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Approximation theorems for modified Szisz operators*)

ZHU-RUI GUO and DING-XUAN ZHOU

1. Introduction
The Bernstein operators on C[0, 1] are given by

(1.1) B,(f,x) = ké,;f(kln)[Z] XE(1— X%,

In 1972, H. Berens and G. G. LoreNTZ [3] gave the pioneering theorem on
Bernstein operators in the form

(12) 1B,(f, X)—=f ()| = M(x(1—x)[n)'? & wu(f, 1) = O,
where O0<a<2, and
(1-3) @)= swp  sup 1f(x—h)=2/()+fCx-+ R

In 1978, M. Becker [1], R. J. NESSEL [2] gave similar results for Szdsz and
Baskakov operators, Meyer—Ko&nig and Zeller operators.

Berens—Lorentz type theorems for all exponential-type operators were given
by K. SAT0 [9] in 1982. All these exponential-type operators reproduce linear func-
tions, however if this is not the case, then similar Berens—Lorentz type results for
non-Feller modified exponential-type operators have not been obtained till now.

In this paper we shall give such a result for modified Szasz operators defined
in 1985 by S. M. MAzHAR and V. ToTIK [8]:

(1.4) L(h) = 3 (0 [ FOpa® ) prst)
where
(1.5) D) = e~ (K.
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Concerning these operators, Mazhar and Totik stated: “However it is far less
obvious how the analogues of Theorem 2—3 look like in the case of L,.” Our interest
stems from this problem. In fact, we will show a result, which, together with some
known theorems, yields for O<a<1

IL(f, ) =f ()] = M(Un+ )2 = |S,(f, x) = f(0)| = My (ln+(xIn)?)
1S, (/2 X)=f () = Mo (xIn)'® = w,(f, 1) = O(r),

where S,(f, x) are the Sz4sz operators given by

(1.6) S\(f%) = 3 (kin) pas ().

We shall also give an equivalence theorem involving the smoothness of func-
tions and the derivatives of the modified Sz4sz operators.

2. A Berens—Lorentz type theorem

First let us give some identities.
Lemma 1 [8]. For L,(f(t), x) given by (1.4), we have
L,(t,x) =x+1/n;
Q1 L,((t—x)% x) = 2x/n+2n~"2

Mazuar and ToTik [8] gave the following direct theorem for modified Szasz
operators: '

(22) ILa(f, )= f (%) = Ko ((x + 1/n)/n)*/?),
here
W(f,) = sup sup |f(x+HD—f(x~H2)|

is the usual modulus of smoothness of f.
We have the Berens—Lorentz type inverse result as follows:

Theorem 1. Let f€C[0, ) be bounded. Then with 0<o<1,

(2.3) IL(f, ) —f(¥)] = M(xIn+n"2 (x = 0, ncN)
holds if and only if '
(2.4) o, (f,1) = O(%) (t > 0).

Remark 1. The assumption that f'is bounded is necessary, which can be seen
from the following example: Let f(x)=(x+1)In(x+1)—=(x+1). Then w,(f, 1)+
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#0(r*) for a=1/2. However (2.3) is satisfied: For x=1/n, we have

t

\La(f, )= ) = | £/ Lyt —x, 0+ L ( [ (¢—u) f" (@) du, x)| =

x

= In(x+ D/n+|uf” (W)= L, ((t — x)%/x, x) =

= Mx¥4n+2jn+2/(n*x) = (4-+ M)(xln+n=2P,
For x<1/n we have

ILa(fs X)=f(X)| =

L, [ftln (u+1)du,x]| =

= L,,[f'udu,x) = L(P+x%x)=

= 2x*+4x/n+2n"% = 8(x/n+n )4,
Thus we have proved that the boundedness cannot be dropped.

Proof of Theorem 1. By (2.2) we shall only prove the necessity. For d=0,
let

d
(2.5) fa(x) =d* [ f(x+5)ds.

Then we have for f€C[0, <) L[0, )
Ifa—flle = @i(f, d);

(2.6) 1file = d-0y(f, d).
Note that since
@.7) Li(£,2) = mx7 30 [ ) paa(t)di (kin—5) po(),
238) =1 31 [ £@Purrs®=Prs(0) dtprs(),
=0 ¢
we have

|La(fa—1f, ¥)| = nx7H | f —fillw Sa(lt — X1, X) = (n/x)Pay(f, d);
ILa(fa—fs %) = 2n]lf—fallw»

where we used that

S,,(It—XI, x) = (Sn((t—x)za x))ll2 = (x/n)l/2 (SCC, c.g- [17 12])'
Hence

2.9 Ly (fa—1, X)| = 2w,(f, d) min {n/x)', n}.
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From (2.8) and [7] we can also derive
Lifar D = |1 2 [ Puss® S 0t paa(0)] = d (.

Now for any >0 and O<h=1 XE(O, ), we get from (2.3) for any neN
210 |fx+h—f)| = | fx+m)—=Ly(f, x+ )|+ f(x)— L.(f, ¥+

5 B
+| [ Ll fos x+wydu|+| [ Li(f~far x +u)du| =
0 [}
h
= 2M((x+h)/n+n~2 2 +d o, (f, d)h+2w,(f, d) f min {(n/(x+u))""?, n} du =

= 2M(d(n, x, b)) +8hwy(f, d)(d~*+1/d(n, x, K)),

where  d(n, x, H)=((x+h)/n+n~2/2.  Note that d(n,x,h)=dn+1,x, k=
z=d(n, x, h)/2 for any n€N, hence for any 1/2>6=>0 we can choose n€N such
that

2d(n, x, h) = & = d(n, x, h).

With this choice we get from (2.10) the estimate

| f(x+h)—f(x)] = 2M6% 4- 36hw, (f, /6,
hence

([, 1) = 2M&* + 36tw,(f, 8)I6 = (2M +36)(6°+ tw,(f, 6)/6), (1,6 = 0)
which implies w,(f, £)=0(*) (see [3, 6]). Our proof is complete.

Remark 2. The same statement is true for Szisz operators, however we shall
omit the proof since it is just the same.

Remark 3. In [14], we have proved for Bernstein—Durrmeyer operators
n 1
e brn = Sloen frof)ra-o-sa)()wa-sr-,
k=0 ¢ k k

that for 1<a<2 there exist no functions {Y, ,(x)},en Such that the following
equivalence holds for f€C[0, 1]

(212 @e(f, 1) = O(t%) & |D,(f, X)—f (X)| = M, o(%).

In view of this result we cannot expect a similar characterization theorem by the
modified Sz4sz operators for functions satisfying :

0(f,1) =0() with 1<a<2.



Modified Szasz operators 315

3. Derivatives and smoothness

Some results on the relation between the order of derivatives and smoothness
have been obtained in [5, 7], most of which characterize the Ditzian—Totik modulus
of smoothness. Z. DITZIAN gave a result on the characterization of the usual modulus
of smoothness by the derivatives of Bernstein polynomials [4]. Recently one of the
authors gave similar results for higher order of smoothness [14].

Let

wy(f, 1) = Sup sup Lf(x)=2f(x+B)+f(x+2h)|.

=t x=0

For the modified Sz4sz operators, we can prove

Theorem 2. For feC[0, )N L.[0, ), 0<a=<2, we have

€R)) 0u(f; 1) = O(F) <« |LL(f, %)] = M (min {2, nfx})E—,
Theorem 3. For feC[0,«)L., O<a<1, we have
(3.2 o (f, ) = 0@ & |Li(f, x)| = M (min {n, n/x})@-2/2,

Proof of Theorem 2. Proof of the direction “="": Suppose w,(f, t)=M?r,
By simple calculation one can get

33 Li@) =1 3 (1 [ 60(as(®)=Pusss()+Prrss®)d) s

(3.4) = ntx= 3 (n [ g() o () ((kin—x) ~ kn™) pr, (),
hence

(3.5) L2 (g, %)| = 4n* gl

and

(3.6) L} (2, %)| = 2n/% ]

Now for feC[0, =) L..(0, 0;), let us define the Steklov function as

dra

37 fa(®) = 4d=2 [ [ (2f (x+u+v)— f(x+2u+20)) du dv.
Then ’

3.8 1f=fdl = wu(f, d),

and : .

(3.9) 1/4'l = 942 wy( £, d).

For f; one can verify (see [7])

3.10) Ly (fo, %)l = Lfn [ o2 S50 dt py i (x)| = 942 we(#, d).
=0 0 . FLI
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Thus, we have for d=(min {r? n/x})~12
(La(fs X) = 1Ly (fa, N+ Lo (f—fa ¥)| =
= 9d 2w, (f, d)+4 min {r?, n/x) w,(f, d) =
= 13M (min {r%, nxyy-er,
Proof of the direction “<«<"": To prove this part, we need the combination of
{L,} defined as
(311) Lo (£ %) = 80() Lyg(f, %)+ @100 Ly (f, %),

where |ay(n)|+|a,(M)|=B, n=ny<n,=A4n, with 4, B absolute constants, having
the property

3.12) L,,(fx)=x", i=0,1 (seee.g. [7]).
Then we have for fEC[0, «)NL.[0, <) by the method from [1, 3]
(3.13) |Lp 1 (fs )= f ()] = Map(f, 1n+(x/n)?).

Now we can give our proof, where the commutativity of {Z,} is crucial (see [7]).
For n, meN, x€(0, ), 0<h=t, we have
(3.149)
|L(f, X)=2L,,(f, X+ 1)+ L (f, x +2b)| = dMw, (L, f, 1/n+ ((x +2h)[n)"/?) +

B
+ff|L:(Ln.1(f), x+u+ v)l dudy

Now we shall estimate the second term. First we have
| (La2 () x+u+0)| = L5 1( )l = 2B(Any—=.
On the other hand, note that by ' -

|x*=*2 Ly (f, x)| = MABn*~°/2
we have

lxl—a/ELZ‘ (Ln,l(f)’ x)l = lxl—alzkj'; mf pm,k+2(t) L;’,l(f; t)dtpm,k(x)l =
= 0
= MABr =1~ 3 m ( R OLN) M VR ARHOLD i S OE

= MABnl—-u/z xl—a/2 ( 2’” mpm,k(x)/(k + 2))1—1/2 = MABnl-a/z’
k=0

hence
b '
ff |L,’,’,(L,,,1(f), x+u+v)| dudv = MABn'—°%/* ff(x+u+ v dudy =
[)] 0

<= MABR =1 (M) (x+ 20512 = Myhe (ni(x+ 2B)i~o05,
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here we have used the fact that
h
[[UGx+utv)dudo = MyFI(x+2K), O<h=1, x=0
1]

(see [1]). Thus, combining the above estimates with (3.14), we have
(3.15) |La(fy X)— 2L (f, x+ 0B+ L, (f, x+2h)| =
= AMawy (L, f, 1n+((x+2h)[n)*) + Myh*(1/n + ((x + 2h)In)" /%)=,

where M, is a constant independent of n, x, h and m.
Let C be a constant which will be determined later. Since

Un+((x+2k)n)'2 < 1j(n— 1)+ ((x + 2B)[(n— 1))* = 2(1/n+ ((x + 2h)[n)!'2),
we can choose nEN, such that
t/(2C) = 1/n+((x+2h)[n)'"* = ¢/C.
Then we get from (3.15) by induction ‘
@3 (Lp f, 1) = AMoo(L,, f, tIC) +(2C) =2 Myt* =

=

k-~-1
= @MY wy(L, f, 1IC~*) + QCPE* Myt 3 (4MC—*)' =
1=0
s 12AMYC%*|(Lpf) | + (RC)*—* My t*C*/(C* — 4M ).
Now if we take here C=(1+4M)'*, and let k—c, we obtain
wy(L, [, 1) = 4C M, 1*/(C*— 4M),

which implies w,(f, {)=0(¢*), since the constant 4C*M,/(C*—4M) is independent
of meN.

Our proof is complete. We shall omit the proof of Theorem 3, since it is almost
the same as the proof of Theorem 2.

4. A direct theorem for uniform approximation

When treating uniform approximation we shall always assume the boundedness
of the functions. Let Cy be the set of bounded and continuous functions on [0, ).

Theorem 4. For f€Cy, L,(f, x) given by (1.4), we have
4.1) ILaf—flle = C(@3(f, ) + &, (f, ™)+ 07| fll.),

where C is a constant independent of n, and wj(f, n~1*), is the so-called Ditzian—
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Totik modulus of smoothness defined as
4.2 05 (f, Do = Sup 45 >

o(x) = 20,
4if(x) = f(x—h)=2f(x)+f(x+h), x=h;
42 f(x) = 0, otherwise.

Remark 4. In view of the characterization theorems of MAZHAR and ToTik
[8] on the saturation and non-optimal approximation, we can see that our result
is of some value.

Proof of Theorem 4. For Szasz operators given by (1.6), we have for fECy
(see [6])
4.3) I1Sa(f) =S lleo = M(3(f; 17 ) +17% | f|0)-

We now need the Szész—Kantorovich operators given by
' o (k+1)n
(44) Si(hn=2Zn f S()dt Py i ().
For these operators, we cah easily deduce from (4.3) the direct result as
45 ASHN =Sl = M@ n Bt on(f; Un)+ 17 ).
We shall use the identities
4.6) Syt x) = x+1/2n), S ((t—x)%, x) = x[n+3"'n"2,
By (4.5), we only need to prove
[2(/= S~ (F~ Laf)l| = C(05(f, n7 )+ | f10).
Using the Ditzian—Totik K-functional

Koa(f, D)o = I0f {1/~ gl +1(1l= + l0%8" ) + 120870},

and its equivalence to wi, it is sufficient for us to prove for geD={geCyg: g€ A.C,,,,
g7€L..[0,)} the estimate :

@7 |2(e~ S @)~ (e— La@)||~ = C((lgh»+10°8"|w)in+n"2|g"]l)-
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From the above identities, we have for géD, x=n™!

[2(e() - S¥ (e %)~ (e(x) — La(e, %)) =

= |L(f ¢—we @ du, x) =25 ( [ (t—w)g" (W du, x)| =

= |9028" |l (La((t — X)¥/x, X) + 255 ((t — %)¥/x, X)) = 12]@*g"||/n.
For O<x<1/n, we have
12(g(x)— S (g %) — (8(x)— L,(8, x))| =
= 18"l (La((t—=X), %)+ 285 (1= %)%, X)) = 12172 8"

Thus we have obtained (4.7) and our proof of Theorem 4 is complete.

Remark 5. The second term on the rihgt of (4.1) is necessary, which can be
seen from the following example: Let

: xlnx—x%2+1/2, for x¢[0,1);
49 r@ =1,

Then we have

otherwise.

, Inx—x+1, for x€(0,1);
(4.9) fix) = {O, otherwise.
410 . : {llx—l for x€(0,1);
(4.10) f () = 0, otherwise.

Therefore we obtam a functlon f€Cy which satisfies
wo(fin™%)e = O(lln) n~* Ilfllw = 0(1/n),
féLle.

and

On the other hand from the saturation class of the modified Szdsz operators
{L,} [8] we have
HL,.f—flIw # 0(1/n).

Thus we have proved that the second term ,(f; 1/n) is necessary.
We can also give the weak-type inverse estimates for the moduli.
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Lemma 2. For L,(f, x) given by (1.4), neN, we have

@4.11) L f) loo+ Lo S o = Mn?| fllws SECp;

@.12) 10*(LaS) e+ I LnSf o = Mn||fllw, f€Cp;

@.13) ILaf) oo+ LaSf e = M S e+ 1fll=)s Sf7€Lews
(4.14) 12 Lnf) N+ ILaS e = M1 f |+ fle)  ¢°f7€Le,

where M is a constant independent of n and f.

The proof can be easily obtained from the representations of the derivatives of
L.fin [7].
Theorem 5. For feCB, L,(f, x) given by (1.4), we have

4.15) W3 (f, ™) = Myn~? gj WL f=fllw+n ] fles
(4.16) o, (f, ) = Myn~? (2 ILef~F o+ 1flle)-

where M, is independent of f and ne€N.

The proof is the same as given by DirzIAN and ToTIK [6], (see also [10]), so we
shall omit it.
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