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Sommario

Attualmente le reti mobili sono ovunque. Il mondo è diventato sempre più dipendente

da servizi mobili e wireless, ma la rapida crescita di queste tecnologie solitamente

sottovaluta gli aspetti di sicurezza che ne derivano. Tanto più servizi mobilie e wire-

less crescono, più le debolezze nelle infrastrutture di rete diventano chiare. Uno dei

problemi riguarda la riservatezza. Le tecnologie wireless possono ridurre i costi, in-

crementare l’efficienza e rendere informazioni importanti più accessibili. Ma, ci sono

anche dei rischi. Senza dovute precauzioni, queste informazioni possono essere lette

e modificate da utenti non autorizzati. Ci sono molte soluzioni, più o meno efficaci, per

proteggere i dati da utenti non autorizzati. Ma, un specifica applicazione potrebbe vol-

er distinguere più flussi dati tra utenti autorizzati. Proteggere la riservatezza di queste

informazioni tra sottoinsiemi di utenti non è un problema banale.

Un altro problema è l’affidabilità del servizio wireless. Sistemi con più veicoli com-

posti da Autonomous Guided Vehicles (AGVs) sono ampiamente usati per i trasporti

industriali di sistemi logistici e manifatturieri. Questi veicoli costituiscono una rete

wireless mobile per scambiare informazioni al fine di coordinare i compiti e i movi-

menti. La distribuzione affidabile di queste informazioni è un’operazione cruciale, per-

ché gli AGV potrebbero acquisire una visione inconsistente del sistema che porta al

fallimento del coordinamento. Ciò ha delle evidenti implicazioni di sicurezza.

Andando più in profondità, anche se il sistema di distribuzione è affidabile, le infor-

mazioni di posizionamento, trasmesse da ogni veicolo, devono essere corrette. Solita-

mente, i veicoli ottengono le informazioni di posizionamento attraverso una rete wire-

less secondaria, come il GPS. Tuttavia, il diffuso GPS civile è estremamente fragile

in uno scenario ostile. Una stima non sicura di distanza o posizione potrebbe pro-

durre problemi di sicurezza quali accessi non autorizzati, denial of service, furti, vio-

lazione dell’integrità del sistema con possibili implicazioni per la sicurezza e disastri

intenzionali.



In questa tesi, affronteremo questi tre problemi, proponendo una soluzione origi-

nale per ciascuno di essi.
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Abstract

Nowadays the mobile networks are everywhere. The world is becoming more de-

pendent on wireless and mobile services, but the rapid growth of these technologies

usually underestimates security aspects. As wireless and mobile services grow, weak-

nesses in network infrastructures become clearer. One of the problems is privacy.

Wireless technologies can reduce costs, increase efficiencies, and make important

information more readily and widely available. But, there are also risks. Without ap-

propriate safeguards, these data can be read and modified by unauthorized users.

There are many solutions, less and more effective, to protect the data from unau-

thorized users. But, a specific application could distinguish more data flows between

authorized users. Protect the privacy of these information between subsets of users

is not a trivial problem.

Another problem is the reliability of the wireless service. Multi-vehicle systems

composed of Autonomous Guided Vehicles (AGVs) are largely used for industrial

transportation in manufacturing and logistics systems. These vehicles use a mobile

wireless network to exchange information in order to coordinate their tasks and move-

ments. The reliable dissemination of these information is a crucial operation, because

the AGVs may achieve an inconsistent view of the system leading to the failure of the

coordination task. This has clear safety implications.

Going more in deep, even if the communication are confidential and reliable, any-

way the positioning information could be corrupted. Usually, vehicles get the position-

ing information through a secondary wireless network system such as GPS. Neverthe-

less, the widespread civil GPS is extremely fragile in adversarial scenarios. An inse-

cure distance or position estimation could produce security problems such as unau-

thorized accesses, denial of service, thefts, integrity disruption with possible safety

implications and intentional disasters.



In this dissertation, we face these three problems, proposing an original solution

for each one.
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Introduction

Networks of mobile devices have grown rapidly over the past decade, reaching max-

imum expression with the well known cellular network. Nevertheless, there are many

other types of mobile networks. Networks of Automated Guided Vehicles (AGVs)

largely used for industrial transportation in manufacturing and logistics systems. Mo-

bile ad-hoc networks (MANET) are used to provide crisis management services ap-

plications, for example in a disaster recovery where the entire communication infras-

tructure is destroyed and resorting communication quickly is crucial. The MANET have

also military applications, i.e. some of the essentials requirements of a combat oper-

ations include network deployability, network security and high mobile connectivity.

Personal Area Networks (PAN) are designed to support a set of communicating de-

vices within range of few meters, eliminating the need of wires.

All these technologies have in common the type of communicating system, that is

wireless. Even if the implementations of the wireless communication system can be

different, all of them subject the system to many security issues. These issues depend

on the very nature of a wireless system. In a wired system, only the devices which

are plugged in the network are able to access the network communication, but in a

wireless system every device with an appropriate receiver can access to the network

communication.

Simultaneously with the development of wireless communication systems, the re-

searchers have developed solutions, more and less effective, to resolve these secu-

rity issues. For instance, the Wireless Equivalent Privacy (WEP) is the first security

choice presented (1999) and it aims at achieving the same security level of a wired

network. It is still widely in use, but WEP has been demonstrated to have numerous

flaws and has been deprecated in favor of newer standards, such as Wi-Fi Protected

Access 2 (WPA2). These solutions solve the control access issues, but they cannot

protect private communication between valid users, i.e. when a user is authorized to
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access a wireless network, he can read also the transmission that are not addressed

to him. Moreover, an unauthorized user can exploit other weaknesses of the wire-

less communication systems which do not require the access to the network such

as jamming-and-replay attacks, wormhole attacks and packets injection. The shown

weaknesses are the consequence of the broadcast nature of the wireless medium.

1.1 Identify the Problems

In this work we deal with three problems that are direct consequence of the broadcast

nature of the wireless medium: privacy, reliability and localization. These problems

afflict every type of mobile network. It is easy understand the implications between the

nature of the wireless medium and the problems of privacy and reliability. Otherwise,

we tend to underestimate the security problems related to the localization system.

During the designing of a mobile network system, the localization task is assigned to

a well-known technology such as GPS. It is considered as a black box that provide

the position of the device. But, also the localization system uses a wireless network to

estimate the position, thus it is affected by the same problems of wireless networks.

Below, we explain more in detail the implication of these three security problems.

1.1.1 Privacy

Let us suppose that a large group of mobile devices communicate together. The

group communications must be confidential. The simplest solution leverages on cryp-

tography, i.e. each group member keeps a secret group key which is used to en-

crypt/decrypt the group communication. Efficiently managing cryptographic keys for

large, dynamically changing group is a difficult problem. Group secrecy requires that

a device must be able to encrypt and decrypt communication within a given group

only while the device is member of that group. It follows that upon a device joining

the group, a new group key must be distributed to all group members so that the new

member cannot decrypt previous group communication (backward security ). Further-

more, upon a device leaving the group, the current group key must be revoked and

a new one must be distributed to the remaining group members so that the leav-

ing device cannot read future group communication (forward security ). It is obvious

that it is impossible stop the system to update the group key at each membership

change, because it makes the service discontinuous. These requirements can be ful-

filled by rekeying algorithms. Intuitively, a keying algorithm distributes the group key

to all group members which use it to encrypt and decrypt broadcast messages. When

2
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a new member joins or a current member leaves the group, the current group key is

revoked and a new one distributed in a efficient way and without stopping the system.

The problem of group key management becomes more complex when the whole

group can be subgrouped according service specifics. For instance, different classes

of devices could be subgrouped according their features (aerial vehicles, terrestrial

vehicles, control devices...). Therefore, the rekeying algorithm must be able to man-

age the confidentiality at sub-group level in a very general multi-group model with

many subgroups, hierarchically organized, and possibly overlapping. In this model,

backward and forward security must be guaranteed at sub-group level.

1.1.2 Reliability

We consider a common type of mobile network largely used for industrial transporta-

tion in manufacturing and logistics systems: a Multi-vehicle system composed of Au-

tonomous Guided Vehicles (AGVs). This system offers potential advantages in terms

of task speedup, robustness and scalability. For instance, a typical function of a multi-

AGVs system consists in transporting raw or semi-finished material from warehouse

to production lines. However, deployment of a team of AGVs raises management and

coordination problems such as collision avoidance, conflict resolution, and shared re-

sources negotiation. The vehicles need exchange environment information to achieve

these tasks. It has clear safety implications. If dissemination is not secure and reli-

able, an adversary may inject fake messages or simply delay a message so leading

AGVs to achieve wrong and/or inconsistent views. Once again this may cause the

coordination task to fail. Moreover, the system is subjected to many risks also in an

environment without adversaries. When an AGV broadcasts its state, an accurate

and timely notion of its neighborhood is crucial to avoid collisions, i.e. the AGV have

to track which neighbors have received such state and which have not and thus need

a re-transmission.

The AGVs exchange state information using a communication protocol that oper-

ates over an IEEE 802.11 wireless network technology [24]. This technology is rapidly

expanding in industrial scenarios due to its recent improvements in terms of hardware

costs, transmission speed, and simplicity and flexibility of deployment [13] . However,

it lacks any reliable broadcast service. If two AGVs transmit a state packet at the same

time, the packets collide and no-one will receive the message. We need same solu-

tion that improves the reliability of the broadcast service over an IEEE 802.11 wireless

network.

3
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1.1.3 Localization

The measurement of the distance between two electronic devices, and then the po-

sition, is crucial for many practical applications. Many techniques have been pro-

posed over the years [34]. All these techniques fail in the presence of an adversary

that wants to disrupt the distance measurement process. Even the well known and

widespread civilian Global Positioning System (GPS) is extremely fragile in adversar-

ial scenarios [30]. Secure location estimation has a plethora of applications including

coordination of AGVs [20, 18] and geographical routing in a mobile network [29, 64].

For all these applications, an insecure distance or position estimation could produce

security problems such as unauthorized accesses, denial of service, thefts, integrity

disruption with possible safety implications and intentional disasters.

Desmedt [14] first introduced the problem of secure location verification and

showed that it cannot be solved by solely using cryptography. Brands and Chaum [6]

proposed the first secure distance-bounding protocol. Since then, many variants have

been proposed in the literature [7, 41, 53]. These protocols leverage on both the un-

forgeability of authenticated messages and the upper bound of the communication

speed that is the speed of light. They prevent distance reduction, i.e., an adversary

cannot make a device appear closer than it really is. The resistance against distance

reduction is an important requirement for all the application scenarios involving secure

proximity verification [23, 19, 22, 26]. A common example is the problem of proximity-

based access control. Let us suppose an RFID card performing an authentication

protocol with a reader. If the card correctly performs the protocol, the reader will open

a door of a building. An adversary can trick the system by establishing a relay link

between the reader and a far away legitimate card, owned by an unaware user. The

card correctly performs the authentication protocol via the relay link, and the reader

opens the entrance. This attack is known as mafia fraud. Along with the correctness

of the authentication, the reader has to check even that the card is within a security

distance. However, if such a distance measurement is made with insecure methods,

the adversary can still break the system. In particular she can perform a distance

reduction attack to deceive the reader into believing that the far away card is in the

proximity.

The relevance of the secure proximity verification eclipsed the dual problem: the

distance enlargement attack. By this attack, an adversary makes a device appear far-

ther than it really is. The resistance against both reduction and enlargement attacks

is important whenever we want to securely estimate a distance, rather than a proxim-

ity. Let us suppose a distributed system that monitors the movement of autonomous

guided vehicles. The system relies on distance information to avoid collisions between

4
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vehicles. An example of such systems is in [18]. If an adversary is able to make a dis-

tance appear larger than it really is, the system could not take collision-avoidance

countermeasures in time. This could cause collisions between vehicles, and conse-

quent loss of money and safety threats. Secure distance estimations are extremely

useful in trilateration techniques too. These techniques use the distances measure-

ments from at least three anchor nodes, whose positions are known, to estimate the

position of a fourth node. If an adversary can enlarge one or more distance measure-

ments, she is able to disrupt the whole positioning process.

1.2 Contributions of This Dissertation

In this dissertation we face the problems that afflict the communication (privacy and

reliability) and the positioning (secure localization) in a mobile network. we propose

a centralized multicast key distribution (MKD) scheme, named Multi-Group Logical

Key Hierarchy (MG-LKH), that addresses the key management in a general multi-

group model. MG-LKH is scalable in storage, computing, and, especially, communi-

cation with respect to the number of users and the number and size of sub-groups.

The scheme exploits a logical hierarchy of keys, and outperforms traditional rekeying

schemes when they are adapted to the multi-group scenario. Moreover, we are going

to show that our scheme has better performance of existing solutions to handle key

management issues associated with multi-group model.

At a later stage, we are interested in increasing the reliability of the state dissem-

ination aimed at AGVs coordination service without influencing the broadcast traffic

of other protocols. Therefore, starting from the periodic nature of the state dissemi-

nation traffic pattern, we have designed an accurate, efficient, and scalable protocol

that is suitable for real-time coordination protocols. This "Neighborhood Monitoring"

protocol (NMP) is accurate because the difference between the actual neighborhood

of an AGV and the view of that neighborhood the protocol provides the AGV is neg-

ligible. Moreover NMP makes it possible to estimate a maximum state dissemination

delay that is fundamental in real-time applications. Furthermore, NMP is efficient as

it produces a negligible rate of collisions and consequent packet loss so solving the

insidious problem that afflicts the periodic and uncoordinated data dissemination pro-

tocol, namely the overlapped transmissions. Differently from other approaches, NMP

is scalable because state dissemination influences only actual neighbors and the dis-

semination rate is automatically reduced when neighbors are absent.

About the localization problem, we propose SecDEv (SECure Distance EValua-

tion), a distance-bounding protocol able to resist to enlargement attacks based on

jam-and-replay tactics [31, 60, 59]. SecDEv exploits the characteristics of wireless
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signals to establish a security horizon within which a distance can be correctly eval-

uated (besides measurement errors) and any adversarial attempt to play a jam-and-

replay attack is detected. We also are going to show how SecDEv improves the scal-

ability of secure positioning techniques in terms of number of anchor nodes.

1.3 Dissertation Organization

This dissertation is structured into three chapters where we deal with the three secu-

rity problems above mentioned.

In chapter 2 we present a brief state of the art about key management schemes.

Subsequently, we describe MG-LKH scheme and we analyze its performance in terms

of communication, storage and computation costs. We show also the results of out

simulations that compare MG-LKH with the performance of the best schemes in the

state of the art.

Chapter 3 explores the reliability problem, we present the problem and some so-

lutions developed to mitigate it. Then, we introduce our protocol, named "Neighbor-

hood Monitoring" protocol, and we consider a case-study where a group of UAVs

(Unmanned Aerial Vehicles) communicate together to avoid collisions. We have sim-

ulated the case-study and we show the results in therms of reliability and scalability

of the protocol.

In chapter 4 we deal with the problem of secure localization. We show the state of

the art and we analyze the most known solutions. Then, we describe the our solution:

a communication protocol to estimate the distance between two devices in a secure

way, called SecDEv (Secure Distance EValuation). We analyzed the efficiency of our

solution in terms of covered area and we compared it with an existing one, Verifiable

Multilateration [60], which is the state-of-the-art technique for secure positioning in

wireless networks.

Finally, chapter 5 contains our conclusions about the mobile networks and the

three analyzed issues.
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2

Privacy

Nowadays, a new class of applications based on broadcast/multicast communication

is emerging. These applications include mobile networks, secure audio and video

broadcasting, pay-TV, secure conferencing, wireless sensor networks. All these appli-

cations feature very large groups, e.g., thousands of users, with very dynamic mem-

bership. In these applications, users can be further sub-grouped on service basis. For

instance, in a mobile network the devices can be sub-grouped according their fea-

tures: control devices, sensors, aerial or terrestrial vehicles. These sub-groups may

overlap. Therefore, this new class of group-oriented applications is characterised by

a very general multi-group model with many groups, hierarchically organised, and

possibly overlapping.

According these new applications, the interest in secure group communication

has grown. Efficiently managing cryptographic keys for large, dynamically changing

groups is a difficult problem. Group secrecy requires that a user must be able to en-

crypt and decrypt communication within a given group only while the user belongs

to that group. It follows that upon a user joining the group, a new group key must

be distributed to all group members so that the new member cannot decrypt previ-

ous group communication (backward security ). Furthermore, upon a user leaving the

group, the current group key must be revoked and a new one must be distributed to

the remaining group members so that the leaving user cannot read future group com-

munication (forward security ) [61, 38]. Moreover, backward and forward security must

be guaranteed at the level of sub-group. These requirements can be fulfilled by rekey-

ing. Intuitively, a group/sub-group key is distributed to all group/sub-group members

which use it to encrypt and decrypt broadcast messages. When a new member joins

or a current member leaves the group/sub-group, the current group/sub-group key is

revoked and a new one distributed.
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The system who assures the backward/forward secrecy and manages a common

decryption key to a dynamic group of authorized members over a broadcast channel

is called the group key management (GKM). The GKM scheme provides an automatic

mechanism for keys renewal. In our case, the GKM scheme is symmetric-keys based

because it is the natural choice for ensuring secure access and secure data dissem-

ination. Furthermore, the GKM is going to manage more keys, at least one for each

sub-group. Taking into account that a broadcast service works with many sub-groups

and a large number of users, the GKM must be efficient in terms of communication

cost during the rekeying operation and storage and computation costs for each mem-

bers and the server. At the same time, the GKM must provide a high level of flexibility

because a user should be able to join/leave to any sub-group at any time.

According to the key status of members, two category of GKM schemes in the

literature may be applied in broadcast services: the stateless GKM schemes [5, 21,

35, 39], called also broadcast encryption (BE), and the stateful GKM schemes [9, 8,

33, 44, 51, 62], called also multicast key distribution (MKD) schemes. A member in a

BE scheme does not update his keys after the joining operation. In contrast, a member

in a MKD scheme updates his keys by the rekeying messages broadcasts from the

group manager (GM). The MKD schemes are more efficient and scalable than the

BE schemes in context of groups with a large number of members. Both classes

of GKM schemes can be divided into three different categories [47]: the centralized

schemes with a central group controller (GC) that are in the opposite direction of the

distributed schemes without GC. In the middle of them, the decentralized schemes

can be regarded as the mix of previous two.

Since the researchers proposed the problem of group key management, many

GKM schemes have been proposed. Relevant examples include Simple Key Distri-

bution Center (SKDC) [27], Group Diffie-Hellman (GDH) [54], Logical Key Hierarchy

(LKH) based algorithms [61, 62, 51, 8, 16]. Especially the approaches based on LKH

facilitate rekeying operations because they turn the communication and computation

costs from linear into logarithmic in the group size. These LKH schemes were de-

signed to handle key management issues associated with single-group model. Al-

though access control in multi-group model can be managed separately for each

sub-group, using the existing GKM schemes, this leads to inefficient use of keys and

does not scale well when the number of sub-groups increases. More efficient, but

at the same time more complex solutions for multi-group models were proposed in

[56, 25, 11]. From this point onwards, we will use cluster in place of sub-group.

In this chapter, we are going to present a novel centralized MKD scheme, named

Multi-Group Logical Key Hierarchy (MG-LKH), that addresses the key management in

a general multi-group model. MG-LKH is scalable in storage, computing, and, espe-

8



2.1. RELATED WORKS

cially, communication with respect to the number of users and the number and size of

clusters. The scheme exploits a logical hierarchy of keys, and outperforms traditional

rekeying schemes when they are adapted to the multi-group scenario. Moreover, we

are going to show that our scheme has better performance of the solutions already

proposed to handle key management issues associated with multi-group model.

2.1 Related Works

The GKM problem has been studied in deep. In the rekeying procedure, GM delivers a

new group key to each group member so that a leaving or joining user cannot access

future or prior messages of that group. These two features are referred to as forward

or backward secrecy [61, 38]. One of the first solution was Group Key Management

Protocol (GKMP) proposed in [27]. It is a direct extension from unicast to multicast

communication. Each group member has to share only two keys: the group key to

crypt/decrypt the data traffic and a private key used for updating the group key. It is a

good solution in terms of storage cost for each member but its communication cost for

each rekeying procedure grows proportional to the number of members. The autors

in [61, 62] were aimed at solving the communication overhead problem. They pro-

posed a new data structure called the logical key hierarchy (LKH). The improvement

consists in the capability of communicating with subsets of whole group during the

rekeying operations. This feature facilitates group rekeying because it turns the com-

munication cost from linear into logarthminc in the group size. LKH inspired many next

works such as One-way Function Tree (OFT) [51], One-way Function Chain (OFC) [8],

Secure and Scalable Rekeying Protocol (S2RP) [16]. These schemes use a key tree

structure. The root node of the tree is the group key and each leaf node represents

a member with its private key. The interior nodes are keys which are associated with

logical security domains and are used for updating the group key (more details in

Section 2.1.1). To reduce the rekeying overhead of high frequency of joining/leaving

operations, [33] proposed the concept of batch rekeying. GM performs the rekeying

operations periodically. Between two rekeying operations, GM collects the requests

of member joining/leaving in a batch and then it performs them all together. The ef-

ficiency of tree-based schemes critically depends on whether the key tree remains

balanced over time as members join or depart. In [40], the autorns faced this problem

with a GKM schemes that maintains a balanced key tree during the rekeying opera-

tions.

All the above solutions need a GM that coordinates the rekeying operations, at the

same time GM is a single point of failure for the system. The distributed GKM scheme

is characterized by having no GM. The group key can be generated in a contributory

9
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fashion where all members, which belong to a cluster, contribute to computetion of

the group key [3, 43]. Many contributory schemes are inspired by the Diffie-Hellman

(DH) key exchange protocol [15]. Group Diffie-Hellman (GDH) [54], is an extension of

Diffie-Hellman key agreement protocol that supports group operations. The solution is

fault tolerant, because the fault of a member does not stop the system, but the solution

requires that each member knows the group membership list and, in most contributory

protocol, processing time and communication cost increase linearly in term of the

number of members. These two constraints make the distributed GKM schemes not

suitable for large group. Because of their scalability, we avoided a distributed aprouch

and built our GKM scheme on a tree-based scheme.

More recently, new GKM schemes took into account the multi-group model. Until

now, a simple solution was to use one of the above described GKM scheme to main-

tain an independent group key for each cluster. This solution is not efficient because

the performance decreases linearly with the number of involved clusters. If a mem-

ber belongs to more than one cluster, he has to store a set of keys for each cluster.

If the member leaves the service, hence all the clusters to which he belongs to, the

number of rekeing messages is proportional to the number of involved clusters. Sun

and Liu [56] developed a multi-GKM scheme with an integrated key graph that main-

tains keying material for all member with different supercluster. The supercluster is

the set of sub-groups which the member belongs to. In [25], the autors presented Key

Tree Reuse (KTR), it relies on a shared key structure and the reuse of old keys in

the shared key structure, without compromising security. These two aspects reduce

drastically the number of rekying messages, but KTR introduces a complex manage-

ment of the histrory of the keys. In this work, we chose KTR as comparison for our

results because it has good performance in term of number of reekeying messages

and number of keys stored for each member. Moreover, KTR defines a model for the

management of clusters and superclusters that is similar to our model.

2.1.1 Logical Key Hierarchy

LKH [61, 62] is a well-known logical key hierarchy approach that has a logarithmic

communication overhead in the group size. LKH uses a hierarchical system of auxil-

iary keys to facilitate distribution of group key. The key tree is structured as follow: the

root of the tree is the data encryption key (DEK) that is the group key. Each leaf node

in the tree is associated to a group member and it represents the privite key (IDK)

shared only between the group member and GM. Other keys in the tree, called key

encryption key (KEKs), are used to encrypt and update new DEKs and KEKs. It is

worth to note that DEK and KEKs are logical nodes and no member is associated at

10
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Figure 2.1. Logical Key Hierarchy

them. Each group member knows its IDK and all the keys in the path from its leaf to

the root of the tree. It means that a KEK is shared with a subset of members of the

whole group, moreover if it is closer to the root then the subset of members is larger.

The DEK is a special KEK that encompasses all the group members.

Before starting the group key management, GM is in a phase, named Group Ini-

tialization, in which each member of the group holds only the IDK. In order to issue

the KEKs and the DEK, GM starts from the bottom of the tree and for each KEK, GM

encrypts it with KEK’s children keys. Then GM broadcasts these information and only

the group members that know the right keys are able to decrypt the message. The

group initialization is a expensive operation in terms of number of messages because

it requires 2n− 1, but it is performed only one time at the system start.

After the initialization, GM has to be able to manage member joining/leaving op-

erations assuring backward/forward secrecy. With reference to the Figure 2.1, let us

suppose that the member u8 leaves the group, hence the DEK must be renewed, but

all the KEKs known by u8 must be renewed too. GM needs to change k0, k2, k6, so it

is going to broadcast the following rekeying messages:

{
k6
}
ku7

,
{
k2
}
k5
,
{
k2
}
k6
,
{
k0
}
k1
,
{
k0
}
k2

where ki is the new key of ki and {ki}kj
means that ki is encrypted by kj . u7 is the

only member who can decrypt the first message, so he gets k6. Second message

involves u6 and u5 which obtain k2 and with third message also u7 receives k2. Like-

wise, last two messages issue k0 to the whole group exept u8. To explain the joining

operation, let us suppose that the member u8 comes back into the group. GM gen-

erates the leaf node associated to u8 and it adds the node as child of k6. Either in

this case, k0, k2, k6 must be renewed. GM is going to broadcast the following rekeying

11
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Figure 2.2. Key Star

messages: {
k6
}
ku8

,
{
k6
}
ku7

,
{
k2
}
k5
,
{
k2
}
k6
,
{
k0
}
k1
,
{
k0
}
k2

The joining procedure is similar to the leaving procedure. In this case, we have one

more message. First message allows the incoming member u8 to partecipate the

rekeying procedure and to obtain the new group key k0 at the end.

LKH is a secure key management scheme and it is also efficient in terms of com-

munication and storage costs. Each member only needs to hold O(log2(n)) keys and

GM broadcasts O(2log2(n)) messages, where n is the number of members of the

group.

2.1.2 Key Star

Key Star (KS) is a simple GKM scheme that we describe here because, like LKH, it

takes up a significant part of our work.

KS uses few keys, GM holds the group key and a private key for each group

member. With reference to Figure 2.2, the center of the star graph is a logical node

associated with the group key and every radiating node is associated with the private

key of the member belonging to the group. Every member keeps only two keys, the

group key and his private key.

When a new member joins the group, GM generates a new group key. Then, GM

broadcasts the new group key encrypted with the current group key. Furthermore,

GM securely unicasts the incoming member the new group key encrypted by that

member’s private key. Let us suppose that a new member u9 joins the group in Figure

2.2, GM is going to send the following rekeing messages:

{
kg
}
kg
,
{
kg
}
ku9

The leaving procedure is quite different. Let us suppose that u8 leaves the group. GM

has to renew the group key kg, but he can deliver the new group key only using the

12
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private keys of the remaining members. GM is going to send the following rekeing

messages: {
kg
}
ki
,∀i ∈ G

Even if each member holds O(1) keys and the joining procedure has the same

complexity O(1) in term of communication cost, the leaving procedure has a commu-

nication cost that is linear in the group size.

In the rest of the dissertation, we will show how we take the advantages of KS and

reduce the cost of the leaving operation exploiting LKH scheme.

2.2 System Model

We consider a broadcast service group U = {u1, u2, ..., un} composed of n users ui.

In a broadcast services, the data flow can be separated into different tematic flows

with common features, for instance control, sensing, data into separated flows. We

call cluster each tematic flow. Let P = {p1, p2, ..., pM} denote the set of all clusters

andM is the total number of clusters. The cluster group (G(pi)) is defined as all users

which have access to the cluster.

G(pi) ≡ {uj : uj ∈ pi}

Different cluster groups can be overlapped because a user can subscribe more

than one tematic flow. A set of clusters is called supercluster . Let S = {s1, s2, ..., sI}
denote the set of all superclusters and it is easy to prove that I ≤ 2M − 1. The super-

cluster group (G(si)) is defined as all users who are registered to the supercluster.

G(si) ≡

 ⋂
pj∈si

G(pj)

−
 ⋃

pz 6∈si

G(pz)


Distinct supercluster group cannot be overlapped because a user can belong to only

one supercluster.

G(si) ∩G(sj) ≡ ∅

The users can subscribe or change supercluster at every time. They communicate

with the GM through a dedicated channel and specify the clusters that they are in-

terested to join. Figure 2.3 shows a graph that describes the relationship between

cluster, supercluster and user.

13
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Figure 2.3. System model

2.3 Security requirements

In the applications with multiple groups that identify different multicast sessions, the

operations that a user can perform are not only joining or leaving the service. Differ-

ently from the GKM schemes for single-group model, a user belongs to a supercluster

and it can switch between the superclusters by adding or dropping clusters. Thus, the

security requirements are more complicated than the single-group GKM schemes.

From the user point of view, he can perform the following operations:

• Service joining is a rare operation that is associated with the initialization of an

access device such as smart card. After this operation, the member cannot be

able to access to any cluster yet.

• Supercluster joining is the operation that allows a user to access the future content

of a set of clusters.

• Supercluster leaving is the operation that deny a user to access the future content

of a set of clusters.

• Supercluster switching is a more complicate operation that allows a user to switch

from a supercluster si to a supercluster sj . The two superclusters may have one

or more clusters in common. Thus, the GM has to identify tree sets of clusters into

si ∪ sj . A set of clusters that the user leaves, a set of clusters that the user joins

and a set of clusters that are in both superclusters and do not change.

• Service leaving is a rare operation that is associated with the reset of an access

device such as smart card. After this operation, the member cannot be able to

access the service in future. This operation is rare because usually the access

devices are withdrawn from the service provider and are reassigned to a new user.

It may occur that the GM has to perform this operation because the user loses the

access device or the user violates the contract conditions. In these cases, the GM
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has to perform also the supercluster leaving operation before the service leaving

because the user has not explicitly required a supercluster leaving.

2.4 Data Encyption

As already mentioned in [56], we can use the cryptography in two different ways to

achieve the above requirements. In the first method, the GM assigns a key for each

cluster in P . The key Kpi
is shared among the users in G(pi). In this case, if a user

want to subscribe to a set of clusters, then he has to require the corresponding keys

from the GM. On the other hand, the GM has to securely update and distribute the

clusters keys according to the above operations and assuring the backward/forward

secrecy. In the second method, the GM assigns a key for each supercluster in S. The

key Ksi is shared among the users in G(si). In this case, the user holds only one

key Ksi and it is updated only when the user changes his supercluster. Even if this

method seems more efficient because each user uses only one key to dencrypt all

own clusters, it introduces a relevant overhead in the service. If a cluster belongs to

two or more superclusters, its data flow has to be encrypted and retransmitted as

many time as the number of superclusters to which the cluster belongs to. More in

detail, let us M the number of possible clusters, all the possible superclusters are

I ≤ 2M − 1, it means that the GM may manage a huge amount of keys. Already with

few clusters, for instance 20, the number of possible keys is about 220. Thus, let n

denote the members of whole service, usually I � n, but at most n superclusters

are valid, since the number of valid superclusters cannot be more than the number

of user (one for each user). In the worst case, the GM has to manage n supercluster

keys. It means that a data flow may be encrypted and retransmitted n times, with an

intolerable communication overhead.

In this work, we use the first method of keys assignment because of its low number

of keys managed by GM and its low data communication overhead.

2.5 Multi-Group Logical Key Hierarchy

We propose a centralized multi-group GKM scheme in which all rekeying operations

are coordinated by GM. We assume that GM shares a secret key with avery user in

the broadcast service group U . We denote by Kui
the key that GKM shares with user

ui, and call it the user key (UK). We assume that this key is initially deployed by off-

line means. In order to guarantee backward and forward secrecy in both broadcast

service group and clusters, GM uses a logical graph of keys called Multi-Group Logi-

cal Key Hierarchy (MG-LKH). MG-LKH is the result of juxtaposition of two key graphs,
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Figure 2.4. Multi-Group Logical Key Hierarchy

a Logical Key Hierarchy encompasses the whole broadcast service group, and a Key

Star for each cluster. MG-LKH allows to overtake the communication overhead prob-

lem of KS (Section 2.1.2). The resulting data structure, shown in Figure 2.4, is used

as follows.

Each user holds his UK, the KEKs in the path to the root of LKH tree and all the

keys of the clusters gelonging to his supercluster. When a user leaves the cluster, we

use the LKH tree structure to efficiently distribute the new cluster key to the cluster

grup. Actually, GM broadcasts the new cluster key double encrypted by the old cluster

key and a proper set of KEKs. Encrypting by the old cluster key makes it possible to

exclude the users that are not cluster’s members. By encrypting with the proper set

of KEKs, it is possible to communicate just with the cluster group members and to

exclude the leaving member as well.

For example, with reference to Figure 2.4, if u3 want to switch supercluster from

s1 = {p0, p2} to s2 = {p0}, it means that u3 leaves p2 but he continues to be mem-

ber of p0. The GM translates from a supercluster switch operation into cluster join-

ing/leaving operations. In this case, the GM must renew Kp2 in u5 and u7. First, the

GM encrypts Kp2
with Kp2

to exclude all p2 not members. In addition, to exclude also

u3, the GM encrypts again with the KEK k2. The resulting rekeying message is:

GM → (all) :
{{
Kp2

}
Kp2

}
k2
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Similarly, according to Figure 2.4 again, if u1 switches subscription from s3 =

{p0, p1} to s4 = {p0}, it means that u1 leaves p1. The GM must renew Kp1 in u2 and

u4. More precisely, the GM must send two rekeying messages to notify u2 and u4 of

the new cluster key: the first message carries Kp1
encrypted with Kp1

and KEK k4,

while the latter carries Kp1
encrypted with Kp1

and KEK k2.

GM → (all) :
{{
Kp1

}
Kp1

}
k4

,
{{
Kp1

}
Kp1

}
k2

In case of service joining/leaving, the GM updates the tree structure adding/removing

a leaf node and renewing the keys along the path from leaf node to the root node.

These operations are LKH alike. The GM broadcasts only 2 log(n) encrypted keys.

In the next sections, we describe rekeying in details.

2.5.1 Supercluster Joining

After receiving the access device, the user does not belong to a supercluster yet. He

has only his UK and the KEKs in his path to the root node. After communicating his

supercluster to the GM, he will receive the corresponding clusters keys. According

the backward secrecy requirement, the GM has to renew all keys of the clusters in

the supercluster. For each cluster, the GM has to provide the new cluster key sepa-

rately to the cluster old members and new member. Let us suppose that ux joins the

supercluster sy. Then, GM sends the following rekeying messages:

∀pi ∈ sy

GM → (ux) :
{
Kpi

}
kux

GM → (all) :
{
Kpi

}
Kpi

With reference to Figure 2.4, when u7 subscribed sy = {p2, p3}, he sent the

request to GM, then the GM computedKp2
andKp3

. Finally, the GM sent the following

messages:

GM → (u7) :
{
Kp2

}
ku7

GM → (all) :
{
Kp2

}
Kp2

GM → (u7) :
{
Kp3

}
ku7

GM → (all) :
{
Kp3

}
Kp3

We underline that the communication cost for each update of cluster key is con-

stant and equal to two rekeying messages.
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2.5.2 Supercluster Leaving

Let us suppose that a user want to terminate the relationship with the broadcast ser-

vice, he has to leave his supercluster. It means that the user has to leave each cluster

in his supercluster. The operation is not trivial and it may be quite expensive in terms

of communication cost. For sake of clarity, we will describe the case of a supercluster

with one cluster and then we will extend the solution to every type of supercluster.

Algorithm 1 Calculate the set of KEKs to leave from cluster
Require: user u leaves cluster p
W ⇐ ∅
L⇐ node_in_path(u)
for all i ∈ {G(p)− u} do
node⇐ i
while node 6∈ L do

if node ∈ childs_of(L) then
W ⇐W + node

else
node⇐ parent_of(node)

end if
end while

end for
return W

According with forward secrecy requirement, when a user leaves a cluster, GM

must renew the cluster key. As already said, the GM exploits the LKH tree to reduce

the communication cost. Thus, GM computes which KEKs are necessary to encrypt

the new cluster key. We propose the Algorithm 1 to achieve the task. The algorithm

computes the path from the leaving member’s leaf to the root and establishes a node

set L consists of the nodes along that path. Subsequently, the algorithm travels along

path to the root (LKH tree) of each cluster’s member and stops itself each time it

arrives at a node that is child of a node in L. This set of children nodes, called W ,

contains the nodes of KEKs that must be used to distribute the new cluster key. By

using these keys, we prevent the leaving member from eavesdropping the new cluster

key. Furthermore, we must encrypt the new cluster key with the old cluster key in

order to assure that only cluster’s members can receive it. So, if a user ux leaves a

supercluster with only a cluster py, then GM sends the following rekeying messages:

GM → (all) :
{{
Kpy

}
Kpy

}
ki

;∀i ∈W
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The number of nodes in W is variable. It depends on the distribution of the clus-

ter’s members into LKH tree. It is also influenced by the ratio between the number of

cluster’s members and n. Anyway, the number of node in W is bound between 1 and

log(n).

1 ≤ |W | ≤ log(n)

Extending the procedure to a supercluster with more clusters, we realized that re-

playing the procedure for each cluster is not efficient solution. Our solution consists in

creating a temporary set of all members of all clusters involved in the rekeying opera-

tion exclusive of the leaving member. Exploiting the temporary set, the GM issues the

new cluster keys encrypted with the old ones.

Algorithm 2 Calculate the set of KEKs to issue Ktmp

Require: user u leaves supercluster s
W ⇐ ∅
L⇐ node_in_path(u)
for all i ∈ {G(s)− u} do
node⇐ i
while node 6∈ L do

if node ∈ childs_of(L) then
W ⇐W + node

else
node⇐ parent_of(node)

end if
end while

end for
return W

The Algorithm 2 is the extension of Algorithm 1 to the supercluster.

The GM uses the Algorithm 2 to identify the KEKs set (W ). The W set allows to

issue Ktmp to all members of all clusters involved in the rekeying operation exclusive

of the leaving member. Thus, GM generatesKtmp and sends the following messages:

GM → (all) : {Ktmp}ki
;∀i ∈W

Now, the GM can communicate exclusively with the remaining members of all

clusters involved. In order to renew the old clusters keys, the GM sends the following

rekeying messages:

GM → (all) :
{{
Kpi

}
Kpi

}
Ktmp

; ∀pi ∈ s
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With reference to Figure 2.4, let us say that u6 want to leave his supercluster

sy = {p2, p3}. The GM has to renew Kp2 and Kp3 . Thus, the GM starts the Argorithm

2 to identify the set W = {k2, k6}. The GM generates Ktmp and broadcasts the

following messages:

GM → (all) : {Ktmp}k2

GM → (all) : {Ktmp}k6

Note that users, which do not belong to p2 or p6, receive the Ktmp. This is not

a problem for the security of the rekeying operation because, in the next step, only

the users which know the old clusters keys can receive the new ones. The rekeying

procedure finishes with the following messages:

GM → (all) :
{{
Kp2

}
Kp2

}
Ktmp

GM → (all) :
{{
Kp6

}
Kp6

}
Ktmp

2.5.3 Supercluster Switching

Let us suppose that a user want to change his supercluster, for instance he want

to add or remove some contents. This is a very common operation in a contents

distribution system. The GM has to identify the initial and final superclusters which we

call respectively sstart and send. Then, the GM identifies three sets of clusters: the set

of all clusters that the user joins (sJ ≡ send\sstart), the set of all clusters that the user

leaves (sL ≡ sstart\send) and the set of clusters that belong to both sstart and send
( sstart ∩ send). The clusters into the last set do not need to renew the clusters keys

because their membership list does not change. To perform the switch operation, the

GM acts only on sJ and sL.

Using the two operations above described, the GM performs a supercluster joining

on sJ and a supercluster leaving on sL. Even if it may occur that sJ or sL is empty,

the supercluster switching is an expensive operations.

2.6 Security Analysis

The main requirement of a GKM scheme is confidentiality, it means that only valid

users should be able to decrypt the multicast data, even if the data are accessible

to all user in the network. This requirement can be translated into three requirements

on key distribution. Nongroup Confidentiality asserts that passive adversaries which

were never part of the group should not have access to any group key. In our case, the

groups are clusters and the GM encrypts every cluster key update, so that a passive
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adversary cannot get the cluster key without knowing the dencryption key. Hence,

MG-LKH satisfies this requirement.

Forward secrecy claims that users evicted from the group do not have access

to any future group key used to encrypt data. According to the procedure in Section

2.5.2, a leaving user is shut out from the rekeying procedure, so that he cannot get

the new cluster key. Thus, the forward secresy is assured.

Backward secrecy claims that a user added to a group should not have access

to any group key used before his joining. According to the procedure in Section 2.5.1,

a joining user should know a previous cluster key to obtain a past cluster key, so that

he cannot obtain any past cluster key. Thus, the backward secresy is assured.

2.7 Perfoemance Analysis

In this section, we illustrate the communication, storage and computational cost of

MG-LKH. First, we made an analitic analysis on MG-LKH, after that we tested the

scheme by means of simulations to characterize some parameters which depend on

the graph topology and the users distribution.

2.7.1 Communication cost

We first analyse the performance of MG-LKH in terms of number of message for each

rekeying operation. We neglected a dettailed analysis on service joining/leaving oper-

ations because their communication cost is equal to the joining/leaving oparations of

LKH. Their cost is 2log(n) messages, where n is the number of users of the broadcast

service. We focussed on the supercluster operations. These considerations are valid

also for the next analyses.

In this analysis, we define |sx| the number of clusters associated to sx and Nmsg

is the number of messages for each rekeying operations.

Supercluster joining

Let us suppose that a user joins a supercluster sx, thus he joins all the clusters be-

longing to sx. As shown in Section 2.5.1, the number of messages to join a cluster

is costant and equal to two. Hence, the number of messages depends only on the

number of clusters in sx.

Nmsg = 2|sx|
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Supercluster leaving

Let us suppose that a user leaves a supercluster sx, thus he leaves al the clusters

belonging to sx. In this case, the communication cost dependes on two parameters:

the number of clusters in sx and |W | that is the size of set W (see Section 2.5.2). |W |
is bounded between 1 and log(n) and its value depends on the graph topology and

the users distribution.

Nmsg =

|W | |sx| = 1

|W |+ |sx| |sx| > 1

Supercluster switching

Let us suppose that a user leaves the supercluster sstart and joins the supercluster

send. As described in Section 2.5.3, the GM computes sJ and sL. The number of

message are the sum of a supercluster joining and a supercluster leaving.

Nmsg =

2|sJ |+ |W | |sL| = 1

2|sJ |+ |W |+ |sL| |sL| > 1

2.7.2 Computation cost

The computation cost is bound to the number of operations of encryption and decryp-

tion. Moreover, the computation costs have different values if we consider the cost on

GM side or user side.

We define CE the everage computational cost of a encryption/decryption opera-

tion and Cr is the computational cost of generating one key from a cryptographically-

secure random source.

Table 2.1 shows the computation cost for each user involved in the rekeying op-

eration. All the values depend only on the number of clusters into the supercluster

and they do not depend on the number of users. Whereas the GM has to send at the

very least an information for each cluster involved, these results are close to the lower

bound reachable in this case.

Table 2.2 shows that the computation costs on the GM side depend on the number

of clusters involved plus a logarithmic factor on the number of users.

2.7.3 Storage cost

For the sake of completeness, we analysed the storage cost even if it is a secondary

issue. Due to the costant growth in the storage thecnologies, nowadays it is easy that

a device can hold thousands of keys. k is the size in byte of a key, |sx| is the number

of program associated to sx and |P | is the number of all programs.
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Table 2.1. User side computetion costs (SJ is supercluster joining, SL is supercluster leaving
and SS is supercluster switching).

User x
SJ CE |sx|
SL |sx| = 1→ 2CE

|sx| > 1→ CE(2|sx|+ 1)
SS |sL| = 1→ CE(|sJ |+ 2)
|sL| > 1→ CE(|sJ |+ 2|sL|+ 1)

Table 2.2. GM side computetion costs (SJ is supercluster joining, SL is supercluster leaving
and SS is supercluster switching).

GM
SJ (2CE + Cr)|sx|
SL |sx| = 1→ Cr + 2CE |W |
|sx| > 1→ Cr(|sx|+ 1) + CE(|W |+ 2|sx|)

SS |sL| = 1→ Cr(|sJ |+ 1) + 2CE(|W |+ 1)
|sL| > 1→ Cr(|sJ |+ |sL|+ 1) + CE(|W |+ 2(|sJ |+ |sL|))

Table 2.3. Storage cost.

User x GM
k(dlog(n)e+ |sx|+ 1) k(2n+ |P |+ 1)

2.7.4 Simulations

Table 2.4. CTest cases.

Case Major superclusters Major events
Case 1 Multiple Join and leave
Case 2 Single Join and leave
Case 3 Multiple Switch
Case 4 Single Switch

In the simulations, we compare MG-LKH with KTR that showed to have better

performance than other schemes like SKT, eLKH and LKH. The two schemes work

on the some cluster/supercluster model. Thus, we performed the simulations with the

same set up in [25] so that it makes possible compare the two GKM schemes. The

set up assumes that the service provides 50 clusters and 300 different options of

superclusters. There are 10,000 users (on the everage) subscribing to the services.
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Figure 2.5. Case 1. Average rekey message size of KTR and MG-LKH .
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Figure 2.6. Case 2. Average rekey message size of KTR and MG-LKH .

The LKH tree with 10,000 users is automatically generated and it has a depth of 14,

since 214 > 10, 000.

The user events are supercluster joining, leaving and switching. They are mod-

elled as independent Poisson processe with λl = λj , so that the total number of

users remains constant. As in [25], we vary λl and λs in order to observe how the

rekey performance changes. The simulation performs 3,000 random user events and

computes the average rekeying cost.
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Figure 2.7. Case 3. Average rekey message size of KTR and MG-LKH .
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Figure 2.8. Case 4. Average rekey message size of KTR and MG-LKH .

The simulations analyze four test cases which are different in terms of major su-

perclusters and major events, as shown in Table 2.4. In Cases 1 and 3, 20 percent of

users subscribe to one cluster and 80 percent of users subscribe to multiple clusters,

vice versa in Cases 2 and 4. With respect to major events, Case 1 and 2 are with

predominance of join and leave and Case 3 and 4 are with precominance of switch.

In each Case, the rates for the major events vary from 1 to 9 while keeping the other

rates at 1.
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Figure 2.9. Case 1. Average number of decryptions per user per event.
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Figure 2.10. Case 2. Average number of decryptions per user per event.

We analyze two performance metrics. The average rekey message size per event

is the numbero of keys sent in the rekey message and represents communication cost.

The average number of decryption per event per user measures the computation cost

for each user, this result is closely related to power consumption in a mobile device.

We have focussed on these two metrics because they depend on |W | that is a

variable value between 1 and log(n). |W | depends on the topology of the tree that

changes over the time due to the sequence of user events.
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Figure 2.11. Case 3. Average number of decryptions per user per event.
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Figure 2.12. Case 4. Average number of decryptions per user per event.

Moreover, we have tested MG-LKH varying the average number of clusters per

supercluster. We have analyzed three cases with an increasing average number of

clusters per supercluster, that is 6, 12 and 24.

The charts in Figures 2.5, 2.6, 2.7 and 2.8 show the average rekey message size

per event for each test case in Table 2.4. It is evident that MG-LKH has a much

better performance, the communication overhead is considerably cut down. The com-

munication is the bottleneck of the performance of a rekeying scheme, thus reducing
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by one order of magnitude the message size per event is a relevant result. More in

depth, the performance of MG-LKH decreases when the average number of clus-

ters per supercluster increases, as we expected. The average number of clusters per

supercluster weighes on the values of |sx|, |sJ | and |sL| (see Section 2.7.1). From

these results, our conclusions are that it is possible to reduce the communication

overhead keeping the same number of clusters. Otherwise, we can increase the num-

ber of clusters, providing many more services to the final user, with the same level of

communication overhead.

The charts in Figures 2.9, 2.10, 2.11 and 2.12 show the average number of de-

cryptions per user per event. In this analysis, the difference between the two algo-

rithms is less marked. In any cases, the performance of MG-LKH get worse with the

growth of the everage number of clusters per supercluster. This beaevior is explained

in Section 2.7.2. The average number of clusters per supercluster weighes on the

values of |sx|, |sJ | and |sL|. Anyway, only the results of MG-LKH with an average of

24 clusters per supercluster have comparable or worse performance than KTR. How-

ever, during these last years, the problem of computation cost has lost importance,

because the constant growth of the computing power of modern CPUs and their high

level of integration allow a pocket-sized device to have enough resources to achieve

complex cryptographic operations.

To conclude our analysis, we have investigated on the behavior of parameter |W |
because it influences the communication cost (Section 2.7.1). The value of |W | is

variable for each leave/switch event, it is bound between 1 and log(n) (see Section

2.5.2). We have simulated 6,000 random user events in a group of 10,000 of users

varying the ratio between the everage number of user belonging to a cluster and the

number of members of whole service: |G(pi)|/n.

The chart in Figure 2.13 shows the probability distribution of parameter |W |. With

|G(pi)|/n = 10%, the great majority of events need a |W | between 9 and 11 over

15 that is the maximun value of |W |. It means that MG-LKH saves the 33% of

rekeying message in a supercluster leaving operation. Ingreasing the ratio |G(pi)|/n,

the efficiency of MG-LKH decreases as shown in Figure 2.13. In the worst case (

|G(pi)|/n = 90% ), that is the number of all members belonging to a cluster is com-

parable to the whole service group, the great majority of events need a |W | = 13. In

other words, MG-LKH saves the 15% of rekeing message. Moreover, these results

are relevant in terms of computation cost on GM side. As shown in Table 2.2, the

computation cost of supercluster leaving/switching events depends on |W |.
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3

Reliability

Multi-vehicle systems composed of Autonomous Guided Vehicles (AGVs) are largely

used for industrial transportation in manufacturing and logistics systems as they offer

potential advantages with respect to single-agent systems in terms of task speedup,

robustness and scalability. For instance, a typical function of a multi-AGVs system

consists in transporting raw or semi-finished material from warehouse to production

lines [1]. However, deployment of a team of AGVs raises management and coordina-

tion problems such as collision avoidance, conflict resolution, and shared resources

negotiation [1].

Coordination of a team of AGVs can be either centralized or distributed. In the

majority of industrial application, AGVs coordination is centralized where a single de-

cision maker is responsible for solving task allocation, motion planning, and coordi-

nation problems. A centralized solution is easier to implement but the decision maker

becomes a performance bottleneck with severe limitations in terms of scalability.

Decentralized approaches are more suitable than centralized ones for dealing with

coordination problems involving a large number of AGVs [49]. These approaches are

divided into two phases, the planning phase where paths are planned using indepen-

dent objectives for each AGV, and the coordination phase where coordination and in-

teraction of each AGV with the other AGVs take place. Scalability is achieved because

in the coordination phase each AGV takes decisions that require only the knowledge

of the state (e.g., position and speed) of its neighbors.

In a decentralized approach reliable and secure dissemination of the state is a

crucial operation that is often neglected. If dissemination is unreliable, neighboring

AGVs may achieve an inconsistent view of the system leading to the failure of the

coordination task. This has clear safety implications. If dissemination is not secure,

an adversary may modify or inject fake messages so leading AGVs to achieve wrong

and/or inconsistent views. Once again this may cause the coordination task to fail.
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In this chapter we focus on reliable state information exchange among neighbors

and present an efficient and scalable mechanism for neighborhood monitoring. Intu-

itively, this Neighborhood Monitoring Protocol (NMP) is crucial for reliable state dis-

semination because, when an AGV broadcasts its state, an accurate and timely notion

of its neighborhood allows it to track which neighbors have received such state and

which have not and thus need a re-transmission.

The protocol operates over an IEEE 802.11 wireless network technology [24]. This

technology is rapidly expanding in industrial scenarios due to its recent improvements

in terms of hardware costs, transmission speed, and simplicity and flexibility of de-

ployment [13]. However, it lacks any reliable broadcast service.

In the literature there are many solutions that strive to improve the reliability of

802.11 broadcast communication at both the Medium Access Control (MAC) layer

[57, 58, 55, 52, 32] and upper layers [2]. NMP operates above the MAC layer be-

cause we are not interested in improving the reliability of the whole broadcast traffic.

Rather, we are interested in increasing the reliability of the state dissemination aimed

at AGVs coordination service without influencing the broadcast traffic of other pro-

tocols. Therefore, starting from the periodic nature of the state dissemination traffic

pattern, we have designed an accurate, efficient, and scalable protocol that is suitable

for real-time coordination protocols. NMP is accurate because the difference between

the actual neighborhood of an AGV and the view of that neighborhood the protocol

provides the AGV is negligible. Moreover NMP makes it possible to estimate a maxi-

mum state dissemination delay that is fundamental in real-time applications. Further-

more, NMP is efficient as it produces a negligible rate of collisions and consequent

packet loss so solving the insidious problem that afflicts the periodic and uncoordi-

nated data dissemination protocol, namely the overlapped transmissions. Differently

from other approaches, NMP is scalable because state dissemination influences only

actual neighbors and the dissemination rate is automatically reduced when neighbors

are absent.

3.1 Related Works

The IEEE 802.11 broadcast protocol is based on Carrier Sense Multiple Access with

Collision Avoidance (CSMA/CA) and does not offer any recovery mechanisms for

broadcast frames [24]. In 802.11, the Distributed Coordination Function (DCF) incor-

porates CSMA/CA and acknowledgement (ACK) and is the principal access method

to share the wireless channel. Optionally, the mobile devices can make use of the

virtual carrier sense mechanism for unicast transmissions by means of Request To
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Send (RTS) and Clear To Send (CTS) control frames to eliminate the hidden termi-

nal problem. For broadcast packet, 802.11 devices cannot exploit the RTS/CTS/ACK

mechanisms. Hence they simply execute CSMA/CA and broadcast data frame incur

in an increased probability of getting lost due to collisions. Much work has been done

to improve the reliability of IEEE 802.11 broadcast. Many of the proposed solutions

face with the problem at MAC layer.

K. Tang and M. Gerla propose Broadcast Support Multiple Access (BSMA) that

extends the use of RTS/CTS/NACK control frames to broadcast communication [57].

Before data transmission, a sender broadcasts an RTS frame to its neighbors. Conse-

quently, neighbors reply with a CTS. Upon receiving a CTS frame from any neighbor

of its, the sender broadcasts the DATA frame. If all neighbors correctly receive the

DATA frame then the transmission ends. Otherwise, the neighbors that have not cor-

rectly received the DATA frame send a NACK frame to have the sender retransmit the

DATA frame. BSMA has a weakness. Actually, BSMA is not able to coordinate trans-

mission of CTS or NACK frames. Thus collisions of CTS or NACK frames may occur.

A failure in receiving CTS frames makes the sender to re-transmit the RTS frame with

negative effects in terms of efficiency.

The Broadcast Medium Window (BMW) follows a different approach [58]. A sender

broadcasts a DATA frame by unicasting it to every neighbor. Reliability is achieved

by means of the RTS/CTS/DATA/ACK mechanisms. As it turns out, reliability of this

scheme is improved at the cost of lowered efficiency.

The Batch-Mode Multicast MAC (BMMM) introduces a new additional control

frame called Request for ACK (RAK) [55]. After RTS/CTS, a sender broadcasts a

DATA frame and then a RAK frame to coordinate ACK frames from receivers. The

main drawback of this approach is that if an ACK is lost, the sender has to restart the

whole CTS/RTS/DATA/RAK/ACK procedure.

Taking into account that the broadcast unreliability is mainly caused by the lack of

acknowledgement of broadcast frames, the approach proposed by Sheu et al. sug-

gests to make use of ACK frame after the broadcast DATA frame transmission [52].

Sheu et al. consider a period of time after DATA transmission that is called Back-off

ACK (BACK) and defined as the time interval between the end of the SIFS and the

end of the DIFS during which the sender receives the ACKs. The BACK window is

divided into mini-slots and the receivers coordinate the ACK transmission choosing

randomly one mini-slot to transmit an ACK. This solution has an evident drawback,

namely, if one ACK is missed the sender will restart the whole procedure.

Another proposed solution is Multiple Access Collision Avoidance protocol for Mul-

ticast services (MACAM) [32]. This solution includes a list of nodes (neighborhood) in

the RTS frame. Neighbors respond sending CTS frames according to the sequence
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of their addresses specified in the RTS. This mechanism increases the length of the

CTS control frame. Moreover, if the number of neighbors is greater than the maximum

number of recipients that can be included in the RTS, the sender must perform multi-

ple DATA transmission. Consequently, reliability increases but efficiency decreases.

All the solutions presented so far attempt to achieve broadcast reliability at the

MAC layer. Another possible approach addresses the problem at the upper layer. This

approach is adopted by the Real-Time Data Base (RTDB) middleware [2]. RTDB pro-

vides an efficient and timely support for the fusion of distributed perception and the

development of coordinated behaviors by means of a distributed database that is par-

tially replicated in all involved devices. The database contains local and remote state

variables that are updated periodically and automatically in the background by the dis-

semination of multicast packets at a refresh rate that is adapted to the data dynamics.

To reduce access collision among communicating agents, RTBD uses an adaptive

Time Division Multiple Access (TDMA) transmission control mechanisms, with a pre-

defined round period called team update period, so they have to use a base station

to manage the communication. This solution solves the problem of collisions between

broadcast transmissions. However, each device has to wait for all other devices until

they finish their transmissions. Moreover, this approach cannot be used in a Mobile

Ad-hoc NETwork (MANET) scenario because there is not a coordination point that

manages the TDMA.

Given the inefficiencies of current protocols (increased number of frames, in-

creased number of collisions, increased data transmission time), and the require-

ments of reliable state dissemination (scalability, accuracy, and predictable dissem-

ination delay), we propose a new approach that makes an efficient use of wireless

medium. The proposed approach is at the application layer, exploits the periodic na-

ture of the state dissemination protocol, and is suited for a MANET of AGVs.

3.2 System Model

We consider a system composed of a set of AGVs that share a common environment

to fulfill their task either in isolation or in group. Vehicles cooperate at least for col-

lision and deadlock avoidance. As vehicles share a common environment, collision

avoidance prevents any vehicle from colliding into another. At the same time, dead-

lock avoidance prevents a sub set of vehicles from stalling because they are not able

to solve conflicts possibly leading to collisions. In order to cooperate for collision and

deadlock avoidance, vehicles periodically disseminate their respective state (position

and speed) through a wireless ad-hoc network. We focus on IEEE 802.11 but the

following arguments can be applied to other wireless technologies too.
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Figure 3.1. The Mobile Devices (MD) share the same environment.

Intuitively, each vehicle detects its neighbors and, contextually, disseminates its

state to such neighbors as follows. Every vehicle periodically broadcasts a STATE

packet that coveys both mobility information and possible sensor readings (e.g., tem-

perature). At the same time, the vehicle receives the STATE packet broadcast by

neighboring vehicles, stores the most recent ones in an internal buffer, and makes

them available to applications. So doing the vehicle is able to keep track of position

and speed of its neighbors and then use these information items in solving coordina-

tion problems. Neighborhood discovery and state dissemination must be reliable or,

otherwise, neighboring vehicles may achieve an inconsistent view of the system. For

instance a vehicle may miss the presence of another one or believe that this one is in

a different position. These inconsistencies in the view may cause the vehicle to take

maneuvers that are inconsistent with those taken by its neighbors and thus conducive

of possible safety consequences.

In coordination problems, the notion of neighborhood is application-specific and

defined on geographical basis. We call neighbors any two vehicles whose distance is

smaller than, or equal to, the neighborhood distance Dn. Let Dc be the communica-

tion radius, i.e., the maximum distance allowing communication between two AGVs.
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Of course, it must be Dn < Dc, because otherwise no communication among neigh-

bors would be possible. Except for this, Dn must be large in order to detect a new

neighbor before it is too close. For instance, in a collision avoidance protocol, the

largest Dn the smallest the risk of collision because a neighbor is discovered when it

is still far ”enough“. On the other hand, Dn must be not ”too“ large in order to consider

neighbors only the vehicles actually necessary for the coordination protocol. More

generally Dn depends on specific application. In this paper, we assume that Dn is

defined at system initialization and never changes afterwards.

We assume that a vehicle is able to localize itself. Localization technologies are

available for both outdoor (e.g., the Global Positioning System) and indoor environ-

ments [34], see also Chapter 4. Furthermore, we assume that clocks of mobile de-

vices are synchronized. The commonest solutions are the Network Time Protocol

(NTP) and its variations [36], [37]. Finally, we assume that vehicles are equipped with

a set of sensors to sense the surrounding environment. Figure 3.1 summarizes briefly

the system model.

3.3 The Neighborhood Monitoring Protocol

The objective of NMP is to allow a vehicle to reliably detect and track the vehicles

that belong to its neighborhood. To accomplish that, a vehicle periodically transmits

its state with a given state transmission frequency F . More precisely, a vehicle broad-

casts a STATE packet which conveys the current vehicle position, speed and sensor

readings.

In the STATE packet, the vehicle also inserts the timestamp ti, i.e., the instant

of the STATE packet creation, and ∆T , i.e., the time interval before the next STATE

packet. So ti+1 = ti + ∆T specifies the time when the next STATE packet will be

sent. Upon receiving a STATE packet from ni, a neighbor nj can determine the next

packet time τi = ti+1 +∆Ttx where ∆Ttx is an estimation of the transmission delay.

Thus, if the next packet from ni does not arrive by τi, the mobile node nj considers

it as lost and sends a NACK packet to stimulate the retransmission of a new STATE

packet by ni.

It is worthwhile to highlight soon an important difference between NMP and ex-

isting solutions such as BMMM [55] and that based on Sheu’s et al.’s protocol [52].

These protocols need to notify each time they receive a data packet because the pro-

tocol does not know the data traffic behaviour and thus they cannot foresee when the

next packet will arrive. In contrast, NMP can establish when the next STATE packet

will arrive and thus can identify when it is missed. Consequently, NMP need to notify

only error conditions so reducing the communication overhead.
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Figure 3.2. The distance parameters Dn and Di.

Of course the NACK mechanism of NMP might cause several collisions because,

in the case a STATE packet is lost, two or more neighbors might attempt to transmit

a NACK at the same time. In order to solve this problem, we take advantage of the

distributed nature of the problem of coordinating the NACK transmissions. When the

deadline for the next STATE packet expires, the mobile device activates a back-off win-

dow composed of eight fixed slots. Then, the mobile device selects one of these slots

at random and transmits the NACK packet in such a slot. So doing, the probability that

two or more mobile devices collide when sending a NACK becomes negligible. If the

back-off window expires and the data retransmission does not occur, mobile devices

double the back-off window and repeat the NACK transmission process. Every node

can transmit a NACK for four times. After that the node removes the not responding

node from its neighborhood. On the contrary, if the STATE retransmission occurs, the

recipient mobile device stops the back-off timer. Summarizing the coordination opera-

tions, the protocol waits for a STATE packet. If it is missed (timer expired) the protocol
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sends a NACK after a back-off time and returns to wait for a new STATE packet. If the

missed STATE packet arrives during the back-off time then the protocol stops sending

the NACK.

This retransmission procedure solves a insidious problem that afflicts periodical

updates in uncoordinated protocols, namely, the overlapped transmissions. Consider

a random initialization scenario with a large number of mobile devices. In such sce-

nario, it is highly probable that two or more devices may want to transmit at the same

time. This increases the likelihood of collision. With a constant update period, the

problem occurs at each transmission and consequently it may cause a considerable

packets loss. The retransmission procedure slightly delays the packet and spreads

the overlapped transmissions so the overlapping will not occur in future.

Moreover, NMP has the ability to reduce the number of transmissions when they

are not necessary. More specifically, the state transmission frequency F varies be-

tween two values Fmin and Fmax, Fmin ≤ Fmax, in a way inversely proportional to

the distance of the closest vehicle within a fixed distance called idle distance Di with

Dc > Di > Dn (see Figure 3.2).

If the closer neighbor is between Dn and Di, device vehicle does not keep track

of that neighbor state but uses its position information in order to vary the transmis-

sion frequency F . Hence the area between Dn and Di is a safety zone whose task

consists in adapting F to Fmax when the closest neighbor gets near to the vehicle.

Fmax is set according to the application requirements. For instance, the transmission

frequency of position information in a coordination protocol for the collision avoidance

follows an empiric formula Fmax > 2Vmax/Dn where Vmax is the maximum vehi-

cle speed. Intuitively, the formula says that during two consecutive transmissions two

vehicles cannot get closer than Dn.

Differently, Fmin aims at reducing the access to the shared wireless and thus

reduce the network load. With reference to Figure 3.2, if we denote by δ the distance

of the closest neighboring node, the value of the state transmission frequency F is

given by

F =


Fmin if δ > Di

Fmin + (Fmax − Fmin)(Di − δ)overDi −Dn if Dn ≤ δ ≤ Di

Fmax if δ > Di

(3.1)

Fmin and Di values must be configured carefully, taking into account the mobility

parameters of vehicles (e.g., the speed). Wrong values for Fmin and Di may cause

the presence of vehicles within Dn while the state transmission frequency is lower
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Figure 3.3. NMP software architecture.

than the value Fmax required by the application. Given Dn and Vmax, we suggest

to choose Fmin such that Fmin ≥ 2Vmax/(Di − Dn) in order to guarantee a cor-

rect data frequency when a neighbor gets closer than Dn. According to the previous

equation, (Di−Dn) must be greater than the distance covered during two consecutive

transmissions, i.e. Vmax/F .

3.3.1 Software Architecture

NMP operates over link layer using the standard interface provided by 802.11 MAC

layer. The communication follows the producer-consumers model according to which

each device regularly broadcasts (produces) its state while the remaining ones re-

ceive (consume) the state and update their local structures.

Figure 3.3 shows the NMP software architecture. The DataDB module records

the the states collected from neighbors and provides it to the Application. The other

modules perform operations whose semantics are inferable by the module name.

As described in Section 3.3, the state dissemination protocol is based on two

packet types, the STATE and the NACK packets. The STATE packet consists of a an

Header field followed by a State field and an Auth field. The Header is composed

of six fields. The ID field specifies the unique identifier of the sending device. The

ServiceID field specifies the type of data in the state field (e.g., temperature, alarms).
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If a packet conveys no state information, the ServiceID filed contains zero and the

State field is not present. The field Coordinates specifies the current coordinates of

the sending mobile device. In our implementation, we use plane coordinates, but it

can be extended in order to cope with aerial/submarine mobility. The field Timestamp

specifies the instant when the packet has been created. The field Nextmsg indicates

when the next STATE packet is going to be sent. Finally, the field Length specifies

the size in byte of the State field. The State field conveys mobility information (e.g.

speed, acceleration) that are established during the configuration phase and they are

mandatory into every STATE packet. Finally, the AUTH field carries a message au-

thentication code computed by means of a keyed hash function that takes as input

the Header, the State field, and a group key shared by all mobile devices in the sys-

tem. The Auth field assures the data integrity and authenticity of a STATE packet and

prevents an external attacker from modifying packets or injecting fake ones. Further-

more, the AUTH field together with the timestamp guarantees the freshness of the

STATE packet an prevents replay attacks. About the group key management scheme,

you can find more details in Chapter 2 or in the articles [17, 4].

The NACK packet contains only four fields: the sender ID, the ID of the device

whose STATE packet was lost, a timestamp, and Auth field.

3.4 Performance Evaluation

In order to evaluate performance, we have simulated NMP by means of Omnet++

and INET Framework. We have realized two NMP versions. The reliable version im-

plements NMP exactly as described in Section IV. The unreliable version implements

NMP without the NACK retransmission mechanism, that is a simple periodic dissemi-

nation protocol. The comparison of performance of these two implementations is use-

ful to understand the benefit introduced by NMP.

3.4.1 Factors of Performance Evaluation

Our goal is to evaluate efficiency, accuracy and scalability of NMP. In order to quan-

tify them, we define four factors: the percentage of busy channel, the packet loss,

the maximum state dissemination interval, and, finally, the diversity. Simulations of

the protocol are aimed at assessing these factors. The percentage of busy channel

(PBC) is defined as the ratio between the channel busy time due to transmission and

the simulation time. PBC provides a measure of how much the protocol exploits the

wireless channel and thus gives an indication of the overhead introduced by extra-

packets adopted during the retransmission procedure (NACK). Thus, PBC is a mea-
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sure of the protocol scalability because if PBC grows linearly with the number of AGVs,

notwithstanding the presence of control packets to manage the reliability, the protocol

scales well. The packet loss is defined as the ratio between the number of lost packets

due to collisions and the total number of sent packets. Such a factor depends on the

numbers of mobile devices involved in the protocol and fixes a practical upper bound

to this number. The protocol design is aimed at reducing the packet loss value in or-

der to increase the number of devices that may be present in the system. PBC and

packet loss are related because a small packet loss and a PBC linearly growing with

the number of AGVs are symptoms of efficient communications. The maximum state

dissemination interval is the maximum delay between two consecutive state trans-

missions received from the same neighbor within the range Dn. This value allows

us to estimate the maximum delay introduced by NMP when it works in proximity of

channel saturation. Such a maximum delay is crucial for the real-time nature of the

system. Finally, the diversity factor gives a measure of the accuracy of the protocol.

Intuitively, it measures how much the neighborhood returned to a vehicle by NMP is

adherent to reality. Let N be the neighborhood of a given vehicle and let Ñ be the

neighborhood returned to the vehicle by NMP at the same moment. More formally,

the diversity factor D is defined as

D =

1− |N∩Ñ ||N∪Ñ | if N 6= ∅ and Ñ 6= ∅

0 if N 6= ∅ or Ñ 6= ∅
(3.2)

where | ? | denotes the set size operation. If the protocol provides high accuracy,

i.e. the detected neighborhood is very close to the real neighborhood, then Ñ tends

to N , and the diversity factor D tends to zero. In contrast, if Ñ differs from N , then

N ∩ Ñ → ∅ and thus the diversity factor D tends to one. Notice that assuring a

maximum value for the data delay and a low value for diversity is relevant for protocol

reliability.

3.4.2 Simulation Scenario

The simulation scenario consists in a 150 m × 200 m rectangular area where a fixed

number of vehicles follow random trajectories with constant speed between 1 and

2 mps. Dn and Di are respectively 25 m and 50 m for all mobile devices and all

simulations. The communication module emulates a 802.11g NIC set up in ad-hoc

mode with 2 Mbps transmission rate. In the simulations, the vehicles exchange just

their positions and thus packets have an empty State field (position coordinates are

in the packet header). This is not a lack of generality because if speed or acceleration

would be necessary, they would require just a few bytes State field. The resulting
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packet size would be comparable to that used in the simulation and thus the simulation

results remain valid.

Simulations were conducted for both the reliable and unreliable mode varying the

number of vehicles between 20 and 120, and the data frequency Fmax between 8 Hz

and 20 Hz. Fmin is 0.33Hz for all simulations.

3.4.3 Simulation Results

We start analyzing the PBC because the other results depend on it. In Figures 3.4 and

3.5, the two charts showing that PBC grows linearly with the number of mobile devices

until 80% where channel saturation occurs. The channel saturation is an upper bound

that fixes the maximum number of AGVs. There are not considerable differences be-

tween the reliable and unreliable operating mode. The reliable mode is characterized

by a slightly greater PBC (+2%) in proximity of channel saturation that is justified by the

NACK transmissions. Before the channel saturation, the number of retransmissions is

very low. Therefore the protocol does not incur in unnecessary retransmissions and

the overhead introduced by control messages (NACK) is negligible.

Figures 3.6 and 3.7 show the packet loss versus the number of nodes. We can see

the PBC effects. Actually, the packet loss increases rapidly in proximity of the channel

saturation. But with 60 nodes at 20Hz the unreliable mode suffers for packet loss even

if the PBC is around 45% because of overlapped transmissions. The reliable mode

mitigates the problem, because the retransmission procedure spreads the overlapped

transmissions over a larger interval by efficiently using the wireless channel and obvi-

ating future overlapping. This behaviour is particularly evident in the reliable mode at

13.3Hz where, differently from the unreliable mode, packet loss is practically absent

with less than 100 nodes.

The charts in Figures 3.8 and 3.9 show the maximum data dissemination interval

withinDn versus the number of vehicles. In the unreliable mode, overlapped transmis-

sions make the trend of the maximum delay irregular. This makes it hardly predictable.

In contrast, thanks to its ability of spreading overlapped transmissions, in the reliable

mode the maximum data interval increases slowly and linearly with the number of

mobile devices. At 20Hz frequency and 60 nodes, the max data interval is twice the

fixed interval at Fmax.

A PBC greater than 80% causes a quick performance degradation, especially in

terms of packet loss due to channel saturation. Therefore, we suggest to operate

in the reliable mode, with a PBC value lower than 60% because the packet loss is

negligible (under 5%). However, in reliable mode the maximum data interval remains

predictable also when we are close the channel saturation. We can establish a delay

upper bound also PBC is 90%.
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Figure 3.4. Percentage of Busy Channel without NMP.

The value of the diversity factor is always less than 5% for every number of nodes

and for every frequency in the considered ranges in both the unreliable and reliable

mode. This means that the view of the neighborhood returned by NMP to a vehicle

practically coincides with the real neighborhood of that vehicle. This proves the accu-

racy of our.

To summarize, the reliable mode efficiently uses the wireless channel thanks to the

retransmission procedure and the spreading of overlapped transmissions. The PBC

charts show that NACKs do not introduce significant overhead, but reduce packet loss

and stabilize the maximum data interval. These benefits translate into the possibility of

accommodating a larger number of mobile devices. This increases system scalability

and guarantees a maximum data delay that increases the data accuracy.

3.5 A Case-Study

We have evaluated NMP with a specific decentralized collision avoidance algorithm

based on the Generalized Roundabout Policy (GRP) proposed in [42]. The proposed

case-study propose an interesting challenge since it takes into account non trivial

agents such as vehicles that move with constant non null velocity (non-holonomic).
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The impossibility of stopping the vehicle in case of a conflict makes the communication

infrastructure playing a fundamental role to ensure the safety of the system.

The case-study has been evaluated from several points of view by simulation. We

show that NMP maintains a high level of delivery ratio, restoring sporadic packets

collisions and packets loss that could lead the collision avoidance algorithm to dan-

gerous state as violations of safety conditions. Finally, we have investigated the NMP

behaviour even in exceptionally adverse communication conditions and we have com-

pared its performance with a simple periodic dissemination protocol without reliability

features.

3.5.1 Collision Avoidance Strategy

We consider the following kinematic model for each agent involved in the system:

(ẋ, ẏ, θ̇) = (u cos θ, u sin θ, ω), (3.3)

where u and ω are linear and angular velocity respectively. The linear velocity is sup-

posed to be constant but non zero for any agent. A bound on angular velocity is

obtained as |ω| ≤ u
Rc where Rc defines the minimum curvature radius achievable.

Figure 3.5. Percentage of Busy Channel using NMP.
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Figure 3.6. Packet Loss without NMP.

Figure 3.7. Packet Loss using NMP.

45



CHAPTER 3. RELIABILITY

Figure 3.8. Max Packet Interval without NMP.

Figure 3.9. Max Packet Interval using NMP.
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Figure 3.10. Rc and Rs of a mobile device.

The agent has a safety disc of radius Rs centered in the agent itself that must be kept

disjoint from safety discs of other agents to avoid collisions.

The GRP policy is based on the concept of reserved region, over which each

active agent claims exclusive ownership: the circle it would describe under the action

of a constant control input ω = − u
Rc , see left of Figure 3.10. In other words, the

reserved region for the i-th agent is defined as a disc of radius Rc
i + Rs

i centered at

(xc, yc) = (x+Rc sin(θ), y −Rc cos(θ)).

Ri(t) = {(x, y) ∈ R2 : ‖(x, y)− (xc, yc))‖2 ≤ Rc
i +Rs

i }. (3.4)

The motion of the point (xci , y
c
i ) is described by the following equations:

(ẋci (t), ẏ
c
i (t)) = (ui +Rc

iωi(t))(cos θi(t), sin θi(t)). (3.5)

Furthermore, we associate a heading angle to the reserved disc that coincides

with the agent heading θi. Our policy is based on the following basic observations:

the reserved region (i) can be stopped at any time, by setting ω = − u
Rc , see Figure

3.10, and (ii) once stopped, it can be moved in any direction, provided one waits long

enough for the heading θ to reach the appropriate value.

A sufficient condition to ensure safety is that the interiors of reserved regions are

disjoint at all times; if such a condition is met, conflicts can be avoided if agents

hold their reserved regions fixed, and move within them (by setting ω = − u
Rc ). As

a consequence, each point of contact between reserved regions defines a constraint

on further motion for both agents involved. Hence, constraints can be determined

if each agent is aware of the configuration of all agents within an alert distance

da = 2(R̂s + 2R̂c) where R̂c = maxj R
c
j and R̂s = maxj R

s
j are respectively the

maximum value of Rc and Rs for all agents; see center of Figure 3.10.
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Figure 3.11. Trajectory in case of stationary neighboring reserved region.

For space limitations we report the rule based protocol in Figure 3.12 and who

the state changes in presence of an obstacle, Figure 3.11 without other details. The

proposed protocol is a modified version with respect to the GRP strategy proposed

in [42] in a switching condition between hold and roll.

Figure 3.12. A hybrid automaton describing the collision avoidance policy.
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Figure 3.13. a) Safety radius Rs, b) Minimum curvature radius Rc, c) Neighborhood radius Dn,
d) Limit distance Di.

3.5.2 Performance Evaluation of the Case-Study

We have simulated the collision avoidance algorithm and NMP by means of Omnet++

and the INET Framework.

Simulations consider a 10 m × 10 m shared area where each agent move with a

constant linear speed u equal to 5 cm/s. Dn and Di are respectively fixed to 2 m and

3 m for all agents. Every agent has Rs = 10cm and whereas values of Rc vary be-

tween 0 cm (holonomic) and 20 cm. So simulations encompass an heterogeneous set

of both holonomic and nonholonomic agents. The communication module emulates a

802.11g NIC in ad-hoc mode with a 2 Mbps transmission rate. The state dissemination

frequencies are Fmax = 20 Hz and Fmin = 0.33 Hz.

In order to implement the collision avoidance on NMP we have solved two im-

portant implementation issues. The first of them was the contact condition. We must

initially observe that, theoretically, the collision avoidance algorithm reasons upon the

tangency of reserved regions. However, in practice it is impossible. Therefore, we

practically assume that two reserved regions are in contact when they are closer than

dt = 4× τ × uM . This is a conservative value for the worst case.

The second issue was the relationship between the radii, Figure 3.13. The value

of the neighborhood radius Dn depends on application features. In this case, in order

Table 3.1. Summary of the notation.

NMP GRP
Fmax Max. State packet frequency u Linear velocity
Fmin Min. State packet frequency ω Angular velocity
τ 1/Fmax Rs Security radius
Dn Neighbourhood radius Rc Curvature radius
Di Limit distance
Dc Communication radius
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Figure 3.14. Packet loss vs. number of agents. Fmax: 20Hz, 10Hz and 5Hz.

Figure 3.15. Delivery ratio vs. delay. Left: unreliable protocol. Right: NMP.

to preserve the contact condition, a agent’s neighborhood must be large enough to

encompass the reserved region of a neighbor. It means that Dn > 4Rc + 3Rs.

In order to evaluate NMP efficiency and accuracy, we refer to three factors: packet

loss, delivery ratio and reserved regions overlapping. The packet loss is defined as

the ratio between the number of lost packets due to packets collision and the total

number of sent packets during an execution of the collision avoidance algorithm. The

delivery ratio as function of the delay between two consecutive receptions of STATE

packet from the same neighbor. It shows the probability that a packet arrives within

a specific time interval. Ideally, all packets should arrive with a interval equal to τ .

The reserved regions overlapping is a sufficient condition for avoiding collisions (see

Section 3.5.1) so it tests the system integrity.
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Fig. 3.14 shows the packet loss versus the number of agents in the same com-

munication radius. Less than 10% with 40 agents and Fmax = 20 Hz and it increases

rapidly with the number of agents.

We have evaluated the NMP behaviour varying the number of agents and we have

identify three configurations that reflect the cases of low, medium and high packet

loss, respectively with 40, 60 and 80 agents. Usually, the actual collision avoidance

applications operate at lower frequencies (2-5Hz). The packet loss is very small if

not negligible in the most of practical cases as shown in fig. 3.14 and it allows a

greater number of agents managed simultaneously. But, in order to test under stress

the communication protocol, we have set our simulations with higher dissemination

frequency (20Hz).

Fig. 3.15 shows the delivery ratio using an unreliable broadcast dissemination

protocol and using NMP. The delivery ratio gets worse with the number of agents. We

have observed that NMP has better performance than the unreliable protocol in case

of low packet loss (40 agents), because NMP can easily restores the lost STATE mes-

sages if the channel is not congested. On the contrary, in a crowded scenario, NMP

contributes to get worse the communication, due to the control messages (NACK

packets) that increases the traffic amount. In this case, the unreliable protocol over-

comes NMP performance.

Basing on these results, NMP is not recommended in a heavy congested scenario,

but it can restore sporadic STATE packets loss that occur in a unreliable dissemina-

tion protocol. This small packet loss could lead the system in an inconsistent state.

Analyzing the reserved regions overlapping, there are no violation of the safety condi-

tions with NMP in the case of 40 agents. Even if the STATE packet interval is slightly

delayed, it is tolerated by collision avoidance algorithm. Otherwise, the unreliable dis-

semination protocol can experience a single state transmission that is heavy delayed,

causing the reserved regions overlapping. In the other two cases with medium and

high packet loss, the reserved regions overlapping occurs in both NMP and unreliable

broadcast protocol.
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4

Localization

The measurement of the distance between two electronic devices is crucial for many

practical applications. Many techniques have been proposed over the years [34]. All

these techniques fail in the presence of an adversary that wants to disrupt the dis-

tance measurement process. Even the well-known and widespread civilian Global

Positioning System (GPS) is extremely fragile in adversarial scenarios [30]. Secure lo-

cation estimation has a plethora of applications including coordination of autonomous

guided vehicles as just seen in Chapter 3 and geographical routing [29, 64]. For all

these applications, an insecure distance or position estimation could produce security

problems such as unauthorized accesses, denial of service, thefts, integrity disruption

with possible safety implications and intentional disasters.

Desmedt [14] first introduced the problem of secure location verification and

showed that it cannot be solved by solely using cryptography. Brands and Chaum [6]

proposed the first secure distance-bounding protocol. Since then, many variants have

been proposed in the literature [7, 53, 41]. These protocols leverage on both the un-

forgeability of authenticated messages and the upper bound of the communication

speed that is the speed of light. They prevent distance reduction, i.e., an adversary

cannot make a device appear closer than it really is. The resistance against distance

reduction is an important requirement for all the application scenarios involving secure

proximity verification [26, 19, 22, 23]. A common example is the problem of proximity-

based access control. Let us suppose an RFId card performing an authentication

protocol with a reader. If the card correctly performs the protocol, the reader will open

a door of a building. An adversary can trick the system by establishing a relay link

between the reader and a far away legitimate card, owned by an unaware user. The

card correctly performs the authentication protocol via the relay link, and the reader

opens the entrance. This attack is known as mafia fraud. Along with the correctness

of the authentication, the reader has to check even that the card is within a security
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distance. However, if such a distance measurement is made with insecure methods,

the adversary can still break the system. In particular she can perform a distance

reduction attack to deceive the reader into believing that the far away card is in the

proximity.

The relevance of the secure proximity verification eclipsed the dual problem: the

distance enlargement attack. By this attack, an adversary makes a device appear far-

ther than it really is. The resistance against both reduction and enlargement attacks

is important whenever we want to securely estimate a distance, rather than a proxim-

ity. Let us suppose a distributed system that monitors the movement of autonomous

guided vehicles. The system relies on distance information to avoid collisions be-

tween vehicles. An example of such systems is the case-study in Section 3.5. If an

adversary is able to make a distance appear larger than it really is, the system could

not take collision-avoidance countermeasures in time. This could cause collisions be-

tween vehicles, and consequent loss of money and safety threats. Secure distance

estimations are extremely useful in trilateration techniques too. These techniques use

the distances measurements from at least three anchor nodes, whose positions are

known, to estimate the position of a fourth node. If an adversary can enlarge one or

more distance measurements, she is able to disrupt the whole positioning process.

We propose SecDEv (SECure Distance EValuation), a distance-bounding protocol

able to resist to enlargement attacks based on jam-and-replay tactics [31, 60, 59].

SecDEv exploits the characteristics of wireless signals to establish a security horizon

within which a distance can be correctly evaluated (besides measurement errors) and

any adversarial attempt to play a jam-and-replay attack is detected. We also show how

SecDEv improves the scalability of secure positioning techniques in terms of number

of anchor nodes.

4.1 Related Works

Secure localization has a vast applicability in many technological scenarios, but it has

showed to be a nontrivial problem. The silver bullet is yet to be found.

Brands and Chaum [6] proposed distance-bounding protocols, in which a verifier

node measures the distance of a prover node. Distance-bounding protocols do not

determine the actual distance, but rather a secure upper bound on it. In this way, the

actual distance is assured to be shorter or equal to the measured one, even in pres-

ence of an adversary. These protocols were created to assure the physical proximity

between two devices, and consequently to contrast mafia fraud attack [14].
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Hancke and Kuhn [26] fitted distance bounding protocols for RFId tags. Their pro-

posal deals with a variety of practical problems such scarce resources availability,

channel noise and untrusted external clock source.

Though extensions for RFId’s are possible, we focus on more resourceful devices.

We assume the clock source is internal and trusted and the channel noise is corrected

by FEC techniques.

Clulow et al. [12] focused on a wide variety of low-level attacks which leverage

on packet latencies (e.g. preambles, trailers, etc.) and symbols’ modulations. PHY-

layer preambles are sent before the cryptographic quantities, in order to permit the

receiver to synchronize itself to the sender’s clock. The preamble of the response is

fixed and does not depend on the content of the challenge. A dishonest prover could

thus anticipate the transmission of the response preamble to reduce the measured

distance. To deal with this problem, Rasmussen and Čapkun [48] proposed full-duplex

distance bounding protocols, in which the challenge and the response are transmitted

on separate channels. The prover receives the challenge and meanwhile transmits

the response. In this way, a dishonest prover cannot anticipate the transmission of

the response, without having to guess the payload. In the present of this chapter, we

assume the prover to be honest. This permits us to simplify our reference distance-

bounding protocol (cfr. Section 4.2). In particular we use a single channel in a half-

duplex fashion.

Flury et al. [22] and, more in depth, Poturalski et al. [46] analyze the PHY-protocol

attacks against impulse-radio ultra-wideband ranging protocols (IR-UWB), with partic-

ular attention to 802.15.4a [50], which is the de facto standard. These studies concen-

trate only on reduction attacks, and estimate their effectiveness in terms of meters of

distance reduction. We instead focus on the opposite problem, distance enlargement,

which requires different countermeasures.

Chiang et al. [10] proposed the first technique able to mitigate the enlargement

attack in case of dishonest prover. The verifier makes two power measurements of the

prover’s signal on two collinear antennas. Subsequently, it computes the difference

of the two measurements. Given the standard path-loss model, if the difference is

low, the signal source will be far away. Otherwise it will be near. The idea is that the

adversary cannot modify the way the signal attenuates over the distance, thus the

distance estimation is trusted. Obviously such proposal relies on the standard path-

loss model, which is poorly reliable. The authors claim that if the path loss exponent

varies between 2 and 4, an enlargement of more than twice the measured distance

is impossible. In this work, we focus on external adversaries. The problem of distance

enlargement in presence of internal ones is challenging as well, but falls outside our

present scope.
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4.2 Reference Distance-Bounding Protocol

A distance-bounding protocol allows a verifier (V) to “measure” the distance of a

prover (P). In its basic form, a distance-bounding protocol consists in a sequence of

single-bit challenge-response rounds [6]. In each round, the verifier sends a challenge

bit to the prover that replies immediately with a response bit. The round-trip time en-

ables V to compute an upper-bound of the P distance. Then, the distance is averaged

on all rounds. Many variants of distance-bounding protocols have been proposed

in the literature [7, 41, 53, 26]. Here, we establish a reference distance-bounding

protocol, similar to those described in [46] for external adversaries. It involves a re-

quest message (REQ) from the verifier, an acknowledgment message (ACK) from

the prover, and a final signature message (SGN) from the prover. Such a reference

protocol is vulnerable to jam-and-replay attacks, as we will show in Section 4.3, and

SecDEv (cfr. Section 4.4) will overcome these vulnerabilities.

The request and the acknowledgement convey, respectively, a and b, which are

two independent, random and unpredictable sequences of bits. Note that, differently

from the original version of distance-bounding protocol, the request and the acknowl-

edgement are frames, rather than single bits. In fact, it is hard to transmit single bits

over an IR-UWB channel. This is due to TLC regulation, which poses strict limits to

the transmission power. In 802.15.4a [50], for example, every packet is preceded by

a multi-bit synchronization preamble. The signature authenticates the acknowledge-

ment and the request by means of a shared secret S. What follows is a formal de-

scription of the protocol.

REQ V −→ P : a

ACK P −→ V : b

SGN P −→ V : HS(a, b)

The quantities a, b andHS(·) are k-bit long. Therefore, the probability for an adversary

to successfully guess one of these quantities is 2−k. Such a probability gets negligible

for a sufficiently large value of k, which we call the security parameter.

The verifier measures the distance between itself and the prover, by measuring

the round-trip time T̂ between the request and the acknowledgement messages. With

reference to Fig. 4.1, we denote by tstart the instant when the transmission of REQ

begins, and by tend the instant when the reception of ACK ends. We denote by Te the

time interval from the end of REQ reception, to the beginning of ACK transmission.

Since ACK does not depend on REQ, Te does not include any elaboration time. It

includes only the time for the antenna to switch from the receive mode to the transmit

mode and the necessary hardware delays. We assume Te to be small and known.

Dedicated hardware can fulfill these requirements. We further denote by Tpkt the
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Figure 4.1. Round-trip time.

transmission time of the request and acknowledgement messages, and with Tp their

propagation time in the medium. The round-trip time will be:

T̂ = 2Tp = (tend − tstart)− 2Tpkt − Te

Finally, we obtain a measure of the distance:

d̂ =
c · T̂
2

where c is the speed of light.

The distance measurement precision depends on the capability of measuring the

time interval with nanosecond precision. Localization systems based on IR-UWB can

achieve nanosecond precision of measured time of flight, and consequently a dis-

tance estimation with an uncertainty of 30 cm. Also, this feature of time precision are

available only with dedicated hardware.

IR-UWB protocols like 802.15.4a provides packets made up of two parts: a pream-

ble and a payload. The preamble permits the receiver to synchronize to the transmitter

and to precisely measure the time of arrival of the packet. The payload carries the in-

formation bits. In our protocol, a and b are transmitted in the payload part. We suppose

the last part of the payload to carry a forward error correction code (FEC), for example

some CRC bits.

In a non-adversarial scenario, the actual distance d will be equal to the measured

distance d̂. To deceive the measurement process, the adversary has to bring the

verifier to measure a fake round-trip time. That is, she must act in a way that the

verifier receives the acknowledgement at a different instant of time, while still receiving

the correct signature. The basic idea of distance-bounding protocol is that an external

adversary cannot deliver a copy of the legitimate acknowledgement before than the

legitimate one.
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On the other hand, she can deliver a copy of the acknowledgement after the legit-

imate one. In other words, she can only enlarge the measured distance, not reduce

it. Thus, we are always sure that d ≤ d̂, i.e., the measured distance is a secure upper

bound for the actual distance.

4.3 Threat Model

We assume that the adversary (M) is an external agent, meaning that she does not

know the shared secret (S) ant it cannot be stolen. Techniques like trusted hardware

and remote attestation can help defending against these possibilities [41, 28]. The

objective of M is to deceive the verifier into measuring an enlarged round-trip time:

T̂ = 2Tp +∆T (4.1)

in order to make it infer an enlarged measured distance:

d̂ =
c · T̂
2

= d+
c ·∆T

2

We do not deal with distance reduction attacks. Since our protocol is an enhance-

ment of the reference distance-bounding protocol of Section 4.2, it offers the same

guarantees against distance reduction attacks.

4.3.1 Adversary’s Capabilities

M can eavesdrop, transmit or jam any signal in the wireless channel. The principle

of a jammer [63] is to generate a radio noise at a power comparable or higher than

the legitimate one. In case of IR-UWB channels, a jammer could send periodic UWB

pulses, in such a way to disrupt the synchronization process [45]. Alternatively, she

could simply send random pulses in the payload part, in such a way the receiver

discards the packet as corrupted after the FEC test. In both cases, the goal of the

jammer is to disrupt the reception of the message.

M can transmit or jam selectively, in such a way that only a target node receives.

In the meanwhile, M can correctly eavesdrop other signals. To do this, she can place

a transmitting device nearby the receiver, and a listening one nearby the transmitter.

Alternatively, she can use a single device with two directional antennas. One of them

transmits to the receiver, while the other listens to the transmitter.

Another possibility is the overshadowing attack. In this attack, M injects a fake

signal with higher power than the original one. The original signal becomes entirely
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Figure 4.2. Jam-and-replay on ACK.

overshadowed by the attacker’s signal. Ideally, original signal is treated as noise by

the receiver. In this paper, we do not deal with this attack, and we focus only with

jam-and-replay attacks. The overshadowing attack is indeed interesting and deserves

a full analysis, that we are planning to do in future work. Here we only points out that

it is not simple to be performed in a real-world IR-UWB protocol. In fact, the verifier

does not receive only the fake signal, but the legitimate signal too. Even if the former

is much stronger in power, the latter is still a valid IR-UWB signal which interferes

with the packet synchronization and reception. Sending an overshadowing signal is

probably not enough. The adversary should also attenuate the legitimate signal with

some complementary technique, such as electro-magnetic shields or similar.

We assume that M has no physical access to the prover or the verifier. This has

two consequences: (i) she cannot tamper with the nodes and steal their secret ma-

terial, and (ii) she cannot attenuate the wireless signals with electro-magnetic shields

or Faraday cages.

4.3.2 Jam-and-Replay Attacks

In the distance-bounding protocol of Section 4.2, the adversary can enlarge the mea-

sured round-trip time in the following way (Fig. 4.2).

1. M listens to the radio channel, until she hears a REQ signal.

2. M waits for the ACK signal.

3. M jams the ACK signal and eavesdrop it in the meanwhile.

4. After a time ∆T , M replays it.

The adversary must replay the ACK signal selectively, in such a way that only the

verifier receives it. Otherwise, the prover will also receive the replayed signal, and

could infer that the protocol is under attack.
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Figure 4.3. Jam-and-replay on REQ.

It is important to highlight that M has to wait for the legitimate ACK to end, before

starting the transmission. This is because she must avoid signal collision.

The adversary can perform a similar attack on the REQ signal (Fig. 4.3). Even in

this case, M has to wait for the end of the legitimate REQ before starting her trans-

mission.

We state the following:

Proposition 1. In a jam-and-replay attack on REQ/ACK, the adversary must enlarge

the round-trip time of a quantity ∆T not smaller than Tpkt, i.e., ∆T ≥ Tpkt.

Proposition 1 represents the fundamental limitation of the jam-and-replay attacks.

SecDEv will leverage on this to withstand them. Note that this limitation comes from

the properties of the radio-frequency channel, and does not depend on how many

devices the adversary controls. For the sake of simplicity, Figures 4.2 and 4.3 show a

single adversary.

4.4 SecDEv Protocol

SecDEv is a distance-bounding protocol, which measures the correct distance be-

tween a verifier V and a prover P in presence of an adversary M performing a jam-

and-replay attack. It is similar to the reference distance-bounding protocol (cfr. Sec-

tion 4.2), except that the length of REQ and ACK do not depend only on the security

parameter, but also on a security horizon.

Let us consider the Equation 4.1 for a general enlargement attack and apply the

Proposition 1, we obtain the constraint T̂ ≥ 2Tp + Tpkt. Hence:
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Symbol: Description:
V Verifier node
P Prover node
M Adversary
a REQ’s random bit sequence
b ACK’s random bit sequence
S Secret material shared between V and P
k Security parameter

Npad Number of padding bits in REQ and ACK
Nfec Number of FEC bits in REQ and ACK
HS(·) Message authentication code of key S
Rpld Transmission bit rate of the payload part
tstart Time instant of REQ’s transmission start
tend Time instant of ACK’s reception end
T̂ Measured round-trip time between REQ and ACK
Tpre Transmission time of the preamble part of REQ and ACK
Tpkt Total transmission time of REQ and ACK
Tp Propagation time between V and P
Te Response time of V
∆T Round-trip time enlargement caused by M
d Distance between V and P

d̂ Measured distance between V and P
dM Security horizon
c Speed of light

Table 4.1. Summary of the notation.

T̂ ≥ Tpkt (4.2)

Equation 4.2 assures us that a measured round-trip time smaller than Tpkt has

not been affected by any jam-and-replay attack. We can translate Tpkt in a distance

dM , that we call security horizon:

dM ,
cTpkt
2

In terms of distances, Equation 4.2 becomes:

d̂ ≥ dM (4.3)

Equation 4.3 is our test to distinguish between trusted and untrusted distance

measurements. V can extend the packet transmission time to enlarge the security

horizon (cfr. Eq. 4.3), in order to securely measure longer distances. Tpkt is enlarged

by introducing padding bits after the nonce, as shown in Figure 4.4. Padding bits
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Figure 4.4. SecDEv packet format (REQ and ACK).

have not to be unpredictable. They can have a well-known value (e.g. all zeros), since

they serves only to prolong the packet transmission time. V decides on the length of

the REQ padding, and P has to respond with the same padding length in the ACK.

Therefore, both messages have the same length, to withstand both jam-and-replay on

REQ and on ACK.

Let us explain the protocol in detail. We assume that the wireless channel is char-

acterized by the parameter tuple: {Tpre, Rpld, Te}. Tpre is the transmission time of

the preamble part. Rpld is the bit rate of the payload part. Te is the reaction time of

the prover node. In addition, we define the following triplet of protocol parameters:

{k, S, dM}. k is the security parameter. A higher value for k implies a higher security

level, but has an impact on power consumption, as we will see in the following. S is a

secret bit sequence shared between V and P. Its length is longer than or equal to k.

dM is the security horizon that distinguishes between trusted and untrusted measured

distances. If the actual distance d is longer than dM , the measured distance cannot

be trusted because it may be affected by a jam-and-replay attack. In such a case, the

protocol can be executed again with a longer dM . Alternatively, the distance d can

be first estimated in an insecure manner, and then securely confirmed with dM > d.

A higher value for dM allows us to measure longer distances, but has an impact on

power consumption.

We further define the following quantities. Npad and Nfec are respectively the

number of bits of the padding and the FEC code. Since the number of bits of a and b

is k, the total transmission time will be:

Tpkt = Tpre + (k +Npad +Nfec)/Rpld

If with Npad = 0, the Tpkt identifies the minimum value of dM . Thus, if the actual

distance is smaller than this value, there is not need of padding bits. Otherwise, we

determine Npad with the following formula:

Npad =

⌈(
2dM
c
− Tpre

)
·Rpld

⌉
− k −Nfec (4.4)
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Figure 4.5. SecDEv algorithm.

Using the Equation 4.4, we can set every value of dM . Note that Tpkt grows with

dM . A larger security horizon causes longer messages, accordingly higher energy

consumptions per protocol execution. An implementer must choose dM as a trade-off

between ranging capabilities and power consumption.

Figure 4.5 shows the algorithm executed by V. After the protocol execution, V

tests whether the measured distance is within the security horizon, that is, if d̂ < dM .

If this test fails, the measured distance is discarded as untrusted. Then, V tests the

length of the ACK padding. If it contains less bits than the REQ one, the measured

distance is discarded as untrusted. This is to avoid a jam-and-replay attack on REQ

(cfr. Fig. 4.3), in which M tries to lower ∆T by replaying REQ with a smaller padding.

In such a case, P will respond with an ACK with a smaller padding too, and the attack

will not pass the padding length test. Finally, V tests the validity of the cryptographic

signature.
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Figure 4.6. Coverage area difference (regular triangle deployment).

4.5 Experimental Results

We combined SecDEv with multilateration technique to securely localize the prover.

We analyzed the efficiency of this solution in terms of covered area and we compared

it with verifiable multilateration [60], which is the state-of-the-art technique for secure

positioning in wireless networks. Verifiable multilateration involves at least three dis-

tance measurements from different verifiers. The distance measurements are per-

formed by means of distance bounding protocols, which are supposed to withstand

reduction attacks. Verifiable multilateration deals with possible enlargement attacks by

forcing an additional check to the final position estimation. In order to be trusted, the

position must be inside the polygon formed by the verifiers, otherwise it is discarded

as untrusted. Intuitively, this reduces the coverage area of the positioning technique.

Figure 4.6 shows the coverage area of verifiable multilateration (in dark grey) and

the additional area covered by classic multilateration (in light gray). The verifiers are

deployed as a regular triangle’s vertices with circular coverage areas and coverage

radius equal to the triangle’s side, which is the optimal configuration for verifiable

multilateration [60]. In Figure 4.6, the coverage improvement of classic multilateration

is about 62%. Such an improvement gets even better in Figure 4.7 where the verifiers

are deployed randomly.

The following theorem states that, with a generic verifier configuration, the cov-

erage area of classic multilateration is always a superset of the coverage area of

verifiable multilateration.
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Figure 4.7. Coverage area difference (random deployment).

Theorem 1. Given a set of distinct positions {Xi : i ≤ N}, where Xi is the position

of the i-th verifier, let us call CM the coverage area of classic multilateration, and VM

the coverage area of verifiable multilateration. Then, VM ⊆ CM .

Proof. Let us call R(Xi) the coverage area, of the generic verifier Xi. A point is

covered by multilateration if and only if it is covered by at least three verifiers. Thus,

the total coverage area would be the union of the coverage areas of all the possible

triplets of verifiers. Let us consider {Xi, Xj , Xk}, that is a generic triplet of verifiers.

The coverage area of such a triplet with classic multilateration will be:

CMi,j,k = R(Xi) ∩R(Xj) ∩R(Xk)

Using verifiable multilateration, a prover has to lie inside the verifiers’ triangle in order

to be correctly localized. Thus, the coverage area of the same triplet with verifiable

multilateration will be:

VMi,j,k = CMi,j,k ∩ T (Xi, Xj , Xk)

where T (Xi, Xj , Xk) is the triangular area having the three verifiers as vertices. The

total coverage areas with both techniques will be:

CM =
⋃
i,j,k

CMi,j,k

VM =
⋃
i,j,k

VMi,j,k

Since VMi,j,k ⊆ CMi,j,k for each verifier triplet, then:
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Figure 4.8. Coverage area difference.

VM ⊆ CM

ut

Figure 4.8 shows the coverage area difference with a random distribution of 30

verifiers. The crosses are positions of the verifiers. The dark area is the coverage

of verifiable multilateration. The light area is the additional coverage offered by clas-

sic multilateration. In other words, classic multilateration is more scalable in terms of

number of verifiers needed to cover a specific area. To quantify this, we have tested

the performance of classic multilateration in terms of number of verifiers needed to

cover a working area, and we have compared our results with those of verifiable mul-
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Figure 4.9. Verifiers required to cover an area.

tilateration, taken from [60]. We supposed that every verifier covers a circular area

with radius 250m.

We neglect planned distributions [60], because in a real deployment, environment

may impose constraints on the verifier positioning. Thus, we consider that the verifiers

are uniformly distributed over the area of interest.

In order to evaluate the two techniques under the same conditions, our simulation

were performed on areas of variable sizes. The verifiers were uniformly distributed in

the area and in a boundary region outside the area, whose width was 10% of the area

width. We use the boundary region to avoid the boundary effects [60] in the verifiable

multilateration.

Figure 4.9 shows how many verifiers are required to cover 95% and 90% of the

working area. VM and CM curves are respectively verifiable multilateration and clas-

sic multilateration. The number of verifiers is the average of 100 simulations with con-

fidence intervals of 95% calculated for different values of working area from 0.5km2

to 4km2. The chart shows that classic trilateration needs far less verifiers, because it

has not the limitation of the verification triangles. This gives strong motivation to fight

distance enlargement attacks.
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Conclusion

In this dissertation, we have faced three security issues which affect the mobile net-

works: privacy, reliability and secure localization.

We have shown the importance of the privacy in the communication and how it

can be achieved by means of the cryptography. As a consequence, it raises the key

management issue. Thus, we have presented and analyzed Multi-Group Logical Key

Hierarchy, a new centralized and scalable rekeying scheme that guarantees backward

and forward security in a multi-group environment, such as a mobile network where

subgroups are formed according devices’ features and the membership changes dy-

namically. Our scheme is based on a hybrid approach that combines a logical key

tree structure and a logical key star structure. Our simulation showed that MG-LKH

improves significantly the communication cost, about one order of magnitude, as com-

pared with the traditional approaches. It means that with the same resources, the sys-

tem can manage more users or provide more services. Unlike traditional solutions,

our scheme has storage, computation and communication requirements that scale in

both the group size and number of sub-groups.

The privacy of the communication is not enough if the communication medium is

unreliable. We have proposed NMP, a protocol for reliably monitoring the neighbor-

hood of mobile network of AGVs in a industrial system. We have discussed a case-

study related to the application of NMP to a challenging collision avoidance algorithm

(GRP). Early simulations have shown that NMP is accurate, efficient and scalable

due to its efficient use of the wireless medium that takes it to operate very far from the

wireless channel saturation zone.

In a mobile network, the localization capability is not trivial and many widespread

localization systems have security weaknesses in presence of an adversary. We have

proposed SecDEv (SECure Distance EValuation), a distance-bounding protocol able

to resist to enlargement attacks based on jam-and-replay tactics. SecDEv exploits
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the characteristics of wireless signals to establish a security horizon within which any

adversarial attempt to play a jam-and-replay attack is detected. We also showed how

SecDEv improves the scalability of secure positioning techniques in terms of number

of anchor nodes.
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