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A general scheme of a classical theory of physical fields of second kind is 
elaborated in the space of line-elements. The broad outlines of the geomerty o f 
the space of line-elements the foundations of which have been established previously 
if reviewed and the differential structure of the field of higher order are elaborated. 

The world continuum in which the physical phenomena take place 
represented by the field of second kind1 is usually the four-dimensional 
pseudo-Eucuüian metrical space of points. The quantities which determine 
the state of the physical field are in the case of the current — so-called — 
local field theory ordinary space-time functions with a defined law of trans-
formations. 

In the course of the last years the field theories of second kind were 
discussed from very different points of view. 

In this paper we shall generalize the field theories of second kind in a 
quite natural way. Namely, we shall regard the metrical geometrical space in 
which the field is generated as a generalized one, the geometry of which is 
determined by an arbitrary metrical fundamental tensor. Such investigations were 
known previously in the case of relativistic electrodynamics in a gravitational 
field, when the relativistic covariant formalism of the MAXWELLian theory 
was elaborated in RiEMANNian space. However, our investigations, are not 
due to a pure mathematical generalization of the theories of second kind, 
but are supported also from the physical point of view. 

The metrical point geometry of spaces is the geometrical modell for 
isotropic spaces. If the basic geometrical space is a space of line-elements,, 
such as e. g. in the case of the FiNSLERian geometry [2] and of the geometry 

1 To distinguish between the different kinds of field theories we have proposed [5]' 
recently the expressions: field theory of first and of second kind. In the case of a field 
theory of second kind the geometrical basis is the four-dimensional EucuDian (respectively 
pseudo-EucLiDian) space and the physical fields are described by potentials and field func-
tions resp., which are ordinary space time functions. If, on the other hand, the physical 
properties of the field are, according to the ideas of RIEMANN characterized by the geomet-
rical structure of the space, we shall call the field theory that of the first kind. From such 
a point of view EINSTEIN'S theory of gravitation, e. g., is a field theory of first kind, and 
the electromagnetic and mesonic theories respectively, are field theories of second kind. 
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elaborated previously [7], our geometry represents an anisotropic space. This 
aspect is interesting from, the point of view of the relativistic electrodinamics 
in dielectricum as well as that of classical bilocal theory of fields [12], where 
the so-called YuKAWAian variables can be regarded as the point co-ordinates 
and the directional co-ordinates of the line-elements [7]. 

It is well known that in anisotropic spaces the differential structure of 
the field is the most interesting problem. By definition of the LAGRANGian of 
the field in anisotropic spaces too, we shall derive the covariant field equa-
tions and conservation laws. The tensor of energy and impulse will be deri-
ved in a quite general form on the basis of the results mentioned above 
and for the different well known cases elaborated previously by D. HILBERT 
[4], M . BORN [1], L. ROS'ENFELD [9] a n d J . S. de WETT [3], respect ively, it 

can be obtained directly by specialization. 

§ 1. Geometrical Preliminaries 

1. General definitions. The ground element of our line-element space 
J2 is a line-element defined by its four dimensional space co-ordinates x'L 

and by a contravariant vector v" (/¿ = 0, 1,2,3), the direction of which cor-
responds to that of our line-element. Since only a direction is defined by 
the vector if it is evident that the components of if are not independent 
and only their proportion has meaning. The ensemble of the ground elements 
(x, ?;)2 is the so-called line-element space £. 

The geometrical structure of space £ is defined by a metrical funda-
mental tensor gpV{x, v) which will be in the following a given function of 
the line-elements (x, v) being homogeneus function of the variable. v'L of zero 
degree. 

The one-parametric sequence of the line-elements 

X"- = x''{t), -If = v"(t) 
is defined as a curve of space £ for the direction field i f ( t ) . 

The line-elements (x, v) will be changed by transformation of the co-or-
dinates as follows 

x"' = x'L'(x), -If' = i f , ¿1def- det 

and the law of transformation of tensors is given by 

ja-p- ; = dxa' dx?' dxv 
''Y' dxa dxn dxy "y' 

Particulary, the law of transformation of our well defined metrical fundamen-
tal tensor is 

_ dx11 ox r 

2 x and v are the abbreviations for x' L and v u, respectively. 

dx* 
dx>'- + 0 
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The length of the arch of our curve x" = x!'(t) for the regarded fields 
bf directions r/' = v"(t) is defined by 

S = J v) x ^ Y ^ d t lx" dei dx" dt 

Now, let be given a scalar fundamental function by 

which is a homogeneous function of the variable v of first degree. With the 

help of our fundamental function F(x, v) we can define the vector of unit 

length in the direction of the line-element (x, v) by 

/ ' S f V , (1,1) 

which is-naturally also-a homogeneous function of zero degree of •lA 

In our space J3 the invariant differential of a vector Î" is defined by 

D t l - de h- a\?dvk+rx,tdx\ ' 

where C A and Fj\ are the "components of connection" of the space which 
can be calculated explicitly if g ^ is known. These formulae as well as their 
laws of transformation can be found in our previous paper cited [7]. 

The parallel displacement of vectors in sense of LEV I—CIV ITA /s defined 
in our space by 

D F = 0. 

The covariant derivative of the tensor T„.y is given by 

\7.\Ta^y = d\Ta^y — (dvp Ta
fiy)F o?v 

where the abbreviations 

•f* e t ? I /->* P 7" p /->* e 7-/3 
/ a . ?. J p. 7 r ' Q .k * a .y J- y. X 1 a . p , • 

de[ Cl dd d « deT p d . p def̂  p r p 

dxx ' dv? ' ^ dvt ' — 
p'-p def r o ft e r l 

1 a.\=l a.X Aa.ilQ.k 

are introduced and the index "0 " means contraction with the vector /", e.g. 

7> P def <T> fi ¡a «-,* p F-T* p ¡a 
0.y='a.y I , I 0 ,A = -T O.X< , 

respectively, used consequently in the following. 
The curvature of space J2 is given by the tensors 

D '' P* I' I A '' D* 
JXX.qi j t . j J l T ^ K . f f A O.^ l j 

P-k.pi — duTF x.p p An..[ -I- . cri^dv* F y. p)/ , 
C '' 9 4 A . A, ,L''L, ¿-fix . lift] O-] . p] J 

where 

R X'qi = — - f - 2F ojpd \va\F — 2F a''\9r 0>2) 
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is the tensor of principal curvature, and T^\V\Q\ is generally an abbreviation 
introduced by J. A. SCHOUTEN; 

def 1 f » 
' Ifl'-lel ~2 1 i I ,'0 ' o :'i' )• 

By contraction of the indices and r of RX
U

0I the E INSTEIN—RICCI 'S 

tensor 

RxO Rx . Qfl j ( 1 , 3 ) 

furthermore, by contraction with g"e the scalar curvature of the space. 

R = G X E R « 0 . ( 1 . 4 ) 

can be derived, where gxv is the contravariant component of the metrical 

fundamental tensor. 

The equations of the extremal curves, or the geodetical lines of the space: 

d-x • dx dx" . 

are the EULER—LAGRANGE equations of the variational principle 
s.> 

d ) {g!:r(x, x)x-"x"}l!-ds = 0. 

2. Volume-integrals and tensor densities in the space of line-elements. 
In classical physics the field is described by one or several (real) space-
time functions i/v = Vv(x> v ) which satisfy certain partial differential equations, 
the so-called field equations. A current alternative procedure is to start with 
a variational principle chosen in such a way that its EULER—LAGRANGE dif-
ferential equations are identical with the field equations. This method renders 
the so-called canonical formalism of the field possible. 

The canonical formalism of the theory starts with the definition of the 
LAGRANGian 8* of-the field. In the usual point spaces the LAGRANGian is a 
scalar density and therefore the volume integral 

/ = | 2*(x)dix ( 1 , 6 ) 
L! 

— the so-called integral of action — is an invariant of the transformations 
of co-ordinates. 

The scalar and tensor densities, respectively, can also defined in the 

space of line-elements by the usual law of transformation: 

and 

-i dxa dx?' dxy ^ e 
<3-' • = //" •̂--a . Y dxa' dx? dxv' 

respectively, and the LAGRANGian v) can be introduced without any 
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difficulties, however the definition of the integral of action 

I=j&(x,i)d'x (1,7) 

corresponding to (1,6) has only a définit meaning in the usual sense if in all 
x points of the space a direction is given by v11 = v!'(x). In this case — as 
one says — the integral of action (1,7) refers to the field of direction 
V>i = v>1(x). 

In the following we shall not deal with the definitions quite generally 
associated unnecessary difficulties [11], but only in a special case which 
seems to be sufficient for our purpose: 

Let a field of direction be v ^ ^ v ^ i x ) satisfying the differential equation 

(1.8) 

0 , 9 ) 

The condition of integrability of the differential equation (1,8) is 

dtdQt^dQdX. 
However, based on (1,8) it becomes 

del>Lix,v{x)) = - r Y e { x , l { x ) ) 

and in the following manner 

1 r* ^ • 1 V* ^ a a a O r* P _L_
 0

 °-<L n* " _L a r* ^ 0 r* a 
OIOQI —OgOtl = — 1 O . P I — — I FF.i + CPI O.T —j^r—1 O.p-

But dr*o%/dr is a homogeneous function of f of zero order because of 
which we have 

dr. dQl —dQdil =—Ro.qi, 
where 

R o^.pi = — 2 d [ g r + 2r O^IQO^¡r• 
The condition of integrability of our equation (1,8) is also given by 

/ ? W = 0. (1,10) 

Based in the theorem of FROBENIUS [10], [7] the fulfilment of equation (1,10) 
means that in our space of line-elements there exists a parallel displacement 
of line-elements. This is a restricting condition for the space, having imme-
diate geometrical meaning that to a given -direction in a space-time point in 
every other point of our space-time world a parallel direction in the sense 
of LEVI—CIVITA can be determined unambiguously. 

Therefore in the following we shall define the integral of action (1,7) 
for. a field of direction v'i=v>J-(x) which fulfils equation (1,8). 

3. The osculate Riemannian space. It is well known that in the imme-
diate surroundings of a point of the RiEMANNian space a pseudo-EucLiDian 

• r V . - o , 
dx? 

where 
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metric can be introduced, that is to every point of the RiEMANNian space a 
"tangential pseudo-EucuDian space" can be given. 

If in the space of line-elements absolute parallelism of the line-elements 
exists we can construct to all line-elements of our space, an osculate Riemannian 
space fulfilling the following conditions: 

a) The metrical fundamental tensor y,iv of the osculate Riemannian space 
is identical with the metrical fundamental tensor of the original line-element 
space, that is 

Y^v{x)=g(iV{x,v{x)). 

Owing to the homogenity of zero order of gv„.in the variable v^ 

Y M x ) = g ^ ( x , l ( x ) ) . ( 1 , 1 1 ) 

b) The geodetical lines of both spaces osculate each other. 
c) The invariant differential and the covariant derivative of the vectors 

are identical in both spaces. 
d) The tensors of principal curvature of both spaces are the same. 
This construction of the osculate Riemannian space differs essentially 

from the VARGAian one [11] being far simpler and it is based on the exis-
tence of absolute paralellism in the space. 

To prove the correctness of our construction we have to calculate the 
parameter of connection in the osculate RiEMANNian space: 

faip^-y- {dpYai-\- day,p St/op} = 

z ^ ( al ol dl i 

Based on (1,8) and taking into account that owing to the homogeneity of 

(—l ) t h order in /e 

dg<" _ p dgav . 
dl dv 

we obtain immediately • 

= 0 , 1 2 ) 

Furthermore, 

dtfa^y = diT J.y (dv^r a.y) r ofi 

and based on the definition of the tensor of principal curvature 

Rcf.Qt = R cf.gi{x, l(x)), 
where R/.qz is RIEMANN'S tensor of curvature of the osculate RiEMANNian space. 

However, in our case in the line-element space absolute paralellism of 
the line-elements exist, hence, 

p i n * P A a. Qt a . qi i 
therefore 

P P —LpP Ao. Qt Ao. 01 • 

Qu. e. d. 
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4. The infinitesimal transformation. The infinitesimal transformation of 
' the co-ordinates is defined also in the space of line-elements by 

/ = X " + I R ( 4 ( I , I 3 > 

where s is an infinitesimal parameter and ^ ( x ) is an arbitrary covariant vector 
•which is continuous and a limited functions of the co-ordinates x. 

Let T(x, ft) be a quantity of the space having an arbitrary law of 
transformation then we define its total and local variation, respectively, as 
follows: 

I d' T(x, v)2sL T'(x, v)— T(x, v). . 

Considering that based on law of transformation of i f 

dvJl = e(dtv*)?+0(f), (1, 14> 

the connection between the two types of variation is given by 

d 7 = <rr+i m T ) t + T)(d9?)vQ} + 0(i2). (1,15). 

In the case of the local variation the operations d* and and doP, 

respectively, can be exchanged, that is, 

<r(d,>T) = dll(d'T); d'(oc,T) = d c M n 

but in the case of the total variation 

d(dl,T) = d,(dT)-s{(deT)(dr?) + (d„eT)(dt>d^e)v}+ 0(es) (1, 16> 
and 

<*(dJtT) = d,iVT)-e(d#T)(dll?) + 0 { f ) . ' ( 1 , 1 7 ) 

If the special law of transformation of T is given, it is possible — 
based on our above results — to calculate the total and local variation 
explicitly. E. g. if T is a covariant tensor of second order 

d r r = * ) T>r+(o-,t) T"~'-}+o (s2) 

and owing to (1, 15) 

d"Vlv = -¿{(<9, r r ) r - ( a , r ) T " v - ( d > r ) + (da9T"") (dx&v} + 0(e2). 

In the case of tensor densities we have to calculate the variation of 

fig7}, where 

Since, as it is well known that 

¿v\g\=•- y v\g\gor*g , i v=y ra 

we have 
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Now, for a tensor, density 

d £ = d T- VT^T + Td m ; d*sr. = d* T• K i i l + T- <r m 

and e. g. 

d v > - SSL < r 0 = ¿ f f i l { ( a ^ " ' ) ^ -

§ 2. The deduction of the field equations 

Let 

vp = vv(x) (2, 1) 

be a field of directions which fulfils our previous equation (1,8).. Then the 
integral of action of the field is given by 

/ = f s ( x , 7 = ( i ) K x > ( 8 = Y k U ) 
Q 

where <2 is a four-dimensional domain of integration and the LAGRANQian 
density of the field 

2 ?;(*)), 0„(x,v(x)), 0,,[,.(x, v(x)), 0 ^ ( x , v(x))], 

where are the components of the potentials of the field as well as 

^ V „ 0 , = J - 0 , - r\*v 0 , [•£- 0 ^ d v 0 . + (d ve 0.) 

and 

0li\vx == V;. 0„i,, ^r- 0,L\V — ra 0<r\r—r r
a).0ii\<T, 

respectively [7].3 

Varying the functions for the fixed region Q of integration subject 
to the restrictions that the variations of the 0^-s and their first derivatives 
at the boundary of the domain of integration vanish, one obtains 

Q 

as 98 M d& r * v I a . k I a. k 
0 0 ^ d0a\rk " 0 0n.\uk 

d 

Ô0M* 

d0^,k dxk 

Based on the condition of stationarity 

d7 = 0, 

0»\vk [ d*x. 

3 The field equations in the case of scalar fields as well as in the case of tensorial 
fields were deduced in [7] and in a paper communicated to the Hungarian Academy of 
Sciences (1955), respectively. 
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we have by repeated partial integration , 

— fiflA(T> dix = 0 
d®„ U 9 " dxv U u-

a 

•where 

dd d£ r* ^ _ r* v _ d dS ,„ 
~ d ® ^ 3 ! P „ | / " 1 d ® ^ a X d ® ^ ' K , ) 

However, this equation is fulfilled for arbitrary variations of the which 
satisfy the above mentioned conditions and for an arbitrary choice of the 
integration region. Consequently for all space-time points: 

e r r * / . - - g - e r y = o . (2,3) 
d®fl dx-

To put the field equations (2,3) in their explicit covariant form N ê write 

6 T a s 

0fiv CZfiv Ct, a v >- r 1* p ctpak r'*  v d cfciwA. 

= 0 — o 1 «•*•—o 1 — ^ T O » 

where the following abbreviations are introduced: 

and 

t̂M-rA. def a s 1 qaivK 
6 = 7 [ j p 

Since 

cy^f def 9 2 Z7fxr 1 ,-v./' v 

' ' 

VrfiyA d ŵ iLv't. . r-.fi i'/. ii* . r f̂iaX j->* v | r-/'.ra / ' * k 
Xf = ^^ r I a.k + r I a.K-rr I a.x 

and based on the equations (1,9) and (.1,1.2) 

- ¿ r Vl?ï = a x K1ÏÏ - (A * ^ = + ~ r 

we have 

/ t e l V i F ^ = + % a v Xr*a\ + r a X r 

Therefore we obtain 

Furthermore, introducing the notations 

,1« 1 
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we can put our equation (2, 3) in the form 

and 

r-ir'-Y\g\ v ^ i r * / , - J L . i r v - m V x ^ l = 0 

respectively, where 

Since 

V , r r = ^ A ^ T * ^ A™ F\v
v, 

just as above, we have 

and finally 

F'L - V . {F^ - Vx F^} = 0. 

Taking.into account, that the determinant ^ of the metrical fundamental ten-
sor g ^ does not depend on and its derivatives, we have 

d L . SdL d L \ „ 

Vr 'TT fT V ; . ^ — = 0 . (2 ,4) 

This equation gives for the field of direction vll = vfl(x) the explicit covariant 
form of the field equations of our vectorial field. 

In RiEMANNian space equations (2, 4)' has the form 

dL -vJ-^-^-lMo, (2,5) 
where V r is the differential operator of the covariant derivative in the 
RiEMANNian space. 

In the case.when in our space the absolute parallelism of the line-elements does 
not exists, based on the VARGAian methods of construction of the osculate RiEMANNian 
space, one another version of this theory can be elaborated. However, we shall not deal 
with this generalization because the supposition of the existence of the absolute paralle-
lism of the line-elements seems to be realizable in the partically interesting cases. 

§ 3. The differential laws of conservation 

1. The fundamental identities deduced by the infinitesimal transformation. 
As it is well known, based on the infinitesimal transformation of co-ordinates 
some identities can be deduced which from the phisical point of view can 
be interpreted as the differential laws of conservation of the field [8]. 

If the variation of the LAGRANQian 8 brought about by the change of 
co-ordinates is investigated, we must take into account the explicit dependence 
of the LAGRANGian on the contravariant components of the metrical fundamental 
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tensor g^ v and their derivatives too. The derivatives of g c a n be found in 
the parameters of connections of the space and in their derivatives. But these 
derivatives are the partial derivatives of the g ^ v owing to which our 
LAGRANQian density has the form 

s = n g ' L v , g^ug*:.W), (3, l) 
with 

1IV dei . u-v uv def „ p-v „ a nv-v 
g..(«) = dag , g = dpg ..(cc) = dp dag . 

If in our space of line-elements the absolute paralellism of line-elements 
exists a field of directions 

vn = vv(x) (3,2) 

can be introduced satisfying our equation (1,8) and the integral of action 
defined for this field of directions is 

/=fs(x, i ;(x))</«(jc). 
& 

Now, we pass over to the osculate RiEMANNian space introduced above, 
which has the metrical fundamental tensor 

therefore 

y?« , = dag^+(dvÇgnoa dag>"'-(oWv)r\°a = J ^ g ' -

and similarly 

d-g fj-v • 
7 • • («P>; 

dx"dxe 

Furthermore, introducing the notations 

and 

9V(x)M<ZV(x,^x)) , 

£ S S ( x , , ( x ) ) , 

the integral of action, in the osculate RiEMANNian space is 

/ = [,£(x)i/4x. 
fi 

The total variation of I subjected to the restrictions that the Ef-s of the 
infinitesimal transformation (1, 13) at the boundary of the domain of integ-
ration S2 vanish is given by 

d / = J > £ < / 4 x , 

where 

Otp tL ptpn-.v QCpfL^vk-) 
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being 

a£ • d dt [£]„„dei a£ 

d f v
{ a ) dx" 3-/V) a/" dx" 

the LAGRANGian derivative of £ . 
Assuming that the potentials 0 ^ and the corresponding potentials in 

the osculate RiEMANNian space, respectively, fulfil the equation of field 

' ° L V l V a - T ^ — = 0 , 
dVii;* • df^vX 

the variation of our integral of action, is reduced to 

Q 
I is, however, an invariant of the changes of co-ordinates, therefore 

d/ = 0 

for the infinitesimal transformation of co-ordinates too. This means that 

[t]uVd*y^d ix = 0 (3 ,3) 
<2 

for an arbitrary, choice of the integration domain. But d*/'" ' is symmetrical 
in its indices m and r, therefore, the antisymmetrical part of the LAGRANGian 
derivatives of £ does not come into consideration. As matters stand we shall 
introduce the symmetric tensor density 

ff^-2 [£](,„, = - { [ £ W + [£W> (3 ,4) 

and based on (2, 5) we have 

u 
and finally — using our equation (1, 18) for d*/ '" ' — this integral can be 
written in the form 

Subjected to the restriction that vanishes at the boundary of the domain 
of integration by partial integration it is obtained that 

* J {8V, (dx r'v) + 2 0,31} fdAx = 0. 

However, this is an identity for arbitrary and for arbitrary choice of the 
integration domain, therefore, based on this consideration we have 

+ y ( f h ' D ^ u r = 0, (3, 5) 
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or • . 

and 

— = 0, 
\ respectively. 
i These identities are deduced in the osculate RiEMANNian space. Now, 
\returning from thé osculate RiEMANNian space to our original space of line-
elements we obtain based on (1, 15) that 

d ^ . - i d ' ^ D r V . - r ^ . ^ ^ O (3,7) 

for the field of direction satisfying our equation (1, 12). 

Our equations (3,7) are the required identities which will determine 
the laws of conservation for the physical field. 

2. The metrical tensor of energy and impulsé. The metrical tensor of 
energy and impulse of the field was originally defined by D. HILBERT [4] in 
the RiEMANNian space as the coefficients of the d 'g^-s in the integral 

d/ = 2 f (3,8) 
ô . 

or explicitly 

f>"' = ~ L - [£]"lr). (3,9> 

1 % I 
Now, based on the identity 

d*g!lv = —gatigf>rô'g aP, 

(3, 8) becomes 

d/ = -2\[^ ] i i r d
t g^d i x (3,10> 

Q 

and similarly the covariant components of the tensor of energy and impulse 
can be defined as 

v\g\ 
These considerations were valid in the RiEMANNian space. To define 

the metrical tensor of energy and impulse in the space of line-elements 
too — assuming that in the space of line-elements the absolute parallelism 
of the line-elements exists — we shall suppose that there is given a field of 
directions vu = vfl(x) fulfilling the equations (1,8). Then we introduce the 
metrical tensor of energy and impulse — based on (3,4) — by the defi-. 
nition 

dei 1 1 \( 38 , 38 

dxa 

m i f * " ' - ( 3 , 1 2 > 

as , a s ^ d ( a s 

dg^'ia) dgr%)l d x " { d g ^ dg7m) J 
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Taking into account that 

we have 

.and 

aS ^ifi—j 9L 
dgf'l' ' I ® I fig/XT ' QgfLV 

Z=Y\g\L, 

dL 

ai 
m 

dL as 
rr^ T cr 

I 

m 

T ^ i 

dL 
a rrPv 
Og..(aP) 

respectively. Similarly 

as 

dxa 
dg . . ( a ) . 

and 

dx" dx? 

dx" 

<58 

V\g I 

dL 

a rr^ 
dg ..(afi) 

1 rr t l v I 

d 1 i r~,—r 

dxa 

dxa 

d 

-V\g\ 

dL 

dL 

dxa 
dg..«*) 

r * a 
a .(j 

dL 

gd ..(a) 

1 rr 
r 

dL 

dL 

dx" 

+ K : , 
dL 

+ r 
dL 

p.U 

dx a rr^ 
dg . . (a,5) 

+ r 

Og'"'(ap) J 

dL 

+ 

p.a-
a rr^ Og • .(«/3) . 

respectively. Therefore, we finally obtain: 

8L. , dL \ . d 
Tfiv gui' L 

dg r dx" 
dL •dL 

—r I 
dL dL 

a rr^ a rr^ dx" 

dg7.v> 

dL , 

n rrV^ 

dL 

+'"-'-It 
dL 

a rr^ 1' Og ..(«/» 
dL 

1 rr^ 1' a rr 
dg..(c) 

— r 
dL dL 

dg^iaP) Og^iaP) dx" 
dL 

1 rrv>L 

dL 

(3,13) 

a rr^' dg ..(oft dg..(ap) 

•defined for the field of directions v> i = vll{x), where the differential operator 
d/dx" is introduced by (2,3). 

3. The laws of conservation of the energy and impulse. The metrical 
tensor of energy and impulse of the field (3, 13) was defined on the basis 
of (3,4) passing from the osculate RiEMANNian space to the space of line-
elements. Therefore, the tensor (3,13) satisfies the identities (3,8) represent-
ing also the required laws of conservation of energy and impulse. 

The above considerations where based, on the assumption that in our 
space of line-elements/there exists the absolute parallelism of line-elements. 
The tensor of energy and impulse was defined for this case and it was 
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s h o w n that th is tensor fu l f i ls the l aws of conserva t ion . If the abso lu te paral-

le l i sm of l ine-elements does not exist the tensor of energy a n d impu l s e can 

be de f i ned by (3, 13), however , th is T*v does no t fulf i l the ident i ty (3, 8 ) a n d , 

therefore, in th is case it seems i m p o s s i b b l e to g i ve a n y phys ica l m e a n i n g 
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