. 5. 

Fig. 7. Measured and calculated time dependence of the donor cf. eq. (10). 
Solvent 70% paraffin oil/30% 1-Methylnaphthalin with X>=10- ,cm«s~% 

n0=5-lV> M'1 s-K a) 0, b) 1.5, c) 3, d)6,e) 20-10 - 8 M. /1=12-10» i " 1 , 

/ i ' =2 ' 10 8 , = 8 - 1 0 ~ 3 M 
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Fig. 8. Measured and calculated time dependence of 
the acceptor. Parameters are the same as in Fig. 7. 

The influence of the time dependence of excitation 
and the treatment of energy transfer in multiprocess mechanisms 

The excitation intensity may be constant or time dependent, but in most experi-
ments on fluorescence and related phenomena it cannot be taken as a ¿-function. 
Thus excitation and deactivation happen at the same time. In the ordinary kinetics 
of excited states, where the rate constants do not depend on time, the excitation 
energy Ia(t) may be dealt with as 'inhomogeneity' in the kinetic differential equations. 
This procedure has proved valid for example in excimer kinetics [16] but it is easily 
shown that it is not applicable to energy transfer kinetics. From eq. (2) follows by 
differentiation 

- n [ A * ] - y . y i [ A * \ . (14) 

If we add a term / o W a 0 =cons t , at the right hand side and try to calculate [/)*]<» 
in the photostationary state by allowing t-*-«>, we get the absurd result, that energy 
transfer plays no role at all (!) To derive the right result we remember first that eq. 
(2) has proved valid for excitation by a light flash of negligible duration, a ¿-function. 
The time dependent intensity Ia(t) may be thought of as continouous sequence of 
¿¡-pulses Ia(t) vdt, each of which generates an increment of excited molecules decaying 
with the function of, say, eq. (2) in our case (and with the appropriate ¿-response 
function in the general case), cf Fig. 9. 
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We are interested in the total amount of excited molecules [A*] as a function of 
time. This can be calculated by 'convolution': 

i 
[A*\= f Ia(t — 9) -fA*(9)d9 = Ia*fA* =fA**Ia, (15) 

9 = 0 

(We also introduce the usual symbol ' * ' for convolution and using this symbol we 
express that convolution is commutative.) 

Treating the problem of the photostationary state with the method of eq. (15) 
we get from eq. (2) and with / f l =/ o 0 =const . 

M l o - U*L* = ^ [1 - • 7 • exp ( f ) • erfc(y)] (16), 

in accordance with F O R S T E R ' S result [ 2 1 ] , which was derived from other considerations. 
In our derivation of convolution kinetics we made no restriction on a certain 

decay law. If the new kinetics is correct it must be generally applicable. Indeed, with 
all problems without time dependent rate constants the differential-equation-method 
gives the same results as the convolution kinetics. But only the convolution kinetics 
is claimed to be universely applicable. Convolution in the case where the excitation 
cannot be taken as a ¿-function was probably introduced to photophysics by B E N N E T T 
[22]. Moreover, if a species B is not excited by irradiation but is formed by a chemical 
or physical process such as energy transfer, we get [B*] (?) by convolution of its 'ideal 
decay function', i.e. the response on ¿-excitation, with the rate function of its forma-
tion. Thus the expression for fB* in eq. (6) can also be derived as follows 



TIME DEPENDENCE OF LONG-RANGE ENERGY TRANSFER •31 

Here exp (—n't) is the ideal decay function of B* and the rate of formation function 
can be taken as explicitly given function of time, using eq. (2). In such case a solving 
eq. (5) involves the same integral.as the convolution. Generally this is not the case 
and convolution must be applied. 

Finally let us look at examples of how energy transfer can be dealt with in multi-
process mechanisms. 

Jq 1 ¿(0) ^ * nr -ß^f. " i r r Q * 

"r 

First we neglect the process with rate constant n'r. The species A* is formed by, 
¿-flash excitation (at time t=0) and will decay simply exponential if all its depopu-
lation processes have time-independent rate constants the sum of which is n. One of 
these processes is the formation fo B* with the rate constant nr. The depopulation of 
B* happens both analogously to A* with the sum of rate constants n and by energy 
transfer Mb_c. — With the decay function of A* which is gA = ex<p — (nt) the time 
dependence of B* can easily be calculated using eq. (2) for simplicity 

gB* = nr exp — (nt) * exp — (n't + 2y' • in't). 

Now we ask for the expressions corresponding to gA* and gB* if the back reaction 
from B* to A* with rate constant n'r takes place additionally. We get two simultaneous 
integral equations 

hA* = exp — (nt)*[nr-hB* + 5(0)] 

hB* = exp — (n't+2y' •)fnrt)*nr-hA* 
because the time function hA* cannot be calculated without the knowledge of hB* 
and vice versa. — The simpler one of our examples can be realized with an excimer 
system without excimer dissociation (e.g. pyrene) and the more complicated case 
with most other excimer systems; in both cases the excimer has to play the role of 
the donor in energytransfer to a convenient acceptor (e.g. one of the various rhoda-
mines if the pyrene excimer is the donor). 

* 
* * 

The financial support of this work by the Deutsche Forschungsgemeinschaft is 
gratefully acknowledged. 
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ВРЕМЕННАЯ ЗАВИСИМОСТЬ ДАЛЬНОДЕЙСТВУЮЧЕГО ПЕРЕНОСА 
ЭНЕРГИИ 

М. Хаузер, Р. Фреи, У. К. А. Клени и У. Гёзеле 

Если время затухания флуоресценция акцептора меньше чем у донора, тогда зависи-
мость времени флуоресценции акцептора описывается функцией ДАВСОНА. 

При исследовании системы пирен (донор) и перилен (акцептор) в водных растворах при 
различных вязкостях стало необходимым 'обобщение теории ФЁРСТЕРА, и нужно было 
учитывать диффузное движение по объему. 

При описании кинетики переноса энергии применен метод конволюционой кинетики. 
Новую теорию можно более широко использовать, чем общепринятую, по методу дифферен-
циальных уравнений. 


