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On additive functions with values in a compact Abelian group

BUI MINH PHONG

1. Introduction

Let G be an additively written, metrically compact Abelian topological group,
N be the set of all positive integers. A function f: N—G is called a completely addit-
ive, if

S (nm) = f(n)+f(m)
holds for all n, meN. Let & denote the class of all completely additive functions
f: N->G.

Let A>0 and B0 be fixed integers. We shall say that an infinite sequence
{x,};=1 in G is of property D[4, B] if for any convergent subsequence {x, };2, the
sequence {x,, , g}z, has a limit, too. We say that it is of property E[4, B] if for
any convergent subsequence {x,, ,p}s.; the sequence {x, };, is convergent. We
shall say that an infinite sequence {x,};> , in G is of property 4{4, B] if the sequence
{*4v+B—X, )iz, has a limit.

Let 243 (D[A, B]), & (E[A4, B]) and /§(d[A4, B]) be the classes of those €
for which {x,=f(v)};>, is of property D[4, B], E[A, B] and A[A, B}, respectively.

It is obvious that

H5(4[4, B) & #5(D[4,B)) and /3 (4[4, B) S 43(E[4, B)).
Z. DArOczy and 1. KATAI proved in [1] that
3 (411, 1) = LZ (D1, 1),
and in [2] they deduced the following assertion: If f€./;(4[1,1), then there éxists
a continuous homomorphism ¥: R.—G, R, denotes the multiplicative group of
the positive reals, such that f(n)=¥(n) for all ncN.

For the case 4=2 and B= -1 the complete characterization of ¢ (D[2, —1])
and 7§ (4[2, —1]) has been given by Z. DArROCzZY and I. KATAI [3], [4].
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In a recent paper [5] we gave a complete characterization of &/} (E[A, B]) and
&5 (4[4, B]). Namely we showed that

q G (E[4, B]) = #5(4[4, B))
an
A3(A[4, B)) = 5 (4[1, 1))

In the other words, if f€«g(E[A, B])=s/;(4[A4, B]), then there is a continuous
homomorphism ¥: R,—G such that f(n)=¥(n) for all nEN.

Our main purpose in this paper is to give a complete determination of
&Z2(D[ 4, B]). We note that it is enough to characterize those classes /¢ (D[4, B])
for which (4, B)=1, since

A& (D[Ad, Bd]) = #3(D[A4, B))
holds for each deN.
We shall prove the following

Theorem. Let A=0 and B#0 be fixed integers for which (A, B)=1 and
let G be a metrically compact Abelian topological group. If feg(D[A, B]), then
there are Uc Ay and a continuous homomorphims ®: R,—~G, R, denotes the multi-
plicative group of positive reals, such that

) f(m) =®(n)+U(n) VneN,
amn Un+d)=Um) vneN, (n,4) = 1,

(II1) If X,, T denote the set of all limit points of {®(n)[n€N} and {U(n)in€N},
respectively, then

and T is the smallest closed group generated by
{Um)l =m < A,(m,A) =1} and {U(p)lp is prime, p|4}.

Conversely, let &: R,—~G be an arbitrary continuous homomorphism, X, be
the smallest compact supgroup generated by {®(n)ln€N}. Let Ucsd; be so chosen .
that U(n+A)=U(n) for all neN, (n, A)=1 and the smallest closed group T gener-
ated by U(N) has the property X;\I'={0}. Then the function

f():=dm+Un)
belongs to ¢ (D[A, B]).
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2. Preliminary lemmas

In this section we shall prove some results which will be used in the proof of
our theorem,

Lemma 1. We have
#5(D[4, B)) S 43 (D[4, 1))
for all fixed integers A=>0 and B#0.
Proof. Let A=0, B0 be fixed integers. Assume that

festi (D[4, B)).
Let
m<..<n,<.. (n€N)

be an infinite sequence for which the sequence {f(n,)};>, is convergent. Then, it is

obvious that the sequence {f(|B|n,)};>, has also a limit, consequently we get from
the definition of #/Z(D[A4, B]) that

tim {4 +2-| = fim 14181, + B1-7 8D

v—>oo

exists as well. This implies in the case B>0 that fc«/; (D[4, 1]).
We now assume that B<0. In this case we have fe/5(D[A4, —1]). Since
{f(n)};>, is convergent, therefore the sequence {f(4n2)}:>, is convergent, too. Thus,

by using the fact fei(D[A4, —1]), it follows that the following limit exists:
lim f(An,+1) = vlim fl(4n,)?— 11— lim f[An,—1].

This shows that fc (D[4, 1]).
So we have proved Lemma 1.

In the following we assume that 4=0, B0 are fixed integers and G is a met-
rically compact Abelian topological group. Let

fesd (DA, B).

We shall denote by X the set of limit points of {f(n)ln€N}, i.e. g€ X if there exists
a sequence
m<..<n, <.. (neN)

for which f(n,)—~g. Let X; (£X) be the set of limit points of {f(4n+1)|n€N}.
Since N and the positive integers m=1 (mod A) form semingroups, therefore
{f(mMIneN} and {f(4n+1)|neN} are semigroups as well. Thus, X and X, are closed
semigroups in the compact group G, so by a known theorem (see [6], Theorem
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(9.16)) they are compact subgroups in G. Since 0€X;SX we have f(n)€X and
f(4An+1eX, for each neN.

Let g€X and f(n,)-g as v-o. Then, by using Lemma 1, it follows that
the sequence {f(An,+1)};., is convergent. Let f(An,+1)—-g’(€Xy)). It is easily
seen that g’ is determined by g, and so the correspondence

H:g~g (geX, g'cXy)
is a function.

Lemma 2. The function H: X~X, is continuous and
H(X) = X;.

Proof. We can prove Lemma 2 by the same method as was used in [1] (see
Lemma 4 and Lemma 5), so we omit the proof.

Lemma 3. We have
@1 H(g+h+f(A)+H(g) = H(g+ H(h+ H(2))
Sor all geX and heX.
Proof. Let gcX and h€X be arbitrary elements. Let
m<..<n-=<.. and m<..<m,<... (n,me€EN)

be such sequences for which f(n,)—~g and f(m,)—~h. By using the following rela-
tion
(A:n,m,+ 1)(4An,+ 1) = An,[Am (An,+ 1)+ 1]+1

and using the definition of H, we get immediately that (2.1) holds. So, we have proved
Lemma 3. )

Lemma 4. Let
E(f)= {e€X|H(g) = O}.

Then E(f)#@. Furthermore, if ¢CE(f), then

2.2 H(ko+(k—1)f(4) =0
Jor every integer k. In particular, we have

2.3 H(—f(4)) = 0.

Proof. Since X; is a group, therefore 0€X;. Thus, it follows from H(X)=X;
that there is at least one ¢ X for which H(g)=0. Then E(f)=9. Furthermore,
it is easily seen from (2.1) that

24 H(o,+ea+f(4)) =0 if H(e)) = H(gs) = 0.
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Assume that o€ E(f), i.e. H(g)=0. By using (2.4) and induction on k we
get immediately that (2.2) holds for every k€N. Let

Ve = {k(e+/(4))|keN).
Since (2.2) holds for every k€N, therefore we have
2.5 H(@—f(4)) =0 forall &€V,

Let 170 be the smallest closed set containing ¥,. It is clear that ¥, is a semigroup,
therefore Ve is a closed semigroup in G. Thus, by using a known theorem of [6], we
get that V, is a compact group. Since H is continuous function and ¥, is the smallest
closed set containing ¥,, it follows that (2.5) holds for all 6¢¥,, consequently
(2.2) holds for every integer k. So (2.2) is proved.

Finally, by applying (2.2) with k=0, we obtain (2.3).

The proof of Lemma 4 is finished.

Lemma 5. We have
(2.6) H(g+1) = H(g)+7
for all geX and €X,.

Proof. We first prove that

2.7 H(t—f(4)) =< forall 1€X,
and
(2.8) H(g—H(g) =0 forall geX.

Let t€X;. Then, it follows from H(X)=X,; that there is one h€X such that
H(h)=1. We apply (2.1) with g= —f(4) and using (2.3), we have
H(H(h)—f(4)) = H(h),

which with H(h)=t proves (2.7). It is clear that (2.8) is a consequence of (2.1)
and (2.3) in the case h+H(g)=—f(A).

We now prove Lemma 5.

Let g€ X and t€X, be arbitrary elements. By using (2.8), we have

H[(g+1)—H(g+1)]=0
Hlg—-H(g)]=0.

and

Applying Lemma 4 with ¢g=g—H(g) and k=—1, we get that

L H[—-g+ H(g)—2f(4)] = 0.
et
01:=g+1—H(g+1) and ¢;:=—g+H(g)—2f(4).
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Then H(g,)=H(g,)=0, and so by (2.4) we have
H[(g+7—H(g+0)+(—g+H(g)— 2f(A))+f(A)] =0,

ie.

(29) H[(c— H(g+7)+ H@) —f(4)] = 0.
Since t€X,, H(g+1)€X;, H(g)EX, and X, is a group, therefore
(2.10) t—-H(g-+1)+H(g)EX,.

Finally, from (2.7), (2.9) and (2.10) we get that

1—H(g+7)+H(g) =0,
which proves (2.6).
So we have proved Lemma 5.

Lemma 6. We have
2.11) H(g+h+f(4)) = H@g+h+H(0) = H(g)+H(h)
Jor all gcX and hcX. o

Proof. Let g€X and h€X. Since H(h+H(g))€X, and H(g)¢X;, by using.
Lemma 5, we have

H(g+H(h+H(g) = H(g)+H(h+H(g)) = H(g)+H(h)+H(g)
This with (2.1) implies that
(2.12) H(g+h+f(4))= H(g)+H(h).

Thus, (2.12) holds for all g€ X and hcX. ,
On the other hand, .we get from (2.12) that

H(g+h+f(4)) = HEg+h)+H(0).
This with (2.12) shows that (2.11) holds for all g€ X and h€X. The proof of Lemma
6 is finished.

3. Proof of the theorem

Assume that 4>0 and B0 are fixed integéré for which (4,B)=1 and G
is a metrically compact Abelian topological group. Let

fe#¢ (D[4, B)).

As in the Section 2, we denote by X and X, the set of limit points of {/(n)|€N}
and {f(4n+1)|n€N}, respectively. Let H: XX, be a continuous function which
is defined in Section 2, i, if . f(n,)—g, then f(4n,+1)~H(g).
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For an arbitrary n€N, let S(n) be the product of all prime factors of #n com-
posed from the prime divisors of A4, R(n) be defined by n=S(n)-R(n), i..
(4, R(n))=1 and every prime divisor of S(n) is a divisor of A. Let R(n) be the
smallest positive integer for which

R(n) = R(n) (mod A4).
It is obvious that (R(n), 4)=1 and 1=R(n)<A.

Lemma 7. Let

6.1 U(n) = f[S(n)- R(m)+ HQO)—H(S[S(n)- R(n))).
Then, we have

(3.2 H(f(m)—f(m—H(©)+U(n) =0

Jor all neN.

Proof. Let H: XX, be the function which is defined by the relation H(g)=
=H(g)—H(0). Then, it is easily seen from Lemma 5 and Lemma 6 that

(3.3 ‘H(g+h) = Hig)+H(K) Vg, heX,
(3.9 H(t) =1 VieX,

and

(3.5 ' HX) = X,.

For each neN, let c(n) be the smallest positive integer for which R(n)-c(n)=
=1 (mod A). Then, it is obvious that

SIR(n)-c(meX, and f[R(n)-c(mleX,
hold for every néN. By using (3.3) and (3.4), we deduce that
H{f(m]+HLf (cm)] = H[f(n-c(m)] = fIR()- c(m) + H[£(S()]
H[fRE)]+H[f(c(m)] = Hf(R()-c(m)] = f(R()- c(m)).
- These imply that
AL~ L/(R@)] = f(R(n)) ~SRe)+H GO

consequently
HIfW—fm)+{f(S)-R(m)—H[f(S(n)- Rm)]} = 0.
This with (3.1) proves (3.2) '

and

Lemma 8. We have
(i) Uestyg,
. (@) U+ AH=U() for all neN, (n, A)=1,

4
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(iii) If{ay, ..., Gpeay} Is a reduced residue system moduls A, then U(ay), ..., U(@y4)
Jorm a group in G.

(iv) Let I denote the set of all limit points of {U(n)|[n€N}. Then I is the smallest
closed group generated by U(ay), ..., U(ayay)s U(P1)s -5 UPoiay)> Where {ay, ..., agia}
is a reduced residue system moduls A and p,, ..., po4y are all distinct prime factors

of A. Furthermore, we have
Xl nF = {0}.

Proof. Parts (i) and (ii) follow at once from the definition of U and Lemma 7.
The part (iii) is a consequence of (i) and (ii). To prove (iv) we first note that I' is a
closed semigroup in G, and so I' is a group by Theorem (9.16) of [6]. Hence by (ii)
it follows that I is the smallest closed group generated by U(a,), ..., U(ay4y), U(py); ---
eees UDoray)- '

Since Xy, I' are subgroups in G, therefore 0€X;MNI. Let us assume that &¢
€X,NTI. Then there is a sequence {n},., for which U(n,)—~d. Applying (3.2)
with n=n,, we have

(3.6) H[f(n)]-f(n,)—H(0)+U(n,) = 0.

Since G is sequentially compact, therefore the sequence {f{(n,)};~, contains at least
one limit point. Let

f(n) —~¢ (€X).
Then, by (3.6) and using the fact H is continuous, we get
H(g)—g—-H(0)+46 =0,
which with H(g)—H(0)+d€cX, implies that g€X;. So, by Lemma 5
0 =g+H@O)—H(g) =0.

Thus, we have proved that X;N\I'={0}. This completes the proof of (iv).
The proof of Lemma 8 is finished.
We now prove the theorem. We first show that

3.7 fAn+1)—H(f(m) -0 as n-eo.
Assume the contrary. Let
3.8) fAn,+)—H(f(n)~ A0 as v-—co.

Since the sequence {f(n,):~, contains at least one limit point, we can find a sub-
sequence {n,;};72, of the sequence {n };-, such that S(n,)~g (€X) as j—e. Using
the continuity of H, by (3.8) we have

H(g)—H(g) = 4,

which is contradiction. Thus, we have proved (3.7). From (3.2) and (3.7) we get
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immediately
3.9 , fAn+1)—f(m)—HO)+U(n) -0 as n-—oo,
Let ' :
_ E(n):=f(m)—U(n) (neN).

‘It is obvious by Lemma 8 that Fé&f§ and

F(An+1) = f(An+1)=U(An+1) = f(4n+1)
for all n¢N. This with (3.9) implies

F(An+1)—F(n)—H@O) -0 as n —eoo,

consequently Fesfi(4[A, 1]). It was proved in [5] that if FesfF(A[A,1]), then
there is a continuous homomorphism ¢@: R,—~G such that F(n)=®&(n) for all

neN, where R, denotes the multiplicative group of positive reals. Thus, we have
proved that

(3.10) f(n) = &(n)+U(n),

where U satisfies the conditions (i)—(iv) of Lemma 8. By (3.2) and (3.10) we also
have
&(n) = H(f(m)—H(0) for all néN,

therefore it follows from (3.5) that the set of all limit points of {®(n)|n€N} is X1

So we have proved the first part of our theorem.

Finally, let @: R,—~G be a continuous homomorphism and let Uc; be so
chosen that
(3.11) Un+A)=U@m) forall neN, (n,4) =1
and

xNr = {0}

where X;, I’ denote the smallest closed groups in G which are generated by ®(N)
and U(N), respectively.

Let

f(n):= o(m)+U(m)eA¢.

Assume that for some subsequence {n,};_, of positive integers the sequence
{f(n,)7, converges. Then, by using ®(n)eX;, U(n)eI' and X,NI'={0}, we
deduce that the sequences {®(r,)};—, and {U(n,)};>, are convergent, therefore
by (3.11) and (4, B)=1 we see that

vl_i’rg f(An,+B) = }Lm {®(An,+B)+U(An,+B)} =
= lim &(4n,+B)+U(B) = ¢(4)+U(B) + lim &(n,)

exists as well. So we have proved that fc«/5 (D[4, B]).
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The proof of our theorem is finished.
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