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Abstract

This thesis aims at investigating how electrophysiological signals re-
lated to the autonomic nervous system (ANS) dynamics could be
source of reliable and effective markers for mood state recognition
and assessment of emotional responses. In-depth methodological and
applicative studies of biosignals such as electrocardiogram, electroder-
mal response, and respiration activity along with information coming
from the eyes (gaze points and pupil size variation) were performed.
Supported by the current literature, I found that nonlinear signal pro-
cessing techniques play a crucial role in understanding the underlying
ANS physiology and provide important quantifiers of cardiovascular
control dynamics with prognostic value in both healthy subjects and
patients.

Two main applicative scenarios were identified: the former in-
cludes a group of healthy subjects who was presented with sets of
images gathered from the International Affective Picture System hav-
ing five levels of arousal and five levels of valence, including both a
neutral reference level. The latter was constituted by bipolar patients
who were followed for a period of 90 days during which psychophysical
evaluations were performed. In both datasets, standard signal pro-
cessing techniques as well as nonlinear measures have been taken into
account to automatically and accurately recognize the elicited levels of
arousal and valence and mood states, respectively. A novel probabilis-



tic approach based on the point-process theory was also successfully
applied in order to model and characterize the instantaneous ANS
nonlinear dynamics in both healthy subjects and bipolar patients.
According to the reported evidences on ANS complex behavior, ex-
perimental results demonstrate that an accurate characterization of
the elicited affective levels and mood states is viable only when non-
linear information are retained. Moreover, I demonstrate that the
instantaneous ANS assessment is effective in both healthy subjects
and patients.

Besides mathematics and signal processing, this thesis also con-
tributes to pragmatic issues such as emotional and mood state mod-
eling, elicitation, and noninvasive ANS monitoring. Throughout the
dissertation, a critical review on the current state-of-the-art is re-
ported leading to the description of dedicated experimental protocols,
reliable mood models, and novel wearable systems able to perform
ANS monitoring in a naturalistic environment.

The outcomes of this thesis have been published in scientific in-
ternational journals and proceedings as [A1-A22].
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Acronyms and Symbols

Here, the most used and important acronyms are reported in the
following table.



Acronyms

Statement Acronym

Autonomic Nervous System ANS
Central Nervous System CNS
Electrocardiogram ECG
ElectroEncephaloGram EEG
Heart Rate HR

Heart Rate Variability HRV
ReSPiration activity RSP
ElectroDermal Response EDR
International Affective Picture System IAPS
Circumplex Model of Affect CMA
Quadratic Discriminant Classifier QDC
Respiratory Sinus Arrhythmia RSA
Baroreflex Sensitivity BRS
Cardio-Respiratory CR
Cardio-Respiratory Synchrogram CRS
Low Frequency LF

High Frequency HF

Personalized monitoring SYstems for Care in mental HEalth ~ PSYCHE

Eye Gaze Tracker EGT
Head-mounted eye tracking system HATCAM
International Affective Digital Sounds system IADS




Statement Acronym

Approximate Entropy ApEn
Detrended Fluctuation Analysis DFA
Recurrence Plot RP
Recurrence Quantification Analysis RQA
Dominant Lyapunov Exponent DLE
Patient Health Questionnaire PHQ
Confidence Interval CI
Thematic Apperception Test TAT
Profile of Mood States POMS
Bauer internal mood scale IMS
Quick inventory of depressive symptomatology QIDS
Young mania scale YMS

Universal Synchronous Asynchronous Receiver Transmitter USART

Region Of Interest ROI
Discrete Cosine Transform DCT
High Order Spectra HOS
Principal Component Analysis PCA
Artifact Movement Removal AMR
Signal-to-noise-ratio SNR
Moving Average Filter MAF

Finite Impulse Response FIR




Acronyms

Statement Acronym
Power Spectral Density PSD
SudoMotor Nerve Activity SMNA
Impulse Response Function IRF
Auto-Regressive AR
Nonlinear Autoregressive NAR
Nonlinear Autoregressive Integrative NARI
Inverse-Gaussian IG
Least Square LSq
k-Nearest Neighborhood k-NN
Quadratic Discriminant Classifier QDC
Multi-Layer Perceptron MLP
Kolmogorov-Smirnov KS
Akaike Information Criterion AIC

Area Under the Curve AUC




Introduction

Emotions are important psychological conditions that reflect several
human states, such as pleasant or unpleasant feelings, human rela-
tionships, process and results of action. They are present in all men-
tal processes, and any human activity manifestation (even psycho-
pathologies) is accompanied by emotional experiences (see e.g. [A21,
A22]). Many research works have shown that emotional processing
can have primacy over cognition [23|. The famous naturalist Darwin
stated that emotions emerged in the course of evolution as the means
by which living creatures determine the significance of certain condi-
tions to meet their urgent needs [24]. They are the most important
factors in the regulation of cognition. In addition, several works have
shown how emotion regulation is an essential feature of mental health.
In particular, it has been highlighted how emotion and its regulation
have an important role in various aspects of normal functioning. For
example, as it will be pointed-out later, emotions become dysregulated
in major depressive episodes, and some theoretical views of depression
are based on emotion changes which have implications in assessment,
treatment, and prevention of the pathology [25]. Moreover, it has
been shown that a strong relationship exists between emotion and
anxiety [26] as well as brain damages of emotional processing areas
and decision-making process [27].

Changes in emotional state often reflect facial, vocal, and gestural
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modifications in order to communicate, sometimes unconsciously, per-
sonal feelings to other people. Such changes can be generalized across
cultures, e.g. nonverbal emotional, or can be culture-specific |2§].

The automatic emotion recognition is one of the most important
application in neuroscience and, often, is identified within the so-
called affective computing field. Mainly, such a technical field refers
to the engineering approaches able to link physiological patterns to
different emotions. Recently, a review on affective computing was
written by Calvo et al. [29] which reports on emotion theories as
well as on affect detection systems using physiological and speech sig-
nals (also reviewed in [30]), face expression and movement analysis.
Since alteration of mood strongly affects the normal emotional pro-
cess, emotion recognition is also an ambitious objective in the field of
mood disorder psychopathology.

In the last decade, several efforts have been spent to obtain a
reliable methodology to automatically identify the emotional /mood
state of a subject, starting from the analysis of facial expressions, be-
havioral correlates, and physiological signals. Several computational
methods for emotion recognition based on variables associated with
the Central Nervous System (CNS), e.g. the Electroencephalogram
(EEG), have been recently proposed [31-37|. These methods are jus-
tified by the fact that human emotions originate in the cerebral cortex
involving several areas for their regulation and feeling. The prefrontal
cortex and amygdala, in fact, represent the core of two specific path-
ways. Affective elicitations longer than 6 seconds allow the prefrontal
cortex to modulate bottom up inputs and produce appropriate cog-
nitive responses [38|. Stimuli briefly presented access the fast route
of emotion recognition via the amygdala. Of note, it has been found
that also the visual cortex is involved in emotional reactions to dif-
ferent classes of stimuli [39]. Dysfunctions on these CNS recruitment
circuits lead to pathological effects |40, A10] such as anhedonia, i.e.
the loss of pleasure or interest in previously rewarding stimuli, which
is a core feature of major depression and other serious mood disorders.

A wider class of affective computing studies are related to changes




of the Autonomic Nervous System (ANS) activity as elicited by a
specific emotional state. Monitoring physiological variables linked to
ANS activity, in fact, can be easily performed through wearable sys-
tems, e.g. sensorized t-shirts [41] or gloves [A1l, A12]. Moreover,
ANS dynamics is thought to be less sensitive to artifacts than in the
EEG case. In addition, the human vagus nerve is anatomically linked
to the cranial nerves that regulate social engagement via facial ex-
pression and vocalization. Experimental evidences over the past two
decades show that respiration activity (RSP), electrodermal response
(EDR), and especially Heart Rate Variability (HRV) analysis, in both
the time and frequency domain, can provide a unique, noninvasive as-
sessment of autonomic functions [42,43|. Given such evidences, this
thesis aims at performing a breakthrough investigation on method-
ological and theoretical aspects of ANS signals as source of reliable
and effective markers for mood state recognition and assessment of
emotional responses.

Motivations and Impacts Primary impacts of this thesis are in
the field of affective computing and all the applications using emo-
tion recognition systems. The methodology and the rationale behind
the reported studies, in fact, are able to assess the personal cogni-
tive association related to positive and negative emotions with very
satisfactory results.

From a physiological perspective, this thesis confirms the inherent
nonlinearties of the cardiovascular systems (e.g. the nonlinear neural
signaling on the sinoatrial node [44]) by means of several experimental
results in both healthy subjects and patients.

Major achievements have impacts also in mood disorders psycho-
pathology diagnosis and treatment. Since mood disorders produce
an altered emotional response, the innovative wearable monitoring
systems and the methodologies applied along could make a continuous
evaluation of disorder possible.

Moreover, from a general physiological modeling, a novel point-
process model was devised for the instantaneous assessment of the
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cardiovascular system extracting a novel set of dynamic signatures,
based on the dynamical bispectrum and trispectrum, able to charac-
terize the wide range of cardiovascular responses under different physi-
ological conditions [45]. Therefore, such novel instantaneous nonlinear
features could provide better assessment and improved reliability of
other different kinds of physiological responses and pathologies.

Thesis contributions and perspectives In this thesis, I first
studied the ANS response as a whole system by processing biosignals
such as HRV and RSP, along with the EDR to implement an effective
automatic emotion recognition system [A4]|. Emotions were elicited
in agreement with a bi-dimensional spatial localization of affective
states, i.e. arousal and valence dimensions. Specifically, thirty-five
healthy volunteers underwent a passive emotional elicitation protocol
through the presentation of a set of emotional pictures gathered from
the International Affective Picture System (IAPS), categorized in 5
levels of arousal and 5 levels of valence, including the neutral one.
This outcome allows allocating 25 different affective regions in the
arousal-valence space, known as Circumplex Model of Affect (CMA).
I applied commonly-used monovariate analyses in order to extract
features from standard and from nonlinear dynamic methods of anal-
ysis. The arousal and valence multiclass recognition was performed
by processing the extracted feature sets through a Bayesian decision
theory based classifier which used a Quadratic Discriminant Classifier
(QDC). I found that the use of nonlinear system-derived approaches
have given pivotal quantitative markers to evaluate the dynamics and
predicability of ANS changes. Specifically, when nonlinearly extracted
features are embedded in the mentioned affective computing system
along with the linearly derived ones, the percentages of successful
recognition dramatically increased (accuracy >90% for both arousal
and valence classes) [A4|. These findings simply confirm the impor-
tant role played by nonlinear and non-stationary dynamics in many
physiological processes [46]. This behavior, in fact, can be the result
of a nonlinear frequency modulation or multi-feedback interactions




among the involved biological processes. For instance, on the human
cardiovascular system, a nonlinear frequency modulation of the heart
primary pacemaker (sino-atrial node) through ANS signaling [47] and
hormonal control [44] has been demonstrated.

These interactions can carry out several coupling mechanisms such
as bio-feedback for system regulation and synchronizations such as
the respiratory sinus arrhythmia (RSA) [48] and baroreflex sensitiv-
ity (BRS) [49]. Accordingly, I investigated the phase synchronization
between breathing patterns and heart rate during the mentioned IAPS
passive affective elicitation [A5]. I demonstrated that respiratory and
cardiac systems adapt their rhythms in response to an external emo-
tional stimulation. In particular, when a strong affective event occur,
the Cardio-Respiratory (CR) system becomes more synchronized (rea-
sonably due to the sympathetic and parasympathetic signaling activ-
ity). The phase synchronization was quantified by applying a bivariate
analysis relying on the concept of phase synchronization of chaotic os-
cillators, i.e. the Cardio-Respiratory Synchrogram (CRS) [50]. This
technique allowed for the estimation of the synchronization ratio m:n
as the attendance of n heartbeats in each m respiratory cycles. 1
observed a clearly increased synchronization during the presentation
of images with significant arousal content with respect to the neutral
ones while no statistical difference has been found among sessions
with slightly different arousal content. It let me conclude that an
arousal affective stimulation increases the coupling between the two
considered systems [A5].

Moreover, using the same data, I re-proposed an all-inclusive method-
ology able to robustly discern the elicited 5 levels of arousal and 5 lev-
els of valence, including a neutral state. According to the mentioned
previous findings [A4,A5|, the crucial roles of monovariate and bivari-
ate measures of ANS-signs such as HRV, RSP and EDR were jointed
in order to obtain a more effective and reliable emotion recognition
system |[Al]. Moreover, in order to find theoretical foundations of
emotional elicitation and to bring benefits to other model-based emo-
tion recognition systems, I developed a model of CR coupling during
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sympathetic elicitation using a theoretical nonlinear model [A1]. This
model is a simple adaptation of the theories of weakly coupled oscil-
lators [51-53| with external driving. The CR synchronization was
already studied under anesthesia [54,55|, exercise [56] or aging [57],
where particular emphasis was pointed out for the occurrences of tran-
sitions between synchronization regimes. Therefore, my theoretical
idea behind the model is that the CR system is comprised of weakly
coupled self-sustained oscillators that, when exposed to an external
perturbation (i.e., sympathetic activation), becomes synchronized and
less sensible to input variations.

This hypothesis was experimentally proved in my findings relating
the Dominant Lyapunov Exponent and the Approximate Entropy |A6]
to nonlinear dynamics of the HRV, showing a clear switching mech-
anism between regular and complex dynamics when switching from
neutral to arousal elicitation.

Despite the great achievements and novelty of the hereby pro-
posed emotion recognition systems, such methods require relatively
long-time series of multivariate records (tens of seconds or minutes).
Reducing such a dimensionality would bring beneficial results in both
computational and operational equipment costs. Moreover, they are
unable to provide accurate characterizations in short-time series (less
than 10 seconds of image presentation) and to track very fast stimulus-
response changes. To overcome these limitations, I proposed a novel
personalized probabilistic framework able to characterize the emo-
tional state of a subject through analysis and modeling of heartbeat
dynamics. Due to the intrinsic nonlinearity and nonstationarity of
the RR interval series detected from the Electrocardiogram (ECG), a
specific point-process nonlinear autoregressive model was devised for
such an instantaneous identification [A7]. Features from the instan-
taneous spectrum and bispectrum of the equivalent nonlinear input-
output model were extracted and given as input to a classification
algorithm. By taking advantage of the standard subdivision in low
frequency and high frequency ranges of HRV in the bispectral domain,
this method introduces novel nonlinear indices of heartbeat dynam-
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ics directly related to higher order interactions between faster (vagal)
and slower (sympatho-vagal) heartbeat variations, thus offering a new
perspectives into more complex autonomic dynamics. Results on the
short-time emotion recognition reported first-rate correct identifica-
tion of personal predefined levels of arousal, valence and self-emotional
state, with recognition accuracies as high as 90%. Remarkably, this
approach represents the first achievement for an instantaneous and
personalized assessment of short-term emotional responses, achieved
by using only heartbeat dynamics. Focussing on the pure mathemat-
ical formulation, model improvements in terms of goodness-of-fit and
feature estimation are given by the use of the Laguerre expansion of
the input-output Volterra kernels [A2, A7, A9, A17|.

Concerning an applicative scenario on patients, I studied the so-
called bipolar disorders |[A3,A19,A20]. Patients are characterized by
a series of both depressive and maniacal or hypo-maniacal episodes.
Although common and expensive to treat, the clinical assessment of
bipolar disorder is still ill-defined. Since the current literature reports
on several correlations between mood disorders and dysfunctions in-
volving the ANS, my objective was to develop a novel and reliable
mood recognition system based on a pervasive, wearable and per-
sonalized monitoring system using ANS-related biosignals. The ANS
monitoring platform used in this study is the core sensing of the per-
sonalized monitoring systems for care in mental health (PSYCHE)
European project [A3|. It is comprised of a comfortable sensorized
t-shirt that can acquire the inter-beat interval time series, the heart
rate, and the respiratory dynamics. Two main experimental protocols
were performed in order to study ANS changes in bipolar patients:
a long-term monitoring during the day and overnight and a short-
term monitoring including an affective elicitation. In the latter case,
the EDR was acquired along [A19]. In both cases, bipolar patients
were followed for a period of 90 days during which up to six mon-
itoring sessions and psychophysical evaluations were performed for
each patient. Specific signal processing techniques and artificial in-
telligence algorithms were applied to analyze more than 120 hours of
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data. Concerning the long-term analysis, a classification accuracy of
about 97% was achieved for the intra-subject analysis. Such an ac-
curacy was found in distinguishing relatively good affective balance
state (euthymia) from severe clinical states (severe depression and
mixed state) and is lower in distinguishing euthymia from the milder
states (accuracy up to 88%). Concerning the short-term study, very
satisfactory results were obtained also for the inter-subject analysis.
In this case, distinguished performances are reported for the EDR
analysis (using EDR deconvolutive analysis) and the HRV one (using
nonlinear point-process models) [A8|. Therefore, evidences about the
correlation between mood disorders and ANS dysfunctions were found
and the obtained results are promising for an effective biosignal-based
mood recognition [A3, A8, A19, A20].

In this thesis, besides signal processing methods and computa-
tional models, achievements related to the hardware development
of novel wearable systems for ANS monitoring are reported as well.
Mainly, they are related to a textile-based fabric glove able to acquire
the EDR [A11,A12| and an Eye Gaze Tracker (EGT) able to acquire
also the pupil size variation [A13, A14|. More specifically, the glove
|[A11,A12] is endowed with integrated textile electrodes placed at the
fingertips and was successful applied to discriminate affective states.
The textile electrodes were characterized in terms of voltage-current
characteristics and trans-surface electric impedance [A12,A15]. More-
over, signal quality of EDRs acquired simultaneously from textile and
standard electrodes was comparatively evaluated. The EGT system
proposed, HATCAM, is a new wearable and wireless eye tracking sys-
tem comprised of only one lightweight camera able to capture, by
means of a mirror, the eyes of the subject and the scene in front
of him, simultaneously. HATCAM was used to investigate whether
the eye tracking and pupil size variation can provide useful cues to
discriminate emotional states induced by viewing images at different
arousal content [A13,A14]. T demonstrated that the proposed wear-
able and wireless EGT, is able to robustly enable eye tracking and
pupil area detection.

12



Chapter 1

Emotions and Mood States:
Modeling, Elicitation, and
Classification through Autonomic
Patterns

Common experience suggests that emotions cannot be reduced to sin-
gle word definitions. Researchers exploring the subjective experience
of emotion have pointed out that emotions are highly intercorrelated
both within and between the subjects reporting them [58,59|. For
example, subjects rarely describe feeling a specific positive emotion
without also claiming to feel other positive emotions [60]. This high
variability in expression and definition of emotions implies that the
development of an automatic emotion recognition system is a very
challenging task.

In this chapter, three crucial issues are addressed: modeling, elic-
itation and classification of emotions. The role of the Autonomic
Nervous System (ANS) patterns is emphasized along with the related
nonlinear dynamics.

13



Emotions and Mood States: State of the Art

1.1 Modeling Emotions

In the literature, several approaches for modeling emotions have been
proposed. Discrete, dimensional, appraisal, and dynamical models
are the most interesting, and in addition, they are not exclusive from
each other.

In discrete models, emotions can be seen as the result of a selective
adaptation that ensures survival [61]. This survival concept could be
illustrated by the following relation: danger => fear => escape =>
survival. The result of this selection is a small set of basic, innate
and universal emotions. For instance, Ekman proposed 6 basic emo-
tions which are identified on the basis of facial expressions: anger,
disgust, fear, joy, sadness and surprise [62,63]. Besides, in the liter-
ature other discrete models have been proposed which include more
or less basic emotions, usually from 2 to 10 ( [64-66]). These emo-
tions are called primary emotions as opposed to secondary emotions
which result from a combination of the primary ones (e.g. contempt
= anger + disgust). Nevertheless, this model can be insufficient to
describe mixed emotions which necessarily require much more than
one word to be expressed, and in addition there are some controver-
sies in the assumption of universality of basic emotions (Darwinian
hypothesis [61]). What seems true is that emotions are universally
expressed (e.g. facial expressions [67]) but dependent on semantic
attributions. It shows that inter-cultural differences, e.g. difference
between asian and occidental people, are more important than intra-
cultural differences, e.g. between genders, and that no significant
difference between primary and secondary emotions exist. From an
evolutionary point of view, basic emotions may be the first emotions
infants could experience [68]. See Ortony et al. [69], for basic emotion
categories defined over the years.

Unlike discrete models, dimensional models consider a continuous
multidimensional space where each dimension stands for a fundamen-
tal property common to all emotions. This kind of model has already
been used by Wilhelm Wundt [70]. Over the years, a large number

14



1.1 Modeling Emotions

of dimensions has been proposed [71-76]. Two of the most accepted
dimensions were described by Russel [77]: valence (i.e. pleasure, pos-
itive versus negative affect), and arousal (low versus high level of
activation). These dimensions were derived from a valence, arousal,
and dominance space developed by Russell and Mehrabian [78], in
which dominance represents the degree of control over the situation.

Appraisal models are based on the evaluation of current, remem-
bered or imagined circumstances. At the heart of appraisal theory is
the idea that the particular judgements made about the environment
and ourselves causes different emotions. The situational appraisals
appear to be highly dependent on motives and goals. In other words,
how we feel depends on what is important to us, indeed all our ap-
praisals are connected to what we want and, therefore, to how we feel.
For example, frustration results from a goal which is not achieved.
This model was introduced by Arnold [79] and has been developed
and refined by Frijda [80], Ortony et al. by developing the OCC
model [81], Scherer with the Component Process Theory [82] and the
derived one by Lisetti and Gmytrasiewicz [83]. The appraisal pro-
cess can be thought of having a continuous as well as a categorical
nature. Roseman’s (1996) model shows that appraisal information
can vary continuously but categorical boundaries determine which
emotion will occur. To solve the problem between categorical and
continuous appraisal order, it may be a good idea to place discrete
emotional categories (i.e. happiness, sadness, etc.) while continu-
ous models represent the varieties, styles, and levels of these already
defined distinct emotions [84].

Finally, the dynamical model approach considers emotions as a dy-
namical process. This model starts from an evolutionary perspective
and characterizes emotion in terms of response tendencies. In the dy-
namics perspective emotion is a regulable system and the capability
of understanding its rules is essential. According to a process model
of emotion regulation, emotion may be regulated at five points in the
emotion generative process: selection of the situation, modification
of the situation, deployment of attention, change of cognitions, and
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modulation of responses. It may be useful to take into account con-
cepts like mood and personality (see Egges et al. for an implemented
model [85]).

In all the studies presented in this thesis, I adopted a common
dimensional model which uses multiple dimensions to categorize emo-
tions, the Circumplex Model of Affects (CMA) [86]. This model in-
terprets emotional mechanisms underlying affects as a continuum of
highly interrelated and often ambiguous states. They are distributed
on a Cartesian system of axes; each axis represents a neurophysiolog-
ical pathway by which emotion is being processed. In many cases,
by using factor analysis and multidimensional scaling of a wide set of
psychometric assessments and self-reports on emotional states, it is
possible to use a more simplified bi-dimensional model. In particu-
lar, in the CMA used in the reported experiments the two dimensions
are conceptualized by the terms of valence and arousal, which can be
intended as the two independent, predominantly subcortical systems
that underlie emotions (see fig 1.1). Valence represents how much an
emotion is felt by people as positive or negative. For example, some-
one feeling sad has evaluated surrounding events as very negative. On
the contrary, someone feeling joy would have appraised the environ-
ment as positive for his well being. Arousal indicates how relevant
the surrounding events are and therefore how strong the emotion is.
In this case, someone feeling excited will have an emotion represented
by a bigger arousal and someone feeling bored will experience a much
less relevant emotion. Accordingly, in CMA, arousal and valence can
be considered adequate parameters to identify specific emotions. This
simplified model addresses most of the methodological issues raised
by experimental studies on emotions and provides a reliable means
for comparing outcomes.
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Figure 1.1: A graphical representation of the circumplex model of
affect with the horizontal axis representing the valence dimension and
the vertical axis representing the arousal or activation dimension.
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1.2 Autonomic Nervous System Correlates
of Emotions

The idea behind this thesis is that ANS (nonlinear) dynamics reflects
measurable changes according to emotional experience [86,87]. Many
researchers have observed that peripheral physiological responses to
affective stimuli vary incrementally with subjective ratings of valence
and arousal. As a matter of fact, several physiological ANS signs,
e.g. Heart Rate Variability (HRV), Respiration (RSP), Electrodermal
Response (EDR), pupil size and eye movement variation) correlates
with subject behavior or emotional status [88-91]. Nevertheless, the
associations of emotions and physiological reactions controlled by the
ANS are complex. Anger, for example, has been associated with
higher heart rate than happiness, and on the other hand, has been
associated with higher finger temperature than fear [92,93].

1.2.1 Heart Rate Variability

One of the most important ANS-related series is the HRV. It refers to
the variations in the beat-to-beat intervals or correspondingly in the
instantaneous heart rate (HR). HRV reflects the regulation mechanism
of the cardiac activity by the ANS [94]. Over the last 20 years, sev-
eral studies have demonstrated the significant relationship between
ANS and HRV, especially by means of frequency domain indexes,
e.g. LF/HF ratio [95]. Since the human cardiovascular system is
intrinsically nonlinear, methods for studying dynamic systems have
been adopted to quantify HRV and find nonlinear fluctuations in the
HR, that are otherwise not apparent. Although a detailed physi-
ological explanation behind these complex dynamics has not been
completely clarified, several nonlinearity measures of HRV have been
used as important quantifiers of the complexity of cardiovascular con-
trol in healthy and impaired subjects [96-98|. Some nonlinear meth-
ods used for studying the HRV include Lyapunov exponents [99], 1/f
slope [100], approximate entropy (ApEn) [101]|, Detrended Fluctua-
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tion Analysis (DFA) [102], Recurrence Plot (RP) [103,104], and en-
tropy analysis [105]. As reported in [106], HRV of sinus rhythm is
characterized by being a chaos-like determinism, with at least a pos-
itive Dominant Lyapunov Exponent (DLE) and 1/f-like broad-band
spectrum with an exponent of approximately —1. Moreover, HRV
chaos-like determinism is modulated but not eliminated by the inhi-
bition of the autonomic tone or by exercise.

1.2.2 The Electrodermal Response

Electrodermal Responses (EDR) has been shown to be a powerful
emotion related signal [107]. EDR represents changes in the skin
electrical properties, i.e. electric impedance, due to psychologically-
induced sweat gland activity [108] upon an external stimulus. More
specifically, it is strictly related to the activity of the eccrine sweat
glands (located in the palms of the hands and soles of the feet)
and the skin pore size. In a variety of induction contexts, electro-
dermal reactivity consistently varies with emotional intensity, with
largest responses elicited in either unpleasant and pleasant contexts
with high rate of arousal. Many studies, for example, have found
that skin conductance increases when people view pictures rated as
emotional, compared to neutral, regardless of whether they are rated
pleasant or unpleasant [108-110]. Moreover, when listening to affec-
tive sounds [111], or music [112], skin conductance activity increases
as the acoustic stimuli are highly rated in emotional arousal. Demon-
strating consistent modulation by affective intensity across perceptual
contexts, elevated electrodermal reactions are also found when peo-
ple view film clips that are either unpleasant or pleasant [113]. The
scientific community has accepted to consider the EDR as indirect in-
dicator of the sympathetic nervous system [107|. Several approaches
are used to measure this signal (e.g. [114]).

In this work, a small continuous voltage is applied to the skin and
the induced current is measured through two electrodes positioned at
the index and middle fingertips of the non-dominant hand. The ratio
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between voltage drop and induced current represents the skin electric
impedance. EDR changes depend on the individual physiological state
as well as on interaction with environmental events. In this work, as
I used a continuous voltage as source, I considered the Skin Conduc-
tance (SC). SC can be split into two components: tonic and phasic.
Tonic component is the baseline level of skin conductance (also called
skin conductance level- SCL), whose trend is different from person
to person and depends on both patient physiological state and auto-
nomic regulation. Phasic component (also called Skin Conductance
Responses - SCRs), superimposed on the tonic baseline level, changes
with specific external stimuli such as lights, sounds, smells, etc. or
events.

This thesis also focus on identifying emotional cues, due to arousal
elicitation, in EDR measurements by using a textile-based sensing
glove. The use of a wearable textile system exhibits several advan-
tages in terms of portability and usability for long-term monitoring,
and gives minimal constraints. Therefore, this kind of system broad-
ens scientific horizons which autonomic regulation investigation is cur-
rently based on, providing high acceptability and usability in daily
activities.

1.2.3 Information Coming from the Eyes: Pupil
Size Variation and Eye Tracking

Eye movements can provide detailed estimates of what information
an individual is considering. Eye tracking is becoming an increasing
popular measure of cognitive information processing [115]. Nowadays,
eye-tracking technology development (e.g. ease of use, improved ac-
curacy, and enhanced sampling rate) also offers the possibility for un-
obtrusive monitoring of emotion-related reactions because no sensors
need to be attached to the user. By gathering data on the location
and duration of eye fixations, many inferences about the cognition
structure could be done. The use of eye tracking in estimating cog-
nitive or affective states can be focused on the immediacy (people
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process information as it is seen) and the eye-mind (the eye remains
fixated on an object while the object is being processed). Concerning
eye-tracking methods, two popular methods are currently used: 1)
shining a light on the eye and detecting corneal reflection and 2) sim-
ply taking visual images of the eye and then locating the dark pupil
area. Generally, the choice of the best method depends upon the ex-
ternal lighting conditions. To compute where a person is fixating, the
eye-tracking apparatus can be placed on the person head along with a
camera so that a visual image is captured showing what the person is
currently looking at, with a point on the image indicating the object
being fixated.

Pupil dilations and constrictions are also governed by the ANS
[116]. Previous studies have suggested that pupil size variation is
related to both cognitive and affective information processing.

1.2.4 Cardiorespiratory Coupling

The coupling between cardiac and respiratory patterns has been in-
creasingly gaining interest in the scientific community. Starting from
the pioneering work of Angelone et al. [117], the coupling between the
respiratory system and the heart is known to be both neurological and
mechanical [118,119] as well as nonlinear [120]|. However, the exact
physiological mechanisms responsible for cardio-respiratory synchro-
nization are so far poorly understood. In the literature, at least two
levels of interaction are known.

One level is identified as the frequency modulation of the heart’s
primary pacemaker (sino-atrial node) through autonomic neural and
hormonal control. In this level two concurrent effects take place, the
efferent neural activity (the respiratory related rhythms [121]) and a
mechanical coupling between the systems. In the latter, the variation
of the intra-thoracic pressure causes a mechanical stretch of the sinus
node, which alters the electrical properties of the sino-atrial node
membrane, and therefore influences the frequency of heart excitation
[122].
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The second level has been found in the cardio-respiratory center
of the brain stem where the respiratory rhythm is generated, [123].
At this level, the brain stem modifies the heart rhythm according to
information regarding blood pressure provided by arterial barorecep-
tors, and, in turn, the baroreceptor reflex depends on the respiration
phase [124].

Nowadays, it is well accepted that the cardiovascular system and
its relationship with respiration is truly a complex system. Therefore,
nonlinearities and nonlinear coupling measures should be taken into
account in its modeling and analysis [125]. As a matter of fact, the
current literature provides plenty of nonlinear methods that are able
to distinguish between healthy subjects and patients, and sometimes
can even predict the outcome of the latter (e.g. see [97,126]).

Although it is well-known that the cardiovascular and respiratory
systems do not act independently, in the biological physics commu-
nity these two systems were often considered to be not synchronized.
So, there is a weak coupling between respiration and cardiac rhythm,
and the resulting rhythms are generally not phase locked [127]. As a
matter of fact, in rest conditions, while long synchronization episodes
were observed in athletes and heart transplant patients (several hun-
dreds of seconds) [128,129], shorter episodes were detected in normal
subjects (typical duration less than one hundred seconds) [129, 130].

In other several cases the cardio-respiratory synchronization was
well demonstrated ( [55,131-133]). Since Pecora and Carroll [134]
presented the conception of chaotic synchronization for two identical
chaotic systems with different initial conditions, many synchroniza-
tion methods have been proposed [135-139]. Recently, Schafer et
al. presented a new technique for the analysis of cardio-respiratory
interaction, [128,140], making use of their recent achievements in un-
derstanding hidden synchronization effects in chaotic and noisy oscil-
lators [51,141]. Even though some recent works have shown that ANS
and cerebral cortex are implicated in the changes of cardio-respiratory
synchronization during mental tasks [142|, the effect of emotional
stimuli on the cardio-respiratory interaction has been poorly inves-
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tigated [143].

Starting from the hypothesis that respiratory and cardiac systems
adapt their rhythms as a response to an external emotional stimula-
tion, in this thesis it will be demonstrated that the cardio-respiratory
system tends to become synchronized when experiencing strong affec-
tive events [A5].

1.3 Emotion Elicitation

How emotions can be elicited is a crucial issue still open. The diffi-
culty associated to the elicitation is related to a complex interaction
between cognition and neurophysiological changes. Several modali-
ties and several perceptual channels could be used for this purpose,
which can be thought as affected by several "noisy" factors, including
physiological process such as attention, social interaction, and body-
to-biosensors connections. In literature, a wide range of elicitation
methods have been applied: introspection, movements, lights and col-
ors [144], set of actions, images (e.g IAPS described below) [145,146],
sounds (e.g., music and IADS described below) [34,90,147,148], (frag-
ments of) movies [149, 150], speech [151], commercials [152], games,
agents / serious gaming / virtual reality [153|, reliving of emotions
[154], real world experiences [155,156] along with using personalized
imagery stimuli [89].

Some of these methods, in order to induce a specific emotion,
employ stimuli belonging to international standardized database. In
this perspective, the International Affective Picture System (IAPS)
[145] and the International Affective Digital Sounds system (IADS)
[157] are two of the most frequently cited tools in the area of affective
stimulation. They consist of hundreds of images and sounds, with
associated standardized affective values. A commonly used approach
is to have a collection of stimuli in which each is slightly varied in
terms of intra-individual standard deviation of affective ratings.

In several experiments reported on this thesis, a set of images
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gathered from the IAPS is chosen [158]. Specifically, IAPS is a set
of 944 images having a specific emotional rating, in terms of valence,
arousal, and dominance. The emotional ratings are based on several
studies previously conducted where subjects were requested to rank
these images using the self assessment manikin [159]. The elicitation
by TAPS is able to activate segregated neural representations of the

different emotion dimensions in different prefrontal cortical regions
[160, 161].

1.4 Affective Computing: From Theory to
Emotion Recognition

Emotion recognition, by means of intelligent systems, is a crucial is-
sue to be addressed for understanding human behavior, investigating
mental health, interpreting social relations, etc. Recently, several en-
gineering approaches have been used in order to guarantee acceptable
emotion recognition systems having high accuracy, robustness, and
adaptability to practical applications. An emotion recognition sys-
tem is generally comprised of two main parts: emotion elicitation and
physiological correlates identification.

Such systems are devised to map physiological patterns into well-
defined emotional states for an automatic classification. The physio-
logical signs include implicit and explicit emotional channels of human
communication, such as speech, facial expression, gesture, physiologi-
cal responses [29]. Recently, numerous automatic emotion recognition
systems have been proposed involving, among others, patient-robot
interactions [162|, car drivers [163], facial expression [164|, and adap-
tation of game difficulty [165]. Table 1.1 summarizes the most rele-
vant results reported in the literature during the last decade about the
emotion recognition through the ANS biosignal response [89-91, 153,
156,163,166-176]. All the acronyms used in this table are expanded
in the table 1.2. Each row of the table 1.1 shows the first author along
with the publication year, the set of physiological signals used for that
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study, the typology of stimulation pattern, the emotion classes, the
type of the classifier and the results in terms of best percentage of suc-
cessful recognition. Besides, I remind the rest of the state-of-the-art
of ANS-based emotion recognition to a recent review written by Calvo
et al. [29] which reports on the most relevant theories and detection
systems using physiological and speech signals, face expression and
movement analysis.

The detection and recognition of emotional information is an im-
portant topic in the field of affective computing, i.e., the study of
human affects by technological systems and devices [88|.
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Table 1.1: Performance of the Peripheral Biosignal based Emotion

Recognition methods reported in the literature of last decade.

Best
Authors Signals Elicitation Emotion Classes Accuracy results
(%)
Neutral, anger,
Picard et al. EMG, Internal feeling of hatred', grief,
2001 [89] BVP, each emotion platonic love, LDA 81.0
EDR, RSP } romantic love, joy,
reverence
Lisctti and FllmAChps and sadness, anger, fear,
ECG, difficult surprise,
Nasoz . . MBA 84
EDR, ST mathematics frustration, and
2004 [166] .
questions amusement
EMG,
Haag et al. EDR, ST,
2004 [167] BVP, TAPS Valence ANN 90
ECG, RSP
Arousal 96
Yoo et al Sad, Calm pleasure,
e aL ECG, EDR Video clip Interesting ANN 80
2005 [169]
pleasure, Fear
Choi & Woo Musi di . q
et al BVP, EDR b uste al? f“f.get 1% f”(‘igerj‘a“ ANN 74.5
2005 [170] choosen by subjec sadness
Healey & EMG,
Picard ECG, Driving 3 Stress Levels LDA 97
2005 [156] EDR, RSP
. ECG,
12‘66% [Cf;el']‘ BVP, Film Clips Fear, neutral, and CCA 93.33
EDR, ST joy
ECG, . e s engagement,
Rani et al. BVP, Coimtlve ta?ks él‘e' anxiety, boredom, SVM 6
2006 [172] EDR, naggams) an frustration and
EMG ong anger
- ECG, RSP,
Ra?‘a)gén[elig]al‘ EDR, Self Induction Ha; Ari)fee:; Fsejsile% SDA 49
EMG appiness, Se >SS
Zhai & EDR,
Barreto BVP, PD, Stroop Test game 2 stress levels SVM 90
2006 [174] ST
Leon et al. ECG, Neutral, Negative,
2007 [153] EDR, BVP TAPS Positive ANN m
. ECG, ICG, Cognitive tasks (i.e. Anxiety,
Liu et al. BVP, HS,
2008 [175] EDR. anagrams and Engagement, SVM 83
2 Pong.) Liking.
EMG, ST
Katsis et al EMG, nghqitrre::’ o
T o ECG, RSP, Car-racing drivers ,  Buress, SVM 79.3
2008 [163] disappointment,
EDR .
euphoria
Yannakakis & ECG
Hallam BVP EbR Interactive Games 2 fun levels SVM, ANN 70
2008 [176] ’
. N EMG,
Kl;ré)(;@g 1[\9%]dre ECG, Music Listening 4 Musical Emotion LDA 70/95
EDR, RSP
Katsis et al BVP, Rela::j‘r’tlnfiu':raL
;OAlé [e91] ’ ECG, IAPS a re‘h;nﬁie’ ver, ANN, SVM 84
EDR, RSP APPrencnsive, very
apprehensive
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Table 1.2: Peripheral biosignals and classification methods used in

the literature, along with acronyms.

Peripheral Biosignals Acronym
ElectroCardioGram ECG
ElectroMyoGram EMG
Blood Volume Pulse BVP
ElectroDermal Response EDR
ReSPiration Activity RSP
Skin Temperature ST
Pupil Diameter PD
Impedance CardioGram ICG
Heart Sound HS
Classification methods Acronym
Linear Discriminant Analysis LDA
Marquardt Backpropagation Algorithm MBA
Artificial Neural Network ANN
Support Vector Machine SVM
Canonical Correlation Analysis CCA
Step wise Discriminant Analysis SDA
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1.5 Emotions and Mood Disorders: The
Bipolar Disorders

Mood has been defined as a long-lasting, diffuse, affective state, not
associated to a specific trigger [177]. In turn, emotions are consid-
ered transient, acute and arousing responses to specific stimuli. It
is well-known, however, that mood status affects the normal emo-
tional response, and for this reason a possible assessment approach
is to study the physiological variations provoked by external affective
cues. Specifically, paradigms based on emotional reactions have been
proven to be widely able to differentiate among different mood states
both in normal [178] and pathological conditions [179).

As a case study on patients, the concepts and the methodologies
developed within this thesis were applied to data coming from pa-
tients with bipolar disorders. Bipolar disorder, formerly known as
manic-depressive illness, is a psychiatric condition in which patients
experience drastic mood shifts. Typically, the disorder is cyclic with
patients experiencing episodes of pathological low moods (depressive
episodes), pathological elevated moods (maniacal or hypomaniacal
episodes) and episodes in which depressive and maniacal symptoms
are present at the same time (mixed episodes). In the intervals be-
tween these episodes, patients typically experience periods of rela-
tively good affective balance (euthymia).

Patients during a depressive episode experience a sad and des-
perate mood displaying a lack of interest together with other several
neurovegetative symptoms including loss of appetite and sleep. Other
symptoms such as cognitive retardation, somatic pain or functional
symptoms (headache, dyspepsia etc.) are frequent as well. Depressed
patients might also experience thoughts of ruin, guilt or death in-
cluding suicidal thoughts that might end in suicide attempts. On the
other hand, maniacal patients express an increase in activity and an
acceleration of thoughts. Rather than being a positive effect, these
conditions are the cause of attention loss and prevent the patient from
expressing a coherent mental stream of thoughts. Hyperactivity is of-
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ten not finalized and patients switching from task to task are not able
to complete any activity. In the maniac phase patients also experience
a reduction of the necessity to sleep, sleeping a few hours per night
without feeling tired. Finally, mania is often dominated by a feel-
ing of an excited mood with the idea of grandiosity and hypertrophic
self-esteem. Maniacs, differently from hypomaniacs, might be delu-
sional, e.g. they often believe of being a descendent of some important
historical character. In the mixed state, patients share symptoms of
both mania and depression, i.e. they exhibit symptoms of both mood
states. For instance, patients can be hyperactive but have insomnia,
have an increased self-esteem but also thoughts of inadequacy, and so
on.

According to epidemiological studies, almost 15% of the popula-
tion in the United States has suffered from at least one episode of
mood alteration [180], and more than two million Americans have
been diagnosed with bipolar disorder. Moreover, it has been esti-
mated that about 27% (equals 82.7 million; 95% confidence interval:
78.5 — 87.1) of the adult European population, from 18 to 65 years of
age, is or has been affected by at least one mental disorder [181,182].

Despite its prevalence and the high cost of treating mood dis-
orders, the clinical management of this condition is still ill-defined.
First of all, this long-term illness may go undetected for years before
it is diagnosed and treated. Secondly, bipolar patients are extremely
heterogeneous with respect to the phenomenology and severity of the
symptoms, the number and duration of the episodes, as well as the
time interval between them. Even during euthymic periods (i.e. af-
ter remission from maniacal or depressive episodes), patients tend
to experience sub-threshold mood alterations over time. In spite of
the non-specific symptoms, currently the patient’s mood is typically
assessed by clinician-administered rating scales.

For clinical and research purposes, several clinical rating scales
have been proposed and validated, but at present neither biological
markers nor physiological signals highlighted in research studies are
used for clinical purposes [183-185]. In this view, there is another
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fundamental issue concerning both the research and clinical domains.
In relying on subjective mood evaluation alone, there is no possibility
to evaluate the preclinical indicators of relapse or patient response to
treatment. For instance, previous studies on sleep [186-188]|, circa-
dian heart rate rhythms [189,190| and the hormonal system [191-193]
highlighted changes in these parameters according to the clinical sta-
tus that may be considered predictors of clinical changes. However,
none of these studies have reached an acceptable level of accuracy
for clinical use in order to forecast the clinical course in single pa-
tients. A possible explanation for these negative results can be that
mood disorders are more heterogeneous, in terms of psychophysio-
logical, neuroendocrine and neurobiological correlates, than relatively
simple clinical phenotypes usually adopted for clinical and also for
research purposes. This might result in gathering subjects in groups
that, although homogeneous in a clinical descriptive point of view,
are extremely dishomogeneous in terms of endophenotypes.

1.6 ANS as a Nonlinear Physiological Sys-
tem

Most of the methodologies developed and applied within this thesis
are related to nonlinear dynamics and the theory of nonlinear sys-
tem identification. This choice is justified by both physiological and
experimental evidences.

As a matter of fact, it has been well-accepted by the scientific
community that physiological models should be nonlinear in order
to thoroughly describe the characteristics of such complex systems.
Within the cardiovascular system, the complex and nonstationary
dynamics of heartbeat variations have been associated to nonlinear
neural interactions and integrations occurring at the neuron and re-
ceptor levels, so that the sinoatrial node responds in a nonlinear way
to the changing levels of efferent autonomic inputs [44|. In fact, HRV
nonlinear measures have been demonstrated to be of prognostic value
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in aging and diseases [42,43,96-98,126,194-199|.

For instance, I adopted ApEn and DLE to characterize the com-
plexity of HRV [A6]. ApEn is chosen because it can distinguish
between wide variety of systems. Moreover, its estimation can be
achieved with relatively few points, as reported by Pincus et al. [101].
The DLE index has been already used in the literature, e.g. [106], to
characterize HRV in terms of low-dimensional chaos-like determinism.

In several previous works [45,200-203], it has been demonstrated
how it is possible to estimate heartbeat (nonlinear) dynamics in car-
diovascular recordings under nonstationary conditions by means of
the analysis of the probabilistic generative mechanism of the heart-
beat. Concerning emotion recognition, I recently demonstrated the
important role of nonlinear dynamics for a correct arousal and valence
recognition from ANS signals [A4-A6,A12].
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Chapter 2

Gathering Data from the
Autonomic Nervous System:
Experimental Procedures and
Wearable Systems

In this chapter, the overall procedures proposed and executed for
mood and emotion recognition based on ANS signs are reported. It
includes several experimental protocols successfully applied to elicit
emotional variations in healthy subjects and in bipolar patients. The
rationale behind all the proposed procedures is to maximize the ANS
dynamical response under specific stimuli with respect to the baseline
(rest condition).

The description of novel wearable systems able to perform an ubiq-
uitous, pervasive, and comfortable ANS monitoring in a naturalistic
environment is also reported along with a brief description of a stan-
dard portable ANS monitoring system.
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2.1 Procedures on Healthy Subjects

The procedures proposed here on healthy subjects aim to reliability
and reproducibility acquire ANS signals, i.e., HRV, RSP, and EDR,
during an affective visual elicitation experiment. As mentioned in
chapter 1, such affective stimuli are characterized by a common di-
mensional model which uses multiple dimensions to categorize the
affective states, i.e. the Circumplex Model of Affects (CMA) [86].
In particular, a simplified version of the CMA is used where the af-
fective states are conceptualized by the terms of valence and arousal,
which can be intended as the two independent, predominantly subcor-
tical systems that underlie emotions. Valence represents the extent
to which an emotion is perceived as being pleasant or unpleasant.
Arousal indicates the intensity of the emotion. Accordingly, the stim-
uli are presented as images gathered from the International Affective
Picture System (IAPS) having five levels of arousal and five levels of
valence, including a neutral reference level. Peripheral physiological
signals are simultaneously acquired.

The performed protocol was structured into the following phases:
recruitment of eligible subjects; affective state elicitation; acquisition
of the physiological signal set.

2.1.1 Recruitment of Eligible Subjects

A group of 35 healthy subjects, i.e. not suffering from both cardiovas-
cular and evident mental pathologies, was recruited to participate in
the experiment. Their age ranged from 21 to 24 and were naive to the
purpose of the experiment. All participants were screened by Patient
Health Questionnaire’™ (PHQ) and only participants with a score
lower than 5 were included in the study. Such a cut-off value was cho-
sen in order to avoid the presence of either middle or severe personality
disorders |204] such as subjects suffering from borderline personality
disorders. It is well-known in the literature, indeed, that this typology
of subjects show significantly lower levels of emotional awareness, a
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lesser ability in coordinating mixed valence feelings, a lower accuracy
in recognizing facial expressions of emotion, and a more intense re-
sponse to negative emotions than the non-borderline controls, [205].
The tests were evaluated by a team of psycho-physiologists with whom
I collaborate at the University of Pisa. The test uses an empirical
keying approach, where personality scales were derived from items
endorsed by patients. It consists of 16 items, and usually took be-
tween 20 and 30 minutes (depending on the reading level). The test
was given in Italian since the subjects were Italian native speakers.

2.1.2 Stimulus Elicitation

The affective elicitation was performed by projecting a set of im-
ages to a PC monitor. These images were chosen from the official
IAPS database [145,158] which consists of hundreds of pictures with
an associated specific emotional rating in terms of valence, arousal,
and dominance. The emotional ratings are based on several stud-
ies previously conducted where subjects were requested to rank these
images using the self assessment manikin [159]. In addition, the elic-
itation by TAPS is able to activate segregated neural representation
of the different dimensions of emotion in different prefrontal cortical
regions [160, 161].

In the proposed procedure, the slideshow was projected in a room
equipped with a dedicated monitor and headset to acoustically insu-
late from external noise. The slideshow was comprised of 9 sessions of
images N, A1, N, A2, N, A3, N, A4, N, where N is a session of 6 neu-
tral images (mean valence rating 6.49, SD = 0.87, range =5.52-7.08;
mean arousal rating = 2.81, SD = 0.24, range = 2.42+3.22) | and A;
(with 7 going from 1 to 4) are sets of 20 images eliciting an increasing
level of arousal and valence. Detailed values are reported in Table
2.1.

I characterized each session by means of the valence/arousal rat-
ing, i.e. a 66% Confidence Interval (CI) expressed in terms of (Mean
+ Standard Deviation) of the image scores. Since even a single out-
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lier (i.e. image with a score outside the CI boundaries) could strongly
bias the session, I also took into account the valence/arousal range
information (i.e. from minimum to maximum score, reported under
brackets as [min value,max value]).

The overall protocol utilized 110 images. Each image was pre-
sented for 10 seconds for a total duration of the experiment of 18
minutes and 20 seconds. Fig.2.1 shows a graphical representation of
the protocol. During the visual elicitation three physiological signals,
ECG, RSP, and EDR were acquired.

In order to present arousal images with different valence (from
unpleasant to pleasant) arousal sessions resulted to be longer than
the neutral ones. This protocol ensures an unbiased measure of phase
synchronization regardless of the valence of the considered images.
Fig.2.1 shows a graphical representation of the protocol. In some

8.03| Valence

Time (sec)
840 1040 1100

0 60 260 320 520 580 780

Low Arousal
(3.58)

Medium-Low Medium-High
Arousal Arousal

(4.60)

High Arousal
(6.50)
(5.55)

Neutral Sessions

Figure 2.1: Sequence scheme over time of image presentation.

cases, it could be useful to collapse the elicited valence and arousal
session in a lower number of classes. In this thesis, I propose that the
arousal sessions can be divided into Low-Medium (L-M) and Medium-
High (M-H) classes, according to the arousal score associated. Such
sessions include 20 images eliciting an increasing level of valence (from
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Table 2.1: Ratings of IAPS images used in this work

N. Valence Valence Arousal Arousal
Session
Images Rating Range Rating Range
Neutral 6 6.49+0.87 | [5.52,7.08]| 2.81+0.24 | [2.42,3.22]
Arousal
20 / [2.87,7.63] | 3.584+0.30 | [3.08,3.98]|
1
Arousal
20 / [1.95,8.03] | 4.6040.31 | [4.00,4.99]
2
Arousal
20 / [1.78,7.57] | 5.554+0.28 | [5.01,6.21]
3
Arousal
20 / [1.49,7.77] | 6.5040.33 | [5.78,6.99]
4

unpleasant to pleasant). The L-M arousal sessions had range valence
rating = 1.95 + 8.03, and mean arousal rating = 4.01 £ 0.30, range
= 3.08 +4.99. The M-H arousal sessions had range valence rating =
1.49+7.77, and mean arousal rating = 6.01£0.31, range = 5.01+6.99
(see this specific experimental protocol in fig. 2.2).

This simplified labeling of the sessions was successfully applied
with the point-process approach for a personalized and instantaneous
assessment of the fast emotional responses. The general overview of
this analysis is shown in fig. 2.3. In line with the CMA model, the
combination of two levels of arousal and valence brings to the defini-
tion of four different emotional states. The stimuli, which stimulate
several cortical areas also allowing the generation of cognitive per-
ceptions [38|, produce changes in the ANS dynamics through both
sympathetic and parasympathetic pathways that can be tracked by a
multidimensional representation estimated in continuous time by the
proposed point-process model.
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Figure 2.2: Sequence scheme over time of image presentation in terms
of arousal and valence levels. The y axis relates to the official IAPS
score, whereas the = axis relates to the time.

2.2 Procedures on Bipolar Patients

According to the state-of-the-art (see chapter 1), it is reasonable to
hypothesize that a correlation between mood disorders and dysfunc-
tions involving ANS might exist. To this aim, a novel approach to
assessing the patient mood by using ANS-related biosignals gathered
by wearable systems is proposed here. In this study, the psychophys-
iological variability in the same subject across different clinical states
was considered. This approach is also justified by the small number
of patients enrolled as well as the small number of examples for some
classes. In the future, when a sufficient number of acquisitions are
available, suitable data-mining techniques could be implemented in
order to also investigate inter-subject variability. Considering such an
intra-subject variability, the basic idea of this procedure is to bridge
the gap between research and the clinical routine management of bipo-
lar patients integrating the traditional clinical standard procedures of
mood assessment with data coming from the personalized monitoring
systems for care in mental health (hereinafter PSYCHE) pervasive
system which includes long-term physiological signals, as well as bio-
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Figure 2.3: An overview of the experimental set-up and rationale
behind this work.

39



Gathering Data from the Autonomic Nervous System

chemical and behavioral data (see section 2.3.2).

More specifically, this protocol aims to the identification of mood
changes by acquiring and processing peripheral physiological signals
from bipolar patients. They were monitored from the first hospital
enrollment to the end of the therapy, i.e. euthymia condition. The
study included up to a maximum of 6 evaluations performed for each
patient, over a period of 90 days. The protocol implied a patient
evaluation at the moment of the recruitment and a clinical assessment
was repeated after one, two, four, eight, and twelve weeks.

2.2.1 Recruitment of Eligible Subjects and Exper-
imental Protocols

Patients were recruited according to the following general inclusion /ex-
clusion criteria:

o Age 18-65
e Diagnosis of bipolar disorder (I or II)
e Absence of suicidal tendencies

e Absence of delusions or hallucinations at the moment of the
recruitment

e Absence of relevant somatic or neurological conditions
e Recent therapy switch

A physician presented the study to each patient. Before entering the
study, each patient needs to sign an informed consent approved by the
local ethical committee. Once enrolled, the patient is administered
with a set of questionnaires and rating scales in order to assess the
current mood at the hospital (see paragraph 2.2.2).
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2.2.1.1 Long-term Monitoring

The main experimental protocol for bipolar patients deals with a long-
term monitoring in a naturalistic environment, performed by wearable
systems. The clinicians associate to each patient a mood label in
agreement with an ad-hoc mania-depression model described more
in detail in the next section and suitably developed for this study.
Before leaving the hospital, each patient is asked to wear the PSYCHE
wearable system and keep it at all times until the battery ran out, i.e.
approximately for 18 hours after leaving the hospital. The day after,
the subject gave the t-shirt back and the data is downloaded and
stored in the database.

2.2.1.2 Emotional-related Tasks in Bipolar Patients

This thesis also focuses on the ANS changes induced by emotional
related tasks in bipolar patients. In this case, clinicians associated a
mood label in agreement with one of the four possible defined mood
states: euthymia, depression, mania or hypomania, and mixed-state.

Each recording session was constituted by a dedicated affective
elicitation protocol which started with two five minutes lasting phases
of resting state with eyes closed and open, respectively. Subsequently,
passive (IAPS) and active (TAT) visual stimuli were administered.
In this case, the IAPS protocol implies a slideshow of pictures hav-
ing two classes of arousal, either minimum or maximum, and random
valence, ranging from unpleasant to pleasant. After the IAPS elicita-
tion, the patients were asked to describe several TAT images. TAT
stands for Thematic Apperception Test, a projective psychological
test. The TAT is supposed to tap the subject’s unconscious and reveal
repressed aspects of personality, motives and needs for achievement,
power and intimacy, and problem-solving skills. However, in this pro-
tocol the pictures were only used to elicit spontaneous comments from
the patients. Of note, as there is no standardization of the use of the
texts/pictures according to the subjects’ clinical state, text/picture
stimuli were always proposed in the same order. A schematic time-
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line of the experimental protocol is shown in Fig. 2.4. The described
dedicated emotional elicitation protocol was performed according to
the following timeline:

e 5 minutes of resting state with eyes closed;
e 5 minutes of resting state with eyes opened;

e TAPS slideshow: in which the subject observed a series of images
at different content of arousal and random valence;

e TAT slideshow: in which the subject observed and commented
particular images that investigate the unconscious of a person.

The ECG and RSP are acquired using the PSYCHE platform whereas
the EDR signal was acquired by using the BIOPAC MP150 system
(BIOPAC Systems, Inc., USA).

The presented paradigm is pretty heterogeneous and includes dif-
ferent conditions which elicit different emotional responses and differ-
ent changes in arousal. In the future analyses, I will consider pertur-
bations of emotional baseline as a whole and I do not make differential
analysis between the different parts of the protocol.

Closed Opened I.A.P.S Neutral
. . TAT .
Eyes (5 min) Eyes (5 min) (6 min.) Reading

Rest Phases Affective Elicitation

»
»

to ~20
minutes

Figure 2.4: Timeline of the Emotional-related experimental protocol
in bipolar patients
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2.2.2 The Mood Model

As mentioned in chapter 1, the current clinical practice assesses the
patient mood through clinician-administered rating scales and ques-
tionnaires, namely the Bauer internal mood scale (IMS) [206], the
profile of mood states (POMS) [207], the 16" items version of the
quick inventory of depressive symptomatology (QIDS) [208], and the
Young mania scale (YMS) [209]. Concerning the Italian versions of
these scales, IMS and YMS can be found in [210]. The Italian version
of POMS was published by M. Farné et al. [211]. Finally, the Italian
version of QIDS can be found in the web-page www.ids-qids.org/tr-
italian.html. From a data mining point of view, it is necessary to have
reliable mood labels associated to the points in the feature space. For
this purpose, an ad-hoc model of mood states describing all of the
possible states of the mental disorder was developed. During each
clinical visit, each patient was diagnosed as belonging to a class of
this model according to these clinical rating scales. The model is
shown in fig. 2.5. This model was built considering mania and de-
pression not as opposite sides of a unique dimension, as it sometimes
occurs in mood agendas, but as two different dimensions. In this way,
the linear combination of the two allows for the possibility of identi-
fying mixed states. Three levels with two degrees of severity for each
of the two dimensions in order to have an approximate evaluation of
the clinical severity were considered. This model has to be consid-
ered as a preliminary approach to categorize the mood states. In the
literature other works exploring the mood assessment (e.g. A. Mehra-
bian et al. [212]) consider other basic dimensions. However, this is a
preliminary clinical model that fits current needs since the purpose of
the PSYCHE project is to classify different clinical states. Moreover,
the algorithm for datamining, which is part of the PSYCHE project,
might allow for multiple classes with a higher number of subjects. The
model will be enriched with other dimensions (e.g. anxiety levels) as
the number of subjects considered for the analysis increases.
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Figure 2.5: The mania-depression model for bipolar mood assessment
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2.3 Portable and Novel Wearable Systems
for ANS Monitoring

It has been pointed out in chapter 1 how emotion elicitation is a cru-
cial step to effectively characterize the emotional or mood state of a
subject. Indeed, different kind of elicitation could generate different
ANS dynamics leading to lower generality properties of the proposed
emotion recognition system. Moreover, it is well known how the mon-
itoring system used for data collection could bias the effectiveness of
the eliciting stimuli and, therefore, the whole experiment. As a matter
of fact, nowadays, in research and in industrial world the requirement
of wearability is strongly increased.

To this aims, I hereby describe the development of three comfort-
able wearable systems able to acquire ANS signals even in a natural-
istic environment. More specifically, in the next sections the following
innovative wearable systems will be described: a glove based on tex-
tile electrodes able to acquire the EDR, the PSYCHE platform able to
acquire the ECG-HRV and RSP, and the HATCAM able to perform
the eye tracking in real-time along with the monitoring of the pupil
size variation. Finally, a standard portable instrumentation, i.e., the
BIOPAC System Inc., able to acquire all the mentioned peripheral
signals but the eye tracking is also described.

2.3.1 The Glove System

In this section, a system prototype consisting of a fabric glove, with
integrated textile electrodes placed at the fingertips, and a dedicated
electronic card including an analog front-end, a digital block, and
a wireless communication module for data transmission to a remote
Personal Computer (see Fig. 2.6) is reported. Due to manufactur-
ing reasons, the fabric glove incorporates textile electrodes at level of
the first four fingers, although only the first two have been tested for
experimental sessions. The analog front-end consists of a DC volt-
age source of Volt, a Wheatstone bridge followed by a set of filters
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and amplifiers aiming at reducing noise, limiting bandwidth, amplify-
ing and adapting the signal to the analog-to-digital converter (ADC)
dynamics. The digital block consists of a Texas Instrument micro-
controller, MSP430f169, which is an ultra-low power device. The
microcontroller is endowed with an integrated 12-bit ADC and an in-
tegrated Universal Synchronous Asynchronous Receiver Transmitter
(USART) for serial data transmission. The communication is realized
by XBee-PRO 802.15.4 OEM RF transmitter module, which imple-
ments the IEEE 802.15.4 networking protocol. Finally, data were
real-time transmitted to a remote PC.

Figure 2.6: Fabric glove including textile electrodes connected to a
dedicated electronic card.
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2.3.1.1 Textile Electrode Performance Assessment

Textile electrode performances were experimentally assessed accord-
ing to the scheme shown in Fig. 2.7. First, textile electrodes were
characterized identifying the current-voltage curve and evaluating the
electrode impedance in terms of magnitude and phase in the band-
width of the EDR. Afterwards, they were used together with standard
electrodes Ag/AgCl in order to acquire simultaneously EDRs from
them and make a quantitative comparison. A suitable electrochemi-

Experimental
Session \
Textile-Electrode Textile-based EDR
Characterization Validation

Current- Trans-Surface “Textile vs.
Voltage electric Ag/AgCl”-
Characteristics impedance based EDRs

Figure 2.7: Block diagram of textile electrode performance assess-
ment.

cal cell was realized to characterize textile electrodes. It is comprised
of a textile and a reference electrode immersed into a solution of potas-
sium chloride (KCI) 0.1M. The cell structure is shown in Fig. 2.8. The
two faces of the electrodes are connected to an external measurement
device. Electrodes are placed at a distance of 3 millimeters and im-
mersed into 0.015 liters of solution. Textile electrodes were provided
by Smartex s.r.l., and have been already cited and described in lit-
erature [41,213|. They are made up of 80% polyester yarn knitted
with 20% steel wire, with a dimension of 1z1 cm (see Fig. 2.9). The
reference electrode is represented by a standard platinum electrode
of 3z4 cm (see Fig. 2.10). The reference electrode size was chosen
to be larger than the textile electrode in order to minimize border ef-
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Figure 2.8: Electrolytic cell.

fects. The current-voltage characteristics were identified by applying

Figure 2.9: Textile electrode.

a varying source voltage and determining the current flowing through
the cell. This measurement is performed with the aim of investigating
the electrode reaction due a potential drop applied between sensing
and reference electrodes. In particular, an offset-free voltage varied
from 1 to 20 peak-to-peak Volts, with an increasing step of about 1.2
volts, at frequency of about 0.1 Hz, has been applied. Experimental
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Figure 2.10: Platinum Reference Electrode.

measurements were fitted by using the Butler-Volmer equation, which
is defined as follows:

= o (e — i) )

where j is the electrode density current [Am?], jo is the exchange
density current [Am?], i) is the over-potential [V olt], T is the absolute
temperature [K], F' is the Faraday constant, R is the universal gas
constant, z is the valence of the ion, and « is the transfer coefficient.
By analogy with Ohm Law (V' = IR) and for small overpotentials
the gradient of the relation between 1 and j can be interpreted as
the equivalent resistance per unit area of the charge-transfer process
on the electrode and which is called the charge transfer resistance
Ry [214]. Ry can be obtained as follows:

_Onp TR
0 azFj

Ry (2.2)
In order to evaluate the agreement of our experimental measure-
ments with the Butler-Volmer equation, a nonlinear least square fit-
ting method was used. The goodness of fit was evaluated by calcu-
lating the well-known statistic index Adjusted R-square.

The electrode was also characterized by estimating the trans-surface
electric impedance. This measurement is used to investigate how the
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phase and amplitude of the electrode impedance change in the fre-
quency domain. The impedance of electrodes in ionic liquids has been
currently investigated experimentally and theoretically [215]. Fig.
2.11 shows an equivalent circuit that models the relevant phenomena.
In our experimental characterization, the same electrochemical cell is
used with the same solution. The amplitude of the voltage applied
between the electrodes was fixed while its frequency was varied in the
range of the EDR bandwidth (from 0.01 Hz to 2.1 Hz with a step of
about 0.13 Hz). In this equivalent circuit, Cy is the interface capac-
itance per area unit, which consists of the series combination of the
Helmholtz double layer and the diffuse layer where 7, is the War-
burg impedance, Ry is the charge-transfer resistance and R, is the
spreading resistance. The Warburg impedance is reported as follows:
ws k

2

where A is the electrode area and k [stécm ] is constant. The low

frequency of EDRs implies, according to previous works [216], that
both Warburg and interface capacitance terms are important for this
characterization. All the experiments were carried out at 25°C' and

£y

Zw
Figure 2.11: Equivalent electric model of electrode

pressure of 1 atm. The electric circuit developed for the experimental
characterization is illustrated in Fig. 2.12, where V}, is the generic
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voltage generator and R, is a resistance of 5602 connected in series
to the cell. The voltage output was acquired using an instrumenta-
tion amplifier (INA118) with an input impedance of about 10'3(Q.
Raw data were acquired by using a 6115S5-series National Instrument
acquisition board and processed by a personal computer.

Resl
Ins - Amp

Acquisition Block

Figure 2.12: Electric circuit used for the impedance characterization
of the textile electrode

2.3.1.2 Textile-based EDR Validation

Textile-based EDR was further validated by simultaneously acquiring
EDR through textile electrodes and standard Ag/AgCl electrodes.
Both signals were acquired using the MP35 Biopac system with a
sampling frequency of 1 KHz. It was found in literature that skin
conductance activity is greater at distal than medial site of fingers
and is attributable to a greater number of active (open) sweat glands
at distal site [217]. In order to correctly compare the EDRs from
standard and textile electrodes, they were acquired simultaneously.
Moreover, to minimize artifacts due to the different concentrations
of sweat glands at the distal and medial sites, electrodes were placed
in a crossed configuration, as shown in Fig. 2.13. Both signals were
then filtered with a 2.5 Hz low-pass finite impulse response (FIR) filter
approximated by a Butterworth polynomial. In order to consider only
the variation of both textile and standard EDRs, data were normalized
to the maximum value. The comparison was performed on the EDRs
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Textile .
s.m\

Figure 2.13: Electrode placement: with orange standard electrodes
(case 1); with blue textile electrodes (case 2)

by means of a non-parametric correlation coefficient due to the non-
gaussianity of both tonic and phasic signals. For this comparison,
Spearman correlation [218] was chosen. Moreover, a ten-level wavelet
decomposition was applied in order to obtain tonic and phasic signals
using the Daubechies 5 function. The approximation at level 1 is
tonic, and the details from levels 2 to 8 are phasic.

2.3.2 The PSYCHE System

The PSYCHE system is a personalized, pervasive, cost-effective, and
multi-parametric monitoring system based on textile platforms and
portable sensing devices for the long-term and short-term acquisi-
tion of data from a selected class of patients affected by mood dis-
orders. It is designed and currently used in the frame of a Euro-
pean project PSYCHE, which is funded in the seventh framework
programme (FP7).

This project proposes a novel approach for bipolar disease man-
agement based on the paradigm that quasi-continuous monitoring in
a natural environment provides parameters, indices and trends that
will be used to assess mood status, support patients, predict and an-
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ticipate treatment response in its early phase, prevent relapse and to
alert physicians in the case of a critical event. The main goal of the
PSYCHE project is to find out possible correlations between the pat-
terns of physiological /behavioral signs and mood fluctuation over long
term monitoring. The main novelty of this project is the number of
features considered during signal processing, as opposed to previous
work carried out in this field [186-190] where only a few parameters
were included. Extracted from linear and non linear methods, these
features were investigated for finding possible relationships between
physiological signs and mental disorders. This approach increased the
sensitivity and the specificity of the system functionality and therefore
the success rate.

Patients are asked to wear the sensorized shirt while performing
daily activities at home or elsewhere, while the aforementioned phys-
iological signals were monitored and stored in a microSD card. After
about 18 hours of monitoring, patients are asked to bring the system
back and the recorded data were manually sent to a central database.
The final version of the PSYCHE system will provide an automa-
tized storage process by means of a smartphone or a tablet personal
computer without the involvement of a technician. Data will be auto-
matically sent to a remote server where the processing and the data-
mining procedures will be performed. Currently, other physiological
signals as well as behavioral parameters are taken into account as part
of the PSYCHE project (e.g voice, activity index, sleep pattern alter-
ation, electrodermal response, biochemical markers), but they are not
considered in this thesis. Moreover, the change in the diurnal vari-
ations of these measurements (circadian rhythms) may further allow
achieving a better classification pattern and assessing other features
in bipolar patients including response to therapy and proneness to
relapse. A user-friendly device such as a smartphone for monitoring
environmental information such as light, temperature and noise will
further complete the PSYCHE platform. It is worthwhile pointing out
that the experimental protocol undertaken in this study is novel with
respect to the standard practice. A biochemical and psychological
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assessment was performed during the hospital admission. Since this
thesis refers to the biomedical signal processing part of the PSYCHE
project, the biochemical assessment was not considered. The experi-
mental results showed in chapter 4 demonstrated that the PSYCHE
platform is able to recognize the mood state of the bipolar patients
once the patients undergo an initial training session of a few acquisi-
tion sessions.

2.3.2.1 The Wearable Monitoring Platform

As mentioned before, the PSYCHE platform is the core sensing sys-
tem of the PSYCHE project. In this version, the core sensing sys-
tem of the project, the PSYCHE monitoring platform, consisting of
a comfortable, textile-based sensorized t-shirt, embedded with fabric-
based electrodes that can acquire ECG and RSP signals was used.
More specifically, the inter-beat interval series (hereinafter RR) ex-
tracted from the ECG, i.e. the series constituted by the distance of
two consecutive peaks of the ECG, and the respiratory dynamics were
considered in the analysis strategy.

Figure 2.14 shows the wearable system prototype that employs
textile electrodes to detect the ECG and a piezoresistive sensor is
used to acquire the respiration signal. In addition, a three axial ac-
celerometer is integrated into the system to track the movement. The
technical specifications of the system are reported in table 2.2.
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Figure 2.14: Wearable system prototype
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Table 2.2: Technical specifications of the wearable monitoring plat-

form (provided by Smartex s.r.1.)

Characteristics

Power supply

Litium battery (life up to 24 hours)

Data storage

MicroSD card

Data communication

Micro USB, bluetooth

Electroca

rdiogram

Measurement principle

Bio-potentials on the thorax

Sensors

Textile electrodes

Number of leads

Input auto configurable analog filter

0.67Hz to 40Hz

Analog-to-digital conversion

16 bits

Sampling rate

250 Hz

Respirati

on signal

Measurement principle

Piezoresistive method

Range of electrical resistance

20k€2 to 10M Q2

Bandwidth DC to 10Hz
Resolution 12 bits
Sampling rate 25 Hz
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2.3.3 HATCAM - Wearable Eye Gaze Tracking
System

The system here proposed, HATCAM, is a new wearable and wireless
eye tracking system which can be tailored to both adults and children.
It is comprised of only one lightweight camera able to capture, by
means of a mirror, the eyes of the subject and the scene in front of
him, simultaneously. It exhibits the following proprieties:

1) wearability;

2) minimal obtrusiveness;

3) eye tracking and pupillometry capabilities;

4) lightweight below 100 g;

5

wireless communication.

)
)
)
)

The system configuration is shown in fig. 2.15. In detail, the system

Cameratilt

(
(
Amtilt el 7

ElasticBand

Mirrortilt \

Mirror

Figure 2.15: HATCAM configuration.

is comprised of a wireless CMOS camera (CP294) having low weight
(20g), low size (2zx2z2c¢m), and an A/V transmitter up to 30m of
distance. The camera has a resolution of 628x586 pixels with F'2.0,
D45° optic, and 25 frames per second (f.p.s.). The original lens of the
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camera was removed and substituted with a wide-angle-lens without
IR filter. This operation allows enlarging the view angle and acquiring
infrared components, which emphasize the contrast between pupil and
iris. This system is able to capture simultaneously, without latency,
the visual scene in front of the subject and the position of his eyes.
This is achieved using a mirror (420.6¢m) placed on a shaft linked to
the head (see fig. 2.15). Tilt and shaft of the mirror and the camera
orientation can be tailored to the forehead profile of the user (see
fig.2.15).

Figure 2.16: Example of a single frame captured by the camera. The
rectangular area marked up in red represents the ROI.

Figure 2.16 shows how the HATCAM is able to acquire simulta-
neously the eyes of the user and the scene in front of him using the
mirror. Eye extraction procedure was constituted of visual inspection
of the first video frame, in which a rectangular area including the eye
was manually selected (see fig. 2.17 and 2.18). This region is called
Region Of Interest (ROI). Since the system mounted on the head, the
ROI did not change throughout the experiment. In addition, only the
red-image-component (see fig. 2.18a) is converted in gray scale (see
fig. 2.18b) and used as input to the other processing blocks, as this
component is specifically helpful in enhancing the contrast between
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pupil and background.

Figure 2.17: Example of a single frame captured by the camera. The
rectangular area marked by red represents the ROI.

Figure 2.18: Red component of the ROI.

2.3.3.1 Photometric normalization technique

The purpose of the illumination normalization is to reduce or elimi-
nate some variations in the captured eyes due to different conditions
of illumination. It normalizes and enhances the eye image to im-
prove the recognition performance of the system. For this purpose,
the Discrete Cosine Transform (DCT') has been proposed by Chen et
al. [219]. This approach is based on the Retinex theory (from the
words "retina” and " cortex”, suggesting that both eye and brain are
involved in the processing) developed by Land, [220]. This theory is
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based on color constancy assumption which ensures that the perceived
color of objects remains relatively constant under varying illumination
conditions. Land and his colleagues assume that the stimulus is not
the result of the light source and surface reflectivity only, but that
the visual system processes the stimulus, integrating the spectral ra-
diance and generating a ratio of integrated radiance of any region of
the scene with that of the brightest region. This stimulus is called
lightness. This model eliminates the effect of a non uniform illumina-
tion and is completely independent of any a-priori knowledge of the
surfaces reflectance and light source composition. According to this
theory, the image intensity I(x,y) can be simplified and formulated
as follows:

I(z,y) = R(z,y)L(z,y) (2.4)

where R(z,y) is the reflectance and L(z,y) is the illuminance at each
point (z,y). The luminance L is assumed to contain low frequency
components of the image while the reflectance R mainly includes the
high frequency components of the image. The DCT technique com-
pensates for illumination variations by truncating the low frequency
components of the DCT in the logarithm domain. In the logarithm
domain the theory is formulated as follows:

logl(x,y) = logR(z,y) + logL(z,y) (2.5)

Fig. 2.18c shows the output of the DCT algorithm applied to gray
scale image reported in fig. 2.18b.

2.3.4 BIOPAC: Set of Physiological Signals and
Instrumentation

When wearability is not a fundamental requirement of the experimen-
tal protocol, standard portable instrumentation can be used instead
ofter giving better performance in terms of signal-to-noise ratio, res-
olution, sampling frequency, etc. The modules able to acquire phys-
iological signals by using the BIOPAC MP150 are described in this
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section: ECG, RSP, and EDR. The proposed sampling rate is set to
250 Hz for all signals.

2.3.4.1 Electrocardiogram

ECG is acquired by means of the ECG100C Electrocardiogram Am-
plifier from BIOPAC inc., which records the D2 (II) lead ECG sig-
nal (bandwidth: 0.05-35 Hz) connected with pregelled Ag/AgCl elec-
trodes placed following Einthoven triangle configuration. In the pro-
cedures reported in this thesis, ECG signal was used to extract the
HRV [95], which reflects the sympathetic-parasympathetic balance.

2.3.4.2 Respiration

The dedicated module of BIOPAC MP150 used to record the respi-
ration activity is RSP100C Respiration Amplifier with the TSD201
sensor, which is a piezo-resistive sensor with the output resistance
within the range 5+ 125 KOhm and bandwidth of 0.05 =10 Hz. This
piezoresistive sensor changed its electrical resistance if stretched or
shortened, and it was sensitive to the thoracic circumference varia-
tions occurring during respiration [221].

2.3.4.3 Electrodermal Response

In the literature, several approaches are used to measure this sig-
nal. In this section, a small continuous voltage applied to the skin is
proposed to induce current which is measured through two Ag/AgCl
electrodes positioned at the index and middle fingertips of the non-
dominant hand. The ratio between voltage drop and induced current
represents the skin electric impedance.
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Chapter

Methodology of Advanced Signal
Processing and Modeling

In this chapter, the signal processing and modeling methodologies
used for the analysis of ANS signals are reported. The main objective
of such methods is to extract reliable and effective features, in a mono-
variate or multivariate fashion, able to characterize the emotional or
mood status of a subject which can be induced by an external stimu-
lus. All the methodologies reported here are suitable to be applied to
data collected with standard portable or wearable systems using the
procedures described in chapter 2. Given some physiological hints,
the current literature (see chapter 1), and the comparative experi-
mental results reported in the next chapter, a crucial point on the
methodology is represented by nonlinear analysis.

It has been well-accepted by the scientific community, in fact, that
physiological models should be nonlinear in order to thoroughly de-
scribe the characteristics of such complex systems. For instance, on
the cardiovascular system, the complex and nonstationary dynam-
ics of heartbeat variations have been associated to nonlinear neural
interactions and integrations occurring at the neuron and receptor
levels, so that the sinoatrial node responds in a nonlinear way to the
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changing levels of efferent autonomic inputs [44].

Whether a linear or nonlinear model is used, several limitations
occur while using standard and nonlinear techniques. For example, an
interpolation step is required to cope with the intrinsic discrete and
unevenly spaced heartbeat intervals. In previous works [45,200-202],
it has been demonstrated how it is possible to estimate heartbeat dy-
namics even in short recordings under nonstationary conditions by
means of the point process theory, a powerful statistical tool able to
characterize the probabilistic generative mechanism of physiological
events. The unevenly spaced heartbeat intervals are represented as
observations of a state-space point process model defined at each mo-
ment in time, thus allowing to estimate instantaneous HR and HRV
measures [45,200] without using any interpolation method.

Such a probabilistic approach is here proposed in a revised nonlin-
ear version, and therefore it is able to provide novel instantaneous non-
linear features coming from the dynamic High Order Spectra (HOS).

3.1 Overall Methodology

An overview of the general signal processing methodology here pro-
posed is illustrated in Fig. 3.1. After the emotional elicitation, all
ANS signals are preprocessed, i.e. segmented and filtered. After-
wards, the most significant features are extracted and, then, reduced
using the Principal Component Analysis (PCA) method. Finally, the
feature set is classified using a machine learning methods [222].

More specifically, for each ANS biosignal, monovariate analyses
can be applied in order to extract significant features using both
standard and nonlinear techniques. Moreover, coupling measures by
means of a bivariate analysis can be extracted from the RR interval
series along with the RSP (see Fig. 3.2).

The general scheme proposed in Fig. 3.1 can be further modified
in order to develop an effective mood recognition system by using,
for instance, the PSYCHE platform to acquire ECG and RSP (see
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Figure 3.1: Overall block diagram representing the acquisition and
processing chain.

Fig. 3.3). In this case, a further pre-processing step able to robustly
identify and discard motion artifacts is included (see Fig. 3.3).

Finally, an overall block diagram of the proposed recognition based
on point-process theory system is illustrated in Fig. 3.4. As usual, the
features obtained through the model are processed for classification.
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Figure 3.2: Overall block diagram representing specific monovariate
and bivariate analyses in the processing chain.
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Figure 3.3: Block diagram representing the acquisition and processing
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3.2 Preprocessing

3.2.1 Movement artifact removal

Usually, signals acquired by wearable systems are strongly affected
by movement artifacts because the ECG textile electrodes could lose
contact with the skin during body movement. Therefore, an effective
Movement Artifact Removal (MAR) algorithm must be applied to the
signals before extracting the features. For this purpose, a simple and
robust automatic MAR algorithm based on the four steps illustrated
in figure 3.5 is developed. First, the ECG is filtered within the specific
frequency band in which the movement artifacts were strongest, i.e.
from 0.1 Hz to 4 Hz [223]. Then, the maximum and the minimum

FIR zero phase
band-pass 0.1-4 Hz

{|Max envelope| + | Min envelope|}/2

Smoothing (W=fs/2)

Thresholding
(over the 95t percentile)

Figure 3.5: Movement artifact removal algorithm.
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envelopes of the filtered data are calculated in order to extract the
smoothed mean envelope. Movement artifacts are finally detected
by means of simple statistical thresholds, i.e. 95" percentile, above
which the signal is considered affected by artifacts. The parts of the
signals with artifacts must be always discarded for further analysis.

3.2.2 Electrocardiogram and Heart Rate Variabil-
ity

First, the ECG is pre-filtered through a Moving Average Filter (MAF)
in order to extract and subtract the baseline. The frequency response
of an M point moving average filter is expressed as follows:

Hf]] = sin (M f)

= e (3.1)

Accordingly, I propose M = 500, which corresponds to a duration of
2 seconds, in order to obtain a cut-off frequency of 0.5H z, approxi-
mately. This choice is justified by the guidelines provided by [224],
suggesting to use a low-pass filter with a cut-off frequency below 0.67
Hz. Since HRV refers to the change over time of the Heart Rate
(HR), a QRS complex detection algorithm could be used. The choice
depends on the characteristics of the specific ECG signal [225], e.g.
signal-to-noise-ratio (SNR), signal power, ECG leads. I propose an
automatic algorithm developed by Pan-Tompkins [226]. This algo-
rithm allows the extraction of each QRS complex and detects the
corresponding R-peak. Hence, the RR interval (tg_g) is defined as
the interval between two successive QRS complexes. Nevertheless,
not all of the RR intervals obtained by the automatic QRS detec-
tion algorithm are correct. Any technical artifact (i.e. errors due to
the R-peak detection algorithm) in the RR interval time series may
interfere with the analysis of these signals. Therefore, an artifact
correction is needed. A proper piecewise cubic spline interpolation
method [227,228| can be adopted. Besides the mentioned technical
one, physiological artifacts could be also present in the analyzed RR
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series. They include ectopic beats and arrhythmic events. A check-
ing by visual inspection for physiological artifacts should be always
performed and only artifact-free sections must be included in further
analysis. Another common feature that can significantly alter the
analysis is the slow trend within the analyzed RR series. In fact,
slow non-stationarities can be present in HRV signals and should be
considered before the analysis [229]. In this thesis, the detrending
procedure was implemented by means of an advanced method orig-
inally presented in [230]. This approach was based on smoothness
priors regularization. The interval between two successive QRS com-
plexes is defined as the RR interval (tg_g) and the heart rate (beats
per minute) is given as:

R = (3.2)

tr—R

As heart rate is a time series sequence of non-uniform RR intervals,
this signal is further re-sampled at 4 Hz according to the algorithm of
Berger et al. This algorithm is based on using an arbitrary frequency
at which the heart rate samples will be evenly spaced in time, and
using a local time window defined at each heart rate sample point
as the time interval extending from the previous sample to the next.
Successively, the number of RR intervals (including fractions of them)
that occur within this local window are counted. The value r; of the
heart rate at each sample point is taken to be r; = f, -n;/2 where f,
was the sampling frequency of the resulting heart rate signal and n;
was the number of RR intervals falling into the local window centered
at the iy, sample point [231].

3.2.3 Respiration

In this phase, the respiratory signal is treated in order to remove
the baseline and reject the movement artifacts. Baseline removal is
performed by means of MAF technique similarly to the ECG signal.
Moreover, it is filtered by means of a tenth order low-pass Finite
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Impulse Response (FIR) filter with a cut-off frequency of 1 Hz ap-
proximated by Butterworth polynomial.

3.2.4 Electrodermal Response

EDRs is filtered by means of a 2.5 Hz low-pass FIR filter approximated
by Butterworth polynomial. As reported in the literature, I consider
that the bulk of the energy of the tonic component of the signal is in
the frequency band from 0 to 0.05 Hz, and the energy of the phasic
component is in the band from 0.05 to 1 — 2 Hz [232]. Therefore,
a Wavelet filtering, which is one of the best available non-stationary
data analysis tool, is chosen. In detail, twelve levels wavelet decom-
position can be applied in order to obtain tonic and phasic signals
using Daubechies 5 function. Approximation at level 1 is the tonic
component and details are the phasic component.

3.2.4.1 EDR Deconvolution analysis

The EDR signal is characterized by a slowly varying component called
tonic component (i.e. Skin Conductance Level, SCL) and a super-
posed phasic component (Skin Conductance Response, SCR).

SCR is strictly related to a given stimulus and is defined as the
part of the signal which arises within a predefined response window
(1 — 5s after stimulus onset), satisfying a minimum amplitude crite-
rion (0.054S), [233,234]. SCR is characterized by a short rise time
followed by a slower recovery time. Generally, in the case of an inter-
stimulus interval shorter than the SCR recovery time, an overlapping
of consecutive SCRs is visible. It results in one of the main SC is-
sue, since it does not allow a good estimation of responses as well as
the signal division into its phasic and tonic components. In order to
overcome the latter issue, I analyzed the SC by means of a modeling
technique based on the deconvolution process, [235]. This method
allows estimating the SudoMotor Nerve Activity (SMNA) which is a
part of the ANS. More specifically, the ANS through the SMNA con-
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trols the eccrine sweat glands activity. The relation between SMNA
and SCR is modeled by the following biexponential Impulse Response
Function (IRF) also called Bateman function [236:

t

IRF(t) = (77 — e 7) - u(t) (3.3)

where u(t) is the stepwise function. The result of deconvolution be-
tween SC and IRF is defined as driver function which describes the
SMNA behavior. The Bateman function is directly derived from bi-
compartment model of the diffusion process of the sweat through the
sweat ducts (first compartment) and the stratum corneum (second
compartment) [237].

Before applying the deconvolution analysis, EDR is filtered with
a low pass zero-phase forward and reverse digital filter [238,239] with
a cutoff frequency of 2 Hz, to limit the frequency bandwidth of the
EDR signal. The decomposition of the SC in its components can be
performed by means of Ledalab 3.2.2. software package for MATLAB
[240]. In detail, SC data is described [235] as follows:

SC = (DRIV ERyonic + DRIVER a5ic) ¥ IRF (3.4)

The sum of the two driver functions is achieved by a deconvolution
between the skin conductance data and the impulse response function.
According to the eq. 3.4 the phasic driver is obtained subtracting
the tonic from the deconvoluted signal. The hypothesis underling
SC component behaviors is that tonic activity is observable in the
absence of any phasic activity [241|. Therefore, the tonic component
is obtained by the application of a smoothing Gauss window of 200ms
and a peak detection algorithm in order to find the peaks over a
threshold of 0.2uS (i.e. all the peaks over the threshold are identified
as a part of the phasic response), and the points under the threshold
are considered as part of the tonic driver. In order to estimate the
continuous tonic driver signal, the points detected are used to build
a 10-s spacing grid. Then, the grid points are interpolated with a
cubic spline fitting method. As mentioned above, the phasic driver
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Figure 3.6: Example of decomposition analysis. In the upper figure
the SC signal before the deconvolution analysis is reported. The lower
figures report the deconvoluted tonic and phasic driver signals during
resting and elicitation phase.

is the result of the subtraction between the continuos tonic and the
deconvoluted signal. As shown in Fig. 3.6, the original SC signal and
the two deconvoluted tonic and phasic driver signals, during resting
and elicitation states, are reported.
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3.3 Feature sets

Sets of features can be extracted in different ways. In this thesis, I
propose two big categories of features: the first one consists of most
standard and commonly used features, and the second category is
constituted of features extracted from nonlinear dynamic techniques.

3.3.1 Standard Feature Set

Standard features are derived from the time series, statistics, fre-
quency domain, geometric analysis for the whole set of physiological
signals. In the following sections these methods are described in de-
tail.

3.3.1.1 Heart Rate Variability

Heart rate variability (HRV) [42,95] is concerned with the analysis
of the time intervals between heartbeats. Several features can be ex-
tracted from this signal, both in the time and frequency domain. Time
domain features include statistical parameters and morphological in-
dexes. Defining, e.g., a time window related to the Normal-to-Normal
beats (NN), several parameters are calculated, such as simple MNN
and SDNN, which are the mean value and the standard deviation of
the NN intervals, respectively. Moreover, the root mean square of suc-
cessive differences of intervals (RMSSD) and the number of successive
differences of intervals which differ by more than 50 ms (pNN50 %
expressed as a percentage of the total number of heartbeats analyzed)
can be calculated.

Referring to morphological patterns of HRV, the triangular index
can be calculated. It is derived from the histogram of RR inter-
vals into NN window (TINN) in which a triangular interpolation was
performed. Triangular interpolation approximated the RR interval
distribution by a linear function and the baseline width of this ap-
proximation (base of the triangle) is used as a measure of the HRV

75



Methodology of Advanced Signal Processing

index. In the literature, TINN is known to be correlated with SDNN
as well as it is highly insensitive to artifacts and ectopic beats, because
they are left outside the triangle.

The time domain methods are simple and widely used, but are un-
able to discriminate between sympathetic and para-sympathetic activ-
ity (although RMSSD can be considered to reflect mainly parasympa-
thetic activity, since it is computed as differences between successive
beats), while an appreciable contribution is given by the frequency do-
main parameters. All features extracted in the frequency domain were
based on the Power Spectral Density (PSD) of the HRV. Methods for
the estimation of PSD may be generally classified as non-parametric
(like Fourier Transform) and parametric (model based) method. In
this thesis, I adopted the Auto-Regressive (AR) model to estimate
the PSD of HRV in order to provide better frequency resolution than
nonparametric method. Furthermore, conventional frequency trans-
formation based on the Fourier transform technique are not very suit-
able for analyzing non-stationary signals. Considering HRV as an
output process z(n) of a causal, all-pole, discrete filter whose input is
white noise, the AR method of order p is expressed as the following

equation:
p

2(n) = —Za(k)z(n —k)+w(n) (3.5)
k=1
where a(k) are AR coefficients and w(n) is white noise of variance
equal to o2.
AR(p) model is characterized by AR parameters {a[1], a[2], ..., a[p],
In this thesis, the Burg method is used to get the AR model param-
eters, according to the results presented by Akaike [242,243]. This
method provides high resolution in frequency and yielded a stable
AR model. The power spectrum of a p'* order AR process is:

B,
PEY(f) = -

zZ

Ay (3:6)

where Ep is the total least square error and f, is the sampling fre-

o (k)e—i2n Tk 2
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quency. Three main spectral components are distinguished in a spec-
trum calculated from short-term recordings: Very Low Frequency
(VLF), Low Frequency (LF), and High Frequency (HF) components.
It is well known, in the literature, that the distribution of the spec-
tral power changes follow the ANS modulation. However, the VLF
band is usually < 0.04 Hz and is almost never considered as an ANS
marker because it is related more to thermal regulation [244]. The
LF band is centered in 0.1 Hz (range: [0.04,0.15]Hz) and is mainly
due to the arterial baroreceptor modulation. Current literature [42]
suggests that the LF component of the power spectrum is strongly
affected by the sympathetic system. The HF components (>0.15 Hz)
are also called respiratory components. A common viewpoint in the
literature is that the HF peak can be considered as an index of the
vagal activity [245]. However, available studies report the importance
of HF and LF components and how their analysis per se cannot af-
ford a precise delineation of the state of sympathetic activation [246].
Therefore, in addition to VLF, LF, and HF power, the LF and HF
power in normalized units along with, especially, the LF/HF Ratio
are proposed to give more information about the sympatho-vagal bal-
ance [42].

3.3.1.2 Respiration

By defining a time window W, standard RSP feature set is com-
prised of the ReSPiration Rate (RSPR), Mean and Standard Devia-
tion of the First (MFD and SDFD, respectively) and Second Deriva-
tive (MSD and SDSD, respectively), i.e. variation of the respiration
signal, Standard Deviation of the Breathing Amplitude (SDBA) and
several statistical parameters. Respiration rate is calculated as the
frequency corresponding to the maximum spectral magnitude. Statis-
tical parameters are calculated in order to characterize the differences
between inspiratory and expiratory phases (range or greatest breath).
These parameters include the maximum (MAXRSP) and the min-
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imum (MINRSP) value of breathing amplitude and their difference
(DMMRSP). Other measures used to quantify the asymmetries be-
tween the two respiratory phases are obtained from the High Order
Statistics (HOS). In detail, I calculated the third order statistics (i.e.
Skewness), which takes into account the quantification of the asymme-
try of the probability distribution, and the fourth order statistics (i.e.
Kurtosis), which is a measure of the "peakedness" of the probability
distribution. Moreover, another parameter is the Standard Error of
the Mean (SEM), which is calculated as follows: [SEM = %] where
o is the standard deviation and n is the number of points within the
window W. Concerning features in frequency domain, spectral power
in the bandwidths 0 — 0.1Hz, 0.1 — 0.2 Hz, 0.2 — 0.3 Hz, 0.3 — 0.4 Hz
can be also calculated [247].

3.3.1.3 Electrodermal Response

Standard methods for both tonic and phasic EDR features include
the same statistics applied to the RSP signal above described: rate,
i.e. central frequency, mean and standard deviation of the amplitude
and statistical parameters, i.e. skewness, kurtosis, SEM and mean
and standard deviation of the first and second derivative [158]. More-
over, further features are extracted only from the phasic component of
EDR. More specifically, the maximum peak and the relative latency
from the beginning of the image, Mean of Absolute of Derivative
(MAD), Mean of Derivative for Negative Values (MDNV) only (mean
decrease rate during decay time), Proportion of Negative Samples in
the Derivative vs All Samples (PNSDAS), and spectral power in the
bandwidths 0 — 0.1 Hz, 0.1 — 0.2 Hz, 0.2 — 0.3 Hz, 0.3 — 0.4 Hz) [247].
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3.3.2 Features from Higher Order Spectra

In addition to the above-mentioned standard techniques, for all the
acquired signals, High Order Spectra (HOS) are also investigated.
HOS are defined as the Fourier transform of moments or cumulants
of order grater than two. In particular, I propose the two dimensional
third order cumulant Fourier Transform, called Bispectrum [248,249|:

+00
B(fla f2) - ff C3 (tl, tg)expij(QﬂfltlJrQﬂthQ)dtldtg (37)

t1,tg=—00

with the condition:

|wil, Jws| < 7 for w =27 f

The c3(ty,t9) variable represents the third order cumulant, which is
defined as follows:

Cg(tl,tg) = E{s(tl)s(tg)s(tl + tQ)} (38)
where s(t) is a square integrable stationary signal with zero mean.
Thus, the bispectrum measures the correlation among three spec-
tral peaks, wy,ws and (w; + wy) and estimates the phase coupling.
Sometime, the bispectrum is unable to distinguish between pairs of
frequencies strongly coupled and pairs of frequency weakly coupled
but at high frequencies, because their bispectrum values are similar.
In order to overcome this limitation, it is possible to evaluate the
bicoherence function, according to Brillinger et al. [250].

Buolfi, fo) = ——— DU 1) (3.9)
VP(F)P(f)P(fi + f2)
where P(f) is the estimated power spectrum of the s(t) signal. It
has been demonstrated that the bispectrum has several symmetry
properties [249] which divide the (fi, f2) plane in symmetric zones:
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B(fi, f2) = B(f2, f1) (3.10)
B(f1, f2) = B (= f2, = f1) (3.11)
B(fi, f2) = B* (= fi1,—f2) (3.12)
B(f1, f2) = B(—f f2,f2) (3.13)
B(fi, f2) = B(fh — f2) (3.14)
B(f1, f2) = B(=fi — f2,f1) (3.15)

B(f1, f2) = B(fa, — f2) (3.16)

The bispectrum of a real signal is umquely defined by its values in
the triangular region of computation, 0 < f; < fo < fi+ fo < 1,
provided there is no bispectral aliasing [250]. The bispectral feature
set consisted of: Mean and Variance of Bispectral Invariants (MBI
and VBI), i.e. mean and variance of P(a), Mean Magnitude (M,,can)
of the Bispectrum (MMB) and the Phase Entropy P. (PEB), Normal-
ized Bispectral Entropy P; (NBE) and Normalized Bispectral Squared
Entropy P, (NBSE). All the features were calculated within the re-
gion defined in fig. 3.7, according to results presented by Chang et
al. [251], and Chua et al., [252, A16].

Specifically, let me introduce the bispectral parameter, P(a), which
is invariant to translation, dc-level, amplification, and scale. It is de-
fined as follows:

P(a) = arctan ( f((g) (3.17)

where:

Ho)= L)+ il = [ Blhep)ih  (318)
f1=0*
for0O<a<1landj=+v—-1
where a is the slope of the straight line on which bispectrum is inte-
grated. In this thesis, the mean and variance of P(a) are considered.
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Figure 3.7: Bispectrum invariants from [252]

Also Mean magnitude and phase entropy [251] are calculated within
the region defined in fig. 3.7.
Mean magnitude is defined as:

Mmean: %Z|B(f17afl)‘ (319>

and phase entropy is:
P Y p(Wn)log(p(¥,)) (3.20)
p(W) = 7 S 1@ (B af) ) (3.21)

U, ={®|—7+2m/N < ¢ < —m+2r(n+1)/N} (3.22)
withn =0,1,..,N —1;

L is the number of points within the region in fig. 3.7, ® refers to
the phase angle of the bispectrum, €2 refers to the space of the defined
region in fig. 3.7, and 1(.) is an indicator function which is equal to
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1 when the phase angle ® is within the range of bin ¥,, in equation
3.22.

The mean magnitude of the bispectrum can be useful in discrim-
inating between processes with similar power spectra but different
third order statistics. However, it is sensitive to amplitude changes.

The Normalized bispectral entropy (P;) is equal to:

Pr==> pulog(p) (3.23)

where:

_ ‘B(fla le1)|
= S 1B afy)) (3:24)

and 2 is the region as in fig. 3.7.

Normalized bispectral squared entropy (P) is calculated as:
Py =— anlog(pn) (3.25)

where:

_ \B(fl,af1)|2
P SalB(fr )P (320

and (2 is the region as in fig. 3.7.
In addition, the sum of logarithmic amplitudes of the bispectrum
can be computed as [253]:

Hbis, (t) = Y log(|Bis(fi, f2,t)]) (3.27)
Q

82



3.3 Feature sets

As well-known, the sympatho-vagal linear effects on HRV are mainly
characterized by the LF and HF spectral powers [42, 245, 254-256].
Through bispectral analysis, it is possible to further evaluate the non-
linear sympatho-vagal interactions by integrating |B(fi, f2)| in the
appropriate frequency bands. Specifically, it is possible to evaluate:

015 0.15
/ / Bis(fy, fo. t)dfudfy (3.28)
=0t fa=
015 04
LH(t) = / / Bis(f1, f2, t)dfidf (3.29)
J1=0F fo=0.15+

0.4 0.4

- [ [ BsGuhodid, (330

f1=0.15% fo=0.15"F

3.3.3 Pupillometry and Gaze Point

This section deals with the processing techniques used to detect the
center of the eye and how its movements are mapped into the image
plane. This technique is often referred to as video oculography and
involves visible spectrum imaging. It is a passive approach that cap-
tures ambient light reflected from the eye. The mounted camera is
modified to acquire also the IR components of natural light. There-
fore, the system keeps the advantages of IR illumination in increasing
the contrast between pupil and iris, and at same time preventing any
possible injuries due to artificial IR illuminators, which are not re-
quired because of the presence of natural light. Figure 3.8 shows the
block diagram of the algorithmic process used to classify visual stim-
uli having different affective arousal. The upper block implements the
pupillometry and gaze point identification. The outputs are then pro-
cessed to extract a specific set of features used for the classification.
More in detail, the pupillometry and gaze point block is comprised
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Figure 3.8: Block diagram showing all the algorithmic stages of the
processing of eyes and outside scene.

of a sub-chain of blocks implementing eye extraction algorithm, pho-
tometric normalization algorithm of illumination, pupil contour and
mapping of the eye center into the image scene. In the next sections,
each block is described more in depth.

3.3.3.1 Pupil tracking

Pupil tracking algorithm extracts the contour of the pupil exploiting
the higher contrast of the pupil than the background due to the IR
components of the natural light. Figure 3.9 shows the algorithm block
diagram. More in detail, the first block binarizes the image by means
of a threshold. Fig. 3.10 reports the histogram of the eye, i.e. the
distribution of the image pixel vs the gray levels from 0 to 255. The
threshold divides the histogram into two groups of pixels having only
two levels of gray; the zero level should group all the pixel belonging
to the pupil whereas the 255 level should identify the background.
The criterion implies choosing the threshold as the absolute minimum
value in the range comprised between the two highest peaks of the eye
histogram as reported in fig. 3.10. An example of the binarization
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Figure 3.9: Block diagram of the pupil tracking algorithm.

process is reported in fig. 3.11. After binarization, two sheafs of lines
starting from the middle points of the vertical sides of the image, with
an angular aperture of 30°, are drawn. As result of the binarization
process, the image borders are expected to belong to the background,
therefore the starting point of each line has a value of 255 in terms
of gray level. Analogously, the pupil is expected to be placed roughly
in the middle of the image (this is assured by an accurate freechand
selection of the ROI). When each line encounters, along its path,
a dark pixel, this latter can be thought to belong to the contour
of the pupil. Afterwards, the centroid of these points is calculated.
After removing all the outliers, being these points very far from the
centroid with respect to the large point density (pupil edge), a large-
grain approximation of the contour is obtained. Next, a sheaf of
lines starting from the centroid with an angular aperture of 360°,
and detects all discontinuities, but now from black to white. Finally,
outliers are again removed. The result of this algorithm is a set of
points constituting the pupil edge. This set will be the input of the
fitting algorithm (see Fig. 3.12).
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250

Figure 3.10: Example of the histogram of the eye: T, refers to the
threshold identifying the eye and the sclera region.

0 50 100 150 200
Gray Levels

Figure 3.11: Example the eye image after the binarization process.

Figure 3.12: Pupil tracking algorithm. Sheafs of lines are in blue;
black points identify the eye including the outliers; yellow points high-
light the pupil contour which is interpolated by the ellipse marked up
in red.
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3.3.3.2 Ellipse Fitting

Ellipse fitting algorithm is implemented for constructing the pupil
contour and detecting the center of the eye. Ellipse is considered as
the best geometrical figure approximating the eye contour. According
to the ellipse construction, it can be expressed by an implicit second
order polynomial, being a central conic (with b* — 4ac < 0), such as:

F(z,y) = ax® +bay +cy* +do+ey+ f =0 (3.31)

Ellipse fitting algorithms present in literature can be divided into
two broad techniques: the clustering/vot-ing (CV) and the least square
(LSq) techniques. The first one uses two main approaches such as
RANSAC and Hough Transform which are extremely robust but they
are time-demanding or excessively resource consuming for real time
machine vision [257], [258]. The LSq method is based on finding a
set of parameters that minimize the distance between the data points
and the ellipse. According to the current literature, this technique
fulfills the real time requirement. Omne implementation of the LSq
technique has been introduced by Fitzgibbon et al., which is a direct
computational method (i.e. B2AC) based on the algebraic distance
with a quadratic constraint, [259]. In this thesis, I used a custom
B2AC algorithm, where a gaussian noise is added for algorithm stabi-
lization, [260], to calculate the center of the pupil (that coincides with
the ellipse center), the axes dimensions as well as the eccentricity.

3.3.3.3 Mapping of the Eye Position

The mapping procedure associates the eye center position to the image
plane of the scene, providing as result the gaze point. An experimenter
guides this procedure. Firstly, the camera is positioned to capture
both the scene (in our case the screen) and the mirror. In detail, tilt
of the camera is adjusted as well as the tilt of mirror shaft and the
tilt of the mirror to reflect the eyes. Each participant is asked to look
at some specific points of the screen. These points are identified by
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Figure 3.13: Block diagram of the mapping function calculation pro-
cess.

coordinates s; = (g, ys;) referred to the image plane (i.e. the image
plane captured by the camera), (see fig.2.17). The participants were
instructed to keep their head as still as possible and to carefully look
at each target point without blinking until looking at the next one.

The mapping function gets as input the center of the eye coming
from Ellipse fitting block, and the coordinates of the gaze point on
the image plane.

Mapping functions are quadratic polynomials defined as:

Ty = Q11 + Q12Te; + Q13Yei + Q14Teilei + A15Tei” + Qr6Yeis (3.32)

Ysi = Q21 + 22T e; + A23Yei + A24TeiYei + Ao5Tei” + a26yei2 (3.33)

where xg;, ys are the coordinates of the image plane (i.e. the coordi-
nates of the point on the screen mapped into the image plane captured
by the camera), and x.;, ye; are the coordinates of the center of the
eye coming from the ellipse fitting block, referred to the image plane
as well. The coefficients a;1-to—¢, and as1_4—¢ are unknowns. Since
each calibration point defines 2 equations, the system is over con-
strained with 12 unknowns and 18 equations, and can be solved using
LSq method.
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3.3.3.4 Post-processing and Feature Extraction

Post-processing phase is based on parameters extracted by Recur-
rence Quantification Analysis (RQA), along with fixation time and
pupil area detection. Each image can be represented as a matrix of
6282586 pixels. The gaze point is mapped into a pixel in each frame.
I constructed a matrix of 628 rows and 586 columns where any po-
sition corresponding to the pixel coordinates associated to the gaze
point is set to 1. In order to minimize errors due to the eye blinking,
only the pixels retained for at least five frames (0.2 sec) are set to 1.

3.3.3.5 Fixation Time

While watching each image, subject’s eye can be caught by specific
details. I define as fixation time of each pixel, the absolute time during
which the subject is dwelling on that pixel. I obtain a statistical
distribution of fixation time over the the fixed pixels, whose mode,
which is defined here as T'max, is used as additional feature. T'max
is calculated for each image and each subject during both neutral and
arousal elicitation as:

Tmaz = miax(t(P)) (3.34)

=0

where N is the number of points of gaze in the image, P; is the
i, point of gaze, t(F;) is the fixation time of the iy, point of gaze,
respectively.

3.3.3.6  Pupil Area Detection

The pupil area was approximated as an ellipse whose area is calculated
for the pupillometry. To increase the robustness of the algorithm,
averaged areas of both eyes are considered:

1.1 T
A — T,y + Ty

)= 5 (3.35)
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where A, is the pupil area, r! and r} are the ellipse semi-axes of
the left eye, r] and r; are the ellipse semi-axes of the right eye.

3.3.3.7 Most Visited Area in the Image

While looking at an image, there are areas more fixated than others.
hereby, I define as Most Visited Area (MVA) in the image, the area of
each image on which each subject lingered longer. Specifically, I define
an area of the image of nxn (where n < N) pixels, which was centered
on the most watched pixel, and the MVA was calculated as the sum
of the fixation times of all the pixels inside this area. This feature was
calculated for all images. Let T'(x,y) be the time of fixation of the
pixel whose coordinates are x,y. Since Tpaz(Zc, ye) is the maximum
time of fixation of the image and (z.,y.) are the coordinates of the
most watched pixel. The MVA can be calculated as:

Ic+%,yc+%
MVA= Y T(x,y) (3.36)

I,y:Ec*% ,ny% ’

where n is taken as forty pixels.

3.3.3.8 Length of the Gaze Path

The Length of the Gaze Path (LGP) of each image is calculated as
the total length of the gaze path while the image was presented. I
approximated the path between two consecutive points of gaze as
a straight line, as two consecutive gaze points were obtained from
two consecutive frames, i.e. in a time interval of 1/25 seconds. The
distance between two points was calculated as Euclidean distance.

LGP = /(x;i — xip1)® + (i — yis1)? (3.37)

z,y=1
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3.3.4 Nonlinear Methods for Feature Extraction

The evolution of a nonlinear system can be represented by a trajec-
tory through a multidimensional space, often referred to as the phase
space or state space. If the multidimensional evolution converges to a
subspace within the phase space, this subspace is called the attractor
of the system [261]. Measures that are commonly used to describe the
attractor in the phase space are dimension, entropy, and Lyapunov
exponents. In this thesis, I use a set of features extracted by nonlinear
methods and applied to all ANS signals.

A powerful technique used for analysis of complex dynamical sys-
tems is the so-called embedding procedure [262]. Embedding of a time
series x; = (x1, 2, ..., xx) is done by creating a set of vectors X; such
that

Xi = [Tiy Tit s Tigan, s Tit(m—1)A] (3.38)

where A is the delay in number of samples and m is the number of
samples (dimension) of the array X;. When embedding a time series,
the dimension m and the delay A of X; must be chosen such that each
vector X; represents values that reveal the topological relationship be-
tween subsequent points in the time series. The number of samples in
the embedded vector is usually chosen to be large enough to cover the
dominant frequency in the time series, but m should not be so large
that the first and last values in the epoch are practically unrelated.
The evolution of the system can be represented by the projection of
the vectors X; onto a trajectory through a multidimensional space,
i.e. the phase space. If the trajectory is comprised within a subspace
in the phase space, then this subspace is called the attractor of the
system.

Given a good estimation of the phase space, several features can be
extracted by means of Recurrence Quantification Analysis, Lyapunov
Exponents, Entropy measure, Detrended Fluctuation Analysis, etc.
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3.3.4.1 Recurrence Plots and Recurrence Quantification Anal-
ysis

The Recurrence Plot (RP) [263] is a graph which shows all those times
at which a state of the dynamical system recurs. In other words, the
RP reveals all the times when the phase space trajectory visits roughly
the same area in the phase space. Natural processes, in fact, can have
a distinct recurrent behavior, e.g. periodicities (as seasonal or Mi-
lankovich cycles), but also irregular cyclicities (as Southern Oscilla-
tion). Moreover, the recurrence of states, i.e. the states are arbitrarily
close after a little while, is a fundamental property of deterministic dy-
namical systems and is typical for nonlinear or chaotic systems. The
recurrence of states in nature has been known for a long time and has
also been discussed in early publications (e.g. recurrence phenomena
in cosmic-ray intensity, [264]). RPs were first introduced by Eckmann
et al. [265] as a tool able to visualize the recurrence of states x; in
a phase space. RPs enable to investigate the m-dimensional phase
space trajectory through a two-dimensional representation of its re-
currences. When a state at time 7 recurs also at time j, the element
(1,7) of a squared matrix NxN is set to 1, 0 otherwise. Such an RP
can be mathematically expressed as:

[Rij =0 (e — ||z — 2;]])] (3.39)

where x;6R™, 4,5 = 1,...., N;, N is the number of considered states x;,
g; is a threshold distance, ||.|| a norm and © (.) the Heaviside function
which is defined as:

L, ifz2=0
@(2)—{0’ if 2 <0 (3.40)

In this thesis,the optimal value of ¢; [266] was chosen as following:

where App is averaged phase space diameter of data x;.
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Following the above description, the Recurrence Quantification
Analysis (RQA) [267] is a method of nonlinear data analysis which
quantifies the number and duration of recurrences of a dynamical sys-
tem presented by its state space trajectory. Quantification of RPs can
be based either on evaluating diagonal lines to estimate chaos-order
transitions or on vertical (horizontal) lines to estimate chaos-chaos

transitions. RQA features used in this thesis are listed as follows.
Recurrence Rate (RR) is the percentage of recurrence points in an
RP and it corresponds to the correlation sum:

1 N
RR = mX:Ri,j (3.42)
-

where N is the number of points on the phase space trajectory.
Determinism (DET) is the percentage of recurrence points which
form diagonal lines:

SUP(l)
DET = —imin (3.43)

N
> Rij

ij=1

where P(l) is the histogram of the lengths [ of the diagonal lines.
Laminarity (LAM) is the percentage of recurrence points which
form vertical lines:
S 0P(v)
LAM = —x=vmin (3.44)

N

SuP()

where P(v) is the histogram of the lengths v of the diagonal lines.
Trapping Time 7T is the average length of the vertical lines:

S wP(v)
TT = ——"" (3.45)
>_P(v)

v=vUmin
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Ratio (RAT10) is the ratio between DET and RR:

DET

RATIO = ——
RR

(3.46)
Averaged diagonal line length (L) is the average length of the
diagonal lines:

N
>_LP(1)
[ = St (3.47)
>_P(l)
I=Ilmin
Entropy (ENTR) is the Shannon entropy of the probability dis-
tribution of the diagonal line lengths p(1):

ENTR = —ZN:p(l) Inp(1) (3.48)

I=Ilmin

Longest diagonal line (L) The length of the longest diagonal
line:
Lipaz = maz({li;i=1,..,Ni}) (3.49)

where NV; is the number of diagonal lines in the recurrence plot.

3.3.4.2 Detrended Fluctuation Analysis

Detrended Fluctuation Analysis (DFA) is a method for determining
the statistical self-affinity of a signal. It is useful for analyzing time
series that appear to be long-memory processes (diverging correlation
time, e.g. power-law decaying autocorrelation function). It is related
to measures based upon spectral techniques such as autocorrelation
and Fourier transform. DFA method has proven useful in revealing
the extent of long-range correlations in time series [268|. Briefly, the
time series to be analyzed (with NV samples) is first integrated. Next,
the integrated time series is divided into boxes of equal length, n. In
each box of length n, a least squares line is fit to the data (repre-
senting the trend in that box). The y coordinate of the straight line
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segments is denoted by y, (k). Next, the integrated time series, y(k),
is detrended by subtracting the local trend, y,(k), in each box. The
root-mean-square fluctuation of this integrated and detrended time
series is calculated as:

F(n) = | 3 (k) — R (350)

3.3.4.3 Lyapunov Exponents

Deterministic chaos exhibits a number of features that distinguishes
it from periodic and random behavior, more specifically by its sensi-
tive dependence on initial conditions, which means that small changes
in the state variables at one point will create large differences in the
behavior of the system at some future point. This manifests itself
graphically as adjacent trajectories that diverge widely from their ini-
tial close positions. The Lyapunov exponent is a quantitative measure
of the average rate of this separation. A positive Lyapunov exponent
indicates sensitive dependence on initial conditions and thus loss of
predictability, indicative of deterministic chaos [269]. The Lyapunov
exponent describes the speed of attraction (convergence), if negative,
or divergence, if positive, of trajectories in each dimension of the at-
tractor. In three dimensions, for instance, three Lyapunov exponents
describe the evolution of the volume of a cube, and, in general, the
sum of all Lyapunov exponents indicates how the measure of a hy-
percube evolves in a multidimensional attractor. The sum of positive
exponents indicate the spreading rate of the hypercube, hence the in-
crease of unpredictability per unit time. This dynamic is practically
dominated by the largest positive (or Dominant) Lyapunov exponent
(DLE). It describes the expansion along the principal axis (p;) of the
hypercube over a given time interval t. Formally, the exponents (\;)
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are calculated as:

. lim 10 pi(t)
N [moﬂ (3.5

where \; are ordered from largest to smallest. The calculation of the
DLE is a crucial point in this thesis.For experimental applications,
a number of researchers have proposed algorithms that estimate the
Dominant Lyapunov exponent [270-274|, or the positive Lyapunov
spectrum, i.e., only positive exponents [274]. T implemented the ap-
proach proposed by Rosenstein et al. [99] which ensures reliable values
of DLE even in short data sets. In fact, this method is easy to imple-
ment and fast because it uses a simple measure of exponential diver-
gence that circumvents the need to approximate the tangent map. In
addition, the algorithm does not require large data sets. More in de-
tail, the attractor dynamics was reconstructed from a single series by
means of the embedding procedure [262]. The embedding dimension is
usually estimated in accordance with Takens’s theorem [262]. A com-
mon choice for the time delay estimation by means of the correlation
sum was addressed by Liebert and Schuster [275]. After reconstruct-
ing the dynamics X;(t), the algorithm locates the nearest neighbor of
each point on the trajectory. The nearest neighbor, X;, is found by
searching for the point that minimizes the distance to the particular
reference point, identified by the vector X;. This is expressed as:

min
d;(0) = X5 — X5l (3.52)
X;

where d;(0) is the initial distance from the j”* point to its nearest
neighbor, and ||.|| denotes the Euclidean norm. The largest Lyapunov
exponent, also known as Dominant Lyapunov Exponent (DLE), is
then estimated as the mean rate of separation of the nearest neighbors.
When applied to HRV series, the time delay A is often held constant
to 1.
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3.3.4.4 Approximate Entropy

Approzimate Entropy (ApEn) measures the complexity or irregularity
of the signal [105,276] . Large values of ApEn indicate high irregu-
larity and smaller values of ApEn indicate a more regular signal.

The ApEn is computed as follows. First, a set of length m vectors
u; is formed:

uj = (RRj7 RRj+17 ceey RRjerfl)a (353)

where j =1,2,..., N —m + 1, m is the embedding dimension, and N
is the number of measured RR intervals. The distance between these
vectors is defined as the maximum absolute difference between the
corresponding elements, i.e.:

d(uj,ug) = _max {|RR;j+n — RRyyn|} (3.54)
Next, for each u; the relative number of vectors wy, for which d(u;, u) <

r is calculated, where r is the tolerance value. The index is denoted
with C7"(r) and can be written in the form:

nbr of {uy|d(uj, ug) <1}
N-m+1

Due to the normalization, the value of C7"(r) is always lesser than or

equal to 1. Note that the value is, however, at least 1/(N—m+1) since

u; is also included in the count. Then, take the natural logarithm of

each CJ"(r) and average over j to yield:

Cmr) = Vk (3.55)

N—m+1
m 1 m

Finally, the approximate entropy is obtained as:
ApEn(m,r, N) = ®™(r) — ®™*1(r) (3.57)

The value of the estimate ApEn depends on three parameters: the
length m of the vectors u;, the tolerance r, and the data length N.
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When applied to HRV series, m is often chosen as m = 2. The length
N of the data also affects ApEn. As N increases the ApEn approaches
its asymptotic value. The tolerance r has a strong effect on ApEn and
should be selected as a fraction of the standard deviation of the signal.
A common selection for r is » = 0.2 - SD, which is also adopted in
this thesis.

3.3.5 Cardio-Respiratory Synchronization Analy-
sis

Concerning general dynamical systems, all the possible mode-lockings
are defined by the Farey tree [277,278] (i.e. level 1: frequency ratio:
1:1; level 2: frequency ratio: 1 : 2; level 3: frequency ratios: 1 : 3,
2 : 3; level 4: frequency ratios: 1:4,2:5,3:5,4:3; etc.). Consid-
ering the cardio-respiratory system, the generic synchronization ratio
n : m indicates that m heart beats fall within n respiratory periods.
It is clear that several of the mentioned Farey ratios cannot be used to
describe physiological cardio-respiratory behaviors, such as level 1 and
level 2. Indeed, the majority of healthy subjects have a resting heart
rate between 50 (0.82 Hz) and 90 (1.5 Hz) bpm [279] and breathing
rates between 10 (0.17 Hz) and 20 (0.33 Hz) breaths/min [280]. There-
fore the resulting range for the ratio n : m is between 0.33/0.82 = 0.4
and 0.17/1.5 = 0.11. In this thesis, I propose the following physiolog-
ically plausible ratios: 1:6,1:5,1:4,1:3,2:9,2:7,3:11,3: 10,
3:8.

3.3.5.1 Instantaneous Phase

In order to study the phase synchronization between two signals, it
is necessary to obtain instantaneous phases at least for the slower
oscillating signal, i.e., for respiration in our case. For a real valued
continuous signal x(¢), this can be done within an analytic signal
approach, adding a corresponding imaginary part iz(t) to the signal.
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z(t) is calculated by employing Hilbert transform [281]:

o0

fs(t):%PV / :g/zldt’ (3.58)

— 00

where PV denotes the Cauchy principal value. Finally, instantaneous
phases can be defined from real and imaginary parts of the analytical

signal:
(1)

é(t) = arctan lm] (3.59)

3.3.5.2 Cardio-Respiratory Synchrogram

By definition, in the simplest case of two periodic oscillators, synchro-
nization is classically understood as phase locking:

|Pmn| = M1 —nes| < c (3.60)

where m and n are some integers that describe the locking ratio, ¢ is
a constant value, ¢; o are the phases of the oscillators, and ¢,, , is the
generalized phase difference, or relative phase. The phases ¢, 3 are not
cyclic on the interval [0,27], but are defined on the whole real line.
Schafer et al. used the concept of phase synchronization of chaotic
oscillators [51, 52| to develop a technique to analyze irregular non-
stationary bivariate data, i.e. the Cardio-respiratory synchrogram
(CRS) [50,128,140]. In the general case of m:n synchronization, such
a structure appears if the phases of the heart beats is related to the
beginning of m adjacent respiratory cycles:

_ ¢p(t) mod (27m)
B 27

o(tn) (3.61)

where ¢, refers to the instantaneous phase of the respiratory signal
and t;, is the time where the R-peak in the k' heartbeat occurs and
hence the phase of the heart rhythm increases by 27. ¢, is calculated
by means of the Hilbert transformation [51]. CRS is obtained by
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plotting these relative phases ¢ as a function of ;. Therefore, if m:n
phase synchronization occurs, then CRS is constituted by n horizon-
tal stripes within m respiratory cycles. In case the of 1 : n synchro-
nization (i.e., if n heartbeats fit to one breathing cycle) one observes
n parallel horizontal (or at least approximately horizontal) lines in
the synchrogram. This technique allows to distinguish between dif-
ferent periods of synchronization, even for noisy and non-stationary
data [128,140].

3.4 Feature Reduction Strategy

Given a large number of extracted features, a suitable feature re-
duction strategy became necessary in order to perform an effective
pattern recognition. Feature reduction can be performed in different
ways. Current literature distinguishes two main categories of reduc-
tion methods: feature selection and feature projection. In this thesis,
a feature projection method is used in order to retain the most infor-
mation from all features. I adopted the well-known Principal Compo-
nent Analysis (PCA) [282], which is able to project high-dimensional
data to a lower dimensional space with a minimal loss of information.
This means that new features were created by the linear transfor-
mation of original feature values, rather than by selecting a feature
subset from a given feature set.

3.4.1 Principal Component Analysis

PCA [282] is a useful statistical technique that projects a correlated
high-dimensional space of variables to an uncorrelated low-dimensional
space of variables. These variables are ordered according to decreasing
variance and are called principal components. PCA uses the eigen-
values and eigenvectors generated by the correlation matrix to rotate
the original dataset along the direction of maximum variance. Ac-
cordingly, the above general description was implemented by means
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of the Singular Value Decomposition (SVD). For the dataset matrix
X, of dimension n x p and rank r, it can be rewritten using SVD as:

X=Usv" (3.62)

where U is an orthogonal n x r matrix, V' is an orthogonal p x r
matrix with the eigenvectors (ey, es, ... e,) and S is r x r diagonal
matrix containing the square roots of the eigenvalues of the correlation
matrix X7 X and hence the variances of the Principal Components.
The r eigenvectors, i.e. Principal Components of matrix V, form an
orthogonal basis that spans a new vector space, called the feature-
space. Therefore, each vector can be projected to a single point in
this r-dimensional feature space. However, according to the theory
of PCA for highly correlated data, each training set vector can be
approximated by taking only the first few k, where, & < r, Principal
Components. This mathematical method is based on the linear trans-
formation of the different variables in principal components which
could be assembled in clusters.

3.5 Classification

This thesis aims at classifying different mood and emotional states.
Therefore, several pattern recognition algorithms were applied and the
relative performances were evaluated using the confusion matrix [283].
The generic element 7;; of the confusion matrix indicates how many
times in percentage a pattern belonging to the class ¢ was classified as
belonging to the class j. More the confusion matrix is diagonal and
better is the classification. The matrix has to be read by columns.
The training phase is carried out on 80% of the feature dataset while
the testing phase to the remaining 20%. 40-fold cross-validation steps
are performed in order to obtain unbiased classification results, i.e.
to consider gaussian the classification result distributions, which can
be therefore described as mean and standard deviation among the
obtained 40 confusion matrixes. Several classifiers such as the lin-
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ecar discriminant classifier (LDC), the quadratic discriminant classi-
fier (QDC), a mixture of gaussian (MOG), the k-nearest neighbor
(k-NN), the Kohonen self organizing map (KSOM), the multi-layer
perceptron (MLP), and the probabilistic neural network (PNN) were
applied to classify features from both the healthy subjects and bipolar
patients procedures. Below, the three classifiers which gave the best
recognition accuracy are described in detail. Such best classification
algorithms were chosen by performing a statistical comparison of the
results a-posteriori by means of the ANOVA test [284].

3.5.1 Quadratic Discriminant Classifier

The Quadratic Bayes Normal Classifier (also called Quadratic Dis-
criminant Classifier (QDC)) [285] is a statistical based classifier which
uses a supervised learning method which determines the parameters
based on available knowledge. Assuming that the input training data
is a finite set ['{(x1,y1), ..., (z,y)} containing pairs of observations
xr; € R" and corresponding class labels y; € Y. Basically, statistical
classifiers use discriminant functions f,(z), Vy € Y = {1,2, ...,c}
for ¢ classes input dataset and x is a d-component feature vector. The
classifier is said to assign a feature vector x to class y; if:

Thus, the classifier is viewed as a network or machine that com-
putes ¢ discriminant functions and selects the category correspond-
ing to the largest discriminant. A Bayes based classifier is easily and
naturally represented in this way. For the general case with risks,
filx) = —R(a;|z), since the maximum discriminant function will
then correspond to the minimum conditional risk. For the minimum-
error-rate case, it is possible to simplify things further by taking
filz) = P(yi|z), so that the maximum discriminant function cor-
responds to the maximum posterior probability.

The effect of any decision rule is to divide the feature space into ¢
decision regions, Ry, ..., R.. If fi(x) > f;(z) Vj # i, then z is in region
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R1, and the decision rule calls for us to assign x to f;. The regions
are separated by decision boundaries, surfaces in feature space where
ties occur among the largest discriminant functions.

The structure of a Bayes classifier is determined by the conditional
densities P(x|y;) as well as by the prior probabilities, according to the

Bayes theorem:

P(z[y:) P (yi)
P(x)
where P(y;) and P(z) are the prior probabilities.

Assuming that the minimum-error-rate classification can be achieved
by using the discriminant functions [285]:

Pyilr) = (3.64)

fi(z) = In P(z]y;) + In P(y;) (3.65)

If the densities P(x|y;) are multivariate normal, i.e. P(z|y;) ~ N(p;, %)
where p; is the d-component mean vector and ¥; is the d-by-d covari-
ance matrix:
1 T d 1

filz) = —a(x—,ui) X (=) — 5 In 27 — 5 In|%;|+1n P(y;) (3.66)
where (x — ;)T is the transpose of (x — ;) matrix. In the general
multivariate normal case, the covariance matrices are different for
each category. The only term that can be dropped from the above
equation is the %ln 27 term, and the resulting discriminant functions
are inherently quadratic:

fyl@)=a" Ag+ba+c, YWeY (3.67)

which are quadratic with respect to the input vector x € R™. The
quadratic discriminant function f, is determined by:

1
A, = —52;1 (3.68)
b, =3 (3.69)
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1 1
¢y = —5l B s — 5[] + 0 P(y,) (3.70)

Of course, if the distributions are more complicated, the decision re-
gions can be even more complex, though the same underlying theory
holds there too.

3.5.2 k-Nearest Neighborhood

The k-Nearest Neighborhood (k-NN) implementation is performed
according to the following steps:

1. In the training phase, the k-NN algorithm just stores the train-
ing feature sets together with the labels.

2. In the test phase, the k-NN algorithm calculates the n Euclidean
distances between the new feature set and the n features of the
whole training feature set as follows:

n

Di = (pit —@1)* + oo + Pin — )2 = Z(pij —q;)? (3.71)
j=1
where P; = (pi1, Di2, -, Pin) is 1" training feature set, Q =
(¢1,42,-.-,qn) is the new feature test set, n is the number of
features.

Afterwards, the k-NN algorithm finds the k training feature sets that
have the minimum distance from the new feature set. Among these,
m training feature sets belong to the neutral class and K —m belong
to the arousal class. The new feature set is supposed to belong to
the neutral class if m > (K —m), i.e. m > %, to the arousal class
otherwise.
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3.5.3 Multi-layer perceptron

The Multi-layer perceptron (MLP) [286] is a neural network which
has, in the proposed implementation, an integrate-and-fire neuron
model for the representation of the relations between input and out-
put values. It is trained by implementing the supervised learning
method, i.e. input and output values are specified and the relations
between them learnt. Specifically, in the training phase, for each data
record, each activation function of the artificial neurons is calculated.
The weight w;; of a generic neuron 7 at time 7' for the input vector
k= fk ..., fk. is modified on the basis of the well-established back
propagation of the resulting error between the input and the output
values. The response of the MLP is a boolean vector; each element
represents the activation function of an output neuron.

105



Methodology of Advanced Signal Processing

3.6 Point-process theory and the Instanta-
neous Nonlinear Dynamics

Hypothesizing that the ANS responds with different time-varying
heartbeat dynamics according to the patient’s mood state or to the
elicited level of arousal/valence, computational tools able to discern
rapid dynamic changes with high time resolution are the best can-
didates to provide an optimal assessments. For this purpose, stan-
dard heart rate variability (HRV) analysis is not recommended since
it would require relatively long-time intervals of ECG acquisitions
[42,43] and it would be unable to catch instantaneous variations.

To overcome these limitations, hereby I propose a novel stochastic
model of heartbeat dynamics, based on point-process theory, able to
instantaneously assess the cardiovascular dynamics. This approach
provides a novel paradigm in the literature in the field of psychiatric
disorders and affective computing. The core of the model is the def-
inition of the inter-beat probability function to predict the waiting
time of the next heartbeat, i.e. the R-wave event, given a linear and
nonlinear combination of the previous events.

The use of point process theory allows for a fully parametric struc-
ture analytically defined at each moment in time, thus allowing to
estimate instantaneous measures [45,200-202] without using any in-
terpolation method.

It has ben demonstrated that the Inverse-Gaussian (IG) distribu-
tion well characterizes the inter-beat probability function [45] and, in
particular, a linear [45,200] and nonlinear [202] combination of the
past events has been previously taken into account. In this thesis, I
propose an improvement of the model defining a nonlinear combina-
tion of the derivative series of past events.

The resulting quadratic Nonlinear Autoregressive Integrative (NARI)
model improves the achievement of stationarity [287] and consequently
improves system identification. This powerful approach further con-
siders an equivalent 3"%-order input-output Wiener-Volterra model,
allowing for the instantaneous estimation of the high-order polyspec-
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tra [288], such as bispectrum and trispectrum [289,290]. Therefore,
the methodology here proposed is able instantaneously assess the sub-
ject’s cardiovascular/autonomic state, even in short-time events (<
than 10 seconds), remarkably using only one biosignal, the ECG.

The novel heartbeat model developed has its foundations in the
nonlinear system identification theory. The general elements behind
the considered model’s derivation are shown in Fig. 3.14.

‘ Cardiovascular Control ‘

¥ RR

‘ Autoregressive Volterra Model ‘

v 2

Linear Models Nonlinear Models

2 ¥

‘ Derivative Series ‘

| AR | [ ARI | | NARI| [NAR |

Figure 3.14: Block diagram of the point process models derivation

A Nonlinear Autoregressive Model (NAR) Model can be expressed,
in a general form, as follows:

y(k) =F(y(k —1),y(k—2),...,y(k — M)) + e(k). (3.72)

Considering €(k) as independent, identically distributed Gaussian ran-
dom variables, such a model can be can be written as a Taylor expan-
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y(k) = + Z%(i) y(k — i) +
2

The autoregressive structure of (3.73) allows the system identifica-
tion with only exact knowledge on output data and with only few
assumptions on input data (noise assumptions). The nonlinear phys-
iological system is represented by using nonlinear kernels up to the
second order, i.e. 7o, 71(7), and v,(i, j), taking into account the series
of the derivatives in order to improve stationarity [287,291]. Hence,
the general quadratic form of a Nonlinear Autoregressive Integrative

(NARI) model becomes:

M n

: Z Yuli, - vin) [Jylk = i) + e(k) . (3.73)

i1=1  in= j=1

y(k) =y(k— 1) +7 + > (i) Ay(k —i) +

i=1

M M
DY i, g) Ay(k — i) Ay(k — §) + (k) (3.74)
i=1 j=1

where Ay(k —i) = y(k—i) —y(k—i—1) and Ay(k—j) =y(k—7) —

y(k—j—1). The quadratic kernel v5(i, ) is assumed to be symmetric.

I also define the extended kernels ~; (i) and v4(i, j) as:

1 ifi=0
(i) =4 3.75
71(7) {_%(i) fl1<i<M ( )

- 0, ifij=0Ai+j<M
Y5(3, 5) :{ (3.76)

(i) H1<i<MALI<j<M

and link the NARI model to a general input-output form, here defined
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by using the well-known Wiener-Volterra [292] series:

y(k) = hy + Z hy (i) Ae(k — i) +

D Z M, - i) [[ Al —45) . (3.77)

n=2 i1=1  ip=1 j=1

where the functions h, (71, ...,7,) are the Volterra kernels Mapping
a quadratic NARI model to an n-th order input-output model [288§]
allows, after the input-output trasformation of the kernels, the eval-
uation of all the High Order statistics (HOS) of the system, such as
the Dynamic Bispectrum and Trispectrum [293,294|. In the following
sections, after the definition of the point-process framework of the
heartbeat dynamics, mathematical details on the derivation of the
nonlinear kernels as well as the HOS tools are reported.

3.6.1 Point-Process Nonlinear Model of the Heart-
beat

The point process framework primarily defines the probability of hav-
ing a heartbeat event at each moment in time. Defining ¢ € (0, T}, the
observation interval, and 0 < u; < -+ < up < Uy < - < ug < T
the times of the events, it is possible to define N(t) = max {k : uy <
t} as the sample path of the associated counting process. Its dif-
ferential, dN(t), denotes a continuous-time indicator function, where
dN(t) = 1 when there is an event (the ventricular contraction), or
dN(t) = 0 otherwise. The left continuous sample path is defined
as N(t) = lim,, 4 N(1) = max{k o < t}. Given the R-wave
events {uj}jzl detected from the ECG, RR; = u;—u;_1 > 0 denotes

the 7 RR interval. Assuming history dependence, the inverse Gaus-
sian probability distribution of the waiting time ¢—u; until the next
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R-wave event is [45]:

§O(t> ]%
27T(t — Uj)3
L&)t — uy — prelt, 1, E1))
2 pure(t, He, &(1))%(t — uy)

with j = N (t) the index of the previous R-wave event before time
t, Hy = (u;, RRj,RR;_1, ..., RRj_p41) is the history of events, &(¢)
the vector of the time-varing parameters, prr(t,H, &(t)) the first-
moment statistic (mean) of the distribution, and &y(¢) > 0 the shape
parameter of the inverse Gaussian distribution. Since f(¢|Hy, (1))
indicates the probability of having a beat at time ¢ given that a previ-
ous beat has occurred at u;, urg(t, H¢, £(t)) can be interpreted as the
expected waiting time until the next event could occur. The use of an
inverse Gaussian distribution f(t|#H;, (1)), characterized at each mo-
ment in time, is motivated both physiologically (the integrate-and-fire
initiating the cardiac contraction [45]) and by goodness-of-fit com-
parisons [201]. In previous works [200,201], the instantaneous mean
prr (t, He, £(t)) was expressed as linear and quadratic combination of
present and past R-R intervals, based on a nonlinear Volterra-Wiener
expansion [202]. Here, I propose the novel NARI formulation in which
the instantaneous RR mean is defined as:

IU/RR(ta Hta §(t>) = R‘R‘N(t) + Y0

F(HE() = |

}o(3.78)

X exp | —

P
+ ZVl(ia t) (RRN(t)—z‘ - RRN(t)—z‘—1)

i=1

a a
+ Z Z Ya(i, J, 1) (RRN(t)ﬂ' - RRN(t)ﬂel)

i=1 j=1
The coefficients vo,{71(i)}, and {y2(4,j)} correspond to the time-

varying zero-, first-, second-order NARI coefficients, respectively. Con-
sidering the derivative RR interval series improves the achievement

110



3.6 Point-process Theory

of stationarity within the sliding time window W (W = 70 sec-
onds) [287]. Since prg(t, He, £(t)) is defined in continuous time, it
is possible to obtain an instantaneous RR mean estimate at a very
fine timescale (with an arbitrarily small bin size A), which requires
no interpolation between the arrival times of two beats. Given the
proposed parametric model, all linear and nonlinear indices are de-
fined as a time-varying function of the parameters

f(t) = [50(15}7 70(75)7 71(17 t)? ) Vl(pa t)a 72(17 17 t)a ) ’72(2'7 Js t)]

The unknown time-varying parameter vector £(t) is estimated by
means of a local maximum likelihood method [45,295,296|. Briefly,
given a local observation interval (¢t — I, t] of duration [, a subset Uy,
of the R-wave events is considered. Specifically, m = N (¢t —1)+1 and
n = N(t). At each time ¢, the unknown time-varying parameter vector
&(t) is found such that the following local log-likelihood is maximized:

n—1

L&) | Upnn) = Z w(t — Upy1)

k=m+P—1

log[/ (ter | Huny, £(8))] + log / f(r | He€(1) dr (3.80)

where w(7) = €®7 is an exponential weighting function for the

local likelihood. In eq. 3.80, the latter term accounts for the next,
not yet observed, R-R interval (right censoring). A Newton-Raphson
procedure is used to maximize the local log-likelihood in eq 3.80 and
compute the local maximum-likelihood estimate of £(t) [295]|. Because
there is significant overlap between adjacent local likelihood intervals,
the Newton-Raphson procedure is started at ¢ with the previous local
maximum-likelihood estimate at time t — A, where A defines the time
interval shift to compute the next parameter update.

The model goodness-of-fit is based on the Kolmogorov-Smirnov
(KS) test and associated KS statistics (see details in [45,297]). Au-
tocorrelation plots are considered to test the independence of the
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model-transformed intervals [45]. Once the order {p, q} is determined,
the initial NARI coefficients are estimated by the method of least
squares [298]. In order to provide reliable results, the HRV processing
techniques require uninterrupted series of RR intervals. Neverthe-
less, peak detection errors and ectopic beats often determine abrupt
changes in the R-R interval series that may result in substantial devi-
ations of the HRV indices, especially in changes in the dynamics. In
addition, they could potentially bias the statistical outcomes. There-
fore, I preprocessed all the actual heartbeat data with a previously
developed algorithm [299]. It is based on the point process statistics
(local likelihood) and is able to perform a real-time R-R interval error
detection and correction. Specifically, the algorithm assesses whether
the actual observation is in agreement with the resulting model or if,
instead, the alternative hypothesis of an erroneous beat is more likely.

3.6.2 Estimation of the Input-Output Volterra Ker-
nels

The n*-order spectral representations are related to the the Volterra
series expansion and the Volterra theorem [292]. In functional anal-
ysis, a Volterra series denotes a functional expansion of a dynamic,
nonlinear, and time-invariant function, widely used in nonlinear phys-
iological modeling [46,300,301]. The quadratic NARI model can be
linked to the traditional input-output Volterra models by using a spe-
cific relationships [288] between the Fourier transforms of the Volterra
kernels of order p, H,(f1, ..., fn), and the Fourier transforms of the ex-
tended NAR kernels, I} (f1) and I'4(f1, f2). In general, a second-order
NARI model have to be mapped into a infinite-order input-output
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Volterra model [288]:

p

Do D Hilfotwys s fotr)s Wotran T
k=mid(p) €0
Jotrs2)s o foto-1) + o)
x T (foy) - T (fowy)
X Ty(fotran)s fowr2)) - To(fop-1), fo(n) =0
(3.81)

where p is a given integer representing the kernel order, mid(p) =
[p/2], 7 = 2k — p and o, is the permutation set of N,. Obviously,
there is the need to truncate the series to a reasonable order for ac-
tual application. In this thesis, I chose to model the cardiovascular
activity with a cubic input-output Volterra by means of the following
relationships with the NARI:

Hi(f) :F’if) (3.82)
Hy(f1, fo) = — % Hi(f1+ f2) (3.83)

o 1 FIQ (f03(1)7f03(2))
Hs(f1, f2, f3) = — 6 UZS I (fag(l)) I (fUS(g))

X Hy (fos1) + Frs@): frs(3) - (3.84)

Once the vector of the autoregressive time-varing parameters £(t) is
estimated, it is possible to derive instantaneous quantitative tools
such as the n'-order spectral representations. To summarize, the
necessary steps are the followings:

1. From ~,(...) find ~/(...).
2. Compute the Fourier transforms I7, (...) of the kernels ~/ (...).

3. Compute the input-output Volterra kernels Hy(...) from the
I (...) of the autoregressive model.
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Autoregressive Input-Output Quantitative
Integrative Kernels Tools
Kernels
ARI > Linear
Wiener-Volterra =%| Spectrum
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i |Bispectrum
Higher Order > =P -
\Wiener-Volterra
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NARI >

Nth-rder
Spectra

Figure 3.15: Block diagram of the point process quantitative tools
derivation

4. Estimate the n'"-order spectra such as the instantaneous spec-
trum Q(f,t) and bispectrum Bis(fi, fa, ).

3.6.3 Quantitative Tools: High Order Spectral Anal-
ysis

The proposed framework allows for three levels of quantitative char-
acterization of heartbeat dynamics: instantaneous time-domain esti-
mation, linear power spectrum estimation, and higher order spectral
representation. The general scheme of such quantitative characteri-
zations is shown in Fig. 3.15. The linear power spectrum estimation
reveals the linear mechanisms governing the heartbeat dynamics in
the frequency domain. In particular, given the input-output Volterra
kernels of the NARI model for the instantaneous R-R interval mean
prr(t, He, &(t)), it is possible to compute the time-varying parametric
(linear) autospectrum [302] of the derivative series:
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Q(f7 t) = Sww(fv t)Hl(fv t)Hl(_fv t)
- / Hy(f, for — o, ) Sac(for O)lfy (3.85)

where S..(f,1) = o&r. The time-varying parametric autospectrum
of the R-R intervals is given by multiplying its derivative spectrum
Q(f,t) by the quantity 2(1 — cos(w)) [287]. Importantly, previous
derivations of the expressions for the autospectrum [202,203] were
possible because the first- and second-order Volterra operators are
orthogonal to each other for Gaussian inputs. This property does not
hold for orders greater than two [302], and in cubic nonlinear input-
output Volterra systems the autospectrum is estimated by considering
also the third order term. By integrating eq. 3.85 in each frequency
band, it is possible to compute the index within the very low frequency
(VLF = 0.01-0.05 Hz), low frequency (LF = 0.05-0.15 Hz), and high
frequency (HF = 0.15-0.5 Hz) ranges.

The higher order spectral representation allows for the consider-
ation of statistics beyond the second order, and phase relations be-
tween frequency components otherwise suppressed [290,303]. Higher
order spectra (HOS), also known as polyspectra, are spectral repre-
sentations of higher order statistics, i.e. moments and cumulants of
third order and beyond. HOS can detect deviations from linearity,
stationarity or Gaussianity. Particular cases of higher order spectra
are the third-order spectrum (Bispectrum) and the fourth-order spec-
trum (Trispectrum) [303], defined from the Volterra kernel coefficients
estimated within the point process framework.

3.6.3.1 Dynamical Bispectrum Estimation

Let Hy(f1, f2,t) denote the Fourier transform of the second-order
Volterra kernel coefficients. The cross-bispectrum (Fourier transform
of the third-order moment) is [289,290]:

CrossBis(fi, fa,t) = 28,4 (f1,t)Sua(fo, ) Ho(— f1, — f2, 1) (3.86)
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where S,.(f,t) is the autospectrum of the input (i.e. cig). Note
that T use the approximation shown in eq. 3.86 since the equality
only strictly holds when the input variables are jointly Gaussian. The
analytical solution for the bispectrum of a nonlinear system response
with stationary, zero-mean Gaussian input is [304]:

Bis(f1, fo, t) = 2Hs(f1 + fo, = fo, ) Hi(—f1 — fa, ) H1(fa, 1)
XSuu(fi + f2,)Sua(fo, t) + 2Ho(f1 + fo, — f1, 1)
X Hi(=f1 = fo, ) Hi(f1,1)Sea(fi + fo, 1) Saa(f1, 1)
+ 2Hy(—f1, = fo, t) Hy(f1, ) Hy(fa, 1)
XSpx(f1,1)Sex(fa, 1) (3.87)
Of note, an expression similar to 3.87 was derived in the early work
of Brillinger [305], and later in the appendix of [306].
Given the dynamical bispectrum Bis(fi, f2,t), at each ¢ it is possi-

ble to estimate the bispectral features as described in details in section
3.3.2.

3.6.3.2 Dynamical Trispectrum Estimation

Brillinger [307], Billings [292], Priestley [308], and others have demon-
strated that there is a closed form solution for homogeneous systems
with Gaussian inputs. Thus, the transfer function of a m-order ho-
mogeneous system is estimated by the relation:

Hm(fl fm) — Syw...x(_fh Tty _fm)
where the numerator is the m + 1 — n'*order crosspolyspectrum be-
tween y and 2. This result is a generalization of the classical result for
the transfer function of a linear system resulting for m = 1. Therefore,
the cross-trispectrum (Fourier transform of the third-order moment)
can be estimated as:

T(fla f27 f37t) ~ 3'Sxx(f17t)8xx(f27t)Sx:t(f37t>
x H3(f1, fa, f3,t) (3.89)

(3.88)
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Chapter

Experimental Results on Healthy
Subjects and Bipolar Patients

In this chapter, the experimental results on healthy subjects and
bipolar patients are reported. The experimental protocols and the
methodologies applied were described in details in chapters 2 and 3,
respectively.

The main objective on the healthy subject study was to character-
ize the autonomic response during a visual emotional elicitation, by
using TAPS images, in order to recognize the elicited level of arousal,
valence, and self-reported emotions. Results considering long-time se-
ries (whole session of image having the same level of arousal/valence)
as well as short-time series (for each image) are reported in details.

Concerning the bipolar patients study, the main goal was to as-
sess the subject’s mood state in order to develop an effective deci-
sion support system able to automatically recognize mood changes
according to ANS information. Long-time and short-time analysis
were performed by using the standard analysis and the point-process
nonlinear models, respectively.

In general, since the major part of the extracted parameters did
not have normal distribution (checked using the Lilliefors test [309]),
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the results are always expressed in terms of median and median ab-
solute deviation. Accordingly, nonparametric tests were used in or-
der to detect statistically significative differences among the different
classes. For instance, comparing more than 2 groups, the Kruskal-
Wallis method [310,311], i.e. a nonparametric one-way analysis of
variance, was applied to test the null hypothesis that no difference
exists among all groups. Moreover, testing the null hypothesis of
no statistical difference occur between two groups, either the Mann-
Whitney or Wilcoxon signed-rank tests was applied instead.

All of the algorithms were implemented by using MatlabC) v7.2
endowed with additional toolboxes for pattern recognition (i.e. PRTool)
[312] and time series analysis toolbox [313].
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4.1 Results from the Healthy Subjects Study

4.1.1 Arousal and Valence Levels Recognition through
ANS Signals

The first goal of this study was to test the capability of an automatic
classifier to discriminate the elicited arousal and valence levels, along
with the neutral elicitation. A comparative analysis was performed
considering only standard features and standard features joined with
others extracted from nonlinear dynamic methods.

Accordingly, 89 standard features and 36 extracted from nonlinear
dynamic methods were defined (see table 4.1). All features were cal-
culated for each neutral session (V) as well as for each arousal session
(Aj).

Experimental results from 35 healthy subjects performing the ex-
perimental procedure described in section 2.1 are shown in the form
of confusion matrices and reported in tables 4.2 - 4.5. The princi-
pal diagonal represents the percentage of the successful recognition
of each class. More specifically, tables 4.2-4.3 show the results of the
four classes of different arousal (Arousall, Arousal2, Arousal3 and
Arousald) along with the neutral one (Neutral), while tables 4.4-4.5
report the results of the four classes of valence (Valencel, Valence2,
Valence3 and Valence4) in addition to the neutral class (Neutral). In
the tables 4.2 and 4.4 results of the QDC applied to standard features
are shown, while in the tables 4.3 and 4.5 classification results are
based on features extracted from non-linear dynamic methods.

These tables were obtained through the cross-validation technique,
which was an average of 40 confusion matrices calculated on a ran-
domly shuffied dataset.

Each element of the principal diagonal of all matrices is reported
as mean value and standard deviation of the classification result. All
the other elements out of the principal diagonal represent the error of
classification.

Each principal component, obtained from applying the PCA al-
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Table 4.1: Feature sets.

Feature set AnalySIS Slgnals
Time domain (MNN, SDNN, RMSSD, HRV
PNN50, TINN)
Frequency domain (VLF, LF, HF, LF/HF) HRV
Frequency domain (Power in 0-0.1 Hz,
0.1-0.2 Hz, 0.2-0.3 Hz, 0.3-0.4 Hz, Central RSP, EDR
Frequency)
Statistics (SEM, RSPR, MFD, SDFD, MSD,
Standard SDSD, SDBA, MAXRSP, MINRSP, RSP, EDR
DMMRSP, Skewness, Kurtosis)
Statistics (Max Peak, Latency, MAD, .
MDNYV, PNSDAS) Phasic EDR
High Order Spectra (MBI, VBI, MMB, PEB, HRV, RSP,
NBE, NBSE) EDR
R . HRV, RSP,
Deterministic Chaos (m, A) EDR.
NonLinear Recurrence Plot (DLE, RR, DET, LAM, HRV, RSP,
Methods TT, RATIO, ENTR, Lmaz) EDR
Detrended Fluctuaction Analysis (aj, ag) HR;E/]’DIESP’
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QDC Neutral Arousall Arousal2 Arousal3 Arousal4
Neutral 98.57+1.78 35.24+16.66 40.47+20.23 22.86+ 17.83 24.28+19.18
Arousall 0.36+ 1.09 37.14+ 17.44 6.67+ 8.98 3.33+ 6.15 6.194 8.94
Arousal2 0.364+1.09 13.814+13.25 22.38+ 18.26 27.62+ 20.86 25.71+ 18.53
Arousal3 0.12 +0.65 6.67+ 8.98 20.48 + 20.09 20.95+ 19.40 24.29+ 18.05
Arousal4 0.59+1.35 7.14 £ 11.10 10.00 +12.53 25.24 + 23.03 19.52+18.18

Table 4.2: Confusion matrix of QDC Classifier for Arousal level recog-
nition based on standard feature set reduced by PCA algorithm to 12

components
QDC Neutral Arousall Arousal2 Arousal3 Arousal4
Neutral 100.0040.00 0.0040.00 0.00+0.00 0.0040.00 0.00+0.00
Arousall 0.0040.00 100.004+0.00 0.0040.00 0.0040.00 0.0040.00
Arousal2 0.00-0.00 0.00-0.00 92.86+10.73 0.00-0.00 4.64+8.79
Arousal3 0.0040.00 0.0040.00 5.36+8.37 82.86+14.17 19.28+16.67
Arousald 0.00+0.00 0.0040.00 1.78+4.78 17.14+14.17 76.07+16.93

Table 4.3: Confusion matrix of QDC Classifier for Arousal level recog-
nition based on features extracted from nonlinear methods reduced by

PCA algorithm to 7 components
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QDC Neutral Valencel Valence2 Valence3 Valence4
Neutral 28.57+18.54 41.43+22.66 18.57+ 16.77 27.86+15.70 22.14+18.81
Valencel 27.14+14.58 12.86+14.58 5.00+ 8.39 16.434+19.81 3.57+7.86
Valence2 9.28+14.11 4.29 +£11.45 22.86+ 12.61 14.284+13.11 17.144+12.78
Valence3 27.86+15.70 34.28+ 24.26 15.00+ 12.67 28.57+17.95 28.57+ 15.37
Valence4 7.14+8.67 7.14+ 10.86 38.57+ 16.77 12.86+ 13.03 28.57+ 14.66

Table 4.4: Confusion matrix of QDC Classifier for Valence level recog-
nition based on standard feature set reduced by PCA algorithm to 12

components

gorithm to the feature sets, accounts for a given amount of the total
variance. The reduction process was stopped when the cumulative
Therefore the number of principal compo-
nents was different for standard dataset and dataset from nonlinear
techniques and for arousal and valence (see captions of the tables for

variance reached 95%.

further details).
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QDC Neutral Valencel Valence2 Valence3 Valence4
Neutral 96.79+7.58 3.9346.46 0.0040.00 0.0040.00 0.0040.00
Valencel 3.21+7.58 96.07+6.46 0.0040.00 0.0040.00 0.0040.00
Valence2 0.00+0.00 0.00+0.00 87.144+11.11 0.0040.00 18.57411.30
Valence3 0.00+0.00 0.00+0.00 0.00+0.00 100.004+0.00 0.0040.00
Valenced 0.0040.00 0.0040.00 12.864+11.11 0.0040.00 81.43+11.30

Table 4.5: Confusion matrix of QDC Classifier for Valence level recog-
nition based on features extracted from nonlinear methods reduced by
PCA algorithm to 13 components

4.1.2 Approximate Entropy and Dominant Lya-
punov Exponent Analysis on HRV

Given the crucial role of nonlinear dynamics in characterizing the ANS
response during emotional elicitation, the complexity of HRV was
studied in detail through Approximate Entropy (ApEn) and Domi-
nant Lyapunov Exponent (DLE) analysis. Since, in the computation
of the ApEn (see chapter 3), the threshold is proportional to the stan-
dard deviation of the RR intervals, changes in ApEn could be related
to changes in the standard deviation of the RR time series (SDNN)
and not to the complexity of the signal [314]. Therefore, a statistical
analysis on the SDNN changes throughout the sessions is provided as
well.

In Tables 4.6, 4.7 and 4.8 the results from ApEn, DLE (i.e. \)
and SDNN calculation are shown in terms of median and median ab-
solute deviation relative to each session. Firstly, the Kruskal-Wallis
test was applied among all the neutral classes together and among all
the arousal classes. In both cases, for all the considered features,

123



Experimental Results

the null hypothesis cannot be rejected implying that all the neu-
tral classes belong to the same population as well as for the arousal
classes (p — value > 0.05). Considering all the sessions, no statis-
tical difference among all the sessions was obtained for the SDNN,
while the null hypothesis for both ApEn and A can be rejected with
(p — value < 0.05). This means that the SDNN values are undis-
tinguishable through all the sessions (ensuring the reliability of the
ApEn findings) while at least one session is statistically different from
the other ones in both ApEn and A population.

Table 4.6: Median and absolute median deviation of ApEn and DLE
and SDNN across all the sessions

Session ApEn A SDNN
Neutral | 0.614640.1469 | 0.0014+0.2061 | 0.042340.0523
Arousal 1 | 0.531840.1349 | -0.091940.0891 | 0.0406+0.0728
Neutral | 0.6308+0.0816 | 0.0038+0.1894 | 0.0390+0.0494
Arousal 2 | 0.56134+0.1110 | -0.1072+0.0719 | 0.0404+0.1972
Neutral | 0.551140.1020 | 0.004540.2217 | 0.043440.0460
Arousal 3 | 0.533040.1089 | -0.0970+0.0798 | 0.0361+0.1279
Neutral | 0.582240.1013 | 0.0041+0.1482 | 0.042240.0744
Arousal 4 | 0.5128+0.1120 | -0.125940.0742 | 0.0407+0.2138

Finally, I tested the null hypothesis between the two groups in-
cluding all the neutral and arousal classes, respectively, using the
Wilcoxon signed-rank test. Even in this case, the null hypothesis was
rejected for both ApEn and A (p — value < 0.01).

According to DLE findings, the median ApEn values tended to
reduce in arousal sessions. Moreover, Table 4.7 reports on the number
of subjects in which positive and negative DLE were found. The ApEn
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Table 4.7: Number of subjects out of 35 characterized by DLE

Session | DLE>0 | DLE<0
Neutral 25 10
Arousal 1 2 33
Neutral 22 13
Arousal 2 3 32
Neutral 23 12
Arousal 3 5 30
Neutral 25 10
Arousal 4 1 34

and DLE calculations were performed for each subject for the whole
duration of each session.
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Table 4.8: Results from the statistical analysis applying Kruskal-
Wallis (K-W) and Rank-Sum (R-S) tests for the ApEn and DLE
analysis on HRV

Test Features Sessions p-value Notes

K-W ApEn All neutral p>0.05 No statistical difference among the neutral sessions
K-W ApEn All arousal p>0.05 No statistical difference among the arousal sessions
K-W A All neutral p>0.05 No statistical difference among the neutral sessions
K-W A All arousal p>0.05 No statistical difference among the arousal sessions
K-W SDNN All neutral p>0.05 No statistical difference among the neutral sessions
K-W SDNN All arousal p>0.05 No statistical difference among the arousal sessions

At least one session is statistically different from the other

K-W ApEn All p<0.05
ones
At least one session is statistically different from the other
K-W A All p<0.05
ones
K-W SDNN All p>0.05 Features undistinguishable through all the sessions
All neutral
R-S ApEn vs. p<0.01 Statistical difference between neutral and arousal sessions
All arousal
All neutral
R-S A vS. p<0.01 Statistical difference between neutral and arousal sessions
All arousal
All neutral
R-S SDNN vS. p>0.05 No statistical difference between neutral and arousal sessions

All arousal
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4.1.3 Cardio-Respiratory Synchronization Analy-
sis

Regarding the cardio-respiratory synchronization (CRS) analysis, Fig.
4.1 reports transient epochs within the data a representative subject
which confirms the existence of synchronization. The periods of car-
diac acts (RR) and the respiratory signal are shown in (A) and (B),
respectively. In this Figure only the interval presenting the phase
locking ratio 1:5 was marked by way of illustration, but other phase
locking events occur during the arousal phase. It was chosen this
ratio to be shown because it represents the longest (30 heartbeats)
phase locking ratio over time and it was most visually recognizable in
the CRS (C). Fig. 4.2 reports two CRSs referring to the first neutral
session, i.e the upper figure, and the first arousal session, i.e the lower
figure. Concerning the cardio-respiratory synchronization analysis,

Neutral Arousal

[e] 100 200 t 300 400 500

Figure 4.1: Transient epochs within the data of a representative sub-
ject. The periods of cardiac acts (RR) and the respiratory cycles are
shown in (A) and (B), respectively. Several phase locking events oc-
curred. Here only the ratio 1:5, held for 30 heartbeats, was shown
by way of illustration (C). ¢ is the time where the R-peak in the k%
heartbeat occurs.

I found about 70% of synchronization during the arousal elicitation
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sessions compared with 54% during the neutral sessions. The exact
percentages, in terms of median and median deviation, for each ses-
sion are reported in the column %Synchro of Table 4.9. In addition,
in the same Table the values of medians and median deviations of
the standard features extracted from the HRV signal along with the
LF/HF are reported. A detailed statistical analysis was performed
on all the features extracted from cardiac and respiratory signals and
results were reported in Table 4.10.
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Figure 4.2: The upper figure reports the CRS for the first neutral
session, while the lower figure refers to the first arousal session of a
subject. Yellow vertical lines delimit the transients where 7:2 syn-

chronization occur while the magenta vertical lines show the regions
where 4:1 synchronization take place.

Applying the Kruskal-Wallis test to the standard features from
HRV, i.e. MeanRR, SDRR, RMSSD, and pNNb50, I obtained no sta-
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Table 4.9: Median and median deviations of the features extracted

throughout the sessions for the cardio-respiratory synchronization

analysis
Session MeanRR SDRR RMSSD pNN50 LF/HF %Synchro
Neutral 0.774+0.10 0.0440.05 0.0440.08 0.164+0.15 3.684+2.08 54.69+24.45
Arousal 1 0.7940.11 0.044+0.07 0.0440.11 0.15+ 0.14 4.284+1.24 65.58+21.41
Neutral 0.7840.10 0.0440.05 0.0440.07 0.134+ 0.14 4.06+1.84 59.02+19.77
Arousal 2 0.7940.16 0.0440.20 0.0440.28 0.16+ 0.15 4.304+1.01 70.48+19.89
Neutral 0.784+0.11 0.0440.05 0.0440.07 0.164+0.12 4.00+1.82 56.72+22.58
Arousal 3 0.8040.18 0.0440.13 0.0340.17 0.1440.14 4.3140.93 67.72+24.59
Neutral 0.774+0.11 0.0440.07 0.0440.11 0.174+0.14 4.174+1.79 54.05+21.63
Arousal 4 0.814+0.17 0.0440.21 0.0440.30 0.184+0.16 4.30+0.65 68.31 +20.87
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tistical difference among all sessions, while the null hypothesis for
both LF/HF ratios and %Synchro can be rejected with p < 0.001
and p < 0.05, respectively. This means that while standard features
are undistinguishable through all sessions, the sympatho-vagal bal-
ance and the percentage of synchronization are features, which allow
us to say that at least one session is statistically different from all of
the other ones. In order to better refine the analysis for these two
specific features, I tested the null hypothesis among all the neutral
classes together first and among all the arousal classes afterwards. In
both cases, I cannot reject the null hypothesis implying that all neu-
tral classes belong to the same population as well as for the arousal
classes. Finally, I tested the null hypothesis between the two groups
including all the neutral and arousal classes, respectively. There, I
used the Mann-Whitney test, which is a nonparametric alternative for
the t-test. I rejected the null hypothesis for both LF/HF (p < 0.001)
and %Synchro (p < 0.01).
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Table 4.10: Results from the statistical analysis applying Kruskal-
Wallis (K-W) and Mann-Withney (M-W) tests for the cardio-

respiratory synchronization analysis

all arousal

Test Features Sessions p-value Notes
K-W MeanRR, SDRR All p>0.05 Features undistinguishable through all the sessions
K-W RMSSD, pNN50 All p>0.05 Features undistinguishable through all the sessions
K-W LF/HF All p<0.001 At least one session is different from the other ones
K-W Y%Synchro All p<0.05 At least one session is different from the other ones
K-W LF/HF All neutral p>0.05 No difference among the neutral sessions
K-W LF/HF All arousal p>0.05 No difference among the arousal sessions
K-W %Synchro All neutral p>0.05 No difference among the neutral sessions
K-W %Synchro All arousal p>0.05 No difference among the arousal sessions
All neutral
M-W LF/HF vs p<0.001 Difference between neutral and arousal sessions
all arousal
All neutral
M-W %Synchro vs p<0.01 Difference between neutral and arousal sessions
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4.1.4 Using CRS Information for Emotion Recog-
nition

Experimental results on emotion recognition (see section 4.1.1) re-
ports on the capability of the classifier to discriminate the five differ-
ent arousal and five different valence classes. Relying on the CMA
model of emotion [86], in fact, it is possible to associate a certain
emotion to a specific combination of arousal and valence levels (see
an example in figure 1.1). Therefore, in further applications, given a
certain elicitation it would be possible to evaluate the proper arousal
and valence levels whose combination results in one of the 25 different
regions of the CMA.

Given the significant role of Cardio-Respiratory (CR) coupling (see
section 4.1.3) during the emotional stimulation, in this part of the
study I wanted to test the hypothesis of improving the recognition
accuracy of the emotion recognition system described in section 4.1.1
|[A4].

The features set obtained by means of monovariate analysis only
was taken as reference and labelled as a. The proposed feature set,
which is composed by the union set of a and the features coming
from bivariate analysis (CRS) was labelled as 3. After the feature
extraction phase, the PCA algorithm was applied to each dataset. The
reduction process was stopped when the cumulative variance reached
95%. The discrimination results are shown in Tables 4.11 and 4.12
for the arousal and the valence, respectively. The QDC performances
are expressed in form of confusion matrix calculated after 40 steps
of cross-fold validation. The neutral elicitation is labelled as N, the
arousal levels as A; with i = {1, 2,3, 4}, and the valence levels as V;
with ¢ = {1, 2,3, 4}. It is straightforward to notice that the inclusion
of the CR features improves the classification accuracy in both the
arousal and valence recognition problem.
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Table 4.11: Comparison of the arousal levels recognition accuracy for
the feature set o and the proposed feature set (3

QDC Dataset N A1l A2 A3 A4

a 10040.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0

N

B 100+0.0 5.4+9.6 1.4+5.7 4.94+11.1 8.14+13.1

«@ 0.0£0.0 10040.0 0.04+0.0 0.04+0.0 0.04+0.0
Al

B 0.04+0.0 94.6+9.6 0.04+0.0 0.04+0.0 0.04+0.0

«@ 0.04+0.0 0.04+0.0 92.94 10.7 0.04+0.0 4.6 + 8.8
A2

B 0.0£0.0 0.0£0.0 98.6+5.7 0.0£0.0 0.0£0.0

« 0.0£0.0 0.0£0.0 5.3 + 8.4 82.94+14.2 19.34+ 16.7
A3

B 0.0£0.0 0.0£0.0 0.0£0.0 95.1+11.1 0.0£0.0

« 0.0£0.0 0.0£0.0 1.8+ 4.8 17.14+ 14.2 76.1+ 16.9
A4

B 0.04+0.0 0.04+0.0 0.04+0.0 0.04+0.0 91.94+13.1
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Table 4.12: Comparison of the valence levels recognition accuracy for
the feature set o and the proposed feature set (3

QDC Dataset N Vi v2 V3 V4

el 96.847.5 3.94+6.4 0.0£0.0 0.0£0.0 0.0£0.0
N

B 100+£0.0 3.1£4.5 0.0£0.0 0.0£0.0 0.0£0.0

e 3.2£7.5 96.11+6.4 0.0£0.0 0.0£0.0 0.0£0.0
Vi

B 0.0£0.0 94.7+4.5 0.0£0.0 0.0£0.0 0.0£0.0

e 0.0£0.0 0.0£0.0 87.1+ 11.1 0.0£0.0 18.6 + 11.2
V2

B 0.0£0.0 2.2+4.5 91.749.8 0.0+0.0 0.040.0

@ 0.0+0.0 0.0£0.0 0.0£0.0 10040.0 0.0£0.0
V3

B 0.0+0.0 0.040.0 2.0+9.8 90.144.7 5.1£9.8

el 0.0+0.0 0.0£0.0 12.9 + 11.1 0.0+0.0 81.44 11.2
v4

B 0.0£0.0 0.0£0.0 6.3+£9.8 8.9+4.7 94.9+ 9.8
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4.1.5 Instantaneous Bispectral Characterization of
the Autonomic Nervous System through Point-
Process Nonlinear models

In this section, I validate the developed point-process NARI model
in data gathered from 10 healthy subjects undergoing a fast tilt-table
protocol [A7], i.e. postural changes. The study, fully described in [45],
was conducted at the Massachusetts Institute of Technology (MIT)
General Clinical Research Center (GCRC) and was approved by the
MIT Institutional Review Board and the GCRC Scientific Advisory
Committee. After preprocessing the data with a point-process based
R-R interval (RR) error detection and correction algorithm [315], I
also conducted a preliminary model selection analysis for the exper-
imental datasets. Specifically, using the first 5-min RR recordings,
AIC analysis indicated 6 < p < 8 and 1 < ¢ < 2 as optimal orders.
A representative tracking result is shown in Fig. 4.3, and its respec-
tive KS plots and Autocorrelation plots are illustrated in Fig. 4.4 for
the nonlinear model. Almost all the obtained KS plots were inside
the boundaries with small KS distances (i.e. 0.0811 £ 0.0532). The
outcomes from an established nonlinearity test [316] further validated
that the nonlinear terms estimated by our model are not a result of
an over-fitting identification.

Once the optimal model has been established, I evaluated the lin-
ear and nonlinear indices for all subjects and averaged the instanta-
neous (5 ms resolution) identification indices both within each "rest"
and "tilt" epochs, and among all subjects. The statistical difference
between "rest" and "tilt" was expressed in terms of p-value as com-
puted by rank-sum test [317]. The results are shown in Table 4.13.
It is straightforward to notice that in terms of statistical difference
between the rest and tilt conditions, the bispectral features provide
significative results in spite of the discrimination obtained using the
spectral ones.
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0 200
Figure 4.3: Instantaneous heartbeat statistics computed from a rep-
resentative subject (N. 1) of the Tilt-Table protocol using a NARI
model. The estimated pgrg(t) is superimposed on the recorded R-R
series. Instantaneous heartbeat Power spectra in Low frequency (LF),
High frequency (HF) and the sympatho-vagal balance from a repre-
sentative subject of the Tilt-Table protocol. Instantaneous heartbeat
Bispectral statistics
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Figure 4.4: KS plot (Left) and Autocorrelation plot (Right) from a
representative subject of the Tilt-Table protocol. The dashed lines in
all plots indicate the 95% confidence bounds.

Table 4.13: Results from the Tilt-Table Experimental Dataset, i.e.
Tilt.

Statistical Index

Rest

Titl-Table

P-Value

wrR(ms)
oRrpr(ms)
Power LF(ms?)
Power HF (ms?)
PowerBal.
LL(-10%)
LH(-10%)

HH(-10%)

884.86+£96.82

21.5447.98

322.71+£258.96

192.67+131.14

1.3540.83

24.70£18.51

168.90+126.80

441.00+£378.98

777.21+55.13

16.51+4.41

322.274+165.28

122.36+65.01

1.23+1.14

30.04+14.07

73.134+22.52

172.174129.92

0.003849

0.068878

0.558337

0.141238

0.739734

0.704275

0.055603

0.028176

137



Experimental Results

4.1.6 Instantaneous Emotional Assessment through
Nonlinear Point-process Models

The emotion recognition system proposed in the previous sections,
although effective, requires relatively long-time series of multivariate
records. Reducing such a dimensionality would bring beneficial results
in computational costs and number of sensors needed. Moreover, these
methods are not able to provide accurate characterizations in short-
time series (e.g., for each image showed for less than 10 seconds).

To overcome these limitations, the novel personalized probabilistic
framework based on the point-process theory (see chapter 3) was ap-
plied to characterize the instantaneous emotional state of an healthy
subject through analysis and modeling of heartbeat dynamics exclu-
sively. Due to the intrinsic non-linearity and non-stationariety of the
RR intervals, a specific nonlinear point-process model was developed.
Features from an equivalent cubic input-output model were extracted
from the instantaneous spectrum, and bispectrum of the considered
RR intervals, and given as input to a support vector machine for
classification.

The ECG signal was analyzed off-line to extract the RR intervals
[42], then further processed to correct for erroneous and ectopic beats
with a previously developed algorithm [299].

First, the presence of nonlinear behaviors in the heartbeat series
was tested by using a well-established time-domain test based on high-
order statistics [316]. The null hypothesis assumes that the time series
are generated by a linear system. I set the number of laps to M = 8,
and a total of 500 bootstrap replications for every test. Experimental
results are shown in Tables 4.14 and 4.15.

The nonlinearity test gave significant results (p < 0.05) on 27 out
of 30 subjects (see Table 4.14). In light of this result, a quadratic
Nonlinear Autoregressive Integrative (NARI) model was applied. Its
main novelty relies on the possibility of linking a regression on the
derivative RR series based on an Inverse Gaussian (IG) probability
structure [45,200,201] to an equivalent n'*-order input-output Wiener-
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Volterra Model based on the Wiener-Volterra representation [46,292],
allowing for the estimation of the n'"-order polyspectra of the sig-
nal [288]. For this analysis, up to the third-order input-output non-
linearities were considered to obtain the instantaneous estimation of
the dynamic bispectrum and trispectrum [289,290]. After a trans-
formation from the autoregressive to the input-output domain, from
the linear and nonlinear terms of the NARI representation it is pos-
sible to extract crucial cardiovascular instantaneous information re-
lated to the second-order (i.e., spectral) and third-order (i.e., bispec-
tral) statistics, respectively. Indices from a representative subject are
shown in fig. 4.5. Importantly, the NARI model as applied to the
considered data provides excellent results in terms of goodness-of-fit,
with KS distances never above 0.056 (see Tables 4.14 and 4.15), and
the independence test verified for all subjects (not shown).

Concerning the emotional pattern recognition, a two-class prob-
lem was considered for the arousal, valence and self-reported emotion:
Low-Medium (L-M) and Medium-High (M-H). The arousal classifica-
tion was linked to the capability of the point-process NARI methodol-
ogy in distinguishing the L-M arousal stimuli from the M-H ones, with
the neutral sessions associated to the L-M arousal class. Regarding
valence, the L-M was distinguished from the M-H valence regardless
the images belonging to the neutral classes. This choice is justified
by the fact that the neutral images can be equally associated to the
L-M or M-H valence classes. For the self-reported emotions, I used
labels given by the self-assessment manikin (SAM) report. After the
visual elicitation, in fact, each subject was asked to fill out a SAM test
associating either a positive or a negative emotion to each of the seen
images. During this phase, the images were presented in a different
randomized order with respect to the previous sequence. For each of
the three mentioned classifications, 80% of the available data was used
for training the pattern recognition algorithm, whereas the remaining
20% was associated to the test set. 40-fold cross-validation steps were
performed in order to obtain unbiased, Gaussian distributed classifi-
cation results. Features were classified using a well-known Support
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Vector Machine [318]. Results are summarized based on recognition
accuracy, i.e. the percentage of correct classification among all classes.

First, five linear-derived features were used in the SVM classi-
fier: the mean and standard deviation of the IG distribution (corre-
sponding to the instantaneous point process definitions of mean and
standard deviation of the RR intervals [45]), the power in the low
frequency (LF) band, the power in the high frequency (HF) band,
and the LF/HF ratio. Then, nonlinear features derived from the in-
stantaneous bispectral analysis, namely the mean and the standard
deviation of the bispectral invariants, mean magnitude, phase entropy,
normalized bispectral entropy, normalized bispectral squared entropy,
sum of logarithmic bispectral amplitudes, and nonlinear sympatho-
vagal interactions were added to the linear-derived feature set for
further classification. The recognition accuracy of the short-term
positive-negative emotions improves with the use of the nonlinear
measures in 14 cases, with > 60% of successfully recognized samples
for all of the subjects and a maximum of 84% for subject 23. Concern-
ing the L-M and M-H arousal classification, the recognition accuracy
of the short-term emotional data improves in 19 cases, with > 66% of
successfully recognized samples for all of the subjects and a maximum
of 98% for subject 7. Finally, the L-M and M-H valence classification
the recognition accuracy of the short-term emotional data is improved
in 19 cases, with > 60% of successfully recognized samples for all of
the subjects and a maximum of 92% for subject 23 (see Tables 4.14
and 4.15).
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Figure 4.5: Instantaneous HRV indices computed from a represen-
tative subject (N. 12) using the proposed NARI model during the
passive emotional elicitation (two neutral sessions alternated to a L-
M and a M-H arousal sessions). In the first panel, the estimated
prr(t, He, £(t)) is superimposed on the recorded R-R series. Be-
low, the instantaneous heartbeat Power spectra evaluated in Low fre-
quency (LF) and in High frequency (HF), the sympatho-vagal balance
(LF/HF) and several bispectral statistics are reported.
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Table 4.14: Experimental Results from the point-process NARI model
of the first 15 subjects: KS statistics, Nonlinearity test, and accuracy
of classification of the SVM (in percentage)

Subjects KS Dist P-Value Linear— Nonlinear Linear— Nonlinear Linear— Nonlinear
1 <106 0.0362 65.45—63.64 78.45—78.46 Vv 84.37—81.25
2 <106 0.0397 73.13—74.63 VA 83.61—+85.25 VA 79.03—85.48
3 <106 0.0321 66.15—58.46 87.69—92.31 Vv 75.00—73.44
4 < 0.01 0.0372 47.83—60.87 Vv 80.00—90.77 Vv 54.69—68.75
5 < 0.05 0.0250 70.91—69.09 89.23—95.38 VA 70.31—60.94
6 < 0.005 0.0470 70.31—67.19 79.69—90.62 VA 80.95—87.30
7 < 0.05 0.0331 70.18—64.91 94.74—98.25 VA 72.13—78.69
8 < 0.002 0.0335 56.52—67.39 v 85.94—92.19 v 84.13—82.54
9 < 0.05 0.0474 59.57—53.19 61.54—67.69 VA 62.50—75.00
10 <106 0.0302 67.74—61.29 87.30—85.71 78.69—70.49
11 < 0.03 0.0311 73.21—76.78 v 81.25—90.62 v 79.36—80.95
12 < 0.02 0.0216 64.62—63.08 79.69—87.50 VA 68.25—+66.67
13 < 0.004 0.0306 53.23—72.58 VA 87.69—81.54 57.81—75.00
14 < 0.002 0.0463 81.36—83.05 Vv 76.92—84.62 v 82.81—87.50
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Table 4.15: Experimental Results from the point-process NARI model
of the last 15 subjects: KS statistics, Nonlinearity test, and accuracy
of classification of the SVM (in percentage)

Subjects KS Dist P-Value Linear— Nonlinear Linear— Nonlinear Linear— Nonlinear
15 < 0.004 0.0130 72.73—67.27 87.69—86.15 73.44—75.00
16 < 0.008 0.0168 51.79—66.07 v 73.85—60.00 65.62—78.12
17 > 0.05 0.0464 80.65—82.26 VA 91.80—88.52 86.88—78.69
18 < 0.03 0.0298 70.59—67.65 78.46—73.85 79.69—90.62
19 <106 0.0357 68.33—61.67 93.85—80.00 70.31—75.00
20 < 0.002 0.0514 65.71—67.14 VA 73.84—76.92 VA 60.94—70.31
21 < 0.01 0.0550 62.50—71.43 VA 76.92—93.85 VA 87.50—90.62
22 > 0.05 0.0309 62.72—72.88 Vv 96.92—92.31 75.00—73.44
23 < 0.05 0.0395 92.16—84.31 78.46—75.38 96.87—92.19
24 < 0.01 0.0427 78.57—71.43 83.08—87.69 VA 78.12—79.69
25 < 0.05 0.0455 61.02—64.41 Vv 68.75—76.56 Vv 69.84—73.02
26 <106 0.0558 61.67—66.67 VA 58.06—72.58 VA 58.06—74.19
27 > 0.05 0.0315 76.81—72.46 90.77—80.00 85.94—82.81
28 <106 0.0494 79.63—74.07 84.37—75.00 87.30—82.54
29 <106 0.0463 73.44—70.31 78.12—78.12 v 66.67—73.02
30 <106 0.0347 55.88—63.23 Vv 57.81—67.19 Vv 59.68—74.19
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4.1.7 Electrodermal Response Analysis and Sen-
sorized Glove Assessment

4.1.7.1 Textile Electrode Performance

Textile electrode performance assessment are presented for both tex-
tile electrode characterization and EDR signals evaluation. Fig. 4.6
shows the experimental data fitting of the Butler-Volmer equation,
from which « (transfer coefficient), jo (exchange current density), and
Ry (charge transfer resistance) were estimated and reported in Table
4.16. In addition, outside the region of validity of the Butler-Volmer

0.01

0.005f

Current [A]
(=]

-0.005}-

-0.01

—— Fitted Equation

Experimental Data

,
K|

| | |
0 1 2

Voltage [V]

Figure 4.6: Fitting of Bulter-Volmer equation

Table 4.16: Butler-Volmer coefficients

Coefficients

[e3

Jo(A/m?)

Ry (9« m?)

3.022%¥1072 | 3.639%10~%

2358.78

equation, a limiting current density Jgar was experimentally detected
and resulted to be 0.0103[A/m?]. The goodness of fit was about of
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0.969, calculated by Adj(R2), which confirmed the good agreement
between the theoretical and experimental data. Figs. 4.7 and 4.8 re-
port the magnitude and phase of the textile electrode impedance cal-
culated in the frequency bandwidth of the EDR, where the impedance
magnitude decreases as frequency increases and phase is pretty lin-
ear implying a constant group delay and no distortion introduction.

A comparative performance evaluation of EDRs was performed by

T T T T
300k < Experimental Dala | |
—Fitied Equation

250k

2001

T 150}
100}

50k

02 04 06 08 1 T2 T4 16 T8 32
Frequency [HZ

Figure 4.7: Fit of the magnitude of the textile electrode impedance

calculating the Spearman correlation coefficient between signals com-
ing from standard and textile electrodes placed in crossed-finger con-
figuration. More specifically, tonic and phasic components of EDR
were compared in addition to the whole signal. The choice of a non-

T T T T T T T
-0.37 « Experimental Data
— Fitted Equation
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Figure 4.8: Phase of the textile electrode impedance
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parametric index is justified by non-gaussianity of the data. In Table
4.17, the mean value and the standard deviation of the correlation
coefficient are reported.

Table 4.17: Spearman correlation for tonic and phasic skin conduc-
tance, and whole EDRs in crossed-finger configuration.

Spearman Tonic Phasic Total EDR

coefficient

P 0.957040.0241 0.99474+0.0013 0.960440.0311
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4.1.7.2 EDR-based Arousal and Valence Recognition

Data were acquired by means of the glove shown in Fig. 2.6 using
only the index and middle fingers. As reported in section 4.1.1, ex-
perimental results are shown in form of confusion matrix from the
QDC classifier when only standard features are used («) rather than
they are used in combination with features extracted from nonlinear
methods (f). In table 4.18 classification results of the four classes
of different arousal (Al, A2, A3 and A4) and the neutral class (N)
are shown on the principal diagonal of the matrix. It is obtained by
the cross-validation technique, which is an average of forty confusion
matrix calculated on a randomly shuffled dataset. In each element
constituting the diagonal it has been reported mean value and stan-
dard deviation of the classification result for that class, respectively.
In all other elements the error of classification is reported as well.
Each principal component, obtained from applying the PCA algo-
rithm to the feature sets, accounts for a given amount of the total
variance. The reduction process was stopped when the cumulative
variance reached 95%. Therefore the number of principal components
is different for standard dataset and the joint dataset (see caption of
the table for further details).
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QDC Dataset N Al A2 A3 A4
N a 95.743.9 33.6+18.7 33.6+£17.5 23.6416.2 20.7+£16.4
8 100+0 10.049.4 3.8+ 2.1 5.34+3.3 9.2412.5
Al @ 2.743.8 26.4422.8 10.7£13 5.74+8.5 4.2411.4
B 040 90.0+9.4 0+0 0+0 040
A2 @ 0.941.9 27.14+13 25.7+22 43.6426.4 30.7426.7
8 0+0 0+0 96.2+2.1 0+0 0+0
A3 a 0.3+1.1 3.64+6.3 17.14£15.8 | 11.449.9 27.14+18.5
B 040 040 040 94.743.3 1.6+4.4
A4 @ 0.341.1 9.34+16.9 12.8+17.9 15.7419 17.1420.5
B 040 040 040 040 89.2+13.8

Table 4.18: Confusion matrix of QDC Classifier for Arousal level
recognition, « indicates standard feature set with a PCA-reduction to
19 components; [ indicates feature set, by nonlinear methods, with a
PCA-reduction to 7 components;
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4.1.8 Eye Tracking and Pupil Area Variation

In this paragraph, a first study aiming at investigating eye track-
ing and pupil area variation in response to stimulation using images
form TAPS is reported. The association between eye information and
emotional image categories was studied by using an innovative head-
mounted eye tracking system (HATCAM, see chapter 2) able to ac-
quire pupil variation together with eye gaze trajectory and time of
fixation as well, during exposition of subjects to affective images.
The main goal was to identify characteristic features from pupil size
variation and eye tracking and by means of classification methods to
distinguish the neutral from arousal elicited states. Let L;;(z,y) be
the set of eye-gaze points from the frame i of the image j, where x
and y are spatial coordinates. The recurrence quantification analysis
(RQA) was applied to the set G,,(x,y) defined as:

[Gm(:z:,y) - ULij(xay)] (4'1)

A subset of the healthy subjects participating the study described
in chapter 2 was considered. Specifically, ten subjects (nine males
and one female) volunteered to participate in the experiment. All
subjects do not suffer from evident mental pathologies. Six subjects
had dark eyes and 4 had bright eyes. The average age was of 26.8
with a standard deviation of 1.5. The experiment was performed in
a room with illumination condition achieved by white neon lighting
equally distributed in the room with a power of 50 lumens. Subjects
were asked to sit on a comfortable chair in front of a screen at a
fixed distance of 70 cm. The HATCAM system was also equipped
with a chin-support in order to avoid unwanted head movements.
They were presented with a sequence of images, gathered from the
[APS database, while wearing headsets for acoustical insulation. The
slideshow is comprised of 5 sessions of images N, A, N, A, N, where
N is a session of 5 neutral images, and A are sets of 5 images having
maximum level of arousal and the lowest valence, i.e. high negative
affective impact. During the experimental test all the subjects were
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Figure 4.9: Example of the points of gaze detected during a neutral
elicitation. Gaze points are marked in red.

asked to look at the picture which appeared on the screen for 10
seconds. Each trial lasted about 25 minutes.

Figures 4.9 and 4.10 show the map of points of gaze over two
sample images, having neutral and the highest value of arousal, re-
spectively. Gaze points are marked in red. Already at glance, the
neutral image (fig. 4.9) shows a more sparse spatial distribution of
the gaze points than the arousal image, in which gaze points are
mainly concentrated in confined areas.

By way of illustration, I report in fig. 4.11 an example of neutral
image also showing the eye gaze pattern. I do not report intentionally
any negatively valenced images because of high visual impact. In fig.
4.12 a 3D representation of the eye gaze points over a neutral image is
reported. The z-axis represents how many times each pixel was fixated
during the presentation time of ten seconds. On each image, the
gaze points are reported. Already at glance, most of neutral images
showed a more sparse spatial distribution of the gaze points than the
images with arousal, in which gaze points were mainly concentrated
into confined areas. A more quantitative analysis was done extracting
the above described features from the distribution of eye gaze patterns
and using them as input of the MLP classifier.
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Figure 4.10: Example of the points of gaze detected during a arousal
elicitation. Gaze points are marked in red.

Vertical-Dimension [pixel]

400 500 600 700 800
Hrizontal-Dimension [pixel]

Figure 4.11: Example of the points of gaze detected during a neutral
elicitation. Gaze points are marked up in red.
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Figure 4.12: 3D representation of the gaze points over the image
across the recurrence times each pixel was fixated.

RQA analysis was used to quantify the gaze point distribution for
each frame of each image. All the extracted features from RQA and
pupil area variation are not normally distributed, as confirmed by the
Lilliefors test [309], which returns a p-value (p<0.05) rejecting the null
hypothesis of normality. Accordingly, the Kruskal-Wallis test [310]
was used, which is a non parametric one-way analysis of variance by
ranks for testing equality of population medians. Kruskal-Wallis is
performed on ranked data, so the measurement observations are con-
verted to their ranks in the overall data set. This test does assume an
identically-shaped and scaled distribution for each group, except for
any difference in medians. The null hypothesis is stated as the prob-
ability that the samples come from identical populations, regardless
their distributions. In place of the mean of distributions, I considered
the median as a measure of location [319]. Having only two sets of
features, one for arousal and one for neutral, Kruskal-Wallis test re-
turned the probability that the two samples were not belonging to the
same population, in other words, if there was a statistical difference
between the two samples.

Median and Median absolute deviation of all RQA features are
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reported in Table 4.19. Statistical differences between neutral and
arousal elicitation were found (¥p<0.01 and *xp<0.001).

Table 4.19: Features extracted from RQA

Features

Neutral

Arousal

RRx*

0.0018+0.0002

0.0019+£0.0002

DET*x*

0.7311£0.0782

0.6373£0.0798

TTxx

2.586240.9024

2.0345£0.4368

Lxx

2.918440.4564

2.6513+0.3181

ENTRx*x*

1.2592+0.2306

1.0501£0.2041

Lmax *x

5.0000£1.2800

5.0000£1.0583

Tmax *x

1.960040.3509

1.5600 £0.3501

Pupil E

195.39£19.689

197.27£17.106

LGPx*x*

480.0000£208.5236

331.50004+174.1567

MVA

33.0000£8.8630

27.0000£7.8800

In the table 4.21, the confusion matrix obtained from K-NN clas-
sifier after 40 fold-cross-validation steps is shown.
In the table 4.21, the confusion matrix obtained from MLP clas-
sifier after twenty fold-cross-validation steps is shown.
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Table 4.20: Confusion Matrix of the k-NN classifier using RQA and
pupil size features

Neutral Arousal

Neutral | 90.2273+5.9622 20.1136£10.8881

Arousal | 9.7727+5.9622 79.8864+10.8881

Table 4.21: Confusion Matrix of MLP classifier by using the whole
set of features

Neutral Arousal

Neutral | 93.9394+4.2855 20.4545+3.2141

Arousal 6.0606+4.2855 79.54554-3.2141

4.2 Modeling the Cardiorespiratory Cou-
pling during Arousing Elicitation

All methodology proposed in this chapter for effective emotion recog-
nition system definitely deals with monovariate and bivariate non-
parametric and nonlinear techniques. In fact, given the experimen-
tal data, i.e. ANS signals, several transformations were applied in
order to obtain a reliable data-driven feature set able to train our
automatic classification algorithm. Based on my previous findings, I
here propose a set of equations model of CR coupling during sympa-
thetic elicitation. This model is a simply adaptation of the theories
of weakly coupled oscillators [51-53| with external driving. Accord-
ingly, this model can constitute a general tool to be easily embedded
in other model-based emotion recognition systems. In my previous
studies [A6], the HRV nonlinear dynamics through the well-known
DLE [269] was studied (see paragraph 4.1.2). I found that, starting
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from positive values kept also during the neutral elicitation sessions,
the DLE became negative during the arousal session with statistical
significance (p < 0.05). Accordingly, it is reasonable hypothesize a
relationship between the DLE and the CR synchronization findings,
especially from a biophysics point-of-view. In fact, the physiological
signals recorded during the presentation of pictures with arousal con-
tents present a clear loss of DLE (with change of the sign) as well as
a CR phase synchronization increase [A5|. The connection between
DLE and synchronization is well-characterized for nonlinear and also
chaotic systems [51,52]. In fact, if two or more nonlinear oscillatory
processes (e.g. heart beat and respiratory activity) are weakly cou-
pled, they can become phase synchronized and such a synchronization
manifests itself in the Lyapunov spectrum of the system [51]. Such a
coupling leads to a decrease of the ng; — me, differences. Moreover,
considering an external force (i.e. perturbation) applied to the sys-
tems, the DLE is expected to be negative, as result of a stable value
of the phase with respect to the phase of the external force, in the
time domain [52]. The novelty of this model regards only the fact
that it is possible to adapt the nonlinear model of weakly coupled
oscillators to the CR system relying on previously defined equations.
Let me consider the HRV as the representation in the Fourier do-
main of the RR interval series, i.e., the weighted summation of com-
plex functions having frequencies frr = wgrr/2m. Likewise, let us
consider the respiration dynamics in the frequency domain but with
only one component, which corresponds to the respiratory frequency
frsp = wrsp/2m. Therefore, the RR and RSP phase dynamics can
be written as follows:

drr = wrr + F(RR,1) (4.2)

¢rsp = wrsp + F(RSP,t) (4.3)

where F(RR,t) and F(RSP,t) stand for factors depending on the
amplitude of RR and RSP, respectively. When the two oscillators
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become coupled, then it is possible to write:

{d)éR = wrr + Frr(RR,t) + G (drsp, Prr, V) (4.4)

drsp = Wrsp + Frsp(RSP,t) 4+ G (drr, drsp, V)

The simplest non-trivial case is given by

G (¢rr, 9rsP, V) = sin[(¢rsp + ¢rr) — Y] = sin (Adcr), where Q =
di /dt represents the dominant oscillation of an external stimulus (i.e.

external force, perturbation). The eq. 4.4 becomes:

dAocr
dt

= {wRR+wRSP—Q}+25 sin (A¢CR)+{F(RR, t)—l—F(RSP, t)}
(4.5)
This equation is similar to the simple Langevin equation describing
phase locking of periodic oscillators in the presence of noise [320].
In our experimental framework, it is possible to consider a specific
Q = Qgn = dipraps/dt assuming its amplitude as function of the
arousal level and, the frequency of elicitation of the gb].{R and QbR.SP
systems as function of the valence level. It is possible to write the for-
mal solution of this equation assuming the {F (RR,t) + F(RSP, t)}
to be Gaussian d—correlated:
{F(RR,t) + F(RSP,t)}{F(RR,t') + F(RSP,t')} = 2D(t — t').
Therefore, it could be solved by using the Fokker-Planck equation
where the main quantities that would characterize such a synchro-

nization are, precisely, the averaged frequency <A$c R> and the Lya-
punov Exponent. Briefly, the Fokker-Planck equation can be written
as follows:

ow 0
OAdcr  OAdcr

[({wrr + wrsp — Q} + 2esin (Aper)) W] +
O*W
+ DM (4.6)

Taking the Fourier-representation of the stationary solution:

W(Agcr) =Y Wyehaoen (4.7)
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It is possible to write the continuous-fraction representation of the
first Fourier mode:

W1 -
(2m)~"

1

{wRR + WRSP — Q} — ZQD) + -
(4.8)

% ({wRR—l—wRSp —Q} —ZD) + 2i (

Therefore, the CR synchronization is mainly characterized by means
of the the averaged frequency:

<A¢CR> = {wrr + wrsp — Q} + 2relm(W;) (4.9)
and the Lyapunov Exponent:
dindA
<”T¢CR> — —2reRe(WV)). (4.10)
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4.3 Results from the Bipolar Patients Study

According to the developed mania-depression model (see section 2.2.2),
the goal of these studies was to test the ability of the developed
methodologies and classifiers in discriminating the mood states of
bipolar patients.

4.3.1 Long-term Analysis

This analysis concerns with a long-term monitoring in a naturalistic
environment of three bipolar patients. According to the experimental
procedure described in section 2.2.1, three patients enrolled for the
preliminary validation phase of the PSYCHE project were included
in this study. In detail, patient 1 (hereinafter BP1) is a 38 year-
old female, patient 2 (hereinafter BP2) is a 55 year-old male, and
patient 3 is a 37 year-old female (hereinafter BP3). Before entering
the study, each patient signed an informed consent approved by the
ethical committee of the University of Pisa.

The acquired signals are preliminarily processed, i.e. cleaned from
the parts of the signals with artifacts, segmented and filtered. After-
wards, the significant features are extracted from each signal, com-
bined in a unique feature space, and then reduced using the PCA
method. Finally, the features are classified using various machine
learning methods [222|. Several classifiers such as the linear discrim-
inant classifier (LDC), the quadratic discriminant classifier (QDC), a
mixture of gaussian (MOG), the k-nearest neighbor (k-NN), the Koho-
nen self organizing map (KSOM), the multi-layer perceptron (MLP),
and the probabilistic neural network (PNN) were tested. In order to
choose the best classification algorithm, a statistical comparison was
performed using the analysis of variance (ANOVA) test [284] to test
the null hypothesis that no differences exist among all the classifica-
tion algorithms. Since this study deals with the long-term acquisition
of ANS signals, the non-stationary nature of such signals must be
considered to perform a proper feature extraction phase. Accord-

158



4.3 Results from the Bipolar Patients Study

ingly, features were extracted within moving time windows of length
W of the artifact-free signal. Each acquisition (see table 4.27) can be
seen as a concatenation of equally-long (i.e. W) segments of biosig-
nals. The multidimensional points of the feature space associated to
each acquisition have the same class label. General statistics and spe-
cific features (hereinafter called standard features) as well as features
extracted from nonlinear dynamic techniques (e.g. entropy measures,
recurrence plot, etc.) were considered. A summary of the selected
features extracted from the RR and RSP signals is reported in ta-
ble 4.22. These measures were chosen following concepts, guidelines
and previous studies reported in the current literature in both the
psycho-physiological and bioengineering domains. Specifically, the
RR standard features were mainly suggested by the guidelines re-
ported in [42,95], and the nonlinear measures were profitably used in
my previous work [A4].

Table 4.27 reports for each patient the initial and final time of each
acquisition along with the percentages of the signal cleaned from the
movement artifacts. After the AMR step, each signal was visually
checked in order to identify physiological (ectopic or arrhythmic beats)
or algorithmic artifacts (i.e. errors due to misdetection of the R-
peaks). As it can be seen, good percentages of the retained signals
were achieved, thus confirming the robustness of the wearable system
even during long-term monitoring in a natural environment.

A class label was associated to each point in the feature space,
according to the model described in section 2.2.2 and schematically
reported in figure 2.5. Accordingly, table 4.23 reports the mood states
of the patients during each acquisition. The mood states evaluated in
this work are the remission- euthymia, (ES), mild depression (MD),
severe depression (SD), and mild mixed state (MS). Some descriptive
statistics about the most relevant indexes, also used for the classifica-
tion, are reported in tables 4.24, 4.25, and 4.26. To average among all
the values, the median values over all the acquisitions for each class
were considered according to the outcome of the Kolmogorov-Smirnov
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Table 4.22: Selected features extracted from RR and RSP signals for
the long-tern bipolar patients study

Typology Biosignal Feature Typology Biosignal Feature
KRR
SRR
RMSSD MBI
IS
%
pNN50% g VBI
RR ®
5
TINN T RR & RSP MMB
o
E}
LF T PEB
HF NBE
LF/HF NBSE
RSPR
¢ MFD
3
@«
5]
g SDFD DLE
<]
g
? MSD ApEn
3
P
0
SDSD RecR
MAXRSP DET
w
MINRSP ] LAM
RSP ,§
DMMRSP 5 RR TT
O
Skewness g AV
Z,
Kurtosis ENTR
Power in 0-0.1 Hz Lmazx
Power in 0.1-0.2 Hz DFA oy
Power in 0.2-0.3 Hz DFA ag
160 Power in 0.3-0.4 Hz
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Table 4.23: Clinical labels associated to each bipolar patient during
each long-term acquisition

ID | ACQ.1 | ACQ.2 | ACQ.3 | ACQ.4 | ACQ.5 | ACQ. 6

BP1 MD SD MD ES
BP2 MD MD MD MD MD ES
BP3 MS ES

test for normality (p < 0.05, i.e. data are not normally distributed).
The values are expressed as median and its respective absolute de-
viation (i.e. for a feature X, X = median(X) + MAD(X) where
MAD(X) = |X — median(X)]|).

The dimension of this dataset was reduced by applying the PCA
algorithm. Since each principal component accounts for a given amount
of the total variance, the optimal reduced dimension was selected as
the one which gives the cumulative variance equal to 95% at least.
It was found that a reduced dimension of 7 components is sufficient
to explain such a value of variance. In this study, only an intra-
subject classification was performed because of the small number of
patients involved as well as the small number of examples for some
classes. Moreover, such an approach falls within the area of person-
alized health care systems, which are preferred in the field of mental
disorders.

I collected the confusion matrices from several commonly-used al-
gorithms such as LDC, QDC, MOG, k-NN, KSOM, MLP, and PNN.
Taking into account the elements of the main diagonal, i.e. r;; with
1 = j, a statistical analysis was performed for each i = j = {1, 2} by
means of the ANOVA test.

Concerning BP1 and BP2, the post-hoc analysis, using the Bon-
ferroni correction, gave a significative p-value (p < 0.05) for both
elements r; and r9, showing that the best accuracy was obtained by
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Table 4.24: Selected descriptive statistics of the features from the

bipolar patient BP1.

BP1 Features

MD

SD

ES

KRR

0.7559+0.0615

0.750740.0826

0.822440.1267

9RR

0.0317+0.0172

0.035040.0120

0.068540.0250

RMSSD

0.0340+0.0168

0.042440.0181

0.044640.0104

pNN50%

4.8128+3.8649

3.953742.4831

20.3980+8.4363

TINN

0.2100+0.1150

0.282540.0975

0.310040.1000

LF

2.690042.2989

2.8248+42.4202

0.002640.0021

HF

3.634142.9069

4.172143.6044

8.458943.1042

LF/HF

0.7388+0.3289

0.651740.2305

3.0415+2.2429

ApEn

0.8640+0.1186

0.862440.1076

0.707740.1145

DFA oy

0.97584+0.1691

0.848940.1670

1.3865+0.2047

DFA oy

0.8288+0.1798

0.699240.1522

0.966140.1615

Values are expressed as X = median(X) £ MAD(X)
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Table 4.25: Selected descriptive statistics of the features from the
bipolar patient BP2

BP2 Features MD ES

KRR 0.7687+0.0661 0.819240.0988
ORR 0.03134+0.0107 0.031940.0136
RMSSD 0.036440.0150 0.027440.0129
pNN50% 3.442442.3524 4.3256+3.4817
TINN 0.2575+0.0825 0.180040.0650
LF 2.692641.7427 4.420043.2629
HF 2.423342.0904 1.9436+1.6271
LF/HF 1.0468+0.5698 2.9063+1.9288
ApEn 0.78914+0.1226 0.79024+0.1030
DFA o 0.932240.2053 1.2849+0.2125
DFA oag 0.8364+0.1575 0.7839+0.1537

Values are expressed as X = median(X) £ MAD(X)
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Table 4.26: Selected descriptive statistics of the features from the

bipolar patient BP3

BP3 Features

MS

ES

KRR

0.9698+40.0244

0.75054+0.0653

9RR

0.097940.0108

0.0218+0.0072

RMSSD

0.060640.0062

0.02214+0.0108

pNN50%

33.9872+5.2543

1.0959+1.0959

TINN

0.437540.0500

0.1650+0.0850

LF

0.006240.0019

13.4740£8.9033

HF

0.001340.0006

7.6230£4.9012

LF/HF

5.487342.5745

1.7222+0.9657

ApEn

0.639940.0517

0.811540.0922

DFA oy

1.5118+0.0914

1.0785+0.2299

DFA o

0.947640.1344

0.8489+0.1629

Values are expressed as X = median(X) £ MAD(X)
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Table 4.27: Percentage of biosignals retained after the AMR step.

Subj. ID Original signal length | Retained signal length | % Retained
BP1-ACQ. 1 15h40m33s 10h20m8s 82,3453
BP1-ACQ. 2 16h30m6s 12h54m30s 70,3354
BP1-ACQ. 3 13h22mb2s 11h36m24s 94,7302
BP1-ACQ. 4 15h17m29s 12h40m33s 79,1542
BP2-ACQ. 1 12h15m39s 8h22m16s 68,2755
BP2-ACQ. 2 15h14m3s 11h48m35s 77,5215
BP2-ACQ. 3 11h59m31s 10h5m36s 84,1692
BP2-ACQ. 4 10h16m26s Th5m2s 68,9507
BP2-ACQ. 5 12h54m12s 10h40m42s 82.7556
BP2-ACQ. 6 16h19m50s 8h56m1ls 54.7045
BP3-ACQ. 1 17h36m7s 15h51m40s 90,1105
BP3-ACQ. 2 14h49mbs 11h24m28s 76,9848

The original signal length column refers to the amount of data
recorded for each acquisition until the wearable system battery ran
out. The retained signal length column refers to the amount of
artifact-free data retained for the post-processing analyses.
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Table 4.28: Intra-subject BP3

Conf. mat. MLP Class ES Class MS
Class ES 97.96 + 2.27 3.24 + 3.06
Class MS 2.04 £ 2.27 96.76 + 3.06

Class ES: 126 examples. Class MS: 162 examples. Total: 288
examples.

Table 4.29: Intra-subject BP2

Conf. mat. MLP Class ES Class MD
Class ES 68.31 + 6.49 11.13 4 3.23
Class MD 31.69 + 6.49 88.87 + 3.23

Class ES: 216 examples. Class MD: 412 examples. Total: 628
examples.
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means of the MLP neural network and, thus, it is the most suitable
classifier for the considered application, i.e. mood recognition/dis-
crimination. Regarding the three confusion matrices of BP3, the MLP

Table 4.30: Intra-subject BP1

Conf. mat. MLP Class ES Class MD-SD

Class ES 74.58 + 7.34 7.65 £ 2.05
Class MD-SD 2542 £ 7.34 | 92.35 + 2.05

Class ES: 131 examples. Class MD: 415 examples. Total: 546
examples

gave comparable results (p > 0.05) in terms of 71; values obtained
by means of KSOM, and in terms of ry, values obtained by means
of QDC. Otherwise, significative p-values (p < 0.05) were obtained
pointing out the MLP better accuracy. I also report that the k-NN,

Table 4.31: Intra-subject BP1

Conf. mat. MLP Class ES Class MD
Class ES 79.00 £+ 7.12 12.00 + 3.82
Class MD 21.00 £+ 7.12 88.00 + 3.82

Class ES: 131 examples. Class MD: 283 examples. Total: 414
examples.

LDC, MOG and PNN gave poor results for all of the patients. In fact,
at least one of the two elements of the main diagonal of the confusion
matrix was < 67%.
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The MLP results are shown in tables 4.28, 4.29, 4.30, 4.31, and
4.32. An MLP was implemented having three layers of neurons. The
first layer, the input one, was formed by 7 neurons, one for each of the
reduced dimension of the feature space. The third layer, the output
one, was formed by 2 neurons, one for each of the considered classes
to be recognized. The second layer, the hidden one, was constituted
by an empirically estimated number of neurons. Specifically, this
number was chosen as the superior limit of the half difference between
the number of the input and output neurons, i.e. 5. Insufficient
recognition was obtained by considering the 3-class problem (i.e. ES
vs MD vs SD) on patient BP1.

Table 4.32: Intra-subject BP1

Conf. mat. MLP Class ES Class SD
Class ES 93.75 + 3.81 5.25 £+ 3.84
Class SD 6.25 £+ 3.81 94.75 4+ 3.84

Class ES: 131 examples. Class MD: 132 examples. Total: 263
examples.
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4.3 Results from the Bipolar Patients Study

4.3.2 Short-term Analysis

In this study, the goal was to discriminate depressive from euthymic
ANS patterns using the short-term emotional-related elicitation pro-
tocol described in section 2.2.1. Five patients were monitored over a
period up to 90 days within the European funded project PSYCHE.
Details on patient’s acquisitions and associated mood states, either
euthymia (Euth) or Depression (Depr), are reported in Tab. 4.33.

Table 4.33: Clinical labels associated to each patient during each
acquisition

ID | ACQ.1 | ACQ.2 | ACQ.3 | ACQ. 4 | ACQ. 5

BP1 Euth

BP2 Depr

BP3 Depr Euth

BP4 Depr Depr

BP5 Depr Depr Depr Depr Euth
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4.3.2.1 Cardiovascular Assessment

Using the short-term data, I report here on the experimental results
concerning the discrimination of depressive and euthimic cardiovas-
cular patterns, which were obtained by HRV analyses [A8].

Accuracies obtained by using the standard analysis were compared
with those obtained using the novel point-process nonlinear model
proposed in section 3.6.1.

The engagement of the nonlinear terms of the NARI model was
further validated by performing a comparative analysis demonstrat-
ing how the inclusion of instantaneous HOS features indeed improves
the accuracy and reduces the uncertainty (variance) in recognizing
ANS depressive patterns. Experimental results are shown in terms of
statistical inference and confusion matrices [321].

For each subject, the NARI model was applied to the RR series
detected from the recorded ECG. The optimal model order was chosen
by means of the Akaike Information Criterion (AIC) [45] applied to
the first 5-min RR recordings. The AIC analysis indicated 6 < p <8
and 1 < ¢ < 2 as optimal orders. All the KS distances were < 0.05
(range: 0.0345 + 0.0068). No less than 97% of the autocorrelation
points were inside the boundaries.

The linear and nonlinear indices, described in section 3.6.3, were
evaluated for all of the patient’s acquisition. The instantaneous iden-
tification (5 ms resolution) was averaged within a time window of 1
second. Representative tracking results are shown in Fig. 4.14 for
BP1 (Euthymic phase, top) and BP2 (Depressive phase, bottom).

A preliminary statistical analysis was performed in order to eval-
uate the feature contribution as intra-subject analysis. Statistical
inferences were performed to test the null hypothesis of no significa-
tive differences occurring among different mood states. Such analyses
were performed on patients having more than one acquisition, i.e.,
BP3, BP4, and BP5. First, the whole feature pattern (linear and non-
linear) was treated as multivariate distribution and tested by means
of non-parametric multivariate analysis of variance (npMANOVA).
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Table 4.34: Results for the intra-subject Euthymia-Depression Dis-
crimination

BP5 ACQ1 (Depr) ACQ2 (Depr) ACQ3 (Depr) ACQ4 (Depr) ACQ5 (Euth) P-val
KRR (ms) 708.4646.47 764.01+11.47  733.67+13.94  660.95+14.45 590.86+6.93 <10-6
o rR(ms) 31.8247.07 47.13+13.09 84.59+29.12 22.74+5.82 15.2843.67 <1076
LF(ms?) 21.56+15.29 40.80+34.84 28.49+27.96 2.3842.05 1.51-40.89 <106
HF(ms?) 12.37+7.88 23.41+12.32 36.28+18.85 6.88+3.11 4.7542.17 <106
LF/HF 1.0140.81 1.60+1.29 0.69+0.65 0.40+0.30 0.4140.21 <1076
LL (10%) 10.32+8.94 42.85436.54 29.73+26.34 2.8542.05 1.2340.76 <1076
LH (10%) 28.20+20.06 61.78+44.17 73.22450.80 17.874+11.98 5.4343.46 <106
HH (10%)  104.27468.47  117.11475.44  140.95+81.53 90.81+54.20 31.89+16.26 <10-6

P-values are obtained from the Kruskal-Wallis test.

Such a test revealed statistical differences among acquisitions for all
the three patients (BP3: p < 107% BP4: p < 0.005; BP5: p < 107°).
No significative conclusions can be drawn from this analysis, which is
therefore insufficient for an effective discriminative task.

As a consequence, further monovariate statistical analyses were
performed to evaluate difference among acquisitions for each of the
extracted features. Non-parametric Kruskal-Wallis and Rank-Sum
tests were used to investigate the inter-subject variability among the
5 acquisitions of BP5 and the 2 acquisitions of BP3 and BP4, respec-
tively. These results are summarized in Tables 4.34, 4.35, and 4.36.
All the features coming from the linear (L) and nonlinear (NL) coef-
ficients were taken into account. I obtained significative p-values in
all cases but the LF//HF ratio of BP4. Remarkably, this is the only
patient having more than one acquisition having all the same mood
label.

Moreover, an inter-subject analysis was performed to reveal the
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Table 4.35: Results for the intra-subject Euthymia-Depression Dis-
crimination

BP4 Derivation ~ ACQ1 (Depr) ACQ2 (Depr) P-val
KRR (ms) L-NL 734.46+15.94  655.34+5.92 < 106
orR(ms) L-NL 146.39467.50 39.86+7.62 < 1076
LF(ms?) L 197.544186.57  23.90+18.67 < 10~°
HF(ms?) L 53.42+30.45 18474949 <1076
LF/HF L 3.16+2.86 1.29+1.16 > 0.05
LL (10) NL 65.83+53.67 17.35411.52 <1076
LH (108) NL 83.464-58.22 75.44434.19 <1076
HH (109) NL 121.09464.45  124.64£71.65 <1076

P-values are obtained from the Rank-Sum test.

mood pattern, which would be in common among patients. Discrim-
ination of the mood states was performed using the well-known MLP
Neural Network [322]. All results are expressed in the form of confu-
sion matrix, after 40-fold cross validation.

I compared the MLP accuracy by creating two feature sets. The
first set, a, is composed by pgrg(t,Hs,&(t)), orr, and the spectral
indices LF, HF, and LF /HF. The second set, /3, includes the nonlinear
LL, LH, and HH indices which will be joined to the « set for future
evaluations.

Looking at the values in Tables 4.34 and 4.35, it is straightforward
to notice that the inclusion of BP4 and BP5 strongly increases inter-
subject variability.

In order to evaluate the effects of such an uncertainty, reflected
on mood state classification, a comparative classification analysis was
performed considering either three or five patients within the input
feature set.
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Table 4.36: Results for the intra-subject Euthymia-Depression Dis-

crimination

BP3 Derivation  ACQ1 (Depr) ACQ2 (Euth) P-val
KRR (ms) L-NL 632.6149.44  628.13+18.84 < 106
oRrR(ms) L-NL 304.79+£97.86  237.73+104.25 < 1076
LF(ms?) L 11.45410.14  104.77+£86.99 < 106
HF(ms?) L 42.69421.98  107.00+£53.63 < 1076
LF/HF L 0.2740.23 0.9940.75 <106
LL (105) NL 3.9242.92 35.54+27.75 < 1076
LH (105) NL 12.6149.88 83.34+48.59 <1076
HH (10%) NL 67.53+£48.78 136.46+73.80 < 1076

P-values are obtained from the Rank-Sum test.

MLP-3 Patients | Dataset Euthymia Depression
@ 93.26 + 2.98 5.88 + 1.99
Euthymia
a+p |99.33 +£0.46 | 241 £+ 0.94
@ 6.74 + 2.98 94.12 + 1.99
Depression
a+p 0.67 + 0.46 | 97.59 + 0.94

Table 4.37: Results for the inter-subject Euthymia-Depression Dis-
crimination in patients BP1, BP2, and BP3.
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Figure 4.13: Instantaneous HRV statistics computed from Subject 1
during the euthymic state. The estimated pgr(t, Hy, £(t)) is superim-
posed on the recorded RR series. Following below, the instantaneous
heartbeat standard deviation, the instantaneous heartbeat spectral
Low frequency (LF) and High frequency (HF) powers and their ratio.
Finally, bottom rows report on the three bispectral statistics.
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Figure 4.14: Instantaneous HRV statistics computed from Subject 2
during the depressive state. The estimated purg(t, Hq, £(t)) is superim-
posed on the recorded RR series. Following below, the instantaneous
heartbeat standard deviation, the instantaneous heartbeat spectral
Low frequency (LF) and High frequency (HF) powers and their ratio.
Finally, bottom rows report on the three bispectral statistics.
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Table 4.38: Results for the inter-subject Euthymia-Depression Dis-

crimination in all patients

MLP-5 Patients | Dataset Euthymia Depression
@ 74.44 + 18.21 1.09 + 1.92
Euthymia
a+ 5 |99.56 £ 0.39 | 0.01 £ 0.06
@ 25.55 + 18.21 | 98.91 + 1.92
Depression
a+f 0.44 + 0.40 | 99.98 + 0.06

In all cases, in order to take into account the imbalanced num-
ber of available examples per class, two different learning rates were
considered in the MLP training phases giving the euthymic examples
three times more penalty with respect to the depressive example ones.

MLP results using the NARI model are summarized in Tables 4.37
and 4.38. In particular, Table 4.37 shows the recognition accuracy by
considering three patients only, namely BP1, BP2 and BP3. In this
case, better results were obtained using the joined dataset o + [.
Such an improvement is consistent with all considered classes (mood
states), reaching more than 97% of correct recognition.

Table 4.39: Results for the inter-subject Euthymia-Depression Dis-
crimination using standard techniques in all patients

MLP-5 Patients | Dataset | Euthymia Depression
@ 25.00 + 25.32 | 15.50 4+ 16.00

Euthymia
a+ [ | 3250 £ 31.11 | 21.50 +19.42
@ 75.00 £ 25.32 | 84.50 £16.00

Depression
a+f | 6750 &£ 31.11 | 78.50 £19.42
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Table 4.38 shows the recognition accuracy by considering all five
subjects. Using dataset «, correct recognition of the euthymic state is
below 75%, whereas using dataset a+ (3 accuracy increases up to 99%.
To further justify the point-process NARI approach, I estimated the
linear and nonlinear features of the o and J sets by more standard
AR models (see section 3.3.1.1) and then tested the MLP capability
of mood discrimination. The relative confusion matrices are shown in
Table 4.39. In this case, neither using the « feature set nor using the
joined o + (3 set a sufficient satisfactory recognition was reached.
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4.3.2.2 EDR Assessment

EDR changes were exploited for assessing the bipolar patient’s mood
state during the emotional stimulation. Patients were identified with
the abbreviations Pz01, Pz02 and Pz03. Pz01 and Pz03 performed
the experiment two times, while the patient Pz02 performed the ex-
periment five times. The extracted features considered were the mean
value, maximum value and Area Under the Curve (AUC) of the driver
signals within a window response of 5s. AUC is conceived as an opti-
mum indicator of sympathetic activity [235]. An intra-subject statisti-
cal inference analysis was performed by means of non parametric tests
due to the non-gaussianity of the sample sets. Concerning subjects
Pz01 and Pz03, the features of each pair of acquisition were compared
by a Rank-Sum test to show whether the data belonged to the same
population or not. The Subject Pz02 had more than two available
acquisitions. Therefore a multiple comparison analysis applying the
Mann-Whitney U-test with a Bonferroni adjustment for every pair of
Pz02’s acquisitions was carried out. The procedure was repeated for
both the tonic and phasic driver features. The classification process
was used to perform a recognition of the clinical mood states (i.e. de-
pression state, mixed-state and euthymic state). In order to perform
the classification, a k-Nearest Neighbor classifier was used.

The clinical evaluations of the patients under examination are
shown in table 4.41.

Table 4.40: Clinical evaluations of the patients

Acq.1 Acq.2 Acq.3
Mood state | Anxiety | Mood state | Anxiety | Mood state | Anxiety
PZOl Depressed High Euthymic Low x x
PZ()Z Mixed-state High Mixed-state Low Depressed High
PZO3 Mixed-state High Depressed Low x x
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Table 4.41: Clinical evaluations of the patients

Acq.4 Acq.b
Mood state | Anxiety | Mood state | Anxiety
Pz01 x x x x
PZ()Z Depressed Low Euthymic Low
Pz03 x x x x

The Mann-Whitney test was performed on the features extracted
from the phasic driver signal, in order to compare the two acquisitions
of both patients Pz01 and Pz03. A p-value less than 1076 showing a
strong statistical difference was obtained. A Kruskal-Wallis test was
performed on the acquisitions of subject Pz02 showing that the null
hypothesis of equal medians among the acquisitions can be rejected
with a p-value less than 107%. A post-hoc test using Bonferroni ad-
justment was carried out to investigate on all pairwise comparisons.
All the pairs resulted statistically different with a p-value less than
1075, Similar results were achieved analyzing the features extracted
from the tonic driver signal of patients Pz01, Pz03. It was obtained,
indeed, a strong statistical difference with a p-value less than 107°.
Kruskal-Wallis test on the acquisitions of subject Pz02 showed that
at least one acquisition was statistically different from the others,
while the post-hoc test with Bonferroni adjustment showed that there
were statistically significant differences among all pairs of acquisitions
(with a p value less than 107°%) except for the pair Acq.4 vs. Acq.b
(p = 0.108). Moreover, among the features, AUC of the tonic driver
(tonic-driver-AUC) showed an interesting behavior across the different
acquisitions on Pz02. Fig. 4.15 reports the median tonic-driver-AUC
versus the different acquisitions. Already at a glance it is worthwhile
noting a linear monotonic trend, which is confirmed by a linear re-
gression analysis which provided a correlation coefficient of 0.9886
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Figure 4.15: Linear regression of tonic-driver-AUCs of Pz02

and a p-value of 0.0015. An inter-subject analysis was performed
grouping those acquisitions with the same clinical label. The features
corresponding to the three groups, i.e. Depressed, Mized-state and
FEuthymic, were used as dataset for a pattern recognition by means
of the k-NN classifier. More in detail, k-NN classifier was used as
supervised machine learning to solve the two class problem for the
recognition of Euthymic vs Depressed (see Table 4.42), Euthymic vs
Mixed-state (see Table 4.43) as well as Depressed vs Mixed-state (see
Table 4.44), it is worthwhile noting that all classifications are greater
than 76%.

Table 4.42: Confusion matrix of depression state Vs euthymic state

Euthymic Depressed
Euthymic | 90.50 + 1.89 | 11.69 4+ 1.54
Depressed 9.50 £ 1.89 88.31 + 1.54
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Table 4.43: Confusion matrix of K-NN classifier for Mixed-state Vs
Euthymic state

Euthymic Mixed-state
Euthymic | 76.22 4+ 3.11 | 18.73 £ 3.24
Mixed-state | 23.78 £3.11 | 81.27 £+ 3.24

Depressed Mixed-state
Depressed | 82.08 + 2.82 | 16.91 4+ 2.37
Mixed-state | 17.92+2.82 | 83.09 + 2.37

Table 4.44: Confusion matrix of k-NN classifier for Mixed-state Vs
Depressed state
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Conclusions

This thesis demonstrated how electrophysiological signals related to
the autonomic nervous system (ANS) dynamics can be source of reli-
able and effective markers for mood and emotional state recognition.
It has been pointed out that the methodological approach for signal
processing and status classification is a crucial step to obtain significa-
tive performances. In all of the presented studies, standard signal pro-
cessing techniques as well as nonlinear measures have been taken into
account. According to the significant complex behavior with strong
nonlinear and nonstationary dynamic properties of ANS signals, such
nonlinear measures have been proven as important quantifiers of car-
diovascular control dynamics with prognostic value in both population
of healthy subjects and patients. Therefore, these measures should be
always taken into account in ANS modeling and analysis [125].

Accordingly, it is reasonable to represent the cardiovascular system
as a nonlinear dynamical system and study it by means of "pertur-
bation" analysis. It means that the analysis will take into account
observations during initial stable conditions (i.e. during rest) and af-
ter fast perturbations (i.e., the emotional elicitation). As a matter of
fact, high accuracies can be achieved only retaining information on
the nonlinear dynamics of such physiological systems. The use of non-
linear system-derived approaches was very important for an effective
emotion recognition, in both arousal and valence recognition.
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Healthy subjects as well as patients with mood disorders were
considered in order to drawn these considerations.

Studies on healthy subjects Thirty-five healthy subjects were
presented with sets of elicitation images gathered from the TAPS
database according to a specific protocol (see chapter 2). Such af-
fective stimuli were characterized by the Circumplex Model of Affects
(CMA) [86], in which the affective states are conceptualized by the
terms of valence and arousal. Valence represents the extent to which
an emotion is perceived as being pleasant or unpleasant. Arousal
indicates the intensity of the emotion.

First, the possibility of recognizing the elicited five levels of arousal
(including one neutral level) and five levels of valence (including one
neutral level as well) by using ANS signals such as HRV, RSP, and
EDR has been shown. The results demonstrated that the classifica-
tion through standard features was acceptable only for the neutral
class, while all arousal and valence classes were misclassified. These
results highlight that standard feature sets were insufficient to dis-
criminate closed levels of arousal or valence. On the contrary, when
features extracted from nonlinear dynamic methods were considered,
the classification process was able to recognize each level of arousal
and valence as well as the neutral class. Accordingly, good classifica-
tion results are only supported by non-linear derived features, which
provide an important contribution to the state of the art, where usu-
ally affective state recognition is performed with much less granularity.
Results are very satisfactory, although in order to have more statis-
tical significance the number of subjects should be increased. This
problem is partially overtaken doing a cross validation in the classifi-
cation process, i.e. randomizing the subjects for training and test sets.
It makes the classification independent from the sequence of the sub-
jects involved. In addition the 40 steps of cross validation make the
distributions of the results gaussian, and explainable with only two
parameters (mean and variance) as reported in all the tables. When
the classifier is applied to features extracted from nonlinear dynamic
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methods, results are much higher than those standards and in some
cases. As a such, full successful recognition (100%) was obtained on
the Neutral and Arousall for arousal level recognition and on the Va-
lence3 for valence level recognition. A possible explanation of these
results could be found in the intrinsic nonlinear behavior of the physio-
logical responses, although the issue is inevitably open. The literature
reports many attempts to find out correspondences between nonlin-
ear dynamic systems and physiological responses, but often they are
only mathematical tricks far from a clear physiological interpreta-
tion [46,323]. These findings only demonstrated the importance of
nonlinear temporal patterns for emotion recognition [324,325|, but
without claiming any specific theory. Moreover, they are consistent
with Scherer’s theory, which argues that synchronization of periodic
systems is fundamental to emotion, [326].

Aiming at deeply investigating the ANS nonlinear dynamics, tech-
niques derived from nonlinear system identification and chaos theory
were applied to identify patterns and mechanisms that are not de-
tectable with traditional statistics based on linear models. It is al-
ready documented in the literature that HRV exhibits chaotic behav-
ior dynamics in rest conditions. I found that ApEn decreases when
switching from neutral to arousal sessions, and DLE is positive for all
the neutral sessions and negative during arousal sessions. A statistical
analysis has been performed in order to study the statistical signifi-
cance of the changes in ApEn and DLE across all sessions and within
similar sessions. Moreover, the percentage of subjects exhibiting a
more complex behavior in the HRV is significantly higher during all
the neutral sessions. Statistical results showed that all the samples of
the neutral sessions, as well as of the arousal sessions, can be consid-
ered originating from the same distribution, but all neutral sessions
considered as a whole and the arousal sessions considered as a whole
differ significantly. These results deserve to be discussed. First of
all, several physiological adaptation phenomena are involved during
the affective elicitation, so the system could react in a similar way
during the switching between a neutral and an elicitation with low
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arousal or high arousal. I previously demonstrated how it is neces-
sary to consider the HRV along with both the respiration activity and
the electrodermal response in order to well characterize different (and
similar) affective elicitation (see [A4]). Concerning the SDNN, no sta-
tistical difference (p > 0.05) was found, meaning that ApEn findings
depend only on the change in the complexity behavior and not on the
SDNN value used for the calculation of the ApEn itself.

These encouraging results prompted me to extend the study of
nonlinear dynamics also for the CR systems interactions. In fact,
nowadays, it is well accepted that the cardiovascular system and its
relationship with respiration is truly a complex system. Accordingly,
I have chosen a methodology able to characterize the nonlinear in-
teraction of the cardiovascular and the respiratory system in a multi-
variate manner, even for noisy and non-stationary data. Specifically,
since two or more weakly coupled nonlinear oscillatory processes can
become phase locked, I studied the cardio-respiratory synchronization
in the mentioned protocol involving healthy subjects during an affec-
tive emotional visual elicitation protocol. CR synchronization was
quantified by using the concept of phase synchronization of chaotic
oscillators, i.e. the CRS. This technique allowed estimating the syn-
chronization ratio m:n as the presence of n heartbeats in each m res-
piratory cycle. I observed a clearly reduced synchronization during
the presentation of neutral images and an increased synchronization
during the presentation of images with significant arousal contents,
although no significant statistical differences could be gleaned from
among different arousal levels. The result remained stable and con-
gruent throughout all subjects and was not affected by gender. This
new result can truly improve the knowledge of the physiology be-
hind affective elicitation and emotional processing. In fact, changes
in synchronization activity seem to agree with other kinds of stim-
ulation [55,133,327,328]. The effectiveness of the presented visual
stimuli was ensured by the statistically significant changes in the
sympatho-vagal balance (i.e. LF/HF ratio). More specifically, the
coherent changes of this value with the affective stimuli suggest that
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the findings on the synchronization are reasonably related to the af-
fective experimental setup excluding habituation phenomenons. For
the sake of completeness, I also calculated standard morphological
features from HRV such as MeanRR, SDRR, RMSSD, pNN50. I
found no statistical differences across the sessions. Similar patterns
in cardiovascular findings among different emotional elicitation are
not new in the current literature (e.g. see [329]). Consistently with
some prior investigations, in fact, the similarity in cardiovascular re-
sponses may reflect a generalized emotional response to the affec-
tive stimuli. From a physiological point of view, the outcome of this
work could be related to the literature which reports on the mech-
anisms of short-term cardio-respiratory coupling [48,330-332]. It is
thought to be due to the following mechanisms: reflection of respi-
ratory blood pressure waves via baroreceptor feedback loop in the
heart rate [48], respiratory phase-dependent modulation of barore-
flex information processing, and central coupling between respiratory
neurons on the one hand, and sympathetic and/or parasympathetic
neurons on the other hand. Mainly, these mechanisms refer to the
Respiratory Sinus Arrhythmia (RSA) [48]. Moreover, it was found
that the activity and rhythm of certain sympathetic efferents are
closely related to the cardiovascular-respiratory rhythm [47]|. Accord-
ingly, an increase of synchronization during arousal elicitation with
respect to the neutral elicitation, in which sympathetic activity should
be dominant (see the LF/HF ratio results in Table 4.9) was found.
From an engineering point of view, cardio-respiratory synchroniza-
tion could be profitably used as an important multivariate marker
to be included in a feature set for discriminating between neutral
and arousal elicitation in the field of affective computing. In fact, it
has been demonstrated that a combination of features coming from
multiple physiological signals increases performance of emotion recog-
nition systems [89,168,247,325]. Moreover, considering the nonlinear
behavior and interaction of the physiological system truly improves
the accuracy of such systems [333, A4|. It is worthwhile noting that
the results of this work are in agreement with the current literature
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supporting the hypothesis that temporal patterns are important for
emotion recognition [325]. In principle, it is possible to apply such an
approach to any stimulus acting to the CR systems that produces a
sympathetic activation (a statistically significant sympathetic activa-
tion was found during the arousal sessions by evaluating changes in
the sympatho-vagal balance, i.e., LF/HF ratio, of the HRV [A5]).

Moreover, based on the experimental evidences on DLE and CRS,
a theoretical nonlinear model on cardiopulmonary oscillators has been
reported. It relies on the previously defined theory of weakly coupled
oscillators [51-53| driven by external force. I hypothesized that the
external force is given to the CR systems through the ANS activ-
ity modulation on the sympathetic and parasympathetic nerves. Al-
though chaotic behavior cannot be demonstrated in such a bio-system
because of the strong physiological noise, the theory reported here
aims at giving an useful tool for the assessment of the CR phase syn-
chronization and the DLE changes in HRV. These experimental find-
ings and theorization are in agreement with the chaos — destroying
synchronization, i.e., when a periodic external force acts on a chaotic
system destroys chaos and a periodic regime appears [334]. In the
case of an irregular forcing, the driven system follows the behavior of
the force [335], which has been experimentally demonstrated by the
evaluation of the ANS response as a whole system [A4]. In such a
case, in fact, the CR system seems to react to the visual elicitation
by producing ANS linear and nonlinear markers able to follow the
stimulus changes.

In order to improve the accuracy of the previously developed emo-
tion recognition system, bivariate measures related to the CR phase
synchronization, were combined to the monovariate measures (feature
set ). The obtained feature space dimension was reduced using the
PCA method and a QDC algorithm performed the pattern recogni-
tion phase. Even in this case, results are very satisfactory. Despite
the reference set «a, the proposed feature set § gave a recognition ac-
curacy grater than 90% for all classes in both arousal and valence
discrimination. Moreover, the performed cross validation process, i.e.
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randomizing the subjects for training and test set, ensured that the
classification was independent from the specific subjects involved. Al-
though the proposed methodology definitely goes beyond the state-
of-the-art, I report less performances in identifying one arousal class,
i.e., the Al, and two valence class, i.e., V1 and V3. From the litera-
ture, it is possible to consider the CMA plane as an orthonormal space
in which each point is a combination of arousal and valence values.
Hence, these classification findings allowed the finely identification of
25 regions. Although this is a great achievement, it is noteworthy
mentioning that they may not represent 25 different emotional states.

Considering the healthy subject assessment during the presenta-
tion of a single image, I have presented a novel methodology (the
point-process NARI model) able to assess in an instantaneous, per-
sonalized, and automatic fashion whether the subject is experienc-
ing a positive or a negative emotion. Remarkably, the NARI model
was validated with an experimental ECG dataset with healthy sub-
jects undergoing a tilt-table procedure [A7|. Results demonstrate
that the NARI algorithm confirms the characterization of the tilt
effect on standard and instantaneous indices of the sympatho-vagal
balance, while simultaneously tracking significant changes in the in-
herent nonlinearity of heartbeat dynamics with tilt. Moreover, the
NARI model was applied on the recognition of two levels, i.e. low-
medium and medium-high, of arousal and valence in order to per-
formed for a comprehensive characterization of the emotional status.
As mentioned above, such assessments were performed considering
only the cardiovascular dynamics through the RR interval series on
short-time emotional stimuli (each image was kept for < 10 seconds).
To achieve such a result, I defined an ad-hoc mathematical framework
based on point-process theory. The point-process framework is able
to parametrize the heartbeat dynamics in continuous time without
using any interpolation methods. Therefore, instantaneous measures
of HR and HRV [45,200] for robust short-time emotion recognition
are made possible by the definition of a physiologically-plausible I1G
probability. An innovative aspect of the methodological approach is
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also the use of the derivative RR series [287,291] to fit the model. This
choice allowed us to remarkably improve the tracking of the affective-
related non-stationary heartbeat dynamics. The novel fully autore-
gressive structure of our model accounts for the pioneering short-time
affective characterization having knowledge related to both linear and
nonlinear heartbeat dynamics. In fact, the quadratic autoregressive
nonlinearity associated to the most likely heartbeat accounts for the
input-output HOS such as the instantaneous bispectrum and trispec-
tum. Unlike other paradigms developed in the literature for estimat-
ing human emotional states [29], this approach is purely parametric
and the analytically-derived indices can be evaluated in a dynamic
and instantaneous fashion. As currently used standard signal pro-
cessing methods would be unable to give reliable and effective results
because of resolution or estimation problems, the methodology pro-
posed here represents a pioneering approach in the current literature
and can open new avenues in the field of affective computing. Al-
though the recognition accuracy proposed in this work relates to only
two levels of arousal, valence and self-reported emotion, oversimplify-
ing the complete characterization of the affective state of a subject,
the emotional assessment in short-time events using cardiovascular
information only is a very challenging task never solved before. Us-
ing only heartbeat dynamics, I effectively distinguished the two basic
levels of both arousal and valence, thus allowing for the assessment
of four basic emotions. An important advantage is that the proposed
framework is fully personalized, i.e. it does not require data from a
representative population of subjects. From a physiological perspec-
tive, the inherent nonlinearties of the cardiovascular systems (e.g. the
nonlinear neural signaling on the sinoatrial node [44]) have been also
confirmed by our experimental results. According to the nonlinear-
ity tests [316], in fact, 27 out of the 30 RR series resulted to be the
outputs of a nonlinear system. Of note, the results from goodness-
of-fit tests were all positive, demonstrating that the proposed NARI
model always performs a good prediction of the nonlinear heartbeat
dynamics. In agreement with my previous results [A4|, here I have
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introduced instantaneous nonlinear features and improved the accu-
racy in the majority of the population (> 15 subjects). In addition,
these experimental results support previous studies where instanta-
neous HRV indices extracted by means of a point process model pro-
vided a set of dynamic signatures able to characterize the dynamic
range of cardiovascular responses under different physiological con-
ditions [45]. Therefore, the novel instantanecous nonlinear features
could provide better assessment and improved reliability during such
physiological responses.

In this thesis, novel wearable systems able to perform ANS moni-
toring in a naturalistic environment have been also developed.

I have investigated on the possibility of using a fabric glove includ-
ing textile electrodes to acquire EDR. Firstly, textile electrodes have
been electrically characterized, then they are used to acquire EDR in
a dedicated affective computing experiment similar to the one men-
tioned above characterizing the elicited levels of arousal and valence.
More specifically, a set of features was extracted from the EDR and
used as input to a classifier to recognize five arousal classes. Electrode
characterization has been performed calculating the voltage-current
characteristics as well as the electric impedance of the textile electrode
and finding that the electric behavior is comparable with standard
electrodes. In addition, I have designed and realized an acquisition
protocol, where signals from textile and standard electrodes are si-
multaneously acquired, in order to verify if textile electrodes were
suitable for EDR acquisition. The results have been very satisfactory
and showed that textile electrodes can be used likewise standard elec-
trodes without loss of information. Nevertheless, further work has to
be done in order to carefully address the issue of contact quality and
contact area stability of textile electrodes as well as experimentally
verify that finger movement does not strongly affect the signal quality.
Indeed, a sensing glove allows us to investigate emotion fluctuations
during naturalistic elicitation. Next works will aim at evaluating the
movement artifact effect on the quality of the EDR acquired during
dynamic tasks.
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Moreover, I investigated eye tracking and pupil size variation in
response to emotional elicitation induced by TAPS images. In partic-
ular, the goal was to identify a set of features from pupil size variation
and eye tracking in order to distinguish between neutral to arousal
states. I used an innovative wearable and wireless head-mounted eye
tracking system (HATCAM) to acquire pupil variation together with
eye-gaze trajectory as well as time of fixation. In addition, I adopted
a novel methodology to characterize differences between neutral and
arousal elicitation, in eye-gaze acquisitions, by means of features ex-
tracted from RQA. This choice is motivated by the analogy between
the bi-dimensional image containing eye-gaze points and the matrix
commonly used for Recurrence Plot [263|. Both, indeed, are matrixes
of zero and ones. In addition to the features from RQA, the elliptic
area of pupil and the fixation time were also included in the feature
space for arousal and neutral classification. Pattern recognition was
performed by means of k-Nearest Neighbor (k-NN) classifier. After
the k-NN training process, the performance of the classification task
was evaluated by using the confusion matrix. It was randomized for
40-fold cross-validation steps to avoid bias. Results are reported in
Table 4.21. As it can be seen results are very satisfactory. The per-
centage of successful recognition is about 90% for neutral images and
about 80% for images at high arousal. It means that eye gaze, both in
terms of pupil tracking and size, can be a viable means to discriminate
different affective states.

Since the extracted eye information is regulated by the autonomic
nervous system, the results of this experiment suggest that the au-
tonomic nervous system responds differently to emotionally arous-
ing than to emotionally neutral stimuli. These results are in line
with the previous results [A4|, that showed changes in the auto-
nomic activity in terms of skin conductance responses, respiration
and heart rate variability behavior, during exposition to IAPS images
with different arousal content. Even though our results showed a sig-
nificative information from eye gaze pattern, however, they did not
show significant pupil size differences among IAPS stimulation. In
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the literature there are discordant works about the pupil size varia-
tion upon affective stimuli. In the study of [336] it is reported that
pupil size may not be sensitive enough to discriminate emotional re-
sponses, while [337] and [338] showed experimental evidence about
this affective-dependence variation. In my study, pupil size does not
seem to have a relevant role, but it could also be explained in terms
of low resolution of the camera used in the HATCAM system, which
did not detect the fine pupil responses, or of a possible failure in
providing right controlled stimuli, considering also that there are sev-
eral factors affecting the variation of pupil size. [339] listed several
different sources of pupil size variation, including, for example, the
light reflex, different stimulus parameters (e.g. visual and chemical),
and information-processing load. However, besides the role of pupil
size, our results are very satisfactory and very promising for the use
of eye information pattern in the context of pervasive monitoring.
This would extend the perceptually intelligent abilities of an engine
to perceive and analyze human behavior. In human behavior positive
emotions have been argued to increase creativity, to help in creat-
ing richer associations for memorized material, and to realize more
efficient decision-making machines [340,341|. In addition, by using
suitable emotion-related cues, it could be also possible to modulate
the user emotional reactions that could be used also as possible ther-
apy in mental disease management.

Studies on bipolar patients Concerning the studies on bipolar
patients, an effective mood recognition system based on a pervasive,
long-term and short-term monitoring of ANS-related physiological sig-
nals in bipolar patients has been presented. This approach was sup-
ported by several studies that have shown how mood disorders are
correlated with several dysfunctions of the ANS, both in the sympa-
thetic and parasympathetic systems [191-193|.

For this reason, a comfortable, textile-based sensorized t-shirt was
used to perform the acquisition of the RR as well as the RSP. Along-
side the acquisition, a personalized classification system together with
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the related signal processing chain was implemented in order to ro-
bustly estimate the mood state of the patient. The above concepts
are those behind the PSYCHE project.

As for the healthy subjects studies, both generic (i.e. statistics
and nonlinear) and specific features were extracted from the pre-
processed signals and then a label describing the mood state was
associated to each point of the feature set, corresponding to a specific
region of a bidimensional space in which mania and depression have
been sampled and combined to characterize the bipolar disorder. It
is worthwhile noting that no effective mood recognition system using
long-term monitoring of ANS signals of bipolar patients based on an
ad-hoc mood model has ever been proposed in the current scientific
literature.

Experimental results have been performed following three bipolar
patients from the first hospitalization to the end of the therapy, i.e.
euthymia condition. For each patient, the study included up to a
maximum of 6 evaluations over a 90 day-period. Each acquisition was
obtained during long-term monitoring with up-to 16 hours of data. A
classification accuracy of up to 95% for the intra-subject problem was
achieved.

The very high accuracy for intra-subject classification has two di-
rect relapses from a clinical and research point of view. From the
clinical point of view, it documents the reliability of the PSYCHE
platform for the monitoring of the mood status at the level of the
single subject. For the first time a system that accurately detects
the mood state in bipolar patients was presented. After an adequate
training (performed for instance during hospitalization in a ward or
even in a day-hospital facility) the system could be used at home by
the patient as a feasible monitor of the clinical conditions and could
provide the patient himself and clinicians helpful clues, e.g. for a
potential relapse, remission and, in general, mood change. Form a
research point of view it is also worth noting that this result suggests
that a discrete combination of psychophysiological features can be a
specific marker of the mood status in bipolar disorders.
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As a preliminary evaluation, it is necessary to mention some limi-
tations in this study. In fact, the whole PSYCHE system relies on the
patient mood label given by the physician during the training phase.
Therefore, an error in such an evaluation could be crucial for the fur-
ther assessment biasing the decision support. In addition, more data
coming from a statistical representative and homogeneous population
of a bipolar patient is needed for the validation of the system in terms
of generalization, robustness and reliability.

As mentioned in the method section, another possible limitation
of the study is the fact that it relies on an ad-hoc mood model without
a clinical validation. The model is a summarized pattern sets of mood
states relying on clinical observations. It resulted to be an effective
and viable means to fulfill the PSYCHE project mission, which is to
predict and classify the clinical status. A more detailed and validated
model will be defined when a higher number of participants will be
available for the analysis. However, it is worthwhile underlining that
diagnosis in psychiatry still suffers, in general, from a lack of validity,
i.e. clinical diagnoses are not supported by the evidence of neurobio-
logical changes. Therefore, a validated model for clinical assessment
is quite far from being achieved. However, it is interesting to note
that it was possible to distinguish the non-pathological clinical status
(remission- euthymia, i.e., class ES) from the pathological ones (mild
depression, i.e., class MD; severe depression, i.e., class SD; mild mixed
state, i.e., class MS;) in all of the bipolar patients considered.

Moreover, the classification accuracy is greater in distinguishing
euthymia from severe clinical states (severe depression and mixed
state) (table 4.28 and 4.32) than euthymia from the milder ones (mild
depression) (table 4.29 and 4.31). It is possible to hypothesize that
the differences in accuracy mirror the distances in clinical status and
in its psychophysiological correlates. Such results were presented and
evaluated by means of confusion matrices. This choice was moti-
vated by the effectiveness and conciseness of their values allowing
for the straightforward calculation of widely used statistical measures
such as the sensitivity, specificity, ROC curves, area under the curve
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etc. Nevertheless, results only emphasize the whole cardio-respiratory
pattern of the different mood states instead of identifying the actual
biomarkers. Indeed, this investigation will be performed in the next
developmen ts of this work.

These satisfactory results are very promising in the frame of the
PSYCHE project. In addition, the methodology proposed here can
be easily applied to data coming from other systems collecting cardio-
respiratory signs (e.g. standard holter with respiratory belt). More-
over, other previously proposed platforms for data collection and
health assessment, e.g. [342-344], can be adapted after the integration
of the proposed biosignal processing chain.

Concerning the investigation on the bipolar patients short-term
protocol, T have proposed a novel experimental/methodological ap-
proach for the assessment of instantaneous ANS patterns of depres-
sion in bipolar patients. The novel point-process NARI approach
allows the mathematical representation of the cardiovascular system
as a nonlinear dynamical system characterized by means of a per-
turbation analysis, i.e, analysis before and after short-time emotional
elicitation.

Five patients, experiencing depressive and euthymic episodes, were
enrolled to participate in a dedicated affective elicitation protocol. A
comfortable, textile-based sensorized t-shirt (namely the PSYCHE
platform) was used to perform noninvasive recordings of physiological
variables, and a novel point-process NARI model was implemented
and applied to the RR series derived from the ECG in order to pro-
duce novel instantaneous features. In particular, standard features
in both the time (i.e. prgr(t,H: &(t)) and ogrg), and the frequency
domain (i.e. LF, HF, and LF/HF) along with higher order nonlinear
features, i.e. LL, LH, and HH, were extracted from the processed RR
series. The NARI model was used to characterize the mean of an
IG distribution representing the inter-beat probability function. Such
approach allows for the instantaneous estimation of all HRV measures
without any interpolation method [45]. The method is also person-
alized, fully parametric, and able to improve nonstationary identi-
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fication [287|. All the mentioned features coming from the NARI
representation of the heartbeat dynamics were investigated by using
a statistical inference and a pattern recognition methods in intra- and
inter-subject analyses, respectively. Multivariate statistical analysis
by using an npMANOVA approach revealed significant within-subject
differences among different mood states, whereas monovariate analy-
ses pointed-out that only the LF/HF is statistically similar between
two depressive phases. Pattern recognition algorithms (MLP) were
then applied to the estimated features to classify the mood state of
the patients (i.e. "euthymia" or "depression"), and two feature sets
were compared. The first set, a, was comprised of only the standard
feature set, whereas the nonlinear indices were added to the second

set, (.

I performed a comparative classification analysis in order to eval-
uate the effects on the inter-subject variability. Considering the three
patients with fewer acquisitions, i.e., BP1, BP2 and BP3, we demon-
strated that both datasets o and a+ 8 gave satisfactory results reach-
ing more than 93% of correct recognition per class, although the o+ 3
showed highest accuracy (see Table 4.37). On the other hand, con-
sidering all five subjects, a classification accuracy of up to about 74%
for the « set, and up to about 99% for the o + [ set was achieved
for the euthymic class (see Table 4.38). Therefore, it is clear that the
high inter-subject variability strongly affects the information given by
the linear contribution (dataset a) of the model whereas it does not
affect the nonlinear one (dataset a+ ). Moreover, the discrimination
accuracy obtained with traditional signal processing techniques was
not sufficient for a reliable assessment.

Given their preliminary nature, these results are very promising.
A common pattern of instantaneous heartbeat features was found
despite the inter-subject variability. Our results also show that the
inclusion of nonlinear indices gives improved results and smaller vari-
ance with respect to the classification performed by using only the
standard features. The final result (99.56% accuracy) went beyond
expectations, also considering that the few misclassified samples can
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be easily interpreted as either algorithmic/mathematical artifacts or
physiological outliers, i.e. events not related to mood markers for
whatever reason.

The presented point-process nonlinear analysis represents a pio-
neering study in the field of mood assessment in bipolar patients.
In our approach, the acquisition paradigm (including high and low
arousing IAPS and TAT) was considered as a whole, without subdi-
viding the protocol in separate epochs. More than a limitation, the
overall results give additional strength to this approach. Indeed it is
not a matter of specific emotional response but more in general the
reactivity of the ANS to be affected in bipolar disorders. The fact
that it was possible to detect changes in ANS during the protocol as
compared to a relaxed baseline is enough to say that I am studying
ANS reactions despite subjective measurements of emotional arousal
or valence related to the used cues.

EDR was analyzed in three bipolar patients recruited in the frame
of the European project PSYCHE. For each patient, mood state fluc-
tuated at least once along with a change in the anxiety level. Two
patients were monitored with two acquisitions and one subject with
five acquisitions.

A deconvolution analysis was applied to the SC signal. Several
features were extracted in order to quantify the phasic and tonic elec-
trodermal activity. The preliminary results showed a statistically sig-
nificant difference for all the acquisitions from the same subject, which
is consistent with the corresponding clinical diagnosis. More specifi-
cally, for the subjects Pz01 and Pz03 that had only two acquisitions,
in two different mood states, statistical test showed that both mood
states were effectively recognized as statistically different. Instead
referring to the subject PZ02, who underwent five acquisitions, each
state was recognized as statistically different according to the different
mood states and anxiety levels.

Only between Acq.4 and Acq.5 of subject Pz02 the Mann-Whitney
test showed a p-value greater than 0.05 for the features extracted from
the tonic driver component. Acq.4 and Acq.5 had two different clinical
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labels but the same level of anxiety, but they resulted to be equivalent
from a statistical point of view. This may result from the very short
time-window occurring between the two acquisitions (six days only)
or by the same anxiety level. Much work has to be done in order to
gain a closer understanding on this aspect.

Moreover, subject Pz02 showed a monotonic trend of tonic-driver-
AUC which is the component that is not related to the stimulus.
In particular, the transition from the mixed-state with a high level
of anxiety (2) to the euthymic state with a low level of anxiety (1)
showed a linear trend modeled through a linear regression with a high
correlation coefficient. Even in this case, this behavior, although very
interesting, deserves to be investigated more in depth. Nevertheless,
in the other subjects (who had only two acquisitions available, i.e. a
number insufficient for a linear regression model) tonic electrodermal
activity showed an increase in the presence of a mood change from
a depressed state to an euthymic state and from a mixed-state to a
depressed state, combined with a lower level of anxiety.

An inter-subject analysis was performed attempting to classify
the acquisitions accompanied by the label euthymic, depressed and
mixed-state by means of a pairwise comparison between the three
class. All the three possible comparisons showed a high discrimination
percentage (> 76%). The preliminary results support the hypothesis
of a relationship between mood state, anxiety level and electrodermal
activity. Although preliminary these results are very satisfactory and
encouraging.
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Summary and Direction for Future
Research

In this chapter, I summarize the contributions of this thesis and dis-
cuss possible future research directions. My main contributions are
listed as follows:

e An experimental procedure for a standardized emotional elic-
itation has been reported. Data from thirty-five healthy sub-
jects presented with sets of elicitation images gathered from the
IAPS database have been acquired. The affective stimuli were
characterized by the Circumplex Model of Affects in which the
affective states are conceptualized by the terms of valence and
arousal.

e The effectiveness of the presented visual stimuli was ensured
by the statistically significant changes in the sympatho-vagal
balance (i.e. LF/HF ratio).

e The elicited five levels of arousal (including one neutral level)
and five levels of valence (including one neutral level as well)
have been effectively recognized only by using standard features
together with nonlinear features extracted from ANS signals
such as HRV, RSP, and EDR.
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e The ANS nonlinear dynamics has been deeply investigated through
ApEn and DLE analyses of HRV. ApEn decreases when switch-
ing from neutral to arousal sessions, and DLE is positive for all
the neutral sessions and negative during arousal sessions.

e The nonlinear interaction of the cardiovascular and the respi-
ratory system was quantified by using the concept of phase
synchronization of chaotic oscillators, i.e. the CRS. A clearly
reduced synchronization during the presentation of neutral im-
ages and an increased synchronization during the presentation
of images with significant arousal contents were observed. No
significant statistical differences could be gleaned from among
different arousal levels.

e Based on the experimental evidences on DLE and CRS, a theo-
retical nonlinear model on cardiopulmonary oscillators has been
developed. It relies on the previously defined theory of weakly
coupled oscillators driven by external force.

e In order to improve the accuracy of the previously developed
emotion recognition system, bivariate measures related to the
CR phase synchronization were combined to the monovariate
measures. Despite the reference set of monovariate features, the
newly proposed feature set gave a recognition accuracy grater
than 90% for all classes in both arousal and valence discrimina-
tion.

e A novel methodology, i.e. the point-process NARI model, able
to assess in an instantaneous, personalized, and automatic fash-
ion whether the subject is experiencing a positive or a negative
emotion have been developed.

e Such a nonlinear point-process model was validated with an
experimental ECG dataset with healthy subjects undergoing a
tilt-table procedure. Results demonstrated that the NARI algo-
rithm confirms the characterization of the tilt effect on standard
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and instantaneous indices of the sympatho-vagal balance, while
simultaneously tracking significant changes in the inherent non-
linearity of heartbeat dynamics with tilt.

The novel fully autoregressive structure of the NARI model ac-
counts for the pioneering short-time affective characterization
having knowledge related to both linear and nonlinear heart-
beat dynamics. In fact, the quadratic autoregressive nonlin-
earity associated to the most likely heartbeat accounts for the
input-output HOS such as the instantaneous bispectrum and
trispectum.

According to the nonlinearity tests, 27 out of the 30 RR se-
ries resulted to be the outputs of a nonlinear system. Of note,
the results from goodness-of-fit tests were all positive, demon-
strating that the proposed NARI model always performs a good
prediction of the nonlinear heartbeat dynamics.

Concerning the instantaneous emotional pattern recognition,
a two-class problem (Low-Medium (L-M) Vs. Medium-High
(M-H) levels) was considered for the arousal, valence and self-
reported emotion. The novel point-process NARI model was
applied to extract linear and nonlinear features.

The recognition accuracy of the short-term positive-negative
emotions is improved with the use of the nonlinear measures
in 14 cases, with > 60% of successfully recognized samples for
all of the subjects and a maximum of 84%.

The recognition accuracy of the short-term arousal classification
is improved with the use of the nonlinear measures in 19 cases,
with > 66% of successfully recognized samples for all of the
subjects and a maximum of 98%.

The recognition accuracy of the short-term valence classification
is improved with the use of the nonlinear measures in 19 cases,
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with > 60% of successfully recognized samples for all of the
subjects and a maximum of 92%.

Novel wearable systems able to perform ANS monitoring in a
naturalistic environment have been developed. Specifically, a
fabric glove including textile electrodes to acquire EDR and a
wireless head-mounted eye tracking system (HATCAM) have
been described.

A novel personalized monitoring systems for care in mental
health has been presented as European funded project FP7-
ICT-247777 PSYCHE.

Texile electrodes characterization has been performed calculat-
ing the voltage-current characteristics as well as the electric
impedance of the textile electrode and finding that the electric
behavior is comparable with standard electrodes.

EDR signals from textile and standard electrodes were simul-
taneously acquired, in order to verify if textile electrodes were
suitable for EDR acquisition. The results have been very satis-
factory and showed that textile electrodes can be used likewise
standard electrodes without loss of information

A novel methodology has been proposed to characterize differ-
ences between neutral and arousal elicitation, in eye-gaze acqui-
sitions, by means of features extracted from RQA along with
the elliptic area of pupil and the fixation time. The percentage
of successful recognition is about 90% for neutral images and
about 80% for images at high arousal. It means that eye gaze,
both in terms of pupil tracking and size, can be a viable means
to discriminate different affective states.

An effective mood recognition system based on a pervasive, long-
term and short-term monitoring of ANS-related signals in bipo-
lar patients has been presented. For this reason, a comfortable,
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textile-based sensorized t-shirt was used to perform the acqui-
sition of the RR as well as the RSP. Alongside the acquisition,
a personalized classification system together with the related
signal processing chain was implemented in order to robustly
estimate the mood state of the patient. The above concepts are
those behind the PSYCHE project.

Generic (i.e. statistics and nonlinear) and specific features were
extracted from the pre-processed signals and then a label de-
scribing the mood state was associated to each point of the fea-
ture set, corresponding to a specific region of a bidimensional
space in which mania and depression have been sampled and
combined to characterize the bipolar disorder.

A classification accuracy of up to 95% for the intra-subject prob-
lem was achieved following three bipolar patients from the first
hospitalization to the end of the therapy, i.e. euthymia condi-
tion. Each acquisition was obtained during long-term monitor-
ing with up-to 16 hours of data.

For the first time, a system that accurately detects the mood
state in bipolar patients was presented. The classification accu-
racy wass greater in distinguishing euthymia from severe clinical
states (severe depression and mixed state) than euthymia from
the milder ones (mild depression).

Concerning the investigation on the bipolar patients short-term
protocol, a novel experimental /methodological approach for the
assessment of instantaneous ANS patterns of depression in bipo-
lar patients has been proposed.

The novel point-process NARI model was implemented and ap-
plied to the RR series derived from the bipolar patients’ ECG in
order to produce novel instantaneous features as standard fea-
tures in both the time (i.e. ugr(t,Hs,&(t)) and ogg), and the
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frequency domain (i.e. LF, HF, and LF/HF) along with higher
order nonlinear features, i.e. LL, LH, and HH.

e A classification accuracy of up to about 74% was obtained using
the standard feature set, and up to about 99% using the stan-
dard and nonlinear feature set in distinguishing euthymia from
other depressive state.

e The high patients’ inter-subject variability strongly affects the
information given by the linear contribution of the cardiovascu-
lar dynamics whereas it does not affect the nonlinear one.

e Patients’ EDR was also analyzed in three bipolar patients per-
forming the short-term protocol. The mood state fluctuated at
least once along with a change in the anxiety level.

e By applying the deconvolution analysis to the EDR signal and
extracting several features, a statistically significant difference
for all the acquisitions from the same subject has been observed.

e A specific bipolar patient showed a monotonic trend of tonic-
driver-AUC which is the component that is not related to the
stimulus. In particular, the transition from the mixed-state with
a high level of anxiety (2) to the euthymic state with a low level
of anxiety (1) showed a linear trend modeled through a linear
regression with a high correlation coefficient.

e An inter-subject analysis was performed attempting to classify
the acquisitions accompanied by the label euthymic, depressed
and mized-state by means of a pairwise comparison between the
three class. All the three possible comparisons showed a high
discrimination percentage (> 76%). The preliminary results
support the hypothesis of a relationship between mood state,
anxiety level and electrodermal activity.

I hereby provide future research directions that are aimed to build
on my previous work:
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Study the ANS cross-recurrence by means of a cross Recurrence
Plots analysis, especially performed between EDR and HRV.

Investigate the implementation of the standard and nonlinear
algorithms in portable devices such as microcontroller, ARM,
DSP, FPGA, etc.

Apply other nonlinear quantifiers to the ANS signals in order
to better characterize the emotional elicitation.

Improve the point-process NARI model performances using the
Laguerre expansion of the kernels.

Include on further multivariate estimates within the NARI model,
Since the proposed point-process framework allows the inclusion
of physiological covariates such as respiration or blood pressure
measures.

Extract novel instantaneous indices from the multivariate point-
process model such as features from the dynamic cross-spectrum,
cross-bispectrum, respiratory sinus arrhythmia, and baroreflex
sensitivity in order to better characterize and understand the
human emotional states in short-time events.

Apply all the developed algorithms to a wide range of experi-
mental protocols in order to validate such tools for underlying
patho-physiology evaluation, as well as explore new applications
on emotion recognition that consider a wider spectrum of emo-
tional states.

Exploit eye gaze together with peripheral physiological signals
in healthy subjects and in the field of mental care.

Define novel features for eye-gaze and pupil size variation infor-
mation.
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Increase the number of bipolar patients enrolled and create a
database containing a wide set of acquisitions on which an effec-
tive data mining machine could effectively run. The statistical
significance will also result improved.

Explore additional aspects of the linear and nonlinear identifi-
cation as related to depression/bipolar states.

Evaluate which part of the proposed short-term protocol is more
informative for mood recognition in bipolar disorders.

Explore more carefully the physiological meaning of the dy-
namic autonomic signatures both in the context of the underly-
ing mood state, and as a result of the different stimuli adminis-
tered within the dedicated protocol.

Investigate if these specific features can be used as a preclinical
marker, meaning that they start to change even before the sub-
ject mood changes. In this case, it would be possible to use the
PSYCHE platform to have an early, pre-symptomatic diagnosis
of mood episodes.

Extend the proposed approaches within the PSYCHE project,
including several other available variables (e.g voice, activity in-
dex, sleep pattern alteration, electrodermal response, biochem-
ical markers).
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