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Introduction. Mulliken in his most interesting papers (1)
made a serious attempt to interprete the intensities in molecu-
lar spectra on. the quantum ™ mechanical basis. His calculations
were made in most cases w1th aid of the molecular orblta.l (MO)

method. .

The aim of this and subsequent papers is to treat the same
problem by means of other guantum mechanical approximations.
We shall compare the calculated values with the empirical ones
"and the accordance or deviation will serve as indicator for the
degree of approximation by the method employed. .

The Oscillator Strength. We shall use the method described
by Mulliken (1) comparing the calculated and the observed osci'-
lator strength.

. In order to "obtain the calculated oscillator strength, /...
we compute the dipole strength I — Q? (ef. II.. 1) by means of the
quantum mechanical & functions describing the molecular ‘states
and from this

‘fCalc=1.096.10‘1,Q2_'p i (1)

where v is the place. of the absorption maximum in em=*.
On the other hand we get the observed oscililator strength
fovs from the empirical absorption eurve by means of the relation

fon=432.10" . [e,dv 3 4.32. 1070 e dv Q)

in which 4» is the half width of the band, ¢ the molar absorption
- coefficient. )

The theoretically’ computed f.,. value refers to the gaseous
state. In the case of solution we must made a correction due to
the Lorenz-Lorentz forces. However some investigations (2) have
shown that the agreement is better, when this correction is
omitted. '

Since the individual approx1mate methods treat the problem .
from different point of view and from the comparisons we will
draw -conclucions with respect to the method itself, we must make
known by each the starting-point, the a,ssumptlon and the simpli-
fications used by the method.

In this paper we shall investigate the intensities in molecu-
lar spectra with aid of the Slater Pauling method.
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I. The Outlme of the Slater-Pauling Method

1. Starting point, assumptions (Heztler-London) We shall in-
vestigate in the following only organic compounds in which the
number of = electrons is equal to the number of C atoms forming
the skeleton of the molecule. The electron cloud of each = elec-
tron forms a dumb bell the axis of which being perpendicular to
the plane of the molecule, therefore it does not appreciably overlap
with- the o electrons, the electron cloud of the latter being rota- .
tion-symmetrical around the joining line of two adjacent atoms.

. The = electrons are less firmly .bound- than the o electrons
They are responsible for many physical properties of the molecule
among them for the visible and ultraviolet spectra. Investigating
the intensity problem of the spectrum, we must only deal W1th
the = electrons,

In the cdse of n C- atoms and n = electrons we have an n
electron problem what cannot be solved rigorously quantum me-
- chanically. We must make some simplifications to get a first
orQer approxmatlon

The idea of this simplification is due to Heitler and London
and is the same as in the case of the hydrogen molecule. We
think the atoms very far from each other, one = electron being
by each atom (that is we exclude the ionie, polar cases in Wwhich
two electrons are by .one atom). We suppose that in this approxi-
‘mation only this atom acts upon-the electron, in other words we
take as perturbation the action of the other atoms and electrons.

In this approximation Schrédingerss equation is separable in - -

# one-electron-problems and the solution is the produet of » one-
electron-functions: ¢y —=a(1).5@2).¢3)... A, 2,... denote the coor-
dinatetriple of the first, second, ... electron, a, b,... mean the solutlon .
of the one-electron- problem by the first, second,... atom.)

However the problem is a degenerate one because all the

functions, which differ from fhe above mentioned only in the arbit-
rary - permutation of the electrons among the atoms (c.'g. ¢y =
=a2).b1).¢(3)...) belong to the same energy. We have =/
such functions.
} When we treat the problem with aid of the perturbation theory
introducing the interaction of the electrons as perturbation, we take
these n! functions as of zero order approximation and we look for
such linear combinations of them which approximate better the
real states of the. molecule.

The determination of these coefficients, Whlch are necessary to
the linear combination, requires the solution of a linear system
of equations set up in taking account of the pertiarbation.” This
is possible only in the case when the determinant of the system
vanishes. The roots of this so called secular deferminant give the
possible energy values of the perturbed system.

In this case the- equation system .consists of n! equations,
the secular detérminant has n! rows, the degree of the secular equa-
tion is »!. This is a very great number (e. g. in the case of benzene
n-—=6,nl—1T720) to deal with it.

2. The Slater Method. Slater achleved a very great s1mphf1ca—
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tion of the problem mtroducmg the spm vamab‘e a.nd takmcr
aceount of Pauli’s exclusion principle; (3) '
" Neglecting the magnetic interactions we can write. the one-’
- electron-funection -as a. produet: @(x, y, z, m,) == u(x;y, 2)-. o(m,).
of two functions where u depends only upon the three space coor-
dinates and: 0 only upon. the spin coordinate (m ) The latter is the
# component of the spin of the electron and can assume only two
.values m =+1/2,m =—1/2 (measured.in k27 units). :
- The » functlon measures the probability to find the electron’
in the x, ¥,z place, the ¢ funetion measures the probability to find
the z component of the spin of the electron (m ) W1th the wva-
lues+-1/2 and —1/2, respectively.
When the electron spin has the value +1/2, then the values

for m,=+1/2 o(m,)=1 (certainty)
for m,=—1/2 o(m,)=0

" When the electron spin has -the value —1/2, then the vanlues
for m,=+1/2 o(m,)=0
for m,=—1/2 o(m)=1 (certainly)

_We call these functions o and B, respectively. It follows from
their definition that ¢ and B. are mutually orthogonal:

of the o function are:

of the ¢ function are: 8

a(+1/2). ,3(+l/2)+a(—1/2) p’(—l/2)— : 3
and they _are normalized ' :
at(+1/2) + o (—12)=1_ (4)

This is a.very important fact by the calculatlon of the dipole
strength integral. '

Slater takes into account Pauli’s exclusion principle using
" only wave functions antisymmetrized in the electrons. These funec-
tions must be written in determinant form or in.the equivalent
sum of permutations faking with + or — sign according to even
or odd permutatlon We denote these Slater functxons by the fol-
lowmg ‘equivalent formulae: .

_ Slater Ffunction ,
(e g. in the case of four electrons one Slater funetmn)

a(Me(l)) aa(?) a@)a(3) a@a(d)
(p____'__ b(Ma() 6(2)e2) b(3)e@) b(4)a(4) (53)'
V&t c()B() c(@B() c(3)BEB) c@B@ | .7
|l d(1)a(l) d2)e(?) d@)e(3) d(4)a(d) ‘
P>

P=7F I Paa().b@a@).c()F@).dHal) (5b)

___1_ ‘abcd ) ” N )
(P means the permutation of the electrons 1,2, .) among the-
atoms. This function corresponds to the spinr state, when the

electrons by the first, second, third and fourth atom, respectively
have the spinvalues +1/2,+1/2, —1/2, and -+ 1/2, respectively.)
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“We' canform 2’ guch’ functlons because by each atom the
spin can assnme two values. That means that the degree of the
secular equa,tlon is reduced froni n! to 2” (e. . by benzene from
720 to 64). - - - S

Slater obtained a further s1mp11flcat10n proving that by the
linear combination we must dse only funections . by which the
resultant spin has the same component on the z axis, or in other-
words which have the same number ¢ and B. The secular equation
is dissolved in equations of minor degree. (e. g. in the case of
benzene .in . equations of" 1.6, 15,20,15,6,1 degree, corresponding
to the cases that the reSultant spin. has the following components:
3,2,1,0,—1,—2, —-3) This is the method uséd by Huckel treating
the benzene problem in his first paper . (4).

o 3. The vector-bond method (Eyring, Paulmg) In the next step
it was demonstrated (5) that in the linear combination one must
use only functions by which the resultant spin has the same value
(not only his 2z component) In classifying the states correspon-
ding to these : functions, we get singlet (resultant ' spin—=0),
" triplet (resultant spin —1) and so on, states. The functions can be
obtained from the Slater functxons by means of the vector-bond
diagrams.

Let us consider for example the s1nglet states. The resultant
spin is 0. Connecting with bonds the’ atoms by which the spin is
compensated (—1/2—— +-1/2) we obtain many figurés which are
called vector-bond diagrams. (E. g. in the case of four atoms we
can cbtain the followmg three dlagrams) -

'a| |‘b a——jp - a$\7’b :
d ¢ Al ————|c d ~ lc"

Bach diagram is to- obtained from Slater functions .(spin states)
which are consistent with the figure. When we draw an arrow from
the atom by which the electron spin is —1/2,:to atom by which it -
is +1/2, we obtain, e. g. the first diagram as a sum of four Sla-
ter functions (spin states):

» a b . afy b . a b a[T J|b a:,-b
wA:dl Ic=_+d|I'c_d ch+d*'-lc‘d-(_~lc\
L (a,b"c d) (ﬂbcd)_l_( d)__’(a b.c d)

4 V&t l\a e g 8) afa flaca)] \aBalf
P, = =. + ¢ —  @q + (I’m. — Priv

(taking with -+ or — sign according to even or odd reverse of the
arrows with respect to the first Slater function ¢,)

Rumer pointed out . (6) that the functions corresponding. to
the. vector-bond. .diagrams are not all linearly independent. Accor-
- ding to his considerations we obtain the independent ones, writing
“the atoms on the circumference of a circle and forming all:the
possible vector-bond diagrams by which no two bond interseets
ecach other. These ‘are called canonical structures by Pauling (7)
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(e. g. by the example mentioned above, only two are canonical,
i. .e. independent: &, and ¥ )

The other vector-bond diagrams can be resolved in the un-
crossed ones by the repeated use of the following rule:

= ¥ +

— (6).

-

By the determination of the coefficients we must use only
the independent set i. e. the canonical structures. This means that
the secular determinant is- further reduced. (e. g. by the benzene
there are five linearly independent, canonical structures for the
singlet state and we must solve an equation of the 5. degree ’

AN X\ z : ' N
o, b, D, v, w,
SR ORIS ORI

The ‘real states of the molecule can be approximated by the linear
composition of these five structures. The lowest state has less
energy than any of the five structures according to the guantum
mechanical pertutrbation computations.

After Pauling’s comment this is due to the ,resonance’ among
the five structures. (7)

4, Vector-bond wmethod and -mesomerism. It is a close con-
nection between these vector-bond (VB) functions derived on the
basis of the quantum mechanics and the mesomeric structures in-
troduced by the theoretical chemistry.

The two methods give the same conclusion referring to the
stabilization of the molecule because of the resonance among the
mesomeric (canonical) structures.

The difference between them is, that the mesomerism theory
gives only qualitative conclusions, but the Slater-Pauling treat-
ment makesg possible ‘the evaluation of many physical .and chemi-
cal properties of the molecule. — In the following treatment we
shall use for the evaluation of intensity of spectrum.

I1. Intensity caleulations according to S—P method.
- 1. The dipole strength.

P=Q+Q+&

In order to get the x component of the dipole strength @,, from a
molecular state characterized by the function &, to other molecular
states characterized by the functions &, ¥, ..., &, (Q,is proportio-
nal to the probability of transilion fmm the state D, to states
W, Py...., under the emission or absorptlon of light quanta pola-
rized a.long the x axis), we must form the following produect:

X (X= Z X,) X, means the x coordinate of the v-th electron) and

expand in terms of the functions, ¥y, ¥y,... as follows:

XF=cy B+ o @ +co Prut. . (7) ’
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* _ The coefficient ¢, gives the x ‘component of the dipole strength
from the state & to state &,. We obtain the ¥ and z componeni
in' analogons manner replacing Xby Y and Z. V= Z Yo Z= Zz,

Two cases are possible by the determination of c;;.

a.) 'The functions &, ¥y,,... form an orthogonal and norma-
lized system ' (i. e. f’lf?lfdt—(iliilf)—o i+k; (T T)=1). .
In this case we get ¢, by forming the scalar product of the equa-
“tion 7 with &,

(&, XP)—CH (F, ‘PI)+C.2(Zp Fu)+ .. +C-k(2p L. =cy _

—0 ' --0 ’ ——l
Q.= o= (T,, XF) =¥ XW,dv (8a)

b.) The functions are not orthogonal. In order to obtain ¢,
we must form first the ‘reciprocal system. The members of the
reclprocal ‘'system. X, Xu, ... have the following propertles '

(xBdr=(xP)=0 i k; (x¥)=1 )
‘Assuming that the x -s are in the same funection space as the

@, .or in other words that the x-s are linear combinations of
the &-s, x;=k;, ¥, +k;y Pu+. .. we obtain from equ. 9 the following

equation system from which ‘the unknown k,l, ki, ... can be deter-
mined:

() = ey (R + g (B, ) + — o)

(6 B) = ko (B, Bi) -+ ko (B ) - =0 ? (10)
(xlw) - klﬂ(gflw) + ki2 (gp.uw) + . * * "\ = 1 )

With aid of the reciprocal system .we obtain Cip a8 follows,
‘We form the scalar produet of equation 7 with X,

(xkxw)—cn(kax)‘l’c.z(xk L) +. . +C.k(xk k)+"'=cnk
Q.= = (X B) =[x, X B,dv (8b)

It seems that hitherto only the first formula, 8a, was used,
and the second, 8b, overlooked.

9. Reduction of the | x, XW,dx .integral to ground integrals.
The Xx-s are linear combinations of the @&-s, (molecular states) The
latters are linear combinations of the ¢ -s, (canonical structures)
Finally, the canonical structures are linear combinations of some

Slater functions, ¢ -s. That means that the fx,,' W.dt integral can

b& reduced: to mtegrals | X ¢, d7 involving Slater functmns (spini
tes)

jqo,qukdz_(w.quk)—N,j(Z(—nPPa(1)b<2) au)w) )
- X (=1)"Pa(1)b()... 8(1)a(). . )ds

Tt has been proved that this integral can be transformed in the
following S1mpl1f1ed form: (8)

(9:X9.)=[(a(1)b(2).. (@) .
X(2 (—1y Pa(1)b(2)... (1) a(2)...)ds
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Taking 1nto account the orthogonality and normalization of the
spin vanable

. (@ 5(6)=0 (au-,a(,-,)=l. (ﬂ(aﬁ(e))=1
- we get the following rules for the integrals:
(We restrict ourselves to the transpositions.” The - essentlal is
always ‘the order of the spins by ¢; and ¢, )
: a.) If there are more than one transpositions between the
order of spins by ¢, and ¢, the integral vanishes.

b.) If one transposition is necessary to obtain the same or-
der of spins by @; as @, then we get one member from the sum,
by which P7is just the tran5p051t10n which reestablishes the
same order of spins. fa(l) 6(2)...X.a(2 b(1)...dz=(ab). We call
this term, exchange integral. s

c.) It ®; = ¢, We obtain one term of the following- type:
ja(l)b(Z) . X a()b(2)...dr oprincipal integral (abc...) and
so many exchange 1ntegrals as many possibilities we have to per-
mute the electrons having parallel spins.

(E. g. in the case of six electrons:

 fa)b(2)... X.a(2)b(1)...dr={(ab)
Ja()b(2) ... Xa(1)b(2).;.dv=(abcdef)

_[abcdef .__[abcdef ‘ becdef
(p‘-—“(aaaﬂﬂﬁ) ¢"_(aaﬂa"ﬁﬂ) P == (ﬂﬁaﬂ’aa) Prv. ..
. a) (‘}’11}7111)— b) (q)lrpu) — (Cd) -

©) (@) = (abedef) — (ab) — (ac) — (bc) — (ed) — (df) — (ef)

* (9u 9u) = (abcdef) — (ab) — (ad) — (bd) — (ec) —(cf).— (ef)

3. The principal mtegral We take for example the benzene.
. The molecule. should be .in the xy plane, the z axis bemg per-
pendicular to the .plane of the molecule. The Slater-type form of
a = electron function by the a-th- C atom is then: (9)

b

Yg : - L
a( 1) = (—) ze=om =kz,e~" =kr,cosd, e~

where 9, I, mea.ns the spherical coordmates of the electron with
.tespect to the a-th atom.

We take the origin of the coordmate system in the sym.metry
centre of the benzene molecule. The coordinates of the. a-th atom
then are: a, and a, The coordinates of the electrons are o '

X, y with respect to the origin
X Voo w1th respect to the a-th-atom

X,=r.sind, cosp,| 2.=7r.c08Y,
(1 1) rev! ’ A
S Y.=r,sind sing,

'x"——a +x,
== a +ya
a.) The x principul integral. .

[a()b@). .. f®) ot xa ..+ 3] a()b() ... doy . .. dry=
=[a()xa(dz. [6)6@ds,. [ .. . [£6)£6)d7, +
I T T

(12)
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+fb(2)x,b(2)d'52+_[c(3)x3c(3)dtg+ +Jf(6)x6f(6)d16 o
-—jl+jz+ +_/6 ’
/Fja(n;c}a(r)dwja(l)a(l)[a,+xa(l)1dz;=‘a,f@a(l)d¢1+
_ ‘ Ry
+Ja(l)a(1)x (l)afr1 =a, +fk2z2e—2‘"a r,sind,cosq,. r2sm3 dr.d¥,de,~

——— o —

a(l)a(l) = x, - dz(l)

2

Q

=a,+k

O“;

rﬁe—z"" cos2:‘}sm219 cosq> dr.d¥%.de =
( e—z‘" cos2 351n28drd8) J cospdoy =a,

. s, o e
y - 7=0 .
Likewise y=0b,... i=f s+ .+ i=a+btc+d +e,+f (12a)'
-2 b.) The y principal integial. We get 1p- analogous - manner
T JaWe@ byt Ayl a()6@). . de=
e © =0, 4b,4c,4d e+, . ~ (12b)

¢.) The z principal mtegml In the case of plane molecule
2. =2, and therefore . e

fays@ et at .. +alam s ..
—Jamazaydn+.. +jf(ﬁ)zﬁf<6)dzﬁ—/1+...+/6
fa(l)a(l)zdzl—jkﬂ sp-Zaragp—

© 7 27

[ k*ricos’d. e—z“' r%m&drd&dgz)_
e, me—— .

o°—8 o9
Sy Oy

=0, +K

QL

1] N o o

- ‘ o2 dz
X w?n . .
Jk2r5e—2“’ drdqo l!-cos3~?sin3d&=0 ,
R L .
Likewise fo=...=J;=0. . (12)

Snmmanzmg the results, we have obtained the followmg fonmulas
in the case of plane molecule for the principal integral:

(abcdef),=a,+b.+c.+d. +e.+f.; .
(abedef), = a,+b,4-c,+d,+e,+f, (abedef),=0.

~ 4. The exchange integral, Let us consider for example the fol-
lowing exchange integral: _

(ab), =_Ia(|)‘b(2) @) ... [xt+x+...+ Xq] a(2)_b(1) c(3) ...dy
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(ab),— fa(n)xlb(n)dz, _[a(2)b(2)d¢2 je(3)c(3)¢n3 {7®7®)d5+
Qs

./1 _/o 1 l

+fa@ o an. [a@) mo@dn. | ¢®) e d.. ff(ﬁ)f(G)df.-,
- .10 ]1 1 1 .
+[a()b(1) ds,. fa(2)b(2)dfz jc<3>x3c(3)dzs ff(ﬁ)f(ﬁ)d%+ +

S——

) Jo _]o C, l
+[a(tyo(1)ds. [a(2) b2) dr,.fc(3)c(3)d'z3...ff(6) X, f(6) d7, =

A S

 =2)it et dote 1)
jo =J.a(]) b(l) dw, =Ia(2) b(2) dz, #sz“e'“'a kz,e %" d1=J.k’22°e-a(r¢+rb) dz

j1=ja(l) x,b(1) dr1=fa(2) x,b(2)d7, =_fk222e‘“('a+'b) .x.dz

X=a,+X,cosa—y,sina . (13)
In order to evaluate J, and J, we use- the transf01matlon formula
13 and on the other hand we introduce elliptical c00rd1nates

I, ;rb —p fa"'l\;’ ==7 by means of which the integrals transform

as follows:

m'- r?— f. '5’.. A’:

. 3o
y . ,% ) ZemCosg
‘ ®. B

e
o f
~
Eg

O

=§(l+m’) X= (I%uw) za=éb=z'%£V(#2—1)(1—v2_)c089°

@ +1 2z

Ya —J'a—}’——-V(M —1) (1-+%)sing; Jf Fd’“_Jd”jd”Jd¢(#2—W’)F .
JJ (v 2 2) L (M —1)(1—%?) cos®ge “B"dud'vdtp_.
0

%—\,——r.

-1 22

_-%—(" +2ﬂZ+5ﬂ+5) p=aR.

The value of R in aromatic molecules is 1.04 A, the value of
« in the case of O atom is: 3.25. Substituting these values we get
the following value for J, (in atomic wunits) J,=0.25995 (10)
Jo =0.06757 (square of atomic unit). L o
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‘o +1 2n

Jr —J f J—( »2) k% — (.u‘-’— i)(l—‘v2). €082 p [a;+x,c08a —y» sinal.e 2Rl dudy dp—
Y » ‘-—‘V—-—-’ ————— .
22 X
A ® +1 271 A
) ‘RZ 9 A R -a R :
—a,lo—l-cosa —‘(M‘ v2, T(M'*l)(l'—v”')cos?q)7(1—]—;”)& bFdudvdy —,
_\f.___—/ S———
22 T X -
® 4127 Iz

— sin ajjj— (2 — %), k" s ([4-'—1)(1—1/2) cos?g V(p-——l)(l—-vz)smqa e Bldy dv.de
P -190 :

o +1 27 .13 -
Jz——fo+J. J f == (u2—2%).k? —-(yﬁ—l)(l—v)cos‘lqo.gluv.e‘“R”'dy dvdp
i 1 e s—— ———— "
. . 28
: ' =0
o +1 ) 2n .
Rz —
S_JJ— (#2—22). kg—(#"— D (1=22). -——V(Mg—l)(l—-”2 Bl gy dy JCOS“’?’Sinmd‘P:O
“——
1 -1 : =0

jl—-a,jo-}-cosa —.]0_'.,0 (az+ Rcosa] ]O(az b_z;;—(zf‘)—b‘(az'l‘bz)'
@b, =2} i+ Ji . +d.+e.+f)=

= J@tb e td e +]) (14a)
-~ We get in analogous manner = ' -
(ab),=J3(@,+b,4c,+d,+e+1) (14b) .

It can be proved that all exchange integral between adjacent atoms
are of this form.

(ab), =0, in the case of plane molecule, as in the case of
pr1n01pal integral. 14e

It is obvious that by benzene, anthracene, naphtaline, the above
mentioned sums 12 abec, 14a b c) are equal to zero because of
the symmetry of the molecule.

III. Conclusions. The comparison with the experiment. = .

We have reduced the dipole strength integral to two ground
integrals: the- principal integral and the. exchange integral. We
have evaluated the latters with aid of Slater-type eigenfunctions.

Our formulae show that in the case of a plane symmetrical
molecule these glound integrals are zero and therefore the -dipole -
stength. which itself is a linear combination of them, is also zero.
That means that the transition is forbidden. ‘

A closer inspection of the formulae shows that there is a
possibility -of the transition when the sum differs from zero due

~ to the deformation vibrations.

In this step our result is in good agreement with the experi-
mental data. The first band of the benzene is very weak and has a
vibrational structure and it is proved (11) that this transition is a

12

.
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forbidden one. This is shown by the very little osclllator strength
value f = 0-0006.

Our result differs from the experiment concermng the second
band of the benzene which has a great oscillator - strength. The .
same is the case by the naphtaline and anthracene. The deviations
(and great deviations from the theoretical 0 osc. strength) show the
lack of the Slater-Pauling method.

All the molecular states with which this method calculates
are purely homopolar states. The ionie, polar states by which two
- electrons can be by the same atom; are excluded from this treatment.

The result obtained shows that there is no possibility of:
transition to these homopolar states. We interprete’ therefore the
"observed intensity as a transition to a molecnlar state which is a
combination of the homopolar and ionic states.

In this step our result agrees” with that of Sklar (12) W1th
- the differernice that his considerations were only on group therotetical
base while we evaluated the integrals, the value of which was
easily determined on ground of the molecular structure (the spat1al
arrangement of the atoms). )

Our result agrees with that of Mulliken’s who s’(artlng flom
a different point of view found that the transitions of great inten- -
sity are always transitions to partly ionic states. :

"In the next paper we shall use thls method by some asym-
metrical molecules.

Summary.

We have. treated the computation of transition probablhty on
the base of the Slater-Pauling method by some organic symmetrieal
molecules (benzene, and so on).

‘'The evaluation was reduced to some ground ' mtenals and
from these it was to cbserve that there is no tramsition between
the pure homopolar states with which this method on'y deals.

The comparison with the esperiment. shows that the -observed
transition - must be to a partly iomic ~state in agreement with
Mulliken’s result.

I wish to express my sincere thanks to Prof. K. Szell for his
helpful suggestions and to Prof. B. N. Székefalvy for the friendly
~ discussion of the o-rtho.gonality\problem.
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