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In view of the experimental evidence of existence of families of the e le-
mentary particles the problem of a theoretical explanation of their mass spectra 
becomes a mat ter of urgency. Recently very interesting theories of the mass 
spectra based on YUKAWA's bilocal field theory were published by H. YU-
KAWA (1, 2,) and J. RAYSKI (3, 4). This fact gives the bilocal field theory a 
special interest. 

This paper will indicate á natural geometrical basis for the bilocal. theory 
eleborated originally by H. YUKAWA (5) in a quite abstract operator form and. 
on the basis of this geometrization the generalized SCHRÖDINGER—GORDON 
equation of RAYSKI (3) will be deduced. 

1. §. A CONNECTION BETWEEN THE BILOCAL AND THE GENERALIZED' 
LINE.ELEMENT SPACES 

The world continuum in which the physical phenomenona take place, rep-
presented by the field, is a four dimensional space-time ensemble. This ensemble 
can be regarded as a four dimensional metrical space. The quantities whicht 
determine the state of the physical field are in the case of the usual local field, 
theory ordinary space-time functions with a given law of transformation. 

In YUKAWA's bilocal theory the quantities of the field depend ón a point 
pair of the four dinemsiorial space-time continuum. Consequently, the natural 
geometrical basis for the bilocal field theory is the space of the point pairs-
From this point of view YUKAWA's theory is a field theory of second kind (6) 
in the space of the point pairs and we will regarde the point pairs (X, X) of 

(i) (-) ' 
the world continuum as basic elements of the space 33. 

The point pair (X, X) is space-like, light-like and time-like resp. accor-
n) <•<) 

ding to 

(x"—X?) (x^—x„) = ( x ° — x ° f — ( x 1 — x j — ( x 2 — x j — ( x 3 — x j f 0. 
(1) (2) (I) (•>)• . (!) (->) (1) (2) (1) (2) (1) (2) 
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Since the physical phenomena which take place in space-like point pairs 
of the space-time continuum do not influence one another, we have to suppose 
that 

(x, X) = (X, x ) for space-like point pair. 
(1)(2) (2) (1) 

Now, we will introduce the so-called coordinates of YUKAWA by the de-
finit ion 

X" = - 1 (x'1 + x") ; r'L = x" — x". (1 ,1 ) 
* (!)•-^(2) (1) (2) 

-Instead of the point pairs (x, x) we can use the coordinates (x, r). Let the en-
(1) (2) 

semble of the^ coordinates (x, r) be regarded as the basic elements of the 9) 
space. 

Since in YUKAWA's theory a condition of normalization for the vectors 
is given by 

m,, = 

where I is a constant, the four components of r^ are not independent, con-
sequently only one direction is determined by the second group of the coordi-
nates of YUKAWA. But this means that the basic element of the 9) space and 
the basic element of a general line element space are equivalent. 

The condition of normalization is negligible, if we introduce instead the 
YUKAWA's coordinates the coordinate 

V t l=QrtL 

where q is a positive factor and we suppose that the quantities of the physical 
field are homogeneous functions of the variable v^ of zero degree. The space 

of the line elements (x, v) is then equaivalent with our previously defined 
spaces S3 or 9). • 

The metrization of space £ and the basis of this kind of geometry was 
eleborated in a previous paper (7). 

' 2. §. THE IDEA OF A CLASSICAL BILOCAL FIELD THEORY 

The general idea of the physical field theory, given originally by M. FA-
RADAY and J. C. MAXWELL, was that — instead of the idea of the point 
mechanics according to which the action of the forces is an action at distance 
— the interaction between two separate particles is transmitted by the physical 
field. This means that the changing of the state of the field in a point of the 
space-time world depends only on the changing of the state of the stress of 
the field in the immediate neighbourhood of the considered space-time point.' 
If we take only into account the action of the state of the stress of the field in 
the infinitesimal neighbourhood of the considered space-time point we can 
deduce by the well known limiting process for the characterisation of the ba-
lance some field equations, which are based on the above consideration partial 
differential equations. The theory of the field is in this case an ordinary local 
field theory. 
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If we will now neglect the mentioned limiting process, we can assume that 
the state of the field in the considered space-time point will be directly in-
fluenced by the phenomena taking place in the space-time point of a sphere 
with a 2 radius which surrounds the .considered point. Apparently this assump-
tion represents the general idea of the bilical field theory. It is clear that ac-, 
cording to this supposition the idea of the action at distance is recalled in the 
inside of the sphere with the radius I, but it does not matter because the 
aspect of the field theory remains macroscopically —- between elementary par-
ticles — unchanged. 

Undoubtedly, the general idea of the bilocal field theories means a radical 
change of the field theoretical aspect, but the bilocal field theories have the 
advantage over the local field theories that they are free from the well known 
•divergencies of the local field theories. 

3. §. THE GENERALISED SCH0DINGER-GORDON EQUATION OF' THE 
BILOCAL FIELDS 

We shall deal in the following with the skalar bilocal field theory. In this 
case the field is characterised by a skalar bilocal function ip — ip(x, r) and we 
suppose that 

/•"r„ • /.'-' r 1. 

Let the LAGRANGE-function of the field be given in the form 

~ dx>1
 ' dr^ 

where the character of transformation of the function S is a skalar density. 
The field equations can be deduced from the variational principle: 

« _ « L . rn// 

Index ip refers to the fact that in integral $ the function <p should be varied. 
The variation of yj has to be zero on the limit of the domain of integration. 

It can be proved by infinitesimal transformations (8) that the bilocability 
•of the function ip does not make any difficulty and the EULER-LAGRANGE 
-equation of the above variational principle is 

a s 8 a s o o y Q 

dip dx? d-tp dre dip 
dx» dr<-> 

Finally, let us suppose that our LAGRANGE function is quadratic in ip and 
its derivatives and consequently has the general form 

«def_L \ A ^ ^ L - ^ L j l . f f * + C"" d ^ I D*1 Uj 1 
2 } dxfidxr dxf or Or11 or dx* ' 

" • ' ' (3 .2 ) 

where the constant coeffitiens fullfill the symmetry relations: 



28 J . I. H O R V Á T H : B I L O C A L S C H Ö D I N G E R - G O R D O N E Q U A T I O N 

b!IV=bV!\ c!lv = C"'\ 
Then our f ie ld equat ions have the explici t f o r m 

Ai'r Py , D„v d- ip , rv.v d~ip . p 
In the case of 

F = A"" = Bm = c№ = 1 and A'LV = B'"' = C"v = 0 for =}= v 

our equa t ions (3,3) and R A Y S K P s general ised S C H R Ö D I N G E R — G O R D O N 
equat ions a re identical. 
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