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Introduction. Mulliken in his most interesting papers (1) 
made a serious attempt to interprete the intensities in molecu-
lar spectra on- the quantum mechanical basis. His calculations 
were made in most cases with aid of the molecular orbital (MO) 
method. ' 

The aim of this and subsequent papers is to treat the same 
problem by means of other quantum mechanical approximations. 
We shall compare the calculated values with the empirical ones 
and the accordance or deviation will serve as indicator for the 
degree of approximation by the method employed. 

The Oscillator Strength. We shall use ' the method described 
by Mulliken (1) comparing the calculated and the observed osci'-
lator strength. 

In order to obtain the calculated oscillator strength, f.alc 
we compute the dipole strength D = Q2 (cf. II. 1) by means of the 
quantum mechanical functions describing the molecular states 
and from this 

/ c a l c = 1-096.10». Q\v '. (1) 
where u is the place. of the absorption maximum in em=1. 

On the other hand we get the observed oscillator strength 
/obS from the empirical absorption curve by means of the relation 

/o b , = 4'32. i 0 - 9 . J «„aV ~ 4 .32.10~9 . £mttx. Av (2) 

in which d v is the half width of the bandl, e the molar absorption 
coefficient. 

The theoretically computed /ull0 value refers to the gaseous 
state. In the case of solution we must made a correction due to 
the Lorenz-Lorentz forces. However some investigations (2) have 
shown that the agreement is better, when this correction is 
omitted. 

Since the individual approximate methods treat the problem -
from different point of view andl from the comparisons we will 
draw conclusions with respect to the method itself, we must make 
known by each the starting-point, the assumption and the simpli-
fications used by the method!, 

In this paper we shall investigate the intensities in molecu-
lar spectra with aid of the Slater-Pauling method. 
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I. The Outline of the Slater-Pauling Method. . 
V 

1. Starting point, assumptions (Heitler-London). We shall in-
vestigate in the following only organic compounds in which the 
number of 7r electrons is equal to the number of. C atoms forming 
the skeleton of the molecule. The electron cloud of each w elec-
tron forms a dumb bell the axis of which being perpendicular to 
the plane of the molecule, therefore it does not appreciably overlap 
with the a electrons^ the electron cloud of the latter being rota- . 
tion-syminetrical around the joining line of two adjacent atoms. 

The ir electrons are less firmly .bound than the o electrons 
They are responsible for many physical properties of the molecule 
a m o n g them for the visible andl ultraviolet spectra. Investigating 
the intensity problem of the spectrum, we must only, deal with 
the 7r electrons. 

In the case of n O atoms and n ir electrons; we have an n 
electron problem what cannot be solved rigorously quantum me-
chanically. We must make some simplifications to get a first 
order approximation. 

The idea of this simplification is due to Heitler and London 
and is, the same as in the case of the hydrogen molecule. We 
think the atoms very far from each other, one ir electron being 
by each atom (that is we exclude the ionic, polar cases in which 
two electrons are by . one atom). We suppose that in this approxi-
mation only this atom acts upon- the electron, in other words we 
take as perturbation the action of the other atoms and electrons-

In this approximation Schrodinger-s equation is separable in • 
n one-electron-problems andl the solution is the product of n one-
electron-functions: f a (1) . 6 (2) . c (3) . . . (1, 2 , . . . denote the coor-
dinatetriple of the first,, second,... electron, a, b,... mean the solution 
of the one-electron-problem by the first, second,... atom.) 

However the problem is a degenerate . one because all the 
functions, which differ from the above mentioned only in the arbit-
rary • permutation of the electrons among the atoms (e. ' g. f = 
= » (2) . b (1) . c (3). . . ) belong to the same energy. We have n! 
such functions. N 

When we treat the problem with aid of the perturbation theory 
introducing the interaction of the electrons as perturbation, we take 
these n! functions as of zero order approximation and we look for 
such linear combinations of them which approximate better the 
real states of the. molecule. 

•The determination of these coefficients, which are necessary to 
the linear combination, requires the solution of a linear system 
of equations set up in taking account of the perturbation. This 
is possible only in. the case when the determinant of the system 
vanishes. The roots of this so called secular determinant give the 
possible energy values of the perturbed system. 

In this case the equation system consists of n! equations, 
the secular determinant has n! rows, the degree of the secular, equa-
tion is n!. This, is a very great number (e. g. in the case of benzene 

— 6, nt = 720) to deal with it. 
2. The Slater Method. Slater achieved a very great simplifica-
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tion of the problem introducing the spin variable and taking 
account of ' Pauli's exclusion principle. (3) „ . ' 

Neglecting the magnetic interactions we can write the one-' 
electron-function as a . product: '<P(x, y, z, m,) = u(x ,y, z). a(m,)-
of two functions where u depends only upon the three .space coor-
dinates and a only upon the spin coordinate (m ) The latter is the 
z component of the spin of the electron and can assume only two 
values: «&•=•+1/2, m = —1/2 (measured in hfe-n units). 

The u function measures the probability to find the electron 
in the x,y,z place, the a function measures the probability to find 
the z component of the spin of the' electron (m ) with the va-
lues -f-1/2 aùd, —1/2, respectively. 

When the electron spin has the value +1 /2 , then the values 
„ " i f o r m , = -(-l/2 aim„) = 1 (certainty) 

of the a function are: a j f Q r m _ _ ] / 2 ff(m>) = 0 

When the electron spin has the value —1/2, then the values 
f o r m , == + 1/2 o{m,) = 0 
for / 0 , = —1/2 a (m, )— 1 (certainty) 

- W e call these functions a and /3, respectively. It follows from 
their definition that a and J8. are mutually orthogonal: 

a ( + 1/2) . /3(+ 1/2) + a(— 1/2) . 1/2) = 0 (3) 
and they are normalized' . 

a2 ( + 1/2) + a2 (—1/2) = 1 (4) 
This is a very important fact by the calculation of the dipole 
strength integral. 

Slater takes into account Pauli's exclusion principle using 
only wave functions antisymmetrized in the electrons. These func-
tions must be written in determinant form or in . the equivalent 
sum of permutations taking with + pr — sign according to even 
or odd permutation. We denote these Slater functions by the fol-
lowing 'equivalent formulae: 

Slater function • 
(e. g. in the case of four electrons one Slater function) 

of the a function are: /3 

1 
a (1) a (1) a (2) a (2) û(3)a(3) a (4) « (4 ) 
b (1 j a (1) b (2) a (2) b (3) a (3) b (4) a (4) 
c( l ) / ? ( l ) c(2)/3(2) c(3)/?(3) c(4)/3(4) 
ef (1) a (1) d (2) a (2) d ( 3 ) a ( 3 ) d ( 4 ) a ( 4 ) 

(5a) 

1 S ' ? = * ( l)p P a (1) a (1) . 6(2) a(2) .c (3) /3 (3) .g?(4) a(4) (5b) 

m _ 1 f a b e d V 
9 " Y 4 \ [ a a f i a ) . . <*> 

(P means the permutation of the electrons" (1,2,:..) among the 
atoms. This function corresponds to the spin state, when the 
electrons by -the first, second, third and fourth atom, respectively 
have the spinvalues +1 /2 , + 1/2, —1/2, and + 1/2, respectively.) 
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• We can form 2" such' functions because by each atom the 
spin egm assume two values. That means that the degree of the 
secular equation is reduced from n! to 2". (e. g. by benzene from 
720 to 64). :> , L. . • , 

Slater obtained a further simplification proving that by the 
linear combination we must rise only functions by ' which the 
resultant spin has the same component on the z axis, or in other 
words which have the same number « and /?. The secular equation] 
is dissolved in equations of minor degree, (e. "ig. in the case of 
benzene in equations of 1 ,6 ,15 , 20 ,15, 6 ,1 degree, corresponding 
to the cases that'the resultant spin, has the following components: 
3 , 2 , 1 , 0 , — 1 , - 2 , - 3 . ) This is the method usëd by-Hiïckel treating 
the b&nzene problem in his first paper (4). • • 

3. The vector-bond method (Eyring, Pauling). In the next step-
it was demonstrated (5) that in the iinear combination one must 
use only functions by which the resultant spin has the same value 
(not only his z component) Ini classifying the states correspon-
ding to these . functions, we get singlet (resultant spin = 0), 
triplet (resultant spin = 1) and so, on, states. The functions can be-
obtained from the Slater functions by means of the vector-bond 
diagrams. 

Let us consider for example the singlet states. The resultant 
spin is 0. Connecting with bond's the atoms by which the spin is 
compensated (—1/2 h 1/2) we obtain many figurés which are 
called vector-bond diagrams. (E. g. in the case of four atoms we 
can! obtain the following three diagrams) : 

WA WB *PC 

Each diagram is to obtained from Slater functions (spin states) 
which are consistent with the figure. When we draw an arrow from 
the atom by which the electron spin is —1/2, to atom by which it 
is +1/2, we obtain, e. g. the first diagram as a sum of four Sla-
ter functions (spin states): 

b 
c N 

yj =4=\(a b c d\_(a b c d\,(a b c d\^(a b.c cAi 
A f 4 ! \[a « p p) \jS .a p a) [p p a a) [a p a p)\ 

3PA = + <Pi — <Pa +' <Pm ~ <7>iv 

(taking with + Or — sign according to even or odd reverse of the 
arrows with respect to the first Slater function q>s) 

Rumer pointed out . (6) that the functions corresponding to 
the vector-bond diagrams are not all linearly independent. Accor-
ding to his considerations we obtain the independent ones, writing 
the atoms on the circumference of a circle and forming all the 
possible vector-bond diagrams by which no two bond intersects 
each other. These are called canonical structures by Pauling (7) 

c = + ¿IL 
b 

I c 

b a 
. I 
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(a g. by the example mentioned! above, only two are canonical, 
i. .a independent: *PA and ) 

The other vector-bond diagrams can be resolved in the un-
crossed ones by the repeated use of the following rule: 

(6) 

+ 

By the determination of the coefficients we must use only 
the independent set i. e. the canonical structures. This means that 
the secular determinant is- further reduced, (e. g. by the benzene 
there are five linearly independent, canonical structures for the 
singlet state and we must solve an equation of the 5. degree 

- 0 - 0 . 
The real states of the molecule can be approximated by the lineal 
composition of these, five structures. The lowest state has less 
energy than any of the five structures according to the quantum 
mechanical perturbation computations. 

After Pauling's comment this is due to the „resonance' among 
the five structures. (7) 

4. Vector-bond method and mesomerism• It is a close con-
nection between these vector-bond (VB) functions derived on the 
basis of the quantum mechanics and the mesomeric structures in-
troduced by the theoretical chemistry. 

The two methods give the same conclusion referring to the 
stabilization of the molecule because of the resonance among the 
mesomeric (canonical) structures. 

The difference between them is, that the mesomerism theory 
gives only qualitative conclusions, but the Slater-Pauling treat-
ment makes possible the evaluation of many physical and chemi-
cal properties of the molecule. — In the following treatment we 
shall use for the evaluation of intensity of spectrum. 

II. Intensity calculations according to S—P method. 
' 1. The dipole strength. 

Q'-Ql + Ql+Q] 

In order to get the x component of the dipole strength Qz, from a 
molecular state characterized by the function ^ to other molecular 
states characterized by the functions "'I'",. ^Pk(Qxis proportio-
nal to the probability of transition from the state ^ to states 
7J'"t. "'Pit — , under the emission or absorption of light quanta pola-
rized along the x axis), we must form the following product: 

means the x coordinate of the v-th electron) mid 
V 

expand in terms of the functions, !Pi, 'J'n,... as follows: 

XVi-= ca caVn-+ cj3 + • (7) 
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- Hie ^coefficient cik gives the x component of the dipole strength 
from the state "'lst to state 'Isk. We obtain the y and z component 
in analogous manner replacing X by Y and Z. Y= ^ yv 

V V 
Two cases are possible by the determination of cilt. 

a.) The functions ^1,^11,... form an orthogonal and norma-
lized system (i. e. { a* dx = Wk) = 0 i 4= k; = I). 
In this case we get c,k by forming the scalar product of the equa-
tion 7 with ^ 

№ X n = ca ( W ) +cfl + + U^W • = cik 

= 0 = 0 
= = = (8a> 

b.) The functions are not orthogonal. In order to obtain c,k 
we must form first the reciprocal system. The members of the 
reciprocal system xi} xa, ... have the following properties: 

f x . Wkdr = (x, Vk) = 0 / + (x, = 1 ' (9) 

Assuming that the x -s are in the same function space as the 
or in other words that the x-s are linear combinations of 

the x, = A:,, iP, + - f . .. we obtain from equ. 9 the following: 
equation system from which the unknown kn, ki2,... can be deter-
mined: 
(x, = ka a y + ka ( + . . . . = 0 
(x ,w n ) = ka(^wn) + K(^11 + • . . . = O l 0 ) 

= + + . . . " > = 1 ; 
With' aid of the reciprocal system we obtain cik as followst 

We form the scalar product of equation 7 with Xk 
(xkXWJ.= ca(xkVO+c^xkVlj) + ...+cik(xkWk) + ...=cit 

Qz = c,k = (xkX W,) = ixkX^dt (8b) 

It seems that hitherto only the first formula, 8a, was used, 
and the second, 8b, overlooked. 

2. Reduction of the j xkX*Pidr integral to ground integrals. 
The x-s are linear combinations of the W-s, (molecular states) The 
latters are linear combinations of the ^ -s, (canonical structures) 
Finally, the canonical structures are linear combinations of some 
Slater functions, v -s. That means that the Jx t X1!^ dx integral can; 
be reduced to integrals J <p{X<pkd% involving Slater functions (spinl 
states) 

• X(Z(-l)P'P'a(\)b(2)...li(l)a(2)...)dT p 
It has been proved! that this integral can be transformed in the 
following simplified form: (8) 

(<piX<pi) = $(a{\)b(2)...a(\)t}{2)-) . 
X('Z{-^)FPa{\)b(2)...p{\)a(2)...)dx 
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Taking into account the orthogonality and normalization of the 
spin variable . . . , ' 

' («a, ft,))=0 ( % , « ( , ) ) = 1. ( M a ) ) = 1 
we get the following rules for the integrals: 

(We restrict ourselves to the transpositions. The. essential ia 
always ' the order of the spins by f/>, and <pk ) 

a.) If there are more than one transpositions between the 
t>rder of spins by (p, and <i\ the integral vanishes. 

b.) If one transposition is necessary to obtain the same or-
der of spins by <p{ as r/v, then we get one member from the sum, 
by which P r is just the transposition which reestablishes the 
same order of spins. f a ( l ) 6 ( 2 ) . . . X. a(2) 6 ( 1 ) . . . dx = (ab). We call 
this term, exchange integral. 

c.) If <fi = <pk, we obtain one term of the following-type: 
j fl(l) 6(2) . . . X a ( l ) 6(2) . . . dr principal integml (abc . . .,) and 
so many exchange integrals as many possibilities we have to per-
mute the electrons having parallel spins. 

(E. g. in the case of six electrons: > t 
J a ( l ) 6 ( 2 ) . . . X.<z (2 )6 (1 ) . . .dT = (a6) 

Ja( l )6(2) . - . . Xa(\)b(2). i. dv=(abcdef) 

(a b. c d e f\ ._ (abed e f) (a 6 c d e f\ 
^ - { a a a p ¡J p) ^ ^ { a a p af (j) (f>m~ (¿-/3 « /? a a) ' ' ' 

a) (<Pi9m) = 0 b) (cpspn) = ~~(cd) 
. c) (9>i 9i) = (abedef) - (ab) - (ac) - ( b e ) - (ed) - (df) - (ef) 

(9n Vn) = (abedef) - (ab) - (ad) - (bd) - (ec) -^ (cf).-(ef) 

•3. The principal integral. We take for example the benzene. 
The molecule, should be in the xy plane, the 2 'axis being per-
pendicular to the . plane of the molecule. The. Slater-type form of 
a tt electron function by the a-th C atom is then: (9) 

[ofy/» ' . * • 
a ( l ) - —I zae~ar" = kz„e~ar• kracos&ae~ar° 

where &a, ra means thes spherical coordinates of the electron with 
respect to the a-th atom. 

We take the origin of the coordinate system in the symmetry 
centre of the benzene molecule. The coordinates of the a-th atom 
then are: at and •au The coordinates of the electrons are: ' 

x, y with respect to the origin -
xa, ya with respect to the a-tlr atom 

x = a , + x J n n xa = rasin9acos<pJ ~za = r0cos&a -
y = au+ya \ > ya = rasind° sin<pa\ 1 ' 

a.) The a: principal integral.. 

J a ( l ) 6 ( 2 ) . . . / ( 6 ) [ X l + x3 + . . + xe] fl(l)6(2)... dr, dt,... d*t = 

= J f l ( l ) * i ? ( l ) ^ i - J 6 ( 2 ) 6 ( 2 ) £ / T l . J ^ J / ( 6 ) / ( 6 ) £ t 6 + 

1 f 
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_ + j 6 (2) x2 6 (2) d* ,+J c (3) xs c (3) d*, + . ' . . + J/(6) xfi/(6) d%6 

• — / i + / 2 + . . . + / e 

1 

+j*a (1) a ('l)x.(l)dr1=at + Jk2z\e~2<"° . ^ s i n . r l s i n & a d r B d i > a d : c f = 

a~(7)a(i) X " 
00"Tr2 Jl 

=ax + k* j \ ¡r6e~2ar. cos2» sin2 d-. cos <p. dr. dd-.d<p.= 
"0 0 0 
oo 71 2n 

= ox + k2 f f (r5e-2 i"-cos29 kin* 9drd9) Jcos(pd<p = ax 
0 "0 0 ^ 

' = 0 

Likewise/, = bt.\. / « = / , Jx+..+Ja = ax + bx + cx'+dx.+ ex+f.x (12a) 

b.) The y principal integral. We get in analogous manner 
\a(\)b{2)...[y1+y2+:..+yi)a[\)b{2)...di^ 

• ' ' - " . H H H H I ^ . (12b) 
• c.) The z principal integral. In the ease of plane molecule 

za — Zi, and therefore , • 

Ja(l ) 6(2) [zx±z2 + • • +z6]a(\) 6 ( 2 ) . . . d* = 

= J a (1 )*i a (1) dxx + . . . + J /(6) /(6) dx;=Jx + . . . +y 6 

jx = Ja ( i ) a(\)zadx1 = jk2zle-2ar" dx = 
oo re 2 it 

=J [ jk^cos*». e~2ar. r2sm$drd&d<p = 
0 i) 0 —v— —' •v 

z3 dx 
ao 2/r n . 

= j" | k2r&e~2ar. drdcp . jcos3£sin£dS = 0 , 

" T o 
Likewise / 2 = . . . = / 6 = 0. r (12c) 

Summarizing the results, we have obtained the follpwing formulas 
in the case of plane molecule _for the principal integral: 

(a b c d ef)x=az + bx + ct + d,+ex+ fx; 
(abcdef)u = ay + by+cy + dv+ey+fy . (abode)),<=0. 

4. The exchange integral. Let us consider for example the fol-
lowing exchange integral; _ 

(o 6)x = J a (1 (2) c ( 3 ) . . . [x1+xi + ... + x6]a(2) 6(l)c(3) ...dx 
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(a 6 ) X = J a (I) ̂  6 ( 1 ) </T, . J a ( 2 ) 6 ( 2 ) CF T2 . J c (3) c (3) dT3 ... J / ( 6 ) / ( 6 ) di6 + 

/a. . Jo 1 J 
+ Ja(l)6(l)RFT1.JQ(2)x26(2)CFT3.Jc(3)c(3)(/T3...J/(6)/(6)RFTE + 

+ Ja(l) ¿>(1) rf^. Jtf(2)¿>(2)dy Jc(3)x3c(3) dr3... j / ( 6 ) / (6 ) dr6 + . . . + 

/o Jo c* 1 

+J'A(l) 6(1) d^.jai 2) 6(2) J c(3) c(3) • • • J7(6) xj( 6) </T6 = 

Jo Jo 1 /* 

y 0 = | a ( l ) 6(1) cfT! = Ja(2) b(2)d72=jkzae-a'°. kzbe-arbdT=$ktzle-a<-r^dt 

y1 = |a(l)x16(l)i /Tr1=Ja(2)xa6(2)ciT2 = j A 2 2 2 c - « ( ^ . x . c i t 
x = aI + Xacosa —y0sina (13) 

la order to evaluate J0 and we use the transformation formula 
33 and on the other hand we introduce elliptical coordinates 
r°th =fi r° D r>' = v by, means of which the integrals transform 

H i\ . 
as follows: . 

Xa = §(\+I*v) xb = -Ç-(l-tiv) Za = Zb=Z=^-Y(^- 1) (1-^)COS90 
00 +1 2 tt 

= = l V - l ) ( l - ^ 2 ) s i n < P ; J ] J f î / t = ^ - j d f i ^ d v j d t p i ^ - v * ) F 
1 - 1 0 

oo +1 2h 

/ „ = J J cos*q>e-aB»dndvd<p = 

= ? ( t + 2 / * 2 + 5 / ? + 5 ) /* = « £ • 

The value of R in aromatic molecules is 1.04 A, the value of 
a in the case of C atom is: 3.25. Substituting these values we get 
the following value for J0 (in atomic units) J0 = 0.25995 (10) 

Jo = 0.06757 (square of atomic unit). 
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00 +12/1 
y, = J J J ^ (pi _ „2) ,/f3 (̂ S - 1) (1 - V*). cos2 y [ a x + c o s « -y. sin a]. e"' B fdf* dv d q> = 

. 1 - 1 0 V c " ' 
Z2 X 

00 + 1 271 mD3 D2 D 

_ _ 1) (1 - „ 2 ) C0S2 9 _ (1 + / t i , ) . ( - ««M d(tt dv d<p 
z2 Xa 

• - ' h oa +1 2n 
- sin A J J J - ^ V^.k0-^ G»2 — I) (1 - *2).cos2 CP 1)(1 -vZ)sin<p.e-aRfidti.dv.dq> 

1 -1 0 

00 +1 '¿n 

1 - 1 0 2s 

= 0 
00 +1 271 ' 

y3 = J J Y (i»2 - "s) • A2 ̂  í/*2 - 1) (1 — *2). Y IV2— 1 ) 0 • e~ttBfldfi dv. Jcos3 <p sincptfy =0 
i - i - . o = 0 

, r , R r 1 í I #cosa r í , bx—ax 1 Jo Ji o + cosa.—Jo =J01at 1 =J01ax + — 1 = — (ax + bx). 

(a b)x = 2 J J , +J 2 (cx + dx + ex+f,) = 

- 7oa (a, + + ^ + + ^ + / , ) (14a) 
We get in analogous manner 

(a b)„ = 7 o + K + c, •+ dy + e y + / „ ) (14b)'. ' 
It can be proved that all exchange integral between adjacent atoms 
are of this form. 

(ab), = 0, in the case of plane molecule, as in the case of 
principal integral. 14c 

It is obvious that by benzene, anthracene, naphtaline, the above 
mentioned sums (12 abc, 14 abc) are equal to zero because of 
the symmetry of the molecule. 

III. Conclusions. The comparison with the experiment. 
We have reduced the dipole strength integral to two ground 

integrals: the- principal integral and the. exchange integral. We 
have evaluated the latters with aid of Slater-type eigenfunctions. 

Our formulae show that in the case of a plane symmetrical 
molecule these ground integrals are zero and therefore the dipole • 
stength- which itself is a linear combination of them, is also zero. 
That means that the transition is. forbidden. 

A closer inspection of the formulae shows that there is a 
possibility of the transition when the sum differs from zero due 
to the deformation vibrations. 

In this step our result is in good agreement with the experi-
mental data. The first bánd of the benzene is very weak andi has a 
vibrational structure and it is proved (11) that this transition is a 
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forbidden one. This is shown by the very little oscillator strength 
value 7 = 0-0006. . '• • . , 

Our result differs from the experiment concerning the second 
band of the benzene which has a great oscillator • strength. Thé 
same is the case by the naphtaline and anthracene The deviations 
(and great deviations from the theoretical 0 osc- strength) show the 
lack of the Slater-Pauling method. 

All the molecular states with which this method calculates 
are purely homopolar states. The ionic, polar states by which two 
electrons can be by the same atom; are excluded from this treatment. 

The result obtained shows that there is no possibility o f : 

transition to these homopolar states. We interprete' therefore the 
observed intensity as a transition to a molecular state which is a 
combination of the homopolar and ionic states. 

In this step our result agrees with that of Sklar (12) with 
the difference that his considerations were only on group therotetical 
base while we evaluated the integrals, the value of which was 
easily determined on ground of the molecular structure (the spatial 
arrangement of the atoms). -

Our result agrees with that of Mullikeu's who starting from 
a different point of view found that the transitions of great inten-
sity are always transitions to partly ionic states. 

In the next paper we shall use this method by some asym-
metrical molecules. 

Summary. 
We have, treated the computation of transition .probability on 

the base of the Slater-Pauling method by some organic symmetrical 
molecules (benzene, and so on). 

• The evaluation was reduced to some ground integrals and 
from these it was to observe that there is no transition between 
the pure homopolar states with which this method only deals. 

The comparison with the experiment, shows that the observed 
transition must be to a partly ionic state in agreement with 
Mulliken's result. 

I wish to express my sincere thanks to Prof. K. Széll for his 
helpful suggestions and to Prof. B. N. Szokefalvy for the friendly 
discussion of the orthogonality problem. 
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