Approximation theorems for modified Szász operators*)

ZHU-RUI GUO and DING-XUAN ZHOU

1. Introduction

The Bernstein operators on $C[0,1]$ are given by

$$
\begin{equation*}
B_{n}(f, x)=\sum_{k=0}^{n} f(k / n)\binom{n}{k} x^{k}(1-x)^{n-k} \tag{1.1}
\end{equation*}
$$

In 1972, H. Berens and G. G. Lorentz [3] gave the pioneering theorem on Bernstein operators in the form

$$
\begin{equation*}
\left|B_{n}(f, x)-f(x)\right| \leqq M(x(1-x) / n)^{\alpha / 2} \Leftrightarrow \omega_{2}(f, t)=O\left(t^{\alpha}\right) \tag{1.2}
\end{equation*}
$$

where $0<\alpha<2$, and

$$
\begin{equation*}
\omega_{2}(f, t)=\sup _{0 \leqq h \leqq t} \sup _{h \leqq x \leqq 1-h}|f(x-h)-2 f(x)+f(x+h)| . \tag{1.3}
\end{equation*}
$$

In 1978, M. Becker [1], R. J. Nessel [2] gave similar results for Szász and Baskakov operators, Meyer-König and Zeller operators.

Berens-Lorentz type theorems for all exponential-type operators were given by K. Sato [9] in 1982. All these exponential-type operators reproduce linear functions, however if this is not the case, then similar Berens-Lorentz type results for non-Feller modified exponential-type operators have not been obtained till now.

In this paper we shall give such a result for modified Szász operators defined in 1985 by S. M. Mazhar and V. Totik [8]:

$$
\begin{equation*}
L_{n}(f, x)=\sum_{k=0}^{\infty}\left(n \int_{0}^{\infty} f(t) p_{n, k}(t) d t\right) p_{n, k}(x) \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{n, k}(x)=e^{-n x}(n x)^{k} / k! \tag{1.5}
\end{equation*}
$$

[^0]Concerning these operators, Mazhar and Totik stated: "However it is far less obvious how the analogues of Theorem 2-3 look like in the case of L_{n}." Our interest stems from this problem. In fact, we will show a result, which, together with some known theorems, yields for $0<\alpha<1$

$$
\begin{gathered}
\left|L_{n}(f, x)-f(x)\right| \leqq M\left(1 / n+(x / n)^{1 / 2}\right)^{\alpha} \Leftrightarrow\left|S_{n}(f, x)-f(x)\right| \leqq M_{1}\left(1 / n+(x / n)^{1 / 2}\right)^{\alpha} \\
\left|S_{n}(f, x)-f(x)\right| \leqq M_{2}(x / n)^{\alpha / 2} \Leftrightarrow \omega_{1}(f, t)=O\left(t^{\alpha}\right)
\end{gathered}
$$

where $S_{n}(f, x)$ are the Szász operators given by

$$
\begin{equation*}
S_{n}(f, x)=\sum_{k=0}^{\infty} f(k / n) p_{n, k}(x) \tag{1.6}
\end{equation*}
$$

We shall also give an equivalence theorem involving the smoothness of functions and the derivatives of the modified Szász operators.

2. A Berens-Lorentz type theorem

First let us give some identities.
Lemma 1 [8]. For $L_{n}(f(t), x)$ given by (1.4), we have

$$
\begin{gather*}
L_{n}(t, x)=x+1 / n \\
L_{n}\left((t-x)^{2}, x\right)=2 x / n+2 n^{-2} \tag{2.1}
\end{gather*}
$$

Mazhar and Totik [8] gave the following direct theorem for modified Szász operators:

$$
\begin{equation*}
\left|L_{n}(f, x)-f(x)\right| \leqq K \omega_{1}\left(((x+1 / n) / n)^{1 / 2}\right) \tag{2.2}
\end{equation*}
$$

here

$$
\omega(f, t)=\sup _{0 \leq h \leqq t} \sup _{x \geqq h / 2}|f(x+h / 2)-f(x-h / 2)|
$$

is the usual modulus of smoothness of f.
We have the Berens-Lorentz type inverse result as follows:
Theorem 1. Let $f \in C[0, \infty)$ be bounded. Then with $0<\alpha<1$,

$$
\begin{equation*}
\left|L_{n}(f, x)-f(x)\right| \leqq M\left(x / n+n^{-2}\right)^{\alpha / 2} \quad(x \geqq 0, n \in \mathbf{N}) \tag{2.3}
\end{equation*}
$$

holds if and only if

$$
\begin{equation*}
\omega_{1}(f, t)=O\left(t^{a}\right) \quad(t>0) \tag{2.4}
\end{equation*}
$$

Remark 1. The assumption that f is bounded is necessary, which can be seen from the following example: Let $f(x)=(x+1) \ln (x+1)-(x+1)$. Then $\omega_{1}(f, t) \neq$
$\neq O\left(t^{\alpha}\right)$ for $\alpha=1 / 2$. However (2.3) is satisfied: For $x \geqq 1 / n$, we have

$$
\begin{aligned}
\left|L_{n}(f, x)-f(x)\right| & =\left|f^{\prime}(x) L_{n}(t-x, x)+L_{n}\left(\int_{x}^{t}(t-u) f^{\prime \prime}(u) d u, x\right)\right| \leqq \\
& \leqq \ln (x+1) / n+\left\|u f^{\prime \prime}(u)\right\|_{\infty} L_{n}\left((t-x)^{2} / x, x\right) \leqq \\
& \leqq M x^{1 / 4} / n+2 / n+2 /\left(n^{2} x\right) \leqq(4+M)\left(x / n+n^{-2}\right)^{1 / 4}
\end{aligned}
$$

For $x<1 / n$ we have

$$
\begin{aligned}
\left|L_{n}(f, x)-f(x)\right| & =\left|L_{n}\left(\int_{x}^{t} \ln (u+1) d u, x\right)\right| \leqq \\
& \leqq L_{n}\left(\int_{x}^{t} u d u, x\right) \leqq L_{n}\left(t^{2}+x^{2}, x\right)= \\
& =2 x^{2}+4 x / n+2 n^{-2} \leqq 8\left(x / n+n^{-2}\right)^{1 / 4}
\end{aligned}
$$

Thus we have proved that the boundedness cannot be dropped.
Proof of Theorem 1. By (2.2) we shall only prove the necessity. For $d>0$, let

$$
\begin{equation*}
f_{d}(x)=d^{-1} \int_{0}^{d} f(x+s) d s \tag{2.5}
\end{equation*}
$$

Then we have for $f \in C[0, \infty) \cap L_{\infty}[0, \infty)$

$$
\begin{align*}
& \left\|f_{d}-f\right\|_{\infty} \leqq \omega_{1}(f, d) \\
& \left\|f_{d}^{\prime}\right\|_{\infty} \leqq d^{-1} \omega_{1}(f, d) \tag{2.6}
\end{align*}
$$

Note that since

$$
\begin{equation*}
L_{n}^{\prime}(f, x)=n x^{-1} \sum_{k=0}^{\infty} n \int_{0}^{\infty} f(t) p_{n, k}(t) d t(k / n-x) p_{n, k}(x) \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
=n \sum_{k=0}^{\infty} n \int_{0}^{\infty} f(t)\left(p_{n, k+1}(t)-p_{n, k}(t)\right) d t p_{n, k}(x) \tag{2.8}
\end{equation*}
$$

we have

$$
\begin{gathered}
\left|L_{n}^{\prime}\left(f_{d}-f, x\right)\right| \leqq n x^{-1}\left\|f-f_{d}\right\|_{\infty} S_{n}(|t-x|, x) \leqq(n \mid x)^{1 / 3} \omega_{1}(f, d) ; \\
\left|L_{n}^{\prime}\left(f_{d}-f, x\right)\right| \leqq 2 n\left\|f-f_{d}\right\|_{\infty}
\end{gathered}
$$

where we used that

Hence

$$
\left.S_{n}(|t-x|, x) \leqq\left(S_{n}\left((t-x)^{2}, x\right)\right)^{1 / 2}=(x / n)^{1 / 2} \text { (see, e.g. }[1,12]\right)
$$

$$
\begin{equation*}
\left.\left|L_{n}^{\prime}\left(f_{d}-f, x\right)\right| \leqq 2 \omega_{1}(f, d) \min \{n / x)^{1 / 2}, n\right\} \tag{2.9}
\end{equation*}
$$

From (2.8) and [7] we can also derive

$$
\left|L_{n}^{\prime}\left(f_{d}, x\right)\right|=\left|n \sum_{k=0}^{\infty} \int_{0}^{\infty} p_{n, k+1}(t) f_{\mathrm{d}}^{\prime}(t) d t p_{n, k}(x)\right| \leqq d^{-1} \omega_{1}(f, d)
$$

Now for any $t>0$ and $0<h \leqq t, x \in(0, \infty)$, we get from (2.3) for any $n \in \mathbf{N}$

$$
\begin{align*}
& \text { (2.10) } \quad|f(x+h)-f(x)| \leqq\left|f(x+h)-L_{n}(f, x+h)\right|+\left|f(x)-L_{n}(f, x)\right|+ \tag{2.10}\\
& \quad+\left|\int_{0}^{h} L_{n}^{\prime}\left(f_{d}, x+u\right) d u\right|+\left|\int_{0}^{h} L_{n}^{\prime}\left(f-f_{d}, x+u\right) d u\right| \leqq \\
& \begin{array}{c}
\leqq 2 M\left((x+h) / n+n^{-2}\right)^{\alpha / 2}+d^{-1} \omega_{1}(f, d) h+2 \omega_{1}(f, d) \int_{0}^{h} \min \left\{(n /(x+u))^{1 / 2}, n\right\} d u \leqq \\
\leqq 2 M(d(n, x, h))^{\alpha}+8 h \omega_{1}(f, d)\left(d^{-1}+1 / d(n, x, h)\right),
\end{array}
\end{align*}
$$

where $\quad d(n, x, h)=\left((x+h) / n+n^{-2}\right)^{1 / 2}$. Note that $d(n, x, h) \geqq d(n+1, x, h) \geqq$ $\geqq d(n, x, h) / 2$ for any $n \in \mathbf{N}$, hence for any $1 / 2>\delta>0$ we can choose $n \in \mathbf{N}$ such that

$$
2 d(n, x, h) \geqq \delta>d(n, x, h)
$$

With this choice we get from (2.10) the estimate

$$
|f(x+h)-f(x)| \leqq 2 M \delta^{\alpha}+36 h \omega_{1}(f, \delta) / \delta
$$

hence

$$
\omega_{1}(f, t) \leqq 2 M \delta^{\alpha}+36 t \omega_{1}(f, \delta) / \delta \leqq(2 M+36)\left(\delta^{\alpha}+t \omega_{1}(f, \delta) / \delta\right), \quad(t, \delta>0)
$$

which implies $\omega_{1}(f, t)=O\left(t^{a}\right)$ (see $\left.[3,6]\right)$. Our proof is complete.
Remark 2. The same statement is true for Szász operators, however we shall omit the proof since it is just the same.

Remark 3. In [14], we have proved for Bernstein-Durrmeyer operators

$$
\begin{equation*}
D_{n}(f, x)=\sum_{k=0}^{n}\left((n+1) \int_{0}^{1} f(t)\binom{n}{k} t^{k}(1-t)^{n-k} d t\right)\binom{n}{k} x^{k}(1-x)^{n-k} \tag{2.11}
\end{equation*}
$$

that for $1<\alpha<2$ there exist no functions $\left\{\psi_{n, \alpha}(x)\right\}_{n \in \mathbb{N}}$ such that the following equivalence holds for $f \in C[0,1]$

$$
\begin{equation*}
\omega_{2}(f, t)=O\left(t^{\alpha}\right) \Leftrightarrow\left|D_{n}(f, x)-f(x)\right| \leqq M \psi_{n, \alpha}(x) \tag{2.12}
\end{equation*}
$$

In view of this result we cannot expect a similar characterization theorem by the modified Szász operators for functions satisfying

$$
\omega_{2}(f, t)=O\left(t^{\alpha}\right) \quad \text { with } \quad 1<\alpha<2 .
$$

3. Derivatives and smoothness

Some results on the relation between the order of derivatives and smoothness have been obtained in [5, 7], most of which characterize the Ditzian-Totik modulus of smoothness. Z. DITZIAN gave a result on the characterization of the usual modulus of smoothness by the derivatives of Bernstein polynomials [4]. Recently one of the authors gave similar results for higher order of smoothness [14].

Let

$$
\omega_{2}(f, t)=\sup _{0<h \leqq t} \sup _{x \leq 0}|f(x)-2 f(x+h)+f(x+2 h)| .
$$

For the modified Szász operators, we can prove
Theorem 2. For $f \in C[0, \infty) \cap L_{\infty}[0, \infty), 0<\alpha<2$, we have

$$
\begin{equation*}
\omega_{2}(f, t)=O\left(t^{\alpha}\right) \Leftrightarrow\left|L_{n}^{\prime \prime}(f, x)\right| \leqq M\left(\min \left\{n^{2}, n / x\right\}\right)^{(2-\alpha) / 2} \tag{3.1}
\end{equation*}
$$

Theorem 3. For $f \in C[0, \infty) \cap L_{\infty}, 0<\alpha<1$, we have

$$
\begin{equation*}
\omega_{1}(f, t)=O\left(t^{\alpha}\right) \Leftrightarrow\left|L_{n}^{\prime}(f, x)\right| \leqq M\left(\min \left\{n^{2}, n / x\right\}\right)^{(1-\alpha) / 2} \tag{3.2}
\end{equation*}
$$

Proof of Theorem 2. Proof of the direction " \Rightarrow "' Suppose $\omega_{2}(f, t) \leqq M t^{\alpha}$. By simple calculation one can get

$$
\begin{align*}
L_{n}^{\prime \prime}(g, x) & =n^{2} \sum_{k=0}^{\infty}\left(n \int_{0}^{\infty} g(t)\left(p_{n, k}(t)-2 p_{n, k+1}(t)+p_{n, k+2}(t)\right) d t\right) p_{n, k}(x) \tag{3.3}\\
& =n^{2} x^{-2} \sum_{k=0}^{\infty}\left(n \int_{0}^{\infty} g(t) p_{n, k}(t) d t\right)\left((k / n-x)^{2}-k n^{-2}\right) p_{n, k}(x) \tag{3.4}
\end{align*}
$$

hence

$$
\begin{equation*}
\left|L_{n}^{\prime \prime}(g, x)\right| \leqq 4 n^{2}\|g\|_{\infty}, \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|L_{n}^{\prime \prime}(g, x)\right| \leqq 2 n / x\|g\|_{\infty} . \tag{3.6}
\end{equation*}
$$

Now for $f \in C[0, \infty) \cap L_{\infty}(0, \infty)$, let us define the Steklov function as

$$
\begin{equation*}
f_{d}(x)=4 d^{-2} \iint_{0}^{d / 2}(2 f(x+u+v)-f(x+2 u+2 v)) d u d v \tag{3.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\|f-f_{d}\right\| \leqq \omega_{2}(f, d) \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|f_{d}^{\prime \prime}\right\| \leqq 9 d^{-2} \omega_{2}(f, d) \tag{3.9}
\end{equation*}
$$

For f_{d} one can verify (see [7])

$$
\begin{equation*}
\left|L_{n}^{\prime \prime}\left(f_{d}, x\right)\right| \leqq\left|\sum_{k=0}^{\infty} n \int_{0}^{\infty} p_{n, k+2}(t) f_{d}^{\prime \prime}(t) d t p_{n, k}(x)\right| \leqq 9 d^{-2} \omega_{2}(f, d) \tag{3.10}
\end{equation*}
$$

Thus, we have for $d=\left(\min \left\{n^{2}, n / x\right\}\right)^{-1 / 2}$

$$
\begin{aligned}
\mid L_{n}^{\prime \prime}(f, x) & \leqq\left|L_{n}^{\prime \prime}\left(f_{d}, x\right)\right|+\left|L_{n}^{\prime \prime}\left(f-f_{d}, x\right)\right| \leqq \\
& \leqq 9 d^{-2} \omega_{2}(f, d)+4 \min \left\{n^{2}, n / x\right) \omega_{2}(f, d) \leqq \\
& \leqq 13 M\left(\min \left\{n^{2}, n / x\right\}\right)^{1-\alpha / 2} .
\end{aligned}
$$

Proof of the direction " \Leftarrow ": To prove this part, we need the combination of $\left\{L_{n}\right\}$ defined as

$$
\begin{equation*}
L_{n, 1}(f ; x)=a_{0}(n) L_{n_{0}}(f, x)+a_{1}(n) L_{n_{1}}(f, x), \tag{3.11}
\end{equation*}
$$

where $\left|a_{0}(n)\right|+\left|a_{1}(n)\right| \leqq B, \quad n=n_{0}<n_{1} \leqq A n$, with A, B absolute constants, having the property

$$
\begin{equation*}
L_{n, 1}\left(t^{\prime}, x\right)=x^{i}, \quad i=0,1 \text { (see e.g. [7]). } \tag{3.12}
\end{equation*}
$$

Then we have for $f \in C[0, \infty) \cap L_{\infty}[0, \infty)$ by the method from [1,3]

$$
\begin{equation*}
\left|L_{n, 1}(f, x)-f(x)\right| \leqq M \omega_{2}\left(f, 1 / n+(x / n)^{1 / 2}\right) \tag{3.13}
\end{equation*}
$$

Now we can give our proof, where the commutativity of $\left\{L_{n}\right\}$ is crucial (see [7]). For $n, m \in \mathbf{N}, x \in(0, \infty), 0<h \leqq t$, we have

$$
\begin{gather*}
\left|L_{m}(f, x)-2 L_{m}(f, x+h)+L_{m}(f, x+2 h)\right| \leqq 4 M \omega_{2}\left(L_{m} f, 1 / n+((x+2 h) / n)^{1 / 2}\right)+ \tag{3.14}\\
+\iint_{0}^{h}\left|L_{n}^{n}\left(L_{n, 1}(f), x+u+v\right)\right| d u d v
\end{gather*}
$$

Now we shall estimate the second term. First we have

$$
\left|L_{m}^{\prime \prime}\left(L_{n, 1}(f), x+u+v\right)\right| \leqq\left\|L_{n, 1}^{\prime \prime}(f)\right\|_{\infty} \leqq 2 B(A n)^{2-\alpha} .
$$

On the other hand, note that by

$$
\left|x^{1-\alpha / 2} L_{n, 1}^{\prime \prime}(f, x)\right| \leqq M A B n^{1-\alpha / 2}
$$

we have

$$
\begin{gathered}
\left|x^{1-\alpha / 8} L_{m}^{\prime \prime}\left(L_{n, 1}(f), x\right)\right|=\left|x^{1-\alpha / 2} \sum_{k=0}^{\infty} m \int_{0}^{\infty} p_{m, k+2}(t) L_{n, 1}^{\prime \prime}(f, t) d t p_{m, k}(x)\right| \leqq \\
\leqq M A B n^{1-\alpha / 2} x^{1-\alpha / 2} \sum_{k=0}^{\infty} m\left(\int_{0}^{\infty} p_{m, k+2}(t) t^{-1} d t\right)^{1-\alpha / 2}\left(\int_{0}^{\infty} p_{m, k+2}(t) d t\right)^{\alpha / 2} p_{m, k}(x) \leqq \\
\leqq M A B n^{1-\alpha / 2} x^{1-\alpha / 2}\left(\sum_{k=0}^{\infty} m p_{m, k}(x) /(k+2)\right)^{1-\alpha / 2} \leqq M A B n^{1-\alpha / 2},
\end{gathered}
$$

hence

$$
\begin{gathered}
\iint_{0}^{h} \int L_{m}^{\prime \prime}\left(L_{n, 1}(f), x+u+v\right) \mid d u d v \leqq M A B n^{1-\alpha / 2} \int_{0}^{h} \int^{n}(x+u+v)^{\alpha / 2-1} d u d v \leqq \\
\leqq M A B n^{1-\alpha / 2} h^{\alpha}\left(M_{1} h^{2} /(x+2 h)\right)^{1-\alpha / 2} \leqq M_{2} h^{2}(n /(x+2 h))^{1-\alpha / 2}
\end{gathered}
$$

here we have used the fact that
(see [1]). Thus, combining the above estimates with (3.14), we have

$$
\begin{gather*}
\left|L_{m}(f, x)-2 L_{m}(f, x+h)+L_{m}(f, x+2 h)\right| \leqq \tag{3.15}\\
\leqq 4 M \omega_{2}\left(L_{m} f, 1 / n+((x+2 h) / n)^{1 / 2}\right)+M_{3} h^{2}\left(1 / n+((x+2 h) / n)^{1 / 2}\right)^{\alpha-2}
\end{gather*}
$$

where M_{3} is a constant independent of n, x, h and m.
Let C be a constant which will be determined later. Since

$$
1 / n+((x+2 h) / n)^{1 / 2}<1 /(n-1)+((x+2 h) /(n-1))^{1 / 2} \leqq 2\left(1 / n+((x+2 h) / n)^{1 / 2}\right)
$$

we can choose $n \in \mathbf{N}$, such that

$$
t /(2 C) \leqq 1 / n+((x+2 h) / n)^{1 / 2} \leqq t / C
$$

Then we get from (3.15) by induction

$$
\begin{aligned}
\omega_{2}\left(L_{m} f, t\right) & \leqq 4 M \omega_{2}\left(L_{m} f, t / C\right)+(2 C)^{(2-\alpha)} M_{8} t^{\alpha} \leqq \\
& \leqq \ldots \\
& \leqq(4 M)^{k} \omega_{2}\left(L_{m} f, t C^{-k}\right)+(2 C)^{2-\alpha} M_{3} t^{\alpha} \sum_{l=0}^{k-1}\left(4 M C^{-\alpha}\right)^{1} \leqq \\
& \leqq t^{2}(4 M)^{k} C^{-2 k}\left\|\left(L_{m} f\right)^{\prime}\right\|_{\infty}+(2 C)^{2-\alpha} M_{3} t^{\alpha} C^{\alpha} /\left(C^{\alpha}-4 M\right)
\end{aligned}
$$

Now if we take here $C=(1+4 M)^{1 / \alpha}$, and let $k \rightarrow \infty$, we obtain

$$
\omega_{2}\left(L_{m} f, t\right) \leqq 4 C^{2} M_{3} t^{\alpha} /\left(C^{\alpha}-4 M\right)
$$

which implies $\omega_{2}(f, t)=O\left(t^{\alpha}\right)$, since the constant $4 C^{2} M_{8} /\left(C^{\alpha}-4 M\right)$ is independent of $m \in \mathbf{N}$.

Our proof is complete. We shall omit the proof of Theorem 3, since it is almost the same as the proof of Theorem 2.

4. A direct theorem for uniform approximation

When treating uniform approximation we shall always assume the boundedness of the functions. Let C_{B} be the set of bounded and continuous functions on $[0, \infty)$.

Theorem 4. For $f \in C_{B}, L_{n}(f, x)$ given by (1.4), we have

$$
\begin{equation*}
\left\|L_{n} f-f\right\|_{\infty} \leqq C\left(\omega_{\varphi}^{2}\left(f, n^{-1 / 2}\right)_{\infty}+\omega_{1}\left(f, n^{-1}\right)+n^{-1}\|f\|_{\infty}\right), \tag{4.1}
\end{equation*}
$$

where C is a constant independent of n, and $\omega_{\varphi}^{2}\left(f, n^{-1 / 2}\right)_{\infty}$ is the so-called Ditzian-

Totik modulus of smoothness defined as

$$
\begin{gather*}
\omega_{\varphi}^{2}(f, t)_{\infty}=\sup _{0<h \leqq t}\left\|\Delta_{h \varphi}^{2} f\right\|_{\infty}, \tag{4.2}\\
\varphi(x)=x^{1 / 2}, \\
\Delta_{h}^{2} f(x)=f(x-h)-2 f(x)+f(x+h), \quad x \geqq h ; \\
\Delta_{h}^{2} f(x)=0, \text { otherwise } .
\end{gather*}
$$

Remark 4. In view of the characterization theorems of Mazhar and Totri [8] on the saturation and non-optimal approximation, we can see that our result is of some value.

Proof of Theorem 4. For Szász operators given by (1.6), we have for $f \in C_{B}$ (see [6])

$$
\begin{equation*}
\left\|S_{n}(f)-f\right\|_{\infty} \leqq M\left(\omega_{\varphi}^{2}\left(f, n^{-1 / 2}\right)_{\infty}+n^{-1}\|f\|_{\infty}\right) . \tag{4.3}
\end{equation*}
$$

We now need the Szász-Kantorovich operators given by

$$
\begin{equation*}
S_{n}^{*}(f, x)=\sum_{k=0}^{\infty} n \int_{k!n}^{(k+1) / n} f(t) d t p_{n, k}(x) \tag{4.4}
\end{equation*}
$$

For these operators, we can easily deduce from (4.3) the direct result as

$$
\begin{equation*}
\left\|S_{n}^{*}(f)-f\right\|_{\infty} \leqq M\left(\omega_{\varphi}^{2}\left(f, n^{-1 / 2}\right)_{\infty}+\omega_{1}(f, 1 / n)+n^{-1}\|f\|_{\infty}\right) . \tag{4.5}
\end{equation*}
$$

We shall use the identities

$$
\begin{equation*}
S_{n}^{*}(t, x)=x+1 /(2 n), \quad S_{n}^{*}\left((t-x)^{2}, x\right)=x / n+3^{-1} n^{-2} \tag{4.6}
\end{equation*}
$$

By (4.5), we only need to prove

$$
\left\|2\left(f-S_{n}^{*}(f)\right)-\left(f-L_{n} f\right)\right\|_{\infty} \leqq C\left(\omega_{\varphi}^{2}\left(f, n^{-1 / 2}\right)_{\infty}+n^{-1}\|f\|_{\infty}\right) .
$$

Using the Ditzian-Totik K-functional

$$
K_{\varphi, 2}(f, t)_{\infty}=\inf _{g \in D}\left\{\|f-g\|_{\infty}+t\left(\|g\|_{\infty}+\left\|\varphi^{2} g^{\prime \prime}\right\|_{\infty}\right)+t^{2}\left\|g^{\prime \prime}\right\|_{\infty}\right\}
$$

and its equivalence to ω_{φ}^{2}, it is sufficient for us to prove for $g \in D=\left\{g \in C_{B}: g^{\prime} \in A . C\right.$.loc , $\left.g^{\prime \prime} \in L_{\infty}[0, \infty)\right\}$ the estimate

$$
\begin{equation*}
\left\|2\left(g-S_{n}^{*}(g)\right)-\left(g-L_{n}(g)\right)\right\|_{\infty} \leqq C\left(\left(\|g\|_{\infty}+\left\|\varphi^{2} g^{\prime \prime}\right\|_{\infty}\right) / n+n^{-2}\left\|g^{\prime \prime}\right\|_{\infty}\right) \tag{4.7}
\end{equation*}
$$

From the above identities, we have for $g \in D, x \geqq n^{-1}$

$$
\begin{gathered}
\left|2\left(g(x)-S_{n}^{*}(g, x)\right)-\left(g(x)-L_{n}(g, x)\right)\right|= \\
=\left|L_{n}\left(\int_{x}^{\prime}(t-u) g^{\prime \prime}(u) d u, x\right)-2 S_{n}^{*}\left(\int_{x}^{t}(t-u) g^{\prime \prime}(u) d u, x\right)\right| \leqq \\
\leqq\left\|\varphi^{2} g^{\prime \prime}\right\|_{\infty}\left(L_{n}\left((t-x)^{2} / x, x\right)+2 S_{n}^{*}\left((t-x)^{2} / x, x\right)\right) \leqq 12\left\|\varphi^{2} g^{\prime \prime}\right\|_{\infty} / n .
\end{gathered}
$$

For $0<x<1 / n$, we have

$$
\begin{gathered}
\left|2\left(g(x)-S_{n}^{*}(g, x)\right)-\left(g(x)-L_{n}(g, x)\right)\right| \leqq \\
\leqq\left\|g^{\prime \prime}\right\|_{\infty}\left(L_{n}\left((t-x)^{2}, x\right)+2 S_{n}^{*}\left((t-x)^{2}, x\right)\right) \leqq 12 n^{-2}\left\|g^{\prime \prime}\right\|_{\infty} .
\end{gathered}
$$

Thus we have obtained (4.7) and our proof of Theorem 4 is complete.
Remark 5. The second term on the rihgt of (4.1) is necessary, which can be seen from the following example: Let

$$
f(x)=\left\{\begin{array}{l}
x \ln x-x^{2} / 2+1 / 2, \quad \text { for } \quad x \in[0,1) \tag{4.8}\\
0, \text { otherwise }
\end{array}\right.
$$

Then we have

$$
f^{\prime}(x)=\left\{\begin{array}{l}
\ln x-x+1, \quad \text { for } \quad x \in(0,1) \tag{4.9}\\
0, \text { otherwise }
\end{array}\right.
$$

Therefore we obtain a function $f \in C_{B}$ which satisfies

$$
\omega_{\varphi}^{2}\left(f, n^{-1 / 2}\right)_{\infty}=O(1 / n) \quad n^{-1}\|f\|_{\infty}=O(1 / n)
$$

and

$$
f^{\prime \prime}(x)=\left\{\begin{array}{l}
1 / x-1, \text { for } x \in(0,1) \tag{4.10}\\
0, \text { otherwise }
\end{array}\right.
$$

$$
f^{\prime} \notin L_{\infty} .
$$

On the other hand, from the saturation class of the modified Szász operators $\left\{L_{n}\right\}$ [8] we have

$$
\left\|L_{n} f-f\right\|_{\infty} \neq O(1 / n)
$$

Thus we have proved that the second term $\omega_{1}(f, 1 / n)$ is necessary. We can also give the weak-type inverse estimates for the moduli.

Lemma 2. For $L_{n}(f, x)$ given by (1.4), $n \in \mathbf{N}$, we have

$$
\begin{gather*}
\left\|\left(L_{n} f\right)^{\prime \prime}\right\|_{\infty}+\left\|L_{n} f\right\|_{\infty} \leqq M n^{2}\|f\|_{\infty}, \quad f \in C_{B} ; \tag{4.11}\\
\left\|\varphi^{2}\left(L_{n} f\right)^{\prime}\right\|_{\infty}+\left\|L_{n} f\right\|_{\infty} \leqq M n\|f\|_{\infty}, \quad f \in C_{B} ; \tag{4.12}\\
\left\|\left(L_{n} f\right)^{\prime \prime}\right\|_{\infty}+\left\|L_{n} f\right\|_{\infty} \leqq M\left(\left\|f^{\prime \prime}\right\|_{\infty}+\|f\|_{\infty}\right), \quad f^{\prime \prime} \in L_{\infty} ; \tag{4.13}\\
\left\|\varphi^{2}\left(\dot{L_{n}} f\right)^{\prime \prime}\right\|_{\infty}+\left\|L_{n} f\right\|_{\infty} \leqq M\left(\left\|\varphi^{2} f^{\prime \prime}\right\|_{\infty}+\|f\|_{\infty}\right), \quad \varphi^{2} f^{\prime \prime} \in L_{\infty}, \tag{4.14}
\end{gather*}
$$

where M is a constant independent of n and f.
The proof can be easily obtained from the representations of the derivatives of $L_{n} f$ in [7].

Theorem 5. For $f \in C_{B}, L_{n}(f, x)$ given by (1.4), we have

$$
\begin{gather*}
\omega_{\varphi}^{2}\left(f, n^{-1 / 2}\right)_{\infty} \leqq M_{1} n^{-1} \sum_{k=1}^{\infty}\left\|L_{k} f-f\right\|_{\infty}+n^{-1}\|f\|_{\infty} ; \tag{4.15}\\
\omega_{1}\left(f, n^{-1}\right) \leqq M_{1} n^{-1}\left(\sum_{k=1}^{n}\left\|L_{k} f-f\right\|_{\infty}+\|f\|_{\infty}\right) \tag{4.16}
\end{gather*}
$$

where M_{1} is independent of f and $n \in \mathbf{N}$.
The proof is the same as given by Ditzian and Totik [6], (see also [10]), so we shall omit it.

References

[1] M. Becker, Global approximation theorems for Szász-Mirakjan and Baskakov operators in polynomial weight space, Indiana Univ. Math. J., 27 (1978), 127-141.
[2] M. Becker and R. J. Nessel, A global approxiamtion theorem for Meyer-König and Zeller operators, Math. Z., 160 (1978), 195-206.
[3] H. Berens and G. G. Lorentz, Inverse theorems for Bernstein polynomials, Indiana Univ. Math. J., 21 (1972), 693-708.
[4] Z. Ditzian, Derivatives of Bernstein polynomials and smoothness, Proc. Amer. Math. Soc., 93 (1985), 25-31.
[5] Z. Ditzian and K. G. Ivanov, On Bernstein-type operators and their derivatives, J. Approx. Theory, 56 (1989), 72-90.
[6] Z. Ditzian and V. Totik, Moduli of Smoothness, Springer-Verlag (Berlin/New York, 1987).
[7] M. Heilmann, Direct and converse results for operators of Baskakov-Durrmeyer type, Approx. Theory Appl., 5 (1989), 105-127.
[8] S. M. Mazhar and V. Totik, Approximation by modified Szász operators, Acta Sci. Math., 49 (1985), 257-269.
[9] K. Sato, Global approximation theorems for some exponentialtype operators, J. Approx. Theory, 32 (1982), 22-36.
[10] V. Totik, An interpolation theorem and its applications to positive operators, Pacific J. Math., 111 (1984), 447-481.
[11] V. Torik, Uniform approximation by exponential-type operators, J. Math. Anal. Appl., 132 (1988), 238-246.
[12] V. Torrk, Uniform approximation by positive operators on infinite intervals, Anal. Math., 10 (1984), 163-182.
[13] Ding-Xuan Zhou, Uniform approximation by some Durrmeyer operators, Approx. Theory Appl., 6 (1990), 87-100.
[14] Ding-Xuan Zhou, On smoothness characterized by Berntein-type operators, Math. Z., submitted.
[15] Ding-Xuan Zhou, On a conjecture of Z. Ditzian, J. Approx. Theory, 69 (1992), 167-172.
DEPARTMENT OF MATHEMATICS, ZHEJIANG UNIVERSITY;
ADVANCED INSTITUTE OF MATHEMATICS,
HANGZHOU
zheitang
310027
PEOPLE'S REPUBLIC OF CHINA

[^0]: *) Supported by ZPSF and NSF of China.
 Received November 19, 1990 and in revised form January 29, 1991.

