ON THE ABSORPTION SPECTRA OF OCTAHEDRAL CYANIDE COMPLEX IONS OF TRANSITION METALS

By F.J. GILDE

Institute of Theoretical Physics. The University, Szeged

The energy and the transitions of electrons will be investigated in the case of cyacide complex ions $[Cr(CN)_{6}]^3$. [Min $(CN)_{6}]^3$. [Fe(CN) $_{6}]^3$. [Co (CN) $_{6}]^3$. [Ni (CN) $_{6}]^3$. [Min (CN) $_{6}]^4$. [Fe (CN) $_{6}]^4$. [Co (CN) $_{6}]^4$ by the LCAO nethod. An analogous calculation was previously published by GILDE and BÁN [1] in the case of Cr (III) here cyanide complexion. The complex ion [Me (CN) $_{6}]^2$ considered consists of a central metal

The complex ion $[Me(CN)_6]^{a-1}$ considered consists of a central metal ion (Me) and six cyanide ions so that the nucleus of the complex in surrounded by six cyanide groups with octahedral symmetry. According to well known experimental flacts the central metallic ion, as well as the C and N atoms of the cyanide groups, respectively, are local on the axes of the octahedron so that the C atoms are nearer to the central ion,

It is assumed that between the central ion and the groups of the coordination zone covalent bonds exist. These bonds are the molecular orbitals composed by five 3d, one 4s and three 4p atomic orbitals of the central metallic ion and by the three 2p orbitals of the C atoms of the coordination zone as well. Let use suppose that the influence of the electrons of the closed shells of the ametal ion and the C atoms, respectively, use with any other interactions between the cyanide groups can be neglected. So 24+n electrons must be placed on the molecular orbitals formed by the 27 atomic orbitals /n means the number of the 3d electrons of the central ions/.

Let the 27 atomic orbitals mentioned above be regarded as basic vectors of a 27-dimensional space of functions. Taking the symmetry O_h of the problems into account in this space of functions one can easily obtain the representation of the group. This reducible representation can be put in the form

$$= \int_{\mathbf{a}} \mathbf{a} + \int_{\mathbf{a}} \mathbf{a} + \int_{\mathbf{d}} \mathbf{a} + \int_{\mathbf{d}} \mathbf{a} + \int_{\mathbf{d}} \mathbf{a} + \mathbf{a} = \frac{2A_{1g}}{1g} + 2E_{g} + T_{1g} + 3T_{1v} + 2T_{2g} + T_{2v}$$

where \int denotes the 27-dimensional reducible representation, $\int \sigma$ means the 6dimensional representation of the group corresponding to the orbitals in the directions of the axes of the octahedron; $\int \overline{T}$ denotes the 12-dimensional representation of the group corresponding to other atomic orbitals of the Catoms; $\int d^3$ and $\int d^2 sp^3$ represent the orbitals of the central metallic ion. Finally, A, E and T, respectively, mean irreducible representations of the group O_h .

¹¹ The basic vectors of the irreducible representation will be used as starting functions of the LCAO-method. The energy of the electrons can be calculated

in the usual way by the solution of the secular equation:

Owing to the reduction outlined above the determinant on the left number of this equation will be a product of three determinants of the first order belonging to the irreducible representation T_{1g} and T_{2g} resp.; three determinants of the second order belonging to T_{2g} , three determinants of the third order belonging to T_{1u} ; two determinants of the second order belonging to the second order belonging to E_g , finally, one determinant of the second order belonging to the irreducible representation A_{1g} . The roots belonging to the A, E and T representations are one, two, and three fold degenerate, respectively.

 H_{ij} mean the matrix elements of the Hamiltonian and S_{ij} denote the overlap integrals. It is assumed that the distances between the nucleus and the cyanide ions are 2.00 Å corresponding to the experimental value. Let us suppose that the matrix elements H_{ij} agree with the ionization energy of free neutral atoms and the matrix elements H_{ij} (i j) are calculated by the formula of WOLFSBERG and HELMHOLZ. One can calculate the overlap integrals S_{ij} by the approximation methods suggested previously [2].

The results of the present investigations can be summarized as follows:

1./ The energies calculated on the basis of the secular equation are given in Table 1, in eV units.

2./ The selection rules render possible the determination of the transition energies of the electrons represented in Table II. in cm^{-1} units. The values in the second column of this table correspond to the maxima of the experimental absorption curves measured by KISS, CSÁSZÁR and LEHOTAI [3]. The values in brackets denote the inflexion points of the absorption curves having nearly horizontal tangents.

3./ One can see that more transition energies have been found than were found experimentally. As a matter of fact, this can be explained as follows: $/\underline{1}$ / It can immediately be seen that one part of the calculated values cannot be found in the interval of the spectra measured. /<u>ii</u>/The other part of the transitions calculated form different groups containing nearly equal transitions; the mean values of the transitions in the different groups correspond very well to the experimental data. /<u>iii</u>/ One can also find calculated transition lines in the interval 10.000 - 20.000 cm⁻¹ however, this interval of the absorption spectra cannot be measured by the experimental equipment of the cited author. /<u>iv</u>/As far as is known to us, in the case of the complex ions of Co²⁺ and Mn³⁺, respectively, experimental data have not been published.

4./ Finally, one can put the following question If the cyanide groups of the coordination zone are separated from the central metallic ion, then - since in the case of increasing distance the interactions between the groups and the metallic ion decrease - the energies and the transition energies of the electrons of the complex ion respectively, would be reduced into those of the free central lon and the free cyanide group as well. As a matter of fact there may exist three classes of transitions which correspond to the transitions of the free central ion, of the free cyanide ions, and the interaction between the central ion and the cyanide

Table I

	Cr ³⁺	Mn ³⁺	Fe ³⁺	C o ³⁺
la	- 9,88	-10,29	-10,62	-10.72
$2a_{1g}$	-4,10	4,12	.3.87	-3,52
1e _	-10,99	-11.91	12,28	-10.81
20	-0,21	-3,66	-5,70	-6,45
t la	-7,80	-7,80	7,80	-7,80
lt ₁	8,70	-8.71		~8.74
2t1 u	-7,81	-7,80	7.80	7,80
$3t_{1u}$	- 3,88	-4,33	4,88	-3,94
11 ₂	-7,54	9,87		-9,66
$2t_{2g}$	7,80	-7,79	- 7,79	-7,79
^t 2u	7.80	-7.80		7.80
	Mn ²⁺	Fe ²⁺	Co ²⁺	Ni ³⁺
le,	10,11	- 10,27	-10,17	- 10,66
$2a_{i\sigma}$	- 4,52	-: 4,96	- 5,25	- 3,22
le .	-12,24	- 12,56	-10,97	<i>-</i> ≓ 9₀69
2.	- 2,16	₩ 4.80	- 6,07	- 6,95
8 t,	- 7,80	- 7.80	- 7,80	- 7.80
1g 1t,	- 8,70	- 8,70	8,70	- 8,76
$2t_1$	~ 7.81	- 7,80	- 7,80	- 7.80
3t,	·- 4 _• 35	- 4.96	- 4.08	- 3.61
lt _o	- 9,87	- 11,20	- 9,66	- 8,58
2t ₂	- 79	7,79	- 7,79	- 7,79
-ев t _{2 и}	- 7)80	- 7,80	~ 7 ₂ 80	~ 7.80

Cr ³⁺		Mn ³⁺		
Calculated	Observed	Calculated	Ob se rved	
2098		, 7342	5600	
7261	5000	1 6701		
9359		27997	27000	
25738	26800	29691	30500	
29853		33161	33000	
31627	32000	33400		
37114	37800	37000	37 00 0	
4841o	•	44698	41000	
57366		46745	46000	
		48085		
Fe ³	+	. (Co ³⁺	
Calculated	Observed	' Calculated	Observed	
7504	5000	7584	6340	
16943		10892		
23559	24000	15507		
24447		18476		
24432	25000	24286	25000	
31708	31000	31143	32000	
36146	33000	34532		
39212	39000	42117	38500	
46312	45500	46151		
5 0 992) (· · ·	

T٤	abl	le	Π
1 5	101	10	11

Table II. /Continued /

Mn ²⁺		Fe ²⁺			
Calculated	Observed	Calculated	O bserv ed		
7261		7261			
1 67 01		22833			
26464		22914			
27830	27400	24205	•		
33725	31000	30175	30750		
35823	36200	31466			
44537		34693			
45505		38405			
46473	47700	42762			
52767		57527			
	Co ²⁺		Ni ³⁺		
Calculated	Observed	Calculated	Obser ved		
7261		6293			
1 3 958		6858			
15007		7745			
20574		14603			
21220		15249			
25577		33806			
27836		36953			
30014		40099			
42762		44698			
45021		49055			

Ŀ

References

[1] Gilde, F.J.; M.J.Bán: Acta Phys. et Chem Szeged, <u>3</u>, 44 /1957/_{*}

[2] Gilde.F.J.: Thesis /1958/.

[3] Kiss.A., J.Császár, L.Lehotai: Magyar Tud. Akad, Kémiai Tud.Oszt. Közl. <u>9</u>, 281 /1957/.