BESTIMMUNG DER FREIEN OBERFLÄCHENENERGIE FESTER ELEMENTE UND CHEMISCHER VERBINDUNGEN DURCH ULTRASCHALLMESSUNGEN. I. GRUNDLAGEN

Von

U. WAWRA und H. H. WAWRA¹

(Eingegangen am 17. Juli 1972)

Herrn Professor Dr. Karl Schoenemann zum 74. Geburtstag gewidmet

Das bisher vorliegende Zahlenmaterial der freien Oberflächenenergie fester Werkstoffe ist infolge sehr hoher Schwankungsbreiten der Einzelwerte zumeist wenig geeignet. Unterschiedliche Angaben von mehreren Zehnerpotenzen, wie im Falle des NaCl, sind keine Seltenheit. Es fehlen für eine Reihe wichtiger Werkstoffe (z. B. Uran, Thorium usw.) selbst bei höheren Prüftemperaturen jeglichc Zahlenangaben und vor allem Zahlenangaben zur Temperaturabhängigkeit fehlen fast vollständig oder sind schon qualitativ verschieden. Insbesondere zur Ermittlung letzterer Werte wird eine einfache Ultraschall-Bestimmungsmethode bzw. Formel genannt, die umfassendes Zahlenmaterial zu. ermitteln gestattet.

1. Einleitung

Mit den Untersuchungen von HAUL [5], HARKINS [4], FRICKE [3], RIENÄCKER [13], SCHUBERT-BIRKENSTEDT [14] u. a. setzt verstärkt das Bemühen zur Gewinnung geeigneten Zahlenmaterials der Oberflächenenergie fester Substanzen ein, insbesondere auch bezüglich der Temperaturabhängigkeit der Oberflächenenergie von Metallen. Inzwischen sind hunderte von geschlossenen Forschungsarbeiten nachweisbar, die die große Bedeutung der Oberflächenenergiebestimmung fester Substanzen, sei es für Adsorptions- und Chemiesorptionsvorgänge [24], Katalyse und Korrosion [18], Kornwachstumsphänomene [7], Festigkeitsfragen bzw. Bruchcharakteristika [29], Mikrohärte [26], thermisches Ätzen [6], [8] u. a. m. unterstreichen. Man stellt sich nun die Frage, inwieweit diese Resultate (z.B. wenigstens im Bereich tiefer Temperaturen) zahlenmäßig übereinstimmen, und es ist von Interesse zu erfahren, welche Aussagen man u.a. über die Temperaturabhängigkeit über den ganzen Bereich des festen und flüssigen Aggregatzustandes machen kann, ohne daß ein Wechsel der Prüfmethode erfolgt u. ä. m.

2. Ausgangssituation

Ein breites Literaturstudium zeigt u.a. folgende Resultate: 1. Selbst bei der Oberflächenenergiebestimmung geläufiger Elemente im flüssigen Aggregatzustand treten beträchtliche Diskrepanzen schon bei den Zahlenergebnissen in Schmelzpunktsnähe auf. Für Gold werden hier 718 bzw. 754 erg/cm² angegeben, man kann

¹ Dr. Ursula Wawra und Dr. Hans Wawra, DDR-9201 Freiberg/Sa., Schulweg 7

sich aber auch 1136 bzw. 1128 erg/cm² auswählen [25, 33]. Bei Kalium (64 °C) kann man sich 400,5 erg/cm² herausgreifen, jedoch auch 101 erg/cm² (das ist eine Schwankung von rund 300%). Beim vielzitierten Aluminium erhält man ohne jeden Wechsel der Prüfmethode ("Bubble pressure technique") Sprünge von 914 erg/cm² (660 °C) auf 494 erg/cm² (706 °C), von 463 erg/cm² (935 °C) auf 840 erg/cm² (950 °C) u.a.m.

2. Beim festen Aggregatzustand sind schon bei den chemischen Elementen (Tabelle I.) Schwankungsbreiten der Einzelresultate von 100% und mehr die Regel. Die Ergebnisse bei chemischen Verbindungen sind noch negativer.

3. Es existiert keine Bestimmungsmethode (direkt oder indirekt, quantitativ oder semiquantitativ), die es ohne Methodenwechsel gestatten würde, die Temperaturabhängigkeit der Oberflächenenergie über den Temperaturbereich des festen und flüssigen Aggregatzustandes hin näherungsweise zu bestimmen.

4. Die meisten Prüfmethoden, die bisher einigermaßen akzeptable Resultate gebracht haben, sind immer auf einen relativ engen Prüftemperaturbereich beschränkt. Die bekannte "zero creep" und "bubble technique" gestattet z.B. im günstigsten Fall nur die Prüfung bis herunter zu $3T_s/4$ bzw. $T_s/2$ (T_s ist die Schmelzpunktstemperatur). Bei hohen Temperaturen ist aber gerade die Möglichkeit der Reaktionen mit dem umgebenden Medium sehr groß.

5. Versucht man bei sehr tiefen Temperaturen zu prüfen (GILMAN [20]), dann verursachen Temperatursteigerungen (noch unterhalb Raumtemperaturen) leicht erhebliche Verfälschungen des Ganges der Oberflächenenergiewerte.

6. Bestimmte Methoden (z.B. "zero creep technique") zeigen Verfälschungen (Herabsetzung) der Oberflächenenergiewerte schon dann, wenn leicht schmelzbare Legierungseutektika u.ä.m. auftreten, wodurch die Gewinnung eines einzigen Wertes bereits problematisch werden kann. Die Oxidfilme des Aluminiums verursachen analoge Schwierigkeiten, Proben des Urans sind trotz mehrfacher Versuche immer wieder zerfallen [25] etc.

Tabelle I

Element	Oberflächenenergie-	Temp.	Oberflächenenergie-	Temp.	Untersucher	
	höchstwert (erg/cm ²)	(°C)	tiefstwert (erg/cm ²)	(°C)	Max. Min.	
Cu Ag Au Al Ni Fe Co Pb Zn Cd Cd Cr Nh	4258 2493 2540 3079 5260 5267 3585 1180 2436 1941 4061 4490	$\begin{array}{r} -273 \\ -273 \\ -273 \\ -273 \\ -273 \\ -273 \\ -273 \\ -273 \\ -273 \\ -273 \\ -273 \\ -273 \\ +25 \end{array}$	950 600 590 928 1370 1980 1270 300 105 617 1515 1380	$ \begin{array}{c c} -273 \\ -273 \\ -273 \\ 25 \\ 1000 \\ -273 \\ 25 \\ -196 \\ -273 \\ -273 \\ -273 \\ -273 \end{array} $	[30] [30] [30] [30] [30] [30] [30] [32] [32] [30] [27]	[12] [12] [17] [11] [28] [27] [15] [20] [3] [28]
W	9410	3370	1497	3370	[27]	[31]
Pt	3770	-273	3100	25	[3]	[15]
Si	2130	25	890	- 196	[21]	[20]

Maximale Schwankungsbreite der Einzelresultate bei der Bestimmung der Oberflächenenergie fester Elemente

ULTRASCHALLMESSUNG DER FREIEN OBERFLÄCHENENERGIE VON FESTKÖRPERN. I

Element	Oberflächenenergie- höchstwert (erg/cm ²)	Temp. (°C)	Oberflächenenergie- tiefstwert (erg/cm²)	Temp. (°C)	Untersucher Max. Min.	
Ge Ba Ca Mg V Mo Ti Ta Li Na K Rb Rb Rb	1835 872 1064 1447 3480 6285 2730 5850 890 1128 614 563 140	25 -273 -273 25 -273 25 -273 25 2996 180 -273 -273 -273 40	1000 160 407 190 1565 1020 1330 2500 430 222 236 85 50 (8)	25 -273 -273 25 -273 1800 -273 2996 180 -273 -273 -273 40	[21] [30] [30] [22] [27] [27] [27] [27] [9] [30] [30] [30] [30] [9] [50]	[21] [32] [32] [27] [28] [31] [28] [34] [16] [28] [28] [28] [28] [28] [28] [28] [28
Cs Cs Sr Be Hg Ar Ne Kr Xe Eu Tl Tm	407 110 825 685 2630 410 43,17 19,70 52,79 62,11 480 700 950	- 273 28 - 273 215 700 - 273 - 273 - 273 - 273 - 273 - 273 - 273 - 273 - 25 25 25 25 25	68 40 221 160 1000 390 25,6 6,7 34,2 39,6 330 240 330	$\begin{array}{c} -273\\ 28\\ -273\\ 25\\ 700\\ -39\\ -273\\ -248\\ -273\\ -273\\ -273\\ 25\\ 25\\ 25\\ 25\\ 25\\ \end{array}$	[30] [30] [10] [27] [23] [23] [23] [23] [27] [27] [27] [27]	[28] [28] [15] [19] [12] [5] [5] [5] [27] [27] [27]
16 Dy Er Gd Hf Ho La Nd Lu Os Pr Re Ru Sc Zr Y	1280 990 1050 1310 2950 1140 520 400 1620 5400 420 5150 4540 1460 2880 1570	25 25 25 25 25 25 25 25 25 25 25 25 25 2	470 350 370 490 1150 410 360 270 610 2110 280 2060 1760 450 1110 590	25 25 25 25 25 25 25 25 25 25 25 25 25 2	[27] [27] [27] [27] [27] [27] [27] [27]	[27] [27] [27] [27] [27] [27] [27] [27]

Bemerkung: Werte theoret. u. experim. Befunden entnommen. Max.-Min.- Angabe bezieht sich nur bei Autor [27] immer auf unterschiedliche Orientierung und gleiche Temperatur. Sonst Orientierung (schon wegen qualitativer Diskrepanzen) unberücksichtigt gelassen. Max. Schwankungsbreiten bei Wahl größerer Temperaturintervalle noch größer.

7. Auch die Ermittlung der Oberflächenenergie durch theoretisch fundierte Formeln (s. z.B. über Schwingungsfunktionen [30]) ergab z.T. unbrauchbare negative Werte. Bei theoretisch gut brauchbaren Grundformeln fehlen dann wieder not-

wendige Hilfskonstanten oder sind sehr aufwendig zu bestimmen, so daß an die Ermittlung des Temperaturganges nicht gedacht werden kann.

Diese wenigen auszugsweise genannten Fakten dürften bereits die Versuche neuer Möglichkeiten der Oberflächenenergiebestimmung mit dem Hauptziel rechtfertigen, ohne Methodenwechsel die Temperaturabhängigkeit des festen Aggregatzustandes bis hinein in den flüssigen approximativ zu bestimmen.

3. Messungen im kHz- und MHz-Bereich

Fig. 1 zeigt anhand von festen (Kreuze) und flüssigen (Punkte) Elementen sowie auch Salzen und Legierungen die Tatsache einer linearen Beziehung zwischen freier Oberflächenenergie σ und adiabatischem Kompressionsmodul K_i des isotropen Zustandes. Es ist

$$\sigma = k \cdot \frac{1}{2} \left[\frac{c_{11} + c_{22} + c_{33} + 2(c_{12} + c_{23} + c_{31})}{9} + \frac{100}{s_{11} + s_{22} + s_{33} + 2(s_{12} + s_{23} + s_{31})} \right] = k \cdot \frac{1}{2} \cdot K_i$$
(1)

Diese Beziehung gilt für alle Kristallsysteme. Die freie Oberflächenenergie σ erhält man in erg/cm², wenn die adiabatischen Kompressionsmoduln in 10¹¹ dyn/cm² eingesetzt werden. D.h. die Elastizitätskonstanten c_{ik} des betreffenden Einkristalls werden in 10¹¹ dyn/cm² und die Elastizitätsmoduln s_{ik} in 10⁻¹³ cm²/dyn gemessen. Hat man entweder nur die c_{ik} — oder nur die s_{ik} — Werte gemessen, dann sind Umrechnungen leicht nach [35] möglich. Die Kompressionsmoduln K_i obiger Formel (1) sind Mittelwerte (Isotropiewerte analog der "average surface free energy") des polykristallinen Haufwerkes. Diese Mittelwertbildung nach der Beziehung

$$\sigma = k \cdot K_i = \frac{k}{2} \left(K_V + K_R \right) \tag{2}$$

wird für das kubische System überflüssig, da die Kompressionsmoduln dort unabhängig von der kristallographischen Orientierung sind, eine Mittelwertbildung aus den Werten von VOIGT [1] und REUß [2] nach

$$K_{i} = \frac{1}{1} (K_{V} + K_{R})$$
(3)

also entfällt (K_R ist der Kompressionsmodul nach REUß, K_V der Kompressionsmodul nach VOIGT für den Isotropiezustand). Es ist dann einfach

$$\sigma = k \cdot K_i = k \frac{c_{11} + 2c_{12}}{3} \tag{4}$$

Man nimmt danach Formel (1) für das orthorhombische, monokline und trikline System, wobei sich diese Formel für hexagonale, trigonale und tetragonale Kristalle zu

$$\sigma = k \cdot \frac{1}{2} \left[\frac{2(c_{11} + c_{12} + 2c_{13}) + c_{33}}{9} + \frac{100}{2(s_{11} + s_{12} + 2s_{13}) + s_{33}} \right]$$
(5)

ULTASCHALLMESSUNG DER FREIEN OBERFLÄCHENENGIE VON FESTKÖRPEN, I

Fig. 1. Beziehung zwischen der freien Oberflächenenergie σ und dem Kompressionsmodul K, gültig für Festkörper (gekennzeichnet durch ,..+") und Flüssigkeiten (gekennzeichnet durch Punkte). Man erhält im doppelt-logarithmischen Maßstab die Geradengleichung $\sigma = k \cdot K$ (k = 142 (cm)).

vereinfacht. Der 2. Summand im Klammerausdruck der Formel (5) läßt sich auch mit

$$K_R = \frac{c_{33}(c_{11} + c_{12}) - 2c_{13}^2}{c_{11} + c_{12} + 2c_{33} - 4c_{13}}$$
(6)

ausdrücken, so daß in Formel (5) nur mit c_{ik} -Werten gerechnet zu werden braucht. Für Flüssigkeiten gilt dann bekanntlich bei Messung der Dichte ϱ in g/cm³ und der Ultraschallgeschwindigkeit v in m/sec

$$K_i = V^2 \cdot \varrho \,. \tag{7}$$

Der Zahlenfaktor k in obigen Formeln beträgt nach Fig. 1 in der Regel 142 (cm), wobei das für Fig. 1 gültige Zahlenmaterial u.a. [36] entnommen werden kann. Der Meßfehler des adiabatischen Kompressionsmoduls liegt bei 0,3—0,5% und der Methodenfehler der durch VOIGT—REUßsche Mittelung erhaltenen K_i -Werte zumeist unter 1%. Dort, wo zuverlässige Vergleiche mit anderen konventionellen experimentellen Prüfmethoden möglich sind, (z. B. bei Sn, Nb, Zn, Co, Ni, Fe, Cr, Ta, Ag, Cu usw.), liegen die Abweichungen zumeist unter 15%. Durch die Formeln (1) bis (6) erhält man also die sog. makroskopische Oberflächenenergie (Isotropiewerte des Vielkristallhaufwerkes), was nicht nur den Vorzug besitzt, daß damit direkte Vergleiche mit der im Augenblick genauesten experimentellen Direktbestimmungsmethode (vergl. "zero creep rate method" [22]) möglich sind, die ebenfalls makroskopische Werte liefert, sondern es ist besonders auch ein direkter Vergleich mit den Flüssigkeitswerten am Schmelzpunkt gegeben, die in der Regel ebenfalls als richtungsunabhängig betrachtet werden können.

Für das wichtigste Kristallsystem, die kubischen Kristalle, sind die in den Formeln (1) bis (6) genannten c_{11} , c_{12} und c_{44} über die Dichte und die longitudinale Ultraschallgeschwindigkeit v_L sowie transversale v_T zu bestimmen nach

$$c_{11} = V_L^2 \cdot \varrho \tag{8.1}$$

$$c_{44} = V_T^2 \cdot \varrho \tag{8.2}$$

für die Ausbreitung in [100]-Richtung und

$$c_{11} + c_{12} + 2c_{44} = V_L^2 \cdot \varrho \tag{8.3}$$

$$c_{11} - c_{12} = 2V_T^2 \cdot \varrho \tag{8.4}$$

für die Ausbreitung in [110]-Richtung. Bei hexagonalen Kristallen ist beispielsweise

$$c_{33} = V_L^2 \cdot \varrho \tag{9.1}$$

$$c_{44} = V_T^2 \cdot \varrho \tag{9.2}$$

für die Ausbreitung in Richtung der c-Achse und

$$c_{11} = V_L^2 \cdot \varrho \tag{9.3}$$

$$c_{44} = V_T^8 \cdot \varrho \tag{9.4}$$

$$c_{11} - c_{12} = 2V_L^2 \cdot \rho \tag{9.5}$$

worüber eine speziellere Arbeit oben genannter im einzelnen Auskunft gibt [35].

ULTASCHALLMESSUNG DER FREIEN OBERFLÄCHENENERGIE VON FESTKÖRPEN. I

Literatur

- [1] Voigt, W.: Lehrbuch der Kristallphysik, Teubner-Verlag Lepizig 1928.
- [2] Reuβ, A.: Z. f. angew. Math. u. Mech. 18, 48 (1929).
- [3] Fricke, R.: Z. f. Elektrochem. 52, 72 (1948); Naturwissenschft. 29, 365 (1941).
- [4] Harkins, W. D.: J. chem. phys. 10, 268 (1942).
- [5] Haul, R.: Z. physik. Chem. B53, 337 (1943).
- [6] Chalmers, B., R. King, R. Shuttleworth: Proc. Roy. Soc. A194, 465 (1948).
- [7] Burke, J. E.: Grain control in industrial metallurgy, ASM, Cleveland, Ohio 1949.
- [8] Turnbull, D.: J. chem. Phys. 18, 769 (1950).
- [9] Autorenkollektiv, Landolt-Börnstein, Band I, 4. Teil. S. 536-545, Springer-Verlag 1951.
- [10] Greenhill, E. B., S. R. McDonald: Nature 171, 37 (1953).
- [11] Kingery, W. D., H. Humenik: J. phys. chem. 57, 359 (1953).
- [12] Shtratton, R. S.: Phil. Mag. 44, 519 (1953).
- [13] Rienäcker, G.: Z. angew. Chem. 66, 149 (1954).
- [14] Schubert-Birkenstedt, M.: Z. anorg. Chem. 176, 227 (1954); Z. angew. Chem. 66, 149 (1954).
- [15] Auerbach, R.: Werkstoff und Korrosion 5, 208 (1954).
- [16] Skapski, A. S.: Acta Met. 4, 576 (1956).
- [17] Zadumkin, S. N.: Aus K. Wolf: Physik u. Chem. d. Grenzflächen, Bd. 1, Akademie-Verlag 1957.
- [18] Hering, C.: Physics of powder metallurgy, McGraw-Hill, New York 1957.
- [19] Barnes, R. S.: G. B. Redding: J. nuclear energy 10, 32 (1959).
- [20] Gilman, J. J.: J. appl. phys. 31, 2208 (1960).
- [21] Jaccodine, R. J.: J. electrochem. Soc. 110, 524 (1963); J. appl. phys. 31, 2208 (1960)
- [22] Inman, M., H. Tipler: Met. Rev. 8, 105 (1963).
- [23] Benson, G. C., T. A. Claxton: phys. chem. sol. 25, 367 (1964).
- [24] Delchar, T. A., G. Ehrlich: J. chem. phys. 42, 2686 (1965).
- [25] Flint, O.: J. of nuclear materials 16, 233 (1965).
- [26] Sell, P. J.: Forschg. u. Fortschritt 41, 166 (1967).
- [27] Richman, M. H.: Brown Univ. Tech. Rept., AT (30-1)-2394-25, Jan. 1967; Trans. ASM 60. 719 (1967).
- [28] Awraamov, Y. G., A. G. Gwocder: Fiz. Met i Metallov. 23, 405 (1967).
- [29] Wittmann, F.: Z. angew. Physik 25, 160 (1968).
- [30] Nicholas, J. F.: Austral, J. Phys. 21, 21 (1968). [31] Allen, B. C.: Final Rept. AD673793 Batelle Mem. Inst. Columbus (Ohio) 1968.
- [32] Zadumkin, S. N., I. G. Shebzukova: Fiz. Met. i. Metallov. 28, 434 (1969).
- [33] Autorenkollektiv, Handbook Chem. Phys., Chemic Rubber Co, F 19, Cleveland 1969/1970.
- [34] Hodkin, E. N., M. G. Nicholas, D. M. Poole: J. Less-Com. Met. 20, 93 (1970).
- [35] Wawra, H. H.: Radex 24, 88 (1971).
- [36] Wawra, H. H.: Metall 26 (1972) im Druck.

ОПРЕДЕЛЕНИЕ СВОБОДНОЙ ЭНЕРГИИ ПОВЕРХНОСТИ ПРОСТЫХ И СЛОЖНЫХ ТВЁРДЫХ ВЕЩЕСТВ С ПОМОЩЬЮ УЛЬТРАЗВУКОВЫХ ИЗМЕРЕНИЙ

I. ОСНОВНЫЕ ПОЛОЖЕНИЯ

. У. Вавра, Г. Г. Вавра

Имеющиеся в литературе данные о величине свободной энергии поверхностей твёрдых веществ мало пригодны из-за широкого разброса значений, полученных разными авторами. Так, например, для NaCl имеются данные, различающиеся на несколько порядков. Для других же веществ, например, для урана, тория, и.т.д. данные вовсе отсутствуют. Предлагается простой метод (дана формуда) для определения температурной зависимости поверхностной энергии с помощью ультразвука, позволяющий получить обширный количественный материал.