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The handedness, /'. e., the right and left asymmetry of elementary particles is explained in terms 
of the relativistic phase-space formalism. In this way a new development of our previous theory 
[2] is suggested. In the following the field equations are derived by variational method, the mass-
spectrum of baryons are obtained and NOETHER'S theorem is generalized. In fact, the transformations, 
defined usually in the isobaric spin space, appear as continuous transformations. Finally, the philo-
sophical concept of space-time continuum as well as the interpretation of the method suggested 
is discussed. 

§ 1. Introduction 

The spin and the linear polarization of elementary particles, as well as their 
various internal attributes — such as baryon charge, isospin, hypercharge and 
parity — associated with the abstract concept of isospace (isobaric spin space) and 
its transformations indicate that there must be some additional intrinsic property of 
the fields, an additional degree of freedom, which has not been fairly considered 
in terms of the usual formalism of the theory of elementary particles. E. g., the 
existence of the spin shows in itself that the point-model of elementary particles 
associated with the familiar local theory of fields does not provide a complete de-
scription of the properties of the particles, since, the rotational axis connected with 
the spin angular momentum cannot be explained in a natural manner. Furthermore, 
the linear polarization — /'. e. the space-independent correlation of the momentum 
and the spin angular momentum of fermions — proves that this distinguished direction 
may be in close connection with the anisotropic internal structure of particles not 
properly considered previously. The intrinsic anisotropy of particles appears first 
of all in their handedness by which the asymmetry of right and left is expressed. 
Of course, on the bases of an extended particle-model or based on a rigid-body model 
this anisotropy could be characterized [1], but the relativistic formulation of such 
a theory would be rather difficult and the results of such theories would only be 
cumberously "translated into the language of field theories. Moreover, taking the 
current methods of the theory of elementary particles into account, it can be noticed 
that these methods have, f rom certain point of view, two essential different features. 
Some of them are closely connected with geometry and obtain such physical laws as 
conservation of energy and momentum, etc.', the others, nevertheless, are rather 
based on the abstract concept of the isospace than current geometrical terms and 
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result in such physical laws as the conservation of charge or that of baryon number, 
etc. In other words, some of the groups of transformations — like translation, rota-
tions and inversions in the four-dimensional spacetime continuum — possess an 
immediate geometrical meaning, but some of the others — such as e. g. gauge trans-
formation of first kind, charge conjugation, charge-symmetry and mesoparity 
transformation — possess none. However, the reality of these latter attributes of 
elementary particles indicate that the angles of isorotations as well as the planes 
of isoreflexions are not located in an abstract space, but within space-time itself. 
This is the reason that several investigations have been recently published to explain 
the internal degrees of freedom of physical fields as well as to interpret the isospace 
and its transformations in geometrical terms. These proposals are, of course, very 
different. 

Our recent investigations [2] in this direction have been based on the supposition 
that in the anisotropic internal structure of the elementary particles the anisotropy 
of the space-time continuum would appear. Having FROHLICH'S theory in mind 
[3—5], based on terms of the relativistic phase-space formalism the suggested theory 
can be developped as follows. 

§ 2. The Relativistic Phase-space and the Internal Structure of Physical Fields 

Let us provisionally suppose that the structure of the space-time continuum is 
pseudo-EucLiDiAN, i. e., its metrical fundamental tensor has the components 

Voo = 1) Voi = 0 , yik = - S i k , {i,k = 1 , 2 , 3 ) ( 2 , 1 ) 

where 5ik means the KRONHCKER'S tensor. 
First of all, we would explain the handedness, i. e., the right and left asymmetry 

of the elementary particles. 
In the four-dimensional space-time continuum in a certain LORENTZ frame 

the particle considered has the position coordinates {x^} and the components of its 
momentum four-vector are {/>"} (n = 0, 1,2, 3) which fulfil the well-known relation: 

= 0, (2,2) 

together with the postulate that this definition should be invariant under continous 
LORENTZ transformation, where m0 denotes the rest mass of the particle (h = c = 1). 
Although, the components of the momentum have to fulfil condition (2,2), they are 
otherwise in all points of the space-time continuum quite arbitrary. Hence, the 
state of the particles can be easily characterized by introducing in every point {*"} 
of the co-ordinate-space a local momentum-space {p"} wherein the momentum four-
vector can be regarded as radius vector. The position and momentum co-ordinates 
of the particle, i. e., the rectangular coordinates {*"} and {/>"} altogether determine 
the so-called phase-space, in which an arbitrary point {x^, p*1} refers to a special 
state of the particle considered. 

Owing to the relation (2,2), however, the components of the momentum four-
vector are not independent, namely, by the four numbers {/?''} = {p°, pk} the relation 

(P0)2 - i (Pk)2 = m2
0 k = 1 

( 2 , 3 ) 
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has to be fulfilled. By the notation 

2 i P k ) 2 ^ P 2 (2,4) 
k = 1 

one can obtain that 
p = ±{m2o+p2},/>. (2,5) 

In fact, the local momentum-space has only three independent momentum co-
ordinates. This means, of course, that in the co-ordinate-space {*"} by the radius 
vector of the momentum-space, i. e. by the four momentum components {p*1}, 
only a direction is determined. As a matter of fact, the phase-space has 4 + 3 dimen-
sions. 

In the case of a co-ordinate transformation 

'dx* 
xtt = x>l{x") ^A = det 

the law of transformation of the momentum is given by 

ÔJC* 
5 * 0 ( 2 , 6 ) 

— flx>' 
P* = (2,7) 

In the following, let us only consider the complete group of LORENTZ transformations 
which will be denoted by 

A LORENTZ transformation in momentum-space may be interpreted in two 
ways: either the co-ordinate axes are considered fixed and the radius vector has 
been changed according to (2,7) [the active interpretation of the group], or vice 
versa [the passive interpretation of the group]. The latter interpretation determines 
the possible frames of reference in the local momentum-space in terms of the f rame 
SC originally introduced in the co-ordinate-space {*"}. 

Due to the double sign of p° both of the radius vectors {p°, pk) and { — p°, pk} 
fulfil the relations (2,2) and (2,3), respectively. Of course, these radius vectors 
can be transformed in a continuous way into one an other, or into any radius vector 
of the momentum-space. Taking the complete group of LORENTZ transformation 
into account — as FRÖHLICH pointed out in [5] — these transformations may 
thus be considered as generating two „three-dimensional" momentum-spaces: one 
with p° 0 and the other with p° < 0. 

The frames of reference have certain features that can be chosen arbitrarily; 
e. g., the frame 3C of the co-ordinate-space may be a right-handed system. In this 
case — having the sign of p° — in the momentum-space only the directions of space 
axes of the local frame of reference can be chosen arbitrarily. Let us suppose, fo r 
instance that its spatial axes form a right-handed system, then the local f rame of 
reference of the momentum-space is right-handed if p° > 0 and left-handed if p° < 0 . 

Considering in the subspace {xk} the inversion in respect to the origin: 

x ° = x ° , x 1 = - x 1 , P = - x 2 , x 3 = - x 3 ( 2 , 8 ) 

the momentum components pk transform into —pk. This means in terms of the 
passive interpretation of co-ordinate transformations that we have changed the 
handedness of the local frame of reference in the momentum-space, /. e. a right-
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handed f rame in {p k } subspace (assuming that the original {xk} f rame was right-
handed) t ransforms into a left-handed one. It is obvious that the definitions (2,2) 
and (2,3) f rom which the properties of the momentum-space were originally defined 
do not permit distinction between right-handed and left-handed systems because 
(2,3) does not contain pk but only (p k ) 2 . 

Owing to the above considerations to be explicitly expressed on the one hand 
that the momentum-space is three dimensional and on the other hand that the 
handedness of the local f rame of reference in the momentum-space is arbitrary, let 
us introduce in the {x"} point of the co-ordinate-space three unit vectors A? ( / = 1 , 2, 3) 
which may be, without restriction of generality, by pairs orthogonal , i. e. 

V A ? A J = <5,j • (2,9) 

The three degrees of freedom of the momentum-space may be characterized by the 
angles 

tii = arc cos {y„,}.?pvlm0}, (2,10) 

between the direction corresponding to the radius vector pf and the unit vectors 
Af. The angles and the scalar quantities 

Ct = cos = y„v /Jlpvlm0 = ?.?ptllm0, (2,11) 

respectively, in the case of any fixed direction of the unit vectors Af determine 
unambigously the direction in the co-ordinate-space {*''} characterized by the 
radius vector p". Call the three by pairs orthogonal unit vectors Af in the following 
as A-trieder. Of course, the A-trieder as new local f rame of reference and the ensemble 
of the quantities {£;} as independent co-ordinates, or as the independent components 
of the radius vectors in the momentum-space, can be regarded, indeed, in this manner 
any direction in the co-ordinate-space corresponding to the direction determined 
by the momentum vectors pf can unambigously be characterized. 

Due to the definition (2,11) of the quantities {£,-} one sees immediately that 
they are invariant under any LORENTZ t ransformat ion; e.g., in the case of the 
inversion (2,8) the quantities (,• do not change, since the spatial components of the 
A? and p** vectors change their sign simultaneously. Considering this proper ty of 
the quantities {£¡} the doubling of the momentum-space appears again. The inversion 
(2,8) transforms, namely, the A-trieder {A?, AJ} into {A?, — Af} and this t ransfor-
mation indicates simultaneously the change of {p°,pk} into {p°, —pk}. In fact, the 
inversion (2,8) changes the handedness of the A-trieder in the spatial subspace of 
the momentum-space. However, the quantities depend linearly on the base vectors 
A? of the new local f rame of reference of the momentum-space, therefore, the sign 
of the quantities {£;} depends on the handedness of the A-trieder. For the sake of 
simplicity denote the A-trieder with base vectors {A?, A*} as A+-trieder, and the 
other with base vectors {A?, — A*} as A~-trieder. 

For the sake of appropriateness let the directions of the A-trieder axes be chosen 
in a special way. Considering the fact that by the introduct ion of the local momentum-
space those properties of the particles have to be characterized which are independent 
of their translatory motions, it seems to be suitable for the direction of the trieder 
axes to take into account the rest f rame of reference <3f° of the particle in which 
its momentum components are {pf0)} = Mo)> 0, 0}- As matters stand, is 
distinguished among the other f rame of references 3f. that the direction of its t ime 
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axis is directed into the direction of the momentum of the particle. Let the directions 
of the new local f rame of reference be fixed in the system 3£° in any way, then the 
t ransformat ions of the LORENTZ group transform the momentum four-vector p f o 
into the different radius vectors of the momentum-space, and, simultaneously, the 
quantit ies {£,-} run over the values — 1 = + 1 ( / = 1 , 2 , 3). 

T o express the doubling of the momentum-space more simply, let us suppose 
tha t the by pairs orthogonal Af unit vectors are orthogonal to the momentum vector 
of the particles. This means, however, that in the rest frame of reference 3(-° the 
relations 

C<iO) = ^ A o W w o = 0 ( / = 1 , 2 , 3 ) (2,12) 

CO) 

have to be fulfilled. In fact, the components of the Af-trieder axes in 3C° are {Af} = 

= {0, A,-}, where A( = {A*} denote the spatial components of the unit vectors k f . 
(0) (0) 

Due to (2,9), the A; three-vectors are, indeed, by pairs orthogonal, too, otherwise 
they can be directed in the {*'} subspace arbitrarily. Of course, we will suppose 
tha t the direction of the A,-vector coincides with that of the /-th axis of In terms 
of the original local frame of reference of the momentum-space this means that its 
time-axis is determined by the four-vector p f a and its spatial axes coincide with 
the vectors A;. But, in this way alsou the handedness of the local f rame of reference 
is determined: it is right-handed if />(0)>0 and left-handed if In the case 
of /> (

0 o)>0and A + - t r i ederor p&o^O and A ""-trieder the local f rame of reference 
is right-handed, as well as in the case of / \ o ) < 0 and A+-trieder or A (°o)>0 and 
A - -trieder it is left-handed. This means, indeed, that the doubling of the momentum-
space be characterized by the handedness of the A-trieder itself. 

It is obvious that by fixing the trieder axes in the Af vectors are be unambigu-
ously determined in all f rame of reference. This is the reason that for the sake of 
simplicity our argumentation will be only developped in the system — the co-
ordinates of which will be denoted instead of {xf0)} by {*"} — namely, our results 
can be transformed into all frames of reference without any difficulty. Let us, however, 
emphasize again that the system is distinguished by physical terms: it is the rest 
system of the particle and it can be, e. g., supposed that the A3 axis of the A-trieder 
coincides with the direction of rotational axis associated with the spin angular 
momentum of the particle. 

Owing to the definition (2,11) of the quantities {£,•}, the £ r s are dependent 
on the momentum conponents {pf} and on the direction of the A-trieder. We have 
emphasized several times that the quantities are invariant under any LORENTZ 
transformation of the group However, intrinsic transformations of the local 
momentum-space can be introduced by changing the directions of the trieder axes 
which do not induce any change of the {x''} coordinates. These transformations, 
denoted in the following by may be identified with the intrinsic motions of the 
particles referring to the internal degrees of freedom of physical fields. Therefore, 
let the „co-ordinates" {CJ of the local momentum-space be called as internal co-
ordinates and the „co-ordinates" {A''1} of the co-ordinate-space as external co-ordinates 
of the physical fields ip =i¡/(x11, Q . 
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It is obvious that the group fy, i. e., the group of internal transformations 
can be generated by the rotations of the A-trieder around its origin and by the reflexions 
in respect of the trieder. Consider, first of all, the rotations of the A-trieder which 
can be characterized by the EULERIAN angles {9), <¡/, d}: 

l i = (2,13) 

where the well-known matrixelements M\ = M^(cp, &) fulfil the orthogonality 
relations 

M\M) = bu and M\M? = b's. (2,14) 

Due to the definition (2, 11) of the internal co-ordinates their transformation 
law can be obtained as follows: 

a = z; *pjm0 = M? 4pjm0 = M? ck. (2,15) 

It is obvious that under the rotation (2, 13) the trieder axes remain orthogonal to the 
momentum four-vector p f o , therefore the rotations of the group are identical with 
the EUCLIDIAN rotations of the three-dimensional space, i. e., they are isomorphic 
to the rotations of the spatial subspace of the four-dimensional co-ordinate-space 
which is orthogonal to p f o . This can be proved as follows: Let us introduce the 
notation 

5 % e , = c ? + c i + i ! = c2, ( 2 , 1 6 ) 
then, due to (2, 15), 

r = ¿iJCiCj = SiJM!M]CrCs = M I M f U s = = C2 ( 2 , 1 7 ) 

can be obtained, i. e., £2 remains invariant under the rotations (2, 13), which is 
just the definition of the EUCLIDIAN rotations. In fact, one can establish a mapping 
of the rotations of into the motions of the unit sphere in the local momentum-
space which has the equation in its parametric fo rm: 

Ci/C = s in$ COS (p 

UC = sin # sin q> (2 ,18) 

C3/C = c o s ^ 

where (•&, <p) mean the polar angles in the momentum-space. Furthermore, one 
can immediately see that the reflexions of the group are isomorphic to those 
of the three-dimensional reflexions, therefore, the group is isomorphic to the 
three-dimensional rotary-reflexion group. 

The intrinsic anisotropy of elementary particles with non-vanishing spin mo-
mentum, characterized by the longitudinal polarization of the particle, means in 
terms of the theory suggested that only those elements of the local momentum-
space have to be considered which form a constant angle with the rotational axis 
associated with the spin of the particles. If we suppose that this rotational axis 
coincides in the rest system 3C° of the particle with the A3 axis of the X+-trieder, 
then the intrinsic anisotropy may be characterized by the relation: 

£3 = cos# 3 = pjm0 = const. (2,19) 
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So far the momentum-space was three-dimensional corresponding to the three 
internal degrees of freedom, but the relation (2,19) reduces the internal degrees 
of freedom by one and the internal space becomes only two-dimensional. This 
means that the adequate directions can be characterized by the internal co-ordi-
nates {Ci,C2}. 

The characterization of the intrinsic anisotropy of the particles is not yet expli-
citly covariant. However, it can be easily, reformulated in such a way that the 
direction of the distinguished rotational axis mentioned above is rather charac-
terized by the anisotropy of the co-ordinate-space than explicitly by the 1 3 axis 
of the /-trieder. 

Let the longitudinal polarization of the particle be denoted by 0* and consider 
the surface in the momentum-space in its parametric form 

Ci/C = (1 + & cos #) sin § cos cp 

£2/£ = (1 + 0> COS 0) sin 0 sin (p (2,20) 

£ 3 / £ = ( l + ^ c o s # ) c o s # 

instead of the unit sphere (2,18), the points of which determine the different direc-
tions corresponding to the radius vectors of the local momentum-space. It is ob-
vious that (2,20) is an equation of a rotational surface which distinguishes the 
direction of the axis of the A-trieder. 

Let the polar angles (#, tp) be eliminated, then with the abbreviation ^ = CJi 
we have instead of (2,20): 

{1 + 0>y3[(y1)2 + (y2)2 + ( ^ 3 ) 2 ] - 1 / 2 } " 2 K j 1 ) 2 + (y2)2 + (y3)2] = 1. ( 2 , 2 1 ) 

Introducing the metrical fundamental tensor 

g a = - 8 l k { l + & y 3 l ( y l ) 2 + (y2)2 + ( y 3 ) 2 ] - % } - 2 ('">* = 1,2,3) (2,22) 

in the {yk} space, (2,21) may be written in the form 

-giky'yk= 1. (2,23) 

The surface (2,20) or (2,22) is defined in the momentum-space, i. e., in all 
points of the co-ordinate-space {x"}. Therefore, it can also be defined in the follow-
ing way: 

Consider the „unit vectors" /** by re-definition of the metrical structure of the 
co-ordinate-space. Let the components of the new metrical fundamental tensor 
be given by 

goo = U Sot = 0, gik = - 5 t t {1 + ^ y 3 [(y1)2 + (y2)2 + (y3)2]~<*}-2 (2,24) 

which depend on the directions determined by the radius vectors in the momentum-
space. Then, the unit vectors directed in the direction of p*1 may be defined as 
follows: 

l*=p*IF, (2,25) 
where 

^ { g ^ P - P * } * ( 2 , 2 6 ) 
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means the new metrical fundamental function of the co-ordinate-space. One can 
immediately obseive that the components g)JV, of the new metrical fundamental 
tensor as well as the new unit vectors I" are homogeneous functions of the {/?"} „di-
rection co-ordinates" of zero order. 

The new metrical structure of the co-ordinate-space may be covariantly char-
acterized by the surface: 

Fix", / " ) = 1 (2,27) 

which, as the indicatrix of the space, can be regarded. Its explicit form is 

(/°)2+gikl'lk=l. (2,28) 

Denote the co-ordinates of the end-points of I" by y", then we have 

( / T + , ? * > " / = ! • (2,29) 

Comparing (2,29) to (2,23) one observes that the surface (2,23) can be deduced 
f r o m the indicatrix (2,29) by cutting it by the hyper plane 

j ° = / 2 . (2,30) 

In fact, the intrinsic anisotropy of the co-ordinate-space due to the internal struc-
ture of the particles had been experimentally expressed by the longitudinal polariz-
ation of the particles, which can be covariantly characterized by the indicatrix (2,29) 
of the space. This indicatrix distinguishes a direction in the spatial subspace, namely, 
its rotational axis, and the geometrical and physical quantities defined in the phase-
space are dependent on the directions in respect to this distinguished axis. If the 
longitudinal polarization of the particle vanishes {3P—<S), the metrical fundamental 
tensor (2,24) is reduced to the metrical fundamental tensor of the pseudo-Euc-
LIDIAN space (2,1), the adequate section of the indicatrix is instead of (2,23) or 
(2,20) the sphere (2,18) and the phase space is isotropic. 

The metrical fundamental tensor plays an important role in the definition of 
the scalar product of vectors, therefore, in anisotropic spaces not only the length, 
but also the angle of inclination of vectors depends on the direction. At the defi-
nition of the local f rame of reference of the momentum-space as well as that of 
the EUCLIDIAN rotation of the A-trieder were apparently an important supposition 
that the trieder axes were orthogonal in EUCLIDIAN sense. Therefore, the problem 
occurs whether in the case of the new metric (2,24) our previous results concerning 
the definition of the group remained unchanged or no t? It will, however, be 
proved that in the case of the metrical fundamental tensor (2,24) the condition 
of orthogonality (2, 9) remained valid, e., if the trieder axes A,- and AY were ortho-
gonal in EUCLIDIAN sense, then they remain orthogonal also in the sense of the 
new metric. But, we have to mention that the length of the vectors will generally 
be changed. 

Owing to the introduction of the new metric, one has to write the orthogonality 
relations in the form: 

g„vA?A} = 0, if i ^ j . (2,31) 

This means in the rest system of the particle (Si°) that 
= 0, if i ^ j , (2,32) 
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where due to (2,24) 

g„ = -8,MP)- = WWY + W H p 3 ) 2 ] - ^ - 1 * ^ (2,33) 

Hence, (2,32) may be written as 

m{p)dj:iX) = 0, if iVy, (2,34) 

and, indeed, one immediately observes that the EUCLIDIAN definition of orthogo-
nality remains valid. Nevertheless, the length of the vectors = depends 
on the direction determined by {p"} and the vectors with the components 

Z = / • / V'm~(p) ( ' = 1 , 2 / 3 ) (2,35) 
are the new unit vectors. 

Of course, the definition (2,10) or the angles will be changed, too, and their 
new definition is 

0 ; = a rccos { g „ v ( / > ) ! ? 0 (2,36) 

as well as instead of we introduce 

& = cos 0 , = ^ ? / ' (2,37) 

as new internal co-ordinate. The further results discussed above do not formally 
change, but in reality in the case of non-vanishing longitudinal polarization all 
geometrical and physical quantities depend on the direction in respect to the dis-
tinguished rotational axis corresponding to the spin angular momentum. 

The space of co-ordinates {x",p>'}, i. e., in our previous terms: the phase-
space with anisotropic metric, are usually called in geometry as line-element space 
which is an ensemble of line-elements, or in other words: an ensemble of all di-
rections {p"} in the different points of the space {*"}. The {x11} are the position 
co-ordinates and the {/>"} the homogeneous direction coordinates of the line-ele-
ments. The line-element geometry with the metrical fundamental tensor (2,24) 
is a special case of the general line-element geometry previously suggested [6—8]. 
In this case the angles 0, and the quantities as inhomogeneous direction co-ordi-
nates can be regarded. 

§ 3. The Field Equations 

In current field theories the physical fields are characterized by one or several 
space-time functions: i j / ( x u ) , ^X(x1') etc. — fulfilling certain partial differential 
equations, the so called field equations — having definite laws of t ransformations 
under the co-ordinate transformations (2,6). Physical field defined in anisotropic 
spaces are analogously characterized by such quantities fulfilling the field equations, 
nevertheless, these functions depend on the line-elements {x", p"}, i. e., the field 
components are: i/>(x", p f ) , i / ^x" , p") etc. being homogeneous functions of zero 
degree of the direction co-ordinates { p f } , of course. Instead of the homogeneous 
direction co-ordinates let us introduce the inhomogeneous direction co-ordinates 
or rather the internal co-ordinates 

The field components have to satisfy definite laws of transformations again, 
however, in this case their characters of transformation are doubled. They have 
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definite laws of transformation under the transformations of the group Q,x as well 
as those under the transformations of the group These two kinds of transfor-
mation laws are independent. This point will be discussed in the following in de-
tails (§ 7.). 

Suppose that the LAGRANGIAN of the field depends on the metrical funda-
mental tensor, on the field components and on their derivatives. For the sake of 
appropriateness, the symbols: 

= = and ^ d t ^ ^ (3,1) 

will be introduced. Then, the LAGRANGIAN can be implicitly written as follows: 

...), (3,2) 
where g denotes the determinant of the metrical fundamental tensor of the external 
space: 

g=det|g„v| (3,3) 

and y denotes that of the internal space: 

y = det \yik\, (3,4) 

the latter with the law of transformation 

. = j & i l * 

where 

& = I A* = det dti 
dtr 

(3,6) 

means the transformations of the internal space being elements of the group 
From a geometrical point of view we have, of course, no a priori restrictions for the 
structure of the internal space and its structure may be determined by physical 
factors. It seems, however, that it can provisionally be assumed that the metrical 
structure of the internal space is EUCLIDIAN, i. e., 

7 ik = &ik- (3,7) 

Owing to these considerations the integral of action can be written in the form: 

3 = j ¡2,d*xdlZ, (3,8) 
n n« 

where dl£ means the two-, or three-dimensional volume element of the internal 
space according to its dimension. The domain of integration for the external co-
ordinates is a four-dimensional domain Q, and for the internal co-ordinates Q* 
with the restriction — l S ^ - ^ + l (/ = 1 ,2 ,3) . 

The integral of action (3,7) has to be invariant under any transformation 
of the external and internal space, respectively; i. e., it is an invariant of the general 
group of transformations 

q = q x x % . (3,9) 
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In respect to the derivation of the field equations be only mentioned that the 
variation of £ has to vanish: 

= 

n n* 

f f d ? d<? d ? 
J 2 + = ( 3 , 1 0 ) 

In fact, as usual ¿(¡/x has to vanish at the limit of the integration domains, there-
fore, by partial integration 

f d d ? 1 

? i w . - " ' ^ - - - * • » « - • • ] " * • < " " • < ' 0 < 3 - " > i 
can be obtained for all variation of the field components and, finally, we get 
the field equations: 

— — . . . - 5 ? ^ — . . . = 0 . 
# « l i 

(3,12) 

For the sake of simplicity it has been considered a LAGRANGIAN depending only 
on the first derivatives of the field components. The general cases were previously 
discussed in details [6—8]. 

§ 4. The Mass-spectrum of Fermions 

In Order to apply the theory in a particular case, consider the two-component 
f e r m i o n fields i n v e s t i g a t e d b y FEYNMAN [9], GELLMANN [10] a n d M A R X [11 ] ; i. <?., 
let us suppose that the LAGRANGIAN has the following explicit fo rm: 

£ = - \ g \ - * \ y \ ~ * 2 g » * d r f A d , i l t A + y i k d t v A d t t A + eipAilfA}, (4,1) 
A 

where the index A distinguishes the two components of the fermion field corres-
ponding to different spin states (,4 = f , j . ) . Substituting this LAGRANGIAN into the 
integral of action by variation in respect to ij/A the field equations 

d " d ^ A + d * > d U A - ^ A = 0 (4,2) 
can be obtained, where 

d " = g " v 3 v and 8*' = yikdk. (4,3) 

As a matter of fact, if we suppose that 

i k A x ^ Q ^ X A x ' < ) E a ( Q (4,4) 

Eq. (4, 2) can be separated: 

x z 1 { M M = - H - H ^ a f S ^ - e E ^ } , (4,5) 

and, finally, if the constant of separation is denoted by v? we have 

{d*id? + (K2-e)}EA = 0. K % 0 ) 
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One can immediately observe that the result obtained is very analogous to 
that derived previously in the case of bilocal theory of fields reformulated it in 
terms of the general line-element geometry [6—8]. 

The second equation of (4,6) is the well-known differential equation of an 
eigenvalue problem for the constant of separation y.2, the spectrum of which — 
taking into account its meaning in the first equation of (4,6) — gets the mass-
spectrum of fermions under consideration (h = c = 1). 

The internal space has in the case of fermions two dimensions, so that the 
eigenvalue problem corresponding to the second equation of (4,6) can explicitly 
be written as follows: 

{dt2 + d t 2 + ( y - 2 ~ e ) ) ^ A = 0. (4,7) 

This equation is, indeed, the differential equation of the eigenvalue problem of 
the two-dimensional rotator. 

In terms of polar co-ordinates 

Q ^ r c o s c p , ¿2 = rsin(p (r = / 2 / = const). (4,8) 

Eq. (4,7) can be written into the form 

{ t j w H x 2 - ' ¥ a = 0' (4 '9) 

where J means the moment of inertia. Considering, of course, the usual condition 
of periodicity the following eigenvalues and eigenfunctions can be 
obtained: 

-4 = s + j j n 2 (« = 0, ± 1 , + 2 , .. .) (4,10) 

_(n) _ 1 
~ A ~ f l ^ e x P { / > ' « P } - (4,11) 

The case « = 0 has to be excluded, namely for / 2=0 the eigenfunction would 
not depend on the internal co-ordinates which is in contradiction with the general 
supposition that all physical quantities have to depend on the internal co-ordinates, 
too. In fact, to express this circumstance explicitly, let the notation 

n = S+1 ( 5 = 0,1,2, . . . ) (4,12) 
be introduced. 

Unfortunately^ in the expression (4,10) of the constant e and J are un-
known and we have not yet any possibility to get their a priori values which would 
only be expected in the frame of a non-linear theory where also the interactions 
of fields are taken into account. Nevertheless, one can immediately observe that 
for y-s in the case the relation 

*§ = * 8 + 4 { < 5 + 1 ) 2 - 1 H * ? - * O ] (4,13) 

can be obtained. In fact, for a family of particles if the masses of the first two iso-
doublets are known, the masses of the heavier isodoublets can be calculated by 
means of (4,13). This is the case for baryons as it will be shown in the next paragraph. 
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§ 5. The Mass-spectrum of Baryons 

Owing to our previous result reviewed in § 4. of this paper, the fermions form 
isodoublets. In fact, this result does not agree with the usual supposition according 
to which the £ hyperons form an isotriplet and A° particle is an isosinglet. It is, 
however, in full agreement with the hypothesis of the global baryon-pion inter-
action suggested by GELL-MANN [12]. In formulating this principle, one has to 
consider that the pion interaction of hyperons of first order (A°, shows 
threedimensional isotropic invariance both if the four particles are divided into 
two doublets as well as if they form a singlet and triplet. This remarkable fact has 
been emphasized also by SCHWINGER [13] who at the same time proposed a possible 
explanation in the frame of the four-dimensional isospace. In order to overcome 
the difficulty of SCHWINGER'S scheme that in the case of baryons of even order 
(p, n, H°, E~) an other subgroup of the six-parametric symmetry group must be 
identified with the three-dimensional symmetry group of kaons as in the case of 
baryons of odd order (A°, I + , GELL-MANN'S idea has been more re-
cently reinvestigated by KAROLYHAZY and MARX [14] whose theory reproduces 
the important results of GELL-MANN, SCHWINGER and others, but, is free f rom 
this difficulty. 

The theory of KAROLYHAZY and MARX has been built up on a four-dimesional 
mathematical scheme proposed for particles being in strong interactions with each 
other. To describe the pions and the nucleons they need three and two independent 
components, respectively; therefore, the former are represented by the spinor 

= nf and the latter by a spinor Ba. For the description of the hyperons of first 
order (A°, £ + , Z°, a spinor B ^ was suggested. In fact, pions and nucleons 
have nothing to do w'ith dotted indices, hence, it can be supposed that the number 
of dotted indices is related to the absolute values of the strangeness. This means, 
however, that the doublet of kaons is represented by the spinor K f u r t h e r m o r e , 
the baryons are described by spinors with one undotted and so many dotted indices 
as is the order (/'. e., absolute value of the strangeness) of the baryon which brings 
KROLIKOWSKY'S theory in mind: 

I S I = 0 : B X :p,n 

|S | = 1 : A°, 1°, I " (5,1) 

As a matter of fact, the baryons are split into doublets: 
^ f f l - n * - < » 

Antibaryons are represented by the complex conjugate of the corresponding spin-
ors, B*, etc. 

Bearing the classification (5, 1) of baryons in mind, one observes that the quan-
tum number S of our isorotator introduced in the last paragraph as the absolute value 
of the strangeness can be interpreted and the exitation of the isorotator n = S +1 
agrees with the number of isodoublets of type (5,2). Furthermore, one can observe 
that due to the double sign of the quantum number n in Eq. (4,10) and (4,11), 
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respectively, ± ( |« |—1) — with n ^ O — immediately with the strangeness of the 
particles can be identified, and the double degeneracy of isorotator states may be 
associated with the well-known property of the scheme of GELL-MANN—NISHIJIMA 
tha t the strangeness of baryons and antibaryons have opposite signs. 

So far, as only pion-interactions are considered, the masses of the different 
isodoublets are the same and the mass-spectrum of baryons can be described by 
the relation (4,13). As a matter of fact, let us suppose that and y.\ equal with 
the averages of the masses of nucleons and of that of the hyperons of first order 
{15], then due to Eq. (4,13) the mass-average of the hyperons of second order can 
be obtained. Our calculations are summarized in Table I. (the unit of mass is the 
mass of electrons). In fact, the agreement is satisfactory. The calculated average 

Table I. 

Elementary particle Observed mass Mass-average Elementary particle Observed mass 
observed calculated 

P 
n s . 

1836,03+0,02 
1938,56+0,02 1837 -

A" 

E° 

2182,39+0,24 
2327,4 + 0 , 6 9 

2329 

2342 + 1 

2295 -

3° 2585 + 1 
2595 ± 3 9 

2590 2901,92 

value of the mass of hyperons of second order differs by 12% from that of xions. 
A s matters stand, this difference may be reasonable, namely, the mass-average 
•of these hyperons must be somewhat larger than the mass-avarege of xions expected. 
Indeed, in calculating the mass-average of the hyperons of second order — mentioned 
as the observed mass-average of xions in Table I. — the masses of the hypothetical 
Q particles could not be considered. 

The splitting of the degenerate baryon states into isomultiplets will be perform-
ed first of all by kaon interactions (A—2 mass-splitting). Electromagnetic inter-
actions will go a step further and distinguish the A3 axis of the A-trieder and it re-
mains only the invariance with respect to the rotations about this axis. Indeed, the 
electromagnetic interactions cause further mass-splitting: p — n, E + —Z, — H~, etc. 

The Q particles are hypothetical ones, the mass of which is about the sum 
•of the xion- and pion-mass. If actual, the Q — E mass difference is larger than the 
.3 mass, then the Q-hyperons decay in a very short time (about 10~2 2 sec) into 
xions, and is practically unobservable. Nevertheless, it cannot be omitted f rom 
•our scheme, as the 1° hyperon — having a lifetime longer by only a few orders — 
plays also decisive role. 

Of course, it is an interesting problem whether the other isodoublets suggested 
f o r by the formula (5,13) will be observed in the future or not. 

In order to find also the fine structure of the mass-spectrum, one has to con-
sider the interactions of fields, too. However, this will be discussed in the future. 
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§ 6. Mass-spectrum in the Case of Threerdimensional Isospace 

In the case of three-dimensional internal space the second equation of (4,6) 
has the explicit fo rm: 

{dt2 + 3V + S32 + (x2 - e)'}3 = 0. (6,1) 

This is the differential equation of a three-dimensional rotator. By introducing 
the polar co-ordinates 

^ = £ sin ft cos 95, = i sin $ s i n 9>, £3 = £ c o s $ ( ? = { £ ? + £ 2 + f3}'/2 = / 2 M ) (6,2) 

we have 

Ij+i"2-«)}3^ = <6'3> 
Considering those solutions E(# , <p) which are finite, continuous and monovalent 
in the domains and 0 s<p^27 r , they are 

&'-mW,<p)=Ylm(#,<p), _ (/ = 0 , 1 , 2 , . . . m = 0, ± 1 , ±2,...±l) (6,4) 

where Ylm(j), q>) mean the spherical functions corresponding to the eigenvalues 

= !)• (6,5) 

The case 1 = 0 has to be excluded again, namely, S (0>0) = const, would be in con-
tradiction to our fundamental supposition that E has to depend on the internal 
coordinates. 

So far , the mass-spectrum (6,5) cannot be discussed as well as the constant 
£ and M cannot be determined in this case, namely, isotriplets with strangeness 
|SI =>• 1 and with vanishing spin are unknown. However one has to conclude that 
such particles are possible in this approximation. Considering the interactions of 
the fields may be motivated while these particles have such a short life time that 
they are unobservable. 

§ 7. The Generalization of NOETHER'J Theorem 

In fact, the field components depend on the external and internal co-ordinates: 
•An = W * " , £/)• Investigate how in this case NOETHER'S theorem has to be generalized. 

Consider any infinitesimal variation of the co-ordinates: 

3c" = xx + 5x» and h = & + (7,1) 

As matters stand, the internal co-ordinates {£,} are invariant under any change 
of the external co-ordinates {x"} so that §*£ t is induced by the change of the direc-
tion of the A-trieder which involves no change of the external co-ordinates. This 

2 



18 J. I. HORVATH 

means that 8x" and S a r e independent. Denoting the variation of the field com-
ponent il/x induced by 5x" by jj/x, and that induced by S*£,• by ip x , the total variation 
of i¡jx is defined as 

5<px ¿Lr {x", id - ^(x", c,). (7,2) 

The transformations (7,1) are elements of the group defined by . 
The local variation of the field components ipx may be defined as follows: 

d y x ^ X ( x " , £,-) - ipx(x", £,•). (7,3) 

This means, however, in first order of Sx11 and 5 * ^ that 

<5<K = 5 y x + jp.(x« + dx', 6 +<5*6) - = S V . + ^ i ^ + l M ^ , . ( 7 , 4 ) 

The total variation of i//x does not commute with the derivation according to the 
co-ordinates, nevertheless, the local variation does. Otherwise, we have: 

fy«, = + + fa^Z, = d ^ x - 4 > x , e d ^ , (7,5) 

= + + = d f d ^ - ^ r d t d H r - ' ( 7 , 6 ) 

The total variation of the integral of action — being an invariant of the group 
(Sj! — has to vanish under the transformations (7,1) 

= J £i)]d*xdlZ -

« ( 7 , 7 ) 

- J f ! # « ( * * , a ^¿x", Q, iPxU(x", Q] d*x d'z = 0, n si* 

where we have implicitly supposed that the metrical fundamental tensors of the 
external and internal spaces remain unchanged as well as we considered that 
l£l = ly! = l- The general case was previously investigated in details in [7]. S3 may, 
however, be written in the form: 

<53= [ J ¿°Ld4xd'Z+ \ ¡L(fx,^xilt,^x]i)d4xdii-
6 n* 5 &• (7,8) 

- J 
A SI* 

Supposing that the LAGRANGIAN L is form invariant, the local variation 5°L 
vanishes and we have 

63 = J %tf, ft,, ¡)d*xd'Z - J \LWX, ^d*xd% (7,9) 
£1 SI« " «* 

The form invariance of the LAGRANGIAN is defined by several authors directly 
by this equation [15]. 
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Owing to (7,2) — due to (7,5) and (7,6) — we have 

= L(il/X +dil/a, tj/^ + Sij/^, \j/lU + d<l/aU) = 

r , , , i \ dL . . dL c , dL , 

r <?L dL . . . dL . . . B , 
= L + — + — d f i t a - T 7 — + 

# a # * , „ * dip a>„ 

Considering 

one gets 
T \ ÔL ^ dL 5L 1 , 

+ " - I I : - 4 1 ; ' " - H + ' ' - l " " + ( 7 J 2 > 

The JACOBIANS of the transformations (2,6) and (3,6) in the case of the infinite-
simal transformations (7,1) in first order of and 5 * ^ have the explicit form: 

A = l+de8x* and A* = l+d*8*ir, (7,13) 

respectively. This means, however, that 

s s = f f { L ^ + d i i s ^ ^ + d ^ ^ + d i U x i + d ^ i i - d r s ^ , ) -
n ri» ( ' , 1 4 ) 

— ^x.fit '/'al;)} d4xd'£. 

Taking into account that 

dL dL , dL , dL , 
3<L = e t c ( 7 ' 1 5 ) 

furthermore, that Sx" are independent of Ct and 8"ir are independent of x", res-
pectively, it can, finally, be obtained by simple calculations that 

S3 = F |'{dj" + dt[*'}d*xdli = 0 (7,16) 
n si» 

2 * 
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where the abbreviations are introduced: 

In fact, the integration domains Q and CI*, respectively, — the latter within 
the unit sphere of the {6} space — are arbitrary, so that due to (7,16) the gene-
ralization of the contonuity equation: 

^ f " + 3rf* f = 0 (7,19) 

can be obtained. Denoting by f = {f*} and by f * = { f * t } , respectively, the spatial 
components of f" and f*k, as well as by "v"(r) = {¿ t} and by ~v ( { ) = {dt} the corres-
ponding nabla operators, then (7,19) can be written in Jhe fo rm: 

<5of° + V w f + V ( 0 f * = 0. (7,20) 

Let V be the projection of Q onto the spatial part {x"} of the co-ordinate space, 
surrounded by the closed surface F, then due to GAUSS' theorem 

\dk\kd\x = J V ( x ) M 3 x = §\knkdf (7,21) 
V V F 

can be obtained where {rtk} means the unit normal vector of the surface element 
df of F. At the spatial limit JF— °° this integral vanishes, if one supposes — as it 
is usual — that the field components and their derivatives vanish at the infinity. 

The integral in the internal space may analogously be transformed. Now, 
let Q* be in this case the internal part of the unit sphere T* in the internal space, 
then due to GAUSS' theorem we have again: 

J 8t f*« = J v ( i ) J* d'£ = (j) f*kn$ dT* (7,22) 
£1» £1« r'« 

where {«*} means the unit normal vector of the surface element dT* of F* . This 
integral vanishes too, namely, the internal part 3 ( 6 ) of the field components in-
troduced in Eq. (4,4) is periodical on T*. 

Introducing the quantity 
JTOdefJ | 'fOJ3xdt£ = 

v si* 

- i i (7,23> 
V SI* 

due to the above considerations, the conservation rule associated with the conti-
nuity equation (7,19) can be written in its integral fo rm: 

= ( 7 > 2 4 ) 

i. e., J* 0 is a constant of motion. 
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Summing up, we arrived, at the following important result: any continuous 
symmetry group induces a conservation law for a certain physical quantity SF° 
which can be derived for any given system according to (7,23), once the LAGRANG-
IAN is known. Since, the LAGRANGIANS of the fields are bilinear in the field compo-
nents ij/„ and their derivatives, the same will hold for the constants of motion be-
longing to free fields. 

The connection between continuous symmetry groups and conservation laws 
was first recognized in full by E. NOETHER [14] and in current field theories — where 
the internal degrees of freedom have not be taken into account — were discussed 
by several authors in details [15]. 

As a new and perhaps important result of our above considerations not the 
formal generalization of NOETHER'S theorem has to be held according to which 
the internal motion of the physical systems induces new constants of motion too, 
however, the following recognition seems to be more remarkable: Owing to the 
connection between the local co-ordinate system of the momentum-space and 
the original frame of reference 3C in the co-ordinate-space, mentioned above in 
connection with the passive interpretation of co-ordinate transformations, in fact, 
continuous LORENTZ transformations of the co-ordinate-space correspond also to 
the discontinuous internal transformations (such as reflexions and inversions in 
respect to the A-trieder). Indeed, the internal inversion (in other words the change 
of the handedness of the A-trieder), e. g., may be reached by continuous rotations 
in the four-dimensional co-ordinate-space. This means, however, that if the internal 
space can be interpreted in physical terms, then new constants of motion can be 
derived corresponding to the intrinsic properties of physical fields. 

§ 8. Discussions 

Collect the most important geometrical properties of the internal space point-
ed out above: 

( a ) The internal space is three-dimensional; 
(b) The group of the transformations of the internal space — i. e., the 

group of transformations of the A-trieder considered — is isomorphic with the 
three-dimensional rotary-reflexion group; 

(c) The constants of motion corresponding to the symmetry transformations 
of the group determine internal attributes of elementary particles and that of 
the associated physical fields, respectively; 

(d) The constants of motion referring to the internal attributes of elementary 
particles as well as the mass-spectrum of free fields prove the reality of the internal 
space and that of the internal degrees of freedom. 

The results (a) — (c) suggest the connection, and — what is more — the iden-
tification of the internal space with the threedimensional isospace. Indeed, our 
more recent investigation [2] proved that the isotransformations can be interpreted 
in geometrical terms and several laws of conservation (such as PC, PZ, PP' theorems 
etc.) were justified.* The interpretation of isotransformations and the intrinsic 

* In our paper [2] Eq. (12) means too radical condition for the field component yi which may 
be fulfilled only by very special functions. This condition can, however, be omitted, namely, it was 
not used in the following. 
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constants of motion based on NOETHER'S theorem will be investigated in the next 
future . 

Now, consider a special property of physical fields induced in a line-element 
space {JC",/?"} or {x", £,}. As it has been emphasized above several times, the field 
components are depending on the line-elements. Due to the physical interpretat ion 
of the homogeneous direction co-ordinates in the case of hyper quantization the 
operators p" associated with the momentum p a n d the operators x" associated 
with the co-ordinates x", as well as the operators p") do not commute by 
pairs. This means, however, that beside the usual commutators of the current field 
theories also the commuta tor fx", \|/J has to be defined. This can analogously be 
done by BORN'S reciprocity transformation [17]: 

jc"-^p", p " - - x f ( 8 , 1 ) 

as it is well-known in the case of YUKAWA'S bilocal theory of fields [6—8]. In fact, 
this analogy refers to an intrinsic connection between the suggested theory and 
tha t of YUKAWA previously emphazised. 

Finally, the problem arises how the anisotropy of the phasespace has to be 
interpreted philosophically? In order to carry out a possible interpretation, let us 
discuss shortly the philosophical cencept of the space-time continuum. 

Independent of their concrete material content, all events of the material world 
take place in space (side by side) and in time (one after another) as well. This means, 
however, that the events of the material world can be characterized by four objec-
tive parameters: by three data mapping their side-by-sideness (place) and by one 
determining their succession (time-point). As a matter of fact, the whole of material 
events can be regarded as a four-dimensional ensemble of events denoting it in 
terms of A. D. ALEXANDROV [18] as the space of events, or rather in the more usual 
terms of the theory of relativity — also considering that, in fact, all of the material 
events are continuously dependent on each other — as the space-time continuum. 
From this point of view the space of events must be the absolute existential form 
of the material world. 

Nevertheless, the real physical events can only be truly mapped in this way 
if the geometrical connections among the „points" of the space of events — which 
are realized in the geometrical structure of the space-time continuum — by objective 
connections among the corresponding events, i. e., by real material interactions, 
are determined. This means, however, that the spacetime continuum, or rather its 
geometrical structure depends on the concrete material content, /. e., on special 
physical interactions, of the material world. As matters stand, the space-time con-
tinuum and its geometrical structure, respectively, which correspond to the whole 
of material events and their objective interactions as well, are unified in the dialec-
tical unity of form and content. From this point of view the space of events is relative; 
indeed, its structure is determined by the concrete features of matter. 

Due to these considerations — to be summarized — the space of events and 
the space-time continuum, respectively, is the objective existential fo rm of the 
material world and by the philosophical cathegory of space-time continuum the ab-
solute and relative features of space and time are represented. This can also be ex-
pressed by saying that the space-time continuum — in spite of the previous meta-
physical concept of space and time according to which the EUCLIDIAN character of 
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space and the absoluteness of time would be an a priori cathegory of human mind — 
cannot be a bare passive and from the matter independent geometrical background 
of physical processes; but, its structure is determined by objective interactions. 
J. BOLYAI was the first scientist who already hundred years ago suggested this idea; 
then it was recalled by RIEMANN and finally, as a principal idea of EINSTEIN'S theory 
of gravitation has been scored its revolutional success in macro-physics. So far, 
this point of view is generally accepted in up-to-date physics. 

Nevertheless, the gravitational interactions can be neglected in micro-physics. 
Therefore, in the case of elementary particles — owing to EiNSTEiN'theory — it is 
usually supposed that the structure of the space-time would be pseudo-EucLiDiAN. 
Hence, if we take seriously into account the suggested point of view, one can say 
that the pseudo-EucLiDiAN character of the space-time world, i. e. its homogenity 
and isotropy, is rather a consequence of the special symmetry properties of the 
actual interactions than an a priori feature of space-time. In fact, if e. g., the violation 
of parity conservation can be regarded as a special property of weak interactions, it 
seems that from the anisotropy of these interactions also the anisotropy of the space 
may be concluded. The reason that the structure of the space-time world is in most 
of the cases isotropic, seems to be that the anisotropy of the weak interactions are 
overlapped by the electromagnetic and strong interactions which have higher or at 
least another symmetry character. This can also be expressed by saying that the 
strict insistence of the a priori EUCLIDIAN (or pseudo-EucLiDiAN) structure of the 
space-time world can be regarded as a rest of the metaphysical concepts. 

Our recent investigations in this direction have been based on the supposition 
that in the anisotropic internal structure of the elementary particles the anisotropy 
of the space-time continuum would appear. This supposition may be illustrated in 
simple terms as follows: 

In anisotropic spaces the structure of the space is characterized not only by its 
curvature, but by its torsion too. If the general idea could be accepted that the aniso-
tropy of the space-time world is determined by the anisotropy of the interactions, it 
should be supposed, of course, that the longitudinal polarization of the particles may be 
induced by the torsion of the anisotropic space-time. Consider the following analogy: 
In the case of the gravitational field the photon with zero rest mass is the most 
adequate test particle which moves on a geodetical line of the space-time world. 
As a matter of fact, the deflexion of light in the neighbourhood of the Sun, e. g., 
proves curvature of the space-time continuum. Analogously, the neutrino seems to 
be a similar test particle to the photon among the fermions to observe the torsion of 
the space-time. Indeed, its rest mass is zero — so that during its motion adapts 
perfectly itself to the structure of the space-time — and its longitudinal polarization 
is a maximal one, so far that the two-component theory of neutrino is aware of 
one kind of neutrinos with helicity (—1). In these terms one can say that the longitud-
inal polarization of elementary particles demonstrates the space-time anisotropy. 

This was the reason that we have recently suggested the unfamiliar idea that 
the strict adherence to the a-priority of the pseudo-EucLiDiAN space-time structure 
would be responsible for the problems connected with the violation of parity conser-
vation predicted by LEE and YANG [19]. In other words, it may be supposed that 
the structure of our physical world as a consequence of anisotropic interactions 
seems to be richer than it was previously supposed [20]. 
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In terms of the new development of the suggested theory one can say that in 
the anisotropy of the phase-space the anisotropy of the space-time is reflected, 
determined by special physical interactions. For the sake of simplicity it was, however, 
supposed that the dynamism of the local change of the space-time structure due to 
the anisotropic interactions has provisionally not to be investigated; but, in fact, 
only the consequences of the actual anisotropy of the space-time world — in the 
case of different but specialized fields — were discussed. Furthermore, it was supposed 
that the anisotropy of the space-time can be characterized by the longitudinal pola-
rization of the field quanta which can be regarded as a constant anisotropy para-
meter 0 . Nevertheless, this means only a provisional supposition. Indeed, in a 
field theory — considering also the interactions of fields — this constant anisotropy 
parameter has to be changed by an anisotropy parameter which depends on space 
and time: 0> = 0>(x") determined by the interactions of fields to be considered. 
This problem has, however, to be discussed in the future in detail. 

* * * 

It is a pleasure to thank Professor H. FRÖHLICH for many discussions bearing 
on these and related matters during his stay in Szeged. The author is also indebted 
to DR. A. MOÓR for very valuable discussions. 

References 

[1] Allcock, G. R.: Nucl. Phys. 27, 204 (1961). 
[2] Horváth, J. I.: Acta Phys. et Chem. Szeged 7, 3 (1961); Acta Phys. Hung, (to be published). 
[3] Fröhlich, H.: Proc. Roy. Soc. London (A) 257, 147, 283 (1960). 
[4] Fröhlich, H.: Helv. Phys. Acta 33, 803 (1960). 
[5] Fröhlich, H.: Nucl. Phys. 26, 324 (1961). 
[6] Horváth, J. I., A. Moór: Indag. Math. 17, 421, 581 (1955). 
[7] Horváth, J. I.: Acta Phys. et Chem. Szeged 4, 3 (1958). 
[8] Horváth, J. I.: Suppl. Nuovo Cimento (X) 9, 444 (1958). 
[9] Feynmart, R. P.: Rochester Conference of 1958. 

[10] Feynman, R. P., M. Cell-Mann: Phys. Rev. 101, 193 (1959). 
[11] Marx, G.: Nucl. Phys. 9, 337 (1958); 10, 468 (1959). 
[12] Gell-Mann, M.: Phys. Rev. 106, 1297 (1957). 
[13] Schwinger, J.: Ann. of Phys. 2, 407 (1957). 
[14] Károlyházy, F., G. Marx: Acta Phys. Hung. 10, 421 (1959). 
[15] Roman, P.: The Theory of Elementary Particles (North-Holland P. С., Amsterdam, 1961). 
[16] Noether, E.: Nachr. d. Kgl. Ges. d. Wiss. Göttingen, 1918. 
[17] Born, M.: Rev. Mod. Phys. 21, 463 (1949). 
[18] А л е к с а н д р о в , А. Д . : Вопросы философии 13, 67 (1959). 
[19] Lee, Т. D., G. N. Yang: Phys. Rev. 104, 234 (1956). 
[20] Wigner, E. P.: Rev. Mod. Phys. 29, 255 (1957). 

ВНУТРЕННЯЯ СТРУКТУРА Ф И З И Ч Е С К И Х П О Л Е Й 

Я. И. Хорват 

Свилеватость элементарных частиц, значит правая и левая анизотопия были 
объяснены с помощью формализма относительного фазового пространства. Таким об-
разом предложено новое обоснование теории, описанной в предыдущей работе, кроме 
того выведены уравнения пространства из принципа вариации, дан масс-спектр барио-
нов, обобщена теорема Нётерг. Преобразования, определяемые в пространстве изо-
спина, можно заменить непрерывными преобразованиями в координатном пространстве. 
Наконец были описаны философские понятия континуума пространства-времени ч 
интерпретация предложенного метода. 


