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Abstract 

Chapter 1. General introduction  

Chapter One reports on a review of sustainable biocomposite materials. The concepts on 

sustainable materials, renewable resources, biopolymers, biocomposites, are summarized from the 

literatures as background theories for this thesis. The situation of plastic materials and its effects on the 

environment, health, disposal matter (landfills, incinerations, mechanical and biorecycling) are defined to 

explain why the applications of biopolymers and biocomposites are necessary for research and industry. 

Current applications and the market of biopolymers, biofibers, and biocomposite materials are reported 

and analyzed. The availability of current biofibers or natural fibers on the market are listed and compared 

with mechanical properties and their economic value as oppose to non-biodegradable materials such as 

glass, carbon fibers, etc. Moreover, biopolymer and bio-based materials are being developed not only on 

quantity, but also for the quality of materials. In addition to this, their prices are getting cheaper. 

Therefore, biocomposites will become potential materials for diversified applications in the future. The 

investigation into current research and applications of biopolymer and biocomposites are essential to find 

new research directions for this thesis and its application to develop new materials that have high 

mechanical and thermo resistance and biodegradability. Specially, some new tendencies and new 

challenges found in the development of biopolymer-like celluluse diacetate, polylactic acid, starch and 

biocomposites are discussed. Consequently, not only the research presented in this thesis has been 

focused on industrial application, but also on the solution of some critical environmental problem. 

Chapter 2. “Green” biocomposites based on cellulose diacetate and regenerated cellulose 

microfibers: Effect of plasticizer content on morphology and mechanical properties 

In Chapter Two, The mechanical properties of biocomposites based on CDA considered in the 

literature are still not satisfactory in view of their possible applications, and the use types of processing 

are not economically viable on an industrial scale. In particular, the thermal characteristics of the 

materials developed and their matrix-filler interactions were not much investigated. So far, there are no 
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publications about the effects of multi plasticizers on physical properties, thermal stability and 

morphology of cellulose diacetate/cellulose fibers composites under melt processing. Since both the 

cellulose diacetate and Lyocell fibers can be produced from renewable forest biomass, their 

manufacturing does not imply any competition for land and water required for food production. From that 

reasons, a new processing method was developed for cellulose diacetate (CDA) based biocomposites by 

melt processing. The new strategy developed in this work makes use of two different plasticizers: a 

primary “external-type” or “non-reactive-type” plasticizer, Triacetin (TA), added prior to extrusion to 

enhance the “processing window” of the polymer and a secondary “internal-type” or “reactive-type”, 

Glycerin Polyglycidyl Ether (GPE), added during the extrusion step to reduce the amount of potential 

volatiles or leachable products in the final product and to help in the reduction of viscosity and thus 

further improving processability. The thermo-mechanical properties and the morphology of 

biocomposites with Lyocell microfibers, other wood based fillers, which are typically considered as a 

reference to produce “green” biocomposites from natural resources, have been analyzed. 

Chapter 3. Compatibilization of Poly(lactic acid)/ Polycarbonate blends through reactive blending 

and in-situ copolymer formation. 

To diversify the biopolymers from different resources and combine them with recyclable polymers 

from oil, we developed new biodegradable copolymers based on Polylactic acid and aromatic 

polycarbonates through a process of reactive blending in the molten state by the presence of a multi-

catalyst. Maintaining the mechanical properties of materials at high temperatures are preferably suitable 

for the production of materials for different industrial sectors such as transportation, electronics and the 

electrical equipment industry. Polylactic acid is currently the most used biopolymer, but the materials 

produced with it are brittle and have low thermo resistance. To extend the functional ability of PLA to 

different applications such as electric components, food trays, car components, etc.  The melting blends of 

Polylactic acid (PLA) and Polycarbonate bisphenol A (PC) prepared in different temperatures are 

investigated for the mechanical properties, thermo resistance and morphology. The blends show phase 

separation; the adhesion between two phases of polymers are poor due to high surface tension of each 
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components. The multi-catalyst (tetrabutylammonium tetraphenylborate-TBATBP and Tricaetin-TA) is 

added to increase the interaction between the two phases in order to enhance the mechanical properties 

and thermo resistance of materials. The dynamic mechanical thermal analysis test shows a new peak in 

tan δ that does not occur in the blends with a catalyst. This new peak appears at a temperature Tgp lower 

than the Tg of PC and higher than the Tg of PLA. This aspect is related to the presence of PC-blocks in the 

copolymer. The tensile, thermogravimetric Analysis (TGA), differential scanning calorimetry (DSC), 

scanning electron microscopy (SEM), transmission electron microscope (TEM) and aerobic 

biodegradability tests confirmed that the copolymer was formulated under the action of catalysts. 

However, the Size Exclusion Chromatography (SEC), Nuclear magnetic resonance (NMR) and Fourier 

Transform Infrared Spectroscopy (FITR) do not show direct evidence of a change in the materials’ 

structure due to similar polar function groups of PLA and PC. The new copolymer has been investigated 

regarding its mechanical properties, morphology, thermal properties and biodegradation behavior to 

satisfy the understanding of all the properties of these potential materials, which will serve for broadening 

the application of bio- and biobase-polymers on the market. Moreover, it will be used as a matrix for 

biocomposites with required high mechanical properties and thermo resistance. 

Chapter 4. Biocomposites based on Poly(lactic acid)-graft-Polycarbonate bisphenol A copolymers 

and regenerated cellulose microfibers. 

After the development of a copolymer matrix with high mechanical properties and thermal 

resistance, in this chapter we move back to our main focus to develop bio-base composite materials. The 

blended Polylactic acid (PLA)/ polycarbonate bisphenol A (PC) copolymer and Lyocell fibers with 

different fiber contents and investigated the composites in terms of their mechanical properties, thermo 

resistance and relaxation structure, which are shown in Chapter Four. On the physical mixing, the 

adhesion between two phases of polymers and the interaction between the fibers and matrix are poor. 

Therefore, not only do the Lyocell fibers reduce the thermo resistance of composites, but they also 

decrease the elongation at break of materials. However, the presence of multi-catalysts not only 

formulates a new copolymer, but also increases the interaction between the fibers and polymer matrix, 
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therefore counterbalancing the negative properties of the PLA/PC/Ly composites. The in-situ-

transesterification reaction of the polymer during melt-blending which enables to obtain the reaction 

between the ester group of the polylacti acid and the hydroxyl function of cellulose fibers. Exploiting 

catalysts for formulating copolymers to increase the interaction between fibers and the matrix can open 

new methods for producing biocomposites. 

Chapter 5. Analysis on the influence of interface interactions on the mechanical properties of 

nanofiller- and short fiber- reinforced polymer composites 

Chapter Five developed a new method to estimate the interface shear strength of the fiber and 

polymer matrix. The Pukánszky's model for tensile strength, originally developed for filled composites, 

has been recently used with success for short fiber-reinforced composites and various nanocomposites, 

although no theoretical justification has been provided so far for this new use. Despite its simplicity and 

widespread use to characterize nanoparticle- and short fiber-reinforced composites, the adimensional 

Pukánszky interaction parameter B-factor is not related to physical-mechanical parameters such as the 

interfacial shear strength, τ, and other experimental variables such as the filler aspect ratio (ar) and 

orientation factor. 

 In this thesis Pukanszky’s equation has been analyzed in terms of the Kelly-Tyson model for the 

prediction of composite strength. In this way it was possible to establish a direct link between 

Pukanszky’s interaction parameter B and fundamental material parameters such as tensile strengths of the 

matrix and of the fibers, the aspect ratio of the fibers, and the orientation factor and the interfacial shear 

strength IFSS. It was also possible to determine the minimum value of B for which it is possible to predict 

the tensile strength of the composite from the modified rule of mixtures, as well the maximum value that 

B can achieve in the case of continuous aligned fibers with the same type of matrix, fibers and interface 

shear strength. Moreover, a critical volume fraction, φcrit, was defined corresponding to the minimum 

amount of filler content necessary for the composite strength to be greater than the strength of the 

unreinforced matrix, i.e. corresponding to the case σc=σm. It was also shown that for this condition Bcrit≅3. 
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From this analysis it was possible to express the interfacial shear strength in terms of B and other 

material parameters, Eq. (13). From such equation, it is possible to verify the monotonical relation 

between B and IFSS that has been suggested previously in the literature. 

A few examples of calculations of the IFSS, τ , from Pukánszky’s interaction factor B have been 

provided, using published literature values relating to nanocomposites with organically modified 

nanoclays and carbon nanotubes, as well as composites reinforced with short natural fibers. All results 

obtained fall within the value expected from similar literature values and below the maximum predicted 

according to the von Mises criterion, � = ��/√3.  

The new equations presented in this work provide a theoretical basis for the use of Pukánszky’s 

model in the case of nanocomposites and discontinuous fiber composites. Compared to the traditional 

Kelly-Tyson approach, the interaction factor B enables to give a rapid estimate of the interface shear 

strength even when fundamental material constants such as fiber tensile strength, aspect ratio and 

orientation factor as well as the stress in the matrix when the composites breaks, cannot be simply 

evaluated. This new approach can therefore be appreciated in research and in the development of new 

composites in industrial environments. 

Chapter 6. General conclusions 

In the final chapter the results of the thesis will be compared with original aims of this research and 

the new materials developed will be evaluated. The advantages and disadvantages of each biopolymer and 

biocomposite produced will be summarized, based on their mechanical properties, thermal resistance, and 

morphology. From this viewpoint, some of the materials will be developed on an industrial scale for the 

production of "green composites" with a pilot extrusion machine. The results of this thesis could not only 

be applied to Italian plastic companies but to the whole European bioplastic industry,and in general to all 

enterprises active in the most advanced countries of the  world . 
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I.  PLASTICS AND SUSTAINABILITY: CURRENT ISSUES AND OPEN PROBLEMS 

Today, plastic materials are widely used due to their diversity in terms of type, properties, and their 

applications in our daily lives. In fact, plastic materials are the first choice for the production of almost all 

components because they are durable, light, safe, chemical and water resistant, easy to process and are 

cost effective. Regarding industry, plastic materials can be applied in packaging (37%), construction 

(20.6%), automobile manufacturing (7.5%), electronic devices (5.6%), as well as in other applications 

(27.3%). This wide range of application has lead to a sudden increase in their development in recent 

years, not only in technology advancement, but also in the sheer quantity of production. According to the 

European plastic market organization report, the amount of plastics production has increased more than 

five hundred percent from 1976 to 2010 [1].  

Despite these positive aspects, more than 90% of plastic or polymer materials available in the 

market are produced from oil. As the use of plastics increases, the number of oil fields necessary to meet 

this demand is insufficient. Moreover, the polymer is durable and has a high molecule weight, leading to a 

long lifetime on land and sea for hundreds of years. In addition, the production and degradation process of 

plastic can produce large quantities of carbon dioxide and toxic gas, adding to the greenhouse effect and 

therefore contributing to worldwide climate change [2-3]. 

To summarize the positive and negative effects that plastics have on the environment, the European 

Union has released some framework conditions for plastics expressed in Europe [1,4]. 
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 Policy Framework Legal framework 

 
* General Polices 

- Sustainable Resource Strategy: 

            + Promotion of energy efficient 
production 

            + Resource use: promote recovery 
            + and recycling (landfill no future 
option), drive use of Recycling and 
Resource Management (RRM - “low 
carbon economy”) 

      - EU Integrated Product Policy: 

            + Conception of products with the 
highest possible degree of sustainability – 
from the cradle to the grave 

      - Sustainable Industrial product policy 
(SIP) 

 

* Specific Initiatives on European Level 

      - Green paper on market-based 
instruments for environmental technologies 

           + Discusses / proposes measures like 
labeling, eco-taxes, CO2 -trading, VAT, 
standardization, PR campaigns 
      - Sustainable Industrial Policy on bio-
based products 
           +Lead Markets Initiative for bio-
based products 
           +EU Policy Leaders Browne and 
Sarkozy proposal of VAT Reduction (5% in 
EU) 

 

*  European Packaging 

*  Packaging Waste Directive 

    - Allow composting of packaging 

*  Germany 

   - Germany Packaging Ordinance: Regulation 
of compostable plastic packaging 

   - Certificate biopackaging will be exempted 
from recycling obligation until 2012. Value is 
€ 0.5-0.8 for bioplastic. 

   - Exemption planned of deposit for beverage 
bottles with > 75% RRM until 2012. Supported 
by Coca Cola. 

*  France: Law on Agriculture includes 
mandatory use of disposable retail carry bags, 
cotton buds and waste bags by 2012 
(challenged by European Commission - 
therefore pending) 

* Italy: Intended mandatory bio-degradable 
bags from 2009 pending (Challenged by EC) 

*UK/ Austria/ Cities: Looking for specific 
recycling solutions and look for biodegradable 
packaging. 

* Netherlands: Subsidies from Ministry of 
Environment for bringing down cost of 
compostable packaging; taxation of fossil-
based polymers 

* Belgium: Compostable bags exempted from 
packaging tax pending. Value of € 0.3/kg 
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In the analysis of the policy and legal framework for plastic production and its applications, two 

main tendencies emerge that regard both the plastics industry and the plastics market. 

 -  Recycling plastic materials 

 - Using renewable resources or sustainable materials to produce bioplastics, which are 

biodegradable, bio-based, compostable, and fast arriving in new applications 

 

II.  PLASTIC RECYCLING  

Manufacturing plastics requires large quantities of energy, labor, natural resources, water and 

harmful chemicals, which can strongly effect the environment and human health. They are also are 

durable and persist for long periods of time, therefore greatly affecting the environment. The Association 

of Plastic Manufactures in Europe has concluded that 1.8 tons of oil are saved for every ton of recycled 

polyethylene produced [5]. Recycling plastic also reduces energy consumption, reduces the amount of 

solid waste going to the landfill and helps reduce the greenhouse effect, along with saving precious 

natural resources. 

 

 

Figure 1. Life cycle of plastic materials [6] 
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 Despite the positive effects of recycling plastics, many applications do not utilize pristine 

polymers such as trays, pots, toys, electric components, and house construction components, impacting 

the development of the plastic recycling industry and market. Several polymers can be recycled such as 

low density polyethylene (LDPE), high-density polyethylene (HDPE) , polypropylene (PP), PVC 

(Polyvinyl chloride), , polystyrene (PS)  and polyethylene terephthalate (PET) , from bottles, trays, film, 

tubes, shopping bags, as well as polycarbonate of bisphenol A (PC), and acrylonitrile butadiene styrene 

copolymer (ABS) from electric components, cups, and toys [6-7].   

 

III.  CONCEPT OF SUSTAINABLE BIO-BASED MATERIALS 

3.1  Renewable resources. 

Until now, this concept has not been defined officially in scientific terms. The definition of 

“renewable resources” according to Wikipedia is a “natural resource (such as wood or solar energy) that 

can be replenished naturally with the passage of time, either through biological reproduction or other 

naturally recurring processes” [8].  

 In terms of plastic materials, only those polymers that are produced from renewable resources, 

natural renewable energy, agriculture resources such as cellulose, corn, starch, natural sugar, or those 

resources that can be re-produced from nature can be called a biopolymer or a bioplastic. Conversely, 

almost all plastics are produced from petroleum. Following the definition of the European Bioplastic 

Organization, bioplastics can be bio-based, biodegradable or both [9]. 

3.2  Bio-based materials 

The American Society for Testing and Materials (ASTM) defined a bio-based material as “an 

organic material in which carbon is derived from a renewable resource. A commodity or resource that is 

inexhaustible or replaceable by new growth) via biological process (ASTM D6866) [10]”. The product 

must be produced 100% from natural resources, but is not necessarily biodegradable or compostable. 
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 As of now, bioplastics do not have many advantageous properties, as compared to the polymers 

from oil, because it is a new field in research and development. However, they present several benefits 

that are environmentally friendly, for example: 

 + They need less time to break down after being discarded, so that means there will no longer be 

tons of plastic dominating our landfills; 

 +They are produced from renewable resources, so the bioplastics will be easy to renew or recycle 

because they were produced from biomass, or also animal fats, meats or other tissues; 

 + They are good for the environment because there is no harm done to the earth when recovering 

fossil fuels. Also, in this process there are very few greenhouse gasses and harmful carbon emissions, 

thereby decreasing the greenhouse effect. Moreover, bioplastic production needs less energy and few 

harmful chemicals [11-16]. 

3.3  Biodegradable plastics 

Similar to bio-based plastics, a biodegradable plastic was defined by the American Society for 

Testing and Materials as “a degradable plastic in which the degradation results from the action of 

naturally occurring microorganisms such as bacteria, fungi, and algae. Biodegradable plastics must 

biodegrade in specific environments such as soil, compost, or marine environments (ASTM D6866)” [10]. 

Biodegradable plastics can be made from oil or natural resources; it is not important where the materials 

come from, they need only to meet the requirements defined above. 

3.4  Compostable plastics 

“ A plastic that degrades by biological processes during composting to yield CO2, water, inorganic 

compounds and biomass at a rate consistent with other known compostable materials and leaves no 

visible, distinguishable or toxic residues. Toxic residues important for compost quality include heavy 

metal content and serotoxins (ASTM D6400) [17]”  

3.5  Main types of Bioplastics and Applications [18-21] 
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Biodegradable/ compostable Name Application 

Synthetic Polyesters 
(BASF, Mitsubishi, etc.) 

polybutyleneadipate/ 

terephthalate (PBAT), 
polysuccinate (PSN), 
polybutylene succinate adipate 
(PBSA),  

Films, toughening agents for 
brittle biopolymers, bottles, 
etc. 

Biodegradable/ compostable 
and Bio-based 

Name Application 

NatureWorks, Purac/ Synbra, 
Futerro, Sidaplax, etc 

Polylactic acid (PLLA, PDLA) Rigid containers, film, barrier 
coating, cosmetic covers, etc. 

Novamont, Sphere-Biotec, 
Plastic, etc 

Starch based materials 
Loose fill, bags, films, trays, 
wrap films, etc 

Innovia, Acetati, etc 
Cellulose based materials, 
Cellulose diacetate (CDA), etc 

Glass components, helmets, 
car components, food trays, 
etc 

BASF, FKUR, etc PLA compounds/blends Films, tomato clips, tree-pots, 
etc. 

Metabolix,, KaneKa, Biomer, 
etc, 

Polyhydroxyalkanoate (PHA), 
polyhydroxybutyrate (PHB), 
polyhydroxyhexanoate (PHH) 

Films, barrier coatings, 
medicines, trays, etc. 

Bio-based Name Application 

Dupont 

Bio-PDO based polymers, 1,3 
propanediol (PDO), DuPont 
Sorona, DuPont Cerenol 

Textile Fibers, Automotive 
Refinishing, etc. 

Braskem, DOW PE, PP from Bioethanol 
Cups, food trays, films, 
medicines, food packaging, 
beverage bottles, etc. 

Solvin PVC from Bioethanol Pipes, etc. 

Arkema, BASF, etc. Polyamides PA 6.6.9/6.10 Car components, bumpers, 
electric components, etc. 

 

Table1. Several types of bioplastics and their applications. 
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3.6  Sustainable materials 

Similar to the concept of renewable resources, a consensus definition for sustainable materials does 

not yet exist. According to Mohanty et al. [22], a sustainable, bio-based product is defined as “a bio-

based product derived from renewable resources having recycling capability and triggered biodegrability 

with commercial viability and environmental acceptability” . 

 Furthermore, in terms of polymers, the Institute for Local Self-Reliance and European Plastic 

Organization [5-23] established that “a sustainable polymer is a plastic material that addresses the needs 

of consumers without damaging environment, health, and economy. Feedstock for the production of 

sustainable plastics must be renewable, such as plants, with preference to the use of by products or over 

production. Synthesis, production and processing of sustainable polymers should use less net water and 

non-renewable energy, emit less greenhouse gases and have a smaller carbon-footprint than their non-

sustainable counterparts, while still being economically viable.” 

 

 

 

 

 

 

 

 

Figure 2. Concept of "sustainable" bio-based product by Mohanty et al. [22]. 

According to the definitions above, biopolymers or polymers produced from renewable resources 

can be considered sustainable materials. Biocomposites or composites made completely or partially from 

bio-resources (only the matrix or fiber) are also regarded as sustainable materials. In the expression of this 

concept, we can ascertain that sustainable materials could be biodegradable, whether they are recycled or 

 

Renewable Recyclable 
Triggered 

Biodegradable 

Environmental Acceptability 
& 

Commercial Viability 

SUSTAINABLE 
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not; but they must be produced from renewable materials. Regarding to development of friendly 

environmental materials, biocomposites are considered the most important candidates for the 

development of sustainable materials because they have high mechanical properties, are thermo resistant, 

and are cost effective, especially those based on biopolymer matrices and renewable fibers and fillers. 

Considering those problems regarding the environment and the tendency of material development, 

sustainable materials have emerged as the materials of the future. For this reason, in 2009 the Sustainable 

Biomaterials Collaborative Network elaborated new principles for the development of sustainable 

biomaterials such as: the elimination of single-use products that can neither be recycled nor composted; 

avoiding fossil fuel-based materials; developing materials and products derived from renewable 

feedstock; growing feedstock as a resource for manufacturing biomaterials; and investigating the effect of 

sustainable materials on the environment, health, and social and economic justice [24]. 

 

IV.  BIOCOMPOSITES  

Composite materials have been around for many years. Over the past 30 years, the composite 

technology markets have developed greatly, especially on glass, carbon, aramid fibers, laminate, and 

thermoset. However, the composites based on long glass fibers or laminates and thermoset are still limited 

in their application in smaller and cheaper applications such as such as pots, trays, boxes, fishing cases, 

tubes, other car parts, chairs, etc. because they have a low elongation at break, are flexible and their 

processing is too expensive. Therefore, a choice was made to base composite materials on a thermoplastic 

matrix and short fibers and fillers. At the same time, processing methods, such as single/twin screw 

extrusion and injection, were updated in order to adapt to economic requirements. 

 Based on the development of composite materials and the appearance of new bio-based materials 

as well as the problems of plastic materials with the environment, a new brand of composite materials was 

formulated and called biocomposites to include totally or partially bio-based materials. This means that 

they can have a matrix, fiber or both, which are produced from renewable resources. Materials can be 
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completely or partially biodegradable such as polypropylene/wood fibers, polylactic acid/glass fibers, 

polyamide/cellulose fibers, and polycarbonate/lignin.  

4.1  Current applications of biocomposites and recent research tendencies 

Nowadays, predictions about “peak oil” and the limits of oil production together with the 

consideration that the risk of environmental damage when drilling flor oil and gas and the extraction costs 

are increasing higher as these resources become less accessible,  make biocomposites that present a wide 

range of advantageous properties especially important in engineering applications . Biocomposites are 

therefore receiving much consideration from many research groups, and industrial companies all over the 

world, more specifically in the automotive industry due to their low environmental impact and their cost 

effectiveness. Biocomposites can present the same performance for lower weights and, at the same weight 

as other composites, present 25-30% higher mechanical properties [22].  Depending on different 

components of the car, the fiber and matrix are selected to adapt with the using requirement of each 

components. Since petroleum plastics are still cheaper and easier to process than biopolymers, car 

components are being produced from polypropylene and biofibers such as flax, hemp, and kenaf. The 

goal is to decrease the lifetime of the material or it will be consumed naturally by bacteria, so the 

environmental impact of product will be reduced.  

 Biocomposites are not only promising materials for the automotive industry, but also for 

agriculture, the packaging field, construction and house components [25]. In agriculture, pots or tomato 

clips together with other articles are produced from biocomposites. Most of them are produced from 

polylactic acid, PHB or starch and wood fibers [22, 26, 27]. Their lifetime is short and can become 

fertilizer once used. This tendency will increase the life cycle of materials in nature as well as decrease 

the environmental impact. Moreover, biocomposites are the best candidates for choosing materials in 

packaging applications due to different requirements of the mechanical properties, size, and 

diversification in uses such as food packaging, containers for cosmetics, chemicals, fish transport, and 

biological eggs. All of them have a short lifetime and are 100% biodegradable.  
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From the potential applications above, the development of biocomposites are following four 

tendencies [22, 27-30]: 

• Develop new processing techniques to obtain new types or treatment biofibers using physical or 

chemical methods to obtain inexpensive yet high mechanical properties, cellulose content, uniformity, 

and high surface energy; 

• Modification of the polymer matrix through functionalization, blending to increase the 

mechanical properties, thermo, oxygen, and chemical resistance, etc; 

• Using a coupling agent or catalyst to modify the polymer matrix and/or increase the interaction of 

polymer and biofibers; 

• Develop or select the best conditions for processing materials. 

Due to the many different types of polymers and biopolymers, researchers have focused their 

attention on modifying the polymer matrix and the interaction with fibers, since it is rather easy to 

combine or enhance positive properties through the combination of different polymers. However, natural 

fibers such as kenap, helm, flax, tencel, coir, and coconut are not abundant [28,29]. The main goal of 

industry and research is to develop a processing technology in order to obtain a fiber that presents high 

physical properties, surface tension, cellulose content, and geometry. Moreover, fiber manufacturers are 

pushing to decrease the cost of processing together with diversifying the types of fibers in order to adapt 

the prices to the composite materials. The applications dictate the technical processes used for the 

composites. For example, traditional processing methods such as RTM, sheet molding, and resin transfer 

molding are used for long biofibers and thermoset. For short fibers and thermo plastics, extrusion and 

injection are fashionable, but it is not easy to find the best processing conditions for each material. Indeed 

modeling and research regarding processing is still an open field [27]. Typically the choice of processing 

method is adjusted according to the fundamental theory on rheology of the polymer and the experience of 

operator. In this thesis, we selected extrusion and injection for our processing method because it is easy to 

develop for industry and inexpensive to produce. 
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Figure 3. Classification of biocomposites according to Mohanty et al. [22]. 

4.2  Natural fibers/biofibers 

Biofibers have become increasingly popular in recent years because it has high mechanical 

properties when compared to glass or carbon fibers, is inexpensive, has a low density, is renewable and 

environmentally friendly being completely biodegradable. Along with the development of biocomposites, 

biofibers will become fashionable materials for the future, and this development will bring about a new 

revolution in materials technology [22-30]. 

There are different biofibers on the market made from biomass or renewable resources. Faruk et al. 

[27] has classified them into six categories: "bast fibers (jute, flax, hemp, ramie and kenaf), leaf fibers 

(abaca, sisal and pineapple), seed fibers (coir, cotton and kapok), core fibers (kenaf, hemp and jute), grass 

and reed fibers (wheat, corn and rice)," and finally wood flour, and regenerated cellulose fibers. In 

particular, the bamboo and coir fibers are undergoing development in recent years not only in quantity, 

but also in quality [31,32]. However, they are still coarse materials and have not made much progress for 

production as other commercial fibers have. 
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Lignocellulosic Fiber  

Density 
(g/cm3) 

Tensile 
Strength 
(MPa) 

Young’s 
Modulus (GPa) 

Bagasse (Saccharum officinarum)  0.34 - 0.49 135 - 222 15 - 17 

Bamboo (Bambusa vulgaris)  1.03 - 1.21 106 - 204 
 

Banana (Musa sapientum)  0.67- 1.50 700 - 800 27 - 32 
Buriti (Mauritia flexuosa)  0.63 - 1.12 129 - 254 

 
Coir (Cocos nucifera)  1.15 - 1.52 95 - 220 4 - 6 
Cotton (Gossypium M.)  1.51- 1.60 287 - 800 6 - 13 
Curaua (Ananas erectifolium)  0.57 - 0.92 117 - 3000 27 - 80 
Flax (Linum usitatissimum)  1.30 - 1.50 344 - 1035 26 - 28 

Hemp (Cannabis sativa)  1.07 389 - 690 35 
Jute (Corchorus capsularis)  1.30 - 1.45 393 - 800 13 - 27 
Piassava (Attalea funifera)  1.10 - 1.45 109 - 1750 5 - 6 
Pineapple (Ananas comoscus)  1.44 - 1.56 362 - 1627 35 - 83 
Ramie (Boehmeria nivea)  1.5 400 - 1620 61 - 128 
Sisal (Agave sisalana)  1.26 - 1.50 287 - 913 9 - 28 
Soft wood (spruce)  0.46 - 1.50 112 - 1000 11 - 40 
Hard wood (birch)  0.67 - 1.50 300 - 1500 30 - 80 
E-glass  2.50 - 2.58 2000 - 3450 70 - 73 
Carbon  1.78 - 1.81 2500 - 6350 230 - 400 
Aramid  1.44 3000 - 4100 63 - 131 

 

Table 2. Density and Mechanical Properties of Selected LCFs [28-35]. 

The main problem of biofibers is that they are not uniform and that they contain a lot of natural 

chemical compounds such as lignin, wax, fat, hemicellulose, and water. They can reduce the physical 

properties of fibers as well as the interaction between fibers and matrix. The weak interface between the 

fiber and polymer matrix will affect the stress transfer from the matrix to the fibers, so it will reduce the 

mechanical properties of the final materials. Moreover, the natural compounds are also affected by the 

processing condition, because the materials will be easily degraded at high processing temperatures by the 

absorption of moisture such as lignin [36]. To avoid that problem, modifying the natural fiber has 

received much consideration before processing with composites. Two main processing methods are 

formulated as physical and chemical methods [27]. 
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 The physical methods for treating fibers are stretching, thermal treatment, and adding plasma. The 

principles of the physical method is to activate the surface energy of the fiber or to increase the wetting of 

the fiber in order to enhance the interaction with the polymer matrix. The stretching and thermal 

treatments are inexpensive, but are not efficient when compared to the plasma method. Treating fibers 

with plasma has been quite popular over the last 10 years, activating the surface oxidation of fiber. 

Normally, this method is applied to the cellulose fibers and hydrophylic matrix. However, it is neither 

economic nor easy to degrade the cellulose fibers due to the high-energy requirement for the treatment 

process. In addition, this method is limited in efficiency due to an increase in the compatibilization 

between the fiber and matrix such as Hemp/PP, Flax/polyester, and Sisal/HDPE[38-42]. 

 Unlike the principle of physical methods, chemical methods are based on changing the chemical 

structure of biofibers. It is a more economic, popular and presents diversified applications. Normally, the 

chemical method focuses on changing the chemical composition of the fiber or modifying the hydroxyl 

functions on the fiber surface. Not only does it enhance the adhesion of the fibers to the polymer matrix, it 

also increases the other properties of the composites such as water absorption and thermal resistance. The 

chemical treatment methods include silane, alkaline, acetylation, and enzyme treatments used as coupling 

agents. The alkaline treatment is a simple and wide application for biofibers because it removes some 

substances such as lignin, wax, oil from the surface of the fibers. This method interrupts the hydrogen 

bonding in the fiber structure, therefore improving the surface roughness. The effect of the alkaline 

method to mechanical properties and wetting ability of lignocellulose fibers were investigated [43-51]. 

The alkaline treatment is the first step of fiber treatment before processing. The silane coupling agent 

used the amino group in the compound to react with OH groups on the surface of fibers to not only 

increase the surface energy, but also to activate some chemical groups that easily react with the polar 

groups in the polymer matrix [52-55]. This method is used mostly for glass fibers and epoxy matrix 

composites, but is still useful for cellulose fibers. A bit different than the silane coupling agent, the 
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acetylation method uses the acetyl group to react with the OH group of fibers to increase the hydrophobic 

character on the surface of fiber, decreasing the water absorption of the composite [56-65]. 

 Using a coupling agent for the treatment of fibers or increasing the chemical bond between fibers 

and matrix in biocomposite is an attractive focus not only in research, but also for industrial applications. 

The selection of the coupling agent must depend on the polar or active functions of the matrix. The 

coupling agent will form a chemical link between fibers and the matrix by reacting with polar groups in 

both. For example, MA-g-PP and MA-g-PE [66-68] are chosen for biocomposites based on 

polypropylene or polyethylene and biofibers. The MA coupling agents are produced as commercial 

products such as SEBS-g-MA [69] and MAH-g-PP[70]. The grafted polymers with MA are designed by 

the requirement properties of the final materials such as good wetting, thermal and oxidation resistance 

[71-76]. There are also some coupling agents with epoxy terminated short polymer chains such as epoxy 

functionalized soybean oil [77-78], where the epoxy functions can react with the OH groups of biofibers.  

 When using coupling agents for processing, the materials must be completely dried to avoid 

reactions with water in the biofibers.  Although the coupling agent increases the interaction of the fiber 

and matrix, they may also give rise to crosslinking reactions between polymer chains in the matrix, 

making the matrix brittle. It is still a challenge for biocomposite technology to select a coupling agent 

which can increase the mechanical properties of the matrix, the interaction between fibers and the matrix, 

and the processability of materials. Moreover, as mentioned above, the lignocellulosic fibers are still not 

uniform, different chemical compounds such as lignin, wax, and fats will be affected by the 

biodegradation of fiber as well as the physical properties and efficiency of the treatment method. 

Confronted with these issues, Lenzing AG, Lenzing, Austria has invented a new type of cellulose fiber 

called Lyocell, also known as Tencel, an artificial microfiber made from regenerated wood pulp cellulose. 

It is produced by spinning bleached wood pulp dissolved in a nontoxic (“green”) organic solvent, N-

Methylmorpholine-N-oxide or MMNO, which can recovered by washing the freshly spun cellulose 

microfibers in water, later purified, and recycled. Tencel fibers have 100% cellulose, a high surface 
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energy, are uniform, and have an especially high aspect ratio [79]. For this reason, these promising fibers 

have been selected to reinforce the biopolymer matrix in this thesis. 

4.3  Biopolymer matrices for composites 

 In order to adapt to the environmental conditions and requirements of the market, bioplastic 

production has increased suddenly over the past few years, from 249,000 metric tons in 2009 to 1.16 

million metric tons in 2011 [9]. Following the analysis of the European plastic organization, the amounts 

of polylactic acid (PLA), polyhydroxyalkanoate (PHA), cellulose acetate and starch will increase rapidly 

in the next few years [9,19]. More specifically, bioplastics will be combined with biofibers to produce 

"green composites" with 100% biodegradable materials. Thanks to these developments, bioplastics are 

being used for different applications such as food packaging, construction, automobile manufacturing, 

electronic devices, medical products, and for products that can be found around the house. However, they 

still have some limited properties such as brittleness, low toughness, and low thermo resistance, which 

must be improved if they are to replace traditional plastics in the future. More specifically, polylactic acid 

and cellulose derivatives, which are selected as a polymer matrix in this thesis, are remarkable polymer 

matrices for biocomposites having reasonable prices and diversified manufacturers. That is why they are 

not only considered in research, but also in industrial applications. 

4.3.1  Cellulose Acetate 

Cellulose plastics and their derivatives come from materials that are found in nature. They are 

produced through the reaction of polysaccharides and acetic anhydride from wood pulp. In the past, the 

production of cellulose acetate came from paper recycling. The most important thermoplastic cellulose 

esters are cellulose acetate (CA), cellulose diacetate (CDA), cellulose acetate butyrates (CAB), cellulose 

acetate propionates (CAP) and nitrocellulose [80]. The biodegradation properties of cellulose acetate 

depends on the degree of substitution acetate (DS), Cantor and Mechalas found that CA is biodegradable 

when the DS is less than 2.4 [81]. However, the glass temperature of cellulose plastics is quite near the 

decomposition temperature. Therefore, they are generally too difficult to be processed through 
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conventional melt processing methods without the addition of plasticizers. At present, only plasticized 

formulations of cellulose esters have commercial utility as extruded films or sheets. For this reason, the 

formulation of cellulose acetate with plasticizers is critical to its performance and has been the subject of 

considerable research and industrial application.  

As it is known, the major plasticizers of cellulose acetate are phthalate compounds, such as diethyl 

phthalate (DEP) and dioctyl phthalate (DOP). This family of plasticizers has a relatively high rate of 

migration and volatilization because of a low molecular weight [81]. Moreover, CA was plasticized by 

the other commercial compound such as Poly(caprolactonetriol) [82], polyethylene glycol, propylene 

glycol, dibutyl phthalate [83], glycol and TA as multi-plasticizers [84]. Most papers on the use of 

plasticizers were only focused on improving the processibility of cellulose acetate. The plasticized 

cellulose derivatives have high mechanical properties and thermal resistance. They are applied to 

injection processing to produce helmets, glass frames, sport accessories, automotive components, 

finishing rods, construction and house components. 

Cellulose derivatives are also modified by blending them with other non-biopolymers to improve 

different properties of materials such as elongation at break, thermo resistance, flexibility, and moisture 

absorption. For example, CAP was blended with polyethersulfone (PES) [85], Nylon 6,6 [86], 

polyethyleneimine [87], polyestercarbonate [88], and vinyl polymers [89-90]. Almost all blends were 

applied to production components, which were exposed to the environment. In addition, the presence of 

cellulose acetate in the materials decreased the environmental impact factor of the materials, especially 

for non-bioplastics. 

Moreover, the combination of CA and the other biopolymers or biodegradable polymer received 

much consideration from researchers and industry to increase biodegradation ability, biodegradation time, 

as well as the conditions of biodegradation. This method is commonly used for film production based on 

cellulose acetate such as poly(3-hydroxybutyrate) (PHB) [91], polylactic acid (PLA) [92], and starch [93]. 

The blends with biopolymers from natural resources are mostly applied for medicine or films production. 
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Moreover, CA is also blended with some polymers produced using petroleum-based feedstock 

biodegradable such as poly(butylene succinate) [94], or not like polymethyl methacrylate (PMMA) [95], 

etc. With these blends it is possible to produce films for packaging because the materials show elongation 

at break and are sufficient biodegradability. 

Nevertheless, the big problem of these materials is found in the processing method. Almost all 

studies on blends of cellulose derivatives with other polymers used the solvent mixing method. The 

structure of such blends was thus porous and not durable. Cellulose acetate is immiscible with most 

polymers. Therefore, some maleic anhydride (MA) or epoxy terminated coupling agent or some 

transesterifaction catalyst must be used in order to increase the interaction [96]. 

As mentioned above, cellulose acetate usually requires plasticizers for industrial processing, 

especially for extrusion. However, the plasticized cellulose acetate has a limit for application over long 

periods of time. In fact, the plasticizers can be released and can decrease the mechanical properties of 

materials such as elongation at break, toughness, etc. Moreover, the problems of immiscibility with other 

polymers forces the producer to change the process method, since the solvent mixing method can only be 

applied for lab scale and research, since it will not be economically viable for industrial processing. In 

addition, the development of cellulose derivative composites is still limited, although the materials are 

biodegradable and come from natural resources such as lignin [97-98]. Most publications on cellulose 

derivatives date were published in the period 1994 to 2002; after that they have not received attention 

from research, but it still remains a possible product for the market. For this reason, in this thesis, we aim 

to produce composites based on this old biodegradable polymer that can quickly be adapted to real life 

applications, easy to apply for industrial processing and the production of biocomposites.   

4.3.2  Polylactic acid 

Polylactic acid (PLA) is made from a natural resource - corn starch. PLA is formulated from the 

condensation polymerization of D or L lactic acid or ring opening polymerization of the lactide. So, there 

are PDLA and PLLA polymers on the current market. It is completely biodegradable, compostable, and 
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the materials can maintain their mechanical properties without rapid hydrolysis even in high humidity 

conditions. Moreover, the prices of PLA are about 2 to 4 USD/kg, very competitive with the other 

petroleum plastics in the current market  [99]. For these reasons, PLA is the most used biopolymer now. 

The amount of PLA produced is about 140,000 tons per year and its production will increase by two or 

three times that over the next few years. There are several companies producing PLA such as 

Natureworks, Purac, Samsung, etc. 

PLA is a semi-crystalline polymer having medium tensile strength and Young's modulus. However, 

the thermal resistance of these materials is not high, Tg = 60 oC, and they have a low fracture toughness 

and are also brittle materials (the elongation more or less 7%) [99]. To increase the mechanical properties 

of PLA, especially tensile strength and Young's modulus, many studies focuses on PLA reinforced with 

different types of biofibers to obtain biocomposites for diversified applications. The composites based on 

PLA and biofibers are expected not only to increase the mechanical properties, but also to decrease the 

cost, the energy consumption, the environmental impact as well as to accelerate the development of 

biofibers. New strategies open the possibility for replacing synthesized fibers in polymer composites with 

the presence of PLA.  In recent years, there have been many publications on biocomposites and their 

products on the market based on PLA, such as Kenaf/PLA [100], Jute/PLA [101], wood flour/PLA [102], 

cellulose fibers/PLA [103], Flax/PLA [104], etc. However, the poor wetting ability between hydrophilic 

microfibers and hydrophobic polymeric matrices would lead their simple mechanical mixtures to 

composites with poor interfacial adhesion and limited mechanical strength and ductility. Moreover, one of 

the problems of this composite is its poor interaction between the fibers and matrix since PLA has a high 

surface tension. In order to enhance the adhesion between the PLA and fiber, several treatment fiber 

methods have been tried such as silane, acetylation, and alkaline [105-109]. Besides maleic anhydride 

[110] and (4,40-thiodiphenol) (TDP) [111], also MA-g-PP was added as a coupling agent for the 

composite [112]. Although this modification increases the interaction of matrix and fibers, the composite 
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remained still too brittle because of the original properties of the matrix. These properties also limit the 

amount of fibers in the composite during processing and application.  

 Currently, there are two options for reducing the brittleness of the materials. These are using 

plasticizers and adding the other polymer with high elongation at break. The principle of both cases 

decreases the Tg and interaction between polymer chains of PLA. That means the tensile strength and 

Young's modulus of PLA will be reduced. There are a number of plasticizers such as Polyethylene glycol 

(PEG) [113] and Triacetin [114]. Similar to cellulose acetate, the plasticizers will affect the mechanical 

properties of PLA if used over a long period of time. Moreover, the toughening agents for PLA are quite 

diversified and include poly(vinyl acetate) [115], poly(caprolactone) [116], and poly(butylenesuccinate) 

(PBS) [117], etc. More specifically, Poly(butylenadipate-co-terephthalate) (PBAT, Ecoflex®) produced 

by the  BASF company is the most popular toughening agent for PLA. The elongation at break of 

polylactic acid increases more than 200% when adding 50 wt% of PBAT [118-120]. Ecoflex can be 

blended to starch, PHA, and PHB [120] to increase the flexibility of the materials. The plasticizers and 

toughening agent are used to produce films based on PLA for different applications. Similar to the 

plasticizers PBAT and PBS have a low Tg, slightly decrease tensile strength but because of the high 

surface tension of PLA are not soluble in this polymer and phase separate into a dispersion of small and 

soft rubber particles. In addition, the toughening agents also present a poor interaction with fibers in the 

composite. Hence, this will limit the application of PLA based composites in fields where materials with 

high thermal resistance, flexibility and fracture toughness are required such as food trays, electrical 

components, etc. As the aim of this thesis, we try to develop a new type of biopolymer composites based 

on PLA to adapt with the conditions mentioned above. In addition, the biocomposites with new 

formulations will also be investigated in order to improve the interaction between the fiber and matrix so 

it will enhance the mechanical properties and environmental impact of materials. 
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V.  THE AIMS OF THE THESIS: 

Despite their potential, considering the long-term environmental issues and the progressive 

resource depletion, the use of materials derived from renewable resources still often conflicts with 

problems in the regular provision of raw materials, property variability, high processing costs and low 

properties of the final products. In order to enhance the development of engineered biocomposite products 

that meet the diverse needs of users and to maximize the sustainability of natural resources, research  

needs to implement a biotechnological, materials science and an engineering approach in order to 

improve biocomposite performance. Biocomposites, or more specifically "green composites", consist of 

biofibers and bioplastic matrices from renewable resources. Thermoplastics have a lower impact on the 

environment than thermosets because of their recyclability. Moreover, biopolymers and natural fiber 

composites are commercially available from a number of companies. The automotive industry is the 

largest potential user of biocomposites. Due to small production runs, material costs are typically higher 

than for fossil fuel equivalents. Manufacturing energy costs may be higher too. In Europe, where 

legislation ensures the polluter pays, large car companies are making significant effort to adopt natural 

fiber composites in the non-structural parts of their cars because they can be composted. This is a much 

cheaper form of disposal than landfill or incineration.  

This thesis treats the valorization of forest resources for the production of bio-based products with 

the additional contribution to solve the problems related to materials produced from petro-derived 

resource, to waste disposal, to the use of energy consumption and polluting chemical pathways and to the 

use of hazardous substances. Effort will be devoted to the promotion of the use of wood derived fibers to 

replace glass fibers and mineral fillers, in automotive interior and exterior parts; and as a component in 

composite materials with biodegradable polymeric matrices for application in the packaging (cardboard, 

containers, etc.) and agriculture sector (mulching, greenhouse, tomato clips, pots, etc.).  

However, the biopolymer matrix still presents limited properties such as being brittle, having low 

thermal resistance, difficult for processing, etc. In order to succeed in the focus above and diversify the 
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application of materials, the polymer matrix must be modified in order to increase the mechanical 

properties, processability (Chapter 2 with cellulose diacetate matrix) and thermal resistance, and 

morphology and toughness (Chapter 3 with PLA/PC blends matrix). It is also common knowledge that in 

case of weak adhesion at the fiber-polymeric matrix interphase, the amount of fibers that can be loaded in 

the composites without problems of dispersion is limited since fiber agglomeration will lead to a material 

with poor mechanical properties and difficult to process. The modification of plant material (e.g., through 

physical, chemical, or biological means) has been generally considered necessary prior to its use in the 

manufacturing of natural fiber-reinforced thermoplastic composites. The amounts and properties of the 

coupling agent are crucial for the properties of the composites. The appropriate coupling agents need to 

be adjusted to the chemical composition of the polymer matrix. Each matrix/reinforcement pair requires a 

different coupling agent such as glycerin polyglycidyl ether (Chapter 1) or transesterification agents 

(Chapter 4).  

It seems very useful to determine the strength of a biopolymer-natural fiber interface to evaluate the 

optimal level of physical, chemical or biological modification of such interface. In the current theory, the 

interaction between the fibers and polymer matrix, often described in term of ‘adhesion’, is generally 

related to the interfacial shear strength (τ or IFSS) and is almost only applied for continuous fiber 

composites. Several experimental methods have been developed for their determination. These can be 

divided into two general categories: single (direct testing) and multiple fiber tests (indirect testing). The 

experimental methods for single fibers are mainly the pull-out and the fragmentation tests that provide 

measures of IFSS [121-122]. Several methods have been recently developed for deriving values for τ(the 

IFSS) from the tensile stress-strain curve of the composite and the fiber length distribution based on the 

modifications of the Kelly-Tyson equation [123-124]. There are also some methods provided by Bader 

and Bowyer [125-127], Thomason and Fu and Lauke to estimate the IFSS of fibers and matrix. However, 

they can only be applied to continuous or long fibers. The interface shear strength between short fibers 

and fillers has not received much consideration and development from the theory of mechanical 
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properties. For that reason, in the last chapter (Chapter 5) of this thesis, a new model will be developed 

for predicting the IFSS of nanofillers, short natural fibers and the polymer matrix based on the 

developments of the Pukánszky and Kelly-Tyson theories. 
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Chapter 2  

 “Green” Biocomposites Based on Cellulose Diacetate and Regenerated 

Cellulose Microfibers: Effect of Plasticizer Content on Morphology and 

Mechanical Properties 

 

I. INTRODUCTION 

Plastic materials are widely spread in everyday life with diversified applications. Most of the 

plastics of common use are currently produced from fossil fuels, consumed and discarded into the 

environment, ending up with very long time for degradation and relevant problems of collection and 

disposal which often end up in landfills or incineration. The increasing pressure on manufacturers by new 

environmental and waste management policies, consumers demand and also the escalation of oil prices is 

steering the trends of polymer technology away from traditional materials. For these reasons, the new 

field of biodegradable and bio-based polymers, which have some environmental friendly properties 

(materials in which the production is based on renewable resources, characterized by low energy 

consumption, low CO2 emissions, with possibility for composting, biomethanation or recycling), has 

received growing consideration which has been so far focused specifically on starch based products, PLA 

(Polylactic acid), PHA (Poly hydroxyl alkanoates) in particular PHB (Poly hydroxyl butyrate), cellulose 

derived plastics [1], etc. The production of these materials is based on annually renewable agricultural 

and biomass feedstocks. Moreover biopolymers derived from natural sources can capture markets 

currently dominated by products based exclusively on petroleum feedstock [2-3]. 
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However, biodegradable polyesters like PLA and PHA generally present some disadvantages over 

oil based plastics such as low fracture toughness, low glass transition temperature (Tg), high moisture 

absorption, difficult processing as well as limited applications. Cellulose diacetate (CDA), the most 

important cellulose derived biopolymer, from an industrial point of view, is a thermoplastic material 

produced through the esterification of cellulose. Cellulose acetate has been reported to be potentially 

biodegradable [4], so that new applications of CDA may be envisaged not only for packaging and 

automotive but also for medical and pharmaceutical applications, in the production of biocomposite 

materials and other bio-related fields. A variety of raw materials such as cotton, recycled paper, wood 

cellulose, and sugarcane are used in making cellulose esters in powder form [5-6]. CDA possesses high 

glass transition temperature (Tg), which results in limited processability compared with typical 

commodity plastics. In addition, it has low solubility in common solvents and cannot be melt processed as 

raw material because it starts to decompose before melting. Therefore, CDA requires the use of 

plasticizers to reduce its Tg and processing temperature. The role of plasticizers is to decrease the 

intermolecular forces among the polymer chains, resulting in a softened and more flexible polymeric 

matrix. Traditionally plasticization of CDA has been accomplished using citrate, phthalates, glycerol 

derivatives, phosphates, triacetin, etc. Phthalate esters, historically the most common industrially used 

plasticizers for CDA, have been subjected to environmental scrutiny as a health threat and thus there is 

now a serious concern about their long-time use. In order to improve the processing of CDA, some 

studies explored new plasticizers such as poly(caprolacton triol) [7], polyethylene glycol, propylene 

glycol and dibutyl phthalate [8]. Others combined maleic anhydride, glycol and TA as multi-plasticizers 

[9]. Their research improved the processing of CDA based materials but at the expenses of their 

mechanical properties. On the basis of the examined literature, TA was chosen to improve CDA 

processing in this study, as an environmentally sustainable (“eco-friendly”) plasticizer because of its low 

toxicity and fast biodegradability [10-11]. Moreover, the solubility of triacetin in CDA is high and 

triacetin is a very effective plasticizer of CDA. A thermodynamic study has shown that the enthalpy for 
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mixing is exothermal over the whole range of compositions and the Gibbs energy of the mixing of the 

CDA/TA blend has a minimum corresponding to about 40 wt% Triacetin [12]. It was also found a fall in 

the entropy of the system following the formation of solvates between the functional groups of CDA and 

triacetin for TA concentrations up to about 40 wt%, followed by an increase in the entropy of the system 

as a result of disturbance of the interchain interaction in CDA on its solvation for larger concentrations.   

In order to improve mechanical properties, cellulose diacetate was blended with Poly (vinyl 

pyrrolidone), Poly (vinyl acetate), Poly (N-vinyl pyrolidone – co - vinyl acetate) [13-14], 

Poly(caprolactone monoacrylate) [15]. A number of trials were made to extend the cellulose diacetate 

chain through reaction with octadecenyl succinic anhydrides [16] and also with other biopolymer such as 

Polylactic acid and starch [17-18]. Most of the research related with cellulose diacetate used solvents to 

dissolve the materials and then proceed with processing. This induced a porous structure and reduced the 

toughness of the materials. A few researchers used a melt processing approach to improve the 

performance of cellulosic plastics [19]. Moreover, several studies have tried to develop biocomposite 

based on cellulose diacetate with natural fibers and fillers [20], while others used organically modified 

clay to produce “green” nanocomposites [21]. The suitability of cellulose fibers for thermoplastics in 

general and biopolymers in particular were investigated because of ecological advantages, high 

mechanical properties in terms of Young’s modulus and tensile strength, low density and dimensional 

stability [20,22]. Glasser et al. reported the preparation of composites based on continuous rayon and 

lyocell fibers reinforced cellulose acetate butyrate (CAB) and other commercially-available thermoplastic 

cellulose esters by using solution impregnation. The fibers were also surface modified by acetylation to 

change the interfacial adhesion between the cellulose fiber and cellulose ester matrix, but no significant 

increase in strength of the composites was observed, leading the Authors to the conclusion that interfacial 

stress transfer is not a limitation in this system [23-25], although this result could be easily anticipated by 

anybody knowledgeable enough in the mechanics of continuous fiber reinforced composites. Until very 

recently, the properties of composites prepared with cellulose esters reinforced with short lyocell fibers 
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(Ly) have not been considered [26]. From this study, it was shown that the Young's modulus of 

lyocell/cellulose acetate butyrate (CAB) composites increased from 2 GPa for neat CAB to 4 GPa for a 

composite with a lyocell fiber content of 34.8% (v/v). Similar trend was obtained for flax/CAB 

biocomposites which showed higher modulus than lyocell/CAB composites, with values of 5 GPa for a 

flax/CAB composite with the same composition. Moreover, tensile strength of lyocell/CAB composites 

with fiber content higher than 16.7% (v/v) resulted in lower values than neat CAB, indicating a high 

probability of failure cracks on lyocell/CAB composite samples when increasing fiber composition. In 

addition, compared to neat CAB, elongation at break decreased for all the composites studied.  

In summary, the mechanical properties of biocomposites based on CDA considered in the literature 

are still not satisfying, in view of their possible application, and use types of processing with are not 

economically viable on an industrial scale. In particular, the thermal characteristics of the materials 

developed and their matrix-filler interactions were not much investigated. So far, there are no publications 

about the effect of multi plasticizers on physical properties, thermal stability and morphology of cellulose 

diacetate/cellulose fibers composites under melt processing. 

Since both the cellulose diacetate and Lyocell fibers can be produced from renewable forest 

biomass, their manufacture does not imply any competition for land and water required for food 

production. The interest in the research on biocomposites based on CDA/Lyocell fibers is the 

development of high-performance, environmentally-friendly, sustainable, potentially biodegradable 

biomaterials. 

 

II. EXPERIMENTAL DETAILS 

2.1 Materials 

Cellulose diacetate (CDA, CAS # 9004-35-7) type LS/SS was kindly supplied by the Acetati 

Company – Italy, with a degree of substitution of 2.4. Triacetin (TA, also known as glycerin triacetate or 

1,2,3-triacetoxypropane, CAS # 102-76-1) was purchased from Aldrich Chemicals as primary plasticizer, 
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while a water soluble epoxy resin, polyglycidyl ether of glycerin (GPE), with an Epoxy Equivalent 

Weight, EEW = 135 ~ 155 g/eq, type EJ300, purchased by Joong-ang Special Industry Co – South Korea, 

was used as secondary plasticizer (scheme 1). Tencel® FCP-10/400 microfibers, shown in Figure 1, with 

a diameter of about 10.5 µm and an average fiber length of 390 µm, corresponding to an aspect ratio, ar = 

37, were kindly provided by Lenzing AG, Lenzing, Austria. According to this manufacturer, these fibers 

have a density: 1.5 g/cm³, a Young’s modulus of 10 –15 GPa, a tensile strength of 570 MPa and an 

elongation at break of 11 %. Microcrystalline cellulose with a diameter of 20 µm and ar = 2-4 was 

obtained by Aldrich Chemicals [27-28], lignocellulosic fibers type Filtracel EFC 1000, with a diameter of 

63.9 µm, a density of 1.5 g/cm3, and ar = 6.8 purchased from Rettenmaier & Söhne Gmbh – Germany, 

were used as reference reinforcements since they have been very well characterized in the literature [29-

30]. All materials were dried overnight under vacuum at 100 °C before processing. 

 

 

 

Scheme 1. Chemical structure of CDA, GPE, TA 
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Figure 1. SEM micrographs for Lyocell fiber

2.2 Processing 

A cellulose diacetate (CDA) powder was mechanically mixed about 10 minutes with different ratios 

of primary plasticizer (TA) by means of a high speed mixer. After this mixing stage, the fillers and the 

secondary plasticizer (GPE) were added and mixed for e

resulting mixtures were processed with a MiniLab II Haake Rheomex CTW 5 conical twin

(Thermo Scientific Haake GmbH, Karlsruhe, Germany), at a screw rate of 80 rpm/min and a cycle time of 

30 seconds, in the temperature range from 170 °C to 210 °C, depending on the material formulation. The 

processing temperature was chosen for each system at level below the onset of degradation phenomena, 

evidenced by the appearance of a dark coloring of the material

The content of Triacetin in this study was varied from 20 to 40 wt%. In fact, based on our preliminary 

testing, it is not possible to process CDA with less than 20 wt% TA, because for lower TA contents the 

melt processing temperature of the plasticized CDA exceeds its decomposition temperature. Prior 

experiments in our lab also showed that exceeding 40 wt% TA the main mechanical properties (elastic 

modulus, tensile strength, and elongation at break) of materials bec

in the introduction, this can be explained by the fact that the functional groups of CDA are completely 
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Figure 1. SEM micrographs for Lyocell fiber 

A cellulose diacetate (CDA) powder was mechanically mixed about 10 minutes with different ratios 

of primary plasticizer (TA) by means of a high speed mixer. After this mixing stage, the fillers and the 

secondary plasticizer (GPE) were added and mixed for extra 10 minutes, in the same equipment. The 

resulting mixtures were processed with a MiniLab II Haake Rheomex CTW 5 conical twin

(Thermo Scientific Haake GmbH, Karlsruhe, Germany), at a screw rate of 80 rpm/min and a cycle time of 

, in the temperature range from 170 °C to 210 °C, depending on the material formulation. The 

processing temperature was chosen for each system at level below the onset of degradation phenomena, 

evidenced by the appearance of a dark coloring of the material, accompanied by a very brittle behavior. 

The content of Triacetin in this study was varied from 20 to 40 wt%. In fact, based on our preliminary 

testing, it is not possible to process CDA with less than 20 wt% TA, because for lower TA contents the 

cessing temperature of the plasticized CDA exceeds its decomposition temperature. Prior 

experiments in our lab also showed that exceeding 40 wt% TA the main mechanical properties (elastic 

modulus, tensile strength, and elongation at break) of materials become unacceptably low.  As mentioned 

in the introduction, this can be explained by the fact that the functional groups of CDA are completely 
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A cellulose diacetate (CDA) powder was mechanically mixed about 10 minutes with different ratios 

of primary plasticizer (TA) by means of a high speed mixer. After this mixing stage, the fillers and the 

xtra 10 minutes, in the same equipment. The 

resulting mixtures were processed with a MiniLab II Haake Rheomex CTW 5 conical twin-screw extruder 

(Thermo Scientific Haake GmbH, Karlsruhe, Germany), at a screw rate of 80 rpm/min and a cycle time of 

, in the temperature range from 170 °C to 210 °C, depending on the material formulation. The 

processing temperature was chosen for each system at level below the onset of degradation phenomena, 

, accompanied by a very brittle behavior. 

The content of Triacetin in this study was varied from 20 to 40 wt%. In fact, based on our preliminary 

testing, it is not possible to process CDA with less than 20 wt% TA, because for lower TA contents the 

cessing temperature of the plasticized CDA exceeds its decomposition temperature. Prior 

experiments in our lab also showed that exceeding 40 wt% TA the main mechanical properties (elastic 

ome unacceptably low.  As mentioned 

in the introduction, this can be explained by the fact that the functional groups of CDA are completely 
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solvated by triacetin when the TA content reaches 40 wt%. Beyond this value, further increases in TA 

concentration just separate the individual CDA molecules decreasing their interchain interactions. 

The role of GPE is to increase the interactions of the fibers with the matrix thus acting as coupling 

agent. In our preliminary testing, we tried different GPE contents: 5, 10 and 20 wt% GPE, but we 

observed a decrease in the mechanical properties of the composites for concentrations beyond 5 wt%. 

This can be explained by the fact that the chemical structure of GPE is similar to TA, so adding more 

GPE would have negative effects – in term of excessive plasticization – like using higher amounts of TA. 

The content of Lyocell fibers was limited to a maximum 10 wt% (corresponding to 12 vol%) for 

physical limitation of the feeding system of the MiniLab extruder (maximum 7 cm3) with a low apparent 

volume filler. After extrusion, the molten materials were transferred through a preheated cylinder to the 

Haake MiniJet II mini injection molder (Thermo Scientific Haake GmbH, Karlsruhe, Germany), to obtain 

ASTM D638 V dog-bone tensile bars used for measurements and analysis. The specimens were placed in 

plastic bags for vacuum sealing to prevent moisture absorption. 

2.3 Characterization methods 

Tensile tests were performed at room temperature, at a crosshead speed of 10 mm/min, by means of 

an Instron 4302 universal testing machine (Canton MA, USA) equipped with a 10 kN load cell and 

interfaced with a computer running the Testworks 4.0 software (MTS Systems Corporation, Eden Prairie 

MN, USA).  

Thermogravimetric Analysis (TGA) was run under the flow of nitrogen gas, at a scanning speed of 

10 °C/min, from room temperature to 1000 °C, using a TGA 1000 instrument (Rheometric Scientific Inc., 

USA).  

Dynamic mechanical thermal analysis (DMTA) was carried out on a Gabo Eplexor® 100N (Gabo 

Qualimeter GmbH, Ahlden, Germany). Test bars were cut from the tensile bar specimens (size: 20 x 5 x 

1.5 mm) and mounted in tensile geometry. The temperature used in the experiment ranged from -100 °C 

to 170 °C, at a heating rate of 2 °C/min and frequency of 1 Hz.  
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The morphology of the composites was studied by scanning electron microscopy (SEM) using a 

JEOL JSM-5600LV (Tokyo, Japan), by analyzing the fracture surfaces of samples, broken in liquid 

nitrogen. Prior to SEM analysis all the surfaces were sputtered with gold. 

The chemical bonding between Lyocell fibers and polymer matrix through GPE were analyzed by 

using a Nicolet 380 spectrometer with diffuse reflectance accessory (DRIFT). The composite was 

dissolved in acetone to remove the polymer matrix (CDA) and then the fibers were drying under vacuum 

at 100°C in 24 hours. Lyocell fibers were mixed with potassium bromide (KBr) in order to obtain the 

DRIFT spectra. During the DRIFT measurement, pure potassium bromide was chosen as background. 

 

III. THEORETICAL ANALYSIS 

3.1 Constitutive equations 

The stress-strain curve of polymers and composites can be approximated to a number of idealized 

constitutive equations. Brittle polymers often show a linear elastic stress-strain relationship σ = Eε  up to 

fracture, while a few exhibit a perfectly elastic-plastic behavior: 

σ = E ε           for σ ≤ σy 

σ = σy                                                           for σ > σy         (1) 

where E is the elastic modulus and σy the yield stress. 

A number of polymers and composites, instead show an increase in stress upon stretching beyond 

their yield point (strain hardening). If the stress increases linearly with elongation both before and after 

yielding, the material follows the perfectly linear elastic – linear strain hardening model (bilinear 

hardening for short). The stress-strain relation may be represented by: 

  σ = E ε            for σ ≤ σy 

                        
( )y p yσ σ Ε ε ε= + −

             for σ > σy            (2) 
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where εy is the yield strain, satisfying the relation εy = σy /E and Ep the strain hardening modulus 

(sometimes called tangent modulus), corresponding to the constant work hardening slope. The ratio b = 

Ep/E is defined as the strain hardening ratio. 

The physical ground for the bilinear model can be given by the Neo-Hookean approach for true 

stress σtrue [31]: 

 2 1
( )true y RGσ σ λ

λ
= + −           (3) 

where GR is the rubbery strain-hardening modulus and λ is the draw ratio. This gives for the engineering 

stress σeng: 

2

1
( )y

eng RG
σ

σ λ
λ λ

= + −                                    (4) 

Considering the relation λ = 1 + ε :         

 
2

1
(1 )

(1 ) (1 )
y

eng RG
σ

σ ε
ε ε

 
= + + − + + 

          (5) 

Expanding the second term in square brackets, we get, neglecting terms with superior order: 

3eng y RGσ σ ε= +         (6) 

Comparing the two expressions, it is apparent that Ep = 3 GR. 

From the Neo-Hookean theory, the strain hardening modulus may be expressed as: 

3p nkTΕ =                (7) 

where n, k, and T represent the network density (number of chains per unit volume in the network), 

Boltzmann’s constant, and the absolute temperature, respectively. 

In this way, the strain hardening modulus can be directly put in relation to entanglement network 

density, at a given temperature. 

3.2 Young’s modulus 
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Several theoretical expressions have been developed for the prediction of the elastic modulus of 

short fiber composites. One of the most successful approaches considers long straight discontinuous 

fibers, completely embedded in a continuous matrix, making use of the so-called shear-lag concept [32]. 

This model introduces some simplifying assumptions, such as: (1) uniform alignment of the fibers within 

the matrix; (2) stress transfer by shear along the length of the fiber-matrix interface; (3) perfect elastic, 

isotropic behavior of both matrix and fiber; (4) perfect bonding between the two materials at the interface. 

However, it is now well established that the prediction of composite modulus calculated by the 

Cox’s model does not provide sufficiently accurate estimations when the fiber aspect ratio is small [33], 

as in the present work. The predicted modulus obtained by the Cox’s model is significantly smaller than 

the experimentally observed values for short fiber composites. In fact, the Cox’s model neglects the stress 

transfer across the fiber ends, σf (±L/2) = 0. 

Since the early work of Cox, several improvements have been proposed to the original shear lag 

analysis and some of these developments have been recently reviewed [34-37]. In particular Kim has 

proposed the following modified equation for the elastic modulus of short fiber composites, ��
���, taking 

into account both fiber end traction forces and stress concentration effects [30-32]: 

tanh( )
1 1 (1 )Kim m r

C f f m f
f r

a

a

Ε βΕ Ε ϕ Ε ϕ
Ε β

   = + − + −   
   

    (8) 

where Ef , Em are the fiber and matrix Young’s modulus, respectively, φf is the fiber volume fraction and β  

is given by:  

2

(1 ) log( )

m

f
f m

f

P
Εβ

Ε υ
ϕ

=
+

        (9) 

where νm is the matrix Poisson’s modulus and Pf is the fiber packing factor.  

Of all the micromechanics equations, Halpin-Tsai’s semi-empirical equations are accurate and 

straightforward. Halpin and Tsai showed that the Hermans solution to Hill’s self consistent model can be 
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reduced to a simpler approximate analytical form and extended its use to a wide variety of reinforcement 

geometries [38]. For the longitudinal modulus, the Halpin-Tsai’s equation gives the following expression: 

1 2

1
r l fHT

Cl m
l f

a λ ϕ
Ε Ε

λ ϕ
+

=
−

       (10) 

with  

1

2

f

m
l

f
r

m

a

Ε
Ε

λ
Ε
Ε

 
− 

 =
 

+ 
 

        (11) 

while the transverse modulus takes the form: 

1 2

1
r l fHT

Ct m
l f

a λ ϕ
Ε Ε

λ ϕ
+

=
−

      (12) 

where  

1

2

f

m
l

f

m

Ε
Ε

λ
Ε
Ε

 
− 

 =
 

+ 
 

        (13) 

For composites with fibres oriented randomly in a plane, the Halpin-Tsai’s equations give: 

3 5

8 8
HT HT HT
C Cl CtΕ Ε Ε= +

                                                                                        (14) 

A more rigorous model for short fibers or particulate reinforced composites inclusions has been 

proposed by Tandon and Weng [39], on the basis of the solutions found by Eshelby on an ellipsoidal 

inclusion surrounded by an infinite matrix [40] and the concept of average stress introduced by [41] Mori 

and Tanaka1. 

3.3 Yield stress 

                                                           
1 For the complexity of the Tandon-Weng model, the relevant equations are not reported here for brevity and we 

refer to the original paper for more details [34]. 



Chapter 2: "Green" Biocomposites based on Cellulose Diacetate 

 

Sustainable Biocomposites from Renewable Resources and Recycled Polymers 

45 

 

Many models have been proposed in the specific literature to predict yield stress of composites. 

The Pukánszky’s model [42] describes the effects of the volume filler fraction (φf) and the interfacial 

interaction on tensile yield stress of particulate filled polymers: 

1
exp( )

1 2.5
f

c m f
f

B
ϕ

σ σ ϕ
ϕ

−
=

+
       (15) 

The parameter B is an interaction parameter that considers the capacity of stress transmission 

between various components. The terms σc and σm are yield stress of composite and matrix, respectively. 

The term exp(Bφf) considers the interaction, while the (1−φf)/(1+2.5φf) term indicates the effective 

decrease of useful cross section due to filler introduction. Interfacial interaction depends on the thickness 

of the interphase, and the strength of the interaction as shown in the following equation: 

( )1 ln i
f f

m

B A
σρ τ
σ

= +        (16) 

where Af, ρf, τ, σi are the specific surface area, the density of the filler, the thickness of the and the strength 

of interphase, respectively. The parameter B can be easily calculated by knowing the yield stress of 

composites filled with different volume percentages of particle fillers. 

 

IV. RESULTS AND DISCUSSION 

4.1 Mechanical properties of CDA-based blends and composites 

Figure 2 shows typical stress-strain curves for cellulose diacetate (CDA) blends with different 

amounts of plasticizers and their composites with Lyocell cellulose fibers and the mechanical properties 

of materials are summarized in Table 1. All curves appear to follow an almost ideal elastic-plastic 

behavior, closely following Equation 1.  

In this series of materials, the content of TA was varied from 20% to 40% to prevent the 

degradation of CDA during melt processing. As expected, the tensile strength of materials decreased with 

increasing TA amount while the elongation at break increased (Figure 3). Considering the strain 
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hardening modulus, Ep, we observe a strong decrease between 20-30 wt%, followed by a less rapid 

decrease beyond this value (Figure 4). As discussed above, a decrease of this parameter can be directly 

explained with a loss of entanglement density caused by the presence of the plasticizer (Equation 7).  

 

Figure 2a. Stress-strain curves for CDA/TA blends with different amount of TA 

 

Samples name 
CDA 
 (%) 

TA 
(%) 

GPE 
(%) 

Lyocell  
(%) 

Elastic 
Modulus 

(GPa) 

Tensile 
Strength 
(MPa) 

Strain at 
break (%) 

CDA80TA20 80 20 0 0 4.54  ± 0.2 93.3 ± 2 6.85 ± 0.6 

CDA70TA30 70 30 0 0 2.67  ±  0.1 49.3 ± 1.5 8.68 ± 0.5 

CDA60TA40 60 40 0 0 0.96 ± 0.1 19.7± 1.3 9.35 ± 0.7 

(CDA80TA20)Ly10 80 20 0 10 5.57 ± 0.3 98.4 ± 3 6.8 ± 0.1 

(CDA70TA30)Ly10 70 30 0 10 3.57 ± 0.1 54.6 ± 0.3 8.19 ± 0.8 

(CDA60TA40)Ly10 54 36 0 10 1.81 ± 0.1 27.2 ± 0.1 9.5% ± 0.4 
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Table 1. Mechanical properties of materials with different amounts of plasticizers  

and several types of natural fibers 

This behavior indicates that the optimum content for TA as primary plasticizer is about 20-30 wt%, 

where tensile strength and modulus values are still high. Exceeding a TA content of 30 wt% does not 

seem advantageous, because the plasticizer reduced the interaction of polymer chains to such an extent 

that mechanical properties are substantially hampered.  

On the other hand, the data of Table 1 show also that the addition of 5% Glycerin Polyglycidyl 

Ether (GPE) – the secondary plasticizer – to these blends not only facilitates melt processing but also 

enhances the values of elongation at break with a concomitant small decrease in tensile strength, more 

limited in comparison with the effect of the addition of an analogous amount of TA (Figure 3). 

CDA80TA20GPE5 76 19 5 0 3.67 ± 0.08 80.5 ± 1 9.04 ± 0.4 

CDA70TA30GPE5 66.5 28.5 5 0 1.75 ± 0.03 33 ± 0.5 9.38 ± 0.2 

CDA60TA40GPE5 57 38 5 0 0.34 ± 0.01 10.4 ± 0.4 8.55 ± 0.1 

(CDA80TA20GPE5)Ly10 68 17 5 10 4.78 ± 0.15 95.3 ± 4 7.21 ± 0.5 

(CDA70TA30GPE5)Ly10 59.5 25.5 5 10 2.48 ± 0.08 44.2 ± 0.3 10 ± 0.6 

(CDA60TA40GPE5)Ly10 51 34 5 10 1.4 ± 0.14 21.4 ± 0.6 9.8 ± 0.2 

(CDA80TA20GPE5)Ly10 76 19 5 Ly -10% 4.78 ± 0.15 95.3 ± 4 7.21 ± 0.5 

(CDA80TA20GPE5)Re10 76 19 5 Re - 10% 5.1 ± 0.2 92 ± 3 4.73 ± 0.3 

(CDA80TA20GPE5)MCC10 76 19 5 
MCC - 
10% 

4.58 ± 0.1 79.3 ± 3.7 6.91 ± 0.4 
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Figure 2b. Stress-strain curves for CDA/TA/Ly based blends with different amount of TA 

Mechanical properties of plasticized CDA blends were substantially improved by the addition of 

Lyocell fibers. The elongation at break of the composite materials was unchanged compared to the 

corresponding matrix (Figure 3), while the tensile strength and Young’s modulus increased significantly 

(Figure 3 and Table 1). The preservation of the values of elongation at break, even in presence of fibers 

acting as reinforcement, suggests good adhesion between the fibers and the polymer matrix. This 

hypothesis is also supported by comparing the experimental modulus data with some theoretical models 

which assume good adhesion between the fibers and the matrix (Figures 5a and 5b). Using the modulus 

values for the CDA plasticized at different TA contents, the Kim’s equation (8) and Tandon-Weng’s 

model provides estimates of the composite modulus which are very close to experimental data, while the 

Halpin-Tsai’s equations (8) to (14) seems to provide a lower bound value for the Young’s modulus of the 

materials. 
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  Figure 3. Mechanical properties for CDA/TA/GPE blends with different amount of TA 

and GPE 

The Cox’s model enables an estimation of the critical aspect ratio, i.e. the ratio between the length 

where shear stress transfer occurs and the diameter of the fiber [43]: 

(1 )
2.303 log

4
f m

c
m f

E
a

E

ν π
ϕ

+
=      (17) 

Using a value of 12.5 GPa for the fibre modulus and the values of Table 1 for Em, the critical 

aspect ratio can be estimated to vary from a minimum of 2.9 for (CDA80TA20)Ly10 to a maximum of 
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10.6 for (CDA60TA40E5)Ly10. Since the Lyocell fibers own an aspect ratio of 37, this ensures a proper 

stress transfer from the matrix to the fibers and the buildup of the tensile stress in the fibers up to the 

maximum value achievable in a corresponding composite reinforced with continuous fibers of the same 

type, even for the softest matrix tested in this work.  

 

Figure 4. Hardening modulus of materials with different plasticizers content 

The addition of GPE improves the adhesion between the fibers and the polymer matrix. This effect can be 

measured quantitatively by using the B-factor according to Pukánszky’s equation (15). For example, for 

the composite based on TA-plasticized CDA reinforced with Lyocell fibres – (CA80TA20)Ly10 – a B-

value of 3.77 could be estimated, while for the composite with same fiber volume fraction but with the 

matrix modified by the further addition of GPE –(CA80TA20GPE5)Ly10 – a B-value of 4.86 was 

obtained. On increasing the triacetin content the B-factor for the matrix modified with GPE is always 

larger than for the reference material (Figure 6), but the difference between B-factors referring to the 

same TA content progressively increases, and this divergence is particularly relevant at 40 wt% TA. Thus 

it seems that GPE is more effective on the yield stress on increasing TA content.  
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Figure 5a. Young’s modulus for (CDAxTAy)Ly10 at different TA content. Comparison between 

experimental data and theory prediction 

   

Figure 5b. Young’s modulus for (CDAxTAyGPE5)Ly10 at different TA content. Comparison 

between experimental data and theory prediction 
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Figure 6. Pukánszky’s B parameter of materials with different content of plasticizer 

 

Scheme 2. Mechanism reaction of GPE with Cellulose diacetate and Lyocell fibers 
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This suggests the hypothesis that epoxy groups of GPE could react with the hydroxyl groups 

present on both the Lyocell fibers and along the cellulose diacetate chains, during melt processing, 

improving the fiber-matrix interactions. Thus the fibers could be covalently bonded to the CDA matrix by 

means of a glycerin polyglycidyl ether bridging molecule (scheme 2). 

To test this hypothesis, samples of (CDA80TA20)Ly10 and (CDA80TA20GPE5)Ly10 were 

dissolved in acetone to remove CDA from the Lyocell fibers and check for the evidence of ester groups. 

As shown in Figure 7, the fibers obtained from the composite without GPE show an FTIR spectra totally 

overlapping with that of the original Lyocell fibers, while those removed from the composite with GPE 

modified matrix show an additional peak at 1730 cm-1, corresponding to the stretching of C=O bonds, 

which clearly indicates that the molecule now contains a carbonyl group, not present in the cellulose 

fibers solvent removed from the composite without GPE. This can be interpreted as an indirect proof of 

the presence of CDA molecules attached to the surface of the Lyocell fibers. The GPE seems thus to 

behave both like a plasticizer for the CDA matrix and like a coupling agent. To better assess the potential 

of Lyocell fibers in CDA, it is interesting to compare the behavior of other natural fibers in the same 

matrix. 
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Figure 7. FTIR spectra (see text for details) 

Table 1 compares the tensile strength of composites based on cellulose diacetate and wood flour 

(Rettenmaier) and microcrystalline cellulose at fixed content of multi-plasticizers (20% TA and 5% 

GPE). The tensile strength and elongation at break of Lyocell fibers/plasticized CDA (CA80TA20GPE5) 

composites are higher than for the corresponding composites reinforced with the lignocellulosic fibers 

(Rettenmaier EFC 1000, Re for short), particularly as far as the elongation at break is concerned, while 

the composite with microcrystalline cellulose show an intermediate behavior. For these composites, 

however, the Young’s modulus pursues a different pattern, with the composites with lignocellulosic fibers 
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showing the highest value, followed by the composites reinforced with Lyocell fibers, while the 

composites filled with microcrystalline cellulose presents the smallest values. In fact, Lyocell fibers have 

the highest aspect ratio, so one would expect that the composites with these fibers should have the highest 

modulus, and the slightly higher stiffness of the composites with lignocellosic fibers can be explained by 

their higher inherent Young’s modulus due to the presence of lignin in these fibers. On the other hand, the 

elastic modulus of composites with microcrystalline cellulose (MCC) shows the lowest value because of 

their small aspect ratio. In fact, using Equation (17) and a Young’s modulus of 25 GPa [44] a critical 

aspect ratio (arc) of 4.6 can be estimated for MCC, that is a value above the actual aspect ratio (ar = 2-4) 

of this type of fibers. The same calculation provides a value of arc = 3.3 for the lignocellulosic fibers, by 

assuming a Young’s modulus of 13.5 GPa [45]. Since for these fibers ar = 6.7, this ensures a superior 

stress transfer between the matrix and the reinforcement respect to the MCC fibres.  

While the tensile strength of composites with Lyocell and lignocellulosic fibers are quite similar, 

the elongation at break of the samples with Lyocell fibers is sensibly higher. This can also be explained 

with presence of lignin in Rettenmaier fibers which makes these fibers stiffer than the Lyocell but more 

brittle. 

4.2 Thermal behavior 

The thermogravimetric and derivative thermogravimetric curves of CDA blends with different 

amounts of plasticizers are reported in Figures 8a and 8b, respectively, the corresponding data are 

accounted for in Table 2. The pure CDA degrades in a single step starting from an initial temperature, Ti 

= 320 °C to the final temperature Tf = 480 °C, with a DTG peak temperature at 410 °C, which can be 

attributed to the thermal degradation of acetate functional groups and glucose rings in the polymer chains.  

In CDA samples with plasticizers, two degradation steps were observed, instead. The first 

degradation interval observed at lower temperatures, can be related to the TA content, since the 

temperature of complete degradation decreases and the DTG peak is broadened with increasing plasticizer 

content. 
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Figure 8a. TGA curves for CDA/TA/GPE blends with different amounts of TA and GPE 

 

Figure 8b. DTG curves for CDA/TA/GPE blends with different amount of TA and GPE 

The temperature of this peak is around 310 °C, higher than the boiling temperature and near to the 

decomposition temperature of TA. The weight loss related to this peak is consistent with the amount of 
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TA added, so it was assessed that there was practically no loss of plasticizers during processing, via 

volatilization. The second degradation peak starts at about 340 °C, which is near to the initial degradation 

temperature of pure CDA. Since the first DTG degradation peak is attributed to TA and the second to 

CDA, this suggests the presence of just physical interactions (van der Waals and hydrogen bonding) 

between CDA and TA. Besides, the thermal stability of materials was slightly changed in the samples 

where GPE was present. Although there are no specific DTG peaks that can be associated to the 

degradation of GPE, probably masked by other peaks since only a small amount of GPE (5%) is present 

in these materials, the DTG peak for CDA60TA40GPE5 is about 10 °C higher of the corresponding peak 

for CDA60TA40. This suggests interactions between TA and GPE which increase the thermal stability of 

the blend 

.  

Figure 9a. TGA curves for CDA/TA/GPE/Lyocell fibers (10phr) composites with different 

amounts of TA and GPE. 

Figures 9a and 9b shows the thermogravimetric and derivative thermogravimetric curves of CDA 

and 10 wt% of Lyocell fibers with different plasticizer content. The thermal behavior of Lyocell 
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reinforced CDA composites is similar to that shown by the corresponding matrix. In the 

thermogravimetric curve of Figure 9a, the first stage is related to the decomposition of TA, but the 

starting temperature and DTG peak temperature are about 10 degrees lower than in samples without 

fibers. This phenomenon might suggest a reduced interaction between TA and CDA molecules.  

 

Figure 9b. DTG curves for CDA/TA/GPE/Lyocell fibers (10phr) composites with different amounts of 

TA and GPE 

No specific weight loss interval seems to be associated to the degradation of Lyocell fibers. Similar to 

GPE, the effect of Lyocell fibers is not clear due to their small amount. Moreover, the degradation 

interval of Lyocell fibres is partially overlapping to that of CDA. In fact, pure Lyocell fibers show an 

initial degradation temperature Ti  = 220 °C, compared to a corresponding value of 310 °C for CDA, and 

a final decomposition temperature Tf  = 420 °C (450 °C for CDA) with a DTG peak at 380 °C (410 °C 

for CDA). Thus, in the second stage, the initial temperature for the composite is lower than the 

corresponding matrix without fibers because, the Ti of Lyocell fibers is shifted 90 °C lower respect to 

CDA. On the contrary, the DTG temperature peak in second stage of CDA80TA20Ly10 is 386 °C which 
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is close to the degradation peak of Lyocell fibers. Meanwhile, the DTG temperature peak of 

CDA60TA40Ly10 is 406 °C, quite similar to pure CDA (410 °C). This might be a consequence of a 

higher level of interaction between fibers and CDA in the composites with lower TA content.  

 

Table 2. Thermogravimetric data of CDA/TA/GPE5/Ly10 with different amounts of plasticizers 

It was also shown in the analysis of the tensile tests, that exceeding a TA content of 30 wt% does not 

seem advantageous, so this results further supports the view that there is a maximum level of this 

Blends 

First stage Second stage 

Temperature 

    range, 0C 

Temperature 

     peak, 0C 
Wt loss, % 

Temperature 

    range, 0C 

Temperature 

     peak, 0C 

Wt loss, 

% 

Pure CDA 310-980 410 100        -     - - 

CDA80TA20 200-340 310 20 340-960 390 100 

CDA80TA20GPE5 200-347 320 20 347-960 392 100 

CDA60TA40 130-345 305 40 345-855 402 100 

CDA60TA40GPE5 140-346 316 42 346-675 392 100 

Lyocell fibers 220-572 380 100 - - - 

(CDA80TA20)Ly10 190-315 290 18 315-940 386 100 

(CDA80TA20GPE5)Ly10 190-336 304 20 336-954 377 100 

(CDA60TA40)Ly10 120-332 277 37 312-905 406 100 

(CDA60TA40GPE5)Ly10 130-352 280 40 352-1000 383 94 
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plasticizer which should not be overcome to avoid substantial degradation of the physical-mechanical 

properties. 

The presence of GPE introduces some differences in the thermogravimetric curve of Lycell fiber 

reinforced cellulose diacetate. Comparing the second stage decomposition of (CDA80TA20)Ly10 and 

(CDA80TA20GPE5)Ly10, (CDA60TA40)Ly10 and (CDA60TA40GPE5)Ly10, we observe that the 

initial temperature is clearly higher for the samples including GPE. This further suggests that a chemical 

bonding is formed between Lyocell fibers and cellulose diacetate through epoxy function of GPE. 

4.3 Relaxation transitions, structure 

Figure 10a presents the DMTA spectrum for cellulose diacetate and its composites with different 

plasticizer content. The temperature dependence of storage modulus and loss tangent is shown in this 

figure. Considering the curves with TA only, we observe two major transitions for the blends at 20 and 

30% TA, while for the sample with 40% TA three tan δ peaks are visible. The high temperature peak 

corresponds to the glass transition of CDA [46-47]. The addition of plasticizer leads to a linear decrease 

in the α-transition temperature of CDA (Figure 10) which can be fitted with Gordon and Taylor [48] 

equation (18): 

1 1 1 2

1 1

(1 )

(1 )
g GT g

g
GT

x T k x T
T

x k x

+ −
=

+ −
      (18) 

using the values of Tg 1 = -68 °C for triacetin and Tg 2 = 195 °C for pure CDA [47,49], and an interaction 

parameter kGT = 0.96. These data are in agreement with previously published research work [12] and they 

can be explained by the large miscibility of CDA and TA [50]. 
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Figure 10a.  DMTA curves for CDA/TA/GPE blends with different amounts of TA and GPE 

The low temperature peak at -28 °C, normally defined as the β-peak, is sometimes associated with 

the movement of the glucose ring units or to water associated with hydroxymethyl groups [46]. The 

sample at 40% TA shows an additional peak in loss tangent at about 60 °C while the β-peak at -28 °C is 

much more pronounced than the other two samples. The additional peak at 60 °C can be probably 

identified with the β∗-peak discussed by Scandola [47] as a water-related relaxation. This explanation 

does not seem to hold in the present case since no weight loss associated with water can be identified in 

the thermogravimetric curve for CDAxTAy blends. In fact the materials were dried before extrusion and 

kept in a close environment prior to testing, so water pick-up was minimum. Pukánszky and co-workers 
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[46] also reported about a β'-peak associated to a relaxation of structural units larger than a single glucose 

ring and dependent upon sample preparation conditions.  

 

Figure 10b. DMTA curves for CDA/TA/GPE/Lyocell fibers composites with different amounts of 

TA and GPE 

The fact that this transition is present only in the sample with larger TA content can lead us to a 

tentative explanation. At low TA content, the molecules of this plasticizer intercalate between the chains 

of polymers, spacing them apart and increasing the "free volume". This increased space between polymer 

molecules enables to reduce the activation energy for the cooperative motions of the main chain and has 

the effect of significantly lowering the glass transition temperature of CDA. At higher TA content, a 

critical value of free volume is reached where several glucose ring along the chain have enough space to 
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cooperative move even below the Tg of the polymer. This could explain both the increase in intensity of 

the β-peak increases in intensity and the appearance of the β'-peak. 

Comparing the loss tangent vs. temperature curve for CDA80TA20 and CDA80TA20GPE5, we 

notice that there are no new peaks that can be associated to GPE, although, the α-transition temperature of 

CDA is further reduced by about 20 °C. This means that the second plasticizer is also miscible with 

cellulose diacetate, and only one homogeneous phase is present in the system. We have shown that a 

reaction between epoxy groups of GPE and hydroxyl functions of Lyocell fibers is likely to have 

occurred, so a similar reaction might occur between GPE molecules and CDA polymer chains. Although 

the specific study of the detailed mechanism of interaction between GPE and CDA is beyond the 

purposes of this work, it is likely that GPE behaves like an internal plasticizer while TA is an external 

plasticizer. 

 

Figure 11. Glass transition temperature versus triacetin content for CDA/TA blends 

Moreover, the curves of storage modulus versus temperature shown in Figures 10a and 10b, 

indicate that, while modulus is obviously decreased by an increase in the plasticizer content, the addition 
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of Lyocell fibers compensates this loss in stiffness. Considering the loss tangent versus temperature 

curves, it is possible to observe that the α-transition temperature of CDA is unchanged in presence of the 

fibers – compare curves for CDA80TA20 and (CDA80TA20)Ly10. On the other hand, the addition of 

Lyocell fibers is also accompanied by the appearance of a shoulder in the α-peak of the tan δ curve, 

which may indicate a new hidden peak related to the presence of the fibers, around 95 °C, partially 

overlapping with the glass transition of CDA. A possible explanation is that the Lyocell fibers have just 

physical interactions with the polymeric matrix. This shoulder disappears when GPE is added to the 

composite. Moreover, the glass-transition peak is shifted further down in temperature, at about 115 °C, in 

presence of GPE. This further supports the hypothesis of an increased interaction between fibers and the 

reactive plasticizer. 

4.4  Morphology 

The fracture surfaces of cellulose diacetate with different amounts of plasticizer are reported in 

Figure 12a, b, c. The morphology of these blends appears homogeneous also at high plasticizer content as 

well as in the presence of GPE. That means that both plasticizers are compatible with CDA. Moreover, 

the good interaction between Lyocell fibers and polymer matrix is confirmed by examining Figures 13a, b 

and c. With 20% TA, it is clear that most of the fibers were stressed until break, just a small amount of 

them being pulled-out. The amount of pulled-out fibers seems to increase upon increasing TA content, as 

shown in Figures 13a and 13c images. This is a consequence of the reduction of yield stress of the matrix 

which lowers the interface shear strength and leads to an increase in the critical fiber length, as discussed 

previously. However, figures 13a, and b show that the adhesion of fibers to the polymeric matrix was 

improved by the addition of GPE. By combination of tensile testing, DMTA, FTIR and TGA studies, it 

could be concluded that chemical interactions are established between Lyocell fibers and polymer matrix 

through the epoxy functions of GPE. 
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Figure 12. SEM micrographs for CDAx/TAy matrix 

Moreover, the morphology of different natural fibers can be observed in Figures 13d and 13e. In 

case of microcrystalline cellulose and lignocellulosic fibers, a certain number of fiber agglomerates with 

sizes of the order of about 100 µm can be noted. Meanwhile, microcrystalline cellulose and wood flour 

presented better interaction with polymer matrix than Lyocell fibers because of their surface roughness. In 

particular, wood flour has also about 15 % content of lignin, which could have reacted with GPE, during 

extrusion. 

CDA (80phr)/ TA (20phr)  CDA (80phr)/ TA (20phr)/ GPE (5phr) 

CDA (60phr)/ TA (40phr)  
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Figure 13. SEM micrographs for CDAx/TAy/ fibers composites 

On the other hand, the mechanical properties of composites with CDA and wood flour and 

microcrystalline cellulose (MCC) cellulose do not present better mechanical properties respect to those 

CDA (80phr)/TA (20phr)/Ly (10phr)  CDA (80phr)/ TA (20phr)/ 
GPE (5phr)/Ly (10phr) 

 
 

CDA (60phr)/TA (40phr)/Ly(10phr)  CDA (80phr)/ TA (20phr)/ 
GPE (5phr)/Re (10phr) 

 

CDA (80phr)/ TA (20phr)/ GPE (5phr)/MMC(10phr) 
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prepared with Lyocell fibers, possibly because of the low aspect ratio and not uniform geometry for wood 

flour and MCC. 

 

V. GENERAL DISCUSSION 

Although CDA is a long time known and used polymer, biocomposites based on CDA have not 

received recently as much attention in R&D as those based on other biopolymers such as polylactic acid, 

as attested by the limited recent literature on CDA based composites, despite the fact that cellulose is the 

most abundant biopolymer on our planet. One of the reasons is related to the difficult processability since 

the processing temperature for CDA is very close to the degradation temperature. Thus, there is the need 

for the addition of plasticizers such as phthalates which make the material not suitable for composting or 

biodegradation. 

Thus, as mentioned above, some studies considered different plasticizers, more compatible with the 

envinronment like triethyl citrate or triacetin, blending with other biopolymers and producing 

biocomposites.  

Triacetin is a relatively low viscosity liquid (at 20 °C = 23 mPa•s) that can easily diffuse into CDA 

molecules, leading to a rapid depression of its Tg, thus enabling a larger processing window for 

plasticized CDA. On the other hand, the GPE used in this study shows a much higher viscosity (at 25 °C 

about 250 mPa•s), thus higher temperatures and much longer times are required for its diffusion into 

CDA. Also GPE has shown to be capable of reacting with the matrix, thus acting more as an internal 

plasticizer. Thus, the new strategy developed in this work, which makes use of a system of two different 

plasticizers: 

• a primary “external-type” or “non-reactive-type” plasticizer added prior to extrusion to enhance 

the “processing window” of the polymer. 

• a secondary “internal-type” or “reactive-type”, added during the extrusion step to reduce the 

amount of potential volatiles or leachable products in the final product and to help in the reduction of 
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viscosity and thus further improving processability, may prove as an extremely useful approach in 

establishing a new process route for CDA based biocomposites. 

On the other hand, many natural fibers used in composites possess a limited aspect ratios, and their 

non-homogeneity in both fiber diameter and fiber length and their size distribution, results in limited 

property enhancement, and little materials reproducibility. 

Lyocell, also known as Tencel, is an artificial microfiber made from regenerated wood pulp 

cellulose. It is produced by spinning bleached wood pulp dissolved in a nontoxic (“green”) organic 

solvent, N-Methylmorpholine-N-oxide or MMNO, which can recovered by washing the freshly spun 

cellulose microfibers in water, and later purified, and recycled. Both fiber diameter and fiber length can 

be accurately controlled during the production process. 

In this study, we investigated Lyocell fibers reinforced CDA biocomposites and the effect of the 

content of two plasticizers (TA and GPE). In first instance it was considered the performance of the 

system, with and without regenerated cellulose microfibers, varying the TA amount from 20% to 40% by 

weight. Then GPE was evaluated as not only as a second plasticizer but also to improve the interactions 

between the fibers and the polymer matrix and consequently to target an increase in stiffness. The 

resulting materials showed excellent mechanical properties, much better than those reported in the 

literature for CDA composites prepared with traditional plasticizers and fillers. A comparison with other 

eco-friendly fillers like wood flour and microcrystalline cellulose, tested in this paper, showed that 

cellulose diacetate composites with Lyocell fibers showed superior dispersion in the polymer matrix, and 

higher mechanical properties, related to the higher aspect ratio of these fibers and to the good bonding 

with the polymeric matrix.  

Without overlooking the difficulty of scaling-up a process from lab-scale to industrial-scale, this 

new approach enables to envisage potential innovative biocomposites, based on a readily available natural 

resource. 
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VI. CONCLUSIONS 

The mechanical properties, thermal stability and morphology of biocomposites based on cellulose 

diacetate, plasticized with a combination of reactive and non-reactive plasticizers and reinforced with 

fibers from natural resources, were investigated.  

Values of tensile strength and Young’s modulus decreased with increasing the plasticizer content. 

A good compromise between processing and mechanical properties for the composites with Lyocell 

cellulose fibres was obtained for the systems where CDA is plasticized with 20 wt% TA. The presence of 

GPE not only improved processability but also increased values of elongation at break in the materials 

produced.  

Thermo-gravimetric analysis confirmed that only physical interactions (hydrogen and van der 

Waals forces) are established between CDA and TA while stronger interactions (covalent bonds) are 

observed by the introduction of GPE.  

The glass transition temperature Tg decreased due to effect of the primary plasticizer, as 

investigated by DMTA testing.  

SEM micrographs evidenced that, in samples with 20 wt% TA, the fibers were stressed until break, 

with just a small amount being pulled-out. Fiber pull-out was more evident with increasing the plasticizer 

contents. The adhesion of the polymeric matrix with the fibers improved by the addition of GPE, possibly 

because of the formation of strong chemical bonds with polymer matrix through the epoxy groups of 

GPE.  

Besides, the mechanical properties of cellulose diacetate composite with different natural filler 

were determined as a reference. They showed high tensile strength as well as a good dispersion of fibers 

within the polymer matrix.  However, the lower aspect ratio of the filler and the less uniform dispersion in 

the polymer matrix prevented the achievement of the same level of mechanical properties obtained by the 

composites with Lyocell fibers.  
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Considering both processing conditions, economic aspects and availability of raw materials on the 

market, bio-composites based on plasticized CDA reinforced with regenerated cellulose (Lyocell) 

microfibers could become an interesting option for the production of “green” biocomposites. 
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Chapter 3 

Compatibilization of Poly(lactic acid)/Polycarbonate blends through 

reactive blending and in-situ copolymer formation 

 

 

I. INTRODUCTION 

The development of new materials derived from renewable sources is a goal of high technological 

and environmental importance. In this context, polymers derived from agricultural sources, such as 

polylactic acid (PLA) and its copolymers, are of great importance today [1]. Currently, one of the 

processes used in the production of PLA is that starting from corn starch [2]. Even though this product is 

of great interest, as compostable material derived by renewable resources, and has certain advantages 

when compared to traditional plastics, like high elastic modulus and transparency, the nature of polyester 

of PLA presents very important limitations such as high hydrolytic susceptibility, low thermal stability, 

brittleness and low crystallization rate. Improvement in PLA-based products are continuing either by the 

use of additives or through new formulation or copolymers. However, despite commercial advancements 

there is still considerable request for cost-effective methods to enhance PLA properties [2]. Its relatively 

low glass transition temperature (Tg), around 60°C, does not allow the polymer to maintain its mechanical 

properties in the temperature range during glass transition. Moreover, the possibility that further 

crystallization may occur at temperature values above the Tg may result in the dimensional instability of 

the manufactured items under the operating conditions. These features preclude the use of PLA-based 

materials in areas such as automotive parts, electrical and electronic equipment, as well as durable 

consumer goods such as mobile phones. 
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In principle, PLA-based materials that are able to maintain their mechanical properties in 

temperatures above Tg and below the melting temperature can be obtained:  

a) by a crystallization process, either by reheating after moulding or through the use of nucleating 

and accelerating agents, 

b) by physical mixing with a second polymer component, immiscible with the PLA, which is 

characterized by a glass phase having a high Tg [3]. 

In the instance of using crystallization, a well-known method is used where the PLA is reheated 

(annealed) after molding to improve the degree of crystallization; there is also the method of molding the 

PLA while a nucleating agent is added. The method of annealing after molding does not only present the 

problems of having a complicated molding process and a long molding period, but the annealing process 

requires the use of a die or something similar in order to avoid deformation involved with crystallization, 

therefore creating problems in terms of cost and productivity. 

Regarding the method of adding a nucleating agent, the development of a crystallization nucleating 

agent to improve the degree and rate of crystallization is at an advanced state; however, even if a state-of-

the-art crystallization nucleating agent is added, a crystallization period of about 2 minutes is required, 

and therefore it is not possible to use a molding cycle similar to that of a petroleum-derived and general-

purpose resin. Furthermore, it is necessary to conduct crystallization at a temperature around 100 to 

110°C, whereby it is not possible to conduct injection molding with a normal water cooled mold, 

presenting the problem of increasing the environmental impact due to a required high molding 

temperature. Moreover, when only polylactic acid is crystallized, a maximum heat deflection temperature 

(HDT) of around 55°C (at a load of 1.80 MPa) can be obtained even if sufficient crystallization is 

obtained through annealing or the like, whereby there is a problem of an insufficient heat resistance. 

In order to avoid these problems, an investigation was carried out to prepare a copolymer by melt 

blending PLA with Polycarbonate (PC). In the patent literature blends of PLA with PC [4-6], as well as 

with some other commercially-available products [7-8] have been already described although with other 



Chapter 3: Compatibilization of Polylactic acid/ Polycarbonate 

 

Sustainable Biocomposites from Renewable Resources and Recycled Polymers 

78 

 

types of process. PC has been widely used as an engineering plastic with high thermal stability and 

mechanical properties (high tensile strength and elongation at break) [9].  However, most of the blends 

between different polymers are immiscible, and adhesion between the two polymers is weak due to high 

interfacial tension and weak entanglements. This happens when the polymers involved are incompatible. 

It is clear that the polymer system must exhibit a good adhesion between the phases in order to achieve 

good mechanical properties of polymer blends, and, above all, tensile strength. 

There has been an extensive amount of literature investigating PLA blending and property 

modification, and its effects on characteristics such as biocompatibility or miscibility. In order to improve 

the compatibility between two immiscible components, a third component is added as a compatibilizer or 

catalyst in most cases. The compatibilizer can be either premade or formed in situ during melt blending. 

One successful application of reactive blending is the addition of peroxides to several PLA blends [10-13] 

by simultaneous melt blending. It was shown that the addition of peroxides to those polymers blends 

forms cross-linked and/or branched structures by heteroradical coupling reactions, which improve the 

compatibility of the polymer blends, the melt tensions, and the extrusion stability. The other reactive 

application is principally based on the reactions between end functional groups (i.e., A-OH or A-COOH) 

of PLA and other complementary functional groups (mainly epoxide groups) of the compatibilizers, for 

example, glycidyl methacrylate (GMA) [14-15], POE-g-GMA modifier [16], and the chain extension of 

PLA with multifunctional epoxide [17]. Similarly for polylactic acid, the blending of Polycarbonate with 

the other polymer ester improved phase interaction by using some coupling agent for reaction with both 

functional groups of two components [18 -19] or some catalyst for transesterification such as Dioctadecyl 

phosphate [20,21], Alkyl titanium [22], Tin(II) octoate [23], Tetrabutyltitanate [24], tetrabutylammonium 

tetraphenylboratetc [25], etc. Specifically, Polycarbonate was used as a good component for blending 

with polyethylene terephthalate (PET), which was known as a common polymer and widely applied over 

the last 20 years. Moreover, some studies applied transesterification to obtain the copolymer of PC and 
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semicrystalline PET to develop some advantageous properties such as transparency, stable processing, 

high thermal resistance and crystallinity of materials, etc. [20-23, 26-28]. 

However, PET is a polymer which can be recycled but that is not biodegradable. Nowadays, with 

the tendency of developing materials based on natural resources or more environmentally friendly, 

biobased-polymers and biocomposites have been the object of a growing interests both among researchers 

as well as industrialists. Of all the new biopolymers, PLA has become, over the past 10 years, the 

biopolymer with the fastest commercial growth, despite the previously mentioned disadvantages. Due to 

these reasons, only several studies were carried out on blended polylactic acid and polycarbonate (Tg 

~160oC)as to maintain the thermal resistance and to increase the biodegradation and recyclability of 

materials [23-24, 29-33].In particular, the literature makes reference to several patents and articles that 

described alloys based on PLA and aromatic polycarbonate (PC). However, the PLA/PC blends normally 

show a phase separation behavior and the interface between two phases is quite weak because of the high 

interfacial tension between polycarbonate and PLA. In these polymeric compounds, compatibilization 

agents of polymeric nature have also been used in order to improve the interface adhesion between the 

various phases. In these systems, however, the problem of limited compatibility between the phases due 

to the substantial difference in the chemical structure of the two components (PLA and PC) remains. Most 

studies used the extrusion method for processing, but the processing lasted over long periods of time (10 

to 60 minutes). That condition is not realizable for industrial processing, because of the degradation of 

materials and of the energy cost. Although Kanzawa and Tokumitsu [33] added a toughening agent 

(PBAT) to PLA/PC blends, two steps of extrusion processing were needed and the thermal resistance was 

decreased by the presence of PBAT. In the other studies on PLA/PC blends [29-32], the thermal 

resistance and interface adhesion between the two components were slightly enhanced. Although the 

author used catalysts and compatibilizers for blending PLA and PC, little chemical evidence of their 

interaction could be demonstrated because of the presence of similar chemical functions in the polymer 
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chains of both polymers. Moreover, the biodegradation and thermal behavior of the blends were not much 

investigated.  

From the above results, it is evident that there is a great need of new biodegradable copolymers 

based on polylactic acid and aromatic polycarbonates that maintain optimum mechanical properties, more 

specifically, tensile strength at temperatures that are higher than the glass transition of the PLA phase and 

preferably suitable for the production of materials for different industrial sectors such as transportation, 

electronics and the electrical equipment industry. In this work, new copolymers have been prepared by a 

process of reactive blending in the molten state, starting from mixtures of polylactic acid (PLA) and an 

aromatic polycarbonate (PC). The mixing conditions such as temperature and duration of mixing are 

selected to obtain interchange reactions between the base polymers. The procedure has been shown to 

lead to the obtainment of new materials with the structure of block copolymers, whose structure and 

molecular masses are advantageously adjustable by controlling the parameters of the mixing process. 

After that, the copolymer will be investigated regarding its mechanical properties, morphology, thermal 

and biodegradation behavior to satisfy the requirements of all the properties of these potential materials, 

which will serve for broadening the applications of bio-based polymers and composites to the market. 

 

II. EXPERIMENTAL 

2.1 Materials 

Poly (L-lactic) acid was purchased from NatureWorks LLC having a nominal average molecular 

weight Mw = 199590 Da (IngeoTM 2002D Extrusion Grade), density 1.24g/cm3. Polycarbonate of 

bisphenol A (Iupilon S3000) with a density of 1.20 g/cm3 and average molecular weight Mw = 20 kDa 

was purchased from Mitsubishi Engineering Plastics. Triacetin (TA, also known as glycerin triacetate or 

1,2,3-triacetoxypropane, CAS # 102-76-1) and Tetrabutylammonium tetraphenylborate (TBATPB, CAS # 

15522-59-5) were purchased from Aldrich Chemicals. The chemical structure of these raw materials is 

showed in Scheme 1. 



Chapter 3: Compatibilization of Polylactic acid/ Polycarbonate 

 

Sustainable Biocomposites from Renewable Resources and Recycled Polymers 

81 

 

 

O

O

O

O

CH3

CH3

H3C

O

O

    

O

O
HO

CH3 O

O

CH3

OH

OCH3

n
 

 

 

COC

O

O

CH3

CH3

OH
n

H

                  

 

 

Scheme 1. Chemical structure of used raw materials. 

2.2 Processing 

The starting polymers were first dried at a temperature 60oC at a pressure of 1 mm Hg for four 

days. Then the polymers (PLA and PC) were mechanically mixed for about 10 minutes with different 

ratios of PLA/PC by means of a high speed mixer. After this mixing stage, the Triacetin and TBATPB 

were added and mixed for an extra 10 minutes using the same equipment. The resulting mixtures were 

processed with a MiniLab II Haake Rheomex CTW 5 conical twin-screw extruder (Thermo Scientific 

Haake GmbH, Karlsruhe, Germany).The mixing was conducted at a temperature of 210°C and 230°C 

with a screw speed of 100 rpm for a recycling time of one minute. After extrusion, the molten materials 

were transferred through a preheated cylinder to the Haake MiniJet II mini injection molder (Thermo 

Scientific Haake GmbH, Karlsruhe, Germany), to obtain ASTM D638 V dog-bone tensile bars used for 

measurements and analysis. The specimens were placed in plastic bags for vacuum sealing to prevent 

moisture absorption. 

 

Triacetin (TA) Polylactic acid  (PLA) 
   

Polycarbonate Bisphenol A (PC)              TetrabutylammoniumTetraphenylborate (TBATPB) 
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2.3 Characterization methods 

Tensile tests were performed at room temperature, at a crosshead speed of 10 mm/min, by means of 

an Instron 4302 universal testing machine (Canton MA, USA) equipped with a 10 kN load cell and 

interfaced with a computer running the Testworks 4.0 software (MTS Systems Corporation, Eden Prairie 

MN, USA).  

Differential scanning calorimetry (DSC) measurements were carried out for investigating the 

thermal behavior of materials with a TA Q200 instrument (TA Instruments, Newcastle, DE, USA) with 

nitrogen as the carrier gas and indium used for calibration. The samples were first heated from -100oC to 

250oCat 10oC/min, and then cooled to -100oC at 20oC/min. Then, the second heating was investigated in 

the same conditions as the first heating. 

Size exclusion chromatography (SEC) analysis was performed with a Jasco PLUS system 

consisting of a PU-2029 pump, CO-2063column oven set at 80oC, RI-2031 differential refractometer, and 

UV-2077 UV detector, fitted with two PL-Gel Mixed D columns. Column calibration was performed with 

narrow distribution poly(styrene) standards. A 4 mg/mL solution of the polymer in THF (0.1% w/V) was 

filtered through a 0.2 mm membrane syringe filter and 20 mL was injected using the same solution as the 

eluent at 1 mL/min flow rate. 

NMR 13C spectra have been acquired on a BRUKER DRX400 Spectrometer in a deuterated 

chloroform. Excitation pulse for 13C was calibrated to 30°C, and the repetition time was 1.5s. Proton 

irradiation was applied before each scan for Nuclear Overauser Enhancement and during FID acquisition 

of 1s for heteronuclear decoupling. 

The chemical bonding of PLA and PC polymers was analyzed by using a Nicolet 380 spectrometer 

with Diffuse Reflectance Accessory (DRIFT). The composite was dissolved in choloroform, and the 

fibers were dried under a vacuum at 1400C for 24 hours. The materials were mixed with potassium 

bromide (KBr) in order to obtain the DRIFT spectra. During the DRIFT measurement, pure potassium 

bromide was chosen as a background. 
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Thermogravimetric Analysis (TGA) was run under the flow of nitrogen gas at a scanning speed of 

10 °C/min, from room temperature to 1000 °C, using a TGA 1000 instrument (Rheometric Scientific Inc., 

USA).  

Dynamic mechanical thermal analysis (DMTA) was carried out on a Gabo Eplexor® 100N (Gabo 

Qualimeter GmbH, Ahlden, Germany). Test bars were cut from the tensile bar specimens (size: 20 x 5 x 

1.5 mm) and mounted on a tensile geometry. The temperature used in the experiment ranged from -100 

°C to 170 °C, at a heating rate of 2 °C/min and frequency of 1 Hz.  

The morphology of the composites was studied by scanning electron microscopy (SEM) using a 

JEOL JSM-5600LV (Tokyo, Japan), by analyzing the fracture surfaces of the samples broken in liquid 

nitrogen. Prior to SEM analysis all the surfaces were sputtered with gold. 

The transmission electron microscope (TEM) study, operated at 120 kV, was performed by using a 

JEOL 1210. The samples were trimmed with a Leica ULTRACUT E ultramicrotome room using a 

diamond-trimming knife and ultra-thin sectioned with a Leica ULTRACUT E ultramicrotome using a 

diamond knife. The section thickness was nominally 70 nm (setting).TEM-micrographs were made of 

representative areas of the samples at 3000X magnifications. 

An aerobic biodegradability test of three materials was carried out under controlled composting 

conditions according to ISO 14855. The test materials were tested in the form of granulates. The 

composting inoculum was derived from an organic fraction of municipal solid waste that was aerated and 

stabilized under pilot-scale composting conditions over a period of more than 20 weeks. The compost was 

sieved to remove particles over 5 mm in size, and the fine fraction was then used as the inoculum. Control 

reactors contained only this inoculum without test material. The reactors were then placed in an incubator 

without light at 58°C ± 2°C and continuously aerated. During biodegradation, microorganisms present in 

the inoculum converted carbon in the reference or test material into CO2. The gas leaving each individual 

reactor was analyzed at regular intervals for CO2 and O2 content, and the gas flow rate was measured. 

Biodegradation was determined as the percentage of the carbon in the starting reference or test material 
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that was converted into CO2.  Continuation of the biodegradation test was possible since sufficient O2 

supply was present in the reactor headspace. The reactor also held a beaker containing an aqueous 

solution of KOH to absorb CO2 released during the composting process. The tests were fully completed 

after 150 days. 

 

II. THEORETICAL ANALYSIS 

The Young’s modulus of binary blends will change as the amount of polymers varies due to the 

different effects on the mechanical properties of constituent polymers and the phase behavior of blends. In 

the literature, there are several studies that attempt to predict the mechanical properties of binary polymer 

blends [34-35]. In particular Davies proposed for the modulus of blends with dispersed morphologies the 

following expression [34]: 

E1/5=φ1E1
1/5+φ2E2

1/5  (1) 

where E1and E2 are the elastic moduli of the two components. 

 

 

Figure 1. Three-dimensional models for the calculation of the modulus of  

dispersed polymer blends (a and b) and co-continuous polymer blends (c and d). 
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Another model to describe droplet/matrix blends, was proposed by Barentsen [35] who extended the 

combination of parallel and series elements as proposed by Takayanagi for two-dimensional geometries 

to a three-dimensional arrangement. 

Barentsen’s model can either be described as a series model of parallel parts (Fig. 1(a) and Eq. 

(1)) or a parallel model of serial linked parts (Fig. 1(b) and Eq. (2)). The unit cubes, as shown in Fig. 1(a) 

and (b), can be used for modeling polymer blends with a droplet/matrix morphology when the dispersed 

particles are evenly distributed in the matrix. 
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The modulus of the blend (Ea or Eb) is expressed as a function of a volume fraction (

31d mφ φ λ= − = ), the modulus of the dispersed phase (Ed), and the modulus of the matrix (Em). 

However, in polymer blends, the morphology of the materials will be different as the proportions of 

each component vary. The morphology of the blends, which can show a changing phase behavior from 

phase-separation, to the formation of co-continuous phases and even phase inversion, will have a 

significant effect on the final properties and makes the prediction of such models, which do not consider 

the type of phase morphology, not fully reliable. In fact, both the Davies’s and Barentsen’s models, based 

only on the properties of the individual separated phases, do not fit well with the experimental data for co-

continuous blends.  

In a co-continuous morphology, the dispersed phase does not consist of separate particles in the 

matrix phase, but is interconnected and forms elongated domains, which extend throughout the matrix. To 

visualize co-continuity, Veenstra and co-workers proposed that the dispersed phases consist of three 

orthogonal bars of polymer 1 embedded in a unit cube where the remaining volume is occupied by 

(2) 
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component 2. Repeating this unit cube in 3D shows that component 2 has the same framework as 

component 1, i.e. both the components are interconnected. In a similar manner to Barentsen, relations for 

a series model of parallel parts (Fig. 1(c) and Eq. (3)) and for a parallel model of serial-linked parts (Fig. 

1(d) and Eq. (4)) can be derived [36] as: 

 

4 3 2 3 2 2 3 3 4 2
1 1 2 2

3 2 2 2 2 3
1 2

( 2 ) 2( 3 ) (2 )

( 2 ) (2 )c

a a b E a b a b ab E E ab b E
E

a a b ab E a b ab b E

+ + + + + +=
+ + + + +

  (4) 

 

2 3 3 2 2
1 1 2 2

1 2

( 2 )
d

a bE a ab b E E ab E
E

bE aE

+ + + +=
+

    (5) 

Where a is related to the volume fraction of component 1 by  2 3
13 2a a φ− =  and b is related to 

the volume fraction of component 2 by 1b a= − . 

The model as depicted in Fig. 1(a) and equation (2) will be applied when the stiff component 

dominates and Fig. 2(a) and equation (3) as the stiff component is the minor phase. The same arguments 

can be used for the parallel model of serial-linked parts (Fig. 1(d) and Eq. (5)) and the series model of 

parallel-linked parts (Fig. 1(c) and Eq. (4)) that were derived for co-continuous blends. 

 

IV. RESULTS AND DISCUSSIONS 

4.1 The effect of processing conditions 

To find the best conditions for processing Polylactic acid (PLA) and Polycarbonate of bisphenol A 

(PC) in extrusion, we chose the blend with PLA/PC having 40% and 60% in weight, respectively. The 

blends were processed with the temperatures and catalysts following the table below 
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Blends PLA (wt%) PC (wt%) 
TBA-TBP 

(wt%) 
Triacetin 

(wt%) 

Extrusion 
temperature 

(oC) 

Blend 1 40 60   210 

Blend 2 40 60  5 210 

Blend 3 40 60 0.2  210 

Blend 4 40 60 0.2 5 210 

Blend 5 40 60   230 

Blend 6 40 60  5 230 

Blend 7 40 60 0.2  230 

Blend 8 40 60 0.2 5 230 

 

Table 2. Compositions of the blends PLA40/PC60 with different types of catalyst, and their 

processing temperatures. 

Mixing was conducted at temperatures of 210°C and 230°C with a screw speed of 100 rpm, for a 

recycling time of 1 minute. The material was then injection moulded into ASTM D638V tensile bars. The 

chamber temperature was 210°C, the mould temperature 50°C, injection time 20s, and the injection 

pressure 790 mm Hg. Afterwards, the moulded samples were annealed at 80°C for 48 hours at a pressure 

of 1 mm Hg. The specimens for dynamic-mechanical analysis were obtained from the tensile bars. The 

samples were tested by using dynamical-mechanical thermal analysis (DMTA) and tensile testing. 

4.1.1  Mechanical properties 

Blend 1 is just a mechanical blend since no catalyst or co-catalyst was added. The mechanical 

behavior of this blend was very poor, as indicated by a tensile strength of 54.6 MPa and an elongation at 

break of 5.1%, as shown in Table 2, because of the reduced compatibility of the two starting polymers.  

 



Chapter 3: Compatibilization of Polylactic acid/ Polycarbonate 

 

Sustainable Biocomposites from Renewable Resources and Recycled Polymers 

88 

 

 

Blends Tensile strength (MPa) Young’s modulus (GPa) Elongation at break (%) 

Blend 1 54.6 2.97 5.1 

Blend 2 63.1 3.21 98.7 

Blend 3 50.7 3.07 2.3 

Blend 4 65.5 3.14 46.5 

Blend 5 62 3.03 96.4 

Blend 6 65.1 3.25 100.7 

Blend 7 63.9 3.14 46.9 

Blend 8 68.6 3.2 35.3 

 

Table 2. Mechanical properties of the PLA40/PC60 blends. 

The corresponding mechanical blend extruded at 230°C. Blend 5, showed a better mechanical behavior, 

associated with an elongation at break of 95.5%. This means that a higher extrusion temperature induced 

some transformations leading to improved compatibility. Blend 2 where triacetin was used as a catalyst 

displayed very ductile behavior, with an elongation at break of98.7%, an indication of excellent 

compatibility between the two polymer phases: PC-rich and PLA-rich. Blend 3was even more brittle than 

Blend 1, with an elongation at break of 2.3%, meaning that TBATPB is not active as a catalyst at this 

temperature (210 °C) because of the limited mixing time achievable in a twin-screw extruder. Blend 4, 

where both TBATPB and triacetin was added, showed even better mechanical properties than Blend 3, 

with a tensile strength of 65.5 MPa (corresponding to a 20.0% increase with respect to the mechanical 

blend), while maintaining an excellent value of elongation at break reaching 46.5%, thus showing the 

synergistic action of the TBATPB-triacetin co-catalyst system.  
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Figure 2. Tensile curve of the blends PLA40/PC60 with different types of catalysts at 210oC. 

This is confirmed by comparing the stress-strain curves of the blends prepared at 230°C. As mentioned 

above, Blend 5, the simple mechanical mixture, shows a rather ductile behavior, with a tensile strength of 

62 MPa and an elongation at break of 96.4%; but both Blends 6 and 7 show an increased yield strength of 

65.1 and 63.9 MPa as well as an elongation at break of 100.7% and 46.9%, respectively. This indicates 

that both TBATPB and triacetin are active as catalysts at this temperature. The best mechanical 

performance is shown by Blend 8 where both catalysts are added during the extrusion, with a tensile 

strength of 68.6 MPa (with an increase of 12.1% respect to the mechanical mixture), while maintaining a 

very good elongation at break of 35.3%, thus confirming the synergistic action of the TBATPB-triacetin 

co-catalyst system in promoting the compatibility of the PLA-PC system by means of the formation of a 

copolymer. 
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Figure 3. Mechanical properties of the blends PLA40/PC60 

 with different types of catalysts at 230oC. 

 

4.1.2 DMTA ( Dynamic mechanical thermal analysis) 

The dynamic-mechanical analysis data, performed on rectangular samples having 10 dimensions of 

20x5x1.5 mm, were analyzed in the range of temperature −100°C to 250°C with a heating rate of 

2°C/min, and a frequency of 10 Hz. From the point of view of dynamical mechanical properties, the 

traces obtained by plotting tan δ versus temperature show a new peak that does not occur in the case of a 

simple physical mixture of two homopolymers. This new peak appears at a temperature Tgp lower than the 

Tg of PC. This aspect can be related to the presence of PC-blocks in the copolymer. 
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Figure 4. DMTA of the blends PLA40/PC60 with  

different types of catalysts at 210oC. 

For example, in Figure 3 for the blends extruded at210°C, these new peaks appear for Blend 2 

(catalyst: triacetin only) and Blend 4 (TBATPB-triacetin co-catalyst system) at 123.5°C and 113.5°C, 

respectively, while they are not present for Blend 1 (mechanical mixture) and Blend 27 (catalyst: 

TBATPB only). 
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Figure 5. DMTA of the blends PLA40/PC60 with different types of catalysts at 230oC. 

A similar analysis for the DMTA data shown in Figure 4 for the blends prepared at230°C can be 

carried out. Blend 6 (catalyst: triacetin only) and Blend 7 (TBATPB-triacetin co-catalyst system) show a 

new peak at 128°C, while the mechanical blend (Blend 5) shows a peak associated with the Tg of the PC 

phase at 160°C. Blend 31, where TBATPB is used as a catalyst, shows a peak at a slightly lower 

temperature, 155°C, and this can be explained with the occurrence of the transterification reaction leading 
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to PC blocks with lengths shorter than in the mechanical blend. The analysis of the DMTA data is 

consistent with the fact that these materials show a polyphase structure consisting of PLA domains 

dispersed in a matrix of PC, or vice versa, depending on the volume ratio of the components. In addition, 

for the PLA rich phase, there is an amorphous phase and a crystalline phase. The Tg transition 

temperatures of both PLA (50-70°C) and PC (155-160°C) are not, in general, much different from typical 

values of the two polymers PLA and PC, but a new peak appears at intermediate temperatures (110-

130°C) for the copolymer. 

A comparison is also made in Figure 5 between non-annealed samples of pure PLA, Blend 1 and 

Blend 4, showing how both blends have a much higher Young’s modulus across and beyond the Tg of 

PLA. Also the modulus of PLA tends to increase starting from about 80°C to 120°C where it reaches a 

new maximum. This is associated to the partial crystallization of the PLA phase. A similar phenomenon 

is present in Blend 1, although with a much more limited entity, while it is not visible for Blend 4. This 

can be explained by the block-copolymer nature of this material. The PLA-blocks are shorter than in pure 

PLA or in the mechanical mixture with PC. Moreover, they are surrounded by rigid PC blocks that 

strongly limit molecular mobility and hinder the crystallization process. As proof of this statement, we 

can observe an increase in the modulus of Blend 4 above 160°C, which corresponds to the Tg of the PC 

blocks, up to 200°C, where the Young’s modulus of the blend reaches a new maximum. This can be 

explained by the fact that when the PC-blocks are beyond their Tg, the PLA blocks recover their mobility 

and are able to crystallize.  
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Figure 6. Comparison the storage modulus of materials by DMTA. 

 

4.1.3 Thermogravimetric Analysis (TGA) 

The thermogravimetric and derivative thermogravimetric curves of PLA40PC60 (Blend 1 to 

Blend 4) with and without catalyst at 210oC are reported in Figures 8a and 8b, respectively, the 

corresponding data are accounted for in Table 3. 
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Table 3. TGA and DTG of PLA40PC60 with and without catalysts in different processing temperatures. 

The pure PLA degrades in a single step starting from 280oC to the final temperature 427oC, with a DTG 

peak temperature (Tmax) at 356oC. The Tmax is the temperature at the maximum rate of weight lost, that is, 

the decomposition temperature. Moreover, the polycarbonate bisphenol A showed the degradation 

behavior in air with two stages. The main stage starts from 435oC and ends at about 700oC with 21.3% 

solid residue, the Tmax of the main stage is 509oC. A shoulder peak appears at 419oC before the main peak. 

From the literatures, some complex chemical reactions take place at the first stage of thermal oxidative 

degradation including the free radical chain scission of the isopropylidene linkage and the branching and 

crosslinking reaction of molecular chains included by oxygen besides the reaction in inert atmosphere 

Formula T_10% (oC) T_50% (
oC) T_70% (oC) Tmax 

Solid residue 
(%)  

at 800oC 

PLA 320.62 347.78 355.51 356.1 1.8 

BLEND 1 346.32 389.49 430.43 358.75 8.9 

BLEND 2 325.36 373.64 411.82 341.3 7.9 

BLEND 3 341.14 385.32 423.01 353.48 8.0 

BLEND 4 332.16 377.41 413.93 351.51 7.7 

BLEND 5 335.71 379.05 412.06 349.72 7.4 

BLEND 6 329.52 376.53 428.72 353.2 8.2 

BLEND 7 330.7 372.6 397.02 356.2 7.3 

BLEND 8 329.25 371.42 419.69 345.5 8.6 

PC 439.4 506.1 528.54 508.95 21.34 



Chapter 3: Compatibilization of Polylactic acid/ Polycarbonate 

 

Sustainable Biocomposites from Renewable Resources and Recycled Polymers 

96 

 

[37]. Lee and Jang [38, 39] suggested that the initial step of thermal oxidative degradation of PC is an 

oxidative hydrogen cleavage from the isopopylidene linkage and then carbon-carbon scission, followed 

by hydrolysis and alcoholysis of carbonate. Oxygen may facilitate free radical branching reaction via the 

formation of peroxides and a high cross-linked structure with diaryl ester; ether and unsaturated 

carbonaceous bridges are formed above 440oC. 

The blends of PLA40PC60 with and without different catalysts at the processing temperature 

210oC created two main stages of degradation. The first stage is Polylactic acid and the second stage is 

polycarbonate bisphenol A. The degradation of the blend starts at the starting temperature of PLA and 

finishes at 547oC before the end temperature of polycarbonate of bisphenol A. This thermal behavior is 

quite similar to the blends that were processed at 230oC, which was shown in Figures 9A and 9B. 

Following the table and figures, the Tmax of PLA in both cases did not also change with the presence of a 

catalyst. However, the Tmax of PC was changed from 509oC in pure polymer to 455oC in blends. This 

phenomenon could possibly be explained by the fact that the degradation product of PLA could have 

facilitated the thermal degradation of PC. In both processing temperatures, the DTG peak of PLA 

degradation of blends is broader than in pure PLA, meaning that the thermal resistance of materials 

increases with the effect of polycarbonate. Moreover, the residual solid of the blends ranged between 7.2 

and 8.5%, almost leaving behind the product of degradation PC. More specifically, Blends 2, 4, 6, and 8 

having Triacetin as a catalyst, appeared to have a slight peak from 120oC to 220oC, and Tmax of this peak 

was 180oC. This peak was far from the boiling and degradation temperatures of Triacetin, 260oC and 

312oC, respectively [40]. Thus, this peak started near the boiling temperature of acetic acid; we suggest 

that the Triacetin molecule could be broken down or could react in the presence of PLA and PC in order 

to formulate acid acetic or other hydrocarbon functions or molecules. However, this evidence needs to be 

carefully studied in the future with the support of FTIR and NMR in different decomposition 

temperatures of PC and PLA. 
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Figure 7A. TGA of the blends PLA40/PC60 with different types of catalysts at 210oC. 

Following the data from Table 3, the temperature for obtaining 10% and 50% degradation 

percentages (T10%, T50%) of all blends at 230oC is quite similar until 400oC. After that, the decomposition 

temperatures (T70%) of blends at 70% degradation is different with and without a catalyst, which can be 

seen clearly in the small square in Figure 9A.  

The increasing thermal resistance in the stage of Polycarbonate indicated that there are some 

specific interactions or chemical reactions between polylacticacid and polycarbonate of bisphenol A, 

which is quite similar to the thermal behavior of poly (vinyl chloride)/ethylene-vinyl acetate copolymer 

blends [41]. This fact is compatible with the analysis of DMTA and the tensile test above.  

After investigating the effect of catalysts and temperatures on the formulation of copolymers in the 

blends, the middle peak (Tg ~128oC) between the Tg of PLA and PC in blends in DMTA testing serves as 

constructive evidence to confirm that the copolymer was formulated with the presence of Triacetin. It is 

possible that the reaction between PLA and PC could reach a maximum as processing at 230oC and with 

multiple catalysts (TA and TBATPB) thanks to the result above.  
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Figure 7B. DTG of the blends PLA40/PC60 with different types of catalysts at 210oC. 
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Figure 8A. TGA of the blends PLA40/PC60 with different types of catalysts at 230oC. 
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Figure 8B. DTG of the blends PLA40/PC60 with different types of catalysts at 230oC. 

Following this part of research, it was decided to process the materials at 230oC with multiple 

catalysts for the investigation of different compositions of PLA and PC blends as changing in weight 

percent of each component and their characterization in terms of tensile tests, chemical analysis, and 

thermal, morphological and biodegradation analysis. This investigation will establish if most 

advantageous properties of PLA/PC blends occur at certain composition as well as the optimimum 

processing conditions in view of industrial applications. 

 

4.2 Investigation of the full range of compositions 

4.2.1 Mechanical properties  

The mechanical properties of the blends of PLA and PC, at varying amount of their composition, 

are shown in Table 4. The tensile strength, Young’s modulus and elongation at break of pristine 

Polycarbonate are 57.2 MPa, 2.25 GPa and 84.4%, respectively. 
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Blends Tensile strength (MPa) Young’s modulus (GPa) Elongation at break (%) 

PC 57.2 ± 0.8 2.25 ± 0.06 84.4 ± 4.3 

PC70PLA30 55.3 ± 0.3 2.86 ± 0.07 125 ± 3.3 

PC60PLA40 55.2 ± 0.7 2.99 ± 0.17 126 ± 3.4 

PC40PLA60 56.1 ± 0.7 2.98 ± 0.03 3.3 ± 0.5 

PC30PLA70 51.1 ± 1.7 3.18 ± 0.08 2.3 ± 0.4 

PC20PLA80 52.5 ± 2.3 3.38 ± 0.19 2.0 ± 0.1 

PLA 60.4 ± 0.26 3.54 ± 0.12 4.1 ± 0.5 

 

Table 4. Mechanical properties of physical blends with different amounts of PLA and PC. 

 As the amount of PLA increases, the Young’s modulus of blends increases up to 3.54 GPa, i.e. the 

Young’s modulus of pure Polylactic acid. The tensile strength of the blends do not change because of the 

tensile strength of pure PLA and PC is quite similar. However, the elongation at break of blends decreases 

from 126% for the blend with 60wt% PC down to 3.3 for the blend with 40 wt% of PC and neat the value 

of 4.1% for pure PLA. This point can be explained by a phase inversion, occurring around 50%, from a 

situation where PC is the matrix and PLA the dispersed phase to another condition where PLA is the 

continuous phase and PC is the discontinuous phase. It was worth noting that the elongation at break for 

the blend with 60wt% PC reaches the value of 126%, which is significantly higher than that of pure PC 

(84%), evidencing a strong toughening effect of the PLA domains in these blends. 

Figure 9. Young’s modulus of the blends with different amounts of PLA/PC, processed both in 

presence of catalysts and without (physical blends). The experimental data appear to fit well with 

Barentsen’s model [35] at the two extremes of the composition range. In the middle range, the Young’s 

modulus of the blends is substantially higher than what predicted by the Barentsen’s model. A better fit 

can be obtained with the model proposed by Veenstra and his co-workers [36]; the higher values of 



Chapter 3: Compatibilization of Polylactic acid/ Polycarbonate 

 

Sustainable Biocomposites from Renewable Resources and Recycled Polymers 

101 

 

Young’s modulus can be explained by a co-continuous phase behavior [43]. Moreover, the Young’s 

modulus approached the parallel model and appears to be isotropic, which means that in these blends both 

phases fully contribute to the blend modulus in all directions. These results follow the general phase 

behavior of polymer blends [42] and have been confirmed by the morphological analysis (Figures 17 and 

18 below). However, the big difference of elongation at break between PLA40PC60 and PLA60PC40 

indicates that the phase inversion can occur at about 50 wt% of PLA. Above this concentration, the elastic 

modulus followed the trend predicted for a rigid PLA-rich matrix phase, with the PC domain dispersion; 

that is why the experimental data are fitted again with Barentsen’s model, and the elongation at break 

rapidly decreased to the values characteristics of pristine PLA. 
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Figure 9. Young’s modulus of the blends with different amounts of PLA/PC. Comparison between 

experimental data and theory prediction. 

In figure 9, for the droplet/matrix morphologies, equation (2) has been used up to 20 wt% when 

PLA, the stiff component, is the matrix, while from 80 wt% to 100 wt%, where the stiff PLA component 

is the minor phase, equation (4) has been applied. In the case of co-continuous morphologies, when the 
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stiff PLA component dominates, from 50wt% to 60 wt% PLA, equations (3) has been used. In the range 

20 wt% to 50 wt% PLA, equation (5) has been used. With these calculation, the experimental data and the 

theoretical models fit in a quite satisfactory way.  

 Tensile strength (MPa) Young’s modulus (GPa) Elongation at break (%) 

PC 57.2 ± 0.8 2.25 ± 0.06 84.4 ± 4.3 

PC70PLA30 58 ± 0.6 3.01 ± 0.09 110 ± 5.3 

PC60PLA40 60.9 ± 0.7 3.22 ± 0.05 126 ± 3.6 

PC40PLA60 51.9 ± 2.4 3.33 ± 0.12 2.0 ± 0.12 

PC30PLA70 49.1 ±1.6 3.34 ± 0.06 1.8 ± 0.1 

PC20PLA80 48.9 ± 1.1 3.38 ± 0.09 1.65 ± 0.1 

PLA 60.4 ± 0.26 3.54 ± 0.12 4.1 ± 0.5 

 

Table 5. Mechanical properties of blends with different amounts of PLA/PC with catalysts. 

The Young’s modulus of PLA/PC binary blends fit well the model of Veenstra [36] as can be seen 

in Figure 9. However, at all compositions, the Young’s modulus of the blends prepared in the presence of 

a catalyst is always higher than the elastic modulus for the corresponding physical blends, as can be noted 

comparing the data in Tables 4 and 5. The Young’s modulus of blends decreases for PC contents from 

0 wt% to 30 wt% and then does not change much from 30 wt% to 40 wt%, which indicates that the 

materials start to reach a co-continuous phase morphology, which is similar to the behavior observed for 

physical blends.  

It is interesting to observe that the experimental data of Young’s modulus for the blends prepared 

in the presence of a catalyst is even greater than the theoretical predictions. Also the composition range 

for full co-continuity seems to be widened from 30-60 wt% PLA, for the physical blends to 20- 60 wt% 

PLA for the blends obtained in presence of the catalyst system. This can be explained by a reduced 
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interfacial tension for these blends, and is consistent with the hypothesis of the formation of a copolymer 

between polylactic acid and polycarbonate of bisphenol A, as a consequence of transesterification 

reaction between PC and PLA 

4.2.2 Thermal behavior 

The thermal behavior of materials was investigated by differential scanning calorimetry (DSC). 

Figure 10 shows the thermogram of the second scan with a heat rate of 10oC/minute.  

 

Figure 10. DSC thermogram(2nd scan) for PLA/PC blends prepared with and without catalysts. 

The crystallinity of materials was calculated by using the formula 0

/
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∆Ho
m is the theoretical heat of fusion of 100% crystalline PLA with a value of 93 J/g [40]. Upon the 

second scanning, the melting of pure PLA showed two peaks, which means that there are two types of 

crystalline phases in PLA. According to several studies, the crystalline phase of PLA depends on the 

crystallization temperature processing [45, 46]. Therefore, the disorder α' and order α phase of poly (L-
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lactide) crystalline phases are formed at low (Tc< 100oC) and high (Tc≥ 120oC) temperatures, 

respectively. In our case, with the heat rate at 10oC, 100oC < Tc ≤120oC, PLA crystalline formulated at the 

disorder-to-order phase transition, which was investigated by Zhang and his co-workers [47]. 

The glass transition temperature of pure PLA and PLA in blends did not differ and remained at 

about 59.1oC, also in different formulations. However, this decreases to 48.8oC with the existence of a 

catalyst in blends at 20% and 60% weight of PC. This fact indicates that Triacetin not only works as a 

catalyst, but also plays the role of a plasticizer on the Polylactic acid [48] because of the remaining 

triacetin amount. This is in agreement with the TGA data in Figures 7 and 6. Triacetin can reduce the 

interaction between polymer chains. The materials will be softer and can move easier to the glass state as 

the temperatures increase. Moreover, the crystalline temperature peak of PLA in blends is higher than 

pure in PLA because of the steric hindrance of polycarbonate chains on the crystallization of PLA. In 

addition, polycarbonate phases is an amorphous states, which affects to the percentage of crystallization 

process of PLA or (Xc) in the blends. Similar to the explanation above on the Tg, the action of the catalysts 

make the crystalline temperature peak of PLA in blends decrease, thereby increasing the percentage of 

crystallinity in all formulas as well as formulating the new disorder α' crystalline phase. 

More specifically, the Xc of PLA in PLA80PC20-CATALYST is higher than the crystallinity 

percentage of pure PLA due to the effect of the catalysts. At low amounts of PC, the catalyst easily broke 

down the PC chains, and the broken chains will lower molecule weight than those of the original PC 

chains in blends without a catalyst. Hence, the polymer chain of PC is long and harmless for dispersion of 

the PLA phase matrix. Therefore, the dispersion of PLA will increase, and the PC molecules will avoid 

neighboring PC molecules. In this way, they can formulate a uniform complex in order to develop the 

crystalline of PLA, which acts as a nucleation in PLA. This phenomenon is similar to the role of PDLA in 

the crystalline processing of PLA in the study of Yamane and Sasai [49]. To the contrary, at high amounts 

of PC, the molecule will be large and voluminous; therefore it will very difficult to create the uniform 

complex with PLA or to prevent the crystalline formulation of PLA, which is clearly shown on the 
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thermogram of PLA40PC60 and PLA80PC20 by adding a catalyst. In this case, the crystalline percent of 

PLA is very low also when adding catalysts. The melting peak is not very clear, similar to the data of 

DMTA, so the materials can maintain the mechanical properties at high temperatures. 

 

  Tg (°C) Tonset (°C) Tcp (°C) ∆Hc (J/g) ∆Hm (J/g) ∆H (J/g) Xc (%) 

PLA  59,1 97,3 110 26,6 31,7 5,5 5,5 

PLA80PC20 60,2 105,5 116,8 16,7 19,3 2,6 2,8 

PLA80PC20- 
CATALYST 

48,8 94,6 108,5 18,9 24,5 5,6 6,0 

PLA40PC 60  58,8 109,2 125 2,1 3,4 1,3 1,4 

PLA40PC60 - 
CATALYST  

48,7 95,4 114,5 1,7 3,4 1,7 1,8 

PC 147,4 
      

 

Table 6. Thermal analysis of blends by DSC testing. 

The dynamic mechanical thermal analysis of blends without a catalyst was shown in Figure 11 after 

a crystalline at 80oC in 24 hours. The first peak on the tan delta curve is the relaxation of pure PLA at 

69oC. The tan delta curve usually indicates the relaxation processes of the polymer. The major relaxation 

process is associated with the glass transition temperature (Tg) of PLA [50].  
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Figure 11. DMTA of the blends PLAx/PCy without catalysts at 230°C  

after crystalline 24h at 80oC. 

After the Tg of PLA, the storage modulus of blends enhanced as the content of PC increased because the 

thermal resistance of polycarbonate is high; in losing the storage modulus at 160oC, it will maintain the 

losing storage modulus of PLA by the interaction between the polymer chains. As mentioned in part A, 

the blends without a catalyst show two peaks at 69oC and 160oC, that is the Tg of PLA and PC, 
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respectively. This indicates that the blend is a separated phase, fitting well with SEM, TEM and 

mechanical property results. Furthermore, the height of the tan delta peak is associated with the mobility 

of the amorphous region in the polymer [51].As the amount of PC increases, the peak of PLA broadens, 

and the height of the tan delta peak decreases. Moreover, the peak of PC is sharpened and heightened 

because of the hindrance of the PC chains, decreasing the mobility of the PLA molecule in an amorphous 

phase. 

In the presence of a catalyst, the blends showed the Tg of PLA at 60oC in Figure 12, a reduction 

similar to the DSC analysis. Additionally, a new peak occurs between the temperature of PLA and PC. 

Similarly to the explanations above, this point is the most important evidence for the formulation of a new 

copolymer that is based on PLA and PC. In the crystalline condition, the middle peak on the tan delta 

curve did not change much as the amount of PC varied. The difference lies in the performance as 

exhibited in Figure 13, where the blends are not crystalline before testing. This dissimilarity can be 

explained by the consequence of the crystalline phase of PLA in the blends; they reduce the moving 

ability of the polymer chain, so the relaxation of the new copolymer is affected.  

In Figure 13, with pure PLA, once the Tg the storage modulus decreases to 80oC and then 

increases to 120oC, implying that the crystallization of the PLA phase proceeds during a DMTA run (low 

scan rate). The decreasing storage modulus of PLA in blends starts and ends sooner than in the original 

PLA, although the quantity of losing storage modulus lessens at high amounts of PLA.  
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Figure 12. DMTA of the blends PLAx/PCy with catalyst at 230oC 

after crystalline 24h at 80oC. 

This fact again correlates well to the results of DSC in Figure 10 and indicates that the crystalline 

of PLA are prevented by high amounts PC. Figure 14 shows that the blends PLA40PC60-CATALYST 

and PLA30PC70-CATALYST do not decrease the storage modulus at the crystallization temperature 

zone of PLA, which is completely different from PLA40PC60 physical blends. This is the strong 

evidence to confirm that the catalyst makes a special interaction or chemical link between PLA and PC, 
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so the mobility chain of PLA was obstructed and the crystalline process did not happen. This is a 

significant point for the application of PLA, because the material can maintain the mechanical properties 

up to 100oC. 
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Figure 13A&B. DMTA of the blends PLAx/PCy with catalysts at 230°C. 

 

Moreover, the temperature of the middle peaks or Tg of the new copolymer change with different 

amounts of PC, which also compares with the prediction models of glass transition temperatures on 

polymer blends suggested by Gordon Taylor [52] and complex polymer blends or copolymer system 

suggested by Kewei and Kalogeras [53,54]as seen in Figure 14. The different models for the glass 

transition temperature are reported as follows: 
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• Kalogeras and Brostow 

[ ]1 ,1 1 ,2 1 1 0 1 1 2 1(1 ) (1 ) (2 1) (2 1)g g gT T T a a aϕ ϕ ϕ ϕ ϕ ϕ= + − + − + − + −             
(7)

  

where “kGT”“k Kw, q”, “ ao, a1, a2” are adjustment parameters of equations  (5), (6), (7), 

respectively. 

By increasing the amount of PC, Tg slightly decreases and does not change from 40 wt.% to 60 

wt.% of PC; at this point, it will increase. Therefore, this complex behavior of Tg does not fit the model of 

Gordon-Taylor when applied to a binary polymer with a simple interaction in an amorphous state of two 

polymer chains. In that equation, Tg versus the weight fraction follows a linear or hyperbolic function. 

However, the crystalline processing temperature of PLA is the same as the glass transition temperature of 

the new copolymer. Thus, the crystalline process will alter the transition temperature of the new 

copolymer complex as opposed to variations in each component’s composition. Concerning this peculiar 

phenomenon, Kalogeras explains that in terms of microstructure, such intriguing variations may be partly 

attributed to the different types of segregation of the amorphous new copolymer and their relative 

contributions to the overall structure. To increase the degree of segregation, one finds: (a) inter-lamellar 

segregation (the amorphous new copolymer resides in the inter-lamellar region within the lamellar stack), 

(b) inter-fibrillar segregation (the amorphous chains are placed outside the lamellar stacks of the PLA 

crystalline component(s), but are still located within the spherulite), and/or (c) inter-spherulitic 

segregation (the amorphous phase is expelled from the lamellar stacks and resides at the inter-spherulitic 
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region of the PLA component) [54]. For this reason, Kwei and Kalogeras extended their original equation 

of the Gordon-Taylor model. Their results were applied and fit perfectly with the experimental data of the 

new copolymer of PLA and PC blends in the presence of a catalyst. Therefore, variations in Tg of the new 

copolymer are affected by the content of the PC present, but also by the crystalline processing from PLA. 
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Figure 14. The new Tg of blends following the models in different weight percents of PC. 

4.2.3  Structure analysis 

An investigation of the distribution of molecular masses, the traces obtained by molecular 

exclusion chromatography (SEC), was performed by using the IR and UV detectors shown in Figure 15. 

The molecular weights relative to polystyrene standards of the two pure samples are reported in Table 7. 

 

Mn Mw Id 

PLA 108000 175000 1,62 
PC 24000 46000 1,92 

 

Table 7. Molecular weight of PLA and PC. 
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From these curves there does not seem to emerge any evidence of actual grafting or 

transesterification as the curves of blends with catalysts when comparing the pure materials. The curve 

results to be chromatographic and consists of a peak at high elution times (lower molecular weights) due 

to polycarbonate, with a shoulder at shorter time due to the PLA. The data from SEC can be explained by 

the fact that the molcules in blends with a catalyst are not much affected by the transesterification. 

Following the mechanism of reaction, the PC chains were broken down using a catalyst, and then were re-

reacted with PLA and PC; therefore the blending molecules did not vary much.  

 

Figure 15. SEC analysis of PLAx/PCy with the presence of catalysts. 

NMR spectra of the two pure polymers are rather simple as shown in Figure 16A. Small 

impurities are also present, but the assignment of the NMR signal is quite straightforward and accounts 

for the monomeric structure. 
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Figure 16A: NMR 13C of PLA80PC20 with catalysts.

In Figure 16B examples of physical blend (c) are reported as well as a mixture of the two 

polymers in the presence of the catalysts (d),  where the weight ratio of PLA and PC were 80 and 20, 

respectively. Looking at the 13C

samples. The signal marked with * in spectrum (d) is due to residual acetone present in the sample. In 

particular, at this stage, no evidence of copolymerization appears from the spectrum (d). The main signals 

coming from the starting polymers are all present and their intensity is in fair agreement with the weight 

ratio in both (c) and (d) spectra. Other smaller signals are visible, but they are also present in spectra (a) 

and (b) of the starting polymers. Since there ar

dectection by 13C-NMR could be overlapped by the original function of the polymer. The problem will be 

similar also with FTIR testing. 
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Figure 16A: NMR 13C of PLA80PC20 with catalysts.

In Figure 16B examples of physical blend (c) are reported as well as a mixture of the two 

polymers in the presence of the catalysts (d),  where the weight ratio of PLA and PC were 80 and 20, 

C-NMR spectra, one cannot see any peculiar difference between the two 

samples. The signal marked with * in spectrum (d) is due to residual acetone present in the sample. In 

particular, at this stage, no evidence of copolymerization appears from the spectrum (d). The main signals 

m the starting polymers are all present and their intensity is in fair agreement with the weight 

ratio in both (c) and (d) spectra. Other smaller signals are visible, but they are also present in spectra (a) 

and (b) of the starting polymers. Since there are a lot of similar functions and hydrocarbon groups, the 

NMR could be overlapped by the original function of the polymer. The problem will be 
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NMR could be overlapped by the original function of the polymer. The problem will be 



Sustainable Biocomposites from Renewable Resources and Recycled Polymers

 

Figure 16B: NMR 13C of PLA80PC20 without catalysts.

Studies cannot show direct chemical evidence for the reaction between Polylactic acid and 

Polycarbonate bisphenol A, due to similar chemical functions in both polyesters. From the literature 

review of López and Ziebaa [55

PC in the presence of triacetin and of a transesterification catalyst (TBATPB), which is shown in Scheme 

2. Triacetin will react with OH groups from polylactic acid and Polycarbonate under the melting 

conditions of extrusion and the effect of TBATBP to become glycerol. The Polycarbonate chain or PLA 

will be broken down by acting of glycerol and TBATBP through esterification reactions. Therefore the 

new PC and PLA chains will be formulated. New chains will be linked again with glycero

mechanism to formulate new random copolymers. This fact can explain why there is not much change of 

the Mw of polymer blends. 
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Figure 16B: NMR 13C of PLA80PC20 without catalysts.

nnot show direct chemical evidence for the reaction between Polylactic acid and 

Polycarbonate bisphenol A, due to similar chemical functions in both polyesters. From the literature 

review of López and Ziebaa [55-56], the authors proposed the mechanism of reaction between PLA and 

PC in the presence of triacetin and of a transesterification catalyst (TBATPB), which is shown in Scheme 

2. Triacetin will react with OH groups from polylactic acid and Polycarbonate under the melting 

effect of TBATBP to become glycerol. The Polycarbonate chain or PLA 

will be broken down by acting of glycerol and TBATBP through esterification reactions. Therefore the 

new PC and PLA chains will be formulated. New chains will be linked again with glycero

new random copolymers. This fact can explain why there is not much change of 
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Figure 16B: NMR 13C of PLA80PC20 without catalysts. 

nnot show direct chemical evidence for the reaction between Polylactic acid and 

Polycarbonate bisphenol A, due to similar chemical functions in both polyesters. From the literature 

eaction between PLA and 

PC in the presence of triacetin and of a transesterification catalyst (TBATPB), which is shown in Scheme 

2. Triacetin will react with OH groups from polylactic acid and Polycarbonate under the melting 

effect of TBATBP to become glycerol. The Polycarbonate chain or PLA 

will be broken down by acting of glycerol and TBATBP through esterification reactions. Therefore the 

new PC and PLA chains will be formulated. New chains will be linked again with glycerol in the same 

new random copolymers. This fact can explain why there is not much change of 
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Scheme 2. Proposed mechanism of reaction between PLA and PC 

in the presence of triacetin and of a transesterification catalyst. 

Under melting process and 
action of catalyst 

the Glycerin can attach to the PC, � the 
polymer chains of PC broke down 

The broken PC polymer chains can react 
with PLA or itself to formulate random 
copolymer 
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4.2.3 Morphology 

To investigate the effect of a catalyst on the morphology of blends, the scanning electron 

microscopy (SEM) was applied to the formulation of PLA80PC20. Regarding the physical blends, phase 

separation occurred with the PC domain and PLA matrix, which is sh

with higher magnification. The surface tension of PC is high, so it will not be miscible with the PLA 

matrix. There is a large space between the PC spherical domain and the PLA matrix, therefore the 

materials will be brittle and will have a low elongation. The domain is not the same size; rather it is about 

1µm to 3µm.  

Figure 17A. SEM micrographs for PLA80/PC20 without catalysts.

Figure 17B. SEM micrographs for PLA80/PC20 with catalysts.
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Figure 17A. SEM micrographs for PLA80/PC20 without catalysts. 

 

Figure 17B. SEM micrographs for PLA80/PC20 with catalysts. 
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However, in the same formula, by the action of catalyst, there is no space between PLA domains 

and PC matrix, only a light boundary between the two phases. It showed a new inter layer between the 

domain and the matrix, indicating that a new copolymer was formulated. The domain seemed flatter and 

bigger than in the physical blends of about 5µm -7µm. This is in agreement with the observation by the 

transmission electron microscope represented in Figures 18A and 18B.  

 

Figure 18A. TEM micrographs for PLA80/PC20 without catalysts. 

 

Figure 18B. TEM micrographs for PLA80/PC20 with catalysts. 
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This phenomenon can be explained by the decreasing the surface tension of the polycarbonate. To 

obtain a reaction between PLA and PC, the PC chain can be broken down through the effect of a catalyst 

in order to obtain the new copolymer; so the PC chain will be shorter than the original. That is why the 

domain size is larger, but thinner than in physical blends. 

 

Figure 18C. SEM micrographs for PLA60/PC40 without catalysts. 

 

Figure 18D. SEM micrographs for PLA60/PC40 with catalysts. 

Moreover, as the amount of PC in physical blends increases, the size of the domain will increase as 

exhibited in Figure 18C for PLA60PC40. This fact was applied to model the mechanical properties of the 



Chapter 3: Compatibilization of Polylactic acid/ Polycarbonate 

 

Sustainable Biocomposites from Renewable Resources and Recycled Polymers 

120 

 

blend. Furthermore, there seems to be some small sphere inside the PC domain, similar to a "salame" 

structure. Nevertheless, similar to the behavior of PLA80PC 20, with the presence of a catalyst, the 

domain in a separated phase is larger and moving towards a co-continuous phase, which is confirmed in 

Figure 18D.This fact deals with Young’s modulus data in Figure 9.  It implies that the blends mixed with 

a catalyst can obtain co-countinuous and invert phasesat low amounts of PC as compared to the physical 

blends. Therefore, the materials can obtain high Young's modulus and elongation at break at low contents 

of polycarbonate.  

4.2.5 Biodegradation 

The average percent biodegradation of PLA, PC and physical blends granulates are shown in 

Figure 19A. The pure polycarbonate is not completely degradated. Polylactic acid starts to degrade after 

18 days. The degradation obtained 50wt% after about 55 days and 100wt% after about 80 days. After 150 

days, the degradation is 138%. Biodegradation percentages above 100% are explained by a synergistic 

effect known as priming. A priming effect occurs if the compost inoculum in the test reactor is producing 

more CO2 than the compost inoculum in the control reactors. This results in a net CO2 production that 

does not come exclusively from the test item and, in the case of readily degradable products, in a 

measured biodegradation percentage exceeding 100%.  As adding the polycarbonate, the speed of 

degradation decreases suddenly from 70 to 80 days. Then, they degrade fast and quite stably after 90days 

for PLA80PC20 and 100days for PLA70PC30, PLA60PC40. More specifically, PLA40PC60 blends 

degraded very slowly up to 120 days, because in this formula the materials performed co-continuous 

phase, and the high amount of PC can prevent the degradation factor on PLA. In summary, the percentage 

of degradation of blends is similar to the percentage of PLA, which came from the defect of the compost. 

That implies that the polymers in physical blends have only a physical interaction. 
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Figure 19A. Biodegradation test of the blends PLAx/PCy without catalysts. 

On the other hand, PLA80PC20-CATALYST degradation in Figure 19B is different than 

physical blends. It starts to degrade after 10days and continuously increases over the next 90 days. 

However, the degradation amount of blends with a catalyst is higher than physical blends after 70 days, 

concluding that there are some differences as to the chemical structure of blends. It seems that the 

reaction of PC and PLA can break down the PC chain. Thus, the steric hindrance of the PC chains on 

PLA will decrease, so the degradation factor will be easy to digest the PLA polymer chains. Moreover, 

after 150 days, the final degradation amount of physical PLA80PC20 is higher than PLA80PC20-

CATALYST. It can be explained that the amount of PLA reaction with PC prevented the degradation 

factor from the end chain. Finally, the degradation test showed that the presence of a catalyst could 

increase the speed of degradation, but could decrease the final degradation amount of materials. Yet, this 

fact is not much an effect to the application of the materials, because polycarbonate can be recycled after 

the degradation of the polylactic acid. 
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Figure 20A. Biodegradation test of the blends PLAx/PCy without and with catalysts. 

 

V. CONCLUSIONS 

The blends of polylactic acid and polycarbonate with and without a catalyst were investigated 

carefully. The effect of a catalyst and temperature on the mechanical properties of blends showed that the 

materials can obtain high miscibility processing at 230oC. Additionally, the blends with multi-catalysts 

obtained a new peak on tan delta, which is between the relaxation temperature of PLA and PC. Moreover, 

the data of TGA shows an increasing thermal resistance in blends containing a catalyst. It indicates that 

the new copolymer is formulated on that processing condition.  

The mechanical properties of blends with varying amounts of polylactic acid demonstrated that 

Young’s modulus of blends would improve as the PLA amount is increased. The blends obtained the 

maximum elongation at break as the phases of blends were inverted. More specifically, they fit well with 
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some current models of mechanical properties. As the catalyst was added, Young’s modulus of materials 

was enhanced thanks to the increasing interface of polymers by the formulation of new copolymers.  

DSC and DMTA confirmed that as the content of PC increased, the crystallinity of materials was 

reduced. More specifically, the formula PLA40PC60 –CATALYST showed that the materials would not 

lose storage modulus after the temperature at Tg of PLA, namely no crystalline processing in that zone. 

Due to the catalyst, the links between PLA and PC were increased. Consequently, the PLA lessened the 

mobility and the crystalline process could not be obtained. These advantageous properties broadened the 

application ability of materials as compared to current polymers based on PLA. 

In addition, the SEM and TEM confirmed once again the effect of a catalyst on the morphology of 

blends. The interaction between domain and matrix improved, and the size of the domains increased by 

reducing the surface tension of PC and new copolymer. The biodegradable test demonstrated that the 

materials combining a catalyst slightly decreased the weight percent of degradation after 70 days, but the 

speed of degradation was higher than with physical blends. 

Chemical analysis could not give clear evidence of a chemical reaction between PLA and PCsince 

they have similar polar functions.  However, with the results gained from DMTA, DSC, SEM, TEM and 

mechanical properties, the new copolymer is confirmed and its properties were investigated in order to 

approach the new matrix, which has a high thermo resistance. This could be developed into 

manufacturing “green” composite materials for different applications such as in phones, cars, and food 

trays. 

* This chapter was published on International Application Published Under the Patent Cooperation 

Treaty (PTC) - WO201205907A1-01/03/2012 
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Chapter 4 

Biocomposites Based on Poly(lactic acid)-graft-Polycarbonate 

bisphenol A Copolymers and Regenerated Cellulose Microfibers  

 

I.  INTRODUCTION 

In recent times, biodegradable polymer and bio-composites have received increasing consideration 

from researchers as well as in technology due to their potential in addressing environmental concerns, 

biomedical and industrial applications, packaging, and in electronic components. Biodegradable polymers 

are broken down in physiological environments through macromolecular chain scission into smaller 

fragments, and ultimately into simple and stable end products. The degradation may be due to aerobic or 

anaerobic microorganisms, biologically active processes (e.g., enzyme reactions) or passive hydrolytic 

cleavage. Recently, the critical discussion about the preservation of natural resources and recycling has 

led to renewed interest concerning biomaterials with a focus on renewable raw materials. The growing 

focus thus far has been paid to starch-based products, such as PLA (Polylactic acid), PHA (Poly hydroxyl 

alkanoates) in particular PHB (Poly hydroxyl butyrate), and cellulose derived plastics [1]. In the family of 

biodegradable polyesters, polylactides (i.e. PLA) have been singled out because they are renewable, 

biodegradable and compostable; moreover, they have very low or no toxicity and present a high 

mechanical performance, comparable to those of commercial polymers. However, the thermal stability of 

PLAs is generally not sufficiently high enough for them to be used as an alternative in many commercial 

polymer applications [2]. In order to increase the thermo resistance of polylactic acid, blending PLA with 

aromatic polyester such as Polycarbonate (PC) has been investigated [3-5], but there are also some 

commercial products available [6-7]. PC has been widely used as an engineering plastic having high 
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thermal stability and mechanical properties (high tensile strength and elongation at break), while its 

fracture toughness is still too low. In order to counterbalance these disadvantages, Suarez and his colleges 

used Acrylonitrile butadiene styrene (ABS) blended with PC through melting extrusion [8]. Subsequently, 

they found that in blends with PC, Polylactic acid can replace ABS, not only improving facture 

toughness, but also decreasing the environmental impact of materials [9]. However, the blends of PLA/PC 

are immiscible; adhesion between the two polymers is weak due to high interfacial tension and weak 

entanglements. Moreover, the materials showed a decrease in the modulus from 80-120oC, which implied 

a crystallization process of the Polylactic acid. For these reasons, in the previous chapter we succeeded in 

increasing the interface between PLA and PC in melting extrusion through using a transesterification 

catalyst and formulating a new type of copolymer, which presents high mechanical properties, thermo 

resistance and morphology. 

To continue the focus on increasing mechanical properties and producing the eco-materials, which 

are environmentally friendly, we applied cellulose fibers to new copolymers based on PLA and PC to 

produce bio-based or hybrid biodegradable composites. In the literature, PLA was blended as a matrix 

material for natural vegetable fibers or lignocellulosic fibers such as kenaf, flax, jute, hemp, bamboo, -

based composites [10-17]. However, the incompatibility of natural or lignocellulosic fibers with the PLA 

matrix led to poor interfacial adhesion, leading to a decrease in the mechanical properties. Contrary to 

PLA, there is very little literature examining the reinforcement of PC and natural fibers [18] in the 

melting process. Since processing temperature of PC is high, it will be easy to degrade the natural fibers. 

Nevertheless, both PLA and PC matrices interact very poorly with natural fibers, because they have high 

surface tension; therefore the contact angle with the fibers will be low. Moreover, they are limited 

reactive functions, which can react or obtain physical interaction with polar functions on cellulose fibers. 

Enhanced interfacial adhesion for natural fiber-based composites can be achieved either by modifying the 

fibers and matrix chemical or physical treatments, or by using interfacial additives such as maleic 

anhydride, epoxide additive, or TBATBP for transesterification [19-30]. 
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Moreover, many natural fibers possess a limited aspect ratio and are non-homogeneous in fiber 

diameter, length and size distribution. Therefore the proper stress could not transfer from the matrix to the 

fibers, and the buildup of the tensile stress in the fibers would result in limited property enhancement and 

reduced material reproducibility. Besides, the major constituents of natural fibers (lignocelluloses) are 

cellulose, hemicellulose and lignin. The amount of cellulose in lignocellulosic systems can vary 

depending on the species and age of the plant or species. Lignin is a phenolic compound that is generally 

resistant to microbial degradation [1]. Although the exact structural formula of lignin in natural fibers has 

not yet been established, most of the functional groups and units that make up the molecule have been 

identified. Lyocell, also known as Tencel, is an artificial microfiber made from regenerated wood pulp 

cellulose. It is produced by spinning bleached wood pulp dissolved in a nontoxic (“green”) organic 

solvent, N-methylmorpholine-N-oxide or MMNO, which can then be recovered by washing the freshly 

spun cellulose microfibers in water, purified and then recycled. Both fiber diameter and length can be 

accurately controlled during the production process and without the lignin content. Based on these 

advantageous properties, Lyocell is the potential fiber that can increase the mechanical properties and 

thermo resistance of biocomposites, even though the interaction between the fibers and matrix is still 

poor. However, Lyocell is still a new type of fiber on the market, therefore studies on the effects of 

Lyocell fibers on the polymer matrix are limited and have not received much consideration as yet [31, 

32]. 

 As stated above, the aim of this study is to investigate the effects of the mechanical properties and 

thermo resistance of cellulose fibers (Lyocell) on composites based on blends of PLA and PC. We obtain 

the best results from the mechanism on transesterification process of the polymer in blends to increase the 

interaction between the fibers and matrix due to the reaction between the ester group and the hydroxyl 

function of cellulose fibers, as well as the effects of cellulose fibers on the formulated process copolymer. 

The results of this research can present new methods for the production of biocomposites as well as 

hybrid biodegradable composites. 
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II.  EXPERIMENTAL DETAILS 

2.1.  Materials 

Poly (L-lactic) acid was purchased from NatureWorks LLC having a nominal average molecular 

weight Mw = 199590 Da (NatureWorks® IngeoTM 2002D Extrusion Grade), density 1.24g/cm3. 

Polycarbonate bisphenol A (Mitsubishi Chemical Co-operation - Japan, branch S3000) had a density of 

1.20 g/cm3 and an average molecular weight of Mw = 20 KDa. Triacetin (TA, also known as glycerin 

triacetate or 1,2,3-triacetoxypropane, CAS # 102-76-1) and tetrabutylammonium tetraphenylborate 

(TBATPB, CAS # 15522-59-5) were purchased from Aldrich Chemicals used as a transesterification 

factor or an interchange catalyst. The chemical structure of materials was performed as seen in Scheme 1.  
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Scheme 1. Chemical structure of materials. 

Tencel® FCP-10/400 microfibers with a diameter of about 10.5 µm and an average fiber length of 

390 µm, corresponding to an aspect ratio ar = 37, were kindly provided by Lenzing AG, Lenzing, Austria. 

According to this manufacturer, these fibers have a density: 1.5 g/cm³, a Young’s modulus of 10 –15 GPa, 

a tensile strength of 570 MPa, and an elongation at break of 11%. The morphology of Lyocell fibers 

Triacetin (TA) Polylactic acid (PLA 

Polycarbonate Bisphenol A (PC)                          TetrabutylammoniumTetraphenylborate (TBATPB) 
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before processing is shown in Figure 1. All materials were dried overnight under a vacuum at 80°C before 

processing.  

2.2.  Processing 

Following the work in the previous chapter, we chose the ratio between PLA and PC to be 40% and 

60% by weight, respectively. Then the matrix was blended with different contents of Lyocell fibers 

15 wt%) with and without the presence of catalysts. The polymers (PLA and PC) were mechanically 

mixed for about 10 minutes with different ratios of Lyocell by means of a high

mixing stage, the Triacetin and TBATPB were added

equipment. The resulting mixtures were processed with a MiniLab II HaakeRheomex CTW 5 conical 

twin-screw extruder (Thermo Scientific Haake GmbH, Karlsruhe, Germany). The mixing was conducted 

at a temperature of 230 °C with a screw speed of 100 rpm, for a recycling time of 1 minute. After 

extrusion, the molten materials were transferred through a preheated cylinder to the Haake MiniJet II mini 

injection molder (Thermo Scientific Haake GmbH, Karlsruhe, Germany

bone tensile bars used for measurements and analysis. The specimens were placed in plastic bags for 

vacuum sealing to prevent moisture absorption.

2.3.  Characterization methods
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before processing is shown in Figure 1. All materials were dried overnight under a vacuum at 80°C before 

Figure 1. SEM of Lyocell fibers 

 

Following the work in the previous chapter, we chose the ratio between PLA and PC to be 40% and 

60% by weight, respectively. Then the matrix was blended with different contents of Lyocell fibers 

15 wt%) with and without the presence of catalysts. The polymers (PLA and PC) were mechanically 

mixed for about 10 minutes with different ratios of Lyocell by means of a high

mixing stage, the Triacetin and TBATPB were added and mixed for an extra 10 minutes using the same 

equipment. The resulting mixtures were processed with a MiniLab II HaakeRheomex CTW 5 conical 

screw extruder (Thermo Scientific Haake GmbH, Karlsruhe, Germany). The mixing was conducted 

e of 230 °C with a screw speed of 100 rpm, for a recycling time of 1 minute. After 

extrusion, the molten materials were transferred through a preheated cylinder to the Haake MiniJet II mini 

injection molder (Thermo Scientific Haake GmbH, Karlsruhe, Germany) to obtain ASTM D638 V dog

bone tensile bars used for measurements and analysis. The specimens were placed in plastic bags for 

vacuum sealing to prevent moisture absorption. 

Characterization methods 
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Following the work in the previous chapter, we chose the ratio between PLA and PC to be 40% and 

60% by weight, respectively. Then the matrix was blended with different contents of Lyocell fibers (5, 10, 

15 wt%) with and without the presence of catalysts. The polymers (PLA and PC) were mechanically 

mixed for about 10 minutes with different ratios of Lyocell by means of a high-speed mixer. After this 

and mixed for an extra 10 minutes using the same 

equipment. The resulting mixtures were processed with a MiniLab II HaakeRheomex CTW 5 conical 

screw extruder (Thermo Scientific Haake GmbH, Karlsruhe, Germany). The mixing was conducted 

e of 230 °C with a screw speed of 100 rpm, for a recycling time of 1 minute. After 

extrusion, the molten materials were transferred through a preheated cylinder to the Haake MiniJet II mini 

) to obtain ASTM D638 V dog-

bone tensile bars used for measurements and analysis. The specimens were placed in plastic bags for 
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Tensile tests were performed at room temperature at a crosshead speed of 10 mm/min by means of 

an Instron 4302 universal testing machine (Canton MA, USA), equipped with a 10 kN load cell and 

interfaced with a computer running the Testworks 4.0 software (MTS Systems Corporation, Eden Prairie 

MN, USA). 

The chemical bonding of PLA-PC copolymers and Lyocell fibers was analyzed by using a Nicolet 

380 spectrometer with the Diffuse Reflectance Accessory (DRIFT). The composites were dissolved in 

Tetrahydrofuran (THF) and the fibers were dried under a vacuum at 140oC for 24 hours. The materials 

were mixed with potassium bromide (KBr) in order to obtain the DRIFT spectra. During the DRIFT 

measurement, pure potassium bromide was chosen as a background. 

Thermogravimetric Analysis (TGA) was run under the flow of nitrogen gas at a scanning speed of 

10 °C/min, from room temperature to 1000 °C, using a TGA 1000 instrument (Rheometric Scientific Inc., 

USA).  

Dynamic mechanical thermal analysis (DMTA) was carried out on a Gabo Eplexor® 100N (Gabo 

Qualimeter GmbH, Ahlden, Germany). Test bars were cut from the tensile bar specimens (size: 20 x 5 x 

1.5 mm) and mounted on a tensile geometry. The temperature used in the experiment ranged from -100 

°C to 170 °C at a heating rate of 2 °C/min and frequency of 1 Hz.  

The morphology of the composites was studied by scanning electron microscopy (SEM) using a 

JEOL JSM-5600LV (Tokyo, Japan) and by analyzing the fracture surfaces of the samples broken in liquid 

nitrogen. Prior to SEM analysis all the surfaces were sputtered with gold. 

 

III.  THEORETICAL ANALYSIS  

Several theoretical expressions have been developed for predicting the elastic modulus of short 

fiber composites. One of the most successful approaches considers long straight discontinuous fibers that 

are completely embedded in a continuous matrix, making use of the so-called shear-lag concept [33]. This 

model introduces some simplifying assumptions, such as: (1) uniform alignment of the fibers within the 
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matrix; (2) stress transfer by shear along the length of the fibers-matrix interface; (3) perfect elastic, 

isotropic behavior of both matrix and fibers; (4) perfect bonding between the two materials at the 

interface. 

3.1 Young's modulus 

However, it is now well established that the prediction of the composite’s modulus calculated by 

Cox’s model does not provide sufficiently accurate estimations when the fiber’s aspect ratio is small [34], 

as in the present work. The predicted modulus obtained by Cox’s model is significantly smaller than the 

experimentally observed values for short fiber composites. In fact, Cox’s model neglects the stress 

transfer across the fiber ends, σf (±L/2) = 0. 

Since the early work of Cox, several improvements have been proposed to the original shear lag 

analysis, and some of these developments have been recently reviewed [35]. In particular, Kim has 

proposed the following modified equation for the elastic modulus of short fiber composites, �����, taking 

into account both fibers end traction forces and stress concentration effects [36-38]: 

tanh( )
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f r
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Of all the micromechanics equations, Halpin-Tsai’s semi-empirical equations are accurate and 

straightforward. Halpin and Tsai showed that the Herman’s solution to Hill’s self-consistent model can be 

reduced to a simpler approximate analytical form and extended its use to a wide variety of reinforcement 

geometries [39]. For the longitudinal modulus, the Halpin-Tsai’s equation gives the following expression: 
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while the transverse modulus takes the form: 
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For composites with fibers oriented randomly in a plane, the Halpin-Tsai’s equations give: 

3 5

8 8
HT HT HT
C Cl CtΕ Ε Ε= +

        (7) 
  

A more rigorous model for short fibers or particulate reinforced composites inclusions has been 

proposed by Tandon and Weng [40] on the basis of the solutions found by Eshelby on an ellipsoidal 

inclusion surrounded by an infinite matrix [41] and the concept of average stress introduced by [42] Mori 

and Tanaka. 

3. 2 Yield stress  

Many models have been proposed in the specific literature to predict yield stress of composites. 

Pukánszky’s model [43] describes the effects of the volume filler fraction (φf) and the interfacial 

interaction on tensile yield stress of particulate filled polymers: 
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 Parameter B is an interaction parameter that considers the capacity of stress transmission among 

the various components. The terms σc and σm are yield stresses of the composites and matrix, respectively. 

The term exp(Bφf) indicates the interaction, while the (1−φf)/(1+2.5φf) term indicates the effective 

decrease of useful cross section due to filler introduction. Interfacial interaction depends on the thickness 

of the interphase, and the strength of the interaction is shown in the following equation: 

( )1 ln i
f f

m

B A
σρ τ
σ

= +
             (9) 

where Af, ρf, τ, σi are the specific surface area, density of the filler, thickness of the interphase and 

strength of interaction, respectively. Parameter B can be easily calculated by knowing the yield stress of 

the composites filled with different volume percentages of particle fillers. 

 

IV.  RESULTS AND DISCUSSIONS 

As mentioned above, we investigated the effects of catalysts in the formulation co-polymers 

through the transesterification process on the mechanical and thermo properties as well as the interaction 

between the fibers and polymer matrix. The matrix was selected as a fixed amount of PLA and PC, which 

are 40wt% and 60%wt, respectively. Subsequently, the matrix was blended with varying amounts of 

fibers (5, 10, 15% wt) with and without the presence of catalysts. 

4.1  Mechanical properties 

The mechanical properties of materials are shown in Table 1. In both cases, Young's modulus 

improves with increasing amounts of Lyocell fibers, while the elongation at break of the composites 

decreased when compared to the corresponding matrix.  

According to Cox’s model, an estimation of the critical aspect ratio is possible, i.e. the ratio 

between the length where shear stress transfer occurs and the diameter of the fibers [43]: 

�� = 2.303
���������� log� ����         (10) 
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Formulas 
Tenisle strength 

(MPa) 
Young's modulus (GPa) Elogation at break (%) 

PLA40PC60 55.2 2.99 126 

(PLA40PC60)Te5 61.8 3.14 6.26 

(PLA40PC60)Te10 63.1 3.49 3.6 

(PLA40PC60)Te15 63 4.02 2.36 

(PLA40PC60CATA) 60.9 3.22 126 

(PLA40PC60CATA)Te5 66.7 3.5 4.52 

(PLA40PC60CATA)Te10 67.2 3.84 3.75 

(PLA40PC60CATA)Te15 68.4 4.2 3.16 

 

Table 1. Tensile test of materials without and with catalysts 

Using a value of 12.5 GPa for the fibers modulus and the values of Table 1 for Em, the critical 

aspect ratio can be estimated to vary from 7 for (PLA40PC60)Ly5 to 5.6 for (PLA40PC60)Ly15 and from 

6.8 to 5.4 in the same formulas in the presence of catalysts. Since the Lyocell fibers have an aspect ratio 

of 37, this ensures a proper stress transfer from the matrix to the fibers and the buildup of the tensile stress 

in the fibers up to the maximum value achievable in a corresponding composites reinforced with 

continuous fibers.  However, in the blends without catalyst, the tensile strength of materials reduces from 

10%wt of fibers, which showed in Figure 2.  
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Figure 2. Tensile curve of the blends (PLA40/PC60)Ly with content of fibers 

The composites cannot yield and become brittle at high fiber amounts. From the literature, the 

interaction between fibers and matrix is poor, therefore the structure of materials is weaker, although the 

aspect ratio condition showed that the stress can transfer from the fibers to the matrix. Meanwhile, the 

tensile strength of composites with an catalyst increases, while amount of Lyocell fibers increases, which 

is shown in Figure 3. Moreover, the elongation at break of composites is higher than the blends without a 

catalyst in the same amount of fibers. That enhancement indicates that the interaction between fibers and 

matrix is sufficient to maintain the structure of materials for transferring the stress from polymer to 

matrix. 

The presence of catalysts improves the adhesion between the fibers and polymer matrix. This effect 

can be estimated quantitatively by using the B-factor according to equation (8). The B values of 

composites with and without catalysts are 4.2 and 5.1, respectively. The difference in B values point out 

the higher interaction between fibers and polymer matrix by acting of catalyst [43].  
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Figure 3. Tensile curve of the blends (PLA40/PC60/CATA)Ly with content of fibers 

 

Figure 4. B factors of PLA40/PC60 composites without and with catalysts 
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Figure 5. Comparison experimental data of (PLA40/PC60)Ly with theoretical models 

Moreover, Kim’s equation (1), Halpin-Tsai’s equations (3) to (7) and Tandon-Weng’s model 

provides estimates of the composites modulus. They were built up from the theory of long fibers, in 

which the perfect interaction between fibers and polymer matrix.  The experimental data of composites 

are used to compare the models to authenticate the mechanical properties of materials.  In Figure 5, the 

experimental data of composites without a catalyst show data far from the model values, while Young's 

modulus of blends with added catalysts fit well with Kim and Tangdon-Weng, which were developed in 

recent times and seem to be a better prediction than that of Halpin-Tsai. This implies that the interaction 

between the Lyocell fibers and polymer matrix is not only a perfect interaction, but also greater than in 

blends without a catalyst. 

 To investigate the effect of catalysts on the mechanical properties of composites, we suggested 

that there is reaction between hydroxyl groups (OH) of cellulose fibers and carboxyl functions (COOH) 

of polymers, which can be obtained through formulation process of copolymers under the 

transesterification mechanism of catalysts. The mechanism of this phenomenon was showed in Scheme 2.  
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Scheme 2. Proposed mechanism of reaction between PLA/PC/Lyocell  

in presence of triacetin and TBATPB 

Triacetin can be modified by a transesterification agent (TBATBP) and OH functions in the end chain of 

PLA and PC in order to formulate glycerol. Glycerol can break down the original chains of PC and 

formulate new shorter PC chains, so that the amounts of COOH functions will increase. The TBATBP 

will accelerate the reactions between the polymers and the OH groups of cellulose fibers [45,46].  

 

Figure 6. Comparison experimental data of (PLA40/PC60/CATA)Ly 

 with theoretical models 
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Figure 9. FTIR of fibers after processing with PLA40/PC60 with and without catalyst 

To test this hypothesis, samples of (PLA40PC60)Ly15 and (PLA40PC60CATA)Ly15 were 

dissolved in THF to remove the polymer matrix from Lyocell fibers and examined for the ester group as 

evidence of a reaction between the fibers and matrix. The fibers were washed about five times using THF 

and Acetone and then dried under a vacuum in order to evaporate the solutions before testing FTiR. As 
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shown in Figure 9, the fibers obtained from the composites without catalysts show an FTIR spectra that 

completely overlap with that of the original Lyocell fibers, while those removed from the composites with 

a catalysts-modified matrix show an additional peak at 1725 cm-1, corresponding to the stretching of C=O 

bonds in both PLA and PC, clearly indicating that the molecule now contains a carbonyl group, not 

present in the cellulose fiber solvent removed from the composites without TBATBP and Triacetin.  

 This can be interpreted as indirect proof of the presence of polymer molecules attached to the 

surface of the Lyocell fibers. Again, this fact not only confirmed the reaction between the fibers and 

polymer matrix, but also asserted our hypothesis on the mechanism of reaction. 

4.2  Thermal behavior 

The thermogravimetric and derivative thermogravimetric curves of PLA40PC60 blends with 

different amounts of Lyocell fibers are reported in Figure 7a and Figure 7b, respectively. The 

corresponding data are accounted for in Table 2.  

Blends 

First stage Second stage 

Temperature 

    range, 0C 

Temperature 

     peak, 0C 
Wt loss, %

Temperature 

    range, 0C 

Temperature 

     peak, 0C 
Wt loss, %

PLA40PC60 287-421 345 73 421-900 455 82 

(PLA40PC60)Ly5 246-454 382 87 464-572 543 100 

(PLA40PC60)Ly10 240-451 365 87 347-568 542 100 

(PLA40PC60)Ly15 232-436 363 88 436-562 540 100 

Lyocell fibers 220-572 380 100 - 551 - 

PLA40PC60CATA 275-438 357 73 435-569 465 100 
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Table 2. TGA analysis of materials 

The TGA of PLA40PC60 blends shows that there are two main states of degradation. Degradation 

starts at an initial temperature, Ti=280oC, and the first stage temperature ends at 421oC with the DTG peak 

at 356oC, which can be attributed to the thermal degradation of Polylactic acid chains in the blends. 

 

Figure 7A. TGA of the blends (PLA40/PC60)Ly with different content of fibers 

The second stage of degradation ranges from 421oC to 900oC with a 7% solid residua. The DTG 

peak of this stage is 455oC and lower than the temperature of pure PC - 509oC. From literature PLA can 

facilitate the degradation temperature of PC, confirmed in our previous work or last chapter. When adding 

the Lyocell fibers, the starting degradation temperature of the composites is lowered than that of the 

(PLA40PC60CATA)Ly5 267-452 388 76 452-594 579 100 

(PLA40PC60CATA)Ly10 241-452 388 83 452-573 550 100 

(PLA40PC60CATA)Ly15 238-452 388 86 452-558 545 100 
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polymer blends-Ti=246oC. This change can be explained by the starting degradation temperature of 

Lyocell fibers - Ti =220oC. 

 

Figure 7B. DTG of the blends (PLA40/PC60)Ly with different content of fibers 

In adding 5%wt Lyocell fibers, the DTG temperature peak of composites is 382oC, which is near the first 

stage peak of Lyocell fibers, but the DTG temperature decreases while increasing the fiber content. 

Moreover, the composites can be degraded completely after 572oC, having a different solid residua than 

the PLA40PC60 blends. In addition, the second stage peak of DTG for composites is 542oC, quite near 

the second stage of Cellulose fibers. Consequently, the Lyocell fibers acting as an agent can accelerate the 

degradation process of composites. 

Meanwhile, the TGA and DTG of composites with the presence of catalysts performed can be seen 

in Figures 8A and 8B as well as in Table 2. Although the starting degradation temperature of 

PLA40PC60CATA-Ti = 275oC- is higher the corresponding one for PLA40PC60, the second stage 

temperature of blends with a catalyst related to degradation PC, is lower than blends without a catalyst. 
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This implies that the polymer chains of PC were broken down, similar to our reaction mechanism 

proposal and also confirmed by the last chapter. However, the starting degradation temperature of 

composites with a catalyst is higher than Ti of Lyocell fibers. The DGT curve shows that the temperature 

peak of composites is 388oC even if the amount of fibers varies. This fact is completely different in 

blends without a catalyst. Furthermore, the DTG peak temperature in the second stage of composites is 

also higher than in the second stage of Lyocell fibers. This implies that there are some chemical 

interactions between the fibers and matrix, and that a new type of chemical link between the fibers and 

matrix are created. This is why cellulose fibers do not only facilitate the degradation of polymer matrix, 

but also preserve the DTG temperature even though the amount of fibers in the composites increases.  

 

 

Figure 8A. TGA of the blends (PLA40/PC60/CATA)Ly with different content of fibers 
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Figure 8B. DTG of the blends (PLA40/PC60/CATA)Ly with different content of fibers 

4.3.  Relaxation and structure 

Figure 11a presents the DMTA spectrum for PLA40PC60 and its composites with different 

contents of Lyocell fibers. The temperature dependence of storage modulus and loss tangent is also shown 

in this figure. The temperature of loss tangent at 60oC is representative for the glass transition temperature 

(Tg) of Polylactic acid [47], and the loss tangent at 160oC is Tg of Polylactic acid. The DMTA of blends 

show that there is phase separation between Polylactic acid and polycarbonate in blends. The storage 

modulus decreases to 80oC and then increases to 120oC, implying that the crystallization of PLA phase 

proceeds during a DMTA run (low scan rate). The presence of fibers in the blend is not affected much by 

the glass transition temperature of both polymers, but it is slightly affected by the re-crystallization 

processing of Polylactic acid in blends. This fact was confirmed by the amount of losing storage modulus 

of composites as compared to PLA40PC60. This can be explained by the steric hindrance of fibers in the 

polymer matrix. Moreover, the Lyocell fibers show a higher storage modulus than the polymer matrix, 

which is well matched with tensile test above.  
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Figure 10. DMTA of the blends (PLA40/PC60)Ly with different content of fibers 

However, the DMTA data of PLA40PC60 and composite blends with a catalyst shown in Figure 

11B. In PLA40PC60CATA, there is a relaxation peak between the Tg of PLA and PC. It specify a Tg of 

new co-copolymer, which based on the reaction of PLA and PC. This co-copolymer is authenticated and 

the proposed mechanism of reaction in the last chapter as well as Scheme 2. Likewise, the low 

temperature peak at -28oC, normally defined as the β-peak, is associated with the glucose ring units or to 

water associated with hydroxylmethyl groups [48]. Specifically, the β-peak is pronounced at high content 



Chapter 4: Biocomposites Based on PLA-g-PC 

 

Sustainable Biocomposites from Renewable Resources and Recycled Polymers 

152 

 

of fibers. In addition, the composites with 15%wt of fibers shows a new peak at 95oC, which is shoulder 

to the glass transition temperature of new copolymers. This behavior does not perform at low fiber 

contents as well as without catalysts. Consequently, we can conclude that the OH groups of fibers can 

react with a polymer matrix to formulate a new chemical interaction through the transesterification 

process. Besides, that chemical interaction enhances while the amount of fibers increases. That is why the 

new β-peak and shoulder of the Tg copolymer only performs at high fiber contents.  

 

Figure 11. DMTA of the blends (PLA40/PC60/CATA)Ly with different content of fibers 
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Moreover, the storage modulus of PLA40PC60CATA does not show the re

because of the acting of a catalyst, which was 

changed the thermo properties of the materials. The composites obtained the re

losing storage modulus after the 

PC and affect the thermo behavior properties of the materials. This evidence confirmed the mechanism 

reaction hypothesis above. 

4. Morphology 

The fracture surfaces of (PLA40PC60)Ly15 are reported in Figures 12A and 12B. Almost all fibers 

pull out after cracking indicating that there are poor interactions between the fibers and polymer matrix. 

The high magnification of SEM images shows a notable gap between the fibers and matrix. In addition, 

the morphology of the polymer matrix performed clear 

the high surface tension of Polycarbonate, the domains of Polylactic acid do not have adhesion with the 

PC matrix. Similar to fibers, gaps were also obtained between the PLA domains and PC matrix. Although 

the aspect ratio of Lyocell fibers is higher than the critical aspect ratio and the stress can transfer from 

matrix to fibers, the mechanical properties of PLA40PC60Ly15 decreased and defected due to the 

heterogeneous structures of the materials and poor int

 

Chapter 4: Biocomposites Based on PLA

Sustainable Biocomposites from Renewable Resources and Recycled Polymers

Moreover, the storage modulus of PLA40PC60CATA does not show the re

because of the acting of a catalyst, which was explained in Chapter 3. Nevertheless, the addition of fibers 

changed the thermo properties of the materials. The composites obtained the re-crystallize processing by 

losing storage modulus after the Tg of PLA. This implies that the fibers have reaction bet

PC and affect the thermo behavior properties of the materials. This evidence confirmed the mechanism 

The fracture surfaces of (PLA40PC60)Ly15 are reported in Figures 12A and 12B. Almost all fibers 

out after cracking indicating that there are poor interactions between the fibers and polymer matrix. 

The high magnification of SEM images shows a notable gap between the fibers and matrix. In addition, 

the morphology of the polymer matrix performed clear phase separations as seen in Figure 12C. Due to 

the high surface tension of Polycarbonate, the domains of Polylactic acid do not have adhesion with the 

PC matrix. Similar to fibers, gaps were also obtained between the PLA domains and PC matrix. Although 

e aspect ratio of Lyocell fibers is higher than the critical aspect ratio and the stress can transfer from 

matrix to fibers, the mechanical properties of PLA40PC60Ly15 decreased and defected due to the 

heterogeneous structures of the materials and poor interaction between the components. 

 

Figures 12 SEM of (PLA40/PC60)Ly15 
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Moreover, the storage modulus of PLA40PC60CATA does not show the re-crystalline of PLA 

explained in Chapter 3. Nevertheless, the addition of fibers 

crystallize processing by 

of PLA. This implies that the fibers have reaction between PLA and 

PC and affect the thermo behavior properties of the materials. This evidence confirmed the mechanism 

The fracture surfaces of (PLA40PC60)Ly15 are reported in Figures 12A and 12B. Almost all fibers 

out after cracking indicating that there are poor interactions between the fibers and polymer matrix. 

The high magnification of SEM images shows a notable gap between the fibers and matrix. In addition, 

phase separations as seen in Figure 12C. Due to 

the high surface tension of Polycarbonate, the domains of Polylactic acid do not have adhesion with the 

PC matrix. Similar to fibers, gaps were also obtained between the PLA domains and PC matrix. Although 

e aspect ratio of Lyocell fibers is higher than the critical aspect ratio and the stress can transfer from 

matrix to fibers, the mechanical properties of PLA40PC60Ly15 decreased and defected due to the 

eraction between the components.  
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To the contrary, the morphology of (PLA40PC60CATA)Ly15 shows perfect interaction between 

the fibers and matrix as shown in Figure 12D. 

broken down. Moreover, in Figure 12E, the morphology of the matrix seems co

perfect adhesion between PLA and PC or homogenous like copolymers instate of phase separations as 

PLA40PC60Ly15. This morphology confirmed that there are not only reactions between fibers and 

matrix, which are also confirmed by the FTIR and B factors, but also between the PLA and PC. The 

morphology of composites with the presence of a catalyst adequately

why we used a catalyst as a factor to increase the mechanical and thermo resistance of composites.

 

V.  CONCLUSIONS 

The mechanical properties and thermo resistance as well as morphology of PLA40PC60 and 

Lyocell fibers are investigated carefully. Young’s modulus of composites increases while the amount of 

cellulose fibers increases, but the material will not change the tensile strength significantly because of the 

poor interaction between the fibers and matrix as well as

of Lyocell fibers not only decreases the elongation at break, but also facilitates the degradation process of 

the composites, which are shown in the tensile and TGA testing. Moreover, the fibers prevent the re
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Figures 12 SEM of (PLA40/PC60/CATA)Ly15 

To the contrary, the morphology of (PLA40PC60CATA)Ly15 shows perfect interaction between 

the fibers and matrix as shown in Figure 12D. It is evident that most of the fibers were stressed until 

broken down. Moreover, in Figure 12E, the morphology of the matrix seems co

perfect adhesion between PLA and PC or homogenous like copolymers instate of phase separations as 

A40PC60Ly15. This morphology confirmed that there are not only reactions between fibers and 

matrix, which are also confirmed by the FTIR and B factors, but also between the PLA and PC. The 

morphology of composites with the presence of a catalyst adequately authenticates our focus and explains 

why we used a catalyst as a factor to increase the mechanical and thermo resistance of composites.

The mechanical properties and thermo resistance as well as morphology of PLA40PC60 and 

are investigated carefully. Young’s modulus of composites increases while the amount of 

cellulose fibers increases, but the material will not change the tensile strength significantly because of the 

poor interaction between the fibers and matrix as well as between the PLA and PC phases. The presence 

of Lyocell fibers not only decreases the elongation at break, but also facilitates the degradation process of 

the composites, which are shown in the tensile and TGA testing. Moreover, the fibers prevent the re
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To the contrary, the morphology of (PLA40PC60CATA)Ly15 shows perfect interaction between 

It is evident that most of the fibers were stressed until 

broken down. Moreover, in Figure 12E, the morphology of the matrix seems co-continuous phases and 

perfect adhesion between PLA and PC or homogenous like copolymers instate of phase separations as 

A40PC60Ly15. This morphology confirmed that there are not only reactions between fibers and 

matrix, which are also confirmed by the FTIR and B factors, but also between the PLA and PC. The 

authenticates our focus and explains 

why we used a catalyst as a factor to increase the mechanical and thermo resistance of composites. 

The mechanical properties and thermo resistance as well as morphology of PLA40PC60 and 

are investigated carefully. Young’s modulus of composites increases while the amount of 

cellulose fibers increases, but the material will not change the tensile strength significantly because of the 

between the PLA and PC phases. The presence 

of Lyocell fibers not only decreases the elongation at break, but also facilitates the degradation process of 

the composites, which are shown in the tensile and TGA testing. Moreover, the fibers prevent the re-
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crystalline process of PLA in the PLA40PC60 matrix due to losing the storage modulus of materials at 

low heat rates from the DMTA analysis. 

However, catalysts can help overcome the negative properties of the PLA40PC60Ly15 composites. 

The mechanical properties of the materials at the same fiber content increase at the same fiber content as 

comparing to the composites without a catalyst. The new chemical links between fibers and matrix are 

obtained so that the thermo resistance and mechanical properties of the composites are enhanced. This 

was not only confirmed by the FTIR analysis, but also by the DMTA and SEM results. The homogenous 

phase or co-continuous phase between PLA and PC were performed, and the adhesion between the fibers 

and matrix was perfect, which fit well with the proposed mechanism reaction of blends. The exploitation 

actions of a catalyst in the formulation process of a copolymer to increase the interaction between fibers 

and a matrix can open the doors to new processing methods on production of green composites, bio-base 

or hybrid bio-degradable composites. This will counterbalance the negative properties of low mechanical 

properties and thermo resistance of biopolymers, potentially broadening its applications in electronics, car 

components, and in food packaging. 

 

* This chapter was submitted Journal Composite Part A 
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Chapter 5 

Analysis on the influence of interface interactions on the mechanical 

properties of nanofiller and short fiber- reinforced polymer composites  

 

I. INTRODUCTION 

In recent years there has been a rapid growth in the development and application of nanofiller- and 

natural short fiber-reinforced thermoplastic polymer composites. In correspondence with this interest, 

increasing efforts have been devoted to better understand and measure the micro-mechanical parameters, 

which control the structure-property relationships in such composites. The properties of filled 

thermoplastic composites result from both nanoparticle/fiber and matrix properties and the ability to 

transfer stresses across the nanoparticle/fiber-matrix interface. Variables such as the volume fraction, 

aspect ratio, tensile strength, orientation of the nanoparticle or the short fiber as well as the interfacial 

strength are of primary importance to determine the mechanical properties of these composites. In 

particular, the ability to transfer stresses across the interface is often discussed in terms of ‘adhesion’ but 

is, in fact, related to a complex combination of factors such as surface energy of the reinforcing phase, 

adhesion strength of the interphase and the thickness of the coating layer. Therefore, it is not surprising if 

the nature of ‘adhesion’ is still a matter of debate in the literature and many techniques have been 

developed to measure it. For continuous fiber composites, ‘adhesion’ is generally related to the interfacial 

shear strength (τ or IFSS) or to the interlaminar shear strength (ILSS), which is somehow related to IFSS 

yet still a different parameter. Several experimental methods have been developed for their determination. 

These can be divided into two general categories: the single (direct testing) and the multiple fiber tests 

(indirect testing). The direct- or single fiber- testing methods aim at measuring the interfacial adhesion of 
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individual fibers in a matrix (microcomposites), while the indirect- multiple fiber- methods consider the 

collective behavior of fibers in a matrix (real composite) and estimate the interface strength via simplistic 

models. The experimental methods for single fibers are mainly the pull-out and the fragmentation tests 

and provide measures of IFSS [1,2]. In the case of multiple parallel fibers, the most important 

experimental techniques for the determination of ILSS are the Short Beam Interlaminar Shear and the 

Iosipescu Shear tests. There is no general consensus about which of these tests gives the most reliable 

measurements, but the situation is further complicated in the case of nanoparticle- or short fiber-

reinforced thermoplastic composites since these techniques do not lend themselves to an easy extension 

for these types of composites. 

Several methods have been recently developed for deriving values for τ (the IFSS) and ηo (a fiber 

orientation factor) from tensile stress-strain curve of the composite and the fiber length distribution based 

on modifications of the Kelly-Tyson equation [3,4]. Bader and Bowyer [5-7] presented a method for 

deriving values for τ and ηo from a simple combination of the tensile stress-strain curve and the composite 

fiber length distribution. Recently, Thomason improved this method and illustrated its application to 

injection molded glass-fiber-reinforced thermoplastic composites. Furthermore, he showed how the 

analysis could be extended to obtain the average fiber stress at composite failure, σuf [8]. 

Although developed originally for composites containing spherical particles, the semi-empirical 

equation proposed by Pukánszky [9] to describe the effects of filler volume fraction, ϕf, and interface 

interactions on yield stress and tensile strength of particulate-filled polymers has been recently 

successfully applied to anisotropic fillers such as layered silicate nanoparticles, multi-walled carbon 

nanotubes (MWCNTs), and wood fibers [10-12]. 

In Pukánszky’s method and interaction parameter B, that considers the capacity of stress transfer 

between various components, can be easily calculated by knowing the yield stress of composites filled 

with different volume percentages of particle fillers. 
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Despite its simplicity and widespread use in characterize nanoparticle- and short fiber-reinforced 

composites, the adimensional Pukánszky B-factor is not related with physical-mechanical parameters 

such as the interfacial shear strength, τ, and other experimental variables like filler volume fraction, aspect 

ratio (ar) and orientation factor. 

In this paper we explore the relation between Pukánszky’s interaction parameter B and these 

parameters, which are known to have a strong effect on the mechanical properties of composites. We 

present a modification of sPukánszky’s approach by comparing it with the Kelly-Tyson equation to make 

a connection between the B-factor and the relevant physical-mechanical parameters. We apply this new 

approach to nanoparticle- and short fiber-reinforced thermoplastic composites. Values of τ and ηo 

obtained using this improved version of the original model are presented and discussed. We furthermore 

show how the analysis enables us to achieve values of the interfacial shear strength similar to those 

already published in the literature. 

 

II. THEORETICAL ANALYSIS 

The reinforcing effect of a filler or a fiber is expressed quantitatively by the following equation 

proposed by Pukánszky [9]:  

1)    �� = �� �����	
.��� exp (���) 
In this equation, terms σc and σm are the yield stress of the composite and of the matrix, respectively, 

while the (1−ϕf)/(1+2.5ϕf) term indicates the effective decrease of useful cross section due to filler 

introduction. The term exp(Bϕf) considers the filler-matrix interactions, by means of the interaction 

parameter B that considers the capacity of stress transfer between various components. For fillers, the 

interaction parameter depends on the thickness of the interphase, and the strength of the interaction is 

shown in the following equation: 

2)     � = �1 + �������� ���  
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where Af, ρf, l, σi are the specific surface area and the density of the filler, the thickness of the interphase 

and the strength of interaction, respectively, that can be evaluated by knowing the yield stress of 

composites filled with different volume percentages of particle fillers [13]. Alternatively, the thickness of 

the interphase between particles and matrix can be evaluated by using the Shen–Li model which assumes 

the formation of a non-homogeneous interphases [14-15]. In this model, the mechanical properties of the 

medium at the microscopic scale do not change abruptly at the interface between the spherical particle 

and the polymeric matrix, but a transition region (or interphase) exists, in which the properties 

continuously relax until reaching those of the pure matrix at sufficiently long distances from the center of 

the filler particle. 

We can write Eq. (1) in linear form: 

3)    log(�$%&) = log �'(�	
.���)� (����) = ��� 

and plotting the natural logarithm of reduced tensile strength, σred,  against volume fraction (this graph 

will be called Pukánszky’s plot in the following) should result in a linear correlation, the slope of which is 

proportional to the interaction parameter B. 

According to the Kelly-Tyson model, the strength of the composite can instead be estimated by a 

simple modification of the mixture rule. Two cases must be identified, depending on whether the average 

length of the fibers, L, is lower or larger than the critical length, Lc, which is the minimum length 

necessary such that the stress is efficiently transferred from the matrix to the fibers, so that the center of 

the fiber reaches the ultimate (tensile) strength σf: 

4)      (� = ��)
* = ��+
*,-     

where D is the diameter of the fibers. 

For a composite containing more than a certain volume fraction, ϕmin, the Kelly-Tyson model leads to the 

following equation (ϕ>ϕmin): 
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5) �� = ./��(1 − +'
+)�� + ��1 �1 − ��� = ./����(1 − ��2*,-) + ��1 (1 − ��) 
where ��1  represents the stress borne by the matrix when the strain of the composite is such that the fibers 

are strained to their ultimate tensile strain, εc.  

Substituting �� from Eq. (5) into Eq. (3) we get  

6)  log(�$%&) = log 34����5�� 6�789-:	� ; ������� + log ��	
.����������  

The second logarithmic term on the r.h.s. of Eq. (6) is approximately linear with �� in the range 

0 ≤ �� ≤ 0.6: 

7)    log ��	
.���������� ≅ 3.04�� 

The first logarithmic term on r.h.s. of Eq. (6) can be written as:  

8) log 34����5�� 6�789-:	� ; ������� = log � ; ���B� ; �34��5�� 6�789-:C� = 

= log ��1�� D1 − �� E1−./ ����1 F1 − ��4GH$IJK = log ��1�� + log D1 − �� E1−./ ����1 F1 − ��4GH$IJK 
The latter equation, when �� → 0, can be approximated into: 

9) log � ;� + log M1 − �� B1−./ ��� ; 51 − ��2*,-:CN ≅ 

log ��1�� − �� E1−./ ����1 F1 − ��4GH$IJ 
We can thus rewrite Eq. (6) in the following way: 

10)  log(�$%&) = log � ;� − �� B1−./ ��� ; 51 − ��2*,-:C + 3.04�� 

We observe that a Pukánszky’s plot of Eq. (10) will give a straight line with slope 

11)   � = 3.04 − B1−./ ��� ; 51 − ��2*,-:C ≈ 2.04 + ./ ��� ; 51 − ��2*,-: 
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and intercept log � ;�  for �� = 0. When 
� ;� ≈ 1 the straight line passes from the origin of the axis, as in the 

original Pukánszky’s plot. Therefore Eq. (10) provides the theoretical basis for the extension of 

Pukánszky model for short fiber- and nanofiller-reinforced composites. In general, the plot of log(�$%&) 
for short fiber- reinforced composites is not linear with �� but we can obtain B from the derivative of the 

log(�$%&) vs. �� in the limit of �� → 0.  

From Eq. (11) we see that the interaction parameter B is dependent upon the tensile strengths of the 

matrix and of the fibers or fillers, the aspect ratio, the orientation factor and the interfacial shear strength. 

Eq. (11) enables us to calculate the maximum value for B, considering continuous aligned fibers: 

12)   ��,Q ≈ 2.04 + ��� ; ≅ 2.04 + R�S�R S� = 2.04 + R�R  

Eq. (11) also enables to estimate the IFSS from the value of B1:  

13)    G = ��
2,-T��UVW.X7Y4 6�6 ;

Z
 

Eqs. (5), (10) and (11) are valid only when the fibers exceed a certain minimum volume fraction, ϕmin, see 

Fig. 1, that can be estimated by considering that a composite will undergo immediate fracture if [16]: 

14)  �� ≥ ���1 − ��� + ./�� +'
+ �� 

where the last term takes into account the fact that fibers that have ends within Lc/2 of the cross-section at 

which the first fiber fails will not be broken. Now, substituting for ��  from Eq. (5),  

15)    ./��(1 − +'
+)�� + ��1 �1 − ��� > ���1 − ��� + ./�� +'
+ ��  

                                                           

1 In general, comparing Eq. (1) with Eq. (5) leads to the following expression:  
   G = ��2,-]��6 (^V_�)Y4_�6� M`ab (U_�)(^cW.d_�)�eNf for Lf > Lc 

where g = � ;� . 
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Figure 1a. Schematic representation of mechanical behavior for composites with ϕ>ϕmin 

 

 

Figure 1a. Schematic representation of mechanical behavior for composites with ϕ<ϕmin 
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we obtain ��hi, as follows: 

(16)  ��hi = � �� ;34��5��j'j :	� �� ; = � �� ;34��5�� 6�W89-:	� �� ;  (L>Lc) 

 

At volume fractions less than ϕmin, the strength of the composite is given by the equality in Eq. (14).  

 

Figure 1c. theoretical variation of composite strength, σc, with volume fraction, ϕf, of nanofiller or short 

fiber reinforcement (c). 

Therefore, the strength of the composite will be always greater the strength of the unreinforced matrix, 

when: 

(17)    ���1 0 ��� � ./��
+'

+ �� \ �� 

that is: 

(18)     �� k ./��
+'

+ � ��

W

2*,-
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If �� \ ./��
+'

+ , this defines a critical volume fraction in the composite, ��$hl, necessary for composite 

strength to be greater than the strength of the unreinforced matrix, i.e. corresponding to the case �� � ��. 

The critical volume fraction is given by the following expression [16]: 

19)    ��$hl � � �� ;

34��5��j'
Wj:�� ;

� � �� ;

34��5��
6�

789-:�� ;
 

Comparing Eqs. (16) and (19), we can see that ��hi � ��$hlwhen �� � ./��
+'

+ � ./

��
W

2*,-
 

From Eq. (11) we can write: 

20)    ��1 �� 0 2.04� � ./�� 51 − ��2*,-: 

and substituting into Eq. (10): 

21)   ��$hl = � �� ;34��5�� 6�789-:�� ; ≅ � �� ;� ; (m�
.n2)�� ; = 6 6 ; ��m�o.n2 

The last equation sets a condition for the value of B above which the nanofillers or the fibers show a 

reinforcing action, Bcrit: 

22)    ��$hl ≅ 3.04 + 6 6 ; ���'-�p ≈ 3 

 Comparing Eq. (1) with Eq. (14), we can calculate the value of B corresponding to ϕmin: 

23)  ��(1 − ��hi) + ./�� +'
+ ��hi = �� ��� �q�	
.�� �q exp (��hi��hi) 
Solving for ��hi we get: 

24)  ��hi = �� �q log r�	
.�� �q��� �q B(1 − ��hi) + ./ ��� +'
+ ��hiCs 

Considering the approximation given by Eq. (7), we can write: 

25)   ��hi ≅ 3.04 + tuvB (��� �q)	34 6�6 j'Wj� �qC� �q  

And with a suitable rearrangement: 
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26)    ��hi ≅ 3.04 �
tuvB�	� �q534

6�
6 

j'
Wj��:C

� �q
 

For small values of ��hi, we can further approximate as follows:  

27)    ��hi ≈ 2.04 � ./
��
� 

+'

+ � 2.04 � ./

��
W

2*� ,-
 

Bmin is the minimum value of B for which it is possible to predict the tensile strength of the composite 

from the modified rule of mixtures and that enables to estimate G from Eq. (13).  

From Eq. (27) we see that the minimum interaction parameter Bmin is dependent upon the tensile strengths 

of the matrix and of the fibers, the aspect ratio of the fibers, the orientation factor, and the interfacial 

shear strength. 

Again, following Kelly and Davies [16], we now consider the case when L = Lc. From Eq. (16) where it is 

evident that ��hi � 1, thus the failure of the composite will occur by flow of the matrix. 

However, from Eq. (18), it is evident that a strengthening effect will occur when: 

28)  �� < ./ ��
  that is when ��hi ≈ 2.04 + ./ ��
� > 3.04 

in this case, the strength of the composite will be given by 

29)    �� = ./ ����
 + ���1 − ��� 

In an analogous way, we get: 

30)    � = tuv ] ^cW.d_�6 5^V_�:B346�_�W 	� ������Cf
��  

For small values of �� we can approximate into: 

31)   � ≅ 2.04 + ./ ��
� = ��hi 

Finally, for the case when L < Lc, it is apparent from Eq. (16) that �� is always < ��hi, so the failure of 

the composite occurs by plastic flow of the matrix. Thus the strength of the composite will be given by 

[16]:  
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32)  �� � 34*,-��

 � ���1 − ��)    

Substituting �� from Eq. (1), we get 

33)  � = tuv ] ^cW.d_�6 5^V_�:BY489-_�W 	� (����)Cf
�� ≅ 2.04 + 34*,-
�  

Solving this equation for the IFSS, we find: 

34)    G = 
� (m�
.n2)34,-  

Eq. 34 shows that the interfacial shear strength is directly proportional to B. It is important to note that for 

values of B smaller than 2.04, G < 0, which means that the fillers or the fibers do not show any 

reinforcing action on the matrix. Therefore, we can conclude that 2.04 is the lower limit for B for the 

application of Eqs. (13) and (34) in the estimation of the IFSS, τ. 

 

III. DISCUSSION 

Pukánszky’s equation for tensile strength, originally developed for composites reinforced with 

quasi-spherical fillers [9], has been recently extended to nanofibers, carbon nanotubes and short natural 

fibers [10-12], although no theoretical justification for the use of such an equation for this type of 

composites has been provided so far in the literature. In this paper we propose a new interpretation of 

Pukánszky’s model based on the classical Kelly–Tyson approach for short fiber composites [3, 16]. With 

this approach it was possible to find a correlation between Pukánszky’s interaction factor B and the IFSS, 

τ. From Eq. (11) we can predict that B will increase with the tensile strengths of the fibers or fillers, their 

aspect ratio, orientation factor and the interfacial shear strength, and decrease upon increasing the stress 

reached by the matrix when the strain of the composite is such that the fibers are strained to their ultimate 

tensile strain, ��1 . 

In the present section we will show some examples of applications of this new approach with 

reference to some published data reported in the recent literature. 
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 Bilotti et al. [10,17] showed the results of tensile tests carried out on sepiolite clay/polyamide 6 

nanocomposites obtained by melt compounding and compared with similar nanocomposites prepared 

with two organically modified montmorillonite clays, identified by the geographic location from which 

they were mined, i.e., Yamagata, Japan (Kunipia-P hereafter MMT-JP) and Wyoming, USA (Cloisite 

hereafter MMT-USA) [18-19].  

 

Figure 2. Pukánszky’s plot of the data from Bilotti's data [25] 

In Figure 2, we replotted Pukánszky’s plot of the data from Bilotti, and we show the data 

regression lines, calculated without forcing them to pass through the origin of the Cartesian axis, for the 

three series of nanocomposites. In Tab. 1 we report the values of B and ��1 obtained by the Pukánszky’s 

model, as modified by Eq. (11). It can be observed that the B values are approximately constant for all 

types of nanocomposites. Also the values of ��1  are similar but significantly larger than the tensile 

strength of the unmodified matrix, �� � 69.7 �MPa�. This can be explained by considering that, in the 

case of nanocomposites, the immobilized layer of polymer chains that forms the interface will alter the 
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polymer – filler interaction at the molecular level, since the different structural organization of the matrix 

at the interface, with respect to the original matrix, hinders the polymer chain mobility [20].  

Starting from these data we can estimate the IFSS of these composites. The aspect ratio reported in 

Tab. 2 has been calculated by Bilotti et al. [10,17] from experimental data of Young’s modulus, using ar 

as the fitting parameter of the Halpin-Tsai equations and considering an elastic modulus of all the 

nanoclays of 200 GPa [10, 21]. 

Material 

��1  
(MPa) 

B ar 

σf 
ηο τ (MPa) 

 
Bmax 

(MPa) 

PA6/Sepiolitea 81.76 12.6 50 2500 0.6 29.5 32.6 

PA6/MMT-USAa 76.38 11.7 36 2500 0.6 34.2 34.7 

PA6/MMT-Japana 80.13 11.4 45 2500 0.6 28.7 33.2 

PP/MWCNTb 34.38 7.4 40 1720 0.6 13.1 52.1 

PP/wood flour no 
MAPPc 

17.04 3.8 12.6 300 0.6 7.2 
19.6 

PP/wood flour with 
MAPPc 

17.04 5.8 12.6 300 0.6 9.2 
19.6 

 

Table 1. Values recalculated from original experimental data from 

[12,24] a); b) data from [25]; c) data from [11]. 

A difficulty arises in the estimation of σf, since no published data are available – to the authors’ 

knowledge – on the tensile strength of individual nanoclay platelets. By considering that these nanoclays 

may possess the same tensile strength of industrially-produced alumina-silica fibers with similar Young’s 

modulus (150-250 GPa), we assume a value of 2500 MPa in our calculations [22]. 

Bilotti reports a partial inplane orientation of sepiolite needle-like clays, thus we assume an 

orientation factor of 0.6 in our estimations. Tab. 1 reports the results of the calculation of IFSS for the 

three systems. Values of τ in the range 28-35 MPa are obtained from Eq. 13), with insignificant 

differences among the three types of nanoclays. Also the calculated value falls well in the expected range.  
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Figure 3 shows the dependence of B on the aspect ratio, ar, calculated from Eq. 11) using the data in Tab. 

1. As we can see, B monotonically rises until a plateau value of about 20.3 is obtained for PA6/Sepiolite. 

In the case ηο = 1, we obtain from Eq (12) Bmax = 32.6 as reported in Tab. 1. For PA6/MMT-USA and 

PA6/MMT-Japan, the same calculations give 34.7 and 33.2. 

 

Figure 3. The dependence of B on the aspect ratio. 

These figures compare well with the largest B values published according to Százdi et al. [23], 

which are below 25, although the same authors predict a value of about 200 for a completely exfoliated 

silicate on the basis of the linear dependence of B on the specific surface area.  

The specific surface area of a nanoclay platelet can be related to its aspect ratio. By definition, the 

specific surface is given by: 

35)    �� � �
� � �

�� � 
�$W

��$W� � 

�� 
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For a platelet, the aspect ratio is defined as the ratio of mean diameter of a circle of the same area 

as the face of the plate to the mean thickness of the platelet, 
H$ = �/ℎ, thus: 

36)      �� = 
�& H$ 

For a nanoclay, both ρ and d are constant for each specific type, while h can decrease with the 

degree of exfoliation. Thus, our model predicts that the relation between B and aspect ratio and specific 

surface area cannot be linear until complete exfoliation is attained. In fact, Eq. 12) related Bmax with the 

ratio of the tensile strength of the nanofiller to the stress reached by the matrix when the composites fails.  

Before leaving Figure 3, where a constant τ  is assumed, we also note that for values of ar < 20, B is 

negative which means that the filler is actually detrimental for the tensile strength of the composites. 

Polypropylene (PP) multi-walled carbon nanotube (MWNT) composites offer another interesting example 

of the model proposed in this paper. We consider the data published by Satapathy et al. [12, 24], which 

we replot in Figure 4. From the Pukánszky plot we obtain a value of B = 7.36 and ��1 = 34.38 MPa. 

Extracting a value of IFSS from these data, using Eq. (13), requires knowledge of the tensile strength, 

aspect ratio and orientation factor of the MWCNTs. The MWNTs used by the group of Satapathy have 

been produced using chemical vapor deposition (CVD), and have a diameter in the range of 10 to 15 nm, 

lengths between 0.1 and 10 µm, giving an average aspect ratio of 40 [12, 24].  
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Figure 4. Pukánszky’s plot from Satapathy's data [12,24] 

By using the value of tensile strength, 1.72 GPa, measured by Pan et al. [25], on CVD-grown 

aligned MWCNTs we can estimate an IFSS of 13.1 MPa. Using these data in Figure 3 we observe that by 

increasing the aspect ratio an asymptotic value of B is reached at 31.5. For aligned MWCNT Eq. (12) 

provides an estimate of Bmax = 52.1. 

The data of Satapathy et al. [12, 24] are also replotted in the Pukánszky plot of Figure 5 together 

with the theoretical predictions of Eqs. (6) and (10). As it can be observed, the experimental data lie in the 

range where the curve obtained from the modified rule of mixture – Eq. (6) – can be approximated by Eq. 

(10). Significant deviations between the two curves only arise for volume fractions above 0.05. 
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Figure 5. Comparison of the prediction of Eq.6 and Eq.10  

with experimental data of Satapathy 

 

   Figure 3. The dependence of B on the aspect ratio. 
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Finally, we examine some data published by the group of Prof. Pukánszky on PP/wood flour 

composites [11]. In this work, an ethylene-propylene random copolymer ethylene-propylene random 

copolymer (Tipplen R 359 from TVK Plc. - Tiszai Vegyi Kombinát - Hungary) has been mixed with 

lignocellulosic fibers (Arbocel FT 400 from Rettenmaier GmbH, Germany). To improve interfacial 

adhesion a maleic anhydride modified polypropylene PP (MAPP - Orevac CA 100 from Arkema Inc., 

Colombes Cedex, France) was used. The MAPP/wood ratio was chosen as 0.1.  

Figure 7 shows the semi-log plot of reduced tensile strength as a function of the volume fraction for 

the two series of PP/wood flour composites: with and without modification with PP-g-MA. From the 

values of the interaction parameter obtained and reported in Tab. 1, we can calculate the IFSS. Again, we 

are faced with some assumptions since no information is provided in [11] to allow us to determine the 

orientation factor; moreover, we do not know the interface strength of the wood fibers. 

 

Figure 7. Pukánszky’s plot of the data from Pukánszky [11] 
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Considering the literature on lignocellulosic fibers we find values between 130 and 600 MPa [26-

30]. Assuming σf = 300 MPa and an orientation factor ηο = 0.6, the IFSS for the composites with 

PP/wood flour not treated with PP-g-MA is estimated to be 7.2 MPa. This is in agreement with the value 

of 7.9 MPa found by Rodriguez et al. [31] for corn stalk fiber reinforced PP. For PP/PP-g-MA/wood flour 

composites, the estimated interface shear strength rises to 9.2 MPa, with an increase of about 30%. This 

value of τ is substantially lower than that found from Rodriguez et al. [31] for composites containing 6% 

MAPP, corresponding to 15.5 MPa. This can be explained by the fact that the addition of PP-g-MA has 

brought the IFSS very close to its maximum predicted according to the von Mises criterion, G �

��/√3 � 9.8 MPa [32-33]. It has to be noted that all values of IFSS in Tab. 1 are below the respective 

values predicted by this condition. 

 

IV. CONCLUSIONS 

The Pukánszky model for the tensile strength, originally developed for filled composites, has been 

recently used with success for short fiber reinforced composites and various nanocomposites, although no 

theoretical justification has been provided so far for this new use. In this paper the Pukanszki equation has 

been analyzed in terms of the Kelly-Tyson model for the prediction of composite strength. In this way, it 

was possible to establish a direct link between Pukanszki’s interaction parameter B and fundamental 

material parameters such as tensile strengths of the matrix and of the fibers, the aspect ratio of the fibers, 

the orientation factor and the interfacial shear strength IFSS. Also it was possible to determine the 

minimum value of B for which is possible to predict the tensile strength of the composite from the 

modified rule of mixtures, as well the maximum value that B can achieve in the case of continuous 

aligned fibers with the same type of matrix, fiber and interface shear strength. Moreover, a critical volume 

fraction, ��$hl, was defined corresponding to the minimum amount of filler content necessary for the 
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composite strength to be greater than the strength of the unreinforced matrix, i.e. corresponding to the 

case �� � ��. It was also shown that for this condition ��$hl ≅ 3. 

From this analysis it was possible to express the interfacial shear strength in terms of B and other 

materials parameters, Eq. (13). From such an equation, it is possible to verify the monotonical relation 

between B and IFSS that has been suggested previously in the literature. 

A few examples of calculations of the IFSS, τ, from Pukánszky’s interaction factor B have been 

provided, using published literature values relating to nanocomposites with organically modified 

nanoclays and carbon nanotubes, as well as composites reinforced with short natural fibers. All results 

obtained fall within the value expected from similar literature values and below the maximum predicted 

according to the von Mises criterion, G = ��/√3. 

The new equations presented in this paper provide a theoretical basis for the use of the Pukánszky’s 

model in the case of nanocomposites and discontinuous fiber composites. Compared to the traditional 

Kelly-Tyson approach, the interaction factor B enables to give a rapid estimate of the interface shear 

strength even when fundamental material constants such as fiber tensile strength, aspect ratio and 

orientation factor as well as the stress in the matrix when the composites breaks, cannot be simply 

evaluated. This new approach can therefore be appreciated in research and development of new 

composites in industrial environments. 

*This chapter was submitted Composite Science and Technology Journal 
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Chapter 6: General Conclusions 

In the research focus of this dissertation, the mechanical properties, thermal stability and 

morphology of biocomposites based on cellulose diacetate (CDA), plasticized with a combination of 

reactive and non-reactive plasticizers and reinforced with fibers from natural resources, were investigated 

and results were reported in Chapter Two. Values of tensile strength and Young’s modulus decreased 

with the increasing of plasticizer content. A good compromise between processing and mechanical 

properties for the composites with Lyocell cellulose fibers was obtained for the systems where CDA is 

plasticized with 20 wt% Triacetin (TA). The presence of GPE not only improved processability but also 

increased values of elongation at break in the materials produced. The glass transition temperature Tg 

decreased due to the effect of the primary plasticizer, as investigated by DMTA testing. SEM 

micrographs evidenced that, in samples with 20 wt% TA, the fibers were stressed until break with just a 

small amount being pulled-out. The adhesion of the polymeric matrix with the fibers improved by the 

addition of GPE, possibly because of the formation of strong chemical bonds with the polymer matrix 

through the epoxy groups of GPE. Therefore, this coupling agent can be applied to the blends, in which 

the polymer matrix has OH or NH groups, to increase the interaction between the fiber and matrix. 

Moreover, the mechanical properties of the cellulose diacetate composite with different natural 

fillers were determined as a reference. Considering both processing conditions, the economic aspects and 

availability of raw materials on the market, biocomposites based on plasticized CDA reinforced with 

regenerated cellulose (Lyocell) microfibers could become an interesting option for the production of 

“green” biocomposites.  
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However, cellulose diacetate presents a disadvantage in processing by extrusion. It seems difficult 

to improve the elongation at break of cellulose diacetate through plasticizers and processing by extrusion. 

The author tried to increase the content of the plasticizer GPE and TA but the elongation at break, tensile 

and modulus decreased due to a decrease in the interaction between polymer chains of the materials. 

Moreover, it was attempted to blend plasticized cellulose diacetate with different biopolymers and 

toughness agents to enhance the toughness of materials. However, the cellulose diacetate has very high 

surface tension and was immiscible with the components in blends. In addition, the TA and polymer 

matrix have physical interactions as shown by the analysis of TGA. It will be possible that the plasticized 

polymers and composite cannot maintain the mechanical properties for long time in outdoor conditions. 

This point can limit the application of materials. 

To develop biocomposites with good mechanical properties and able to maintain them for long 

periods of time that are inexpensive and that have high thermo resistance for different applications, it is 

necessary to develop a matrix with those properties first. For these reasons, blends of polylactic acid and 

polycarbonate with and without a catalyst were investigated carefully in Chapter Three. The effect of a 

catalyst and temperature on the mechanical properties of blends showed that the materials can obtain high 

miscibility processing at 230°C. Additionally, the blends with multi-catalysts in DMTA analysis 

presented a new peak on tan delta, which is between the relaxation temperature of PLA and PC, as 

evidence of the formation of a copolymer. Moreover, the data of TGA shows an increased thermal 

resistance in blends containing a catalyst. It also indicates that the new copolymer is formulated on that 

processing condition.  

The mechanical properties of blends with varying amounts of polylactic acid demonstrated that 

Young’s modulus of blends improve as the PLA amount is increased. The blends obtained the maximum 

elongation at break as the phases of blends were inverted. More specifically, they fit well with some 
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current models of mechanical properties. As the catalyst was added, Young’s modulus of materials was 

enhanced thanks to the increasing interface of polymers by the formulation of new copolymers.  

DSC and DMTA confirmed that as the content of PC increased, the crystallinity of materials was 

reduced. More specifically, the formula PLA40PC60 –CATALYST showed that the materials would not 

lose storage modulus after the temperature at Tg of PLA, namely no crystalline processing in that zone. 

Due to the catalyst, the links between PLA and PC were increased. Consequently, the PLA lessened the 

mobility and the crystalline process could not be obtained. These advantageous properties broadened the 

application possibility of materials as compared to current polymers based on PLA. In addition, the SEM 

and TEM confirmed once again the effect of a catalyst on the morphology of blends. By reducing the 

surface tension of PC and the new copolymer, the interactions between domain and matrix improved, and 

the size of the domains increased. The biodegradation tests demonstrated that the materials combined 

with a catalyst slightly decreased the percent of degradation after 70 days, but the speed of degradation 

was higher than with physical blends.  

In Chapter Three, a new “hybrid” biopolymer was formulated by blending PLA and PC. Although 

the polycarbonates are not biodegradable, they are recyclable and thus are still friendly to the 

environment. To decrease the environmental impact of materials and to pursue the main focus of 

development of biocomposites, PLA/PC copolymer blends with Tencel fiber are reported in chapter four. 

The mechanical properties and thermo resistance as well as morphology of PLA40PC60 and Lyocell 

fibers are investigated carefully. Young’s modulus of composites increases while the amount of cellulose 

fibers increases, but the material will not change the tensile strength significantly because of the poor 

interaction between the fibers and matrix as well as between the PLA and PC phases. The presence of 

Lyocell fibers not only decreases the elongation at break, but also facilitates the degradation process of 

the composites, which are shown in the tensile and TGA testing. Moreover, the fibers prevent the re-
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crystalline process of PLA in the PLA40PC60 matrix due to losing the storage modulus of materials at 

low heat rates from the DMTA analysis. 

However, catalysts can help overcome the negative properties of the PLA40PC60Ly15 composites. 

The mechanical properties of the materials at the same fiber content increase as compared to the 

composites without a catalyst. The new chemical links between fibers and matrix are obtained so that the 

thermo resistance and mechanical properties of the composites are enhanced. This was not only 

confirmed by the FTIR analysis, but also by the DMTA and SEM results. The homogenous phase or co-

continuous phase between PLA and PC were achieved, and the adhesion between the fibers and matrix 

was perfect, which fit well with the proposed mechanism reaction of blends. The exploitation actions of a 

catalyst in the formulation process of a copolymer to increase the interaction between fibers and a matrix 

can open the doors to new processing methods on production of green composites, bio-based or hybrid 

bio-degradable composites. This will counterbalance the negative properties of low mechanical properties 

and thermo resistance of biopolymers, potentially broadening its applications in electronics, car 

components, and in food packaging. 

In the development the new types of biocomposites with increased interaction between the fiber 

and matrix by practical experiment, we found that the theory in determining the interface shear strength 

(IFSS) of short fiber and fillers is still open, and this effect is not considered by the theory, although this 

is an important parameter on the mechanical properties of composites. For that reason, we developed a 

new method for predicting IFSS by an expression of Pukánszky’s model and of the Kelly-Tyson Davies 

model, which is the focus of Chapter Five. 

In this chapter, it was possible to establish a direct link between Pukanszky’s interaction parameter 

B and fundamental parameters of the material such as tensile strengths of the matrix and of the fibers, the 

aspect ratio of the fibers, the orientation factor and the interfacial shear strength IFSS. It was also possible 

to determine the minimum value of B for which it is possible to predict the tensile strength of the 
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composite from the modified rule of mixtures, as well the maximum value that B can achieve in the case 

of continuous aligned fibers with the same type of matrix, fiber, and interface shear strength. From this 

analysis it was possible to express the interfacial shear strength in terms of B and other material 

parameters. It is possible to verify the monotonical relation between B and IFSS that has been suggested 

previously in the literature. A few examples of calculations of the IFSS, τ, from Pukánszky’s interaction 

factor B have been provided, using published literature values relating to nanocomposites with 

organically modified nanoclays and carbon nanotubes, as well as composites reinforced with short natural 

fibers. This method will be used to determine TFSS from our experimental data in the previous chapter, 

which will confirm the effect of the coupling agent on the interface shear strength of composite. In the 

future, this new method will be used to compare with Thomason, Fu-Lauke or the current model in 

calculatin the IFSS fiber composite. 

The research focus of this dissertation was achieved. New types of biocomposites based on 

renewable resources and recycled polymers were developed that have high mechanical properties, thermo 

resistances,  that are biodegradable and recyclable. They will express the applications of biopolymers and 

biocomposites in different life applications such as food trays, electric components, cell phone covers, car 

components, and helmets. In particular, new methods for increasing the interaction between fibers in 

different polymeric matrices were obtained. They can be applied for different biopolymers and biofibers 

present in the market to improve the mechanical properties and fracture toughness of biocomposite 

materials. Moreover, the new model for estimating the interface shear strength of fibers/fillers are useful 

for predicting the mechanical properties of biocomposites not only in research, but also in production. 

The prediction of the IFSS of nanofillers in the matrix can be applied, something that was never estimated 

before in the theory.  
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More specifically, materials were also developed on an industrial scale for the production of "green 

composites" with a pilot scale extrusion machine. The products of this thesis not only apply to Italian 

plastic companies but also to European projects: 

 - FP7 – KBBE project FORBIOPLAST (Forest Resource Sustainability through Bio-Based 

Composite Development). 2010-2012. 

 - FP7-KBBE project DIBBIOPACK. (Development of injection and blow extrusion molded 

biodegradable and multifunctional packages by nanotechnologies: improvement of structural and barrier 

properties, smart features, and sustainability). 2012-2013 

 - FP7-KBBE project BIOBOARD (Bio-Board for a sustainable protein-based paper coating 

system) 2012- 2013. 

- FP7-KBBE project OliPHA (Functional sustainable packaging) 

- Thermozeta Company - Milano – Italy, producer of coffee caps. 

- Fiat Company - Torino- Italy - producer of car components 

- Acetati Spa – Verbania - Italy  - producer of helmet, sport components, etc. 

- Mircotech - Venizia - Italy - producer of mixing pellets and fillers for plastic components 

- Euromaster - Prato - Italy - producer of mixing pellets for plastic components  
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