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A general scheme of a classical theory of physical fields of second kind is
claborated in the space of line-elements, The broad outlines of the geomerty of
the space of line-elements the foundations of which have been .established previously
ie= reviewed and the differential structure of the field of higher order are elaborated.

The world continuum in which the physical phenomena take place
represented by the field of second kind' is usually the four-dimensional
pseudo-EucLiDian metrical space of points. The qiantities which determine
the state of the physical field are in the case of the current — so-called —
local field theory ordinary space-time functions with a defined law of trans-
formations.

In the course of the last years the field theories of second kind were
discussed from very different points of view.

In this paper we shall generalize the field theories of second kind ina
quite natural way. Namely, we shall regard the metrical geometrical space in
which the field is generated as a generalized cne, the geometry of which is.
determined by an arbitrary metrical fundamental tensor. Such investigations were
known previously in the case of relativistic electrodynamics in a gravitational
field, when the relativistic covariant formalism of the MaXwELLian theory
was elaborated in RiEMANNian space. However, our investigations. are not
due to a pure mathematical generalization of the theories of second kind,
but are supported also from the physical point of view.

The metrical point "geometry of spaces is the geometrical modell for
isotropic spaces. If the basic geometrical space is a space of line-elements,
such as e. g. in the case of the FINSLERian geometry [2] and of the geometry .

! To distinguish between the different kinds of field theories we have proposed [5]
recently the expressions: field theory of first and of second kind. In the case of a field
theory of second kind the geometrical basis is the four-dimensional Eucuipian (respectively
pseudo-EucLipian) space and the physical fields are described by potentials and field func-
tions resp., which are ordinary space time functions. If, on the other hand, the physical
properties of the field are, according to the ideas of Riemann characterized by the geomet-
rical structure of the space, we shall call the field theory that of the first kind. From such
a point of view EinsTen's theory of gravitation, e. g., is a field theory of first kind, and
the electromagnetic and mesonic theories respectively, are field theories of second kind.
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elaborated previously [7], our geometry represents an anisotropic space. This
aspect is interesting from the point of view of the relativistic electrodinamics
in dielectricum as well as that of classical bilocal theory of fields [12], where
the so-called YUxkawaian variables can be regarded as the point co- ordmates
and the directional co-ordinates of the line-elements [7].

It is well known that in anisotropic spaces the differential structure of
the field is the most interesting problem. By definition of the LAGRANGian of
the field in anisotropic spaces too, we shall derive the covariant field equa-
tions and conservation laws. The tensor of energy and impulse will be deri-
ved in a quite general form on the basis of the results mentioned above
and for the different well known cases elaborated previously by D. HILBERT
[4), M. Born [1], L. RosenreLD [9} and J. S. de WETT [3], respectively, it
can be obtained directly by specnahzatxon

§ 1. Geometrical Preliminaries

1. General definitions. The ground element of our line-element space
£ is a line-element defined by its four dimensional space co-ordinates x*
and by a contravariant vector +* (u=0, 1, 2, 3), the direction of which cor-
" responds to that of our line-element. Since only a direction is defined by
the vector »* it is evident ihat the components of »* are not independent
and only their proportion has meaning. The ensemble of the ground elements
(x, ©)* is the so-called line-element space L.

The geometrical structure of space .2 is defined by a metrical funda-
mental tensor g,,(x,») which will be in the following a given function of
the line-elements (x, ») being homogeneus function of the variable. »* of zero
degree. ‘
' The one-parametric sequence of the line-elements

x# = xt(t), v =1*(t) (L=t=t)

is defined as a curve of space 2 for the direction field v*(1).

The line-elements (x, v) will be changed by transformation of the co-or-
dinates as follows

dx+
XH = \” (x), ' = X v, A% det

0 Xt
and the law of transformation of tensors is given by
ap X% 8xP gxv Tas
Ty =35 9P axy TV

Particulary, the law of transformation of our well defined metrical fundamen-
tal tensor is

o 0x* 9x
8w =G5 g S

2 x and v are the abbreviations for x” and ", respectively.
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The length of the arch of our curve x*=x*(t) for the regarded fields
of directions == v“(t) is defined by

s :J {Gur(x, v) X+X7}1Rdt (x“ def a(';;f‘ )
t

-Now, let be given a scalar fundam‘ental function by‘

F(x, 0) % { g (x, v)veo7 )12, :
which is a homogeneous function of the variable v* of first degree. With the
help of our fundamental function F(x,v) we can define the vector I* of unit

length in the dlrec’non of the line-element (x, ») by
| C T . 1,1y
which is«néturally also-a homogeneous function of zero degree of .

In our space .2 the invariant differential of a vector & is defined by

DE S g G EdY + T2 Edx,

where G/, and I, are the “components of connection” of the spaceA which
can be calculated explicitly if g., is known. These formulae as well as their
laws of transformation can be found in our previous paper cited [7}).

The parallel displacement of vectors in sense of LEVI—CIVITA is defined
in our space by :
. D& = 0.

The covariant derivative of the tensor T.’, is given by

VATG y—Ox a@. 'y_(oup . 'y)FO v

TS+ AT, — 0T,
where the abbreviations

def ] def ) det’ d def
01—_ o= 8’{)0 > * —F 67{’ 3 A e =FC091)
~ L/

6x7» Myl v¢
£ def o -
Fa?léra(.)h_Aa(.)t le
are introduced and the index “0” means contraction with the vector I e. g.
d f #‘ *
T Tl 0%, DG =151

respectively,-uééd consequently in the following.
The curvature of space .£2 is given by the tensors

Rxl."(n = R*x"_‘pt + Au‘.Lch*O(.rgt,
Pllo= Tl — Ve At AL @ T

n ()1_ 2A IIA]a]
where

‘}1

x.91 T T 20]gr 11.7; + 21’ 0. [gatlv"llj‘;]}fx_211’0‘."[91" l:]':.ru . (1; 2)
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is the tensor ‘of principal curvature, and Ty is generally an abbreviation
introduced by J. A. SCHOUTEN:
i 1
T[!""(’lge_? {T,Lup (nry }.

By contraction of the indices w and + of R.", the EINSTEIN—RICCI'S
fensor

‘R def Rx o . (1’3)
furthermore, by contraction with g*¢ the scalar curvature of the space.
REE Ry LY

can be derived, where g*¢ is the contravariant component of the metrical
fundamental tensor.

The equations of the extremal curves, or the geodetical lines of -the space:

a2x" w0 dx" dx’
g Tl ds ds =0 . (1,5)

are the EULER—LAGRANGE equations of the variational principle

0 | { gun(x, )" 57} 2dds == 0.

2. Volume-integrals and tensor densities in the space of line-elements.
In classical physics the field is described by one or several (real) space-
time functions v, =,.(x, ) which satisfy certain partial differential equations,
the so-called field equations. A current alternative procedure is to start with
a variational principle chosen in such a way that its EULER—LAGRANGE dif-
ferential equations are identical with the field equations. This method renders
the so-calied canonical formalism of the field possible.

The canonical formalism of the theory starts with the definition of the
LAGRANGian £* of-the field. In the usual  point spaces the LAGRANGian is a
scalar density and therefore the volume integrai

[— [.@*()'c)d*x (1,6)

— the so-called integral of action — is an invariant of the transformations
of co-ordinates. ‘

The scalar and tensor densities, respectlvely, can also defined in the
space of line-elements by the usual law of transformation:

Y=4"¢
and

1 0x* 9xP axT
93X 9xP gxv eV
respectively, and the LAGRANGian € = ¢(x, ) can be introduced without any

Tty =d
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difficulties, however the definition of the integral of action : ,
I=’J2(x. v)d'x 1,7

corresponding to (1, 6) has only a definit meaning in the usual sense if in all
x points of the space a direction is given by v*=1v*(x). In this case — as
one sazs) — the integral of action (1,7) refers to the field of direction
ot = v* (X

In the following we shall not deal with the defmmons quite generally
associated unnecessary difficulties {11], but only in a special case which
seems to be sufficient for our purpose:

Let a field of direction be o* = ¢*(x) satxsfymg the differential equation

ar
dx" +r0 o“‘o . (1,8)
where
i
Al gt 5 1m(x, 17 (). (1,9

dxe
The condition of integrability of the differential equation (1, 8) is
0,092“ = 0p0.1".
However, based on (1, 8) it becomes
dol* (x, (X)) = — Il (x, [(x)
and in-the following manner

. e
F*Gfrz‘{'a(xl_‘*o‘.‘t_ 0;21 F.*O.u‘g-

: . e
0:691[‘."“‘6@011#: _F O{Lo'*_ arlgg

But 61“*0,”0/61" is a homogeneous function of [° of zero order because of
which we have
6 001 “‘0001 :_RO ory
where .
. R oiee =281l 9 0+ 2 0710 w1l 4'0-
The condition of integrability of our equation (1, 8) is also given by
Re—0. 1, 10)

Based in the theorem of FrROBENIUS [10], {7] the fulfilment of equation (1, 10)
means that in our space of line-elements there exists a parallel displacement
of line-elements. This is a restricting condition for the space, having imme-
diate geometrical meaning that to a given -direction in a space-time point in
every other point of our space-time world a parallel direction in the sense
of LEvi—CIvITA can be determined unambiguously. :

Therefore in the following we shall define the. mtegral of action (1, 7)
for.a field of direction v*==2*(x) which fulfils equation (1, 8).

3. The osculate Riemannian space. It is well known that in the imme-
diate surroundings of a point of the RIEMANNian space a pseudo-EucLiDian
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metric can be introduced, that is to every point of the RIEMANNian space a
“tangential pseudo-EucLiDian space” can be given.

If in the space of line-elements absolute parallelism of the line-elements
exists we can construct to all line-elements of our space, an osculate Riemannian
space fulfilling the following conditions :

a) The metrical fundamental tensor y., of the osculate Riemannian space
is identical with the metrical fundamental tensor of the original line-element
space, that is

i Vv (X) = Quv (X, v(X)).
Owing to the homogemty of zero order of g., in the variable *

Yur (X) = Guw (X, 1(x)). (1, 11)
b) The geodetical lines of both’ spaces osculate each other:

¢). The invariant differential and the covariant derivative of the vectors &*
are identical in both spaces.

d) The tensors of principal curvature of both spaces are the same.

This construction of the osculate Riemannian space differs essentially
from the VARGAian one [11] being far simpler and it is based on the exis-
tence of absolute paralellism in the space.

To prove the correctness of our construction we have to calculate the
parameter of connection in the osculate RIEMANNian space:

~ 1 .
[’arﬂg‘i‘ {0ﬂ)’ar+aa71ﬁ_ar)’aﬁ} =

] 6 at 0 T o a o
:7{6ﬂgaz+ 5ag13—01gaﬁ}+ %U 6 lo'*“ gﬂ 1 _a-ag'l_fazl
Based on (1, 8) and taking into account that owing to the homogeneity of

(—1)™ order in [°
6gat =F agat a‘a

[ vWSar?

al° v

we obtain immediately :
Fag=Tap(x, 1(x)). | (1,12)
Furthermore, .
61f’a{}'y= 0111*11{?7—(011911:1?7) rtOf)z ]
and based on the definition of ‘the tensor of principal curvature
| Rl o= R dlon (x, 1(x)),

where R.%,. is RIEMANN’s tensor of curvature of the osculate RIEMANNian space.
However, in our case in the line-element space absolute paralellism of
the line-elements exist, hence,

Raﬂgt - Rtaﬂpl
therefore

éaﬂn :, Rﬂ'ﬁgl-
Qu. e. d. o .
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4. The infinifesimal transformation. The infinitesimal transformation of
" the co-ordinates is defined also in the space of line-elements by

x“'=x“+e§“(x), . (1,13)
where & is an infinitesimal parameter and " (x) is an arbitrary' covariant vector

.which is continuous and a limited functions of the co-ordinates x.

Let T(x,n) be a quantity of the space having an arbitrary law of
transformation then we define its fofal and local variation, respectively, as.
follows: . ,

OT(x, ) & T (x', v')— T(x, v)
J" T(x, v) & T’ (x, v) — T(x, v).

Consndermg that based on law of transformation of v*

00" = £(0,0")E+ 0 (), (1, 14).
the connection between the two types of variation is given by
0T = 6'\T+e{(0,1 T)E" 4 (9,. T)(0,E") "} +0 (). (1, 15)..

In the case of the local variation the operations 0* and 4. and 0,00
respectlvely, can be exchanged, that is,
. 0" (0uT) = 0u(0"T); 0" (3, T) = 8,0("T),
but in the case of the total variation
OOnT) =3 @T) {00 T) 0+ E)+ 06 1) GuBrEN) 06 (1,16)
nd
: 0(0uT)=0,,(0T)—¢(0,0T) (9.5) +0 (). < (1, 17)

If the special law .of transformation of T is given, it is possible —
based on our above resuits — to calculate the total and local variation
explicitly. E. g. if T is a covariant tensor of second order :

ST — e{(0:E") T +<a;§ )T’“} +0()
and owing to (1, 15)
) 64 Tm — _8{(01 T'm)’él—(ah‘g#) TM"—((?}\%V) TM. + (009 T#r) (01&0) vl} + 0(82)

__In the case of tensor densities we have to calculate the variation of
Vigl, where :

def

g=det|gu|.
Since, as it is well known that
dV————Vlglgwdg“’ =—Vlglg"’ Ogur,

we have

.()‘/—
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Now, for a tensor, density

0T =0T-Y|g|+TdVig|; 0°T=0"TV|g|+T-0"V[g]
and e. g.

o"g & o (Vg g = ¢)/Tg] { (9.2 — |
—(0:8)€" — (058" 4 A8} +0(). . (1,18)

'§ 2. The deduction of the field equations

Let
vt = (x) 21

be a field of directions which fulfils our previous equatlon (1, 8). Then the
integral of action of the field is given by

I =J 2(x, #(x))d*x, | @=V|g|L)

where £ is a four-dimensional domain of integration and the LAGRANGian
density of the field

¢ =_g[g"(x,u(x)), P (x, (X)), Do (X, (%)), P (x, w(x))),
where @, are the components of the potentials of the field as well as

et d fo .y d o
(—DﬂlrgvV@u:W@#_r#tv@o (d—xr@ ﬂa,‘ #+(0v9¢#)(6v7}9))
and '
d

- “* o g X
Wq)p[v_l y.ld)ah'_rw.}.@,uhn

Q[LI'I’;. == V2 (-pyl'l/ =

respectively [7].°

Varying the functions @, for the fixed region 2 of integration subject -
to the restrictions that the variations of the @,-s and their first derivatives
at the boundary of the domain of integration vanish, one obtains

Q 68 . 68 ) ,
(5 - fs [ all . aq ] 6 y
! 5 oD d@ + d @#Iv d (Dah'}, I 5 @;le. . ,(DILI
| 0~' d ] )
MW Dy d*x.
Based on the condition of stationarity
01=0,

3 The field equations in the case of scalar fields as well as in the case of tensorial
fields were deduced in [7] and in a paper communicated to the Hungarian Academy of
Sciences (1955), respectively. .
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we have by repeated partial integration

Q .\ .
f 3 0‘34; —OT, — O D.d'x =0,
Q. v
-where _ )
uy def 68 _ Y * 0 _ 08 ;*1,_ d 08 ’
"= 3 By 3 Do Y RN i B Iala A 7B B 2,2)

However, this equation is fulfilled for arbitrary variations of the ‘@',;—s which
satisfy the above mentioned conditions and for an arbitrary choice of the
integration region. Consequently for all space-time points:

i a8 .ov * ur . . . ‘
— O~ 0 =0, 2, 3)

D,
To put the f1eld equations (2,3) in their explicit covariant form \a(e write
0" a "

* 1

HY e L a c\u&}» y VA
6 =3 _~6'FE~7~—?5 I'on— dxx% ’

where the following abbreviations are introduced:

cwpwk def 0 8 UVA %mﬁ»
0Pt V|g1
and
oy def 02 wy 1 (yml
’ =yt .
0 Pup. Vgl
Since , .
VaF* ™ = di* + FON S PP D+ o0
and based on the equations (1,9) and (1, 12) ,
d d
o Ve =0V e Vg P = Vgl gl g —

1l i~ & . ar / *
. =-2~V|gigk 02801 agl“ M [glrh%:
we have

V‘g( Ay F,u.v}» %ul?\. + C\“VAF + %p,a)»

Therefore we obtain

dx’“

@W o#"’ V ! g( T F;w?»
Furthermore, introducing the notations '

groa 02 o Lg
"
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we can put our equation (2, 3) in the form

, 3 . * . d 71 "v
8 — 18" —VIgl VaF I oty — 5 18— Vgl vaF) =0

and
d.

) .
%H_g)l(” r (Jfl“’ _ i

P =0,

respectively, where
. . QIH‘V def cvm' Vlgl v F;wl

Since

d ,ur o p ne

AT+ A AP,

Hr
VoA ——

just as above, we have

S wr d

AT,
~and finally
— Vo AF" — 7. F*y =0. _
Taking .into account, that the determinant g of the metrical fundamental ten-
sor g.» does not depend on @, and its derivatives, we have
oL aL aL
—— — Vs =5
6@# d Qu]y d q)#h/?u

This equation gives for the field of direction »*—=v*(x) the explicit covariant
form of thefield equations of our vectorial field.
In RIEMANNian space equations (2, 4) has the form
@1: < 0~L ‘——{] 0L
(9 q) . 0 q)“hr 6 q).ul‘ul

where v/, is the differential operator of the covariant derivative m the
RIEMANNian space. - .

__‘vf,rg 220. ' | k2;4)—

0 (2,5)

In the case.when in our space the absolute parallehsm of the line-elements does
. not exnsts based on the Varcaian methods of construction of the osculate. Riemannian
space, one another version of this theory can be elaborated. However, we-shall not deal
with this generalization because the supposition of the existence of the absolute paralle-
lism of the line-elements seems to be realizable in the partically interesting cases.

§ 3. The differential laws of conservation

1. The fundamental identities deduced by the infinitesimal transformation.
As it is well known, based on the infinitesimal transformation of co-ordinates
some identities can be deduced which from the phisical point of view can
be interpreted as the differential laws of conservation of the field [8].

If the variation of the LAGRANGian £ brought about by the change of
co-ordinates is investigated, we must take into account the explicit dependence
of the LAGRANGian on the contravariant components of the metrical fundamental
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tensor g#v and their derivatives too. The derivatives of g#* can be found in
the parameters of connections of the space and in their derivatives. But these
derivatives are the partial derivatives of the g#v owmg to which our .
LAGRANGian density has the form

e=2[g", 8", 8" ep)) Pus Puty, D] G 1
with
v def v 4 def » Ly
g’.‘.m; Oag# , g’f.(ap) s Oﬂg"‘.(a) = g dag'

If in our space of line-elements the absolute parélellism of line-elements
exists a field of directions
. =t (x) | 32

can be introduced satisfying our equation (1,8) and the integral of action
defined for this field of directions is

-hawmww

Now, we pass over to the osculate RlEMANNlan space mtroduced above,
which has the metrical fundamental tensor :

7R () =g (x, v(x)),

therefore

v v » - v S d v
Y,.L.(a)= aag” _*_(ngg”l )aa vo.-: Oag#_ —(009gl )FU?G = !dxa g#

and similarly

P = B
Furthermore, introducing the notations
Pu(x) 2 Du(x, v(x)),
Pusr (X)L T pus Puin(X) = Vi
. 2 R(x, v(x)),
the integral of action. in the osculate RIEMANNian space is

[= [Q(x)d“

and

The total variation of [ sub]ected to the restrictions that the £-s of the
infinitesimal transformation (1, 13) at the boundary of the domain of integ-
ratlon &2 vanish is given by i

oI=|ded'x,
where

% Y T 62, ~ ) i, .
08 = (2] 0y + Vg | 2L T vva% -+, ma% —(0g,
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being

def 0% d g - d 0L
S ]
a7 dx® | 47w dx’ Y e
the LAGRANGian derivative of € y
Assuming that the potentials @, and the corresponding potentials ¢, in
the osculate RIEMANNian space, respectwe]y, fulfil the equation of f1eld

oL ~ oL
“‘Vw V V
0 Pu 69"#, + }‘69"# vh

the variation of our integral of action. is reduced to

01 = [ [€]. O yva*x.
Q

=0,

I is, however, an invariant of the changes of co-ordinates, therefore
0/1=0

for the infinitesimal transformation of co-ordinates too. This means that
l[ Jur O 7 dx = O 3, 3)

for an arbitrary choice of the integration domain. But ¢*y*” is symmetrical
in its indices u# and v, therefore, the antisymmetrical part of the LAGRANGian
derivatives of £ does not come into consideration. As matters stand we shall
introduce the symmetric tensor density

gy1rgf2[~](u1')5—{[§1#1'+[So/]m'} G
and based on (2,5) we have

and finally — using our eqﬁation (1, 18) for 0*y*” — this idtegral can be
written in the form

SJ (§0ur (027" — 8028 —§ " (0:5")) d*x =0.

Subjected to the restriction that & vanishes at the boundary of the domain
of integration by partial integration it -is obtained that

¢ .f (8,0 (027"") + 20,8 Ed* x = 0.

However, this is an identity for arbitrary & -s and for arbitrary choice of the
integration domain, therefore, based on this consideration we have

3. + ? (617’“’)5511' =0, (3,5)
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“or

1, |
6#8‘7\3_7(0%./#1')8# :0 ) ’ (37 6)
and
v 0#5}\#—[‘%}\9;}-500:0
| respectlvely

| These identities are deduced in the osculate RiEMANNian space Now,
\returning from thé osculate RIEMANNian space to our original space of line.
elements we obtain based on (1, 15) that ’

0;1.:\./7» —"((7 z-\zA )FO —Ir 100"\’0 =0 | (3:7)

for the field of direction satisfying our equation (1, 12).
Our equations (3, 7) are the required identities which- will determine
the laws of conservation for the physical field.

2. The metrical tensor of energy and impulse. The metrical tensor of
energy and impulse of the field was originally defined by D. HILBERT [4] in
the RIEMANNian space as the coefficients of the %%, -s in the integral

0T =2 [ [{" 6" gurd*x, 3,8)
Q.
_or explicitly
- s Vz_ g Y
Now, based on the identity _ '
’ d‘gm' = —ga#gﬂrdtgaﬁ ’
(3, 8) becomes o _ v
Of = —2 | [ "G d'x - (3, 10y

and similarly the covariant components of the tensor of energy and impulse
.can be defined as

T2 — [, (3,11)
Vlgl

These considerations were valid in the RIEMANNian space. To define

the metrical tensor of energy and impulse in the space of line-elements.
too — assuming that in the space of line-elements the absolute parallelism -
of the line-elements exists — we shall suppose that there is given a field of’
directions «*=w*(x) fulfilling the equations (1, 8). Then we introduce the
metrical tensor of energy and impulse — -based on (3,4) — by the defi-.

nition . .
| Q Q h
def —_— 6 ~ a ~ .
T,Uq' = V@ 3( (l)g‘l”’ + ag,‘,'u ) - . (37 12)-

: d [( 0% 9¢ d ¢ a¢
A
. dx og..(a) ag(a) dx Og..((xﬂ) ag..(aﬂ)
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‘Taking into account that

e=VglL,
‘we have
oV@ B —; oL 1
ag!” V‘gl ag’“ ag‘”, - Vlgl { 0g‘u.1r _?g!‘-‘v
and
oL T 98 aL
uy ZV—IE—I v ; Y :V—la )
ag:.(a, 18w 08" s _ 08" " ap
respectively. Similarly
d (02 \ d | —{ d AL ... oL
: = I'se————
dx*® (6g’.‘?<a>) dx® ?Vlgl (a)g V[gl§ dx® ag’.‘.”<a)+ ga*” (a)g
.and ’
d ( ) — [ oL so 0L /
‘ _ — T ﬁ_a——v—“: /
ax & 08" " @ | .
. oL
e [ er ]
el X o w(aﬂ) ? 08" ap

SRy o

[ d AL ‘g L
, e, 2 ]s
dx® 98" ap) 08" wp)

respectively. Therefore, we finally obtain:

oL oL d {( oL 9L :
Twr=GuvL— ( s i ) - p S( i g ) —-
i \og 0g dx® g% 087w
_Ftﬁa ( aL gL )_ d ( L aL )z
08" 6p g™ a8 dx® \ g g ap 08" ap) (3.13)
+* T L L ‘
I ;( oL 4 o )_
v\ag..(a) 0g..(a)
e aL gL d 0L gL ‘
g.o _ vy - d B ko
I8 wp 08" - (@f). X \ogl6n 087w )

-defined for the field of directions @#—w(x) where the differential operator
d/dx* is introduced by (2, 3).

3. The laws of conservation of the energy and impulse. The -metrical
tensor of energy and impulse of the field (3, 13) was defined on the ‘basis
of (3, 4) passing from the osculate RIEMANNian space to the space of line-
_ elements. Therefore, the tensor (3, 13) satisfies the identities (3, 8) represent-
ing also the required laws of conservation of energy and impulse.

The above considerations where based.on the assumption that in our
space of line-elements /there exists the absolute parallelism of line-elements.
The tensor of energy and impulse was defined for this case and it was

/
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shown that this tensor fulfils the laws of conservation. If the absolute paral-
lelism of line-elements does not exist the tensor of energy and impulse can
be defined by (3, 13), however, this 7}, does not fulfil the identity (3, 8) and,
therefore, in this case it seems impossibble to give any physical meaning
to T
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