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In this paper the energy levels and electron transitions of the [(NH;),Co(OH),Co(NHs)J*+
and [(NH;);Co(OH),Co(NH;),]*+ binuclear complex ions are calculated by the LFMO method
(ligand field method combined with LCAO-MO method).

Introduction

As well known, the ligand field (LF) method (BETHE [1], VAN VLECK [2]) is a
fairly good approximation for the interpretation of some iniportant properties of
complex compounds having only one central metal ion. As known, this method
treats the ligands as point charges or point electric dipoles and considers the electrons
of the central metal ions as if they were subjected to an electrlc field originating from
the surrounding atoms or molecules. -

Since the first application of the LF method [2] many authors dealt with this
method and employed it to calculate the electronic structure, transitions, magnetic
properties etc. of such complexes, and several excellent books have been published
on this topic. (ILse.and HARTMANN [3], BALLHAUSEN [4], JORGENSEN [5], GRIFFITH [6],
ORGEL [7], MorrITT [8], LIEHR [9], TANABE and Sucano [10], Kiss [11], GILDE and
BAN [12] etc.)

It is evident that the LF method cannot be applied in itself in the case of poly-
nuclear complexes, but the basic idea of the method is applicable in this case, too,
if we combine this method with other methods, for example the LCAG-MO method.
In the following we call this method LFMO method and we treat the binuclear
complex ions [(NH,),Co(OH),Co(NH,),]** and [(NH,);Co(OH);Co(NH,),]®*
(denoted in the followmg by K1 and K,, respectively) by this method.

Geometries and method of calculation

We assume that the geometry of the complex ions K; and K, is “bi-octahedral’;
the two octahedra have in the case of K; a common edge and in the case of K, a
common face, and on the basis of Pauling’s ions radii [13] we take the nuclear
distance Co—O to be 1.88 A, Co—N 1.92 A and Co—Co 2.66 A for both complexes.
The symmetry of these systems is Dy, (X;) and Dy, (K)).
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In the present paper we treat these complex ions by the LFMO method: (1)
because of the undoubted importance of the bridges we treat the compounds
Co(OH),Co and Co(OH), Co by the LCAO-MO method (zeroth order problems),
(2) then, we take into account the NH; molecules as point electric dipoles
(having 1.48 Debye dipole moment) setting up an electrostatic field around
the central compounds. After K. Jergensen [5] we call this field “ligand field”.

Zeroth order problems

In the LCAO—MO treatment of Co(OH),Co and Co(OH),Co we neglect the
influences of the H atoms on the compounds and we do not take into account the
electrons in the closed shells of Co and O atoms. We take into account only the six
valence electrons of the Co ions and the four valence electrons of the OH ions
(20 electrons for K; and 24 electrons for Kj,). For the calculation of MO-s we take
into account the five 3d, one 4s and three 4p atomic orbitals of Co atoms and the
three 2p orbitals of O atoms and we represent these atomic orbitals by Slater type
orbitals. o ‘

Table I (K;)

Co o
dys(1)+ds(2)
do_o(D+d 2_ 2 (2) (N
Alg ys(1)+s(2) y px(1)+py(l) Ipx(z) 'py(z)
P.()+p.(2)
Ay, duy(1) +dy 2)
B1g dxy(l)"dxy(z) pz(l)+p:(2)
d (1)~ d,2(2)
da a(D=da_ | _ .
By, i 2D +p, (D =p(2)+p,(2)
p.(1)—p.(2)
d.(1)~d..(2) ;
B. —p(1)+p (D) +p.(2)—p,(2
24 pD—p. ) P()+p, (1) +P(2)—p,(2)
B;, v 4 A(D-p.2
2 (D=, p.(1)—p.(2)
B d,.(1)+d,.(2)
* 2, ()+p,(2)
B D4y (), (1)=p -2,

p(1)+p.(2)
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From these atomic orbitals we can easily construct symmetry adapted functions
transforming according to the irreducible representations of Dy, and Dy, using group
theoretical considerations. The reducible representations are

Iy = 5434 +5By+ 3By, + 3By, + 3By, +2B3,+ 2By, + A,
Iy = SE’+4E"+4A41+443 + 4;. '
The symmetry adapted functions are presented in Table 1.

Table I (K,)
Co o]
i | Gt | nogms e
p.(D+2.(2) PRy
4 P.(D+2.(2)+2.3)
42 (1)-d () Pe()+0.(2) +P(3)~

A; s()—s(2)
p-(1)-p.Q2)

_Py(l) "py(z) _py(3)

dya_ (D +dy_n(2)

~2p. (1)~ 2p, (1) +p. (D) +

() +de. ) 2, 2. D)+5,3)
g | W 200
g oG LY S NI NOR NG
st 2. +2,(3) - 2p.(1)
ey (1) + ey )
dyz(l)+dyz(2) px(z) +py(3) —py(z) _px(3)
g | BORA

da 2@~da_a()
d.(D—d..(2)

2p.(1)-2p,(1)—
= D(2) =3 +5,(2) +P,(3)

For the secular equations we calculated the group overlap integrals S;; exactly,

while the group integrals H,; (ij) have been
formula of WOLFSBERG and HELMHOLZ [14]

determined by the approximation

Hi] = O,SKSij(Hii+Hjj)

where the empirical factor K was chosen to be 2.

20 for o bonds and 2.62 for n bonds -

[15]. The integrals H;; were substitued by ionization potentials: in the case of Co,
for 4s orbitals —7.84 eV, for 4p orbitals —4.08 eV, for 3d orbitals —9.38 eV [16]
and in the case of O, for 2pe orbitals —11.24 eV and for 2p=n orbitals —10.54 eV [17].

The energy values (in eV) and the LCAO coefficients of the normalized MO-s

are summarized in Table II.



88 Table Il (K,)
symmetry energy cy Ce €y €4 s
L. - 3.425, —-0.059138 | —0.043 349 0.284 836 1.052 616 0.398 073.
— 8.208 0.665 666 0.235770 0.522180 0.168007 | —0.631 554
Ay - 9,441 —0.292055 0.954 304 0.014894 { —0.006985 0.057616
— 9.799 —0.603264 | —0.177 328 0.783875 | —0.048049 | —0.177026
—13.040 0.347 462 0.048 320 0.371078 | —0.119734 0.704 611
Ay, - 9.343 1
3 — 855 | 0902007 | 0515110
19 —~11.843 —0.439903 0.861 377
+40.640 —0.289141 | —0.086190 | —0.146 637 0.143289 | —0.523670
— 5.466 —0.108 230 0.217 003 0.485 199 0.539 337 0.357 385
B, — 8.237 —0.500138 0.74128% | —0.201041 | —0.122941 0.409 595
— 9.054" | 0.837761 0.519545 | —0.100773 0.033479 0.079 291
~12.449 . 0.142542 | —0.382249 | —0.160923 | —0.006 404 0.811277
+ 2.701 0343684 |~ 1.023286 0.625 703
B,, -~ 8.175 0.873493 0.298 007 | —0:390963
—12.416 0.409138 { —0.130174 0.799 262
— 3.810 —0.075041 0.987 295 0.468 299
B,, — 8.613 0.901 800 0.202422 | —0.459036
—12.432 0.439406 | —0.183 982 - 0.792978
B — 1.899 —0.139 556 0.999 040
3¢ -9.124 0.992 223 0.076 800
- 5.264. | 0.148 135 . 0.995703 0.014 215
B, - 7.742 0.854178 | —0.113340 0.671 425
—12.230 —0.528 837 0.018 591 0.762123
Table II (K,) -
symmetry energy ¢ e ¢ €y s
— 2470 —0.155695 | - 0.167135°|  0.102850 0.573758
yy — 7467 0.612 587 0.618 890 0.329762 | —0.617 880
1 - 9.763 0.695179 | —0.737786 0.043971 0.120 595
—13.155 0.375 006 0.394784 | —0.128 670 0.644 253
4, ~11.308 1 ’
+47.702 0.290 326 1.559748 | —~1.492805 | —0.650839
A7 — 5.394 —0.121 404 0.491 707 0.561 751 | —0.329 839
2 - 8.730 0.962 781 0.056223 0.094 860 0.224 506
—12.121 —0.214 054 0.229 541 0.010192 0.875 835
— 4.082 —0.127224 | —0.043830 0.980 326 0.070 714 0.435 881
- 1.772 0.150 743 0.861 337 0.162714 | —0.508971 | —0.331774
E’ — 8.942 0.920663 | —0.178292 0.155195 0.267924 | —-0.264276
—11.9¢7 0.318428 | —0.121420 | —0.125037 | —0.629 115 0.623 291
—12.491 0.137 834 0.487715 | —0.112449 0.541911 0.537618
+ 1.622 —0.147 161 | —0.307 561 1.003708 | —0.570871
E” ~ 7.856 0.544 901 0.663 596 0.304 040 0.455 551
- 9.250 0.775610 | —0.627044 | —0.031 295 0.044 362
—12.554 —-0.306432 | —0.328974 0.106 686 0.782 210
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Ligand field potentials.

The electrostatic potential of the ligand fields can be written in the form
O(F) =— 2 Pigrad [F =77,
i=1 :

where 7 is the number of the point dipoles, #; and p; is the position vector and the
dipole moment of the i‘th dipole. By means of the well known formula [18]

1 = & 4n L
\ E ,Z(;m_Z_l 21+1 r1+1 Ylm(sl, (01)Y1m(92, (Pz)
where 7. is the lower and r. is the higher of r, and r,, the llgand field potentials
can be expressed-in terms of spherical harmonics. Because of the approximations
applied in the calculations it will be convenient to expand & in the form

L 1 ‘ 'l
- 2 =2 2;:_1 {2 pi grad[ lm(‘9 ¢)Y;:l(‘9!’ (pi)]

' o
r’l ’ ’ ’ 7’
+%' grad[ 71+1 I’Im(‘g )Y;;'r;(‘g_n (pj) }’

where the first summation. is extended over the dipoles near Co,, the second is exten-
ded over the dipoles near Co, and {r, 3, ¢}; {r;, %, ¢,} are coordinates referred
to Co, as origin and {r’, ¥, ¢’}, {r}, 9}, ¢} are coordinates referred to Co, as origin.
As the dipoles.are all directed radially toward the corresponding central ion and
all dipoles have the same extent(p) of dipole moment both members of the expression
of @ can be wrxtten in the form ' :

-3 g':_, Ra() Yin(0, @)

s l=0m=-=
where Y ! : : .
' ' 4rn 1-1 1-1 P
: 21+1 Ipr 'ZY rl Y;m(‘gl’ (pl) lf 0=r§ri'
Ri(r) = P
5T (l-i-l)pr" 2Zr *(9-.qoi) if rsr=se

In the case of K, and. K, ri=ro=192A, and 9,=9,=45°, 9,=8,=90°, (=0,
0,=180°, ¢;=—qps=90° for K;, and 9,=9,=9,=45° ¢,=180°, ¢,= —¢3—60°
for K, The potential energy of an electron in the ligand ﬁeld is of course V= —ed.

Energy levels and transitions

According to the perturbation theory, for the calculation of the energy levels
in first order the matrix elements (y|V|y) must be calculated with the zeroth order
MO-s. As these MO-s are built up from Co and O atomic orbitals, these matrix
elements are multicentre integrals. In the calculations we neglected all the two- and
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three-centre integrals and took into account only the single-centre integrals. (For
this reason the potential @ has been written in two terms.) With this approximation
we get the values for the first order energies (in eV) summarized in Table III. The
wavenumbers (in cm~?) of the allowed electron transitions are presented in Table IV,

Table 111*
Ky K,

—5.787 ~ 9415 —2.104 ~11.308
-6.194 ~ 9.441 -2.220 ~-11.533
-6.828. ~11.862 —-6.592 —-11.897
—17.190 ~12.111 —17.368 —12.465
-7.798 ~12.243 —17.769 —12.498
-8.315 ~12.250 —8.182 -12.979
—8.629 ~12.319 —9.038

—8.830 ~12.604 -9.420

-9.111

* In this table only the negative energies are summarized.

Table 1V
K, . K,

10 588 32784 9993 36 539
13043 34 607 10 240 37 892
15495 36 472 13 474 38 703
16 150 38776 16 559 39 867
17 950 41 379 19 738 - 41 127
21083 42 628 22 823 41 394
21 267 43 683 30 369 42 802
24 550 43 748 31778 45 269
28614 47 745 33 304 47 390
29 156 48 804 34 828 47 657
29 217 . 48 865

Comparing these results with other calculations [19] and the experimental ab-
sorption spectra of the complexes [20] we can say that the results of the transitions
are acceptable and they reproduce the main electronic bands of the complexes
fairly well. However, this method is in consequence of his nature, incapable to repro-
duce many other properties, as for example the charge transfer states. These other
properties can be interpreted with other methods as for example with the extended
Wolfsberg—Helmholz method [21].

*
* *

The author wishes to express his thanks to Dr. F. J. GILDE, Director of the
Institute of Theoretical Physics, for helpful discussions and to Dr. Gy. Papp for his
assistance in the computations. These computations were performed on the
MINSZK—22 computer of the Attila Jozsef University.
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HUCCIAEJOBAHUA NBYXBAIAEPHBIX KOMHJIECKOB KOBAJIBTA METOIIOM JINMO
B. Mapas '
B nanHoit paboTe pacCMTAHbI SHEPIHHA COCTOSHHM B MEKTPONHEIX NEPEXOH0B: ABYXBANEPHEX

xomiutekcHbIx Moekyl1 [(NH;)Co(OH).Co(NH,),J** 1 [(NH3);Co(OH);Co(NH,):l** ¢ momomsio
meroaa JIMIMO (Meron muranaroro mons ¢ JIKAMO),



