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“Noi stiamo in piedi e camminiamo con parti del nostro corpo che sarebbero 

 servite per pensare se si fossero sviluppate in un’altra parte dell’embrione.” 

 

“We are standing and walking with parts of our body which could have been  

used for thinking had they developed in another part of the embryo.” 

 

Hans Spemann, 1943 
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Abstract 

Otx genes are a class of Vertebrates homeobox genes homologous to the 

orthodenticle gene of Drosophila melanogaster. In this study we focus on 

three members of the Otx class in Xenopus laevis: Xotx1, Xotx2 and Xotx5. 

These three homeoproteins show a high level of homology and exploit both 

common and differential actions during Xenopus laevis development. During 

retinal histogenesis, Xotx2 drives progenitor cells to a bipolar fate, while 

Xotx5 guides retinal precursors toward a photoreceptor fate; analogously, 

Xotx2 and Xotx5 play a similar role in cement gland induction, while Xotx1 is 

unable to induce this structure; all three transcription factors seem to be 

involved in regulating the head organizer activity and convergent extension 

gastrulation movements.  

It has been demonstrated that Xotx2 and Xotx5 specific action in frog retina 

is due to a small amino acid stretch, highly divergent between the two 

transcription factors and localized downstream of the homeodomain, named 

retinal specificity box (RS box). Since the specific actions of different 

transcription factors can be due to their interaction with different cofactors, 

we have hypothesized that the RS box specific sequences could make 

XOTX2 and XOTX5 able to interact with different cofactors, thereby leading 

to the activation of different specific downstream differentiation pathways. To 

investigate this, we performed two parallel two-hybrid screens, to search for 

XOTX2 and XOTX5 specific interactors, in order to clarify their divergent 

action during Xenopus retinogenesis. Several candidate interactors of the 

two homeoproteins have thus been isolated, but all these potential cofactors 

were found able to interact in vitro with both XOTX, and also with XOTX1. 

However, since XOTX proteins exploit also common actions during Xenopus 

development, the existence of common XOTX interactors is also feasible; 

besides, a protein that is able to interact in vitro with several partners, may 

interact in vivo with only one or few of them simply because it colocalize with 

them, but not with the others. Thus, we decided to go further with our 

investigation about identified XOTX hypothetical partners. We performed an 
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extensive in silico-analysis, to find out any homologies with described 

sequences and we thus selected some of the clones for further analysis: 

Xusf1, Xusf2, Xgrn1, Xgrn2 and a hypothetical peptide named c29. 

Furthermore, we mapped the specific domain(s) involved in the interaction 

with each selected cofactor to XOTX N-terminus. An almost partial co-

localization of hypothetical partners and Xotx has been found by comparing 

their expression profiles. After deeply analyzing the data base search results 

and the expression profiles, we decided to focus our attention on two XOTX 

hypothetic interactors: USF2, a described transcription factor of bHLH type 

and C29, a hypothetical so far uncharacterized peptide. We decided to 

better characterize their molecular interaction with XOTX transcription 

factors in vitro by GST-pull down assays, as well as their in vivo possible 

function by performing gain- and loss-of-function experiments. We have 

predicted in silico the secondary structure of C29 and its subcellular 

localization; we have demonstrated C29 capability to localize into the 

nucleus, and we have obtained preliminary data about C29 potential role in 

vivo. Besides, we here describe a possible antagonistic action of 

XOTX2/XOTX5 and USF2 both in vitro and in vivo. Moreover, it is known 

that Xotx2 and Xotx5 induce cement gland in Xenopus laevis ectoderm, 

while Xotx1 does not. Different transcription factors can exert differential 

actions also on the basis of sequence divergence. Sequence analysis shows 

the presence of histidine rich and serine rich regions in XOTX1, that are 

absent in both XOTX2 and XOTX5. We have investigated the molecular 

basis of XOTX2/5 and XOTX1 differential action in cement gland formation, 

and we have demonstrated that it is due to the presence/absence of those 

XOTX1 specific regions. Besides, we have characterized XOTX molecular 

domains involved in cement gland promoting action, and we have gained 

some preliminary data concerning XOTX domain(s) involved in neural tissue 

induction and in regulation of gastrulation movements. 
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1- Introduction  

 

1.1- The orthodenticle gene of Drosophila melanogaster 

 

The Drosophila melanogaster orthodenticle gene was originally isolated in a 

large scale screen for loci that affect development of the larval cuticle. In otd 

mutants, differently from wild-type flies, all abdomen cuticles point in the 

same direction, hence the name: orthodenticle (Wieschaus et al., 1984). In 

this study it was demonstrated that otd mutant embryos have defects in 

denticle belt formation, as well as in head development. Besides, it has been 

shown that otd mutant embryos lack antennal (olfactory fruit fly sensory 

organ) and pre-antennal structures (Cohen and Jurgens, 1990), and that the 

ocellar region (ocelli: three simple light sensitive lenses on the dorsal midline 

at the top of adult head) is sensitive to otd dosage (Wieschaus et al., 1992). 

The OTD protein contains multiple repeats consisting of single amino acids 

residues (glycine, serine and glutamine) and pairs of amino acids (i.e. 

alternating glycine and valine residues). A number of these repeats are the 

result of the high content of CAG/A sequence in various regions of the 

coding sequence; the presence of this nucleotide sequence motif has been 

noted in a number of other developmentally important Drosophila proteins, 

including Notch (Wharton et al., 1985a; 1985b) and single-minded (Crews et 

al., 1988). In addition to these repeats, OTD contains a stretch of 19 amino 

acids precisely repeated in tandem, whose functional role is unknown. 

Besides, OTD contains several candidate PEST sequences, hypothesized to 

act as a tag for rapid protein degradation (Finkelstein et al., 1990). Most 

importantly, OTD protein contains a homeodomain of the paired class K50 

(Fig. 1).  
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Otd transcripts appear at cellular blastoderm stage, when expression is 

confined to a broad circumferential stripe at the anterior end of the embryo; 

this portion of the blastoderm will give rise to many of the structures of the 

larval head (Jurgens et al., 1986). In otd embryos, a number of structures 

derived from this region are absent or defective (Finkelstein and Perrimon, 

1990). Following gastrulation, expression persists in the procephalic head 

region. Later, a second domain of expression appears in a longitudinal stripe 

of cells along the ventral midline of the embryo. These cells will generate 

mixed population of neurons and glia. As development goes on, expression 

of otd continues in the ventral nerve cord and in the head region (Finkelstein 

et al., 1990). The embryonic brain of Drosophila is composed of two 

supraesophageal ganglia, each subdivided into three neuromeres. The 

anterior ganglion is subdivided into protocerebral, deuterocerebral and 

tritocerebral neuromers; otd is expressed mainly in the anteriormost, 

protocerebral, neuromere, which is deleted almost entirely in otd null 

embryos (Finkelstein and Perrimon, 1990; Cohen and Jurgens, 1991; Hirth 

et al., 1995; Younossi-Hartenstein et al., 1997) (Fig. 2). Later on in 

Fig. 1. Drosophila melanogaster OTD sequence. GenBank accession 

number: CAA41732.1. Dark grey: homeodomain; light grey: 19 amino acids 

repeated sequences; green: candidate PEST sequences (tags for rapid protein 

degradation). 
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development, otd expression is evident in the eye and antennal primordia 

and then it covers the vertex primordium (the vertex is the region comprised 

between Drosophila compound eyes, containing the ocelli and associated 

cuticles) and it extends along the edge of the antennal disc. Besides, Otd 

plays a crucial role in Drosophila photoreceptor development (Vandendries 

et al., 1996) by regulating the expression of opsin genes (Tahayato et al., 

2003) 

 

 

 

 

 

Fig. 2. 

Expression of 

otd transcripts 

during 

Drosophila 

embryogenesis. 

(A-D) Anterior is 

to the left: (A) 

dorsal view; (B 

and D) lateral 

view; (C) ventral 

view. (A) A 

cellular 

blastoderm-stage 

embryo in which 

otd expression is 

confined to a circumferential stripe extending from 70% to 90% of egg length (arrows). (B, C) 

Germ-band-extended embryos showing otd transcription in the mesectoderm (me, small 

arrows) and procephalic head region (pl, large arrow). (D) A germ-band-retracted embryo 

showing otd expression in the ventral nerve cord (vnc, small arrows) and in a localized region 

of the head that includes the supraesophageal ganglion (spg, large arrow). (Figure and 

caption from Finkelstein et al., 1990). 
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1.2- Vertebrate Otx genes 

 

1.2.1- Paired-like K50 homeobox genes 

 

Otx genes encode homeodomain transcription factors of the paired-like 

class. The homeodomain is a stretch of 60 amino acid residues and 

represents a variant of the helix-turn-helix motif found in procariotic 

transcriptional repressors. It is a DNA binding domain formed by three -

helices separated from coiled regions of protein backbone. Helix 3 

(recognition helix) binds the DNA major groove, while helix 1 and helix 2 lie 

outside the DNA double helix. The recognition helix makes contact with both 

sugar-phosphate backbone and specific bases. An amino-terminus arm 

makes contact with the DNA minor groove (Lewin, 2003).  

Genes belonging to the paired class exert primary developmental functions. 

They are characterized by six invariant amino acid residues in the 

homeodomain. The residue at position 50 can be a serine (Pax-type), a 

glutamine (Q50 paired-like) or a lysine (K50 paired-like); the last is the case of 

Otx genes. Only proteins of the first sub-class contain a second DNA binding 

domain: a paired (prd) domain (Galliot et al., 1999). This K50 lysine residue 

has been reported to confer DNA binding specificity (XOTX2: Pannese et al., 

1995). 

In OTX proteins, the homeodomain is followed by a glutamine rich region, a 

WSP domain, and, at the C-terminus, by a characteristic region called OTX-

tail, generally repeated in tandem, first identified in CRX (Furukawa et al., 

1997) (Fig. 3). 

The homeodomain of OTX proteins is also involved in their nuclear 

localization: CRX nuclear localization signal (NLS) is localized in the 

homeodomain (Fei and Hughes, 2000), as well as, OTX2 NLS (Chatelain et 

al., 2006). Moreover, it has been demonstrated that the homeodomain is 

also involved in protein-protein interactions, as in the case of NRL-CRX 

cooperation (Mitton et al., 2000). 
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Fig. 3. Scheme of human CRX. HD: homeodomain; Gln: glutamine rich region; Basic: basic 

region; AD-2/AD-1: transcriptional activation domains; for AD-1, sub-domains “a” and “b” are 

also shown. Filled boxes represent protein domains shared with OTX1 and OTX2. (Modified 

from Chen et al., 2002). 

 

 

1.2.2- Otx genes in mammalian anterior development 

 

The study of Drosophila gene homologues in Vertebrates has provided a 

large part of the knowledge of development regulating systems. Hox genes 

are Vertebrates homologues of Drosophila homeotic genes; they control 

Vertebrates axis specification and provide positional cues in the developing 

neural tube from hindbrain to tail (Hunt et al., 1991). The Drosophila 

homeobox gene orthodenticle is involved in fly anterior development (see 

above), and Drosophila otd sequence has been used to identify and clone 

otd Vertebrate homologues Otx1 and Otx2 (Simeone et al., 1992; 1993).  

The degree of similarity of mouse and fly homologous homeodomains is 

striking: mouse OTX1 and OTX2 homeodomains differ for 3 and 2 amino 

acid residues from OTD homeodomain, respectively. OTX1 and OTX2 

homeodomains belong to paired-like K50 class, as well as OTD (see above), 

in sharing lysine residue in position 50 (Boncinelli et al., 1993). Murine OTX1 

and OTX2 share extensive sequence similarities, even though in OTX1, 

downstream of the homeodomain, these regions of homology to OTX2 are 

separated by stretches of additional amino acids containing repetitions of 

alanine and histidine (Simeone et al., 1993). Nevertheless, OTD and OTX 
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proteins are highly conserved only in the homeodomain; outside the 

homeodomain, homology is restricted to few short sequences. OTD lacks 

also the so-called OTX-tail, which is tandemly duplicated in all Vertebrates 

OTX (Williams and Holland, 1998).  

Together with two other Vertebrates homeobox genes, Emx1 and Emx2, the 

Vertebrate homologues of Drosophila empty spiracles, Otx genes are 

expressed in restricted regions of the developing mouse brain, including the 

cerebral cortex and olfactory bulbs (Boncinelli et al., 1993) (Fig. 4). These 

four genes have a role in establishing the limits and the identity of different 

brain regions of mouse, resembling, at a more anterior level, the functions of 

Hox genes in the embryo posterior part. Otx genes are also expressed in 

sense organ primordia, such as the olfactory epithelium, the developing 

inner ear and the developing eye, and they exploit a major role in the 

development of these structures (Boncinelli et al., 1993).  

In mouse, Otx2 null embryos die early in embryogenesis, lack the rostral 

neuroectoderm fated to become forebrain, midbrain and rostral hindbrain, 

and show heavy abnormalities in their body plan (Acampora et al., 1995; 

Ang et al., 1996, Matsuo et al., 1995). Heterozygous Otx2 +/- embryos, into 

an appropriate genetic background, show defects in head structures, such 

as serious brain abnormalities and craniofacial malformations (Matsuo et al., 

1995). 

Otx1 null mice suffer from spontaneous epileptic seizures and exhibit 

abnormalities that affect primarily the entire dorsal telencephalic cortex with 

a more pronounced effect in the temporal and perirhinal areas (Acampora et 

al., 1996; Weimann et al., 1999). The development of the visual and acoustic 

sense organs is also impaired, as the ciliary process in the eye and the 

lateral semicircular duct in the inner ear are lost (Acampora et al., 1996; 

Morsli et al., 1999). 

Rescue experiments replacing lacking one Otx gene with the other 

(Acampora et al., 1998; Acampora and Simeone, 1999; Morsli et al., 1999), 

have shown an extended functional homology between OTX1 and OTX2, 
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and lead to argue that the most of the difference between the two Otx null 

mutants phenotypes stems from differences in the expression patterns of the 

two genes (Acampora et al., 1999a). The clearest exception to the overall 

Otx functional equivalence is provided by the lateral semicircular canal of the 

inner ear, that is never restored in mice replacing mutant Otx1 with human 

Otx2 (Morsli et al., 1999). The same phenomenon is observed in mice 

replacing Otx1 with otd; these findings suggest that the ability to specify 

lateral semicircular canal of the inner ear may be an Otx1 specific property 

(Acampora and Simeone, 1999). 

 

 

 

A fundamental step of brain development involving Otx genes is the position 

of the isthmic organizer (IsO), a signaling center located at the mid-hindbrain 

boundary (Martinez et al., 1991) that expresses signaling molecules that 

refine and polarize neighbouring neural tissues (Meinhardt, 1983; 

Rubenstein et al., 1998). Otx2 plays a crucial role in the IsO positioning 

together with another homeobox gene, Gbx2. Otx2 defines the anterior fate 

of the neural plate, while Gbx2 appears to be the major molecular 

determinant of metencephalic identity (Bouillet et al., 1995; Chapman and 

Fig. 4. Schematic 

representation of Emx1, 

Emx2, Otx1 and Otx2 

expression in developing 

mouse embryo. Expression of 

the genes in the developing 

central nervous system at 10 

d.p.c is given in colours. 

Expression of Hox gene family 

is also indicated. Di: 

diencephalon; Mes: 

mesencephalon; Met: 

metencephalon; My: 

myelencephalon; Te: 

telencephalon. (From 

Boncinelli et al., 1993). 
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Rathjen, 1995; von Bubnoff et al., 1995; Wassarman et al., 1997). These two 

genes are essential for correct positioning of the IsO and they exploit this 

function through mutual repression (Broccoli et al., 1999; Millet et al., 1999; 

Simeone et al., 2000). 

Otx1 and Otx2 are also required in a dose dependent manner for the normal 

development of mouse eye. Both Otx1 and Otx2 mutant mice display 

consistent and profound ocular malformations, including lens, pigmented 

epithelium, neural retina and optic stalk defects; cell proliferation, 

differentiation and apoptotic death are severely affected (Martinez-Morales 

et al., 2001). Otx2 is essential for the development and maintenance of 

retinal pigmented epithelium (Martinez-Morales et al., 2001; 2003), and is 

also expressed in post-mitotic retinal neuroblast cells that have the potential 

to develop into various cell types, including ganglion cells, bipolar cells and 

photoreceptors (Bovolenta et al., 1997; Baas et al., 2000). 

Another Otx-like homeobox gene has been isolated from mouse retina and 

named Crx: cone-rod homeobox containing gene. CRX is a photoreceptor 

specific transcription factor, playing a crucial role in their differentiation; its 

expression is restricted to the developing and mature photoreceptor cells. 

CRX binds and transactivates a specific sequence found upstream of 

several photoreceptor-specific genes, including the opsin genes of many 

species, and is essential for differentiation and maintenance of 

photoreceptor cells (Freund et al., 1997). Crx overexpression (obtained by 

retina retroviral transfection) causes an increase in the frequency of clones 

containing exclusively rods and a reduction of the frequency of clones 

containing other retinal cell types (amacrine and Müller glia cells). In 

addition, photoreceptor cells expressing a dominant negative form of Crx 

failed to form proper photoreceptors outer segments and terminals 

(Furukawa et al., 1997). Homozygous Crx knockout mice are blind at birth 

without any detectable photoreceptor function; their photoreceptors never 

develop the outer segment critical for phototransduction, and subsequently 

degenerate (Furukawa et al., 1999). Heterozygous Crx+/- mice have 
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normally functioning photoreceptors, but their development is delayed 

(Furukawa et al., 1999). In humans, Crx is expressed, together with Otx2, in 

all photoreceptors, from early specification trough adulthood and are 

important for regulating a wide range of photoreceptors specific genes (Chen 

et al., 1997; Furukawa et al., 1997; Nishida et al., 2003; Koike et al., 2007; 

Henning et al., 2008; Corbo et al., 2010; Omori et al., 2011). Mutations in 

Crx, as well as in Otx2, are associated with several photoreceptor-specific 

retinopathies: mutations in Otx2 or Crx can lead to Leber’s Congenital 

Amaurosis (LCA) (Freund et al., 1998; Jacobson et al., 1998; Sohocki et al., 

1998; Swaroop et al., 1999; Rivolta et al., 2001; den Hollander et al., 2008; 

Henderson et al., 2009; Nicols et al., 2010). Mutations in Crx are also linked 

to progressive vision lost in Cone-Rod dystrophy (CORD) and Retinis 

Pigmentosa (RP) (Freund et al., 1997; 1998; Swain et al., 1997; Sohoki et 

al., 1998; Swaroop et al., 1999; Rivolta et al., 2001), whereas LCA-

associated alleles of Otx2 are also associated with more severe diseases 

(Henderson et al., 2009). It has been demonstrated that Crx is a target of 

Otx2, together with other Crx direct targets (Nishida et al., 2003; Henning et 

al., 2007). 

In Drosophila, the single otd gene plays multiple roles in photoreceptor 

morphogenesis and opsin gene regulation during eye development. OTX1, 

OTX2 and CRX have been tested for their ability to rescue otd function in fly 

rhabdomeric eye development. Each mammalian gene has been 

demonstrated to mediate a defined subset of otd-dependent functions, with 

Otx2 and Crx mediating unique cell-specific functions, demonstrating that 

during evolution OTX proteins have sub-functionalized (Terrell et al., 2012).  

Crx is also expressed in the pineal gland and it is involved in regulating 

pineal gene expression trough the interaction with a specific pineal 

regulatory element located upstream of pineal-specific genes, and it is 

important for circadian rhythm regulation (Li et al., 1998). 
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1.3- Otx genes and evolution 

 

 1.3.1- Otx genes in the animal kingdom 

 

Otd/Otx related genes have been isolated from a wide range of organisms; 

most of them, up to the Chordates, have only one Otx member, with few 

exceptions of duplications in independent lineages (Li et al., 1996; Umesono 

et al., 1999) (Fig. 5). An Otx related gene is present already in Cnidarians, 

primitive Metazoans with radial symmetry. In these organisms Otx function is 

associated with cell movements involved in axes formation rather than with 

head development (Smith et al., 1999). Rising up the evolutionary scale, Otx 

genes have been found in animals with primitive bilateral symmetry such as 

planarians (Stornaiuolo et al., 1998; Umesono et al., 1999). In these 

organisms Otx expression has been found in regenerating blastemas after 

transverse sectioning, with an asymmetric distribution: more abundant in 

regenerating head structures (Stornaiuolo et al., 1998). In planarians, Otx 

expression starts to be related with anterior patterning. Although not directly 

correlated with a defined anterior structure, the ancient function of Otx genes 

seems to deal with body axis patterning and with making tissues competent 

to respond to anteriorizing signals (Smith et al., 1999). In the nematode 

C.elegans three members of the Otx class have been identified. These three 

genes are involved in the development of thermo- and chemo-sensory 

neurons and, as well as Otx genes in mouse, their ablation gives rise to 

different mutant phenotypes affected in these neuronal populations. This 

variety of phenotypes could be caused by both divergent expression 

patterns and divergent protein functions (Lanjuin et al., 2003). The first case 

of head-associated Otx expression is found in Annelids, in the leech 

Holobdella triserialis (Bruce and Shankland, 1998). Otx related genes have 

been found in all Chordates, including Urochordates (Wada et al., 1996), 

Cephalochordates (Williams and Holland, 1996) and Agnathans (Ueki et al., 

1998); in all these organisms they are expressed, as in flies, in the anterior 
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rostralmost part of the body and specifically in the CNS, independently from 

the complexity of these structures (Fig. 5). In Urochordates and 

Cephalochordates only one member of the Otx family has been isolated, and 

it is thought to correlate with Vertebrate Otx2 (Wada et al., 1996; Williams 

and Holland, 1998); indeed, in addition to amino acid sequence homology 

and similarity in expression patterns, those genes are expressed in 

endoderm cells during gastrulation, similar to Vertebrate Otx2. This suggests 

a primitive role of Otx2 in anterior endoderm to elicit signals specifying 

anterior neuroectoderm. 

 

 

 

Another ancient Otx2 function has been proposed: a role in cell movements 

regulation. This idea is consistent with functional data in frog (Blitz and Cho, 

1995; Pannese et al., 1995; Andreazzoli et al., 1997; Vignali et al., 2000) 

and mouse (Acampora et al., 1995; Matsuo et al., 1995; Ang et al., 1996) 

that suggest Otx2 involvement in cell movements occurring during 

gastrulation. 

Fig. 5. Schematic representation 

of Otx-related gene expression 

(grey) in some representative 

Protochordates (Ascidia and 

Amphioxus) and Vertebrates 

(Lamprey and mouse). D: 

diencephalon; Ep: epiphysis; Ey: 

eye; F: forebrain; FE: frontal eye; 

HB: hindbrain; IO: infundibular 

organ; ll: lower lip; M: mid brain; 

MHB: mid-hindbrain boundary; NC: 

nerve cord; Oe: olfactory 

epithelium; Os: optic stalk; RV: 

rhomboencephalic vesicle; SC: 

spinal cord; SV: sensory vesicle; T: 

telencephalon; ul: upper lip; VG: 

visceral ganglion (Figure and 

caption from Acampora et al., 

2001). 
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Otx2 sequences and expression patterns are quite conserved during 

evolution from low Chordates to Vertebrates (Acampora et al., 2001 and 

references therein). The duplication event generating Otx1 branch from the 

ancestor Otx2 gene has occurred in gnathostome Vertebrates (Williams and 

Holland, 1998). This is coherent with Otx1 new function in specifying 

Gnathostomes specific structures (i.e. lateral semicircular canal of the inner 

ear). Otx1 genes evolve more rapidly than Otx2, as also shown by further 

duplications events occurred in both Xenopus (Kablar et al., 1996) and 

zebrafish (Mori et al., 1994) and by the ratio of sequence divergence higher 

than in Otx2 genes (Williams and Holland, 1998). These data are reinforced 

by notable changes in Otx1 expression patterns in different Vertebrates 

(Simeone et al., 1993; Mori et al., 1994), that underlie a rapid evolution of 

the regulatory elements as well. A particular case is that of lamprey: the 

lamprey genome has two Otx cognates LjOtxA and LjOtxB (Fig. 5). 

Phylogenetic analyses suggest that LjOtxA clusters with Gnathostomes Otx2 

gene, while LjOtxB does not belong to either Otx1 or Otx2 lineages. Beside, 

LjOtxB is not expressed in lamprey brain, but only in olfactory placode, 

epiphysis, optic stalks and lower and upper lips, together with LjOtxA; 

moreover, LjOtxB is expressed in the eyes where LjOtxA is not detected 

(Fig. 5). Thus, Otx1 and Otx2 functions for the development of forebrain and 

midbrain in Gnathostomes appear to be shouldered by LjOtxA alone in 

lamprey. LjOtxB may have diverged from the stem of the Otx1 and Otx2 and 

it may have evolved independently (Ueki et al., 1998), with some weak 

similarity to Otx5/Crx lineage (see below). 

Another Gnathostome Otx orthology class comprises Xenopus Otx5/5b, fish 

Xotx5/Crx and the higly divergent Crx gene characterized in Mammals 

(Plouhinec et al., 2003; Germot et al., 2001). Otx5 and Crx share highly 

specific expression domains: developing eye and epiphysis (Furukawa et al., 

1997; Vignali et al., 2000). Such expression patterns substantially differ from 

the broad Otx1 and Otx2 expression areas, spanning the whole 
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prosencephalon and diencephalon. Genes of Crx orthology class may have 

been recruited for specific roles in photoreceptors development. 

 

 

1.3.2- Otd/Otx: Insect and Vertebrate nervous system evolution 

 

Until a few years ago it was widely assumed that Insects and Vertebrates 

nervous system had evolved independently (Garstand, 1928; Lacalli, 1994). 

This was due to their position at opposite side of the dorso-ventral body axis. 

Nevertheless, nowadays a common evolutionary origin is supported by 

several evidences. Two groups of homologues genes, Hom/Hox and 

Otd/Otx, play crucial roles in the regional specification of the neuroectoderm 

fated to form nerve cord/posterior brain and anterior brain, respectively. 

Many studies carried out in Drosophila have shown that Mammalian Hox 

genes could either partially rescue phenotypes due to mutation of their fly 

orthologues, or elicit responses similar to those of their endogenous 

counterparts when transiently overexpressed (Bachiller et al., 1994; Malicki 

et al., 1990; Zhao et al., 1993). On the other side Drosophila otd has been 

used to rescue either mouse Otx1 or Otx2 gene. Mice in which a full-coding 

otd was introduced to replace Otx1 showed the rescue of several 

abnormalities: brain size, as well as the thickness and cell number of the 

temporal and perirhinal cortices, that are reduced in Otx1 -/- mice, are very 

similar to wild-type (Acampora, 1998). Moreover, replacement of Otx1-/- by 

otd leads to rescue of some sensory and sensory associated structures, 

such as iris and ciliary process; on the contrary, lateral semicircular canal of 

the inner ear is never rescued (Fritzch et al., 1986; Torres and Giraldez, 

1998), as it is the case when Otx1 is rescued with Otx2. This observation 

leads to the conclusion that the development of the lateral semicircular canal 

requires newly established properties specific of Otx1. Also mice in which 

Otx2 has been substituted with otd show an almost partial rescue, providing 

a proof of Otd/Otx functional equivalence. All these data suggest that OTD 
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and OTX proteins are able to drive cephalic development possibly through 

the activation of genetic pathways conserved between Insects and 

Vertebrates, reinforcing the idea that the nervous systems of these two taxa 

are homologous structures sharing a common ancestor (Acampora and 

Simeone, 1999; Reichert and Simeone, 1999; Sharman and Brand, 1998). 

Otd and Otx functions have been established in a common ancestor of fly 

and mouse and retained during evolution; at the same time, copy number of 

Otx genes and transcriptional/translational regulation have been modified by 

evolution, leading to the specification of the more complex Vertebrates brain 

(Acampora and Simeone, 1999; Reichert and Simeone, 1999; Sharman and 

Brand, 1998). Otx gene duplication and modification of sequences and 

regulatory control may have contributed, from this point of view, to 

mammalian brain evolution (Boyl et al., 2001). Additional properties may 

have been acquired also by sequence divergences that endow the proteins 

with new specific abilities, as may be the case of Otx1 in the inner ear. As 

previously mentioned, sequence similarities between Otx and Otd genes are 

restricted to the homeodomain; it is possible that while the ability to 

recognize the same DNA targets by the homeodomain might be evolutionary 

conserved, beside this, murine Otx genes have acquired, outside the 

homeodomain, additional functional features that are different from those of 

otd (Acampora et al., 2001). As mentioned above, rescue experiments on 

otd mutant flies using Vertebrate Otx genes, have shown that Otx1, Otx2 

and Crx each mediate a defined subset of otd-dependent function in the fly 

eye, showing how OTX proteins have sub-functionalized during evolution 

(Terrell et al., 2012). 

 

 

 

 

  



Introduction 

17 
 

1.4- Xenopus laevis 

 

Xenopus laevis (Fig. 6) is a species of the genus Xenopus, that belongs to 

the Pipidae family. It is widespread in sub-Saharan Africa. It is commonly 

known as South Africa clawed frog (or toad). It is an acquatic animal living in 

stagnant waters where it eats almost every kind of food, directing it into its 

toungless mouth using its front limbs. Its body is flat, with lidless eyes on the 

top of a small head. The hind legs have webbed feet with small claws on 

three toes, since the greek name Xenopus that means “strange foot”.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.  Xenopus laevis. A: Mating frogs, the male 

grasping the female around the belly and fertilizing the 

eggs as they are released. B: newly laid clutch of eggs. 

The brown area of each egg is the pigmented animal cap. 

The white spot in the middle of the pigment is where the 

egg nucleus resides. C: 2-cell embryo near the end of its 

first cleavage. D: An 8-cell embryo. E: Early blastula; the 

cells get smaller, but the volume of the egg remains the 

same. F:  pre-hatching tadpole, as the protrusions of the 

forebrain begin to induce eyes to form. G: mature tadpole, 

having swum away from the egg mass and feeding 

independently. (modified from Gilbert, 2000) 
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Many years ago it was discovered that it could be used for human 

pregnancy tests; this led to the worldwide distribution of Xenopus laevis 

which turned out to be an ideal laboratory animal and from the ‘60 it is 

commonly used as a model system in many laboratories all over the world. 

As a model system it presents several advantages. For instance, eggs are 

large and embryos are suitable for microsurgical dissections; its 

development is rapid and in vitro fertilization is quite simple. However, there 

are some drawbacks: it is pseudotetraploid and it requires about 3 years to 

reach sexual maturity. 

 

 

1.5- Otx genes in Xenopus laevis 

 

In Xenopus laevis four members of the Otx class have been isolated and 

characterized: Xotx1 (Kablar et al., 1996), Xotx2 (Pannese et al., 1995; Blitz 

and Cho, 1995), Xotx4 (Kablar et al., 1996), and Xotx5/5b (Kuroda et al., 

2000; Vignali et al., 2000). Xotx1 is a homologue of mouse Otx1, Xotx2 is a 

homologue of mouse Otx2, Xotx5/5b are homologues of mouse Crx; Xotx4 

may be a derived copy of Xotx1. 

 

 

1.5.1- Xotx1 (and Xotx4) expression profile 

 

Xotx1 and Xotx4 have both been isolated during a Xenopus cDNA library 

screening using murine Otx1 as probe (Kablar et al., 1996). The peptide 

sequence of the homeodomain is fully conserved between Xotx1, Xotx4 and 

mouse Otx1, but for a single amino acid change at position 18. Similarity 

between Xotx1 and Otx1 extends outside the homeodomain, where they 

share serine and histidine rich regions, Otx1 diagnostic characters, while 

Xotx4 differs a little more. 
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Fig. 8. Xotx1 

expression as 

detected by in situ 

hybridization on 

whole embryos. 

Embryos stages are 

indicated. Up is 

animal/dorsal; down 

is 

vegetative/ventral; 

right is posterior; left 

is anterior. Empty 

black arrowhead: 

dorsal ectoderm; 

white empty 

arrowhead: 

notoplate (anterior 

part); black arrow: 

cement gland 

anlage/cement gland; white arrow: anterior brain; grey arrow: otic vesicle; grey empty 

arrowhead: optic vesicle. 

 

Xotx1 transcripts become visible by in situ hybridization (Fig. 7 and Fig. 8) at 

stage 10 in the outer layer of the dorsal mesoderm; then, at stage 11, Xotx1 

is detectable in the anterior neural plate; at early neurula stage (13/14) a 

strong expression is observed in the anterior neuroectoderm, within this area 

no labeling is detectable in the midline region, putatively corresponding to 

the anterior part of the notoplate. In the neuroectoderm, transcripts are 

Fig. 7. Xotx1 expression as 

detected by in situ hybridization 

on bisected embryos. Embryos 

stages are indicated. Up is 

animal/dorsal; down is 

vegetative/ventral; right is 

posterior; left is anterior.  Empty 

black arrowhead: dorsal ectoderm; 

black arrowhead: presumptive 

anterior neuroectoderm; white 

arrowhead: anterior neural plate. 
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present in both the epithelial and sensorial layer. Moreover, transcripts are 

also detectable in the sensorial layer of the ectoderm at the level of the 

mesoderm-free zone where the cement gland and the stomodeal-

hypophyseal anlagen will appear. At stage 18, Xotx1 is expressed in the 

prospective brain regions, but it never reaches the very anterior tip of the 

brain. This anterior expression persists till tailbud stage (st. 23). Weak 

labeling is also detectable in the prospective pigmented layer of the eye 

vescicle. At stage 33 brain expression persists, as well as the exclusion from 

the most anterior part; Xotx1 is also expressed in pigmented retinal layer, 

otic vesicles, olfactory placodes and, at a lower level, in a thin stripe of cells 

in the cement gland region. At a later stage (st. 37) cephalic expression 

persists (Kablar et al., 1996). 

Xotx4 display a similar, although not perfectly superimposable expression 

profile (Kablar et al., 1996). 

 

 

1.5.2- Xotx2 expression profile 

 

Xotx2 transcripts are primarily detected at stage 9 in the internal region of 

the dorsal marginal zone, the future Spemann’s organizer region. At stage 

10, the major expression site is in the migratory deep zone cells that are 

fated to give rise to prechordal mesendoderm (Keller et al., 1992). In 

addition it is also expressed in dorsal bottle cells. At stage 10.5, Xotx2 

expression persists in these cell types and posteriorly, above the dorsal 

blastopore lip, this expression clearly respects the boundary between 

internal deep zone cells and external cell layer (boundary known as 

Brachet’s cleft) (Keller et al., 1992).  Conversely, in the anterior region, Xotx2 

expression extends to cells of the presumptive anterior neuroectoderm (Fig. 

9 and Fig. 10).  
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Fig. 10. Xotx2 

expression as 

detected by in situ 

hybridization on 

whole embryos. 

Embryos stages are 

indicated. Up is 

animal/dorsal; down 

is 

vegetative/ventral; 

right is posterior; 

left is anterior. 

Empty black 

arrowhead: dorsal 

migrating zone; 

white empty 

arrowhead: 

presumptive 

anterior 

neuroectoderm; 

black arrow: cement gland anlage/cement gland; white arrow: optic chiasma; grey empty 

arrowhead: optic vesicle; grey arrowhead: anterior neural tube/brain. 

 

At neurula stage (st.14), expression is confined to mesoderm and ectoderm 

cells of anterior/dorsal regions, and to stomodeal-hypophyseal and cement 

gland anlagen. Xotx2 is not expressed in the region corresponding to the 

optic chiasma (Eagleson and Harris, 1990; Pannese et al., 1995). This 

expression profile persists till stage 18. At tailbud stage (st. 23) Xotx2 

transcripts are present in the anterior part of the brain, excluding optic 

chiasma area, in whole eye vesicles, in cement gland and in forming 

Fig. 9. Xotx2 expression as 

detected by in situ hybridization 

on bisected embryos. Embryos 

stages are indicated. Up is 

animal/dorsal; down is 

vegetative/ventral; right is 

posterior; left is anterior.  Black 

arrowhead: migratory deep zone; 

white arrowhead: anterior neural 

plate. 
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olfactory placodes, where they persist during later phases of olfactory organ 

development. At stage 33 brain expression is still present, with the exception 

of chiasmatic region, and Xotx2 becomes detectable also in otic vesicle. This 

expression profile persists with no substantial variations till stage 37 (Kablar 

et al., 1996). (Fig. 9 and Fig. 10) 

 

 

1.5.3- Xotx5/5b expression profile 

 

Xotx5 is initially transcribed at early gastrula stage (st. 10) in the dorsal 

blastopore lip (Spemann’s organizer region). During subsequent gastrula 

stages this expression persists and intensifies; the major expression site 

corresponds to the migratory deep zone cells fated to give rise to prechordal 

mesoderm. At stage 10.5 Xotx5 expression clearly respects the boundary 

represented by the Brachet’s cleft; at this stage Xotx5 is also strongly 

transcribed in the dorsal ectoderm. During later gastrula stages expression 

disappears from the dorsal blastopore lip, while Xotx5 transcripts are still 

detectable in the anterior neuroectoderm, including the whole presumptive 

anterior neural plate. At early neurula stages (st. 13-14) Xotx5 expression 

intensifies in the anterior neural plate, but disappears from a central area 

corresponding to the presumptive retina and optic chiasma territories. At 

these stages Xotx5 transcripts are also detectable in a ventral anterior area 

corresponding to the cement gland anlage, where it persists until tailbud 

stage. At stage 17 a new expression site appears, corresponding to the 

epiphyseal anlage; this expression persists during epiphysis development. 

From stage 22 the expression in the cement gland anlage becomes weaker 

and disappears during subsequent developmental stages. Starting from 

stage 24, a new expression site appears in the eye region, where Xotx5 is 

transcribed in a small cluster of cells corresponding to the presumptive 

neural retina. At stage 27, Xotx5 is expressed in a broad dorsal region of the 

neural retina, where it persists till stage 30. At tadpole stage (st. 35) Xotx5 
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expression covers the entire eye region, except for the lens territories 

(Vignali e al., 2000) (Fig. 11 and Fig. 12). 

 

 

 

 

Fig. 12. Xotx5 
expression as 
detected by in situ 
hybridization on 
whole embryos. 

Embryos stages are 
indicated. Up is 
animal/dorsal; down 

is 
vegetative/ventral; 

right is posterior; left 
is anterior. Empty 
black arrowhead: 
dorsal migrating 
zone; grey 
arrowhead: dorsal 
ectoderm; white 
arrow: optic 
chiasma; white 
empty arrowhead: 

presumptive 
anterior 

neuroectoderm; black arrow: cement gland anlage/cement gland; grey empty arrowhead: 
optic vesicle; black empty arrowhead: pineal gland. 

 

  

Fig. 11. Xotx5 expression as 

detected by in situ 

hybridization on bisected 

embryos. Embryos stages are 

indicated. Up is animal/dorsal; 

down is vegetative/ventral; right 

is posterior; left is anterior.  

Black arrowhead: migratory 

deep zone; white arrowhead: 

anterior neural plate; white 

arrow: presumptive optic 

chiasma region. 
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1.5.4- Xotx2 and Xotx5 expression profile in the developing eye 

 

In Xenopus, Xotx2 and Xotx5 are expressed in different patterns during 

retinal histogenesis (Fig. 13).  At stage 20, Xotx2 is expressed in the optic 

vesicles, while Xotx5 expression in the eye starts only at stage 25, when it is 

expressed in a small cluster of cells of the presumptive neural retina; at this 

stage Xotx2 is expressed throughout the presumptive retinal pigmented 

epithelium (RPE) and neural retina. A few hours later, at stage 28, Xotx2 

expression has narrowed to the central retina and RPE, while Xotx5 has 

expanded. Starting from stage 31, during retinal cells differentiation, the two 

genes expression patterns seem almost superimposable and they are 

transcribed in a diffuse fashion throughout all retinal thickness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At stage 33, the two retinal expression profiles are indistinguishable, in that 

they are distributed throughout the developing retina except in the most 

peripheral region, corresponding to the ciliary marginal zone (CMZ). Starting 

from stage 37 the two gene expression patterns become progressively 

restricted; at the level of the mature retina (stage 41) Xotx2 mRNA is 

Fig. 13. In situ hybridisation on sections of XOtx2 (A-E) and XOtx5b 

(Xotx5) (F-J). Stages are indicated. Bars: 20 m; dashed lines indicate the 

extent of developing neural retina in A-D,F-I. (Figure and caption modified 

from Viczian et al., 2003) 
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localized only in bipolar cells, while Xotx5 is transcribed only in 

photoreceptors and in a subset of bipolar cells (Viczian et al., 2003). Even 

more dramatic is the difference in the protein expression patterns: XOTX2 

protein is detected only in bipolar cells, while XOTX5 is produced only in 

photoreceptors, due to precise translational control through the 3’UTR 

untranslated regions of their mRNA (Fig. 14) (Decembrini et al., 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.6- Xotx genes and the Organizer 

 

Neural axial patterning in Vertebrates is the result of inductive events, in 

which dorsal mesoderm plays a crucial role (Spemann, 1938). Dorsal 

mesoderm, forming blastopore lip, is called the Organizer because of its 

ability to recruit cells to form axial structures. The observation that early 

dorsal lips are able to induce secondary heads, while late dorsal lip 

transplantations give rise to ectopic posterior structures, led to a distinction 

between a head and a trunk organizer (Spemman, 1938; Hamburger, 1988). 

The Organizer itself is induced from signals coming from embryo dorso-

Fig. 14. Translation of the Xenopus Homeobox Xotx5b (Xotx5), and Xotx2 mRNAs. 

In situ hybridization of Xotx2 and Xotx5b (Xotx5) compared to immunostaining of the 

corresponding proteins on embryonic retinas sections at st. 34 (mid-neurogenesis), st. 37 

(late-neurogenesis), and st. 42 (mature embryonic retina). Magnification of central retinal 

aspect); GCL: ganglion cell layer, INL: inner nuclear layer, ONL: outer nuclear layer. 

(Figure and caption adapted from Decembrini et al., 2006) 
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vegetal cells forming the Nieuwkoop center (Nieuwkoop, 1973), and 

becomes able to induce animal pole ectoderm toward a neural fate, 

contemporarily establishing its antero-posterior pattern. The neuroectoderm 

is initially specified as anterior (activation step) and only later posterior 

neural structures are specified from anterior neuroectoderm (transformation 

step) (Nieuwkoop, 1952). Regions that will give rise to the head do not 

undergo convergent extention movements typical of the trunk- and tail-

forming regions that are responsible for their elongation. 

A number of evidences suggest that Xotx genes are involved in head-

organizing activity (Pannese et al., 1995; Blitz and Cho, 1995; Kablar et al., 

1996; Andreazzoli et al., 1997; Morgan et al., 1999; Vignali et al., 2000). 

First of all a common feature of Xotx genes is that their early expression 

patterns correspond to presumptive head regions (Kablar et al., 1996; 

Pannese et al., 1995; Vignali et al., 2000) that do not undergo convergent 

extention movements (see above: Xotx expression patterns); a number of 

evidences demonstrated that XOTX proteins play a role in specifying anterior 

structures, rather than being mere positional markers. 

Gain of function experiments have shown that Xotx2 microinjection results in 

a delay in gastrulation movements and in a failure of blastopore lip closure. 

In embryos showing these gastrulation alterations trunk and tail fail to 

develop properly, the size of these structures is considerably reduced and 

the embryonic axis is bent dorsally (Pannese et al., 1995). In addition, 

several embryos show ectopic cement gland formation, as well as the 

presence of neural tissue in ectopic positions (Fig. 15) (Pannese et al., 

1995).  

In embryos treated with UV light or retinoic acid (RA) Xotx2 expression is 

strongly inhibited, as well as the development of anterior structures, 

suggesting a direct correlation between this two phenomena and implicating 

a fundamental role for Xotx2 in anterior structures development. This also 

suggests a role of Xotx2 as an important intermediary between the first 

positional specification mediated by the cortical rotation originated by sperm 
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entry (Gerhart et al., 1989) and the establishment of anteroposterior axis 

(Pannese et al., 1995). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Xotx2 microinjection significantly increases goosecoid expression, 

suggesting that the regulation of goosecoid expression is among the 

functions of Xotx2 regulatory action during early development, and 

goosecoid has been suggested to play a role in executing Spemann’s 

organizer phenomenon (Cho et al., 1991), thus suggesting a crucial role for 

Xotx2 in mediating dorsal blastopore lip activities (Pannese et al., 1995).  

It has been shown that Xotx2 prevents cells that express it from participating 

in the convergent extention movements that shape the posterior part of the 

body. Xotx2 exerts this function by directly activating XclpH3, Xenopus 

Fig. 15. Xenopus laevis 

embryos injected with 

Xotx2, Xotx1 and Xotx5b 

(Xotx5) mRNA. Xotx1, 

Xotx2 and Xotx5b (Xotx5) 

mRNA microinjection all lead 

to embryos with typical 

posterior defects, but only 

Xotx2 and Xotx5b (Xotx5) 

can induce ectopic cement 

gland formation. Black bold 

and thin arrow: ectopic 

cement gland; black 

arrowhead: cement gland. 

(Figures adapted from 

Andreazzoli et al., 1997; 

Vignali et al., 2000). 
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homologue of Mammalian calponin; the product of this gene binds both actin 

and myosin filaments preventing the generation of contractile force and 

thereby the generation of movements (Morgan et al., 1999).  

Phenotypes shown by Xotx1 injected embryos strongly resemble those 

obtained after Xotx2 microinjection (Fig. 15) and analyses performed on 

exogastrulae have clearly shown that Xotx1, as well as Xotx2, inhibits 

convergent extention movements essential for trunk and tail formation 

(Andreazzoli et al., 1997). It has been hypothesized that Xotx1 might inhibit 

convergent extention movements acting on cell adhesion molecules, and 

that this activity could be either direct or mediated by Otx1 repression of 

other genes like Xbra, Pintavillas and Xnot, that are expressed in trunk and 

tail cells that undergo mediolateral intercalation movements (Andreazzoli et 

al., 1997). A major difference between Xotx1 and Xotx2 overexpression 

phenotypes is the presence of ectopic cement glands that is never detected 

in Xotx1 injected embryos (Andreazzoli et al., 1997). Moreover, einsteck 

experiments performed on injected embryos have shown that Xotx2 is able 

to convert a tail organizer into a head organizer, while Xotx1 seems able 

only to inhibit the tail-organizing activity of the late blastopore lip, leading to 

the development of non-posterior bulging structures (swollen vesicles not 

showing typical tail features), without turning a tail into a head organizer 

(Andreazzoli et al., 1997). A possible interpretation of these data is that 

Xotx1 could be able only to inhibit convergent extension movements, and 

this should be sufficient only to repress tail-inducing activity. On the other 

hand, Xotx2 may also be able to act as specific anteriorizing factor 

reconstituting a head organizing activity. This hypothesis is consistent with 

Xotx2 capability to induce ectopic cement gland, differently from Xotx1 

(Andreazzoli et al., 1997).  

Both Xotx1 and Xotx2 are activated by the injection of siamois, noggin and 

Xwnt-8, factors able to trigger head organizer induction, and are repressed 

by posteriorizing agent such as RA, suggesting, again, an involvement of 

both in anteriorizing activity (Andreazzoli et al., 1997 and reference therein).  
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Xotx5 microinjected embryos fully resemble Xotx2 over-expression 

phenotype (Fig. 15): failure of blastopore proper closure, posterior defects 

and ectopic cement glands formation (Vignali et al., 2000). Moreover, Xotx5, 

as well as Xotx2, is able to turn a tail organizer into a head organizer (Vignali 

et al., 2000). Ectopic neural tissue is also detected in injected embryos 

(Vignali et al., 2000). Further analyses have shown that the induction of 

ectopic neural tissue may not reflect a direct effect of Xotx5 within the 

ectoderm, since in animal cap experiments Xotx5 is weakly able, if at all, to 

trigger neural genes (sox-2, nrp-1) expression (Vignali et al., 2000); 

however, Xotx5 may play a role in neural induction somehow sensitizing the 

anterior dorsal ectoderm towards a neural fate, possibly suppressing the 

ectodermal fate. On the other hand, Xotx2 activates general neural and 

anterior neural markers in isolated ventral ectoderm (Gammill and Sive, 

1997; 2001). These differences may be due to objective differences in 

proteins functions, or may be due to different experimental approaches or to 

different dosages used for the two transcripts (see Gammill and Sive, 2001). 

The induction of ectopic cement gland is instead the result of a direct action 

of Xotx2, and maybe of Xotx5, within the ectoderm (Vignali et al., 2000). In 

addition, Xotx2 efficiently prevents the expression of posterior neural and 

ventral markers, suggesting that part of the mechanism through which it 

promotes anterior fate is to repress formation of non-anterior positions 

(Gammill and Sive, 2001). These data suggest that Xotx2 and Xotx5 may 

perform cooperative roles during early embryogenesis, while they show 

divergent expression patterns (see above) and different functions (see 

below) during later developmental stages (Vignali et al., 2000). 

Relative size of body regions allocated in early embryogenesis for the 

development of head and trunk structures are altered in Xotx microinjected 

embryos. Regions specified for presumptive head structures are slightly 

expanded at the expense of those giving rise to trunk and tail structures. At 

the same time, reduced trunk and tail structures result from the interference 
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with convergent extension movements taking place during gastrulation and 

neurulation and giving rise to more posterior regions (Pannese et al., 1995). 

 

 

1.7- Xotx genes in the developing retina: bipolar versus photoreceptor 

fate 

 

Vertebrate retina is a highly specialized sensorial tissue whose correct 

functions depend on the development of its complex cytoarchitecture. This 

tissue is made up of six different neuronal cell types: bipolar, horizontal, 

amacrine and ganglion cells and two types of photoreceptors (cones and 

rods). Besides, a single type of glia cells (Müller glia cells) is present. All 

these cell types arise from the same retinal multipotent neuroblast cell 

population and the specification of different neuronal cell types follows a 

precise temporary and spatially order. The competence model proposes that 

progenitor cells pass through a series of competence states, during each of 

which the progenitors are competent to produce a subset of retinal cell types 

(Livesey and Cepko, 2001). Competence states seem to be intrinsically 

defined and thus cell fate choices are intrinsically regulated through the 

definition of progenitor competence. Within a given competence state, the 

generation of a particular type of cell is regulated by positive and negative 

extrinsic signals (Livesey and Cepko, 2001). It has been demonstrated that 

bHLH factors are essential in promoting retinal neurogenesis, but additional 

factors, like homeodomain containing transcription factors are also crucial in 

specifying the different cell types (Hatakeyma and Kageyama, 2004 and 

references therein).  

In Xenopus laevis, it has been demonstrated that Xotx2 and Xotx5 are 

responsible for bipolar and photoreceptor differentiation respectively (Viczian 

et al., 2003). Coherently with their expression pattern in the eye (see above), 

lipofections of multipotent retinal progenitors cells with constitutively 

expressed Xotx2 and Xotx5 cDNA, lacking 3’ UTR regulating elements, 
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showed dramatically different effects: Xotx2 drives them to a bipolar fate, 

while Xotx5 promotes a photoreceptor fate (Fig. 16) (Viczian et al., 2003; 

Wang et al., 2005; Decembrini et al., 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Xotx2 suppresses Xotx5 photoreceptor inducing action, and the co-

lipofection of Xotx2 with Xotx5 overrides the latter’s ability to promote 

photoreceptor fate and the combination drives cells towards bipolar fates 

(Viczian et al., 2003). A small divergent region confers to the two 

homeoprotein their differential activities in Xenopus developing retina. This 

region has been called retinal specificity box (RS box) and spans amino acid 

residues 100-109 of XOTX2 and 100-107 of XOTX5 (Fig. 17). The RS box 

lies directly carboxyterminal to the homeodomain, and the two proteins differ 

for 6 amino acid residues at this level (Onorati et al., 2007). Swap domain 

experiments have shown that the RS box is necessary and sufficient to 

confer to the two transcription factors their specific retinal actions (Onorati et 

al., 2007). Significantly, deletion of the RS box completely abrogates any cell 

fate activity of both Xotx, while the insertion of the RS box into Drosophila 

otd, which has no cell fate activity in the frog retina, endows it with the retinal 

activity of either Xotx2 or Xotx5, suggesting that in the absence of the RS 

Fig.16. Overexpression of 

Xotx5b (Xotx5) or Xotx2 in 

developing Xenopus laevis 

retinoblast. (A) Colipofection of 

GFP and pCS2 vector in the 

Xenopus retinae. A diversity of 

retinal cell types express the 

fluorescent marker. (B) Retinae co-

lipofected with Xotx5b (Xotx5) and 

GFP show an increase in 

lipofected photoreceptor cells. (C) 

Retinae co-lipofected with Xotx2 

and GFP vector show an increase 

in the number of lipofected bipolar 

cells. (D,E) The graphs show an 

average of the percentages 

obtained (Figure and caption 

adapted from Viczian et al., 2003). 
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box OTD fails to properly target the gene sets normally activated by either 

XOTX2 or XOTX5. Moreover the grater ability of XOTX5, compared to 

XOTX2, to synergize with Xenopus NRL to activate the rhodopsin promoter 

is also switched depending on this box. OTD protein is also able to interact 

with NRL, demonstrating that the RSbox is not essential for this interaction, 

but it may modulate this contact in a way that is consistent with the roles of 

XOTX2 and XOTX5 in frog retinogenesis (Onorati et al., 2007). These data 

provide strong evidence on how closely related homeodomain factors 

differentiate their functions to regulate distinct cell fates. To explain RS box 

capability to modulate XOTX2 and XOTX5 retinal actions two not mutually 

exclusive possibilities have been proposed: the box refines the DNA binding 

ability of XOTX proteins towards different sets of promoters, or it modulates 

interactions with different specific molecular partners of either XOTX protein.  

 

 

 

 

 

 

 

 

 

1.8- Xotx genes and cement gland induction 

 

Cement gland (CG) (or adhesive organ) is a mucus-secreting organ, 

localized at the extreme anterior of the Xenopus embryo where embryonic 

ectoderm and endoderm contact each other, without mesoderm interposition 

(Fig. 18); this region corresponds to the chin primordium of Mammals. In all 

Deuterostomes this region will give rise to the stomodeum (primitive mouth). 

The adhesive organ secrets a waterproof glue that attaches the newly 

hatched embryo to a solid support, in a phase when it can swim only poorly 

Fig. 17. XOTX2/5b and XOTX5 RS box.  On the left are schematics of the two XOTX; on 

the right are their sequences in the region directly downstream of the homeodomain (HD), 

with different colors shading the XOTX2 (red) and XOTX5b (XOTX5) (yellow) sequences. 

Lines are introduced for sequence alignment. The divergent region responsible for the 

different retinal activities of XOTX2 and XOTX5b (XOTX5) (RS box) is shown in the blue 

frame. (Figure adapted from Onorati et al., 2007) 
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and cannot feed autonomously. It is innervated by the mandibular branch of 

the trigeminal nerve, whose neurites make the cement gland work as a 

sensory device that mediates the “stopping response”, to keep the embryo 

from moving after it is safety attached by glue (Boothby and Roberts, 1992 

a, b; Davies et al., 1982; Roberts and Blight, 1975). This mechanism saves 

energy and makes embryos less obvious to predators. 

 

Fig. 18. The Xenopus cement gland 

forming region. The Xenopus cement 

gland (CG; shaded area) forms from 

the outer layer of ectoderm that 

overlies the endoderm, in the 

mesoderm-free area at the anterior of 

the embryo. This region lies between 

the dorsal neural plate and ventral 

epidermis. Outer ectodermal layer 

(dark blue), inner ectodermal layer 

(light blue), mesoderm (red) and endoderm (yellow) are indicated. (Figure and caption 

adapted fromWardle and Sive, 2003). 

 

CG arises from the outer or epithelial layer of the ectoderm (Drysdale and 

Elinson, 1992; Nieuwkoop and Faber, 1967); this layer also gives rise to 

epidermis, hatching gland, certain neurons and to the ependymal lining of 

the neural tube. 

CG primordium becomes morphologically visible at the onset of neurulation, 

when a patch of cells, lying anterior to the neural folds, becomes more darkly 

pigmented than the surrounding tissue. As the neural tube closes, this organ 

is differentiated and begins secreting mucus before the embryo hatches. 

Completely differentiated adhesive organ consists in a pseudostratificated 

columnar epithelium, made up by very polarized cells containing mucus and 

maternal pigment granules (Sive and Bradley, 1996 and reference therein); 

these cells form a cone shape structure with an oval apex. During 

successive phases of Xenopus development, CG cells decrease in height 

and become vacuolated to disappear about at stage 45 (Van Evercooren 

and Picard, 1978). CG degeneration is coordinated with the opening of the 

mouth and initiation of feeding. 
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Several genes specifically or preferentially expressed in the Xenopus 

adhesive organ have been isolated: Xcg is expressed exclusively in the CG, 

it is the only known gene to be so restricted and it encodes a mucine like 

protein (Rones and Sive, unpublished data); Xag is expressed at very high 

levels in the CG and, at lower levels, in the hatching gland, it encodes a 

novel secreted protein later expressed in the pharynx (Jamrich and Sato, 

1989) and in the lung primordium (Bradley and Sive, unpublished data); Xa 

also encodes a novel secreted protein, its expression shows that the CG 

itself has an antero-posterior pattern, with Xa RNA restricted to the posterior 

cells (Hemmati-Brivanlou et al., 1990), and the distalless homeobox genes 

Xddl3 and Xddl4 expressed only in anterior cells (Papalopulu and Kintner, 

1993). Trigeminal neurites selectively innervate only the anterior portion of 

the cement gland (Roberts and Blight, 1975), so that genes expressed 

asymmetrically may be involved in axonal positioning. 

CG is positioned by the overlap of three domains: antero-dorsal domain 

(AD), ventro-lateral domain (VL) and outer layer ectodermal domain (EO); so 

that the adhesive organ is defined by the overlap of these three domains: 

AD+VL+EO=CG (Fig. 19).  

 

 

 

 

 

 

 

 

 

 

 

The AD domain is made up of ectoderm that will form forebrain and CG, of 

the underlying mesoderm (precordal plate) and of head endoderm (Wardle 

Fig. 19. Overlapping domains 

position the Xenopus cement gland 

(CG). A Venn diagram shows that three 

different domains overlap to position 

the cement gland. Cement gland forms 

where anterodorsal (AD), ventrolateral 

(VL) and outer ectodermal (EO) 

domains overlap; epidermis forms from 

ectoderm in the VL domain that does 

not overlap with the AD domain, and 

anterior neural plate develops from the 

AD domain that does not overlap with 

the VL domain. (Figure and caption 

adapted from Wardle and Sive, 2003) 
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and Sive, 2003). Anterodorsal mesoderm and endoderm induce overlying 

and adiacent ectoderm to assume anterior fate through secreted factors 

(BMP and Wnt antagonists) (Sive and Bradley, 1996; Gamse and Sive, 

2000). By mid-gastrula the AD domain is mirrored by Xotx2 expression 

domain, which includes anterior neural and CG ectoderm, as well as the 

mesoderm and endoderm that induce them (Pannese et al., 1995; Blitz and 

Cho, 1995). Xotx2 is necessary and sufficient for CG development, since a 

dominant negative Otx2 construct prevents CG formation (Gammil and Sive, 

2000; Isaacs et al., 1999), conversely Otx2 misexpression leads to ectopic 

CG formation (Pannese et al., 1995; Blitz and Cho, 1995; Gammil and Sive, 

1997). Xotx5 is also expressed in the CG anlage and can activate CG fate 

when misexpressed, suggesting it is also involved in CG determination 

(Vignali et al., 2000). The ability of Xotx2 to activate CG fate is limited both 

temporally and spatially. Firstly, Xotx2 can activate downstream CG 

differentiation genes only after mid-gastrula. Secondly, the broad expression 

of Xotx2 and its ability to activate both CG and neural cell fates indicates that 

its CG inducing activity is limited by other factors.  

Ventro-lateral domain expresses several characteristic genes such as bmp4 

and vent2 (Fainsod et al., 1994; Schmidt et al., 1996 Lahder et al., 1996; 

Onichtchouk et al., 1996). Gradient of BMP signaling in the ectoderm 

specifies different cell fates (Weinstein and Hemmati-Brivanlou 1999, and 

reference therein): high levels of BMP signaling lead to epidermal cell fate; 

intermediate levels activate CG development, as well as other “border” fates, 

such as neural crest; where there is little or no BMP signaling present neural 

tissue is formed (Hawley et al., 1995; Sasai et al., 1995; Suzuki et al., 1994; 

Xu et al., 1995; Wilson et al., 1997; Marchant et al., 1998). Adequate BMP4 

levels cooperate with XOTX2 to activate CG formation (Gammil and Sive, 

2000).  

The embryonic ectoderm is composed of two layers: outer (epithelial layer) 

and inner (sensorial layer); the CG derives from the outer layer.  Xotx2 and 

bmp4 expression is present in both ectodermal layers and other factors 
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restrict their CG inducing activity to the EO (Wardle and Sive, 2003). The 

bHLH factor ESR6e is expressed in the outer layer (Deblandre et al., 1999; 

Chalmers et al., 2002) and can alter the fate of ectodermal layers; besides, it 

normally inhibits primary neuronal differentiation (Chalmers et al., 2002), so 

that it can select CG fate over neural fate (Wardle and Sive, 2003). 

Cement gland induction is a direct effect of Xotx2 and not a secondary 

consequence of other tissues induced by Xotx2 (Gammill and Sive, 1997); 

moreover, the CG marker Xcg is a direct target of Xotx2 (Gammill and Sive, 

1997), while Xag is indirectly activated maybe via a CRE binding factor 

acting downstream of Xotx2; another factor acting through an Ets-binding 

site, but not activated by Xotx2, cooperates to Xag activation (Wardle et al., 

2002; Wardle and Sive, 2003); it is not clear if Xotx2 is also able to self-

activate. 
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2- Aim 

In this study we have focused on three members of the Otx class in the frog 

Xenopus laevis: Xotx1, Xotx2 and Xotx5. As described by Boncinelli et al. 

(1993), Otx genes are Vertebrates homologues of Drosophila melanogaster 

orthodenticle gene (otd). As otd in the fly, Otx genes in Vertebrates are 

essential for anterior development, and they are involved in central nervous 

system and sensory organs formation. The three homeoproteins described 

in the frog exploit both common and specific actions during development: 

during retinal histogenesis, Xotx2 drives progenitor cells to a bipolar fate, 

while Xotx5, guides retinal precursors towards a photoreceptor fate (Viczian 

et al., 2003);  Xotx2 and Xotx5 play a similar role in cement gland formation, 

while Xotx1 is unable to promote the formation of this structure (Blitz et al., 

1995; Pannese et al., 1995; Andreazzoli et al., 1997; Vignali et al., 2000); all 

three transcription factors seem to be involved in head organizer activity  and 

regulation of gastrulation movements (Andreazzoli et al., 1997; Vignali et al., 

2000). These three transcription factors show a high level of homology, but 

they also contain divergent amino acid stretches. It has been demonstrated 

that Xotx2 and Xotx5 differential action during retinogenesis is due to their 

highly divergent retinal specificity boxes (RS box) (Onorati et al., 2007). We 

have hypothesized that the RS boxes could confer to the two transcription 

factors the capability to differentially interact with diverse cofactors, and, in 

the aim of identifying XOTX2 and XOTX5 specific interactors we decided to 

perform two parallel two-hybrid screens using XOTX2 and XOTX5 as baits. 

This part of the project was performed in collaboration with Dr. Alvaro Galli 

(CNR, IFC, Pisa). From the screens only common interactors have emerged; 

however, since a role in vivo for these factors is anyway possible, we 

structurally and functionally characterize the most interesting of these XOTX 

potential partners. Moreover, we have performed a molecular dissection of 

the different capability of XOTX2 and XOTX5 in respect to XOTX1 to 

promote cement gland development, to check the possibility that it could be 

due to primary amino acid sequence differences. Our aim has been to 



Aim 

38 
 

functionally characterize the XOTX domains that could be responsible for 

XOTX differential action in adhesive organ formation. Thus, our general aim 

has been to try to shed light onto the molecular bases of XOTX actions 

during Xenopus laevis development.  
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3- Materials and methods 

 

3.1- DNA constructs section I 

 

The main constructs used in section I of this thesis are shown in Fig. 20, and 

described below. 

The Xotx5 sequence used in the present work was previously described as 

Xotx5b. (Vignali et al., 2000). 

pCS2Xotx5 wild-type construct was previously described in Viczian et al. 

(2003).  

pCS2Xotx1 wild-type construct was generated as follow: the Xotx1 5’UTR 

(88 nt) +coding region was amplified from Xenopus laevis embryos cDNA by 

using specific primers, both including an EcoRI restriction site at the 5’end; 

the PCR product was digested with EcoRI and inserted into EcoRI site of 

pCS2 plasmid vector. 

pCS2Xotx1N5C and pCS2Xotx5N1C swap domain constructs were 

generated as follows: a KpnI site was inserted in pCS2Xotx5 wild-type 

construct by site directed mutagenesis, and similarly a KpnI site was inserted 

in pCS2Xotx1 wild-type construct. By using an existing KpnI site in pCS2 

plasmid sequence, two fragments were obtained from both pCS2Xotx1 and 

pCS2Xotx5 KpnI mutagenized plasmids by KpnI digestion: pCS2Xotx1N-

fragment/pCS2Xotx1C-fragment and pCS2Xotx5N-fragment/pCS2Xotx5C-

fragment, respectively. Fragments were recombined by in vitro DNA ligation, 

using T4 ligase enzyme (Fermentas), to obtain the swap domain constructs. 

pCS2Xotx1ΔSer deletion construct corresponds to pCS2Xotx1 wild-type 

construct, except for the deletion of the Serine rich region spanning amino 

acids 139-173. Serine rich region deletion was obtained by PstI digestion, 

performed after insertion of two PstI restriction sites at Serine rich region 

borders by site directed mutagenesis. Subsequent DNA re-circularization, 

using T4 ligase enzyme, allowed to obtain pCS2Xotx1ΔSer deletion 

construct. 
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pCS2Xotx1ΔHis deletion construct corresponds to pCS2Xotx1 wild-type 

construct, except for the deletion of the Histidine rich region spanning amino 

acids 248-288. The deletion of the Histidine rich region was obtained by 

NcoI digestion, performed after insertion of two NcoI restriction sites at 

Histidine rich region borders by site directed mutagenesis. Subsequent DNA 

re-circularization, using T4 ligase enzyme, allowed to obtain pCS2Xotx1ΔHis 

deletion construct. 

pCS2Xotx1ΔHisΔSer carries both the Histidine and Serine rich region 

deletions described above; it was obtained by removal of Serine rich region 

from pCS2Xotx1ΔHis, as for the generation of pCS2Xotx1ΔSer from 

pCS2Xotx1 wild-type construct. 

pCS2Xotx5ΔRSbox correspond to pCS2Xotx5 wild-type construct, except 

that the region corresponding to Xotx5 retinal specificity box (spanning 

amino acid 100-107) was removed by site directed mutagenesis; it was 

described in Onorati et al. (2007). 

pCS2Xotx5-177ΔC, pCS2Xotx5-210ΔC and pCS2Xotx5-255ΔC are deleted 

constructs lacking different XOTX5 carboxy-terminus portions; they were 

obtained by the insertion of a stop codon in position 177, 210 and 255, 

respectively, using site directed mutagenesis.  

pCS2Xotx5-255ΔC-His-rich correspond to pCS2Xotx5-255ΔC followed by 

Xotx1 Histidine rich region coding sequence (cs). Xotx1 Histidine rich region 

cs was amplified from pCS2Xotx1 wild-type construct using specific primers 

carrying BcuI restriction site. PCR product was digested with BcuI restriction 

enzyme and inserted into a BcuI site generated in pCS2Xotx5 wild-type 

construct by site directed mutagenesis, downstream of aa postion 254. This 

allowed in frame fusion of the Histidine rich region. A stop codon was 

provided at the end of the Histidine rich box. 

All constructs were verified by sequencing. 
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Fig. 20. Schematics of constructs used in section I. Each bar represents a schematic of 
the construct reported above. Light grey: Xotx1 constructs, dark grey: Xotx5 constructs. RS: 
retinal specificity box; Ser Rich: Serine rich region; His Rich: Histidine rich region. D1: cement 
gland inducing box domain 1; D2: cement gland inducing box domain 2. 

 

 

3.2- DNA constructs section II 

 

The main constructs used in section II of this thesis are described below. 

For two-hybrid screen specific plasmids pGBDU/pBDGal4Cam/pVp16 were 

used. 

Different portions of Xotx2/Xotx5 coding regions have been previously 

cloned in pGBDU and pBDGal4Cam plasmids (Fig. 21): 

o pBDGal4CamXotx2TH1: full length coding region (288 aa) 
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o pBDGal4CamXotx2TH2: short N-terminus+homeodomain+RSbox 

(from aa 25 to aa 98) 

o pBDGal4CamXotx2TH3: N-terminus+homeodomain+RSbox (from aa 

1 to aa 98) 

o pBDGal4CamXotx2TH4: N-terminus+homeodomain+RSbox+C-

terminus portion (from aa 1 to aa 174) 

o pBDGal4CamXotx2TH5: N-terminus+homeodomain+RSbox+C-

terminus portion (from aa 1 to aa 238) 

o pBDGal4CamXotx2TH6: RSbox+C-terminus portion (from aa 102 to 

aa 174) 

o pBDGal4CamXotx2TH7: RSbox+C-terminus (from aa 102 to aa 288) 

pBDGal4CamXotx2TH8 was generated by the insertion of a stop codon, by 

site direct mutagenesis, in pBDGal4CamXotx2TH4 plasmid in 

correspondence of residue 25. 

o pGBDUXotx5TH1: full length coding region (290 aa) 

o pGBDUXotx5TH2: short N-terminus+homeodomain+RSbox (from aa 

25 to aa 107) 

o pGBDUXotx5TH3: N-terminus+homeodomain+RSbox (from aa 1 to 

aa 107) 

o pGBDUXotx5TH4: N-terminus+homeodomain+RSbox+C-terminus 

portion (from aa 1 to aa 174) 

o pGBDUXotx5TH5: N-terminus+homeodomain+RSbox+C-terminus 

portion (from aa 1 to aa 240) 

o pGBDUXotx5TH6: RSbox+C-terminus portion (from aa 99 to aa 174) 

o pGBDUXotx5TH7: RSbox+C-terminus (from aa 99 to aa 288) 

pGBDUXotx5TH8 was generated by the insertion of a stop codon, by site 

direct mutagenesis, in pGBDUXotx5TH4 plasmid in correspondence of 

residue 25. 

pBDGal4CamXotx1TH4 was generated by subcloning Xotx1 region 

spanning from 1 to 206 residues, in pBDGalCam EcoRI site. Xotx1TH4 

fragment was amplified from pCS2XotxFL plasmid using specific primers 
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both including an EcoRI restriction site at the 5’ end, PCR product was 

digested with EcoRI and inserted into EcoRI site of pBDGal4Cam plasmid 

vector:  

o pBDGal4CamXotx1TH4: N-terminus+homeodomain+C-terminus 

portion (from aa 1 to aa 204). 

pVp16Xusf1TH, pVp16Xusf2TH, pVp16Xgrn1TH, pVp16Xgrn2TH and 

pVp16c29TH plasmids have been isolated from pVp16 Xenopus laevis 

oocyte cDNA library by yeast to hybrid screen. All library fragments were 

cloned in pVp16 NotI site. 

pBSc29TH plasmid has been obtained subcloning c29 two hybrid isolated 

fragment (c29TH), from pVp16c29TH plasmid into  NotI site of pBS plasmid. 

pBSXusf1/pBSXusf2 plasmids were obtained amplifying Xusf1 and Xusf2 

5’UTR+partial coding region (CR) from Xenopus tailbud cDNA using specific 

primers all including an EcoRI restriction site at the 5’ end, PCR products 

were digested with EcoRI and inserted into EcoRI site of pBS plasmid 

vector. 

pBSXgrn1/pBSXgrn2 plasmids were obtained amplifying Xgrn1 and Xgrn2 

CR from Xenopus tailbud cDNA using specific primers all including an EcoRI 

restriction site at the 5’ end, PCR products were digested with EcoRI and 

inserted into EcoRI site of pBS plasmid vector. 

pCS2Xusf2 and pCS2c29 plasmids were obtained amplifying Xusf2 and c29 

CR from Xenopus tailbud cDNA using specific primers all including an EcoRI 

restriction site at the 5’ end, and cloning PCR products into EcoRI site of 

pCS2 plasmid vector. The c29 hypothetical coding region was deduced by 

c29 cDNA sequence, basing on the first “ATG” codon found. 

pYexGST-Xusf2 and pYexGST-c29 plasmids were obtained subcloning 

Xusf2 and c29 CR from pCS2Xusf2 and pCS2c29 plasmids, inserts have 

been excised by EcoRI digestion and inserted into EcoRI site of pYex 

plasmid vector. pYexGST-nrl plasmid has been described in Onorati et al. 

(2007). 
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pCS2Xotx2-myc, pCS2Xotx5-myc, pCS2nrl-myc and pCS2XopGFP 

plasmids have been described in Onorati et al. (2007). 

pCS2c29CR-myc plasmid was obtained subcloning c29 CR from pYex 

plasmid into EcoRI site of pCS2-myc plasmid. 

pCS2c29NLSstop-myc plasmid was obtained by the insertion of a stop 

codon upstream to c29 hypothetical nuclear localization signal (NLS), 

corresponding to residue 77, using site directed mutagenesis. 

pCS2RFP plasmid was obtained subcloning RFP coding region from CAG 

plasmid (kind gift of Dr A. Cellerino), using specific primers both including an 

EcoRI restriction site at the 5’ end, PCR products were digested with EcoRI 

and inserted into EcoRI site of pCS2 plasmid vector. 

pCS2RFP-c29NLS plasmid was obtained cloning C29 hypothetical NLS 

downstream to RFP CR in pCS2RFP plasmid. 

pCS2Moc29GFP sensor plasmid was obtained cloning c29 oligo antisense 

morpholino target sequence upstream to GFP CR in pCS2GFP plasmid. 
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Fig. 21. Schematics of constructs used in section II. Each bar represents a schematic of 
the constructs reported above. Light grey: Xotx2 constructs, dark grey: Xotx5 constructs. RS: 
retinal specificity box. 

 

3.3- Xenopus laevis embryos 

 

Eggs were obtained from Xenopus laevis females injected with 800 IU of 

human gonadotropin; embryos were generated and grown as previously 

described by Newport and Kirschner (1982) and staged according to 

Nieuwkoop and Faber (1967). 

 

 

3.4- In situ hybridization 

 

Embryos were processed for whole-mount in situ hybridization as described 

by Harland (1991); for animal cap in situ hybridization, Proteinase K was not 

used. Embryos and caps were bleached after chromogenic reaction as 

described by Mayor et al. (1995). Probes were generated by in vitro 

transcription of template plasmids, to generate antisense RNAs labeled with 

digoxygenin; in these reactions, plasmids were linearized with suited 

restriction enzymes and SP6, T7 or T3 polymerase was used for the 

synthesis of RNA, depending on the template. We used Xag probe (Bradley 

et al., 1996) for cement gland detection by in situ hybridization, and nrp-1 

probe (Knecht et al., 1995) for neural tissue detection. Besides, we use 

specific probes for expression profiling of the different XOTX candidate 

interactors, generated from pBS contructs. 

 

 

3.5- RNAs methods, embryo microinjections and animal cap assays 

 

Capped RNAs were in vitro transcribed by SP6 RNA polymerase from 

linearized pCS2 constructs described above using the mMessage mMachine 

Kit (Ambion). Embryos were bilaterally (section I experiments) or unilaterally 
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(section II experiments) injected in the animal region of dorsal or ventral 

blastomeres of 4-cell stage embryos in 0.1xMMR, 4% Ficoll. Embryos were 

grown overnight at 14°C and then transferred in 0.1xMMR and cultured at 

14°C until tailbud (section I and section II experiments) or later stages 

(section II experiments). For animal cap assays RNAs were injected in the 

animal pole region of 1-cell stage embryos. Animal caps were dissected out 

of stage 9 embryos in 1xMBS, let heal and then cultured in 1xMBS until 

sibling embryos reached tailbud stage. 

 

 

3.6- Oligo antisense Morpholino 

 

Loss-of-function experiments were performed using the following oligo 

antisense Morpholinos (Gene Tool):  

Moc29: CACCAGCGTAGTCAGGTACACCCAC, targeting c29 predicted 5’ 

UTR; 20-40 ng of Moc29 have been injected unilaterally/bilaterally in animal-

dorsal blastomeres of 4-cell stage embryos in 0,1X MMR 4% Ficoll.  

MoUSF2: CGTCTCAGGCGTTACAGGCCCAG, targeting Xusf2 5’ UTR; 5-

10 ng of MoUSF2 have been injected unilaterally in animal dorsal/ventral 

blastomere of 4-cell stage embryos in 0,1X MMR 4% Ficoll. 

MisMoUSF2: CcTCTgAGGCGaTACAGcCCgAG; lowercase letters indicate 

mis-matched bases; 5-10 ng of MisMoUSF2 have been injected unilaterally 

in animal dorsal/ventral blastomere of 4-cell stage embryos in 0,1X MMR 4% 

Ficoll. 

Embryos were grown overnight at 14°C and the transferred in 0.1X MMR 

and cultured at 14°C until tadpole/tailbud stage. LacZ has been used has 

injection tracer. 
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3.7- RT-PCR 

 

Total RNA was extracted from animal caps grown until tailbud stage after 

dissection from injected embryos or from whole wild type embryos at 

different developmental stages, using NucleoSpin RNAII kit (Macherey-

Nagel) and in vitro reverse-transcribed using the GoScript Reverse 

Transcription System (Promega) and oligodT primers. 

cDNAs reverse-transcribed from RNAs extracted from animal caps were 

amplified by PCR using: Xag and Xcg specific primers described by Gammil 

and Sive, 1997. All primers were used at 24 cycles with a 55°C annealing 

temperature. 

cDNAs reverse-transcribed from RNAs extracted from whole embryos were 

amplified by PCR using: c29 specific primers: Fw: 5’-

ATGGAACTGAGCGCTGAACTGAG-3’, Rev: 5’:-

TTTCTTTTAGTGGGAGGTCCATTACT-3’ (30 cycles, annealing temperature 

55°C); Xusf1 specific primers: Fw: 5’-

GGGAATTCGGGGAACTACTGGACTGGATAGGTTGG-3’, Rev 5’-

GGGAATTCGCGGGGCCGTGGATCC-3’ (35 cycles, annealing temperature 

60°C); Xusf2 specific primers: Fw: 5’-

GGGAATTCTTTCCGGGTCGCCCCGGGC-3’, Rev 5’-

GGGAATTCTCCTGCTTGTCCCAGTGTGGGGTCGG-3’ (22 cycles, 

annealing temperature 66°C); Xgrn1 specific primers: Fw: 5’-

GCACCCAGGGCCAGTGCTTG-3’, Rev 5’-

GGGGGGCAGCAGTGTTCATGGTC-3’ (25 cycles, annealing temperature 

62°C); Xgrn2 specific primers: Fw: 5’-

CATCCCTTGGCTCCTCAAAACTCCAGCTC-3’, Rev 5’-

GGGAATTCTCATAGGAGAGGAGAGAGTTTTCCGTC-3’ (22 cycles, 

annealing temperature 63°C). 

In both cases odc primers were used as internal control (Bouwmeester et al., 

1996). 
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3.8- Two-hybrid screening 

 

Two-hybrid assay has been used both to find XOTX potential interactors, 

among polypeptides encoded by a Xenopus laevis oocyte library, and to 

confirm hypothetic protein-protein interactions found. We have used the 

yeast strain AH 109 of Saccaromyces cerevisiae. Yeast cells were 

transformed with: pGBDU/pBDGal4Cam plasmids (baits), encoding XOTX 

TH fragments fused in frame with the DNA binding domain of the 

transcription factor GAL4, and pVp16 plasmids (preys), containing library 

fragments fused in frame with the activation domain of transcription factor 

VP16.  

 

 

3.9- GST-pull down assay 

 

GST-fusion proteins were expressed in E.coli BL21 cells. Culture were 

grown till mid-log phase (A600=0.7) in LB medium at 37°C, induced with 

1.0mM isopropyl thio--D-galactopiranoside, and grown for additional 4 

hours at 30°C. Bacterial cells were collected by centrifugation, pellet was 

resuspended in ice cold PBS and lysed on ice by lysing mix: lysozyme 

200g/ml, DTT 10 mM (in AcONa 10 mM pH 5.2), protease inhibitor mix 

(2mM AEBSF, 1mM EDTA, 130 M bestain, 10 M E-64, 1M leupeptin, 0.3 

M aprotinin; final concentration (Sigma-Aldrich)), 1% (v/v) Triton X-100, 

10mM MgCl2 and 100g/ml DNAse. Proteins containing solution was 

recovered by centrifugation.  

HEK 293T cells were cultured in Dulbecco’s modified Eagle’s medium 

(Gibco/Invitrogen) supplemented with 10% (v/v) fetal bovine serum (Gibco) 

and with Pen-Strep antibiotics mix (Sigma). Transfections were performed in 

Opti-MEM medium (Invitrogen). pCS2-myc-tagged constructs  transfection 

were performed using PEI (Sigma-Aldrich), 39.75 g pCS2-myc-tagged 

plasmid+250ng PEGFP tracing plasmid were used for each transfection (92 
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mm diameter Petri dish). HEK cells were lysed in lysis buffer: in Hepes pH 

7.5 50mM, NaCl 50mM, glycerol 1%, Triton-X100, MgCl2 1.5 mM, EGTA 

5mM, PMSF 1mM, mammalian protease inhibitor cocktail (Sigma), NaVO4 

1mM. Proteins containing solution was recovered by centrifugation.  

Glutatione Sepharose 4B resin (100 ml) (Amersham, GE Heakthcare) has 

been used for each experiment and control. Resin was first incubated with 

GST-fusion protein, then with myc-tagged proteins. Proteins eluition from 

resin was obtained boiling resin with DYE loading buffer (detailed procedure 

is described in Onorati et al., 2007). 

 

 

3.10- Western blotting 

 

Proteins samples were loaded onto a 12% polyacrylamide gel for size 

separation. Subsequently, proteins were transferred to Immobilion-P 

Transfer membrane (Millipore) by electroblotting. Monoclonal primary anti-

myc antibody (Sigma) and secondary anti mouse IgG peroxidase conjugate 

(Sigma), were used to detect myc-tagged proteins. To visualize 

immunoreactive bands was used Immobilon Western Chemiluminiscent HRP 

Substrate (Millipore), membranes were exposed to Amersham Hyperfilm. 

 

 

3.11- XOP-GFP reporter assay 

  

HEK 293T cells culture and transfections were performed as described 

above. Plasmids quantitative for each transfection have been the following: 

4g pCS2XopGFP+ 700ng pCS2RFP + 1g pCS2Xotx2/pCS2Xotx5 + 1g 

pCS2c29/pCS2Xusf2. RFP and GFP fluorescence signals were analyzed 

using flow cytometry. RFP was used as transfection tracer.  
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3.12- Immunostaining on sections 

 

Immunostaining on section have been performed as described in Viczian et 

al. (2003). To identify myc-tagged proteins we have used monoclonal 

primary anti-myc antibody (Sigma) and secondary anti mouse IgG 

rhodamine conjugate (Sigma), pCS2memGFP has been used as cell 

membrane marker. Nuclei were stained by Hoechst.  

 

 

3.13- 5’ RACE 

 

5’ RACE has been performed using the SMART RACE cDNA Amplification 

Kit (Clontech). RNA extracted from wild-type embryos at developmental 

stage 23 has been used as template. The specific primer 29Rev 5’-

TTTCTTTTAGTGGGAGGTCCATTACTG-3’ has been used. PCR fragments 

have been cloned in the StuI site of pCS2 plasmid vector after “fill-in” 

reaction using Klenow Polymerase (Promega). Plasmids were analyzed by 

sequencing. 

 

 

3.14- Bioinformatics tools 

 

The following bioinformatics tools have been used.  

o ClustalW: nucleotide/aminoacid multi-alignment analysis 

(http://www.ebi.ac.uk)  

o Nucleotide/protein BLAST: (http://www.ncbi.nil.nih.gov) 

(http://www.ensembl.org) 

o PsiPred: protein secondary structure in silico prediction 

(http://www.bioinf.cs.ucl.ac.uk/psipred) 

o PSORT II: protein subcellular localization sites in silico prediction 

from amino acid sequence (www.psort.org) 
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4- Results section I 

 

4.1- Cement gland induction 

 

Previous functional analyses have shown that Xotx5 and Xotx2 are both able 

to promote adhesive organ formation, while Xotx1 is not (Pannese et al., 

1995; Blitz and Cho, 1995; Bradley et al., 1996; Andreazzoli et al., 1997; 

Gammill and Sive 1997: Kuroda et al., 2000; Vignali et al., 2000). XOTX1, 

XOTX2 and XOTX5 alignment, performed using ClustalW software 

(http://www.ebi.ac.uk/Tools/msa/clustalw2), shows that the main differences 

in the primary sequence between these three homeoproteins are a serine 

(Ser)-rich region (aa 139-173) and a histidine (His)-rich region (aa 248-288), 

present in XOTX1 but absent in XOTX2 and XOTX5 (Fig. 22 and Fig. 23).  

This suggested that the different action of Xotx2 and Xotx5 compared to 

Xotx1 in CG promoting activity could be due to these differences. Because 

XOTX2 and XOTX5 are very similar (76% identity overall) and have, in this 

respect, identical effects in misexpression experiments, we focused our 

research on Xotx1 and Xotx5. Since the main differences between them 

reside in the C-terminal part, we first swapped this region between XOTX1 

and XOTX5, and used the two chimeric plasmids Xotx1N5C (encoding 

chimeric XOTX1/XOTX5) and Xotx5N1C (encoding chimeric 

XOTX5/XOTX1) in microinjection experiments (see Fig. 20 for schemes). We 

microinjected the corresponding mRNAs, as well as Xotx1 and Xotx5 

mRNAs as controls, and checked for ectopic CG formation by whole mount 

in situ hybridization (WISH) using Xag as a cement gland marker. Injection of 

800 pg Xotx5 mRNA is able to produce ectopic CG formation in about the 

80% of embryos; Xotx5 retains this activity when injected at progressively 

lower doses (with correspondingly lower frequencies of ectopic CG) (Fig. 24 

A and Tab. 1). On the contrary, injection of 800 pg Xotx1 mRNA is not able 

to lead to ectopic adhesive organ development; we did not observe ectopic 

CG formation even if Xotx1 mRNA was injected at a higher dose (1,2 ng) 

http://www.ebi.ac.uk/Tools/msa/clustalw2
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(Fig. 24 A and Tab. 1). Interestingly, injection of 800 pg of Xotx1N5C mRNA 

is able to elicit ectopic CG formation in about 80% of ventral microinjections, 

thus reproducing Xotx5 activity, and maintains this capability even at lower 

doses (Fig. 24 A and Tab. 1). On the contrary, the reciprocal construct, 

Xotx5N1C, is not able to promote ectopic adhesive organs formation, even 

when we raised the injected mRNA quantity (Fig. 24 A and Tab. 1). We 

concluded that the XOTX1 and XOTX5 differential ability to promote CG 

formation is due to their C-terminal part. By performing WISH experiments 

on injected caps, using Xag as a probe, and RT-PCR experiments on mRNA 

extracted from sibling caps, we fully confirm the observations obtained on 

whole embryos: the ability to turn on cement gland markers Xag and Xcg 

depends on the protein C-terminus (Fig. 24 C, Fig. 25 A and Tab. 2). 

To define if the differential action was due to the Ser-rich region, to the His-

rich region or both, we compared the activity of three different Xotx1 

constructs lacking either of these specific portions or both, in similar 

microinjection experiments. Xotx1ΔSer is not able to promote ectopic 

adhesive organ formation either if ventrally injected at 800 pg or at a higher 

dose (Fig. 24 A and Tab. 1); on the contrary, Xotx1ΔHis is able to promote 

cement glands in about 45% of embryos injected with 800 pg mRNA, and 

this effect persists even at lower injection doses (with a decrease in 

frequency of ectopic CGs) (Fig. 24 A and Tab. 1). Xotx1ΔHisΔSer injected 

embryos show ectopic Xag expression in more than 50% of injected 

embryos (Fig. 24 A and Tab. 1). We conclude that XOTX1 is not able to 

promote CG fate due to the His-rich amino acid stretch. 

The data obtained on whole embryos were confirmed in animal cap assays. 

By WISH analysis, Xotx1ΔHis and Xotx1ΔHisΔSer injected caps showed 

high Xag expression levels (77,2% positive caps, n=57; 85,5%, n=55; 

respectively). Xotx1ΔSer injected caps also showed Xag expression, though 

to a lower extent: about 40% of caps (n=59) displayed labeling, and in most 

explants we found a dotted weak Xag signal (Fig. 24 C and Tab. 2). RT-PCR 

analysis performed on sibling injected caps fully confirmed these results: 
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Xotx1ΔHis and Xotx1ΔHisΔSer promote Xag expression (though at a lower 

level respect to full length Xotx5 or Xotx1N5C constructs), while a weaker 

Xag expression is detectable in Xotx1ΔSer injected explants; similar results 

were obtained with another cement gland marker, Xcg (Fig. 25 A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 22. Multi-alignment of XOTX1, XOTX2 and XOTX5. Sequences multi-alignment has 

been obtained using ClustaW. “*”: identical residues; “:”: conserved substitution; “.”: semi-

conserved substitution. The homoedomain is marked by a shaded dark grey box. The OTX-

tail is labelled by a shaded light grey box. XOTX2 and XOTX5 retinal specificity boxes (RS 

box) and XOTX1 Serine and Histidine rich regions are labelled by open boxes.  
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Fig. 23. Multi-alignment of XOTX1 and XOTX5. Sequences multi-alignment has been 

obtained using ClustaW. ”*”: identical residues; “:”: conserved substitution; “.”: semi-conserved 

substitution. Homoedomain: empty box; Otx-tail: dashed box; XOTX1 serine rich region: 

dotted box; XOTX1 histidine rich region: shaded light green box; XOTX5 CGboxD2: shaded 

light blue box; XOTX5 CGboxD1: shaded dark blue box. Note that XOTX1 His-rich region is 

inserted in XOTX1 region corresponding to XOTX5 CGdoxD1. 

 

 

These results suggest that the His-rich region mainly, and the Ser-rich region 

to a lower extent, impair the potential ability of XOTX1 to promote CG 

formation. However, they do not identify within the C-terminal of XOTX5 the 

precise region(s) actively involved in this ability. 
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To localize this, we microinjected Xenopus embryos with three different 

XOTX5 deletion constructs and analyzed Xag expression by WISH. We 

found that Xotx5-255ΔC has the same efficiency of full length Xotx5 in 

inducing CG formation: 80% of ventrally injected embryos showed Xag 

ectopic expression (Fig. 24 A and Tab. 1). On the other hand, Xotx5-210ΔC, 

though able to lead to Xag ectopic expression, is much less efficient 

compared to full length Xotx5: only 25% of embryos showed ectopic CGs. 

Finally Xotx5-177ΔC is not at all able to promote CG formation in whole 

embryos (Fig 24 A and Tab. 1).  

WISH performed on animal caps injected with the same Xotx5 deletion 

constructs fully confirm our data: Xotx5-255ΔC injected animal caps show a 

strong Xag expression in more than 90% explants (n=23), with an efficiency 

comparable with that of full length Xotx5 (96% positive caps, n=88); Xotx5-

210ΔC induces marker expression less efficiently (70% of Xag positive 

animal caps; n=29); finally, Xotx5-177ΔC does not promote any Xag 

transcription in any of injected animal caps (n=35) (Fig. 24 C and Tab. 2). 

RT-PCR analyses performed on sibling injected caps confirm our findings: 

the level of Xag expression in Xotx5-255ΔC injected caps is comparable to 

that of Xotx5 injected explants; Xotx5-210ΔC induces a lower Xag 

expression; in Xotx5-177ΔC injected caps, Xag gene is very weakly turned 

on. As a further confirmation, the expression levels of Xcg almost completely 

resemble those of Xag (Fig. 25 B).  

These data suggest that the C-terminal region corresponding to aa 177-255 

of XOTX5 contains the crucial part actively responsible to promote CG and 

could therefore function as a CG specific region, that we named CGbox; this 

region is bipartite: aa 177-209 correspond to CGboxD2, the less effective 

CG promoting domain; aa 210-255 correspond to CGboxD1, the more 

effective CG promoting domain. In XOTX1 the sequence of this region is 

disrupted by the His stretch (Fig. 23); it is possible that this stretch simply 

impairs the ability of the CG specific region; besides, it is possible that the 

insertion of these His residues turns this region into a repressor of CG 
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promoting ability. To verify if XOTX1 His-rich region is able to inhibit XOTX5 

CG inducing activity, we inserted it downstream of the shortest Xotx5 

construct (Xotx5-255ΔC) that is able to promote CG development with the 

same efficiency of full length Xotx5, and tested the activity of the resulting 

Xotx5-255ΔC-His-rich construct (see Fig. 20). The ventral microinjection of 

this mRNA at the 800 pg dose does not lead to the formation of any ectopic 

adhesive structure on embryos (Fig. 24 A and Tab. 1). In injected animal 

caps we found only a very weak Xag expression by WISH (Fig 24 C and 

Tab. 2); by RT-PCR analysis we observed a weaker level of Xag and Xcg 

transcripts compared to Xotx5 and Xotx5-255ΔC injected caps (Fig. 25 B). 

Because we previously showed that a RS box mediates the specific and 

diverse abilities of XOTX2 and XOTX5 in the retina (Onorati et al., 2007), we 

asked whether the RS box is required for their CG promoting ability. We 

therefore tested Xotx5ΔRSbox mRNA in Xenopus embryos and analyzed 

whole embryos and animal cap explants for expression of CG markers. We 

found that XOTX5 RS box is not at all involved in CG specification: 

Xotx5ΔRSbox was always able to elicit ectopic CG marker expression at the 

same level of full length Xotx5, both in whole embryos and in animal caps 

(Fig. 24 B, Fig. 24 C, Fig. 25 C, Tab. 2 and Tab. 3). 

All the described constructs have also been injected dorsally, showing a 

similar CG promoting activity; however, in dorsal injections we generally 

observed a slightly lower frequency in ectopic Xag induction (Fig. 24 B and 

data not shown) 
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Fig. 24. Results of embryos microinjections and Xag in situ hybridization: (A, B) A total 

amount of 800 pg of capped mRNAs corresponding to the different constructs as shown was 

ventrally (A) or dorsally (B) bilaterally microinjected in Xenopus embryos at 4-cell stage, 

embryos were grown to tailbud stage and processed by in situ whole mount hybridization for 

Xag probe (cement gland marker). Xotx1, Xotx2 and Xotx5 induce posterior defects when 

overexpressed in Xenopus embryos; this activity is maintained by all constructs when 

microinjected dorsally (B). Lac Z is coinjected as a tracer. Microinjection of LacZ alone is used 

as negative control. (C) Animal caps were dissected from embryos injected with 800 pg 

capped-mRNAs as shown and Xag expression is detected by in situ hybridization. GFP is 

used as microinjection tracer and GFP alone microinjection is used as negative control. A: 

Xotx1; B: Xotx5; C: Xotx5N1C; D: Xotx1N5C; E: Xotx1His; F: Xotx1Ser; G: Xotx1HisSer; 

H: Xotx1RSbox; I: Xotx5-255C; J: Xotx5-210C; K: Xotx5-177C; L: Xotx5-255C-His-rich; 

M: GFP.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 25. Results of RT-PCR for Xag and for 

Xcg detection in animal caps injected with 

different constructs. Animal caps were 

dissected from stage 9 embryos injected with 

800 pg capped-mRNAs of the different 

constructs as shown and grown up to tailbud 

stage. Xag and Xcg expression is detected by 

RT-PCR on extracted mRNA. Odc is used as 

internal reference. GFP is used as injection 

tracer; GFP alone injected caps are used as 

negative control. 
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Tab. 1. Results of microinjection experiments and Xag WISH. 

 

Injected 
construct 

Injection 
site 

Injected 
dose 

Ectopic  
Xag 
expression 

NO  
ectopic Xag 
expression 

n 

Xotx1  Ventral  1,2ng 3 
(1,3%) 

222 
(98,7%) 

225a 

  800pg 2 
(0,8%) 

245 
(99,2%) 

247b 

Xotx5  Ventral  800pg 289 
(81,2%) 

67 
(18,8%) 

356c 

  500pg 54 
(69,2%) 

24 
(30,8%) 

78 

  250pg 53 
(37,9%) 

87 
(62,1%) 

140 

Swap 1N5C Ventral  800pg 184 
(87,2%) 

27 
(12,8%) 

211d 

  250pg 27 
(27,3%) 

72 
(72,7%) 

99 

Swap 5N1C Ventral  1,2ng 3 
(1,8%) 

163 
(98,2%) 

166 

  800pg 0 
(0%) 

208 
(100%) 

208e 

Xotx1ΔHis Ventral  800pg 72 
(46,8%) 

82 
(53,2%) 

154f 

  500pg 43 
(19%) 

183 
(81%) 

226g 

Xotx1ΔSer Ventral  1,2ng 2 
(1,5%) 

128 
(98,5%) 

130 

  800pg 0 
(0%) 

89 
(100%) 

89h 

Xotx1ΔHis 
ΔSer 

Ventral 800pg 62 
(57,4%) 

46 
(42,6%) 

108i 

Xotx5-255ΔC Ventral  800pg 114 
(83,8%) 

22 
(16,2%) 

136l 

Xotx5-210ΔC Ventral  800pg 39 
(25,2%) 

116 
(74,8%) 

155 

Xotx5-177ΔC Ventral  800pg 8 
(3,7%) 

207 
(96,3%) 

215m 

Xotx5-255ΔC-
His-Rich 

Ventral  800pg 0 
(0%) 

61 
(100%) 

61 

      

Data were scored by χ
2
 test for homogeneity; in the table are reported data resulting from:

 a
: 5 

experiments;
 b,

 
c 

4 experiments; 
d, e

: 3 experiments; 
f, g, h, i, l, m

: 2 experiments. Amount of 
injected mRNA is indicated in picograms. Injection site is indicated. In brackets embryos 
relative percentage is indicated. n: number of embryos. 
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Tab. 2. Results of WISH on animal caps injected with the different 

constructs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Amount of injected mRNA is indicated in pictograms. In brackets animal cap relative 
percentage is indicated. Square brackets contain comments. GFP has been used as 
a tracer; GFP alone has been used as negative control. n: number of embryos. 

 

 

 

 

 

Construct dose 
Xag 
positive 

Xag 
negative 

n 

Xotx1 800pg 
0 
(0%) 

78 
(100%) 

78 

Xotx5 
800pg 
 

85 
(96,6%) 

3 
(3,4%) 

88 

Swap1N5C 
800pg 
 

62 
(84,9%) 

11 
(15,1%) 

73 

Swap5N1C 
800pg 
 

1 
(1,4%) 

72 
(98,6%) 

73 

Xotx1ΔHis 
800pg 
 

44 
(77,2%) 

13 
(22,8%) 

57 

Xotx1ΔSer 
800pg 
 

25 [23 weak 
signal] 
(42,4) 

34 
(57,6%) 

59 

Xotx1ΔHisΔSer 
800pg 
 

47 [7 weak 
signal] 
(85,5%) 

8 
(14,5%) 

55 

Xotx5-255ΔC 
800pg 
 

21 
(91,3%) 

2 
(8,7%) 

23 

Xotx5-210ΔC 
800pg 
 

20 
(69%) 

9 
(31%) 

29 

Xotx5-177ΔC 
800pg 
 

0 
(0%) 

35 
(100%) 

35 

Xotx5ΔRSbox 
800pg 
 

34 
(100%) 

0 
(0%) 

34 

Xotx5-255ΔC-HisRich 
800pg 
 

12 
(48%) 

13 
(52%) 

25 

GFP 
800pg 
 

0 
(0%) 

42 
(100%) 

42 
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Tab. 3. Results of microinjection experiments and Xag WISH. 

 

Injected 
construct 

Injection 
site 

Injected 
dose 

Ectopic Xag 
expression 

NO ectopic 
Xag 
expression 

n 

Xotx5 Dorsal 800pg 52 
(38,5%) 

83 
(61,5%) 

135 

Xotx5-
ΔRSbox 

Dorsal  800pg 63 
(43,7%) 

81 
(56,3%) 

144 

 

Amount of injected mRNA is indicated in picograms. Injection site is indicated. Brackets 

indicate embryos relative percentage. n: number of embryos. 

 

 

4.1 a- Statistical analysis: χ2 homogeneity test 

 

Datasets resulting from the microinjection of different constructs have been 

tested for homogeneity using chi-square (χ2) statistical test. We compared 

results coming from the microinjection of 800pg of different constructs. 

Statistical analysis results are summarized below. 

First of all we verified the dis-homogeneity of the two control datasets: data 

are not homogeneous,  Xotx1 and Xotx5 have different effects. 

Then we analyzed swap domain constructs effect; data are homogeneous: 

Xotx5N1C and Xotx1 have the same effect, as well as Xotx1N5C and Xotx5, 

confirming that cement gland inducing activity resides in the C-terminus. 

When we analyzed deleted construct effects, we found that: 

 Xotx1 and Xotx1ΔHis have different effects, confirming that the 

deletion of the Histidine rich region makes Xotx1 able to induce 

cement gland formation;  

 Xotx5 and Xotx1ΔHis also have different effects: the deletion of the 

Histidine rich region makes Xotx1 able to induce cement gland 

formation, but the deleted constructs is less efficient in respect to 

Xotx5;  
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1st construct 2nd construct χ2 value p value homogeneus/not-
homogeneus 
data 

Xotx1 Xotx5  <0,05 not 
homogeneous  

Xotx1 Xotx5N1C  >0,05 homogeneous 

Xotx5 Xotx1N5C  >0,05 homogeneous 

Xotx1 Xotx1ΔHis  <0,05 not 
homogeneous 

Xotx5 Xotx1ΔHis  <0,05 not 
homogeneous 

Xotx1 Xotx1ΔSer  >0,05 homogeneous 

Xotx1 Xotx1ΔHisΔSer  <0,05 not 
homogeneous 

Xotx5 Xotx1ΔHisΔSer  <0,05 not 
homogeneous 

Xotx1ΔHis Xotx1ΔHisΔSer  >0,05 homogeneous 

Xotx5 Xotx5-255ΔC  >0,05 homogeneous 

Xotx1 Xotx5-210ΔC  <0,05 not 
homogeneous 

Xotx5 Xotx5-210ΔC  <0,05 not 
homogeneous 

Xotx1 Xotx5-177ΔC  <0,05 not 
homogeneous 

Xotx5 Xotx5-177ΔC  <0,05 not 
homogeneous 

Xotx1 Xotx5-255ΔC-
HisRich 

 >0,05 homogeneous 

Xotx5 Xotx5ΔRSbox  >0,05 homogeneous 

 

 Xotx1 and Xotx1ΔSer have the same effect, confirming that removing 

Serine rich region is not sufficient to confer cement gland inducing 

activity to the deletion construct;  

 Xotx1 and Xotx1ΔHisΔSer  have different effects, confirming that the 

deletion of the Histidine rich and of the Serine rich region makes 

Xotx1 able to induce cement gland formation;  

 Xotx5 and Xotx1ΔHisΔSer have also different effects, the deletion of 

the Histidine rich and of the Serine rich region makes Xotx1 able to 

induce cement gland formation, but the deleted constructs is still less 

efficient in respect to Xotx5; 
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 Xotx1ΔHis and Xotx1ΔHisΔSer have the same effect. From animal 

cap assays we can appreciate the more efficiency of Xotx1ΔHisΔSer 

in cement gland promoting activity in respect to Xotx1ΔHis, this 

difference is not evident from assays on whole embryos, and there is 

not any statistical difference between the effects of these two 

constructs. 

When we analyze the effects of Xotx5 deleted constructs we found that: 

 Xotx5 and Xotx5-255ΔC have the same effect, confirming that Otx-

tail is not at all involved in cement gland inducing activity; 

 Xotx5-210ΔC is not homogeneous neither with Xotx1 or with Xotx5: 

upon the removal of this C-terminus portion Xotx5 is still able to 

induce cement gland formation, differently from Xotx1, but with a 

lower efficiency in respect to Xotx5; 

 Xotx5-177ΔC is not homogeneous neither with Xotx5 or with Xotx1: 

almost all residual cement gland inducing activity is lost upon the 

removal of both CGbox-D1 and CGbox-D2; anyway data obtained 

are still statistically different from data obtained with the 

microinjection of Xotx1. 

Then we analyzed the capability of Histidine rich region to inhibit Xotx5 

cement gland inducing activity; Xotx5-255ΔC-His-rich and Xotx1 

microinjections produce homogeneous data sets: therefore, the insertion of 

Xotx1 Histidine rich region downstream of Xotx5 cement gland box inhibits  

Xotx5 cement gland inducing function. 

Finally, we verified that Xotx5 RS box is not at all involved in cement gland 

inducing activity: Xotx5 and Xotx5ΔRSbox produce homogeneous data sets. 
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4.2- Convergent extension inhibition 

 

Both Xotx1 and Xotx5, mostly if dorsally mis-expressed, produce embryos 

with posterior defects. All the constructs microinjected in the present work, 

maintain the capability to produce blastopore closure failure, typical of 

inhibition of convergent extension movements (Fig 24 B and Tab. 4). By 

injecting the same dose of mRNA from different constructs, we observed that 

Xotx5 is more effective than Xotx1 in inhibiting convergent extention 

movements (Tab. 4). If we remove XOTX1 His-rich region the frequency of 

truncated embryos increases, but does not reach the frequency obtained 

injecting Xotx5 (Tab. 4). Embryos injected with Ser-rich deleted Xotx1, 

instead, show the same gastrulation defects frequency of embryos injected 

with Xotx1; Xotx1 double deleted construct almost mirrored Xotx1ΔHis 

microinjections (Tab. 4). Xotx5-255ΔC and Xotx5-210ΔC induce trunked 

embryos with efficiency similar to Xotx5; we observed a consistent reduction 

in gastrulation defects only by injecting Xotx5-177ΔC (Tab. 4). The capability 

to inhibit convergent extension is completely lost when XOTX proteins are 

interrupted inside the homeodomain region in position corresponding to aa 

88 (data not shown). The removal of the RS box does not affect convergent 

extension inhibition, as well as the insertion of a supplementary His-rich 

region downstream to Xotx5-255ΔC (Tab. 4). We can speculate that the 

lower effect of Xotx1 in respect to Xotx5 is due, almost partially, to the 

presence of the His-rich region, even if this domain is not able to inhibit 

Xotx5 activity in the chimeric construct Xotx5-255ΔC-His-rich. On the 

contrary Ser-rich region does not seem to have any inhibitory effect on 

XOTX1 convergent extention inhibition capability. Besides, CGboxD1 is not 

relevant for XOTX5 gastrulation movements regulation, differently from 

CGboxD2. 
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Tab. 4. Results of microinjection experiments. 

 

Injected 
construct 

Injection 
site 

Injected 
dose 

Posterior 
defect 

NO 
posterior 
defect 

n 

Xotx1  Dorsal   800pg 72 
(32%) 

153 
(68%) 

225a 

Xotx5  Dorsal   800pg 181 
(84,2%) 

34 
(15,8%) 

215b 

Swap 1N5C Dorsal   800pg 148 
(70,1%) 

63 
(29,9%) 

211c 

Swap 5N1C Dorsal   800pg 33 
(22,8%) 

112 
(77,2%) 

145d 

Xotx1ΔHis Dorsal   800pg 46 
(56,1%) 

36 
(43,9%) 

82e 

Xotx1ΔSer Dorsal   800pg 16 
(28,6%) 

40 
(71,4%) 

56 

Xotx1ΔHis 
ΔSer 

Dorsal  800pg 38 
(48,7%) 

40 
(51,3%) 

78 

Xotx5-255ΔC Dorsal   800pg 95  
(72%) 

37 
(28%) 

132f 

Xotx5-210ΔC Dorsal   800pg 79 
(81,4%) 

18 
(18,6%) 

97 

Xotx5-177ΔC Dorsal   800pg 16 
(19,5%) 

66 
(80,5%) 

82 

Xotx5ΔRSbox Dorsal  800pg 63 
(81,8%) 

14 
(18,2%) 

77 

Xotx5-255ΔC-
His-Rich 

Dorsal   800pg 73 
(79,3%) 

19 
(20,7%) 

92g 

      
 

Data were scored by χ
2
 test for homogeneity; in the table are reported data resulting from:

 a, b, 

c, d, e, f, g
 2 experiments.  Amount of injected mRNA is indicated in picograms. Injection site is 

indicated. In brackets the relative percentage of embryos is indicated. n: number of embryos 
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4.3- Neural tissue induction 

 

Xotx5 mis-expression in Xenopus embryos promotes ectopic neural tissue 

formation (Vignali et al., 2000), while Xotx1 mis-expression does not have 

this effect. We investigated if this difference is also due to previously 

described primary structure differences between the two homeoproteins. We 

microinjected mRNA corresponding to Xotx1 deleted constructs in Xenopus 

embryos and we checked them for ectopic neural tissue formation, 

performing whole mount in situ hybridization using nrp-1 as neural tissue 

marker. Full length Xotx1 and Xotx5 were used as controls.  

All three deleted construct tested (Xotx1ΔHis, Xotx1ΔSer and 

Xotx1ΔHisΔSer) were not able to promote ectopic neural tissue formation, 

when ventrally injected (Fig. 26 A and Tab. 5). To confirm data obtained in 

whole embryos we performed animal cap assays injecting the same deleted 

constructs, alongside with swap domain constructs, to test if neural inducing 

activity resides into protein N- or C-terminus. These data fully confirm the 

incapability of Xotx1 C-terminus and of all three deleted constructs to 

promote neural fate ectopically (Fig. 26 B and Tab. 6). 

Since neuralizing activity seems to reside in the protein C-terminal part, to 

localized XOTX5 region(s) involved in neural induction we injected embryos 

with Xotx5-255ΔC and with Xotx5-210ΔC and analyzed injected embryos for 

nrp-1 mis-expression. Embryos microinjected with Xotx5-210ΔC do not 

express nrp-1 at all (Fig. 26 C and Tab 5). Embryos microinjected with 

Xotx5-255ΔC, in rare cases, show only a very weak signal compared to 

control sibling embryos microinjected with Xotx5, and in most cases they do 

not show nrp-1 expression at all (Fig. 26 C see dotted square, and Tab. 5),. 

We concluded that the OTX-tail seems to have a role in neural tissue 

induction by Xotx5. Further analysis will be anyway necessary to understand 

more about this aspect of Xotx1 and Xotx5 differential actions. 
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Fig. 26. Results of embryo microinjections and nrp-1 in situ hybridizations: (A) 800pg of 

capped mRNAs corresponding to different constructs are ventrally microinjected in Xenopus 

embryos at 4-cells stage, embryos are grown to tailbud stage, and processed by in situ whole 

mount hybridization for nrp-1 probe (neural tissue marker). (B) Animal caps are dissected 

from embryos injected with 800pg capped-mRNAs corresponding to the different constructs 

and nrp-1 expression is detected by in situ hybridization. GFP is used as a microinjection 

tracer and GFP alone microinjection is used as a negative control. A: Xotx1; B: Xotx5; C: 

Xotx1N5C; D: Xotx5N1C; E: Xotx1His; F: Xotx1Ser; G: Xotx1HisSer; H: GFP. (C) 800 

pg of capped mRNAs corresponding to different constructs as indicated are ventrally 

microinjected in Xenopus embryos at 4-cells stage, embryos are grown to tailbud stage, and 

processed by WISH for nrp-1 probe. Dotted square on Xotx5-255ΔC embryo on the extreme 

left corresponds to magnification on the extreme right.  

 

 

Tab. 5. Results of nrp-1 in situ hybridizations on whole injected embryo 

 

Construct dose 
Ectopic 
neural 
tissue 

NO Ectopic 
 neural  
tissue 

n 

Xotx1 800pg 
0 
(0%) 

144 
(100%) 

144 

Xotx5 
800pg 
 

63 
(58,3%) 

45 
(41,7%) 

108 

Xotx1ΔHis 
800pg 
 

0 
(0%) 

169 
(100%) 

169 

Xotx1ΔSer 
800pg 
 

0 
(0%) 

214 
(100%) 

214 

Xotx1ΔHisΔSer 
800pg 
 

0 
(0%) 

160 
(100%) 

160 

Xotx5-210ΔC 
800pg 
 

0 
(0%) 

132 
(100%) 

132 

Xotx5-255ΔC 800pg 
18 * 
(27,7%) 

47 
(72,3%) 

65 

 

4-cells stage embryos have been ventrally microinjected, embryos have been grown until 

tailbud stage and then processed by in situ hybridization using nrp-1 probe. n: number of 

embryos. Amount of injected mRNA is indicated in picograms. Brackets indicate the relative 

percentage of embryos. “*”:weak signal, see Fig. 26, dotted square. Lac Z has been used as 

injection tracer. 
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Tab. 6. Results of nrp-1 in situ hybridizations on injected animal caps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1-cell stage embryos have been microinjected, animal caps have been dissected from stage 9 

embryos, grown until tailbud stage and then processed by in situ hybridization using nrp-1 

probe. n: number of embryos. Amount of injected mRNA is indicated in pictograms. In 

brackets relative percentage of animal caps are indicated. GFP has been used as injection 

tracer; GFP alone has been used as negative control. 

 

 

 

 

 

 

 

 

 

 

  

Construct dose 
nrp-1 
positive 

nrp-1 
negative 

n 

Xotx1 800pg 
0 
(0%) 

36 
(100%) 

36 

Xotx5 
800pg 
 

18 
(85,7%) 

3 
(14,3%) 

21 

Swap1N5C 
800pg 
 

17 
(50%) 

17 
(50%) 

34 

Swap5N1C 
800pg 
 

0 
(0%) 

27 
(100%) 

27 

Xotx1ΔHis 
800pg 
 

0 
(0%) 

35 
(100%) 

35 

Xotx1ΔSer 
800pg 
 

1 
(3,3%) 

29 
(96,7%) 

30 

Xotx1ΔHisΔSer 
800pg 
 

0 
(0%) 

33 
(100%) 

33 

GFP 
800pg 
 

0 
(0%) 

42 
(100%) 

42 
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5- Results section II 

 

5.1- XOTX2 and XOTX5 transactivation domain 

 

The yeast two hybrid system (Chien et al., 1991) is based on a simple 

strategy. A bait protein is fused in frame with the DNA binding domain (BD) 

of the Gal4 transcription factor, while potential prey proteins are fused in 

frame with the transactivation domain (AD) of the viral VP16 transcription 

factor; bait-prey interaction brings BD and AD in proximity allowing the 

transactivation of specific reporter genes containing a Gal 4 binding site into 

their regulating sequences; activated reporter genes allow yeast cells to 

grow on a specific selective medium.  

 

 

 

 

 

 

 

 

 

 

Fig. 27. XOTX2 and XOTX5 transactivation domains as detected in yeast auto-activation 

test. A: transcription auto-activation; N: no transcription transactivation; RS: retinal specificity 

box; AD: XOTX transactivation domain. 



Results section II 

71 
 

It is, therefore, necessary that bait protein does not contain a proper 

transactivation domain, to identify protein-protein interactions; if the bait is 

self-sufficient to induce reporter transactivation, bait-prey contact is no 

longer necessary to turn on reporter expression, and yeast cells can survive 

in the selective medium with the bait plasmid only.  

We have used this simple strategy to isolate XOTX2 and XOTX5 

transactivation domain(s): we have prepared 7 different XOTX2 and XOTX5 

partial coding constructs (Fig. 21) and we have used them to transform yeast 

cells without any additional prey, thereby selecting XOTX portions sufficient 

to activate reporter activity in this auto-activation test. Yeast cells 

transformed with XOTX2 TH1, TH5 and  TH7, have all been able to grow on 

selective medium; instead, yeast cells transformed with XOTX2 TH2, TH3, 

TH4 and TH6 have not been able to grow on selective medium. The same 

results have been obtained using corresponding XOTX5 constructs. We 

have concluded that XOTX2 and XOTX5 transactivation domains are both 

localized at their C-terminus. XOTX2 portion able to activate reporter 

transcription spans amino acids 174-288, while that of XOTX5 spans 

residues 174-290 (Fig. 27). 

 

 

5.2- Two-hybrid screen for XOTX2 and XOTX5 potential interactors 

 

To perform yeast two-hybrid screens to isolate XOTX2 and XOTX5 potential 

interactors we used XOTX2 TH4 and XOTX5 TH4 fragments: the longest TH 

fragments unable to autonomously activate reporter transcription. We have 

used a Xenopus oocyte library with the purpose of having a large spectrum 

of potential cofactors, since the Xenopus oocyte transcriptome is one of the 

largest. The oocyte library used has a complexity of 7,5 x 106 clones; 

thereby, for each bait, we had to screen a minimum of 15 x 106 clones (2-

folds library’s complexity); we have screened a total amount of 20 x 106 

clones, a sufficient number to consider that the whole library was tested for 
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interaction with XOTX2/XOTX5. From the screenings we have isolated 116 

XOTX candidate interactors: some have been isolated in both parallel 

screens, others with only one of the two baits. All 116 nucleotide sequences 

obtained from isolated prey plasmids, as well as predicted peptide 

sequences, were aligned using ClustaW 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/). From this analysis we have 

been able to identify 74 peptide homology groups. For each group a 

sequence representative of the entire cluster was selected, and a yeast two 

hybrid assay has been used to confirm or test its interaction with both XOTX 

(interaction confirmation/cross-interaction tests). Surprisingly, all the 74 

interactors were able to interact in vitro with both XOTX. 

 

 

5.3- Potential interactor database search 

 

Sequences selected for interaction confirmation and cross-interaction tests 

(see above) were also used to perform an extensive database search, using 

both nucleotide and amino acid BLAST alignment tool 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). The most interesting results are 

summarized below:  

 Group 1: 11 independent clones. Amino acids homology ranging from 

98 to 100%.  Interaction with both XOTX2 and XOTX5. These 

sequences show a high level of homology with a predicted protein of 

unknown function of X. tropicalis (Fig. 28 A), that we named after one 

of our clone numbers as c29. 

 Group 11: 1 clone, able to interact with both baits; this sequence 

matches with XGranulin-1 precursor (Fig. 28 B).  

 Group 12: 6 independent clones. Amino acid homology 100%. 

Interaction with both XOTX2 and XOTX5. These sequences match 

with XUSF2 (Fig. 28 C).  
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 Group 13: 3 independent clones. Amino acid homology 100%, 

sequences differ only in length. Interaction with both XOTX2 and 

XOTX5. These sequences match with XUSF1 (Fig. 28 D).  

 Group 14: 4 independent clones. Amino acid homology 100%, 

sequences differ only in length. Interaction with both XOTX2 and 

XOTX5. These sequences match with XGranulin-2 (Fig. 28 E).  

Group 1 sequences raised our interest because they match with a so far 

undescribed hypothetical peptide; thereby it appeared to us very intriguing to 

try to characterize it. 

Groups 12 and 13 seemed interesting to us because of the fact that 

upstream stimulatory factors (USF) have already been described as 

transcription factors of the bHLH family; thereby an interaction in vivo with 

XOTX transcription factors seemed to be likely.  

Gruoup 11 and 14 match with proteins of the Granulin family, several 

members of this class have been described as secreted factors, so that the 

interaction with transcription regulatory proteins may seem unlikely. 

Nevertheless homeoproteins contain Penetratin (Dom et al., 2003), and 

XOTX2 transcellular translocation phenomena have been described 

(Rebsam et al., 2008). We decided to go further with our investigation about 

Granulins, hypothesizing for them a possible extracellular interaction with 

XOTX. 

 

 

Fig. 28. Potential interactors protein BLASTs. One amino acid sequence representative of 

the entire amino acid homology group was used to perform database search; most interesting 

output of protein BLAST are shown. 

A: group 1; B: group 11; C: group 12; D: group 13; E: group 14. 

 



Results section II 

74 
  



Results section II 

75 
 

5.4- DNA binding ability of potential interactors 

 

A fundamental aspect to be tested is the capability of yeast cells transformed 

with preys alone to grow onto selective medium. A prey can be itself able to 

transactivate reporter transcription if it contains a DNA binding domain. We 

have transformed yeast cells with prey plasmids alone and checked their 

ability to survive in specific medium. None of our selected interactors is itself 

able to turn on reporter expression. 

 

 

5.5- Expression profiles of potential interactors 

 

5.5.1- RT-PCR 

 

The first obvious condition necessary for two proteins to interact is that they 

have to be in the same place at the same time; in other words: they must be 

co-expressed.  

First, we checked if selected potential interactors are expressed during 

Xenopus development. We have performed RT-PCR expreriments, using 

specific primers, on cDNAs retro-transcribed from RNA extracted from 

Xenopus embryos at several developmental stages. 

From 2-cell stage to gastrulation and early neurulation c29 is expressed at a 

constant low level; at stage 15 we observe a little increase; during 

subsequent development, expression levels remain almost invariant till stage 

37, when c29 transcription increases to remain quite invariant till  the last 

examined stage (42) (Fig. 29). 

Xusf1 transcripts show a quite constant rising during the different 

developmental stages examined, from stage 2 to stage 37; at stage 39 

Xusf1 RNA decrease, to increase again at stage 42 (Fig. 29).  

Xusf2 is expressed in a quite high constant manner from stage 2 and during 

gastrulation and early neurulation; during late neurula stage Xusf2 
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transcripts decrease, then increase at stage 23 to decrease again from 

stage 26 to stage 39. Finally we observe another rising during the last 

analyzed developmental stage (42) (Fig. 29). 

Xgrn1 seems to be expressed in an almost invariant mode during whole 

Xenopus development (Fig. 29). 

Xgrn2 expression is constant and low during all developmental stages from 

stage 15 to stage 37; at stages 2, 12 and 39 we observe a little increase, 

and two expression peaks at stages 9 and 42 (Fig. 29).  

Moreover, we have checked expression of these cDNAs in fully differentiated 

Xenopus eye; Xenopus eyes have been dissected from stage 42 embryos, 

RNA has been extracted and retro-transcribed and RT-PCRs using specific 

primers have been performed. All analyzed XOTX potential partners are 

transcribed in completely differentiated Xenopus retinae. Dissected eyes 

comprised retinal pigmented epithelium and neural retina, so that we could 

not exactly determine in which of the two differentiated tissue the cDNAs are 

expressed (Fig. 30). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 29. Developmental expression of selected cDNAs as detected by RT-PCR analysis 
on whole embryos. RT-PCR analysis, performed on cDNAs retro-transcribed from RNAs 

extracted from Xenopus laevis embryos at different developmental stages. Developmental 
stages are indicated (st). Odc has been used as an internal reference. 
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Fig. 30. Expression of selected cDNAs detected by RT-PCR analysis on Xenopus eyes. 

RT-PCR analysis, performed on cDNAs retro-transcribed from RNAs extracted from Xenopus 
laevis eyes dissected at stage 42. Odc have been used as an internal reference. 

 

 

5.5.2- In situ hybridization 

 

5.5.2.1- Early developmental stages 

 

With the aim of determining the spatial expression of each of the 5 selected 

cDNAs during gastrulation and early neurulation, we have performed , in situ 

hybridizations on bisected Xenopus gastrulae and neurulae. 

Results for each probe are reported below: 

 c29 transcripts are firstly detected in the migratory deep zone cells 

that are fated to give rise to prechordal mesendoderm; the 

expression seems to respect the boundary represented by the 

Brachet’s cleft, similarly to Xotx2 and Xotx5, but, differently from 

them, it does not seem to be expressed in dorsal bottle cells. At 

stage 15 and 20, c29 begins to be expressed in the anterior 

neuroectoderm, becoming progressively restricted to the eyefield. In 

these regions c29 expression domain seems included in Xotx1 and 

Xotx2 domains, while it seems complementary to Xotx5 expression 

territory (Fig. 31). 

 Xgrn1 transcripts becomes detectable by in situ hybridization in the 

embryo animal pole already at stage 9; Xgrn1 remains detectable in 

the ectodermal layer during gastrulation; Xgnr1 mRNA seems to be 

partially coexpressed with Xotx1 in the dorsal-anterior part of the 

ectoderm, while its expression appears complementary to those of 
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Xotx2 and Xotx5. During neurulation we detected only a weak 

expression in the neural plate (Fig. 31). 

 Xgrn2 expression profile substantially mirrors that of Xgrn1 with few 

differences: at stage 10 Xgrn2 transcripts are detectable in a deeper 

cell layer in respect of Xgrn1, and Xgrn2 expression in neural 

territories looks more convincing (Fig. 31).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 31. Localization of c29, Xusf1-2, Xgrn1-2 mRNAs in the early developing Xenopus 

laevis embryo. In situ hybridization of Xenopus laevis emi-gastrulae and emi-neurulae 

obtained with probes against: c29; Xgrn1; Xgrn2; Xusf1; Xusf2. Xotx1, Xotx2 and Xotx5 early 

expression profiles are also shown for comparison. 

Xotx1: Empty black arrowhead: dorsal ectoderm; black arrowhead: presumptive anterior 

neuroectoderm; white arrowhead: anterior neural plate;  

Xotx2: Black arrowhead: migratory deep zone; white arrowhead: anterior neural plate;  

Xotx5: Black arrowhead: migratory deep zone; white arrowhead: anterior neural plate; white 

arrow: presumptive optic chiasma region. Embryos developmental stages are indicated.  
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 Xusf1 and Xusf2 show almost superimposable expression districts: 

both are expressed in the whole ectodermal layer during gastrulation, 

they are partially coexpressed with Xotx1 in the dorsal-anterior part of 

the ectoderm, and complementary to Xotx2 and Xotx5; later during 

neurulation they become visible in the neural plate, and especially 

Xusf2 expression becomes stronger in the eyefield, thereby showing 

coexpression with Xotx1 and Xotx2 and complementarity to Xotx5 

(Fig. 31). 

 

 

5.5.2.2- Later developmental stages 

 

With the aim of determining potential XOTX partners expression districts 

during later developmental stages, we have performed, for each of the 5 

selected clones, in situ hybridization on whole Xenopus embryos from late 

neurula (stage 20) to tailbud stage (stage 24, 28). 

Results for each probe are reported below: 

 c29 is expressed in the forming eye vesicles, neural crest and in the 

anterior part  of the neural tube at stage 20; at stage 24 this 

expression pattern persists and transcripts become more abundant in 

the eye vesicles; stage 28 embryos show c29 strong expression in 

the eye, and a weaker expression in the otic cup and in branchial 

arches. Main sites of coexpression with Xotx are the eyefield and the 

anterior brain (Fig. 32). 

 Xusf1 and Xusf2 expression districts are almost superimposable: at 

stage 20 they are expressed in the anterior part of the neural tube 

(including the eye vesicles) and in migrating neural crest; at stage 24 

the expression persists quite invariant, with an intensified signal in 

the eye vesicles, especially for Xusf2; at stage 28 Xusf RNAs are 

detectable in the eyes, otic cups, branchial arches and in developing 

forebrain. At all examined developmental stages Xusf2 expression 
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seems to be more intense than that of Xusf1. Main sites of 

coexpression with Xotx are the eyefield and the anterior brain (Fig. 

32). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 32. Results of WISH of 

c29, Xusf1/2, Xgrn1/2 in the 

developing Xenopus laevis 

embryo. Whole mount in situ 

hybridization of embryos at 

different developmental stages 

obtained with c29, Xusf1-2, 

Xgrn1-2 probes; Xotx1, Xotx2 

and Xotx5 later expression 

profiles are also shown for 

comparison.  A: stage 20-21 

embryos, B: stage 23-24 

embryos, stage 28 embryos. 

White arrowhead: neural 

crest/branchial arches; black 

arrowhead: eyefield. 
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 Also Xgrn1 and Xgrn2 are quite coexpressed during Xenopus 

development. At stage 20 both genes show a weak expression in the 

dorsal region of the embryo; at stage 24 both are weakly expressed 

in the eye region and Xgrn2 is also expressed in migrating neural 

crest; at stage 28 eye expression persists, but it is very weak for 

Xgrn1; at this stage Xgrn2 is also expressed in branchial arches and 

pronephron. The main feature of both expression pattern is a 

constant dotted signal in the ectoderm, we hypothesize that those 

signal dots correspond to highly specialized ciliated cells localized in 

Xenopus developing ectoderm. A coexpression with Xotx can be 

found in the anterior part of the brain and in the eyefield, but 

especially for Xgrn1 transcripts detectable in those regions are really 

a few (Fig. 32). 

 

 

5.6- XOTX interaction domain(s) identification 

 

To identify the precise XOTX portion(s) involved in the interaction with 

different potential partners, we have transformed yeast cells with prey 

plasmids and the different not-auto-activating fragments of bait proteins 

(TH2, TH3, TH4 and TH6 fragments, see above Fig. 27). 

For each interactor we have obtained the same results, both using XOTX2 

and XOTX5: TH 2 and TH 6 fragments do not interact with any prey, TH 3 

and TH 4 interact with all tested preys. Because TH2  and TH6 are negative, 

this indicate that the XOTX portion they encode is not involved in the 

interaction; the regions of TH3 and TH4 that are relevant are therefore the 

“interaction domain”, that spans amino acids 1-25. The fragment 

corresponding to this region (TH 8, not shown) has been tested for 

interaction with preys. In this case the results have been ambiguous; the 

reason of this uncertainty may reside in TH 8 length: TH 8 fragment is too 

short and its fusion with AD sequence could alter its tertiary structure.  
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Fig. 33. XOTX2 and XOTX5 interaction and transactivation domains schematics: RS: 

retinal specificity box; AD: XOTX transactivation domain; ID: XOTX interaction domain. 
 

 

5.7- XOTX2 and XOTX5 potential cofactors interaction with XOTX1 

 

Since XOTX1 shows a high level of homology with XOTX2 and XOTX5 in 

the “interaction domain” region (Fig. 34), we decided to test the ability of 

selected XOTX2 and XOTX5 partners to interact also with XOTX1. To do 

this, we again used the two hybrid assay: we produced a XOTX1 TH4 

construct and verified its incapability to transactivate reporter transcription; 

then we transformed yeast cells with XOTX1 TH4 fragment together with 

different preys. All tested preys (C29, XUSF1, XUSF2, XGRN1 and XGRN2) 

were able to interact in vitro also with XOTX1. Given that interactors 

expression patterns are partial superimposable also with that of Xotx1, we 
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conclude that an interaction of C29, XUSF1/2 and XGRN1/2 with XOTX1 is 

also possible in vivo. 

 

XOTX2      MMSYLKQPPYAVNGLSLTASGMDLL 

XOTX5      MMSYIKQPHYAVNGLTLAGTGMDLL 

XOTX1      MMSYLKQPPYGMNGLGLTGPAMDLL 
           ****:*** *.:*** *:...**** 

 

Fig. 34. XOTX1, XOTX2 and XOTX5 aminoterminus multialignment. “*”: identical residues; 

“:”: conserved substitution; “.”: semi-conserved substitution. 

 

 

5.8- c29 

 

5.8.1- C29 and XOTX2/XOTX5 in vitro interaction 

 

We next verified the capability of C29 to interact in vitro with both XOTX2 

and XOTX5 performing a GST-pull down assay (Fig. 35). For this, we 

produced C29 GST-fusion proteins in BL21 Bacterial cells, while both 

XOTX2 and XOTX5 were produced as myc-tagged forms in HEK 293T 

cultured cells. Baits were linked to a Glutation-Sepharose resin, and preys 

were added. After several washes the presence of preys linked to baits was 

detected by Western Blotting. We detected the presence of both XOTX-myc-

tagged proteins linked to C29-GST fusion proteins: C29 is able to interact in 

vitro with both XOTX. Difference in myc-tagged protein quantity revealed in 

the two Western blotting is due to a different input of the two parallel 

experiments. 

 

 

 

 

 

Fig. 35: Western blot following GST-pull down for C29-XOTX2/XOTX5 interaction assay. 

Ab1: anty-myc mouse; Ab2: GAM-Pod.  
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5.8.2- c29 localization in the X. tropicalis genome 

 

By searching among databases, we have found several cDNA sequences 

corresponding to our clone c29 isolated by two hybrid screen; thus it is 

possible that c29 fragment really corresponds to a transcribed sequence. To 

confirm this, we have localized c29 sequence into Xenopus tropicalis 

genome assembly (http://www.ensembl.org/Multi/blastview/BLA_MboVn22kj) 

and verified the presence of all sequence elements necessary to initiate 

mRNA transcription and to eukaryotic mRNA postrascriptional modification. 

We have localized c29 hypothetical homologues on Xenopus tropicalis 

genomic scaffold GL172685.1 (Fig. 36 A); between c29 5’ and 3’ half we 

identified a long interposed region on X.tropicalis genome. We can thus 

hypothesize that c29 X.tropicalis homologue is encoded by a sequence 

made up of two exons divided by a long intronic sequence. By analyzing 

X.tropicalis sequence we have identified: a Kozak consensus sequence 

around our hypothetic initiation codon, exon-intron junction consensus 

sequences at hypothetical intron borders and a polyadenylation signal 

localized into hypothetic 3’-UTR. The hypothetical protein encoded by the 

X.tropicalis genomic sequence shows a high level of homology (96%) with 

C29 deduced protein (Fig. 36 B). 
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A 

5’-CATTGGCCGAGTTCCCCATGGGTGAACCCTCaTGATGgAGCTAAGTGCAGAACTG 

ACTAACAGAGACGGTAGTTGTCGTCCGTTTCAGTTTAGATGTGAGCGAACGTTGAAAGGA 

CTGGCGAGTGGCCTGGAGCAGCTAAAAGGAGAAGTGTCCACCATTTTAACCGAGCTGGTG 

TTACAAGAAAAGGGAGAGGGGGCACTGACATCTGGAGATCAGGAATCTGCAGGTCAGAGC 

ATTATAATGAATTTGCTCTCAAAGGCTTTCCTGCGCTTCAGGGCAGCGAAGGGGTCCTGT 

[…]TGAATGATATAACTGAGCACCATTTATAAGCACGCATTTGGTAAGGTTTTTGTGTCT 

TTTAAATATTATAAGTGAACTCTTTATCACTCTTTATTAGGTGAAGAAGATGACGAAGAT 

GCAGATGAAAAAGATTTTGCTGAAAATGGAGTAAGCAGTAATGGACCTCCTACTAAAAGA 

AAGAAAAATCAGGATTGAATTGAATTTACTTGAACATTATTTTGGTCATCTCTTTGTAAA 

TAATGCAGGTCCTTCTTTATACTGTATGCTCTGACTTGGACTAAAACTTAAGGATACAAT 

TTTGTTTCCAGTATGTAATTTATCACTGTAAATGCACAAAAATCAAGGCATTTTAAATAA 

TAAATACACCTTTTTCTAACTGCAGTTTTAGTTGAATAGTAACCATAGCTCAACTGCAGA 

TTTTTCTTTTTTTACAGATTCACAATTTTGTTTCCTCTTGGATTTGGGTAGCGCGTATTA 

AATAAACAAAACAGCAGCAGCTTTTTGTTGTTTTTTTACCTTTTCTGGAGTAAACCCAAA 

TAAACTGTTTAATAATATGGTTTGAGTCCAGGAAAAATAATTAACATGCTTTGGTGGGTA 

CCTAAGGTTTTTTGAGTTGTCACAGCAGTCTTTCCTAGGGACAAGAAAACTATGAGCAAC 

AGAAGCATAACAGTAGGGGCAGCAAGAAAACAGAGTGGCCAGTTGGTGTTTTTGGGATAT 

GTCAATTCGAGCATATATTTGCAAAACACAATCTTTTCAAGGTGGTATAGCTTGTGGTTG 

TGCCACTTTACACAGGTATGGGACCTGTTATCCAGAATGCTGGGGACCTGGGGTTTTCCG 

GATAAGGGATCTTTTCGTAATTTGAATCTCCATAACTTAAGTCTGCTAAAAATCATTTAA 

ATATTAAATAAACCCAACAGGCTTGTTTTGCCTCCAATAAGGATTAATTATATCTTA 

GTTGGGATCAAGTACAAGGTACTGTTTTATTATTACAGAGAAAAAGGAAATTATTTCT-3’ 
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B 

X. tropicalis hypothetical amino acid sequence: 

MELSAELTNRDGSCRPFQFRCERTLKGLASGLEQLKGEVSTILTELVLQEKGEGALTSGDQESAGEEDD

EDADEKDFAENGVSSNGPPTKRKKNQD* 

C29 deduced sequence: 

MELSAELSNRDGSSRPFQVRCERTLKGLANGLEQLKGEVSAVLTELVLQEKGEGALAAGDQEFAGEEED

EEDTDEKDFSENGISSNGPPTKRNKIQD* 

Alignement 

tropicalis    MELSAELTNRDGSCRPFQFRCERTLKGLASGLEQLKGEVSTILTELVLQEKGEGALTSGD 60 

laevis        MELSAELSNRDGSSRPFQVRCERTLKGLANGLEQLKGEVSAVLTELVLQEKGEGALAAGD 60 

              *******:*****.****.**********.**********::**************::** 

 

tropicalis    QESAGEEDDE-DADEKDFAENGVSSNGPPTKRKKNQD 96 

laevis        QEFAGEEEDEEDTDEKDFSENGISSNGPPTKRNKIQD 97 

              ** ****:** *:*****:***:*********:* ** 

 

Fig. 36. Xenopus tropicalis genomic region containing Xenopus laevis c29 

homologuoes: A: X.tropicalis genomic sequence aligning with X.laevis c29 sequence; see 

box legend; B: X.tropicalis deduced amino acid sequence and X.laevis predicted sequence 

alignment. Sequences multi-alignment has been obtained using ClustalW. “*”: identical 

residues; “:”: conserved substitution; “.”: semi-conserved substitution. 

 

 

5.8.3- C29 in silico secondary structure prediction 

 

Bioinformatics tool PsiPred (http://www.bioinf.cs.ucl.ac.uk/psipred) was used 

to in silico predict C29 secondary structure (Fig. 37). This tool allows 

predicting protein secondary structure based on amino acid sequence; we 

have deduced C29 hypothetical primary sequence starting from c29 

nucleotide sequence, assuming the first “atg” triplet to be the initiation 

codon. PsiPred output shows the presence of a -helix domain, predicted 

with a high level of confidence, separated by a coil region from a second 

shorter helix structure. This kind of structure is characteristic of several 

transcription factors (i.e. homeoproteins, bHLH factors). Since XOTX 
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proteins are transcription factors, it is likely to find among their co-factors 

proteins showing characteristics of DNA-binding molecules.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 37. C29 secondary structure prediction. PsiPred output is shown. See box legend and 

text. 

 

 

5.8.4- C29 in silico sub-cellular localization prediction 

 

A protein, to be a transcription factor, has to be able to localize into the 

nucleus. We have used PSORT II software to predict in silico C29 

subcellular localization (Fig. 38). PSORT II recognized two partially 

overlapping predicted nuclear localization signals (NLS) localized at C29 C-

terminus. Both hypothetical NLS are of “Pat7” type; this type of NLS starts 

with a P residue followed within 3 residues by a basic segment containing 3 

K/R out of 4. Nuclear localization has been predicted with a high level of 

confidence: 82,6%. 
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Fig. 38. C29 subcellular localization prediction. PSORT output is shown. 

 

 

5.8.5- C29 sub-cellular localization 

 

C29 is a novel hypothetical peptide, thus no antibody against it is as yet 

available. Therefore, to obtain indication about C29 subcellular localization 

we have prepared a C29 myc-tagged form, microinjected it as mRNA in 

Xenopus embryos, that were grown to tadpole stage; we then localized this 

fusion protein using an anti-myc antiboby in embryo sections. Fusion 

proteins were mostly localized into nuclei (Fig. 39 A).  

C29 is a small peptide; its predicted molecular weight is of about 10,5 kDa; 

thereby we could not exclude its free diffusion across nuclear pores. To 

verify if C29 nuclear localization is due to its NLS or to free diffusion, we 

prepared a truncated C29 myc-tagged form lacking C-terminal NLSs (C29-

NLS-STOP-myc) and checked its subcellular localization. C29-NLS-STOP-

myc proteins were diffused into cytoplasm (Fig. 39 A): hence we conclude 

that C29 NLS is necessary for its nuclear localization. To verify if this NLS 

could be also sufficient to drive a cytoplasmatic protein into to the nucleus, 

we cloned it downstream of cytoplasmatic RFP coding region and analyzed 

the subcellular localization of the resulting fusion protein RFP-C29NLS. 

Cytoplasmatic RFP containing C29 NLS showed a strong nuclear 
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accumulation (Fig. 39 B). We conclude that C29 NLS could be necessary 

and sufficient to determine its nuclear localization in vivo. 

 

 

 

Fig. 39. C29 NLS functional analysis: embryos at 4-cell stage have been injected, grown till 

tadpole stage and then sectioned. Immunostaining has been performed on sections; Ab1: 

anti-myc mouse; Ab2: goat anti mouse Rhodamine. Injected constructs are indicated on the 

left; memGFP has been injected as tracer; Hoechst has been used as nuclei marker. Green 

fluorescence: (A, B) memGFP; Red fluorescence: (A) antibody conjugated rhodamine, (B) 

RFP; Blue fluorescence: (A, B) Hoechst staining. 

 

 



Results section II 

90 
 

5.8.6- c29 functional analysis: preliminary data 

 

To obtain preliminary indications about a possible role of c29 in vivo we 

decided to design an oligo antisense Morpholino against its deduced mRNA 

sequence. To make sure of c29 5’UTR sequence, we have extended c29 5’ 

sequence performing a 5’ RACE, products obtained have been subcloned in 

pCS2 plasmid and sequenced; here it is reported the 5’ most extended 

sequence compared to c29 sequence of TH-isolated fragment: 

 

c29 TH-isolated fragment 5’UTR:AACCTGACTACGCTGGTGATG 

c29 5’ RACE-exended 5’UTR: 

ACGCGGGGCTCAGTGGGTGTACCTGACTACGCTGGTGATG 

 

We then designed an antisense oligo Morpholino targeting the 25 

nucleotides upstream of the start codon. The morpholino oligo sequence, 

complementary 

to our translation-blocking target is the following: 

 

Moc29: CACCAGCGTAGTCAGGTACACCCAC 

 

Since c29 mRNA is localized in the anterior nervous system during 

embryogenesis, we decided to inject Moc29 in animal dorsal blastomere(s). 

Following the unilateral microinjection of 40 ng Moc29 we observed: 

coloboma/microphtalmia/anophthalmia in the injected side for a total amount 

of 70% of injected embryos; lowering Moc29dose to 20 ng we continued to 

observe the same phenotype though with a lower frequency (27%) (Fig. 40 

and Tab. 7). Besides, we injected Moc29 also bilaterally, in this case 

affected embryos are 77-69% following the injection of 20 ng and about the 

50% lowering Moc29dose to 5 ng (Tab. 7). 

Moreover we analyzed nrp-1 (neural marker) expression after 40 ng of 

Moc29 unilateral microinjection: we observed from a strong reduction to a 
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complete disappearance of nrp-1 signal on injected side with a frequency of 

44,4% (Fig 41 and Tab 8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 40. Results of 

Moc29 

microinjection. (A): 

coloboma; (B): 

microphtalmia; (C): 

anophtalmia. Lac Z is 

used as a tracer.  

Fig. 41. Results of 

Moc29 microinjection 

and nrp-1 WISH. 

Dorsal injection of 40 

ng Moc29 and nrp-1 

WISH. Lac Z is used 

as a tracer. Note that 

nrp-1 signal strongly 

decreases on injected 

side. 
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Tab. 7. Results of Moc29 embryos microinjections. 

 

dose  site defective/ 
absent eye 

normal eye n 

     
40 ng dorsal  82 

(70,1%) 
35 
(29,1%) 

117 

     
20 ng dorsal 31 

(22%) 
110 
(78%) 

141 

     
  37 

(27,6%) 
97 
(72,4%) 

134 

     
20 ng dorsal 

bilateral 
58 
(77,3%) 

17 
(22,7%) 

75 

     
  27 

(69,2%) 
12 
(30,8%) 

39 

     
5 ng dorsal 

bilateral 
21 
(52,5%) 

19 
(47,5%) 

40 

     
  21 

(53,8%) 
18 
(46,2%) 

39 

 

Moc29 injection doses are indicated in nanograms; injection site and number of injected 

blastomeres are shown; brackets indicate frequency of affected/normal embryos; each row 

corresponds to one independent experiments. n: number of injected embryos. 

 

Tab. 8. Results of Moc29 embryos microinjections and npr-1 WISH. 

 

dose site nrp-1 reduction NO nrp-1 
teduction 

n 

40 ng dorsal 24 
(44,4%) 

30 
(55,6%) 

54 

 

Moc29 injection dose is indicated in nanograms; injection site is shown; brackets indicate 

frequency of affected/normal embryos; each row corresponds to one independent 

experiments. n: number of injected embryos. 
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To confirm Moc29 specificity we have prepared a sensor construct 

harbouring Moc29 target sequence fused with GFP coding region. We 

microinjected the sensor construct alone or together with Moc29 and 

checked embryos for green fluorescence from mid-gastrula stage to tadpole 

stage. After the microinjection of sensor plasmid alone we detected GFP 

fluorescence from mid gastrula stage to tadpole stage, while after sensor 

and Moc29 coinjection we never observed fluorescent signal (Fig. 42). We 

conclude that Moc29 binding blocks GFP mRNA translation in vivo; thus 

observed phenotype may be due to a specific c29 block of translation. 

Rescue experiments in which c29 function is recovered by c29 coding region 

mRNA are now ongoing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 42. results of 

GFP sensor and 

Moc29 injection. 

After 100 pg sensor 

injection GFP green 

fluorescent signal is 

detected; after 100 

pg GFP sensor and 

10 ng Moc29 

coinjection any 

fluorescence is 

detected. 
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5.9- Xusf2 

 

5.9.1- XUSF2 and XOTX2/XOTX5 in vitro interaction 

 

We have verified the capability of XUSF2 to interact in vitro with both XOTX2 

and XOTX5 performing a GST-pull down assay (Fig. 43). XUSF2 GST-fusion 

proteins were produced in BL21 Bacteria cells and both XOTX2 and XOTX5 

as myc-tagged forms in HEK 293T cultured cells. Baits were linked to a 

Glutation-Sepharose resin, and preys were added. After several washes the 

presence of preys linked to baits was detected by Western Blotting. We 

detected the presence of both XOTX-myc tagged proteins linked to XUSF2-

GST fusion proteins: XUSF2 resulted able to interact in vitro with both 

transcription factors.  

 

 

 

 

 

 

 

 

Fig. 43. Western blot following GST-pull down for XUSF2-XOTX2/XOTX5 interaction 
assay. Ab1: anty-myc mouse; Ab2: GAM-Pod.  
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5.9.2- XUSF2 and XOTX2/XOTX5 antagonistic action on Rhodopsin 

promoter 

 

XUSF2 is a transcription factor of the basic-helix-loop-helix-leucine zipper 

(bHLH-zip) family. The regulating proteins of this class bind to E-box cis-

regulating elements. Xenopus laevis Rhodopsin promoter contains this kind 

of regulating sequences, therefore USF2 could be able to promote 

Rhodopsin transcription. XOTX2 and XOTX5 are both able to synergize with 

NRL to bind and transactivate Rhodopsin promoter (Mitton et al., 2000; 

Whitaker and Knox, 2004; Peng and Chen, 2005; Onorati et al., 2007). 

Therefore we hypothesized that XOTX and XUSF2 can synergize to 

transactivate the Xenopus Rhodopsin promoter. We investigated our 

hypothesis by monitoring their ability to activate a Xenopus  rhodopsin 

promoter (XOP) driving green fluorescent protein (GFP) expression in HEK 

293T cultured cells. As previously described (Mitton et al., 2000; Whitaker 

and Knox, 2004; Peng and Chen, 2005; Onorati et al., 2007), we verified that 

XOTX and NRL are able to synergize on XOP, since cells transfected with 

both plasmids showed a higher level of GFP expression in respect to cell 

transfected with XOTX only. Interestingly XOTX and XUSF2 cotrasfection 

has the opposite result: GFP expression levels strongly decreases in 

cotransfected cells in respect to cell transfected with XOTX only. We 

conclude that XOTX and XUSF2 can operate in an antagonistic fashion on 

the Xenopus opsin promoter. Besides, we noted a stronger inhibition of 

XUSF2 on XOTX5 in respect to XOTX2 (see Fig. 44 and 45 for relative 

percentage of GFP positive cells). 
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5.9.3- XUSF2 and XOTX5 microinjection experiments: preliminary data 

 

To check the capability of XUSF2 and XOTX5 to antagonize also in vivo, we 

injected Xotx5 alone and together with Xusf2 mRNAs in Xenopus embryos, 

and monitored the two typical phenotypes obtained upon Xotx5 

microinjection: posterior defect induction (Fig. 46) and ectopic cement gland 

formation. The dorsal microinjection of 250 pg of Xotx5 causes posterior 

defects (Fig. 46) with a frequency of 82,7%, while upon the coinjection of 

Xotx5 with Xusf2 the frequency of this phenotype strongly decreases, down 

to 39,3% (Tab. 9). Almost the same 50% reduction is observed after ventral 

microinjection (Tab. 9). On the other hand, we do not observed almost any 

difference of ectopic cement gland frequency between embryos injected with 

Xotx5 or with Xotx5+Xusf2 (Tab. 10). The dorsal microinjection of 10 ng of 

oligo antisense Morpholino against Xusf2 5’UTR (MoUSF2) causes posterior 

defects analogous to those observed upon Xotx5 microinjection (Fig. 46), 

with a frequency of 33,6%, while upon microinjection of the same dose of 

mis-matched MoUSF2 (MisMoUSF2), used as negative control, we observed 

this phenotype with a lower frequency (15,3%) (Tab. 11). Consistent results 

have been obtained by reducing MoUSF2 and MisMoUSF2 to 5 ng. All these 

data taken together suggest the possibility of the existence of an 

antagonistic interaction between XOTX5 and XUSF2 in modulating 

convergent extension, while this interaction does not have any effect on 

XOTX5 cement gland inducing capability. 
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Tab. 9. Results of Xotx5 injection and of Xotx5 and Xusf2 coinjection. 

 

 

Embryos are scored for posterior defects. Injected doses and injection sites are indicated; in 

brackets embryos percentages are shown; n: number of embryos. 

 

 

 

 

 

 

 

 

Exp. n° Injected 
constructs 

Injection 
site 

Posterior 
defect 

NO 
posterior 
defefct 

n 

1 Xotx5 250pg Dorsal 67 
(82,7%) 

14 
(17,3%) 

81 

 Xotx5 
250gp+ 
Xusf2 250pg 

Dorsal  42 
(39,3%) 

65 
(60,7%) 

107 

2 Xotx5 250pg Ventral  31 
(22,2%) 

109 
(77,8%) 

140 

 Xotx5 
250gp+ 
Xusf2 250pg 

Ventral 29 
(13,2%) 

192 
(86,8%) 

221 

Fig. 46. 

Phenotypes 

observed upon 

Xotx5 and 

MoUSF2 

microinjection. 

Embryos were 

unilaterally 

microinjected with 

Xotx5 250 pg or 

with MoUSF210 

ng; note 

phenotype 

similarity. 
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Tab. 10. Results of Xotx5 injection and of Xotx5 and Xusf2 coinjection. 

 

Exp. n° Injected 
constructs 

Injection 
site 

Ectopic 
cement 
gland 

NO ectopic 
cement 
gland 

n 

1 Xotx5 250pg Ventral  53 
(37,9%) 

87 
(62,1%) 

140 

 Xotx5 
250gp+ 
Xusf2 250pg 

Ventral 100 
(45,3%) 

121 
(54,7%) 

221 

2 Xotx5 125pg Ventral  40 
(26%) 

114 
(74%) 

154 

 Xotx5 
125pg+ 
Xusf2 250pg 

Ventral 20 
(37%) 

34 
(63%) 

54 

 

Embryos are scored for ectopic cement glands formation. Injected doses and injection sites 

are indicated; in brackets embryos percentages are shown; n: number of embryos. 

 

Tab. 11. Results of MoUSF2 and MisMoUSF2 microinjection. 

 

Exp. n° Injected 
constructs 

Injection 
site 

Posterior 
defect 

NO 
posterior 
defect 

n 

1 MoUSF2 
10ng 

Dorsal   38 
(33,6%) 

75 
(66,4%) 

113 

 MisMoUSF2 
10ng 

Dorsal   13 
(15,3%) 

72 
(84,7%) 

85 

2 MoUSF2 5ng Dorsal   23 
(13,7%) 

145 
(86,3%) 

168 

 MisMoUSF2 
5ng 

Dorsal   9 
(7,6%) 

110 
(92,4%) 

119 

 

Embryos are scored for posterior defects. Injected doses and injection sites are indicated; in 

brackets embryos percentages are shown; n: number of embryos. 
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6- Discussion section I: cemnt gland, convergent extension and neural 

tissue 

 

We have performed a molecular dissection analysis of the XOTX1 and 

XOTX5 proteins in order to identify the molecular domains involved in their 

inability/ability to promote CG and neural tissue formation, and responsible 

for their capability to inhibit convergent extension movement at a different 

extent. 

A first set of injections with swapped constructs where the C-terminal parts 

of XOTX1 and XOTX5 were exchanged, clearly showed that the CG 

promoting activity relies on the C-terminal part. To map the functional 

domains of XOTX5 required for CG induction, we prepared a series of C-

terminal deletion constructs. Injections of their mRNAs showed that the 

region corresponding to aa 210-255 contains the most active CG promoting 

domain (CGboxD1, that is largely co-extensive with the His-rich region of 

XOTX1); its removal causes a strong reduction of CG frequency in injected 

embryos, as well as a consistent decrease of CG markers in animal cap 

assays. Another region (CGboxD2, aa 177-209), is also involved in CG 

promoting activity: its removal causes a further decrease of Xag and Xcg 

expression in animal cap explants, and the almost complete disappearance 

of ectopic CG on whole embryos. 

Furthermore, our results showed that the XOTX1 His-rich region exerts the 

major inhibitory function on CG promoting capability: when this region is 

removed, the Xotx1ΔHis construct becomes able both to elicit ectopic CG 

development in whole embryos and to turn on expression of CG markers in 

animal cap assays. However, results in whole embryos and in animal caps 

show clearly that Xotx1ΔHis is not as efficient as Xotx5, that induces a 

higher frequency of ectopic CGs and a higher activation of Xag and Xcg in 

animal caps. This is due to the fact that the His-rich region of XOTX1 is 

contained within the XOTX1 region aligning with XOTX5 CGboxD1 (Fig. 23): 

when the His-rich region is deleted, we do not actually “restore” the XOTX5 
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CGboxD1 sequence, because at the same time we are deleting non-His 

residues conserved between the two proteins that may play a crucial role in 

CG inducing action; this could explain why the CG promoting activity is not 

fully rescued in Xotx1ΔHis. In addition, also the XOTX1 Ser-rich region may 

exert a similar, though weaker, inhibitory function on this potential Xotx1 

activity: in fact, Xotx1Ser is able to weakly activate Xag expression in the 

animal cap assay, though it remains unable to transactivate Xcg or to 

promote the formation of ectopic CGs on whole embryos. This is also 

confirmed by the fact that Xotx1HisSer seems more effective than 

Xotx1ΔHis in inducing Xag expression in injected caps. However, also 

Xotx1HisSer, like Xotx1His does not have the full activity of Xotx5, again 

suggesting that coextensive deletion of non-His residues in Xotx1HisSer 

may compromise the CGboxD1 activity. Therefore, we conclude that Xotx1 

His-rich region strongly inhibits Xotx1 adhesive organ formation capability, 

while the Ser-rich region may exploit only a much weaker inhibition. 

The strong inhibitory action of His-rich region could be the result of disrupting 

the structure of a CG inducing domain within the XOTX C-terminal; besides, 

the His stretch could also turn a CG promoting domain into a CG repressing 

domain. We showed that the XOTX1 His-rich region acts as a domain 

actively repressing the potential of XOTX proteins to promote CG, rather 

than being only a simple disruptor of the CGboxD1; in fact, while Xotx5-

255C, harboring both CGboxD1 and CGboxD2, works as efficiently as 

Xotx5, the Xotx5-255C-His-rich construct is completely unable to promote 

ectopic CG in whole embryos, and only weakly induces CG markers in 

animal caps. 

These data suggest that the His-rich region has an active repressive role on 

the XOTX domains responsible for CG promoting activity. On the whole, the 

analysis of the CG activating and repressing domains in XOTX1 and XOTX5 

provide a molecular explanation of their diverse actions.  

Our data regarding Xotx5 CG promoting domains are quite coherent with 

those obtained by Gammill and Sive (2001). They showed that Xag is more 
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weakly induced by Xotx2 after the removal of its 81 C-terminal residues, 

almost corresponding to our CGboxD1 plus the OTX-tail; besides, they 

demonstrated that Xag is not induced at all after the removal of the 129 C-

terminal Xotx2 residues, a region comprising our CGboxD1, CGboxD2 plus 

six aa residues N-terminal to CGboxD2. The main difference between our 

results and those of Gammill and Sive (2001) is that the removal of the OTX-

tail from XOTX5 does not cause a diminution of the transactivation capability 

on Xag and Xcg, while they observed such a reduction after removing the 

XOTX2 OTX-tail. 

Xotx1 and Xotx5 share a similar effect on gastrulation movements, but Xotx1 

is less efficient than Xotx5 in inhibiting convergent extension. All constructs 

used in the present study are able to induce gastrulation defects when 

misexpressed. Interestingly, we observed an increase of posterior defect 

frequency following the microinjection of Xotx1ΔHis, compared to Xotx1, 

while the microinjection of Xotx1ΔSer does not show any significant variance 

in respect of full length construct. Consistent with this, the misexpression of 

Xotx1ΔHisSer completely resemble the microinjection of Xotx1ΔHis. So, 

we speculate that the His-rich region has an inhibitory effect also on Xotx1 

gastrulation defect inducing capability, while Ser-rich domain does not affect 

at all this function of Xotx1.  

The deletion of XOTX5 OTX-tail does not have any effect on its ability to 

inhibit convergent extention, since the microinjection of Xotx5-255ΔC does 

not show almost any significant variation in inducing gastrulation defects in 

respect of Xotx5; the small difference observed in the percentage of 

embryos showing posterior defects it is probably due to different batches of 

embryos used in different experiments. Similarly, the microinjection of the 

shorter construct, Xotx5-210ΔC, lacking the OTX-tail together with 

CGboxD1, also has the same effect of Xotx5. These results led us to 

conclude that CGboxD1 is not involved in Xotx5 convergent extension 

inhibiting activity. On the contrary, the deletion of Xotx5 CGboxD2 seems to 

affect it: embryos microinjected with Xotx5-177ΔC show posterior defects 
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with a significantly lower frequency compared to Xotx5 injected ones. 

Anyway, the ability of Xotx5 to inhibit convergent extension is completely lost 

when the C-terminal deletion reaches the homeodomain. We conclude that 

CGboxD2 is involved in regulation of gastrulation movements, but there are 

other regions upstream of it involved in this activity. 

Xotx1His does not completely reproduce Xotx5 efficiency in eliciting 

posterior defects; thus, Xotx1 lower efficiency in respect of Xotx5 cannot be 

due only to the His-rich region. Besides, since the CGboxD1 seems not to be 

involved in regulation of gastrulation movement, the removal of non-His 

residues in the Xotx1His construct is not responsible for its minor efficiency 

in respect of Xotx5. On the other hand, in spite of XOTX1 high similarity to 

XOTX5 at level of the CGboxD2 and upstream of it, the differences in their 

efficiency in causing posterior defects can be due to few sequence 

differences between the two homeoproteins in this region, that may be 

directly involved in convergent extension inhibition. 

We conclude that Xotx5 CGboxD1 is a functional domain more specifically 

involved in mediating the CG promoting activity and not that on convergent 

extension, while CGboxD2 may be also relevant for inhibition of convergent 

extension; in addition, we can hypothesize that in XOTX1, the His-rich region 

exerts its inhibitory effect on convergent extension by acting on CGboxD2, 

plus, eventually, additional N-terminal region(s).  

The insertion of the His-rich region downstream to Xotx5-255ΔC does not 

affect its convergent extention effect, contrary to what we observe for CG 

promoting activity. We may not exclude that the His-rich region has different 

actions when positioned in diverse parts of the XOTX protein. 

We also demonstrated that the RS box is not involved at all in gastrulation 

movement regulation, since its removal does not influences Xotx5 posterior 

defect induction.  

Our results clearly show that the XOTX1 specific His-rich region exerts a 

crucial function in differentiating XOTX actions. The comparison of OTX 

related proteins from different species suggests the importance of the His-
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rich region during evolution. Histidine stretches, in almost the same position, 

are present in all OTX1 proteins and are considered a distinctive character of 

this orthology group, being absent in other OTX proteins of Gnathostomes 

and in OTX of all other organisms (Germot et al., 2001). It is strongly 

probable that these OTX1 peculiar regions appeared, for instance as 

insertions, in an Otx1 ancestral gene, that initially had functional characters 

similar to other Otx. It is interesting to note that the microinjection of 

Drosophila otd in Xenopus embryos leads to the formation of ectopic 

adhesive organs (Lunardi and Vignali, 2006), suggesting that the ability to 

activate the genetic pathways that are involved in Xenopus CG formation is 

an ancestral property of OTX/OTD proteins, that XOTX1 has lost upon the 

appearance of the histidine stretch; also human Otx1 does not induce CG 

(Andreazzoli et al., 1997), while, on the contrary, human Otx2 does 

(Pannese et al., 1995). An interesting aspect of Otx1 function comes out 

from experiments in mouse; in this organism Otx1 is involved in the 

development of the lateral semicircular canal of the inner ear, the absence of 

which is not rescued either by Otx2 or by otd (Acampora et al., 1996; 1998; 

Morsli et al., 1999). It may be possible that Otx2 inability to rescue Otx1-/- 

defects could be due to the absence of the His-rich region. Given that the 

His-rich region is the most conserved divergent character between Otx1 and 

the other Otx, these data taken together can suggest the hypothesis that the 

His-rich region is implicated in modulating two different genetic pathways: 

the insertion of the histidine rich region inhibits Otx1 capability to induce CG 

formation and, on the other hand, makes it able to activate the genetic 

pathway responsible for the development of the inner ear semicircular canal. 

From this point of view the insertion of the His-rich region in OTX1 could be 

an interesting case where evolution of a new part of protein has led both to 

gain and loss of functions on the ancestral protein. However, we cannot 

exclude that the Ser-rich region may play a novel evolutionary role in OTX1; 

even though our experiments may suggest for it a minor role, this may be 

due to the specific aspects investigated in our experimental system. 
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Another functional difference between Xotx1 and Xotx5 is that, while Xotx5 

is able to elicit ectopic neural tissue formation in whole embryos if 

misexpressed, Xotx1 does not. None of the Xotx1 deleted constructs used in 

the present study are able to induce neural markers either in whole injected 

embryos or in animal cap assays. We can speculate that XOTX1 incapability 

to induce neural differentiation, differently from what previously seen, is not 

due to an inhibitory effect of XOTX1 specific regions (His-rich or Ser-rich 

region), since their removal from XOTX1 protein does not lead to a recovery 

of neural induction capability. An interesting result coming out from our very 

preliminary investigation is that the removal of XOTX5 OTX-tail seems to be 

sufficient to abrogate, almost completely, Xotx5 neural inducing activity. Our 

results are consistent with data obtained by Gammil and Sive, (2001): the 

deletion of the OTX-tail seems to abolish, almost completely, XOTX2 

neuralizing activity. At the level of the OTX-tail XOTX1 and XOTX5 show a 

high homology level; in fact, they differ only for 6 conserved substitutions 

and a AlaSer couple present in XOTX1 and absent in XOTX5. So far, we 

can only hypothesize a differential neural induction ability mostly due to 

these few differences, but further analyses will be necessary to verify this 

hypothesis.  

Xotx5-255ΔC is, anyway, still able to induce nrp-1 expression, although at a 

very lower level compared to full length Xotx5; therefore, other protein 

domain(s) contained in this construct may be partially involved in Xotx5 

neural inducing activity.  

Consistent with published data, Xotx5 is weakly able to trigger nrp-1 

expression in animal cap experiments, indicating that Xotx5 may be not 

sufficient to neuralize naïve ectoderm (Vignali et al., 2000), differently from 

Xotx2, that seems to be able to activate general and anterior neural markers 

in ectoderm explants (Gammill et al, 2000). These different results may be 

due to a real differential activity of the two transcription factors, as well as to 

different experimental approaches used by the two groups. So far we can 

conclude that, in whole embryos, Xotx5, differently from Xotx1, is able to 
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trigger neuralization and that most of this activity resides in Xotx5 Otx-tail. 

Our data also show that the RS box, on the contrary, is not involved at all in 

Xotx5 neuralizing action. 

In conclusion, we have highlighted molecular domains of XOTX1 and 

XOTX5 proteins that explain some of their different activities in living 

Xenopus embryos. Interestingly, these domains are differently involved in 

mediating convergent extension and CG and neural tissue promoting effects; 

moreover, they are physically separated from the RS box that mediates the 

diverse cell fate abilities of XOTX2 and XOTX5 (Onorati et al., 2007). These 

data show that XOTX proteins have a modular structure with domains that 

can mediate different aspects of their activities in a rather independent way. 
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7- Discussion section II: XOTX potential interactors 

 

By performing a molecular dissection of XOTX2 and XOTX5 transcription 

factors we have isolated their transactivation domain (AD) in their C-terminal 

half: XOTX2 AD spans residues 174-288 and XOTX5 AD spans residues 

174-290. Sequence divergences between XOTX5 and Mammalian CRX are 

notably, and we cannot establish a precise correspondence between XOTX5 

transactivation domain that we have isolated and CRX activation domain 

AD1 and AD2 described by Chen et al., (2002). Approximately, our AD 

corresponds to AD1, the most active transactivation domain described by 

Chen et al. (2002); thus, in our experimental system, XOTX5 region 

corresponding to AD2, that plays a minor role in CRX transactivation activity, 

seems not to be comprised in our AD domain. These results imply that while 

for Chen et al., (2002) WSP domain is involved in transactivation by CRX, 

this seems not to be the case for XOTX5. Differences can be due to diverse 

experimental approaches used in the two studies, or may be also due to a 

functional difference between the two transcription factors due to their 

notable sequence divergence. 

Beside the AD domain, we have characterized the XOTX regions involved in 

the interaction with two hybrid- (TH-)isolated potential partners (referred to 

as interaction domain, ID). This domain is localized at XOTX N-terminus; at 

this level, the sequence homology between the three XOTX is high. This is 

consistent with the fact that all selected preys interact with all tested XOTX: 

the conserved interaction domain mediates the interaction with common 

partners.  

Since we isolated 74 XOTX2 and XOTX5 common partners, we have not 

gained any proof supporting our initial hypothesis on RS box mechanism of 

action: the RS box could modulate XOTX interaction with different cofactors, 

and different protein complexes could be able to bind different target 

sequences. Nevertheless, we cannot exclude our initial hypothesis, since a 

cofactor able to interact in vitro with both XOTX may de facto interact in vivo 
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with only one XOTX, if it colocalized with it but not with the other. 

Immunohistochemistry experiments could localize potential cofactors in 

specific retinal cellular pupolation, thereby confirming or rejecting this 

hypothesis. Analogously, we cannot exclude our second model of RS box 

functioning: sequence divergences at RS box level could confer to XOTX2 

and XOTX5 diverse and specific DNA binding capability, allowing them to 

bind and transactivate different genetic pathways. A chip assay performed 

using XOTX specific binding sequences could clarify this second point. 

We decided to go on investigating TH-isolated XOTX potential interactors, in 

fact, as previously explained, we cannot exclude that an in vitro common 

interactor can be in vivo a partner specific for one only; besides, XOTX 

proteins exploit several common actions during X. laevis development, 

thereby a common interactor could be involved in this kind of processes. 

Based on database search we have selected 5 out of 74 XOTX potential 

partners for further analyses: granulin 1 and 2 (grn1 and grn2), upstream 

stimulatory factor 1 and 2 (usf1 and usf2), and c29 a hypothetical novel 

peptide. 

Since Granulins (GRN) have been described as secreted proteins, it may 

seem hard to hypothesize an interaction between them and XOTX nuclear 

proteins. Nevertheless, XGRN intracellular functions have also been 

described (Mainul Hoque et al., 2003), as well as Penetratin-mediated 

XOTX2 transcellular translocation phenomena (Rebsam et al., 2008 and 

references therein); therefore their interaction, both inside and outside the 

cell, could take place. The first condition necessary for protein-protein 

interaction is their colocalization; antibodies against GRN in Xenopus are not 

avaible, thus we decided to investigate their trancripts distribution first. Our 

results showed a very interesting expression profile for grn1 and grn2 in 

Xenopus epidermis ciliated cells, but almost no expression has been 

detected in Xotx expression territories. Based on these results we dropped 

investigating GRN/XOTX potential interaction. 
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Upstream stimulatory factors (USF) are ubiquitously expressed transcription 

factors (Gregor et al., 1990; Sirito et al., 1994; Corre and Galibert, 2005). In 

Vertebrates two USF isoforms have been described: USF1 and USF2, which 

shared the conserved helix-loop-helix domain. These two transcription 

factors bind to E-box consensus sites as homo- or hetero-dimers (Ferre-

D’Amare et al., 1994). USFs caught our interest for four major reasons: 1) 

they are transcription factors and several interactions of USF1 with tissue-

specific or general transcription factors have been reported (Andrews et al., 

2001; Ge et al., 2003; Liu et al., 2004); 2) gene-targetting studies in mouse 

suggested that Usf genes are important for embryonic development and 

brain function (Sirito et al., 1998); 3) several bHLH factors are involved in 

retinogenesis (Hatakeyama and Kageyama, 2004); 4) specific promoters, 

such as that of rhodopsin, contains both XUFS and XOTX binding sites.  

As previously described for Xgrn genes, we first investigated Xusf1 and 

Xusf2 expression patterns during frog development. The two Xusf genes 

show a high level of sequence homology and they differ most at the N-

terminus; hence we have designed two specific probes targeting Xusf1 and 

Xusf2 mRNA 5’ region. Our results concerning Xusf1 and Xusf2 expression 

profiles substantially coincide with those of Fujimi et al. (2008) and we found 

that the major site of overlap between Xotx and Xusf expression is the 

developing nervous system.  

Generally Xusf2 expression is stronger than that of Xusf1, thus we decided 

to concentrate on Xusf2 for functional analyses. 

GST-pull down assays confirm the capability of XUSF2 to interact, almost in 

vitro with both XOTX2 and XOTX5.  

Promoter transactivation assays suggested an antagonistic relationship 

between XUSF2 and XOTX5 and XOTX2: XOP activation level is higher in 

the presence of Xotx5 alone and lower in case of Xotx cotransfection with 

Xusf2. Preliminary functional data coming from Xenopus microinjections 

substantially confirm this kind of interaction for XUSF2 and XOTX5: embryos 

coinjected with the two transcription factors show a decrease of posterior 
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defects in respect to embryos injected with Xotx5 only. On the other hand, if 

we compare ectopic cement gland formation we do not observe any 

substantial difference between the two treatments. Therefore it may be 

possible that XOTX5/XUSF2 antagonistic interaction could be specific and 

affect only certain transcription pathways in Xenopus developing embryos. 

Xusf2 knockdown experiments, once again, confirm the hypothesis of XUSF 

antagonistic action on XOTX5, since if Xusf2 is removed we observe the 

same phenotype observed upon Xotx5 overexpression: inhibition of 

convergent extension; also in this case, the cement gland developmental 

pathway seems not to be affected. Till now we can assert to have convincing 

evidence of the existence of an antagonistic intercourse between these two 

transcription factors, and we can speculate that XUSF2 can modulate XOTX 

function in cellular contexts-dependent way, since convergent extension 

inhibition seems to be influenced, but not cement gland induction. From two 

hybrid and GST-pull down assays we do not have any evidence of a diverse 

relationship between USF2 and XOTX2 and XOTX5, but from promoter 

transactivation assays we highlighted a stronger inhibition of XUSF2 on 

XOTX5 in respect to XOTX2; further analysis comparing those two 

interactions in vivo will better clarify this point, and shed light on a possible 

involvement of XUSF2 in mediating XOTX2 and XOTX5 different retinal 

functions. 

We described and characterized the expression and nuclear localization of a 

putative novel protein, C29. The first reason why c29 sequences caught our 

interest is because its sequence was shared by eleven independent clones. 

From database surveys, we found that this sequence is highly homologous 

to an hypothetical protein of X. tropicalis; beside this, we localized c29 

homologous sequences on X.tropicalis assembled genome and found that 

this genomic sequence has all elements necessary for a genomic region to 

be transcribed and translated: initiation codon, stop codon, Kozac 

consensus sequence, exon-intron junction consensus at hypothetical intron 

borders and polyadenilation signal at 3’UTR. Moreover, C29 in silico 
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predicted secondary structure contains a helix motif scored with a high level 

of confidence. This kind of secondary structure is characteristic of several 

transcription factors from Bacteria to Eukaryotes, and it is often involved in 

DNA binding: i.e. homeodomain recognition helix. Obviously, to be a 

transcription factor a protein has to be able to localize into the nucleus; two 

partially overlapping NLSs have been localized in silico at C29 C-terminus. 

These hypothetical NLSs are necessary and sufficient to drive the protein 

into the nucleus: their removal causes C29 delocalization to the cytoplasm, 

while their insertion in cytoplasmatic RFP drives it into the nuclear 

compartment. Thus, several evidences addressed that C29 may function as 

a transcription factor in Xenopus. Its expression pattern is largely 

coextensive with those of Xotx: mainly they are coexpressed in the anterior 

nervous system and especially in the developing eye. Preliminary functional 

analyses have shown a knock-down phenotype consistent with c29 

expression pattern: the main feature of Moc29 injected embryos is a 

defective eye, with abnormalities ranging from total anophtalmia to 

coloboma. The eye field is the main expression site of c29 during 

development, therefore it may be possible that c29 could be involved in eye 

development. Moreover, c29 is also expressed in the neural crest, that 

contributes to eye development and optic cup closure (Gage and Zacharias, 

2009). Therefore, loss-of-function results are again coherent with the 

expression pattern. Xotx genes are also expressed in the developing eye, 

are necessary for the normal development of the eye (Martinez-Morales et 

al., 2001) and are involved in retinal cells differentiation (Viczian et al., 

2003). Rescue experiments recovering Moc29 phenotype by injecting c29 

mRNA are ongoing in our lab, to check Moc29 specificity, as well as the 

analysis of several neural and eye specific markers, to check the molecular 

effects of c29 loss-of-function. It will be interesting to further characterize 

C29 functions in vivo, since it has several characters making it a 

developmentally interesting peptide. 
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8- Conclusions 

 

A molecular dissection analysis of XOTX1 and XOTX5 transcription factors 

has allowed us to identify the molecular domains responsible for their 

ability/inability to promote cement gland and neural fate and to inhibit 

convergent extension movements at a different extent. A bipartite CGbox, 

localized in XOTX5 C-terminal half is responsible for its cement gland 

inducing capability; the more C-terminal domain (CGboxD1) is more effective 

in CG promoting activity in respect to the more N-terminal one (CGboxD2); 

in XOTX1, a histidine stretch inserted in CGbodD1 disrupts its continuity and 

converts it in a CG inhibition domain, making XOTX1 unable to induce the 

adhesive organ. A serine rich region localized downstream to XOTX1 

homeodomain synergies with the histidine stretch in inhibiting XOTX1 CG 

promoting capability. CGboxD1 seems to be a highly specialized domain, 

since it is not involved in convergent extension inhibition; on the contrary, 

CGboxD2 seems to be involved also in this XOTX function, together with 

other more N-terminal regions. The lower effectiveness of Xotx1 compared 

to that of Xotx5 in this respect is due, at least in part, to the histidine rich 

region, and possibly also to sequence divergences in CGboxD2 region, as 

well as in other upstream regions. The different neural induction capability of 

the two XOTX seems to be due to few amino acid divergences in their OTX-

tail, while XOTX1 serine and histidine rich regions seem to be not at all 

involved in this activity.  

We have shown that XOTX1, XOTX2 and XOTX5 can interact in vitro with 

XUSF1 and XUSF2, and we have demonstrated that XUSF2 intercourse with 

XOTX2 and XOTX5 is an antagonistic one, confirming this observation also 

in vivo for XOTX5. A possible involvement of this interaction, in regulating 

different developmental processes involving Xotx gene is hypothesizable.  

Moreover XOTX1, XOTX2 and XOTX5 can interact in vitro with a novel 

predicted peptide (C29), harbouring a predicted helix secondary structure 

and two functional and overlapping NLSs. Phenotypes resulting upon c29 



Conclusions 

114 
 

loss-of-function are coherent with its expression in the eye and brain region, 

and make feasible its involvement in eye developmental processes, possibly 

in synergy with XOTX proteins.  

The XOTX interaction domain with the potential partners isolated from the 

two-hybrid screen is localized at their N-terminus, while their transactivation 

domain is C-terminal. 

In this study we have gained new insights about XOTX differential actions 

during Xenopus development; in particular, we have characterized different 

XOTX functional domains responsible for these diverse functions, as well as 

XOTX potential partners that may be involved in regulating their common 

and divergent developmental functions. On the whole, we have contributed 

shedding light onto the molecular bases of XOTX mechanism of action.  
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