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ABSTRACT 

The proliferation of microarray experiments and the increasing 

availability of relevant amount of data in public repositories have created 

a need for meta-analysis methods to efficiently integrate and validate 

microarray results from independent but related studies. 

Despite its increasing popularity, meta-analysis of microarray data is 

not without problems. In fact, although it shares many features with 

traditional meta-analysis, most classical meta-analysis methods cannot be 

directly applied to microarray experiments because of their unique issues. 

Several meta-analysis techniques have been proposed in the context 

of microarrays. However, only recently a comprehensive framework to 

carry out microarray data meta-analysis has been proposed. Moreover 

very few software packages for microarray meta-analysis implementation 

exist and most of them either have unclear manuals or are not easy to 

apply. 

We applied four meta-analysis methods, the Stouffer’s method, the 

moderated effect size combination approach, the t-based hierarchical 

modeling and the rank product method, to a set of three microarray 
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studies on malignant pleural mesothelioma. We focused on differential 

expression analysis between normal and malignant mesothelioma pleural 

tissues. Both unfiltered and filtered data were analyzed. The lists of 

differentially expressed genes provided by each method for either kind of 

data were compared, also by pathway analysis. These comparisons 

highlighted a poor overlap between the lists of differentially expressed 

genes and the related pathways obtained using the unfiltered data. 

Conversely, a higher concordance of the results, both at the gene and the 

pathway level, was observed when filtered data were considered. The fact 

that a significant number of genes were identified by only one of the 

tested methods shows that the gene ranking is based on different 

perspectives. In fact, the analyzed methods are based on different 

assumptions and focus on diverse aspects in selecting significant genes. 

Since so far there is no consensus on what is (are) the ‘best’ meta-analysis 

method(s), it may be useful to select candidate genes for further analysis 

using a combination of different meta-analysis methods. In particular, 

differentially expressed genes detected by more than one method may be 

considered as the most reliable ones while genes identified by only a 

single method may be further explored to expand the knowledge of the 

biological phenomenon of interest. 
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1 INTRODUCTION 

Microarray technology simultaneously measures the mRNA of tens of 

thousands of genes in biological samples in a high-throughput and cost-

effective manner. Since its introduction in 1995 [1], microarray technology 

has improved dramatically and became a widely used tool to study the 

whole transcriptome of many organisms. It has been adopted to explore 

the molecular basis of fundamental biological processes and complex 

diseases [2, 3], to improve the disease taxonomy [4, 5], to classify patients 

into known disease subclasses [6], to analyze the response to drug 

administration [7], and to predict disease outcomes [8, 9]. 

Enhancements in microarray technology and its widespread use have 

led to the generation of a relevant amount of data and resulted in several 

large public data repositories such as Gene Expression Omnibus (GEO) [10] 

(http://www.ncbi.nlm.nih.gov/geo/) from NCBI, ArrayExpress [11] 

(http://www.ebi.ac.uk/arrayexpress/) from EBI and CIBEX (Center for 

Information Biology gene EXpression database) [12] 

(http://cibex.nig.ac.jp/).  

It is not uncommon to find multiple microarray gene expression 

studies performed by different research groups worldwide addressing the 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ebi.ac.uk/arrayexpress/
http://cibex.nig.ac.jp/
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same or similar biological questions. Hence there has been a growing 

interest in developing methods to efficiently integrate microarray data 

from independent studies with the aim of fully exploiting the rich 

information produced. Meta-analysis appears to be an effective solution 

to this pressing issue [13].  

As stated by Hedges, “meta-analysis consists of statistical methods 

for combining results from independent but related studies” [14]. 

However the term meta-analysis is also widely used in a broader sense, as 

we do here, to indicate the whole process of identification, selection, 

assessment and quantitative synthesis of several studies concerning a 

well-defined research question [15]. Many people use the term meta-

analysis interchangeably with systematic review, however not all the 

systematic reviews are meta-analyses. In fact a meta-analysis is a 

systematic review which provides a statistical synthesis of the results and 

produces an overall estimate of the effect of interest.  

Meta-analysis offers several practical advantages. 

First of all, meta-analysis represents an inexpensive solution to 

overcome the problem of reduced statistical power of microarray 

experiments and to reveal true effects of interest [16]. Typically, in 

microarray experiments many probes are investigated in few samples due 

to the high cost of this technology or the lack of biological replicates 

available. The straight consequence is that studies with small sample sizes 

are less likely to detect true effects and more prone to false positive and 

false negative results. Putting results together, therefore, increases the 

sample size and the statistical power of the study. It also allows a more 

accurate estimation of the effect, even if derived from small but 

consistent variations.  
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Moreover, meta-analysis has the potential to strengthen and extend 

the results obtained by individual studies and to increase their reliability. 

Indeed, it has been shown that microarray studies are poorly reproducible 

across platforms and/or laboratories [17, 18]. Technological differences 

among different microarray platforms [19], large variations in biological 

and experimental settings, small sample sizes and inappropriate statistical 

methods [20, 21] have been pointed out as the major sources that 

contribute to the inconsistency of microarray results. Many of these can 

be assessed and controlled or overcome by the use of standard reporting 

methods and the careful application of large-scale meta-analysis 

techniques with an appropriate statistical modeling of the inter-study 

variation [16].  

Meta-analysis has been widely used in the area of medical and 

epidemiological research as well as in the sociological and behavioral 

sciences [22]. The applicability of meta-analysis methods to microarray 

datasets was demonstrated for the first time in 2002 by Rhodes who 

combined four datasets on prostate cancer to determine genes that were 

differentially expressed between clinically localized prostate tumor and 

benign prostate tissue samples [23]. Since then, several applications of 

meta-analysis to microarray data appeared in the literature [24-26].  

Through a systematic search on PubMed, Tseng and colleagues [27] 

found that 333 microarray meta-analysis papers (including reviews, 

biological applications, methodological articles and database/software 

description papers) were published until December 2010, thus confirming 

the relevant interest of the scientific community in this challenging task. In 

more than half of the above mentioned publications, meta-analysis was 

applied to identify Differentially Expressed Genes (DEGs) between two or 

more conditions [28-30]. However microarray studies have also been 
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combined for classification analysis [31], to identify co-expressed genes or 

to build gene networks [32-34], to evaluate reproducibility and bias across 

studies [35-37]. Figure 1.1 illustrates a microarray meta-analyses summary 

performed by Tseng and colleagues [27]. 

 

Figure 1.1: Classification of the 333 microarray meta-analysis papers reviewed by 
Tseng based on the type of paper (A) and the purpose of meta-analysis (B) (image 
modified from [27]) 

 

Despite its increasing popularity, however, meta-analysis of 

microarray data is not without problems. In fact, although it shares many 

features with traditional meta-analysis, most classical meta-analysis 

methods cannot be directly applied to microarray experiments because of 

their unique issues such as the large number of variables involved and the 

technical complexities of combining data across different experimental 

platforms (e.g. gene nomenclatures, species and analytical methods) [38]. 

1.1 AIM OF THE STUDY 

In this study, we focused on the application of meta-analysis to the 

two-class comparison microarray experiments. The objective of this kind 

of studies is to identify DEGs between two well-defined conditions, 

namely cases and controls. Four statistical approaches were comparatively 

evaluated: the weighted version of the inverse normal method by Marot 

and Mayer [39] and the moderated effect size combination approach 
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proposed by Marot [40], both implemented in the R (http://www.r-

project.org/) package metaMA, the t-based hierarchical modeling 

described in Choi et al. [16] and implemented in the Bioconductor 

(http://www.bioconductor.org/) package GeneMeta [41] and the rank 

product method with the RankProd Bioconductor package [42]. These 

methods were applied to a set of three publicly available microarray 

studies on malignant pleural mesothelioma to identify DEGs between 

normal and malignant mesothelioma pleural tissues. Since it is not yet 

clear if filtering is beneficial from a meta-analysis perspective, both 

unfiltered and filtered data were analyzed to evaluate the impact of a 

common filtering strategy on meta-analysis results. 

 

http://www.r-project.org/
http://www.r-project.org/
http://www.bioconductor.org/
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2 BACKGROUND 

A considerable literature has been published to guide the whole 

review process and the meta-analysis for medical and epidemiological 

studies [43-45]. Moreover, some guidelines for the reporting of systematic 

reviews and meta-analyses, outlined in the Quality of Reporting of Meta-

Analyses statement for randomized trials by QUORUM group [46] and its 

evolution into PRISMA (Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses) [47], are universally accepted. 

On the contrary, there is little guidance to carry out a meta-analysis 

of microarray datasets. The first attempt in this direction was represented 

by the paper of Ramasamy and colleagues who proposed a seven-step 

practical approach to conduct a meta-analysis of microarray datasets: “(1) 

Identify suitable microarray studies; (2) Extract the data from studies; (3) 

Prepare the individual datasets; (4) Annotate the individual datasets; (5) 

Resolve the many-to-many relationship between probes and genes; (6) 

Combine the study-specific estimates; (7) Analyze, present, and interpret 

results” [48]. Steps from 2 to 5 apply separately to the individual datasets. 
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Each step, in turn, consists of several critical points that will be highlighted 

and examined in detail in the following paragraphs. 

2.1 IDENTIFICATION OF SUITABLE MICROARRAY STUDIES 

A meta-analysis begins with a well-formulated objective. As 

highlighted in the introduction, meta-analysis of microarray studies can be 

used for several purposes, for example to identify DEGs between two or 

more groups, to identify co-expressed genes, to build gene networks or to 

evaluate reproducibility and bias across studies. In the following we will 

focus on meta-analysis for DEGs detection, however most of the 

considerations apply regardless of the specific topic. 

The study selection process is guided by the definition of the 

inclusion/exclusion criteria. These criteria should be a priori established 

and should derive immediately from the objective(s) of the study. They 

can be based on biological (e.g. specific disease, type of outcome, type of 

tissues, organism) or technical issues (e.g., density of array, minimum 

number of arrays). A clear, detailed and unambiguous formulation of 

inclusion/exclusion criteria, possibly in the form of a real protocol, is 

essential to avoid the most frequent criticism of the meta-analysis, that is 

“mixing apples and oranges” [49]. 

Locating the studies is by far the most difficult and the most 

frustrating aspect of any meta-analysis but it is the most important and 

critical step. Many meta-analyses begin with a systematic literature 

search. Keywords concerning the research question and their synonyms 

are typically used to identify studies for inclusion in the review. In order to 

retrieve all the relevant studies on a given topic, the search should be as 

comprehensive as possible, therefore it is recommended to search all the 
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main electronic databases of abstracts listed in Table 2.1. Reading the 

latest review articles and contacting specific investigators that are known 

to be active in the area can help to identify additional studies missed by 

automated search and ongoing research efforts with unpublished data. 

Database Web site 

Online repositories of abstracts   

PubMed http://www.pubmed.gov/  

Google Scholar http://scholar.google.com/  

Web of Science (requires subscription) http://wos.mimas.ac.uk/  

SCOPUS (requires subscription) http://www.scopus.com/  

Microarray repositories recommended by MIAME for mandatory data deposition 

Array Express http://www.ebi.ac.uk/arrayexpress/  

CIBEX http://cibex.nig.ac.jp/ 

Gene Expression Omnibus (GEO) http://www.ncbi.nlm.nih.gov/geo/  

Other useful sites for data identification   

ONCOMINE http://www.oncomine.org/  

Stanford Microarray Database (SMD) http://smd.stanford.edu/  

Table 2.1: Useful web resources to identify suitable studies for microarray meta-
analysis (modified from [48]) 

 

Concerning microarrays, it is appropriate to extend the search to 

public microarray data repositories, as well as to a few more specialized 

databases, listed in Table 2.1. A quick review of the abstracts and 

experiments description is essential to eliminate those studies that are 

clearly not relevant to the meta-analysis or do not meet the specified 

selection criteria.  

After the identification of candidate studies from abstracts, the 

articles or inherent information from authors, where available, have to be 

retrieved to confirm their eligibility. To limit the risk of compromising the 

quality of meta-analysis results, the included studies should undergo a 

quality assessment, that is an accurate evaluation of the study 

characteristics in terms of the study design, implementation and analysis 

[49]. In fact, if a meta-analysis includes many low-quality studies, then the 

http://www.pubmed.gov/
http://scholar.google.com/
http://wos.mimas.ac.uk/
http://www.scopus.com/
http://www.ebi.ac.uk/arrayexpress/
http://cibex.nig.ac.jp/
http://www.ncbi.nlm.nih.gov/geo/
http://www.oncomine.org/
http://smd.stanford.edu/
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errors in the primary studies will be carried over to the meta-analysis, 

where they may be harder to identify, and the obtained result will be 

biased (“garbage in, garbage out“). Regarding microarray studies, the 

quality assessment should be performed at the study-level as well as at 

the data-level, as will be extensively described in the following 

paragraphs. 

2.2 EXTRACTION OF THE DATA FROM STUDIES 

As illustrated in Figure 2.1, there are four levels of data arising from 

microarray analysis: (1) the scanned images, (2) the raw data or FLEO 

(Feature-Level Extraction Output) files [48], such as Affymetrix CEL and 

GenePix GPR files, that is the quantitative outputs from the image analysis 

software, (3) the Gene Expression Data Matrix (GEDM) arising from the 

application to raw data of preprocessing algorithms, which represents the 

gene expression summary for every probe and sample and (4) the list of 

genes that are declared as differentially expressed in the study. 

 

Figure 2.1: Types of data relevant to a microarray experiment (image modified 
from [50]) 
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According to the conclusions of the study of Suarez-Farinas [51] and 

the recommendations of Ramasamy [48], raw data represent the ideal 

input for meta-analysis because they are independent of the specific 

preprocessing algorithms used and can be converted to GEDMs in a 

consistent manner thus producing more comparable data. By contrast, 

using GEDMs as input for meta-analysis is unsuitable because they 

considerably depend on the choice of the preprocessing algorithms, which 

may produce non-combinable results. The same considerations apply to 

the lists of DEGs. In fact, even if DEGs lists are easier to obtain since they 

are often included in the main text or supplementary data of published 

microarray studies, they heavily depend on the preprocessing algorithms, 

the statistical methods and cutoffs, and the annotation system adopted in 

the original study. 

In relation to the data retrieval phase there are three major 

problems: (1) the efficient access to microarray data, (2) their 

standardization, and (3) the comparability across platforms. 

2.2.1 MICROARRAY STANDARDS AND REPOSITORIES 

In the past years, most of the publicly available microarray data 

produced by different research groups worldwide were scattered in the 

web both as supplementary data of a published article and as links to the 

authors web pages. Consequently it was very difficult for the researchers 

to locate and systematically collect the relevant data available. This 

problem has been addressed and partially solved through the 

development of several public repositories. Today, many web databases 

exist. ArrayExpress  from EBI and GEO from NCBI are the two largest ones: 

on 24 January 2013, GEO contained 35618 experiments and 870318 

samples while 35035 experiments and 1009648 assays were available in 
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ArrayExpress. Several other microarray databases are housed in specific 

universities or groups, including Stanford Microarray Database (SMD) and 

RNA Abundance Database (RAD; http://www.cbil.upenn.edu/RAD [52]) 

from University of Pennsylvania, or are focused on particular organisms 

(e.g. yeast Microarray Global Viewer; http://www.trans 

criptome.ens.fr/ymgv/ [53]) or diseases (e.g. ONCOMINE and Cancer 

Genome Workbench (CGWB) [54]) [27, 55]. 

At the beginning the effectiveness and the use of these public 

databases were severely limited by two factors: (1) the incompleteness or 

the lack of experimental information needed to assess the quality of the 

data, to repeat a study or to reanalyze the data, and (2) the lack of 

standards for presenting and exchanging such data. A considerable 

improvement occurred with the publication of the Minimum Information 

About a Microarray Experiment (MIAME) [50] standard by the Microarray 

Gene Expression Data Society (MGED) (http://www.mged.org). MIAME 

guidelines describe the minimum information that has to be provided to 

enable the comprehension of the results of a microarray experiment and 

their validation by independent researchers. The information required by 

MIAME standard includes the experimental design, array design (e.g. 

platform type and provider, gene identifiers, probe oligonucleotides), 

details on samples and treatments applied (e.g. laboratory protocols for 

sample treatments, extraction and labeling), hybridization conditions, 

measurements and normalization controls (e.g., normalization techniques 

applied and control elements used to obtain the final processed data). The 

current MIAME standard requires the submission to public databases of 

both the FLEO and GEDM files [56]. 

Since the MIAME publication in 2001, the major data repositories are 

supporting the archiving of MIAME-compliant data, and most peer-review 

http://www.cbil.upenn.edu/RAD
http://www.transcriptome.ens.fr/ymgv/
http://www.transcriptome.ens.fr/ymgv/
http://www.mged.org/
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journals have adopted MIAME guidelines as a requirement for the paper 

publication [57]. The availability of standardized microarray gene 

expression data in these public repositories: (1) greatly enhanced the 

accessibility, the retrieval and the sharing of the data; (2) increased the 

reliability of the data quality and (3) improved the comparability and 

integration of data from different laboratories in a meta-analysis 

perspective. 

Despite the wide adoption of MIAME standard by public microarray 

repositories and scientific journals, only about one-third of published 

studies have their raw data deposited in public databases [58]. Moreover, 

even when data are available, the incomplete annotation and/or the lack 

of data processing and analysis description limit their usefulness for 

further analyses [59]. 

2.2.2 CROSS-PLATFORM COMPARABILITY 

One major issue in meta-analysis of microarray datasets concerns the 

possibility of combining raw measurements from different microarray 

technologies.  

Although all DNA microarrays are based on the hybridization of 

complementary nucleic acid strands, the available platforms differ in the 

manufacturing process, hybridization protocols, image and data analysis, 

making comparison of the data across platforms very difficult. 

Based on the length of the probes, microarrays can be classified as: 

(a) cDNA arrays, using probes constructed with PCR products of up to a 

few thousands base pairs, (b) short oligonucleotide arrays, using short 

probes (25-30 mer), such as Affymetrix GeneChip® arrays (Santa Clara, CA, 

USA), and (c) long oligonucleotide arrays, such as those produced by 

Agilent® (Palo Alto, CA, USA), using 60-70 mer long probes. Probe design 
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varies among microarrays. Long oligonucleotides are thought to mimic the 

properties of cDNA probes offering high sensitivity and good specificity, 

while giving better probe homogeneity. For both cDNA and long 

oligonucleotide arrays, typically one probe is designed for each gene that 

is to be probed [60]. In Affymetrix arrays, for each gene, a unique region is 

identified, then a set of 11–20 complementary probes spanning this region 

is synthesized. These complementary probes are referred to as ‘Perfect 

Match’ probes (PM). Each PM probe is then paired with a ‘Mismatch’ 

probe (MM), which has the same sequence as the PM except the central 

base replaced with a mismatched nucleotide. The complete set of PM and 

MM probe pairs for each gene is referred to as a ‘probe set’ [61]. 

Short oligonucleotides showed a higher specificity in target 

identification compared to long cDNA clones that were more prone to 

cross-hybridization [62]. 

Gene annotation can also contribute to platform differences. Gene 

expression values can be compared effectively across platforms only if 

genes are accurately identified on all platforms. Unfortunately, the lack of 

standardized annotation methods and of a regular update of annotations 

severely affect the cross-platform comparability. Moreover, the presence 

of poorly annotated and/or not specific probes on some arrays contribute 

to increase misalignments among platforms [63]. In any case, even if an 

accurate translation between different nomenclatures is achieved, the 

differences in how different platforms measure specific transcripts still 

remain and could have important impact on any attempt to conduct 

effective microarray data meta-analysis by increasing the false negative 

rate [38]. 

Based on the expression measurement techniques, microarray 

technologies can be classified as: one-color or single-channel and two-
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color or two-channel. In one-color microarrays, such as Affymetrix arrays, 

a single labeled RNA sample is hybridized on a chip thus providing an 

absolute measurement of expression in the given sample (absolute 

quantification). By contrast, expression levels measured by cDNA 

microarrays and long oligonucleotide platforms, using two-channel 

detection, are usually reported as a ratio of the signal from a target RNA 

sample relative to one from a co-hybridized sample (relative 

quantification) [1]. These different measurement strategies result in 

diverse experimental designs which complicate the direct comparison and 

integration of the data. The use of a common reference design for the 

two-channel platforms, where each experimental RNA sample is co-

hybridized with a reference RNA sample, represents a valid solution as it 

closely reproduces the single-channel approach. 

Finally, different preprocessing steps, such as quality filtering, 

background correction and normalization, adopted to transform the raw 

data into the corresponding gene expression values, have substantial 

influence on the data [64]. 

All these differences produce qualitatively different data whose 

comparability has been widely debated. See for references [19, 65-71]. 

2.3 PREPARATION OF THE INDIVIDUAL DATASETS 

Once the raw data from individual studies have been collected, they 

have to be converted into GEDMs, which can then be used as input for the 

meta-analysis. 

Before the preprocessing or transformation steps, Ramasamy [48] 

suggests to check the quality of the arrays in the individual studies to 

identify and remove those of poor quality. Microarray quality is assessed 
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by comparing suitable numerical summaries (e.g. average background, 

scale factors, percentage of present calls,) across microarrays, so that 

outliers and trends can be visualized and poor-quality arrays can be 

identified. There are many Bioconductor packages for quality assessment 

including arrayMagic [72] for the two-color technology platform, 

Simpleaffy [73] and affyPLM [74] for the Affymetrix platform and 

ArrayQualityMetrics [75] which manages many microarray technologies. 

Only the arrays that pass the quality check should be included in the meta-

analysis. 

At this point the data undergo different levels of transformation or 

preprocessing that are: background or mismatch subtraction, probe set 

summarization which combines multiple measures of the same transcript, 

normalization within and between arrays. As it is now widely known [76], 

using different raw data transformation methods leads to disagreements 

in the resulting DEGs even within one experiment on a single platform.  

It is thus evident the need to consistently process the data to remove 

any systematic differences. The simplest case is when data from multiple 

studies  the same platform have to be combined. In this case it is, in fact, 

sufficient to apply the same algorithm to all datasets. Much more often, 

however, researchers are faced with the problem of combining datasets 

from different platforms, which may have different designs and thus 

different preprocessing methods options. In this case, comparable 

preprocessing algorithms should be applied to the individual datasets. 

There are very few universally applicable preprocessing algorithms, such 

as the variance stabilizing normalization [77]. By contrast, it is more 

common to use different preprocessing methods for each platform. 

Unfortunately, there is currently no consensus on which preprocessing 

algorithms produce comparable expression measurements across 
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different platforms [48]. However, it has been found that while the default 

procedures suggested by microarray manufacturers result in general 

slightly better accuracy, the results provided by alternative approaches, 

like those proposed by Bioconductor packages, are far more precise [70]. 

The identification and adjustment of any batch effects, especially in 

large microarray datasets, are also of great importance. Many different 

experimental features can cause biases including different sources of RNA, 

different microarrays print batches or platforms, as shown in Figure 2.2. 

Unsupervised visualization techniques such as Support Vector Machines 

(SVM) [78], Singular Value Decomposition (SVD) [79], Principal Component 

Analysis (PCA) [80] and the Distance Weighted Discrimination (DWD) 

method proposed by Benito and colleagues [81] can help to identify any 

grouping caused by experimental factors within microarray datasets.  

 

Figure 2.2: A visualization of batch effect sources at each stage of a microarray 
gene expression experiment (image from [82]) 

 

In single-study analysis it is common practice to filter out probes 

based on different criteria. Probes showing severe manufacturing or 

hybridization problems or a signal-to-noise ratio below a fixed threshold, 
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probes marked as ‘absent’ or showing little variation among experimental 

conditions are usually excluded or under-weighted from the successive 

analysis. To date, it has been demonstrated that filtering improves cross-

platform reproducibility [21, 64, 67, 83] but it is not yet clear whether 

filtering is beneficial to meta-analysis. 

Another problem that may occur in this phase deals with the 

management of possible within studies technical replicates. In fact, 

technical replicates cannot be considered as independent observations 

and should be aggregated taking, for example, the mean or median of the 

corresponding gene expression measurements. 

Finally, one could check that the processed expression values from 

multiple platforms are comparable. Concerning this topic, one may use 

visualization techniques such as multidimensional scaling [84] to 

investigate for any clustering of arrays by studies. 

2.4 ANNOTATION OF THE INDIVIDUAL DATASETS 

The first step to combine different microarrays datasets is to find 

genes common to all arrays. The annotation of the individual datasets is a 

non trivial task because of the lack of a uniform nomenclature system and 

the many-to-many relationship between probes and genes. 

Microarray manufacturers use specific probe-level identifiers (probe 

IDs) (e.g. Affymetrix probe ID) to identify the probes present on their own 

arrays. Moreover, different manufacturing techniques lead to the creation 

of multiple probes for the same gene. Therefore, one needs to identify 

which probes represent a given gene within and across platforms. In fact, 

even if the datasets share the same platform, the combination of different 

array versions creates serious difficulties, since the probe IDs are not 
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conserved from version to version. In conclusion, to combine microarray 

datasets across studies a unique nomenclature must be adopted and all 

the different platform-specific IDs must be translated to a common 

identifier. There are many different options that could be used to this end. 

Genbank or RefSeq [63] accession number, Unigene ID [85] and Entrez ID 

[86] are the most common. Accession numbers are associated with 

specific transcripts, then there may be multiple per gene. Mapping 

between platforms on the basis of the accession number could produce an 

accurate result, as one can be confident that the probes are truly 

measuring the same entity; however, such an approach would be 

problematic as there would be many accession numbers for which probes 

only exist on one platform, greatly diminishing the ability to map between 

platforms. For this reason, mapping on the gene level is the most common 

choice. This allows to incorporate the information from many more 

probes, as it is much more likely to be able to find some probes associated 

with a gene for each platform than to find a probe associated with a 

specific accession number. Unigene and Entrez Gene have different 

strengths and weaknesses. While Unigene IDs may incorporate more 

information, it is very dynamic and is constantly being revised. Entrez IDs, 

on the other hand, are very stable and have been well-curated [87]. 

The problem of matching platform-specific probe IDs can be tackled 

in three ways. The traditional method is to use the annotation files 

provided by the manufacturers. The accuracy of these files was long 

criticized as the knowledge of the transcriptome is constantly growing. 

However, in recent years more and more manufacturers provide to 

release updated annotation files with varying degrees of regularity in an 

attempt to keep these annotations current.  
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Another option is to align the probe sequences provided by the 

vendors to a recent revision of either the Genome or the Transcriptome 

using the BLAST algorithm [88], trying to obtain more up-to-date gene-to-

probe associations. It has been shown that cross-platform correlations 

improved using stringent sequence matching of the probes on the 

different platforms [89]. However, the probe sequences are not always 

available and this procedure can be computationally intensive and time-

consuming for very large numbers of probes. 

Alternatively, one can simply map probe IDs to a gene-level identifier 

(gene ID) such as Entrez ID or UniGene ID. Many published microarray 

meta-analyses [24, 26, 51, 90] have relied on UniGene ID to unify the 

different datasets, across platforms and array versions. The translation of 

the probe IDs to the corresponding gene IDs can be performed using 

either some Bioconductor annotation packages (e.g. annotate [Gentleman 

R. annotate: Annotation for microarrays. R package version 1.36.0.], 

annotationTools [91]) that aggregate the information from various 

platform-specific Bioconductor packages, or Web tools such as SOURCE 

[92] and RESOURCERER [93], MADGene [94], DAVID converter [95] and 

Onto-Translate [96]. The same mapping build, ideally the most recent, 

should be used for all datasets to avoid inconsistencies between releases 

[48]. 

Allen and colleagues [87] found that a BLAST alignment of the probes 

to the Transcriptome was more accurate than using the vendor’s 

annotation or Bioconductor packages. They also proposed a combination 

of all three methods (the “Consensus Annotation”) showing that it yielded 

the most consistent expression measurements across platforms. 

The annotation of individual datasets is further complicated by the 

non univocal relationship between probes and genes, which means that in 
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some cases a probe could report to more than one gene and vice versa. 

Many probes can map to the same gene ID because of the clustering 

nature of the UniGene, RefSeq, and BLAST systems involved, or because 

the microarrays used contain duplicated probes. Vice versa, a probe may 

map to more than one gene ID if the probe sequence is not specific 

enough. Sometimes, a probe has insufficient information to be mapped to 

any gene ID. These probes should be removed from further analysis. 

The simplest and even most stringent approach to solve these 

confounding situations is to use only the probes with one-to-one mapping 

for further analysis, thus excluding probes without a gene ID, probes 

mapping to multiple gene IDs and probes mapping to the same gene ID. 

Alternatively, probes with multiple gene IDs may be considered as 

independent gene expression measurements and be replaced by a new 

record for each gene, while multiple probes mapping to the same gene ID 

can be summarized using one of the following options: (1) selecting a 

probe at random, (2) taking the average of expression values across 

multiple probe IDs to represent the corresponding gene, (3) choosing the 

probe ID with the largest Inter Quartile Range (IQR) (or other similar 

statistics, such as standard deviation or coefficient of variation) of 

expression values among all multiple probe IDs to represent the gene. 

Although the option number 2 has been widely used due to its simplicity, 

IQR method is biologically more reasonable and robust and is highly 

recommended [97].  

Recently, the MicroArray Quality Control (MAQC) project proposed 

another alternative. A single RefSeq ID was selected for each probe 

mapping to multiple RefSeq IDs, primarily the one annotated by TaqMan 

assays, or secondarily the one present in the majority of platforms. When 

a platform contained multiple probes matching the same RefSeq entry, 
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only the probe closest to the 3’ end of the RNA sequence was included 

[71]. 

The multiple gene expression datasets may not be very well aligned 

by genes and the number of genes in each study may be different. 

Therefore the common genes across multiple studies have to be identified 

and extracted. When a large number of studies were included in the meta-

analysis, the number of genes common to all studies may be very small. At 

this point there are two possibilities: using only genes appearing in all 

datasets, or including also genes appearing in at least a pre-specified 

number of studies.  

Having solved the many-to-many relationship by expanding and 

summarizing probes, one summary statistic per gene ID per study is 

available. The next step will be to combine the summary statistic for each 

gene ID across the studies using a meta-analysis technique. 
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3 STATISTICAL METHODS FOR  

MICROARRAY DATA META-ANALYSIS  

This chapter deals with the sixth step of Ramasamy’s guidelines for 

microarray meta-analysis. The choice of a meta-analysis method depends 

on the type of outcome (e.g. binary, continuous, survival), the objective of 

the study and the type of available data. As previously illustrated, we 

focused on the two-class comparison, the most commonly encountered 

application of meta-analysis to microarray data, whose aim is the 

detection of DEGs between two experimental groups or conditions.  

There are two principal approaches to perform a meta-analysis, the 

relative and the absolute approach [98]. The relative meta-analysis is the 

most common one and is based on the calculation of a relative score 

expressing how each gene correlates to the experimental condition or 

phenotype of interest in each dataset. These scores are used to quantify 

the differences or similarities among studies and are integrated to find 

overall results (see Figure 3.1). 
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Figure 3.1: Stages of relative meta-analysis of microarray data (image from [13]) 

 

In contrast, in the absolute meta-analysis raw data from various 

microarray studies are integrated after transforming the expression values 

to numerically comparable measures. The derived data from the individual 

studies are normalized across studies and subsequently merged, thus 

enlarging the sample size and increasing the power of statistical tests. 

Traditional microarray data analysis is then carried out on the new merged 

dataset (see Figure 3.2) [13, 99].  
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Figure 3.2: Stages of absolute meta-analysis of microarray data (image from [13]) 

 

Although merging data can be attractive for its intuitiveness and 

convenience, cautions have to be taken since normalizations do not 

guarantee to remove all cross-study differences. There are few examples 

of studies where the absolute meta-analysis has been applied [31, 100, 

101]. Contrary to relative meta-analysis, which is always possible for cross 

lab, platform and even species comparisons, absolute meta-analysis 

usually considers studies from the same or similar array platform [102, 

103]. The collection of datasets from only one platform allows to pre-

process and normalize data using the same method on all samples 

simultaneously. 
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In recent years several relative meta-analysis methods have been 

proposed using different approaches. There are four generic ways of 

combining information for DEGs detection:  

1. Vote counting 

2. Combine p-values 

3. Combine effect sizes 

4. Combine ranks. 

They differ in the type of statistics measures proposed to summarize 

the study results. 

3.1 VOTE COUNTING 

Vote-counting is the simplest of the above approaches. For each 

gene, vote counting simply counts the number of studies in which a gene 

has been claimed significant [104]. To provide a statistical basis to vote 

counting techniques results, one can either calculate the significance of 

the overlaps using the normal approximation to binomial as described in 

Smid and colleagues [105] or calculate the null distribution of votes using 

random permutations [24]. For very small numbers of studies (usually 2–

4), the results can be summarized using a Venn diagram which displays the 

intersection and union distribution of DEGs lists detected by each 

individual study. In literature, it is well known that vote counting is 

statistically inefficient [14]. Moreover, vote counting does not yield an 

estimate of differential expression extent and the results highly depend on 

the statistical methods used in individual analyses. On the other hand, 

vote counting is useful when raw data and/or p-values for all genes are 

not accessible while only the lists of DEGs are available for each study. 
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Vote counting in the context of microarrays has been used 

successfully by Rhodes and colleagues [24], who applied it to identify a 

shared gene expression signature across cancer subtypes. First t-tests 

were calculated by comparing the treatment and control group in each 

study. Then, a binary score was assigned to each gene in each study based 

on whether its p-value passed a threshold (vote = 1) or not (vote = 0). 

Finally, a simulation of the likelihood of obtaining k or fewer votes (where 

k is the number of studies included) was done to estimate a significance 

level. 

3.2 COMBINING P-VALUES 

Combining p-values from multiple studies for information integration 

has long history in statistical science. Methods based on the combination 

of p-values are easy to use and provide more precise estimates of 

significance. However these methods do not indicate the direction (e.g. up 

or down regulation) nor the extent of differential expression. Moreover 

the results highly depend on the statistical methods used in individual 

analyses. Nevertheless, integration of p-values does not require that 

different studies use the same measurement scales therefore it is possible 

to combine results from studies realized by completely different 

technologies. 

Several methods exist for combining p-values from independent 

tests; below, four p-value combination methods used in the context of 

microarray meta-analysis are briefly described. 
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3.2.1 FISHER’S METHOD 

Fisher’s method [106] computes a combined statistics from the log-

transformed p-values obtained from the analysis of the individual 

datasets:  

(1)         (∏    
 
   ) 

where pgi is the unadjusted p-value from one-sided hypothesis testing for 

gene g and study i and k being the number of individual combined studies.  

The meta-analysis null hypothesis is that all the separate null 

hypotheses, are true, whereas the alternative hypothesis is that at least 

one of the separate alternative hypotheses is true. Assuming 

independence among studies and p-values calculated from correct null 

distributions in each study, Sg follows a chi-square distribution with 2k 

degrees of freedom under the joint null hypothesis of no differential 

expression, thus p-values of the combined statistics can be calculated for 

each Sg. Alternatively, statistical inference can be done non-parametrically 

using a permutation approach. As there are many genes, p-values of the 

summary statistics must be corrected for multiple testing using one of the 

available procedures such as the Bonferroni correction, the false discovery 

rate (FDR) proposed by Benjamini and Hochberg [107] or its modified 

version proposed by Storey [108]. Finally, a threshold is chosen and two 

meta-lists, that are the lists of DEGs resulting from the meta-analysis, of 

over and under-expressed genes are reported. It is worth pointing out that 

Fisher’s product should be applied to p-values for up and down regulation 

separately. Using p-values from two-sided testing means ignoring the 

direction of the significance and may lead one to select genes that are 

discordant in direction of gene regulation between the studies [109]. 
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Rhodes and colleagues [23] were the first who applied Fisher’s method to 

microarray data. They identified a meta-signature of prostate cancer 

combining the results of four studies performed on different platforms. 

Some variations to Fisher’s method have been proposed that give 

different weights to p-values from each dataset. Weight assignment can 

depend on the reliability of each p-value based on the data quality. 

Recently, Li and Tseng [110] introduced an adaptively weighted Fisher’s 

method (AW) where the weights are calculated according to whether or 

not a study contributes to the statistical significance of a gene. Li and 

Tseng showed the superior performance, in terms of power, of their AW 

statistics compared to Fisher’s equally weighted and other p-values 

combination methods, like Tippett’s minimum p-value [111] and Pearson’s 

(PR) statistics. 

3.2.2 STOUFFER’S METHOD 

Instead of log-transformation, Stouffer’s method [112] uses the 

inverse normal transformation. Unlike the Fisher’s method, which requires 

to treat over and under-expressed genes separately, the inverse normal 

method is symmetric in the sense that p-values near zero are accumulated 

in the same way as p-values near one [14]. In the Stouffer’s method, the 

one-sided p-values for each gene g from k individual studies are 

transformed into z scores and then combined using the following 

expression: 

(2)     ∑           
 
   √ ⁄  

where φ-1( ) is the inverse cumulative distribution function of 

standard normal distribution. Under the null hypothesis, the z statistic 

follows a normal N(0,1) distribution and therefore a p-value for each Zg 
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can be calculated from the theoretical normal distribution. Finally, to take 

into account multiple comparisons, the FDR or other multiple testing 

correction methods can be applied. An alternative to (2) is to use the 

weighted method proposed by Marot and Mayer [39] which is 

implemented in the R package metaMA. Here: 

(3)     ∑    
         

 
   √ ⁄  

and  

(4)    √   ∑    
 
   ⁄  

being ni the sample size of study i. 

3.2.3 MINP AND MAXP METHODS 

In the minP [111] and maxP [113] methods, for each gene, the 

minimum or maximum p-values over different datasets are taken as the 

test statistics. Smaller minP or maxP statistics reflects stronger differential 

expression evidence, however while minP declares a gene as differentially 

expressed if it is in any of the studies, maxP tends to be more conservative 

considering as differentially expressed only genes that have small p-values 

in all studies combined.  

Combining p-values are techniques that in theory could use the 

published lists of DEGs, but may not be able to do so in practice. For 

example, most publications report the significant genes based on two-

sided p-values, while the aforementioned methods require one-sided p-

values. So it is preferable to use the raw data to minimize the influence of 

different methods across datasets. 
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3.3 COMBINING EFFECT SIZES 

Methods based on the combination of effect sizes have been the 

most common approach to the meta-analysis of microarray studies. In 

statistics, an effect size is a measure of the strength of a phenomenon 

[114] (e.g. the relationship between two variables in a statistical 

population) or a sample-based estimate of that quantity. In general, effect 

sizes can be measured in two ways: 

1. as the standardized difference between two means, or 

2. as the correlation between the two variables [115].  

Standardized Mean Difference (SMD) is the difference between two 

means, divided by the variability of the measures. Effect sizes based on 

SMD include Cohen’s d [116], Hedges’ g [14], and Glass’s delta. All three 

employ the same numerator (i.e. the difference between group means) 

but different estimates of the variability at the denominator [117].  

An effect size approach is effective for microarray data application. 

First it provides a standardized index. At present, the measure of 

expression levels is not interchangeable in particular between 

oligonucleotide arrays and cDNA arrays. cDNA microarrays report only the 

relative change compared to a reference, which is rarely standardized. 

Obtaining effect sizes facilitates the combining of signals from one-color 

and expression ratios from two-color technology platforms. Second, it is 

based on a well-established statistical framework for the combination of  

different results. Third, it is superior to other meta-analytic methods in 

that it has the ability to manage the variability between studies. 

Moreover, in comparison to the p-values summary approaches, combining 

effect sizes gives information about the magnitude and direction of the 

effect. 
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In meta-analysis, the basic principle is to calculate the effect sizes in 

individual studies, convert them to a common metric, and then combine 

them to obtain an average effect size. Once the mean effect size has been 

calculated it can be expressed in terms of standard normal deviates (Z 

score) by dividing the mean difference by its standard error. A significance 

p-value of obtaining the Z score of such magnitude by chance can them be 

computed. 

Without loss of generality, we can assume that we are comparing 

two groups of samples, such as treatment (t) and control (c) groups, in 

each study i=1,2,..k. For each study i, let     and     denote the number of 

samples in treatment and control group, respectively, with           . 

Let       and       represent the raw expression values for gene g in 

conditions t and c for study i and replicate r and       and       be the 

corresponding log-transformed values. The data are assumed to be 

normally distributed as                 
   and        (        

 )  In a 

microarray experiment with two groups, the effect size refers to the 

magnitude of difference between the two groups’ means. There are many 

ways to measure effect size for gene g in any individual study [118]. The 

SMD proposed by Cohen is defined as: 

(5)     ( ̅     
   

)    
    

⁄  

where  ̅    and  
   

 are the sample means of logged expression 

values for gene g in treatment (t) and control (c) group, in the ith study, 

respectively and    
    

 is the pooled standard deviation: 

(6)    
    

 √
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where     
  and     

  denote the sample variances of gene g's 

expression level in the treatment and control groups, respectively. 

Alternatively the SMD proposed by Hedges and Olkin [14] may be 

used. Hedges and Olkin showed that the classical Hedges'g overestimates 

the effect size for studies with small sample sizes. They proposed a small 

correction factor to calculate an unbiased estimate of the effect size which 

is known as the Hedges’ adjusted g and is given by: 

(7)    
     (  

 

         
) 

The estimated variance    
  of the unbiased effect size is given by: 

(8)    
  (   

      
  )     

 (          )
  

 

Then the effect size index     (or its unbiased version) across studies 

is modeled by a hierarchical model: 

(9) {
                            

  

                           
  

 

where    is the average measure of differential expression across 

datasets for each gene g, which is typically the parameter of interest,   
   is 

the between-study variance, which represents the variability between 

studies, and    
  is within-study variance, which represents the sampling 

error conditioned on the ith study. The model has two forms: a fixed 

effect model (FEM) and a random effect model (REM), and the choice 

depends on whether between-study variation is ignorable. A FEM assumes 

that there is one true effect    common to all studies included in a meta-

analysis and that all differences in observed effect sizes are due to 

sampling error alone. Thus   
   = 0 and consequently     ∼ N(  ,    

 ). By 
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contrast, in REM each study further contains a random effect that can 

incorporate unknown cross-study heterogeneity in the model. Thus     ∼ 

N(    ,    
 ) and      ∼ N(  ,   

 ). 

To determine whether FEM or REM is most appropriate, the 

Cochran’s Q statistic [119] may be used to test homogeneity of study 

effect, which is assessing the hypothesis that   
  is zero. Q statistic is 

defined as: 

(10)    ∑            ̂ 
    

    

where        
    is the statistical weight and 

(11)   ̂ 
  

∑       
 
   

∑    
 
   

 

is the weighted least squares estimator of the average effect size 

under the FEM which ignore the between-study variance. Under the null 

hypothesis of homogeneity (i.e.   
  = 0), Q follows a chi-square distribution 

with k-1 degree of freedom. A large observed value of the Q statistics 

relative to this distribution suggests the rejection of the hypothesis of 

homogeneity, which should indicate the appropriateness of the REM. It 

must be noted that this homogeneity test has low power [120] and non-

significant results do not imply that true homogeneity exists. If the null 

hypothesis of   
  = 0 is rejected, one method for estimating   

  is the 

method of moments developed by DerSimonian and Laird [121]: 

(12)  ̂ 
     {  

        

∑      ∑    
  

   ∑    
 
   ⁄   

   

} 

Then   
  is used to estimate the parameter    and its variance by a 

point estimator defined as in the generalized least squares method: 
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(13)  ̂ 
    

   
∑    

    
 
   

∑    
  

   

 

and  

(14)    ( ̂ 
    

  )  
 

∑    
  

   

 

where    
      

   ̂ 
     is the statistical weight under REM. 

The z statistic to test for DEGs under REM is then constructed as 

follows: 

(15)     ̂ 
 
   

  √   ( ̂ 
 
   

  )⁄  

The z statistic for FEM is the same as that for REM except that   
  = 0. 

To evaluate the statistical significance of the combined results, the p-

values can be obtained from a standard normal distribution N(0,1) using 

these Z scores. For a two-tailed test, the p-value for each gene is given by: 

(16)     (         ) 

where      is the standard normal cumulative distribution. To 

assess the statistical significance not assuming normal distribution, 

empirical distributions may be generated by random permutations. In 

both cases, the p-values obtained are unadjusted values which should be 

corrected to take into account the multiple comparisons. 

Choi and colleagues [16] were among the first who applied these 

models to microarray meta-analysis. To estimate the effect size they 

considered the unbiased estimator of the SMD defined in equation (7) 

where     was obtained from the standard t statistics for each gene from 

each individual dataset via the relationship:  
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(17)        √  ̃⁄  

with   ̃                     ⁄ . 

To estimate the statistical significance simultaneously addressing the 

multiple testing problem, Choi and colleagues adapted the core algorithm 

of Significance Analysis of Microarrays by Tusher and colleagues [122]. 

Column-wise permutations were performed within each dataset to create 

randomized data and z scores under the null distribution,   
   for 

permutation b = 1, 2, …B. The ordered statistics      (            ) and 

    
   (    

         
  ) were obtained and the FDR was estimated for a 

given gene by: 

(18)      
   ⁄  ∑ ∑  (     

      )    

∑  (         )   
 

where I(·) is the indicator function equal to 1 if the condition in 

parentheses is true, and 0 otherwise. The denominator represents the 

number of genes called significant in real data. The numerator is the 

expected number of falsely significant genes and given by the mean 

number across B permuted data. Integration of data using this meta-

analysis method facilitated the discovery of small but consistent 

expression changes and increased the sensitivity and reliability of analysis. 

Later, Hong and Breitling [109] found that this t-based meta-analysis 

method greatly improved over the individual analysis, however it suffered 

from potentially large amount of false positives when p-values served as 

threshold.  

The approach of Choi and colleagues has been implemented in the 

Bioconductor package GeneMeta [Lusa L, Gentleman R and Ruschhaupt 

M, GeneMeta: MetaAnalysis for High Throughput Experiments. R package 



 
38 

version 1.30.1] where both alternatives to evaluate the statistical 

significance of the combined results are available. 

Different variations of effect size models have also been developed 

by other research groups. Hu and colleagues [123] presented a measure to 

quantify data quality for each gene in each study where the quality index 

measured the performance of each probe set in detecting its intended 

target. As they used Affymetrix microarrays they exploited the detection 

p-values provided by Affymetrix MAS 5.0 algorithm [Affymetrix Microarray 

Suite User's Guide Version 5.0 Affymetrix, Santa Clara, CA; 2001] to define 

a measure of quality for each gene in each study and incorporated these 

quality scores as weights into a classical random-effects meta-analysis 

model. They demonstrated that the proposed quality-weighted strategy 

produced more meaningful results then the unweighted analysis. In a later 

paper, Hu and colleagues [124] proposed a re-parameterization of the 

traditional mean difference based effect size by using the log ratio of 

means, that is, the log fold-change, as an effect size measure for each 

gene in each study. They replaced the effect size defined in equation (5) 

with the following expression: 

(19)       ( ̅    ̅   ⁄ ) 

where  ̅    and  ̅    are the sample means of the unlog-transformed 

gene expression values for gene g in treatment and control group in a 

given study. The estimated variance    
  of this new effect size can be 

estimated as follows: 

(20)    
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Redefined     and    
  were then placed into the classical hierarchical 

model (9) using both the quality-weighted and quality-unweighted 

frameworks. Hu and colleagues’ idea comes from two well-known 

evidences. On the one hand the fact that, with small sample sizes, the 

traditional standard mean difference estimates are prone to unpredictable 

changes, since gene-specific variability can easily be underestimated 

resulting in large statistics values. Many efforts have been made to 

overcome this problem by estimating a penalty parameter for smoothing 

the estimates using information from all genes rather than relying solely 

on the estimates from an individual gene [122]. On the other hand the 

evidence that DEGs may be best identified using fold-change measures 

rather than t-like statistics [125]. Hu and colleagues applied their method 

to simulated datasets and real datasets focusing on the identification of 

differentially expressed biomarkers and their ability to predict cancer 

outcome. Their results showed that the proposed effect size measure had 

better power to identify DEGs and that the detected genes had better 

performance in predicting cancer outcomes than the commonly used 

standardized mean difference.  

Stevens and Doerge [126] proposed an alternative for the SMD as 

estimator for differential expression specific for Affymetrix data. It is 

represented by the signal log ratio (SLR) automatically reported by MAS 

5.0 [Affymetrix Microarray Suite User's Guide Version 5.0 Affymetrix, 

Santa Clara, CA; 2001], defined as the signed log2 of the signed fold-

chance (FC), that is, FC=2SLR if SLR≥0 and FC=(-1)2-SLR if SLR<0. The meta-

analytic framework is described in Choi and colleagues [16]. 

Unlike previously mentioned meta-analysis studies where the p-

values or effect sizes to be combined were based on standard t-tests, 

Marot and colleagues [40] proposed to extend these effect sizes to 
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account for moderated t-tests. In the last few years, several authors such 

as Smyth [127] or Jaffrézic and colleagues [128] showed that, in single 

study analyses, shrinkage approaches leading to moderated t-tests were 

more powerful to detect DEGs than gene-by-gene methods when small 

numbers of biological replicates are available. Indeed, shrinkage consists 

in estimating each individual gene value borrowing information from all 

the genes involved in the experiment. By decreasing the total number of 

parameters to estimate, the sensitivity is increased. Marot and colleagues 

considered two popular shrinkage approaches: that proposed by Smyth 

[127] and implemented in the Bioconductor package limma and that 

developed by Jaffrézic and colleagues [128] implemented in the R package 

SMVar. In the first approach, as the same variance is assumed for both 

experimental conditions in limma, the moderated effect size    
           

 

for a given gene in a given study can be estimated as in (17) where     is 

the limma moderated t-statistics. SMVar assumes different variances for 

treatment and control groups thus the moderated effect size for a given 

gene in a given study can be estimated as in(17) where     is Welch t-

statistics [129] and   ̃         . Moreover, the degrees of freedom 

gained using shrinkage approaches allowed Marot and colleagues to 

calculate the exact form of the variance for moderated effect sizes instead 

of the asymptotic estimator used by Choi and colleagues (see Equation 

(8)). Using the distribution of effect sizes provided by Hedges [130], it can 

be shown that: 

(21)             
  

  

        ̃
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with 
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(22)        (
  

 
) (√      (

    

 
))⁄  

where   ̃                    ⁄  in limma and   ̃          in 

SMVar and m is the number of degrees of freedom. In limma, m equals to 

the sum of prior degrees of freedom and residual degrees of freedom for 

the linear model of gene g. In SMVar, degrees of freedom are calculated 

by Satterthwaite’s approach [131]. Then the unbiased estimators can be 

obtained from the moderated effect sizes as: 

(23)    
            

         
           

 

This equation can be seen as an extension of Equation (7) with 

                ⁄  and        . Assuming that 

   (     )   , which holds exactly for standard effect sizes and works 

quite well in practice for moderated effect sizes, the variance of the 

unbiased effect sizes is computed as          
 . Since c(m)<1, unbiased 

estimators have a smaller variance than biased ones. The Marot and 

colleagues’ approach has been implemented in the R package metaMA 

which offers three variants of effect sizes (classical and moderated t-test) 

and uses explicitly the random effect model. Only the Benjamini and 

Hochberg [107] multiple testing correction is available. 

Recently, Bayesian meta-analysis models have also been developed. 

Choi and colleagues [16] introduced the first Bayesian meta-analysis 

model for microarray data which integrated standardized gene effects in 

individual studies into an overall mean effect. Inter-study variability was 

included as a parameter in the model with an associated uninformative 

inverse gamma prior distribution. Markov Chain Monte Carlo simulation 

was used to estimate the underlying effect size. Conlon and colleagues 
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[132] introduced two Bayesian meta-analysis models for microarray data: 

the standardized expression integration model and the probability 

integration model. The first model is similar in approach to that described 

in Choi and colleagues' study [16], except that standardized gene 

expression values (i.e. log-expression ratios standardized so that each 

array within a study has zero mean and unit standard deviation) were 

combined instead of effect sizes since the analyzed data are assumed to 

be from the same platform and comparable across studies. Conversely, 

the second model combines the probabilities of differential expression 

calculated for each gene in each study. Both models produce the gene-

specific posterior probability of differential expression, which is the basis 

for inference. Since the standardized expression integration model 

includes inter-study variability, it may improve accuracy of results versus 

the probability integration model. However, due to the typical small 

number of studies included in microarray meta-analyses, the variability 

between studies is difficult to estimate. The probability integration model 

eliminates the need to specify inter-study variability since each study is 

modeled separately, and thus its implementation is more straightforward. 

Conlon and colleagues found that their probability integration model 

identified more true DEGs and fewer true omitted genes (i.e. genes 

declared as differentially expressed in individual studies but not in meta-

analysis) than combining expression values. 

Another meta-analysis method based on the modeling of the effect 

size within a Bayesian framework is that described by Wang and 

colleagues [25] and termed posterior mean differential expression. The 

main idea of their method is that one can use data from one study to 

construct a prior distribution of differential expression for each gene, 

whose distribution is then updated using other microarray studies thus 
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providing the posterior mean differential expression. The z statistics 

obtained weighting the posterior mean differential expression by 

individual studies’ variances, has a standard normal distribution due to 

classic Bayesian probability calculation and may be used to test the 

differential expression. Alternatively random permutations can be used to 

estimate the distribution of the z scores under the null hypothesis and to 

determine the significance of the observed statistics. 

3.4 COMBINING RANKS 

Methods combining robust rank statistics are used to contain the 

problem of outliers which affect the results obtained using methods 

combining p-values or effect sizes. This can be a significant problem when 

thousands of genes are analyzed simultaneously in the noisy nature of 

microarray experiments. Instead of p-values or effect sizes, the ranks of 

differentially expressed evidence are calculated for each gene in each 

study. The product [42], mean [133] or sum [134] of ranks from all studies 

is then calculated as the test statistics. Permutation analysis can be 

performed to assess the statistical significance and to control FDR.  

Zintzaras and Ioannidis [133] proposed METa-analysis of RAnked 

DISCovery datasets (METRADISC), which is based on the average of the 

standardized rank. METRADISC is the only rank-based method that 

incorporates and estimates the between-study heterogeneity. In addition 

the method can deal with genes which are measured in only some of the 

studies. The tested genes in each study are ranked based on the direction 

in expression change and the level of statistical significance or some other 

metrics. If there are G genes being tested, the highest rank G is given to 

the gene that shows the lowest p-value and is over-expressed in 
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treatment group (t) vs control group (c). The lowest rank 1 is given to the 

gene that shows the lowest p-value and is down-regulated in treatment 

group vs control group. Genes with equal p-values are assigned tied ranks. 

The average rank R* and the heterogeneity metric Q* for each gene g 

across studies are defined as: 

(24)   
  ∑    

 
    ⁄  

and 

(25)   
  ∑ (      )

  
    

where Rgi is the rank of the gene g for study i (i=1 to k studies). The 

statistical significance for R* and Q* for each gene is assessed against the 

distributions of the average ranks and heterogeneity metrics under the 

null hypothesis that ranks are randomly assigned. Null distributions are 

calculated using non-parametric Monte Carlo permutation method. In this 

method, in a run, the ranks of each study are randomly permutated and 

the simulated metrics are calculated. The procedure is repeated a number 

of times, depending on the required accuracy of the final p-values. 

Four statistical significance values are provided for each gene: 

statistical significance for high average rank, for low average rank, for high 

heterogeneity and for low heterogeneity. The statistical significance for 

high average rank is defined as the percentage of simulated metrics that 

exceed or are equal to the observed R*. The statistical significance for low 

average rank is the percentage of simulated metrics that are below or 

equal to the observed R*. Significance of heterogeneity is defined 

analogously. Interesting genes are those with significant average rank 

(either low or high) and low heterogeneity which indicates that the results 
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are consistent among different studies. The desired threshold of statistical 

significance for the R* and Q* testing should be selected on a case-by-case 

basis, depending on the desired trade-off between false negatives and 

false discovery rate. As a default, Zintzaras and Ioannidis recommend a 

level of 0.05/G, where G is the total number of genes shared by all the 

datasets, for average rank testing, and a less stringent p-value for 

heterogeneity-testing.  

The original version of METRADISC performs an unweighted analysis 

giving equal weight to all studies. Alternatively, one may weight each 

study by its total sample size or other weight functions depending on the 

type of data to be combined. For two-class comparisons a very common 

weight function is given by: 

(26)                        ⁄  

where nit and nic are the number of samples in groups t and c in study 

i, respectively. Then the weighted average rank for each gene across 

studies is defined as: 

(27)    
   ∑       

 
   ∑   

 
   ⁄  

Heterogeneity testing should instead be performed with unweighted 

analyses, so as small studies are allowed to show their differences against 

larger ones [135]. 

Hong and colleagues [42] proposed a modification and extension of 

the rank product method, which was initially introduced by Breitling and 

colleagues [136] to detect DEGs between two experimental conditions in a 

single study. The Fold-Change (FC) is chosen as a selection method to 

compare and rank the genes within each dataset. These ranks are then 

combined to produce an overall score for the genes across datasets, 
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obtaining a ranked gene list. The method focuses on genes which are 

consistently highly ranked in a number of datasets, for example genes that 

are regularly found among top up-regulated genes in many microarray 

studies. In detail, the algorithm of the method consists of five steps. 

1. For each gene g (g=1 to G genes), pair-wise ratios or FCs are 

calculated within each dataset i (i=1 to k studies). Let nti and nci be 

the number of samples in group 1 and 2 in study i, then the total 

number of pair-wise comparisons is equal to Li=nit*nic.  

2. Ranks are assigned (1 for the highest value) according to fold-

change ratio. Rgil is the rank of gene g in ith study under lth 

comparison, l=1…Li.  

3. RankProduct for each gene g is calculated as:  

(28)     (∏ ∏       )
 

  

where L is the sum of products of number of samples in groups: 

(29)   ∑          
 
    

The smaller the RP value the smaller the probability that the 

observation of the gene at the top of the lists is due to chance. It is 

equivalent to calculating the geometric mean rank. 

4. b permutations of gene expression values within each array are 

performed and all previous steps repeated in order to obtain the 

null rank product statistic    
    

. 

5. Step 4 is repeated B times to estimate the distribution of    
    

. 

This distribution is used to calculate p-value and FDR for each gene. 

(30)        ⁄  ∑ ∑  (    
    

       )     
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(31)      
   ⁄  ∑ ∑  (      

       )    

∑  (           )   
 

Converting FCs into ranks increased the results robustness against 

noise and across-studies heterogeneity as demonstrated by Yuen and 

colleagues [66]. In fact, they showed that although the FCs of DEGs had 

poor consistency across platforms, the rank orders were comparable. 

In a recent study, Hong and Breitling [109] comparatively evaluated 

rank product method, Fisher’s method and the t-based hierarchical 

modeling, showing that the rank product outperformed the other 

methods in terms of sensitivity and specificity, especially in the setting of 

small sample size and/or large between-study variation. 

The rank product method is implemented in the Bioconductor 

package RankProd [42]. 

DeConde and colleagues [137] proposed three aggregation 

approaches based on meta-search methods from computer science, which 

are used to combine ranked results from multiple internet search engines 

[138]. Because they rely on rank-ordered gene lists, they share many of 

the advantageous characteristics of rank products. In particular, two of 

the algorithms use Markov chains to convert the pair-wise preferences 

between the gene lists into a stationary distribution, representing an 

aggregate ranking, while the third algorithm is based on an order-statistics 

model. 

3.5 AVAILABLE SOFTWARE 

Despite the availability of many microarray meta-analysis methods, 

there exist very few software packages for microarray meta-analysis 
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implementation and most of them either did not have clear manuals or 

had functions that were not easy to apply.  

Compared with popular microarray data analysis packages (e.g. SAM, 

limma or BRB array tool), existing meta-analysis packages are relatively 

primitive and difficult to use. In the R and Bioconductor environment, 

metaGEM (which implements vote counting, Fisher's method and random 

effects model) [48], GeneMeta (which implements fixed and random 

effects model), metaMA (which implements random effects model and 

Stouffer’s method), metaArray (which implements three meta-analysis 

approaches: (1) probability of expression (POE) [90, 139], (2) integrative 

correlation [140] and (3) posterior mean differential expression [25]) [90], 

OrderedList (which compares ordered gene lists) [141], RankProd (that 

implements rank product method) [42] and RankAggreg (that implements 

various rank aggregation methods) [142] are available. The R package 

MAMA [Ihnatova I, 2012; MAMA: Meta-Analysis of MicroArray, R package 

version 2.1.0] was the first tool that implemented many different meta-

analysis methods. It uses a common framework to manage and combine 

the individual datasets. It additionally offers some functionalities to 

combine and visualize outputs from different methods, allowing a 

complex view on change in gene expression. 

Recently MetaOmics [143], a suite of three R packages MetaQC, 

MetaDE and MetaPath, for quality control, DEGs identification and 

enriched pathway detection for microarray meta-analysis, respectively, 

has been developed. The MetaQC package [144] provides a quantitative 

and objective tool to determine suitable study inclusion/exclusion criteria 

for meta-analysis. MetaDE contains many state-of the art meta-analysis 

methods to detect DEGs (Fisher, Stouffer, adaptively weighted Fisher 

(AW), minimum p-value, maximum p-value, rth ordered p-value (rOP) 
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[145], fixed and random effects model, rank product, naïve sum of ranks 

and naïve product of ranks [134]). Finally the MetaPath package [146] 

provides a unified meta-analysis framework and inference to detect 

enriched pathways associated with outcome. At present MetaOmics is the 

most complete software for microarray data meta-analysis and the only 

tool that provides a systematic pipeline to assist the user in conducting 

the meta-analysis. Information concerning the R and Bioconductor 

packages described above is summarized in Table 3.1. 

Package Environment  Reference Link 

metaGEM R 
[Ramasamy A 
et al., 2008] 

http://hdl.handle.net/10044/1/4217  

GeneMeta Bioconductor [Lusa L et al.,] http://www.bioconductor.org/packages/releas
e/bioc/html/GeneMeta.html 

metaMA R 
[Marot G et 
al., 2009] 

http://cran.r-
project.org/web/packages/metaMA/  

metaArray Bioconductor 
[Ghosh D and 
Choi H] 

http://www.bioconductor.org/packages/2.11/b
ioc/html/metaArray.html 

RankProd Bioconductor 
[Hong F et al., 
2006] 

http://www.bioconductor.org/packages/2.11/b
ioc/html/RankProd.html 

OrderedList Bioconductor 
[Lottaz C et 
al., 2009] 

http://www.bioconductor.org/packages/2.11/b
ioc/html/OrderedList.html 

RankAggreg R 
[Pihur H and 
Datta S, 2009] 

http://cran.r-
project.org/web/packages/RankAggreg/index.h
tml 

MAMA R 
[Ihnatova I, 
2010] 

http://cran.r-
project.org/web/packages/MAMA/index.html 

MetaOmics 
(MetaQC, 
MetaDE, 
MetaPath) 

R 
[Wang X et al., 
2012] 

http://cran.r-
project.org/web/packages/MetaQC/ 
http://cran.r-
project.org/web/packages/MetaDE/ 
http://cran.r-
project.org/web/packages/MetaPath/  

Table 3.1: Available R and Bioconductor packages for microarray data meta-analysis 

 

http://hdl.handle.net/10044/1/4217
http://www.bioconductor.org/packages/release/bioc/html/GeneMeta.html
http://www.bioconductor.org/packages/release/bioc/html/GeneMeta.html
http://cran.r-project.org/web/packages/metaMA/
http://cran.r-project.org/web/packages/metaMA/
http://www.bioconductor.org/packages/2.11/bioc/html/metaArray.html
http://www.bioconductor.org/packages/2.11/bioc/html/metaArray.html
http://www.bioconductor.org/packages/2.11/bioc/html/RankProd.html
http://www.bioconductor.org/packages/2.11/bioc/html/RankProd.html
http://www.bioconductor.org/packages/2.11/bioc/html/OrderedList.html
http://www.bioconductor.org/packages/2.11/bioc/html/OrderedList.html
http://cran.r-project.org/web/packages/RankAggreg/index.html
http://cran.r-project.org/web/packages/RankAggreg/index.html
http://cran.r-project.org/web/packages/RankAggreg/index.html
http://cran.r-project.org/web/packages/MAMA/index.html
http://cran.r-project.org/web/packages/MAMA/index.html
http://cran.r-project.org/web/packages/MetaQC/http:/cran.r-project.org/web/packages/MetaDE/http:/cran.r-project.org/web/packages/MetaPath/
http://cran.r-project.org/web/packages/MetaQC/http:/cran.r-project.org/web/packages/MetaDE/http:/cran.r-project.org/web/packages/MetaPath/
http://cran.r-project.org/web/packages/MetaQC/http:/cran.r-project.org/web/packages/MetaDE/http:/cran.r-project.org/web/packages/MetaPath/
http://cran.r-project.org/web/packages/MetaQC/http:/cran.r-project.org/web/packages/MetaDE/http:/cran.r-project.org/web/packages/MetaPath/
http://cran.r-project.org/web/packages/MetaQC/http:/cran.r-project.org/web/packages/MetaDE/http:/cran.r-project.org/web/packages/MetaPath/
http://cran.r-project.org/web/packages/MetaQC/http:/cran.r-project.org/web/packages/MetaDE/http:/cran.r-project.org/web/packages/MetaPath/
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4 APPLICATION TO REAL DATASETS 

We applied some of the meta-analysis methods described in the 

previous chapter to a set of three microarray experiments from four 

malignant pleural mesothelioma (MPM) studies. We focused on 

differential expression analysis between normal and malignant 

mesothelioma pleural tissues.  

4.1 MATERIALS AND METHODS 

4.1.1 DATA COLLECTION 

To systematically collect MPM microarray studies PubMed 

(http://www.ncbi.nlm.nih.gov/pubmed) was searched with keywords 

related to the study background. The automatic search covered up to the 

end of December 2011. The search was extended to the two largest public 

microarray data repositories: GEO and ArrayExpress. MPM microarray 

studies suitable for meta-analysis were selected according to the following 

inclusion/exclusion criteria: 

http://www.ncbi.nlm.nih.gov/pubmed
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- any human studies investigating at least four patients with MPM 

and at least four patients with corresponding normal pleural 

samples using high-density arrays were included, 

- any studies using mesothelioma derived cell lines or studies using 

specialized arrays were excluded, 

- any studies where patients with MPM have been exposed to drugs 

were excluded.  

In the following, datasets will be referred to by the name of the first 

author of the related papers.  

4.1.2 DATA PREPROCESSING 

The quality assessment of the raw data was performed using affyPLM 

[74] and arrayQualityMetrics [75] Bioconductor packages with the aim of 

identifying and possibly removing poor quality arrays and to detect 

possible systematic effects.  

All datasets were preprocessed independently for background 

correction, normalization and summarization. 

According to Ramasamy [48], who stated that the same 

preprocessing algorithm should be used for multiple studies conducted on 

the same platform, raw data from Crispi and Røe were preprocessed using 

the implementation of the Affymetrix MAS 5.0 algorithm provided by the 

Bioconductor package simpleaffy [73], setting the scale parameter to 100. 

Gene expression levels for each microarray in the Gordon study were 

generated and scaled to a target intensity of 100 using Affymetrix 

Microarray Suite v.5.0 (Santa Clara, USA). The log2 of the expression values 

was taken. 

Alternatively, in order to assess the overall effect of the 

preprocessing methods on meta-analysis results, for all the studies the 
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data preprocessed using the algorithm described by the original authors in 

their papers were also considered. In particular, probe set intensities were 

obtained by means of gcrma [147] followed by quantile normalization for 

Crispi dataset and by means of RMA (Robust Multi-array Average) [148] 

for Røe dataset. In both cases, the gene expression values of the technical 

replicates in the Røe dataset have been averaged after the preprocessing 

step. The assessment of data quality was repeated after the preprocessing 

step to check the normalization efficiency.  

Box plots and density plots for each sample in each dataset were 

used to evaluate the effect of the preprocessing steps on the data.  

4.1.3 DATA ANNOTATION 

To combine microarray data across studies a unique gene-level 

identifier must be adopted. We relied on official Gene Symbols by the 

HUGO Gene Nomenclature Committee [149] to achieve a uniform 

annotation across array versions. Affymetrix probe set IDs were mapped 

to the corresponding Gene Symbol IDs using platform-specific 

Bioconductor annotation packages such as hgu133a.db [Carlson M, 

hgu133a.db: Affymetrix Human Genome U133 Set annotation data (chip 

hgu133a). R package version 2.8.0], hgu133plus2.db [Carlson M, 

hgu133plus2.db: Affymetrix Human Genome U133 Plus 2.0 Array 

annotation data (chip hgu133plus2). R package version 2.8.0] and 

AnnotationDbi [Pages H, Carlson M et al., AnnotationDbi: Annotation 

Database Interface. R package version 1.20.3]. Probe set IDs with no Gene 

Symbol and probe set IDs mapping to more than one Gene Symbol were 

discarded from each dataset. Vice versa, when multiple probes sets 

mapped to an identical Gene Symbol, the probe set ID with the largest 

Inter Quartile Range (IQR) of expression values (among all multiple probe 
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IDs) was selected to represent the gene. Larger IQR represents greater 

variability (and thus greater information content) in the data and this 

probe matching method has been recommended in Bioconductor [74]. 

Only the genes in common between the three datasets were retained for 

the analysis. 

The gene expression values for the genes in common to all studies 

from the three datasets were bound together to form two final meta-

datasets, denoted as A and B, containing MAS 5.0 preprocessed data and 

data processed according to the original authors’ methods, respectively.  

Box plots and PCA plots of meta-datasets A and B were used to 

inspect for any clustering of arrays by studies. affy [150] and EMA (Easy 

Microarray data Analysis) [151] Bioconductor packages were used to 

obtain these plots. 

4.1.4 GENE FILTERING 

As stated in Chapter 2, it is unclear if filtering is beneficial from a 

meta-analysis perspective. Here we tried to evaluate the effect of a 

common filtering strategy on meta-analysis results. Two sequential steps 

of gene filtering were applied to meta-datasets A and B. In the first step, 

genes with very low expression showing small average expression values 

across studies were filtered out. Specifically, mean intensities of each gene 

across all samples in each study were calculated and the corresponding 

ranks were obtained. The sum of such ranks across the three studies of 

each gene was calculated and genes with the lowest 30% rank sum were 

considered unexpressed genes and were filtered out. Similarly, in the 

second step, genes with small variation between the experimental 

conditions were filtered out by replacing mean intensity in the first step 

with standard deviation. Genes with the lowest 30% rank sum of standard 
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deviations were filtered out. Finally only the genes which passed the two 

filtering steps were retained for further analysis. We denoted these 

additional filtered meta-datasets as A1 and B1. 

Box plots and PCA plots of datasets A1 and B1 were used to inspect 

for any clustering of arrays by studies. 

4.1.5 DATA META-ANALYSIS 

A combination of meta-analysis methods was applied to both 

unfiltered (A and B) and filtered (A1 and B1) meta-datasets. First of all, a 

standard limma analysis was performed including a study effect in the 

linear model. The Benjamini and Hochberg (BH) multiple correction 

method with a threshold of 5% was applied to identify the DEGs. In 

addition three meta-analysis approaches were applied to the meta-

datasets:  

1. the weighted inverse normal p-value combination method 

proposed by Marot and colleagues [40] and implemented in the R 

package metaMA. Both the standard t-statistics and the moderated 

t-statistics were used to calculate the p-values for each gene in the 

individual studies analyses. We will refer to this method as p-value 

combination method. 

2. The effect size combination approach both in the Choi and 

colleagues’ version [16], implemented in the Bioconductor package 

GeneMeta, and in the Marot and colleagues’ version [40], available 

in the R package metaMA. We will refer to these methods as the 

GeneMeta and the metaMA method, respectively.  

3. The rank combination method by Hong and colleagues [42], 

implemented in the Bioconductor package RankProd. We will refer 

to this methods as RankProd method. 
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The DEGs were selected at significance level of 0.05 in all methods. 

In order to the selected DEGs lists from different methods be more 

comparable in size, we considered the lists of the top 500 genes with the 

smallest p-values/q-values for each method. 

All analysis was carried out in R version 2.15.2 and Bioconductor 

release 2.11. 

To further assess the DEGs lists produced by the different methods, 

pathway analysis was done using PathwayExpress [152]. Hypergeometric 

distribution and FDR were used for the p-value calculation and p-value 

correction, respectively. The set of genes shared by all the three datasets 

was selected as reference array for the over-representation analysis. The 

magnitude of the measured expression changes was not used because this 

information was not available for all the tested methods. 

4.2 RESULTS  

Only four microarray studies [153-156] met the inclusion/exclusion 

criteria. This may depend on the difficulty of collecting a large number of 

tissue samples, due to the low incidence of MPM. However the two 

papers by Røe and colleagues referred to the same dataset so there were 

only three distinct datasets suitable for the meta-analysis. 

By querying ArrayExpress and GEO, the raw data (in the form of CEL 

files) were retrieved for Crispi and Røe studies but not for Gordon study 

for which only gene expression data have been deposited in GEO 

database. The authors were asked for the raw data but they did not make 

them available. 

The studies were performed on different versions of the Affymetrix 

oligonucleotide microarray platform. The Crispi and Røe studies used 
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Affymetrix Human Genome U133 Plus2.0 GeneChip (Santa Clara, CA, USA), 

containing 54675 probe sets, each with eleven probe pairs. The Crispi 

dataset included thirteen samples, four normal pleural samples and nine 

MPM samples. The Røe dataset consisted of one papillary serous 

adenocarcinoma pleura sample, one pleural plaque sample with unknown 

disease condition, seven MPM samples, where two were from the same 

patient, seven parietal pleural samples, where two were from the same 

patient, and four visceral pleural samples that were from the same control 

patients. Finally, the Gordon study was performed on Affymetrix Human 

Genome U133A GeneChip, containing 22283 probe sets, each with eleven 

probe pairs. This dataset included forty human MPM tumor specimens, 

five normal pleura specimens, four normal lung specimens and five 

mesothelial cell lines, where four are MPM derived and one (Met5a) is a 

nontumorigenic immortalized mesothelial cell line. The papillary serous 

adenocarcinoma sample and the pleural plaque sample with unknown 

disease condition in the Røe dataset were discarded. Moreover the four 

visceral pleural samples were excluded from the meta-analysis according 

to the authors. They observed that mesothelioma, parietal and visceral 

pleural tissues show distinct expression profiles and parietal pleura can be 

considered as the main reference because mesothelioma usually develops 

in the parietal pleura, subsequently invading the visceral layer [155]. 

Similarly, only the forty human MPM tumor specimens and the five normal 

pleural specimens in the Gordon dataset were retained for the meta-

analysis. 

The main features of the three datasets included in the meta-analysis 

after excluding unsuitable samples are summarized in Table 4.1. 
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Authors 
Repository 
(Accession 
Number) 

Normal Tumor Platform 
Total 

Probes  

Probes 
with 
Gene  

Symbols 

Crispi et al.  
(2009) 

GEO 
4 9 HGU133Plus2 54675 41910 

(GSE12345) 

Røe et al.  
(2010) 

ArrayExpress 
(E-MTAB-47) 

7 7 HGU133Plus2 54675 41910 

Gordon et al. 
(2005) 

GEO 
(GSE2549) 

5 40 HGU133A 22283 20365 

Table 4.1: Microarray datasets and samples included in the meta-analysis 

 

Figure 4.1 and Figure 4.2 show the box plots of MAS 5.0 

preprocessed, log2 transformed gene expression data separately for the 

three datasets, while box plots of preprocessed data obtained applying 

different algorithms for each dataset are shown in Figure 4.2 and Figure 

4.3. 

 

Figure 4.1: Box plots of MAS 5.0 preprocessed data from Crispi (left) and Røe 
(right) datasets (red=MPM samples, blue=control samples) 
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Figure 4.2: Box plots of MAS 5.0 preprocessed data from Gordon dataset 
(red=MPM samples, blue=control samples) 

 

 
Figure 4.3: Box plots of data preprocessed using the algorithms described by 

individual authors, gcrma for Crispi dataset (left) and RMA for Røe dataset (right) 
(red=MPM samples, blue=control samples) 

 

In both cases, the preprocessed data from the three studies were 

matched using Gene Symbol IDs. By excluding the control probe sets, the 

22215 probe sets in the U133A platform mapped to 20365 Gene Symbols, 

while the 54613 probe sets in the U133 Plus 2.0 platform mapped to 
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41910 Gene Symbols. After solving the many-to-many relationships, 

12701 and 20184 unique Gene Symbols were found in the U133A and 

U133 Plus 2.0 platform, respectively. Only the 12701 genes in common to 

all three datasets were kept for the meta-analysis. Consequently the 

meta-datasets A and B consist of 12701 genes and 70 samples.  

After the filtering steps, 6222 matched genes in three studies were 

analyzed. The meta-datasets A1 and B1 consist of 6222 genes and 70 

samples. We note that the somewhat ad hoc gene filtering procedure is 

necessary and is commonly used in microarray analysis. This procedure 

can reduce false positives from non-expressed or non-informative genes 

and increase statistical power in multiple test correction; however 

important DEGs can be discarded. Figure 4.4 shows the preprocessing 

diagram and the number of genes selected by each preprocessing step. 

 

Figure 4.4: A diagram for data preprocessing, gene matching and gene filtering 

 

PCA plots for the meta-datasets A and B are reported in Figure 4.5. In 

both cases, PCA plots highlight a clustering of arrays by studies. 
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Figure 4.5: PCA plots of MAS 5.0 preprocessed data (left) and data preprocessed 
using the algorithms described by individual authors (right) (common Gene Symbols 
only) (red=Crispi dataset, blue= Røe e dataset, green=Gordon dataset) 

 

The same grouping of arrays by studies is evident from the box plots 

(see Figure 4.6 and Figure 4.7). However the box plots highlight better 

how the differences between the studies are relevant when the data 

preprocessed using different algorithms for the three datasets are 

considered compared to the MAS 5.0 processed data. Figure 4.6 also 

suggests a possible ‘platform effect’ as the Crispi and Røe datasets, 

performed on the same Affymetrix platform, appear much more similar to 

each other than to the data from the Gordon study performed on a 

different Affymetrix platform. 
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Figure 4.6: Box plots of MAS 5.0 preprocessed data (common Gene Symbols 
only) (red=Crispi dataset, blue= Røe dataset, green=Gordon dataset) 

 

 

Figure 4.7: Box plots of data preprocessed using the algorithms described by 
individual authors (common Gene Symbols only) (red=Crispi dataset, blue= Røe 
dataset, green=Gordon dataset) 
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The same considerations apply to meta-datasets A1 and B1, whose 

PCA plots and box plots are shown in Figure 4.8, Figure 4.9 and Figure 

4.10. 

 

Figure 4.8: PCA plots of MAS 5.0 preprocessed data (left) and data preprocessed 
using the algorithms described by individual authors (right) after filtering (common 
Gene Symbols only) (red=Crispi dataset, blue= Røe dataset, green=Gordon dataset) 

 

 

Figure 4.9: Box plots of MAS 5.0 preprocessed data after filtering (common Gene 
Symbols only) (red=Crispi dataset, blue= Røe dataset, green=Gordon dataset) 
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Figure 4.10: Box plots of data preprocessed using the algorithms described by 
individual authors after filtering (common Gene Symbols only) (red=Crispi dataset, 
blue= Røe dataset, green=Gordon dataset) 

 

Concerning meta-dataset A, at a 5% BH threshold, using a limma 

model including a study effect, 1883 genes were found statistically 

significant. The p-value combination claimed 2420 and 2461 genes as 

differentially expressed at the same BH threshold using the moderated t-

statistics and the standard t-statistics, respectively. For the metaMA 

method, 698 and 610 genes were found as differentially expressed at a 5% 

BH threshold using the moderated t-statistics and the standard t-statistics, 

respectively. The GeneMeta method identified 717 DEGs at a 5% BH 

threshold using the REM. The Cochran’s Q statistics has been used to test 

the between-study variability and decide between the REM and the FEM. 

Using the SAM type analysis to estimate the FDR, 1154 DEGs were 

identified with a FDR<0.05 for the two-sided hypothesis. These 1154 DEGs 

included the 717 DEGs identified using the BH multiple correction 

procedure. Finally, the RankProd method detected 1110 DEGs. The 

number of DEGs identified by each method for meta-datasets A and B is 
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summarized in Table 4.2, while the meta-analysis results for the filtered 

meta-datasets A1 and B1 are illustrated in Table 4.3. 

  

limma 
with 
study 
effect 

P-value  
combination 

metaMA  
approach 

GeneMeta 
approach 

RankProd 

    
stand. 

T 
moder. 

T 
stand. 

t 
moder. 

T 
REM REM_FDR   

dataset A 1883 2461 2420 610 698 717 1154 1110 

dataset B 2066 2627 2691 871 947 994 1437 1309 

intersection 1446 2024 2002 470 511 546 839 1031 

intersection/ 
(A only+B only -
intersection) % 

57.77 66.06 64.39 46.49 45.06 46.87 47.89 74.28 

Table 4.2: Number of DEGs provided by the different meta-analysis approaches 
at 5% BH threshold for both datasets A and B and their intersections 

 

  

limma 
with 
study 
effect 

P-value  
combination 

metaMA  
approach 

GeneMeta 
approach 

RankProd 

    
stand. 

T 
moder. 

t 
stand. 

t 
moder. 

T 
REM REM_FDR   

dataset A1 1485 1684 1699 559 626 627 912 668 

dataset B1 1548 1787 1805 667 742 717 1018 735 

intersection 1095 1291 1293 382 428 423 619 511 

intersection/ 
(A1 only+B1 only -

intersection) % 
56.5 59.22 58.48 45.26 45.53 45.93 47.22 57.29 

Table 4.3: Number of DEGs provided by the different meta-analysis approaches 
at 5% BH threshold for both datasets A1 and B1 and their intersections 

 

Venn diagrams corresponding to the comparisons of these methods 

applied to meta-dataset A are given in Figure 4.11 and Figure 4.12.  
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Figure 4.11: Venn diagram for meta-dataset A comparing the DEGs lists at a 5% 
BH threshold obtained by combining p-values, effect sizes (using both metaMA and 
GeneMeta approaches) and ranks  

 

 
Figure 4.12: Venn diagram for meta-dataset A comparing the DEGs in common 

between the four meta-analysis methods to the DEGs list provided by limma including 
a study effect  

 

It was found that 281 DEGs were in common between the four 

approaches (gray sector in Figure 4.11). This poor overlap is mainly due to 

the DEGs identified by the RankProd method which look quite different 

from the DEGs lists generated by the other meta-analysis approaches. In 
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fact, excluding the RankProd method, the number of DEGs in common 

between the other three approaches goes up to 696 (see Figure 4.13). 

 

Figure 4.13: Venn diagram comparing the DEGs lists at a 5% BH threshold 
obtained by combining p-values and effect sizes (using both metaMA and GeneMeta 
approaches) for meta-dataset A. 

 

It can also be noticed that the p-value combination method detected 

all the genes found with the metaMA effect size combination method, all 

but 49 genes found with the GeneMeta method followed by SAM type 

analysis to estimate the FDR and all but 275 genes identified by the 

RankProd method. On the other hand, 853 genes were detected only by 

the p-value combination method. For each method the intersections 

among the identified DEGs for meta-datasets A and B and A1 and B1 are 

summarized in Table 4.2 and Table 4.3, respectively.  

Since many biological replicates were involved, we could not observe 

on these datasets the gain of DEGs usually found with shrinkage 

approaches. Indeed, the effect size combination based on classical t-tests 

detected 610 DEGs while the effect size combination based on moderated 

t-tests found 698 DEGs. We could check that, in this case, using the exact 

variance for standard effect sizes, as done by the metaMA method, the 
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number of DEGs did not change substantially compared with using the 

asymptotic variance, as done by GeneMeta. Indeed, the effect size 

combination based on usual t-tests and the exact variance detected 610 

DEGs, while the z-score given by the GeneMeta package found 717 DEGs. 

Table 4.2 also points out that p-value combination method detected many 

more genes than the other approaches. The same considerations apply to 

the meta-datasets B, A1 and B1. Concerning the intersections between the 

DEGs lists detected by the diverse methods in the meta-datasets A and B, 

it is worth noting that the greater overlap (74.28 %) was reached by the 

RankProd method thus confirming the reduced dependence of this 

approach by the preprocessing methods adopted in single-study analysis 

and its greater robustness against heterogeneity across studies [66]. The 

intersections between the DEGs lists detected by the different methods in 

the meta-datasets A1 and B1 are instead comparable in size.  

As far as gene rankings were concerned, they were very similar. The 

absolute values of test statistics used by the different meta-analysis 

methods were ranked in descending order and the Spearman rank 

correlation coefficients were calculated for each pair of methods. Detailed 

results for meta-datasets A and B are summarized in Table 4.4 and Table 

4.5, respectively. As expected, the highest correlation (0.99) was found 

between GeneMeta and metaMA methods given the similarity between 

the used summary test statistics. Slightly lower values were obtained for 

meta-dataset B. Concerning meta-datasets A1 and B1, a slight increase of 

the correlation coefficients can be observed. Spearman rank correlation 

coefficients for dataset A1 are summarized in Table 4.8. 

In order to make the DEGs lists from different methods more 

comparable in size, the top 500 DEGs for all the methods were selected. 
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Figure 4.14 and Figure 4.15 are Venn diagrams displaying the overlap of 

the top 500 DEGs found by different methods applied to meta-dataset A. 

 

Figure 4.14: Venn diagram showing the overlap of the top 500 DEGs found by 
different meta-analysis methods applied to meta-dataset A 

 

 

Figure 4.15: Venn diagram showing the overlap of the top 500 DEGs in common 
between the four meta-analysis methods and the top 500 DEGs found by limma 
including a study effect applied to meta-dataset A 

 

Detailed information concerning the size of the overlap between the top 

500 DEGs lists found using the different meta-analysis methods for 
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datasets A, B and A1 are presented in Table 4.6, Table 4.7 and Table 4.9, 

respectively. Also in this case, the use of the filtering process results in a 

greater overlap of the results provided by the different meta-analysis 

methods. 

The fact that a significant number of genes were selected by only one 

of the methods shows that the gene ranking is based on different 

perspectives, thus it may be useful to select candidate genes using a 

combination of these methods. 
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limma with 
study effect 

P-value combination  metaMA approach 
GeneMeta 
approach 

RankProd 

      standard t moderated t standard t moderated t REM_FDR   

limma with 
study effect   1 

      P-value 
combination 

standard t 0.883 1 
     moderated t 0.897 0.994 1 

    metaMA 
approach 

standard t 0.883 0.836 
 

1 
   moderated t 0.898  0.831 0.993 1 

  GeneMeta 
approach 

REM_FDR 0.88 0.823 0.82 0.999 0.993 1 

 RankProd   0.768 0.687 0.717 0.78 0.81 0.785 1 

   Table 4.4: Spearman rank correlations for meta-dataset A 

 
  

limma with 
study effect 

P-value combination  metaMA approach 
GeneMeta 
approach 

RankProd 

      standard t moderated t standard t moderated t REM_FDR   

limma with 
study effect   1 

      P-value 
combination 

standard t 0.904 1 
     moderated t 0.92 0.995 1 

    metaMA 
approach 

standard t 0.772 0.832 
 

1 
   moderated t 0.783 

 
0.833 0.99 1 

  GeneMeta 
approach 

REM_FDR 0.684 0.717 0.717 0.863 0.845 1 

 RankProd   0.882 0.754 0.782 0.74 0.761 0.637 1 

   Table 4.5: Spearman rank correlations for meta-dataset B  
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limma with 
study effect 

P-value combination  metaMA approach 
GeneMeta 
approach 

RankProd 

      standard t moderated t standard t moderated t REM_FDR   

limma with 
study effect   100 

      P-value 
combination 

standard t 76.2 100 
     moderated t 78.6 

 
100 

    metaMA 
approach 

standard t 64.4 54.6 
 

100 
   moderated t 65 

 
54.8 

 
100 

  GeneMeta 
approach 

REM_FDR 63.4 53.6 52.8 96.4 86.6 100 

 RankProd   33.6 37.6 42.2 23.6 23.8 22.6 100 

Table 4.6: Overlap between the top 500 DEGs lists identified by various methods for meta-dataset A, expressed as a percentage 

 
  

limma with 
study effect 

P-value combination  metaMA approach 
GeneMeta 
approach 

RankProd 

      standard t moderated t standard t moderated t REM_FDR   

limma with 
study effect   100 

      P-value 
combination 

standard t 75.8 100 
     moderated t 78 

 
100 

    metaMA 
approach 

standard t 57.6 54 
 

100 
   moderated t 56.6 

 
56.8 

 
100 

  GeneMeta 
approach 

REM_FDR 55.8 52.2 53 95.4 93 100 

 RankProd   37.4 40.8 43 25.4 25.8 24.2 100 

Table 4.7: Overlap between the top 500 DEGs lists identified by various methods for meta-dataset B, expressed as a percentage 
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limma with 
study effect 

P-value combination  metaMA approach 
GeneMeta 
approach 

RankProd 

      standard t moderated t standard t moderated t REM_FDR   

limma with 
study effect   1 

      P-value 
combination 

standard t 0.922 1 
     moderated t 0.935 0.996 1 

    metaMA 
approach 

standard t 0.874 0.848 
 

1 
   moderated t 0.883 

 
0.846 0.996 1 

  GeneMeta 
approach 

REM_FDR 0.869 0.837 0.837 0.999 0.996 1 
 

RankProd   0.892 0.763 0.79 0.806 0.829 0.808 1 

Table 4.8: Spearman rank correlations for meta-dataset A1 

 
  

limma with 
study effect 

P-value combination  metaMA approach 
GeneMeta 
approach 

RankProd 

      standard t moderated t standard t moderated t REM_FDR   

limma with 
study effect   100 

      P-value 
combination 

standard t 81.2 100 
     moderated t 84.2 

 
100 

    metaMA 
approach 

standard t 64 56  100 
   moderated t 63.2  57.8 

 
100 

  GeneMeta 
approach 

REM_FDR 63.2 54.8 56.4 97 94.2 100 

 RankProd   47.8 49.4 54 36.4 37.4 35.6 100 

Table 4.9: Overlap between the top 500 DEGs lists identified by various methods for meta-dataset A1, expressed as a percentage 
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4.2.1 COMPARISONS AMONG THE DEGs LISTS AT PATHWAY-LEVEL 

To further assess the DEGs lists, a pathway analysis was performed. 

Table 4.10 shows the top five ranked pathways for the 75 and 79 DEGs 

(among the top 500 genes) that were selected by all methods simultaneously 

for meta-datasets A and B, respectively. Table 4.11 shows the top five ranked 

pathways for the 133 and 129 DEGs (among the top 500 genes) that were 

selected by all methods simultaneously for meta-datasets A1 and B1, 

respectively. 

Dataset A 

Pathway Name Impact Factor p-value corrected p-value 

Asthma 4,59 0,01 0,14 

Hematopoietic cell lineage 4,35 0,01 0,14 

Apoptosis 4,31 0,01 0,14 

Toll-like receptor signaling pathway 4,04 0,02 0,14 

Graft-versus-host disease 4,02 0,02 0,14 

    Dataset B 

Pathway Name Impact Factor p-value corrected p-value 

DNA replication 3,97 0,02 0,32 

Tight junction 3,27 0,04 0,32 

Epithelial cell signaling in Helicobacter pylori infection 2,93 0,05 0,32 

Non-homologous end-joining 2,55 0,08 0,32 

ECM-receptor interaction 2,40 0,09 0,32 

Table 4.10: Pathway analysis results for meta-datasets A and B considering the top 
500 DEGs selected by all the methods simultaneously 
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Dataset A1 

Pathway Name Impact Factor p-value corrected p-value 

Cell adhesion molecules (CAMs) 8,92 1,33E-04 0,01 

Neuroactive ligand-receptor interaction 6,28 0,00 0,04 

Renin-angiotensin system 5,05 0,01 0,09 

ECM-receptor interaction 4,27 0,01 0,14 

Tight junction 3,77 0,02 0,17 

    Dataset B1 

Pathway Name Impact Factor p-value corrected p-value 

Neuroactive ligand-receptor interaction 8,91 1,35E-04 0,00 

ECM-receptor interaction 6,21 0,00 0,03 

Cell adhesion molecules (CAMs) 5,00 0,01 0,07 

Tight junction 3,29 0,04 0,29 

Non-homologous end-joining 2,52 0,08 0,44 

Table 4.11: Pathway analysis results for meta-datasets A1 and B1 considering the 
top 500 DEGs selected by all the methods simultaneously 

 

Table 4.12 and Table 4.13 show the most perturbed KEGG pathways for 

the top 500 DEGs that were selected by each method, applied to meta-

datasets A and B, respectively. Analogous information for datasets A1 and B1 

is summarized in Table 4.14 and Table 4.15. A better agreement between the 

top pathways for the four meta-analysis approaches and between them and 

the top pathways provided by the intersection of all the methods was 

observed in the case of filtered datasets A1 and B1 compared to datasets A 

and B.  

Despite the poor overlap of the results at the gene-level, pathway 

analysis showed a higher concordance. Moreover the differences among the 

DEGs lists for meta-datasets A and B were confirmed at the pathway-level. In 

fact, although some pathways such as PPAR signaling pathway, complement 

and coagulation cascades and cytokine-cytokine receptor interaction were 

identified in both datasets by two or more meta-analysis methods, the 
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ranking is quite different and there are also some pathways unique for each 

dataset (e.g. apoptosis pathway detected only in dataset A and neuroactive 

ligand-receptor interaction and cell adhesion molecules (CAMs) pathways 

retrieved only in dataset B). Furthermore it is worth noting that the impact 

factors (the FDR-corrected p-values) for the top pathways by the RankProd 

method are higher (respectively, lower) compared to all the other methods in 

all meta-datasets. A higher impact factor indicates that the top genes lists 

contain genes that aggregate into certain functions as opposed to individual 

genes that are unrelated. Thus results with higher impact factor may make 

more sense and be more easily interpretable.  

 



 
76 

DEG_limma_with_study_effect 

Pathway Name Impact Factor p-value corrected p-value 

PPAR signaling pathway 8,88 1,39E-04 0,01 

Complement and coagulation cascades 5,47 0,00 0,17 

Apoptosis 4,05 0,02 0,35 

Renin-angiotensin system 3,77 0,02 0,35 

Thyroid cancer 3,66 0,03 0,35 

    DEGs_p-value combination (moderated t-statistics) 

Pathway Name Impact Factor p-value corrected p-value 

PPAR signaling pathway 8,88 1,39E-04 0,01 

Hematopoietic cell lineage 6,50 0,00 0,06 

Adipocytokine signaling pathway 4,54 0,01 0,28 

ECM-receptor interaction 4,26 0,01 0,28 

Cytokine-cytokine receptor interaction 3,85 0,02 0,29 

    DEGs_metaMA (moderated t-statistics) 

Pathway Name Impact Factor p-value corrected p-value 

Complement and coagulation cascades 9,95 4,76E-05 0,00 

Renin-angiotensin system 8,17 2,82E-04 0,01 

Hematopoietic cell lineage 5,25 0,01 0,14 

Cell adhesion molecules (CAMs) 4,93 0,01 0,15 

Apoptosis 4,05 0,02 0,28 

    DEGs_GeneMeta (FDR) 

Pathway Name Impact Factor p-value corrected p-value 

Renin-angiotensin system 5,82 0,00 0,15 

Complement and coagulation cascades 5,47 0,00 0,15 

Apoptosis 5,17 0,01 0,15 

DNA replication 4,60 0,01 0,16 

Cytokine-cytokine receptor interaction 4,57 0,01 0,16 

    DEGs_RankProd 

Pathway Name Impact Factor p-value corrected p-value 

ECM-receptor interaction 11,10 1,51E-05 0,00 

PPAR signaling pathway 8,88 1,39E-04 0,01 

Focal adhesion 6,48 0,00 0,04 

Adipocytokine signaling pathway 5,86 0,00 0,06 

Systemic lupus erythematosus 4,92 0,01 0,11 

Table 4.12: Pathway analysis results for meta-dataset A  
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DEGs_limma_with_study_effect 

Pathway Name Impact Factor p-value corrected p-value 

PPAR signaling pathway 8,88 1,39E-04 0,01 

Cell adhesion molecules (CAMs) 5,99 0,00 0,07 

Adipocytokine signaling pathway 5,86 0,00 0,07 

Hematopoietic cell lineage 5,25 0,01 0,10 

ECM-receptor interaction 4,26 0,01 0,19 

    DEGs_p-value combination (moderated t-statistics) 

Pathway Name Impact Factor p-value corrected p-value 

PPAR signaling pathway 8,88 1,39E-04 0,01 

Cell adhesion molecules (CAMs) 5,99 0,00 0,07 

Adipocytokine signaling pathway 5,86 0,00 0,07 

Hematopoietic cell lineage 5,25 0,01 0,10 

ECM-receptor interaction 4,26 0,01 0,19 

    DEGs_metaMA (moderated t-statistics) 

Pathway Name Impact Factor p-value corrected p-value 

Complement and coagulation cascades 8,35 2,37E-04 0,02 

Cell adhesion molecules (CAMs) 5,99 0,00 0,10 

PPAR signaling pathway 4,54 0,01 0,28 

ECM-receptor interaction 4,26 0,01 0,28 

Vibrio cholerae infection 3,89 0,02 0,30 

    DEGs_GeneMeta (FDR) 

Pathway Name Impact Factor p-value corrected p-value 

Complement and coagulation cascades 8,35 2,37E-04 0,02 

Cell adhesion molecules (CAMs) 5,99 0,00 0,10 

Vibrio cholerae infection 5,19 0,01 0,14 

ABC transporters 4,36 0,01 0,22 

ECM-receptor interaction 4,26 0,01 0,22 

    DEGs_RankProd 

Pathway Name Impact Factor p-value corrected p-value 

ECM-receptor interaction 11,10 1,51E-05 0,00 

PPAR signaling pathway 7,31 0,00 0,03 

Focal adhesion 6,48 0,00 0,04 

Cell adhesion molecules (CAMs) 4,93 0,01 0,11 

Systemic lupus erythematosus 4,92 0,01 0,11 

Table 4.13: Pathway analysis results for meta-dataset B 
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DEGs_limma_with_study_effect 

Pathway Name Impact Factor p-value corrected p-value 

Renin-angiotensin system 7,52 5,42E-04 0,04 

Neuroactive ligand-receptor interaction 6,55 0,00 0,05 

Cell adhesion molecules (CAMs) 5,74 0,00 0,07 

Cytokine-cytokine receptor interaction 5,59 0,00 0,07 

PPAR signaling pathway 4,79 0,01 0,12 

    DEGs_p-value combination (moderated t-statistics) 

Pathway Name Impact Factor p-value corrected p-value 

PPAR signaling pathway 6,23 0,00 0,13 

Cell adhesion molecules (CAMs) 5,74 0,00 0,13 

Renin-angiotensin system 4,76 0,01 0,19 

Cytokine-cytokine receptor interaction 4,65 0,01 0,19 

Neuroactive ligand-receptor interaction 4,08 0,02 0,23 

    DEGs_metaMA (moderated t-statistics) 

Pathway Name Impact Factor p-value corrected p-value 

Neuroactive ligand-receptor interaction 6,55 0,00 0,09 

Cell adhesion molecules (CAMs) 5,74 0,00 0,09 

Cytokine-cytokine receptor interaction 5,59 0,00 0,09 

Complement and coagulation cascades 5,38 0,00 0,09 

Renin-angiotensin system 4,76 0,01 0,14 

    DEGs_GeneMeta (FDR) 

Pathway Name Impact Factor p-value corrected p-value 

Cell adhesion molecules (CAMs) 5,74 0,00 0,14 

Complement and coagulation cascades 5,38 0,00 0,14 

Neuroactive ligand-receptor interaction 5,25 0,01 0,14 

Renin-angiotensin system 4,76 0,01 0,17 

Cytokine-cytokine receptor interaction 3,78 0,02 0,36 

    DEGs_RankProd 

Pathway Name Impact Factor p-value corrected p-value 

ECM-receptor interaction 14,05 7,89E-07 5,84E-05 

Focal adhesion 11,35 1,18E-05 4,35E-04 

Cytokine-cytokine receptor interaction 10,16 3,87E-05 9,56E-04 

PPAR signaling pathway 9,56 7,07E-05 0,00 

Neuroactive ligand-receptor interaction 6,55 0,00 0,02 

Table 4.14: Pathway analysis results for meta-dataset A1 

  



 
79 

DEGs_limma_with_study_effect 

Pathway Name Impact Factor p-value corrected p-value 

PPAR signaling pathway 9,89 5,08E-05 0,00 

Cell adhesion molecules (CAMs) 6,29 0,00 0,07 

Neuroactive ligand-receptor interaction 5,89 0,00 0,07 

Adipocytokine signaling pathway 4,26 0,01 0,28 

ECM-receptor interaction 3,81 0,02 0,35 

    DEGs_p-value combination (moderated t-statistics) 

Pathway Name Impact Factor p-value corrected p-value 

PPAR signaling pathway 8,10 3,03E-04 0,02 

Cell adhesion molecules (CAMs) 6,29 0,00 0,07 

Neuroactive ligand-receptor interaction 4,39 0,01 0,28 

Adipocytokine signaling pathway 4,26 0,01 0,28 

ECM-receptor interaction 3,81 0,02 0,35 

    DEGs_metaMA (moderated t-statistics) 

Pathway Name Impact Factor p-value corrected p-value 

Neuroactive ligand-receptor interaction 9,40 8,28E-05 0,01 

Leukocyte transendothelial migration 6,14 0,00 0,08 

Cell adhesion molecules (CAMs) 5,16 0,01 0,15 

Complement and coagulation cascades 4,26 0,01 0,28 

DNA replication 3,59 0,03 0,43 

    DEGs_GeneMeta (FDR) 

Pathway Name Impact Factor p-value corrected p-value 

Neuroactive ligand-receptor interaction 9,40 8,28E-05 0,01 

DNA replication 6,71 0,00 0,05 

Complement and coagulation cascades 5,58 0,00 0,10 

Cell adhesion molecules (CAMs) 4,13 0,02 0,29 

Leukocyte transendothelial migration 4,02 0,02 0,29 

    DEGs_RankProd 

Pathway Name Impact Factor p-value corrected p-value 

ECM-receptor interaction 15,93 1,20E-07 8,90E-06 

Focal adhesion 10,19 3,77E-05 0,00 

PPAR signaling pathway 9,89 5,08E-05 0,00 

Neuroactive ligand-receptor interaction 9,40 8,28E-05 0,00 

Cell adhesion molecules (CAMs) 8,84 1,46E-04 0,00 

Table 4.15: Pathway analysis results for meta-dataset B1 
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4.3 DISCUSSION 

The increasing availability and maturity of DNA microarray 

technology has led to an explosion of profiling studies, especially in cancer 

research. To extract maximum value from the accumulating mass of 

publicly available cancer gene expression data, methods are needed to 

evaluate, integrate, and inter-validate multiple datasets. Therefore, we 

applied a combination of statistical methods to perform a meta-analysis of 

independent microarray datasets in MPM tumor.  

A relevant number of studies on gene expression in MPM have been 

published so far. Gene expression profiling microarrays have been widely 

used in mesothelioma research to improve histological classifications 

[157], to identify predictive or prognostic biomarkers [158, 159] or to 

examine response to therapy [160]. One of the problems identified with 

the use of microarray technology and particularly in experiments involving 

MPM samples, has been the lack of concordance between the several 

studies. From this, one can conclude that microarray analysis of MPM 

would appear to be very ‘noisy’, and the differential expression of the 

identified genes should be confirmed independently at the RNA (RT-qPCR) 

or protein level (immunohistochemistry) [161]. There are several potential 

reasons for the low concordance of these studies such as different sample 

types (e.g. mesothelioma derived cell lines or mesothelioma patient 

samples) and/or histological subtypes, array platforms and number of 

samples. Therefore, a comparison of the results of individual analyses is 

not enough to evaluate the available gene expression data. Gene 

expression data often lack statistical power especially due to low sample 

size, as is the case in most of MPM microarray studies. This might depend 

on the low incidence of MPM in addition to the costs of the technology 
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and generally leads to underestimation of variances, which inflates the 

false-positive rate. Meta-analysis thus represents a good solution to 

overcome the problem of reduced statistical power of MPM microarray 

experiments and a valuable alternative for cross-study validation.  

The quality of the meta-analysis benefits from the number and the 

quality of single datasets analyzed. Focusing on differential expression 

analysis between normal and malignant pleural mesothelioma tissues, 

only three microarray studies compliant with our inclusion/exclusion 

criteria were identified and included in the meta-analysis. All the selected 

studies were performed on two different array versions of the same 

Affymetrix platform. We tried to obtain raw data for all of them but only 

the two most recent studies (Crispi and Røe) have the CEL files stored in 

public databases. For the Gordon study only MAS 5.0 preprocessed gene 

expression data were publicly available and this might heavily affect the 

down-stream analysis. In fact, to obtain consistently preprocessed data, 

the implementation of the MAS 5.0 algorithm provided by the 

Bioconductor package simpleaffy was used to process Crispi and Røe 

datasets. This choice has two limitations. On the one hand, there may be 

some not negligible differences between the expression data provided by 

the original MAS 5.0 algorithm and its re-implementation. On the other 

hand, in the last years new preprocessing methods, such as RMA and 

gcrma, have been developed that outperform MAS 5.0 in terms of 

sensitivity and specificity (i.e. the true and false detection rate) [162], 

especially for the detection of DEGs [163]. Despite the use of the same 

preprocessing method, our data showed a strong between-study 

variability. Gene expression data obtained applying to each dataset the 

preprocessing algorithms suggested by the original authors were also 

considered for the meta-analysis with the aim to evaluate the impact of 
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the preprocessing methods on the meta-analysis results. In addition, the 

number of genes evaluated was reduced applying an intensity filter 

followed by an IQR filter in order to eliminate non-expressed or non-

informative genes and increase statistical power in multiple comparison 

procedure. 

To date only two papers by Hong and colleagues [109] and Campain 

and colleagues [99] performed a systematic comparative analysis on 

microarray meta-analysis methods performances, in terms of sensitivity 

and specificity. Although the two studies provided insightful conclusions, 

the number of methods compared (three and five methods, respectively) 

and the number of case studies examined (two and three case studies, 

respectively with each case study combining only 2–5 microarray datasets) 

were very limited. In addition, some key conclusions from the two papers 

were even contradictory. Therefore practical guidelines for choosing the 

‘best’ meta-analysis method(s) still lack. 

Four meta-analysis methods corresponding to the three most 

common relative meta-analysis approaches (i.e. combining p-values, 

combining effect size and combining ranks) were applied to the selected 

MPM datasets using three R and Bioconductor packages (metaMA, 

GeneMeta and RankProd). In addition the preprocessed data from the 

three studies have been directly combined and analyzed using limma, 

including a study effect in the linear model. This approach can be viewed 

as an alternative meta-analysis method. 

The different methods resulted in significant gene lists of different 

sizes. The highest number of DEGs was detected by the weighted inverse 

normal p-value combination method. This high proportion of significant 

genes may be due to the fact that p-value combination approaches are in 

general prone to be driven by significant results of individual studies. This 
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drawback may be partly reduced by the introduction of study-specific 

weights as demonstrated by Li and Ghosh [164]. On the other hand, effect 

size combination methods were found to be the most conservative. Taking 

into account the between-study heterogeneity, which is particularly 

evident in our data, they lead to a more reliable and perhaps more 

meaningful set of commonly DEGs. The RankProd approach identified an 

intermediate number of DEGs. Although it does not incorporate the 

between-study variability, it has been widely shown that gene rankings 

from the RankProd method are more robust against noise and other 

hidden variables embedded in different datasets [109]. Finally, limma 

analysis including a study effect in the linear model also appeared to be a 

valuable alternative for meta-analysis. 

A poor overlap between the DEGs lists provided by each method was 

observed, both considering the complete lists and the top 500 most 

significant DEGs. The overlap increases when filtered data are considered 

indicating a possible beneficial effect of filtering on our data. The fact that 

a significant number of genes were only detected by one of the methods 

stems from the different assumptions and ranking criteria on which the 

various methods are based. Therefore, when doing meta-analysis on real 

data, it might be useful to select candidate genes using a combination of 

methods, so as to capture genes that are interesting from different 

aspects. In particular, DEGs detected by more than one meta-analysis 

method may be considered as the most reliable ones while DEGs 

identified by only one method may be further explored to enrich the 

knowledge of the biological phenomenon of interest. 

Despite the poor overlap of the results at the gene-level, the pathway 

analysis showed a higher concordance between the different methods, in 

particular when the filtered data were considered.  
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The present meta-analysis and the final DEGs lists may have some 

potential value as regards MPM, since this is the first attempt to integrate 

microarray datasets in this area. However such genes lists should be taken 

with caution due to the limitations of this microarray meta-analysis, first 

of all the small number of studies included. Regarding meta-analysis 

methodology with microarray data, some limitations emerge from this 

work. The fact that several microarray studies share the same hypothesis 

would not be sufficient to successfully integrate results; such studies 

should use the same sample sources (biological equivalency of cases and 

controls across studies), similar sample processing protocols and the same 

microarray platform, with identical probes in the chips. Otherwise, the 

search for genes in common among platforms and the precision of data 

could reduce the power of individual studies instead of increasing it. 

Furthermore, if DEGs do not present large differences among the groups 

compared, the results of the meta-analyses could be strongly affected by 

experimental error and patient variability. Finally, the sensitivity of the 

results from meta-analysis should be tested before a final conclusion is 

reached. We could not perform any sensitivity analysis because of the 

small number of included studies and the lack of suitable packages/tools. 

In fact, the sensitivity analysis has so far been largely neglected in the 

meta-analysis of microarray data.  
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5 CONCLUSIONS 

Despite the increasing popularity of microarray meta-analysis, many 

issues remain unsolved that can hinder the effectiveness of its application. 

Although many methods have been proposed and used in published 

applications, a detailed workflow to perform microarray data meta-

analysis does not exist yet. 

Although many grant agencies and peer-review journals now require 

to make data available, many old studies or new studies funded by private 

foundations are still not publicly accessible. Studies with censored or 

incomplete information can be an obstacle for meta-analysis. 

It is still unclear how measurements from different platforms 

compare with each other and inconsistencies in gene coverage and 

annotation make comparison much more difficult. 

Several microarray meta-analysis methods have been developed. The 

selection of a suitable meta-analysis method depends on the type of 

analysis desired and the hypothesis setting behind each method. 

Ramasamy and colleagues [48] recommend effect size combination 
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methods as the most comprehensive approach for meta-analysis of two-

class gene expression microarrays due to its known advantages However 

there is no consensus on what is(are) the ‘best’ meta-analysis method(s). 

A large-scale comparative study and simulation study with adequate 

evaluation measures are needed to provide insights and practical 

guidelines for choosing the ‘best’ meta-analysis method(s) in practice. 

Only a few of the proposed microarray meta-analysis methods are 

developed in easy to use software packages. In addition to the scarcity of 

software packages in the field and the lack of a regular update of the 

existing ones, most of the available packages either did not have clear 

manuals or had functions that were not easy to apply. Efforts to provide 

high-quality documentation of programs in order to make them more 

reliable and easier to comprehend are well summarized by the concept of 

‘literate programming’ and its implementation developed by Knuth [Knuth 

DE, 1984]. The package Sweave [165] is an example of use of the noweb-

like literate programming tool [166] inside the R language for creation of 

dynamic statistical reports. It provides a flexible framework for mixing text 

and R code for automatic document generation. A single source file 

contains both documentation text and R code, which are then embedded 

into a final document containing the documentation text together with 

the R code and/or the output of the code (e.g. text, graphs, tables) by 

running the code through R. The report can be automatically updated if 

data or analysis change, which allows for truly reproducible research. 

All packages available by Bioconductor now should meet this 

requirement and, in fact, the most recent packages contain one or more 

‘vignettes’, that is documents providing a textual, task-oriented 

description of the package's functionality. Due to its widely recognized 
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benefits, literate programming practice should be promoted in future 

software development. 

Heterogeneities caused by demographic, clinical and technical 

variables often exist within and across studies. Failure to consider these 

potential confounding variables in the statistical models and meta-analysis 

can result in reduced statistical power or false positives. Meta-analyses of 

clinical and epidemiological studies use regression modeling to adjust for 

the confounding effects. Only recently similar techniques have been 

extended to microarray data meta-analysis [167] however further efforts 

are needed in this area. 
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