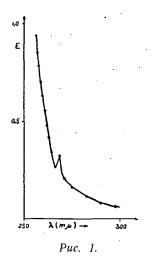
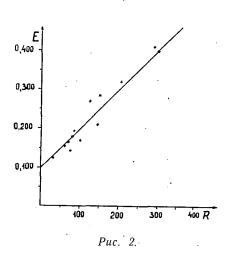
ИССЛЕДОВАНИЯ СПОСОБНОСТИ К ПОМУТНЕНИЮ НЕКОТОРЫХ СТРЕПТОМИЦИННЫХ ПРЕПАРАТОВ

Л. ЛАНГ, А. ВИНЦЕ, И. ЧАТО, Г. ХОРВАТ и И. НУРИДШАНЬ Институт Физической Химии при Техническом Университете, Будапешт Посвящается профессору А. Киш в сбязи с 70 летием со дня его рождения (Поступило в Редакцию 10 Марта 1960 г.)

Водные растворы некоторых, закрытых в ампуле резиновой пробкой препаратоз порошкообразного стрептомицина, при подвержении их лабораторным исследованиям, проявляли помутнение. Настоящие исследования направлены на обнаружение причин, с одной стороны, и на устранение, с другой, этого помутнения. С этой целью как стрептомицинные порошки, так и пробки стандартного вида, примененные при упаковке, подвергнуты испытанию. По спектрам поглошения удалось доказывать, что помутнение растворов исследованных стрептомицинных проб вызывается взаимодейтсвием между первичными примесями проб и материалом примененных видов пробки.


Водные растворы некоторых препаратов порошкообразного стрептомицина, помещенных в ампуле и закрытых резиновой пробкой, показывали помутнение. Для фармацевтической промышленности является очень важным устранение, а также обнаружение причин, этого помутнения. Прибавление этилацетата к водному раствору с последующим их совместным встряхиванием приводит к определенному прояснению. Так как стрептомицин в этилацетате практически нерастворим, то выше указанное прояснение очевидно является результатом растворения вещества, способствующего помутнению. Следовательно, экстракцией с этилацетатом представляется возможность для отделения стрептомицина от вызывающего помутнение вещества. Таким образом предполагается, что способствующееся помутнению вещество характеризуется спектром поглощения этилацетатного экстракта, а величина интенсивности появляющейся в спектре полосы связана с его количеством. Следует ожидать и существования той предельной концентрации способствующего помутнению вещества, которая помутнения ещё не вызывает, но по спектру поглощения уже обнаруживается.


Экспериментальная часть

20 г исходного материала (порошкообразного стрептомицина) встряхивались с 50 мл свежедестиллированного этилацетата, потом отфильтровывались через фильтр типа G—4. Оптическая плотность фильтрата была определена спектрофотометром типа Бекмана-ДУ при толщине слоя в 1 см.

В ряде опытов доказывалось, что в спектре этилацетатных экстрактов при 269 ± 1 m μ появляется полоса, величина интенсивности которой изменяется с количеством вызывающего помутнение постороннего вещества (рис.1.).

Параллельно со спектральными снимками проведены и нефелометрические исследования водных растворов стрептомицина, показывающих

помутнение. В таблице 1. указаны значения R (т. е. коэффициенты помутнения) соответствующих водных растворов стрептомицина, а также значения поглощения этилацетатных экстрактов. По таблице и по рис. 2. установ-

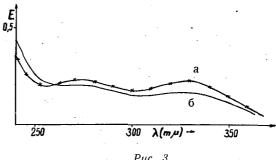
Таблица I.

№ пробы	E	$R_{\text{изм}}$	$R_{\rm pacu}$
. 1	0,125	33	25
2	0,146	· 75	46
- 3	0,154	- 58	54
4	0,163	. 70	63
-5	0,169	97	69
6	0,182	79	82
7	0,192	85	92
8	0,196	97	96
9	0,202	103	102
10	0,212	142	112
11	0,269	125	169
12	0,283	150	183
13	0,308	210	208
14	0,321	205	221
15	0,408	290	308

лено, что для поглощений, больших значения $0,125\ E$, а также для принадлежащих к ним значений R, существует следующая зависимость:

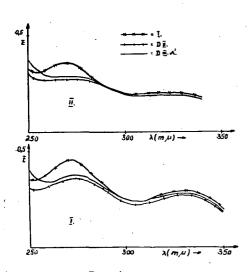
$$R = 1000 (E - 0.100).$$
 (1)

Результаты, полученные при помощи этой эмпирической зависимости, представлены в последнем столбце таблицы. На основе опытных данных устанавливается, что водный раствор исследуемого вещества помутнеет тогда, когда значение R превышает 200, или значение E — 0,300.


В дальнейшем подвергалась испытанию возможность предварительного установления помутнения по спектрам поглощения водных растворов стрептомицинных порошков. С этой целью были определены абсорбционные спек-

тры 2% водных растворов целого ряда препаратов. По анализу кривых поглощения установлено следующее:

Наблюдаются два типа спектров поглощения: а) В интервале 270— 325 три обнаруживается значительное увеличение поглощения, а между 300—310 ти-её понижение. б) В выше приведенном интервале длин волны


значительного увеличения или понижения поглошения нет. (Рис. 3.)

При хранении проб, имеющих спектр типа а), помутнение во всех случаях наступало. Следовательно, по спектру $2^{0}/_{0}$ водного раствора стрептомицинного препарата возможность представляется уже предварительно определить, появится ли впоследствии помутнение или нет.

Puc. 3.

Стрептомицин, из-за обстоятельств его производства, всегда содержит небольшое количество посторонних примесей. Хотя эти примеси и не оказывают влияния на биологическую активность стрептомицина, вероятно, что помутнение вызывается частью влиянием этих веществ, а также частью влиянием примененных при упаковке пробок различного материала. Лля выяснения этого исследовано и влияние на стрептомицин различных стандартных пробок, примененных у упаковки. Стрептомицинные пробы, упакованные пробками разного вида (резиновые пробки типа DII., DIII.

Puc. 4

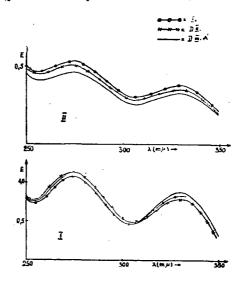


Рис. 5. І. Много постороннего вещества, II. Мало постороннего вещества

A, I. и т. п.) были подвергнуты термообработке в течение 96 часов при 50°C, после чего изготовлены их 2^{0} /₀ водные растворы. По спектру поглощения водных растворов установлено следующее.

Спектр водных растворов стрептомицинных проб, термообработанных в ампулах, закрытых пробками из пробкового дерева и резиновыми пробками типа DII., DIII. A., совпадал со спектром контрольной пробы. При применении резиновой пробки типа І. у 270 ти наблюдалось сильное увеличение поглощения (рис. 4.). Это изменение экстинкции соответствует нашим предыдущим утверждениям о способности к помутнению стрептомицинных проб. Из кривых поглощения видно и то, что положение максимума полосы (274 mu) смещается до 270 mu даже тогда, если проба стрептомицина содержит лишь небольшое количество посторонних примесей. Из последнего факта можно сделать вывод, что помутнение, появляющееся в водных растворах порошкообразного стрептомицина, связано не только с небольшим количеством присутствующих примесей, но и с примененным к закрытию ампул материалом. Предполагается, что помутнение вызывается взаимодействием между микроскопическим количеством примесей в стрептомицинных порошках и материалом некоторых пробковых видов (напр. типа I.), примененным к закрытию ампул.

В дополнение были рассмотрены и спектры растворов лиофилированных стрептомицинных проб, т. е. рассмотрено влияние лиофилирования на спектр поглощения в случае применения пробок разного вида (рис. 5.). Растворы лиофилированных веществ ни раз не показывали смещения максимума, независимо от качества пробки и от количества исходной примеси стрептомициных порошков.

Подводя итого устанавливается, что возможное помутнение стрептомицинных препаратов вызывается находящимися в стрептомицинном порошке примесями, с одной стороны, и взаимодействием между возгоняющимися из резиновой пробки веществами, с другой.

Дальнейшей целью наших исследований является подробное изучение механизма вызывающего помутнение вещества, а также выяснение механизма процесса.