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On additive functions with values in a compact Abelian group 

BUI MINH PHONG 

1. Introduction 

Let G be an additively written, metrically compact Abelian topological group, 
N be the set of all positive integers. A function / : N—G is called a completely addit-
ive, if 

f(nm) =/(«)+/(m) 

holds for all n, m£ N. Let denote the class of all completely additive functions 
/ : N—G. 

Let A > 0 and B^O be fixed integers. We shall say that an infinite sequence 
{xv}~=1 in G is of property D[A, B] if for any convergent subsequence {xv }"=1 the 
sequence {xx»B+B}n=i has a limit, too. We say that it is of property E[A, B] if for 
any convergent subsequence {x4Vn+B}r=i the sequence {xv }~=1 is convergent. We 
shall say that an infinite sequence {xv}7=i in G is of property A [A, B] if the sequence 
{^v+B-^v}r=i has a limit. 

Let s/*(D[A,B]), s/*(E[A,B)) and si*(A[A,B}) be the classes of those fast* 
for which {xv=/(v)}"=l is of property D[A,B], E[A,B] and A[A, B], respectively. 

It is obvious that 

¿¿¿(A [A, B]) g st£(D[A, 5]) and ¿¿¿(A [A, 5]) g J£(E[A, B]). 

Z . D A R 6 C Z Y and I . KATAI proved in [1] that 

and in [2] they deduced the following assertion: If 1,1), then there exists 
a continuous homomorphism W: Rx—G, Rx denotes the multiplicative group of 
the positive reals, such that / ( « ) = !F(w) for all N. 

For the case A=2 and B= — 1 the complete characterization of — 1]) 
and s#l(A [2 , — 1 ] ) has been given by Z . D A R 6 C Z Y and I . KATAI [3] , [4 ] . 
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In a recent paper [5] we gave a complete characterization of s/£(E[A, B]) and 
s/£(A[A, B]). Namely we showed that 

^¿(E[A, B]) = [A, B]) 
and 

j*S(A[A,B\) = s/3(A[ 1, 1]). 

In the other words, if f£s/£(E[A, B])=rf£(A[A, B]), then there is a continuous 
homomorphism f : R x - G such that f(n)=xF(n) for all n£N. 

Our main purpose in this paper is to give a complete determination of 
st£(D[A, 5]). We note that it is enough to characterize those classes ^¿(D[A, B]) 
for which (A, B) = l, since 

s*2(D[Ad, Bd]) = s/£(D[A, B]) 
holds for each d£ N. 

We shall prove the following 

Theo rem. Let A> 0 and B^O be fixed integers for which (A,B)=l and 
let G be a metrically compact Abelian topological group. If f£sf£(D[A, B]), then 
there are and a continuous homomorphims $ : Rx—G, Rx denotes the multi-
plicative group of positive reals, such that 

(I) f(n) = *(n) + U(n) V«6N, 

(II) U(n + A) = U(n) V«6N, (n, A) = 1, 

(III) If Xu r denote the set of all limit points of {<*>(")I"€N} and {£/(«)|«<=N}, 
respectively, then 

X1C)r={0} 

and r is the smallest closed group generated by 

{£/(m)|l ^ m < A, (m, A) = 1} and {U(p)\p is prime, p\A). 
Conversely, let <P: RX—G be an arbitrary continuous homomorphism, Xx be 

the smallest compact supgroup generated by {$(«)|«6N}. Let be so chosen 
that U(n+A) = U(ri) for all (n, A)=l and the smallest closed group r gener-
ated by U(N) has the property Z 1 f i r={0} . Then the function 

/(»>:= *(n) + U(n) 
belongs to S4q{D[A, 5]). 
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2. Preliminary lemmas 

In this section we shall prove some results which will be used in the proof of 
our theorem. 

Lemma 1. We have 

for all fixed integers A> 0 and B^O. 

Proof . Let 0, BT±0 be fixed integers. Assume that 

f^(D[A,B}). 
Let 

« ! < . . . < tjv < ... (wv€N) 

be an infinite sequence for which the sequence {/(«v)}"=1 is convergent. Then, it is 
obvious that the sequence {f(\B\nJ)}™=1 has also a limit, consequently we get from 
the definition of sst£(D[A, 5]) that 

lim/[^«v+||j-] = \mf[A\B\nv+B]-f{\B\) 

exists as well. This implies in the case B > 0 that 1]). 
We now assume that ¿?<0. In this case we have f£sfZ(D[A, —1]). Since 

{/("v)}r=i i s convergent, therefore the sequence {f(An^}°^=1 is convergent, too. Thus, 
by using the fact [A, — 1]), it follows that the following limit exists: 

lim f(Anv +1) = lim f[(An,f - 1] - lim f[Anv -1]. 

This shows that f£s/%(D[A, 1]). 
So we have proved Lemma 1. 

In the following we assume that A>0, B^O are fixed integers and G is a met-
rically compact Abelian topological group. Let 

f€s/£(D[A, B]). 

We shall denote by A" the set of limit points of {/(n)|w£N}, i.e. g£X if there exists 
a sequence 

/ii-=...«= n„ «= ... (mv€N) 

for which f(nv)->-g. Let Xx (QX) be the set of limit points of {/(^n+l) |«6N}. 
Since N and the positive integers m= 1 (mod A) form semingroups, therefore 
{/(«)|«6N} and {/(/iH+l)|rt£N} are semigroups as well. Thus, Zand X1 are closed 
semigroups in the compact group G, so by a known theorem (see [6], Theorem 
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(9.16)) they are compact subgroups in G. Since O Ç ^ g J we have f(n)£X and 
f(An+1)^ for each «6N. 

Let g£X and f(nv)-—g as v— «>. Then, by using Lemma 1, it follows that 
the sequence {/(/4«v + l )Kl i is convergent. Let f(Anv+l) — g'iaXJ. It is easily 
seen that g' is determined by g, and so the correspondence 

H:g - g' (g£X, g'tXJ 
is a function. 

Lemma 2. The function H: X-*Xx is continuous and 

H(X) = X1. 

P r o o f . We can prove Lemma 2 by the same method as was used in [1] (see 
Lemma 4 and Lemma 5), so we omit the proof. 

Lemma 3. We have 

(2.1) ff(g+h+f(A)) + H(g) = H(g+H(h + H(g))) 

for all geX and h£X. 

P r o o f . Let g£X and h£X be arbitrary elements. Let 

ny < ... and mj < ... < mv < ... (wv,mv€N) 

be such sequences for which f(nj)-*g and f(mv)-+h. By using the following rela-
tion 

(Ainvmv + l)(Anv+ 1) = Anv[Amv(Anv + 1)+ 1]+ 1 

and using the definition of H, we get immediately that (2.1) holds. So, we have proved 
Lemma 3. 

Lemma 4. Let 

E(J)'.= {QiX\H(Q) = 0}. 

Then E(f)9±0. Furthermore, if QiE(f), then 

(2.2) H(kQ + {k-\)f{A)) = 0 

for every integer k. In particular, we have 

(2.3) H(-f(A)) = 0. 
P r o o f . Since X

1
 is a group, therefore 0 6 ^ . Thus, it follows from H ( X ) = X

L 

that there is at least one QÇ.X for which H(Q)=0. Then E ( f ) ̂ 0 . Furthermore, 
it is easily seen from (2.1) that 

(2.4) ff(Qi + E,+f(A)) = 0 if H(
QL
) = H(Q

2
) = 0. 
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Assume that Q£E(J~), i.e. H(Q)=0. By using (2.4) and induction on k we 
get immediately that (2.2) holds for every Let 

K = { * ( e + / ( ^ ) ) | * € N > . 

Since (2.2) holds for every therefore we have 

(2.5) H(S-f(A)) = 0 for all ¿£Ve. 

Let Vg be the smallest closed set containing Ve. It is clear that Ve is a semigroup, 
therefore V

E
 is a closed semigroup in G. Thus, by using a known theorem of [6], we 

get that V
E
 is a compact group. Since H is continuous function and V

E
 is the smallest 

closed set containing Ve, it follows that (2.5) holds for all consequently 
(2.2) holds for every integer k. So (2.2) is proved. 

Finally, by applying (2.2) with k=0, we obtain (2.3). 
The proof of Lemma 4 is finished. 

Lemma 5. We have 
(2.6) H(g+r) = H(g)+x 
for all g£X and 

Proo f . We first prove that 

(2.7) H[x-f(A)) = x for all T ^ 
and 
(2.8) H{g-H(g)) = 0 for all giX. 

Let TGJ^. Then, it follows from H(X)=X1 that there is one h£X such that 
H(h)=x. We apply (2.1) with g=—f(A) and using (2.3), we have 

H(H(h)-f(A)) = H{h), 

which with H(h)=x proves (2.7). It is clear that (2.8) is a consequence of (2.1) 
and (2.3) in the case h+H(g)= -f(A). 

We now prove Lemma 5. 
Let g(LX and T£Xx be arbitrary elements. By using (2.8), we have 

= 0 
and 

H[g~H(g)] = 0. 

Applying Lemma 4 with Q=g—H(g) and k= — 1, we get that 

H[-g + H(g)-2f(A)] = 0. Let 
Qi :=g+r-H(g+r) and Q2 :=-g+H(g)-2f(A). 

4 
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Then H(Q
1
)=H(Q

2
)=0, and so by (2.4) we have 

H[{g+x- H(g+T)) + (-* + H(g) - 2/(A)) +f(A)] = 0, 
i.e. 
(2.9) / / [ ( T - / / ( g + T) + H(g))-f(A)\ = 0. 

Since T£Xx, H(g+x)^X1, H(g)£X\ and X1 is a group, therefore 

(2.10) x - H t e + ^ + H t e ) ^ . 

Finally, from (2.7), (2.9) and (2.10) we get that 

i-H(g + x) + H(g) = 0, 
which proves (2.6). 

So we have proved Lemma 5. 

Lemma 6. We have 

(2.11) H(g + h+f(A)) = H(g + h)+H( 0) = H(g)+ff(h) 
for all g£X and h£X. 

P r o o f . Let g£X and h£X. Since H(h+H(g))^X1 and H(g)£Xt, by using 
Lemma 5, we have 

H(g + H(h + H(g))) = H(g) + H(h + H(g)) = H(g)+H(h) + H(g). 

This with (2.1) implies that 

(2.12) H(g+h+f(A)) = H(g) + H(h). 

Thus, (2.12) holds for all g£X and h£X. 
On the other hand, we get from (2.12) that 

H(g + h+f(A)) = H(g+h) + H( 0). 

This with (2.12) shows that (2.11) holds for all g£X and h£X. The proof of Lemma 
6 is finished. 

3. Proof of the theorem 

Assume that A>0 and are fixed integers for which (A,B) = 1 and G 
is a metrically compact Abelian topological group. Let 

f^(D[A,B]). 

As in the Section 2, we denote by X and the set of limit points of {/(«)|£N} 
and {/(^1«+1)|«6N}, respectively. Let H: X-*-X1 be a continuous function which 
is defined in Section 2, i.e., if f(nv)—g, then f(Anv +1) —H(g). 
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For an arbitrary n£N, let S(n) be the product of all prime factors of n com-
posed from the prime divisors of A, R(n) be defined by n=S(n)- R(n), i.e. 
(A, R(n)) = 1 and every prime divisor of S(n) is a divisor of A. Let R(n) be the 
smallest positive integer for which 

R(n) = R(n) (mod A). 

It is obvious that (R(n), A)=l and 1 («)</!. 

Lemma 7. Let 

(3.1) U(n) :=f[S(n) •*(«)] + H(0) - H(f[S(n) • R(n)]). 
Then, we have 
(3.2) / / ( / (« ) ) - / ( » ) - 7/(0) + U(n) = 0 
for all n£N. 

Proof . Let H: X—X^ be the function which is defined by the relation H(g) = 
=H(g)—H(0). Then, it is easily seen from Lemma 5 and Lemma 6 that 

(3.3) H(g+h) = B(g)+H(h) vg, hex, 

(3.4) H( t) = r VTG^ 
and 
(3.5) H(X) = X1. 

For each n£N, let c(n) be the smallest positive integer for which R(n)-c(n) = 
= 1 (mod A). Then, it is obvious that 

/[/?(«)• c(n)K*x and /[K(n).e(n)]€*i 

hold for every w£N. By using (3.3) and (3.4), we deduce that 

H [/(«)] + H [/(c(/7))] = E [fin • c(«))] = f[R(n) • c(«)] + H [/(£(«))] 
and 

#[/(*(«))]+#[/№)] = B[f(R(n)-c(n))} =f(R(n).c(n)). 

These imply that 

H [/(»)] - H [/(*(«))] = f(R(n))-f(R(n)) + H [/(S(«))], 

consequently 

m m ] - f i n ) + {/(S(h). R(n)) - H [/(£(«) • R(n))]} = 0. 
This with (3.1) proves (3.2) 

Lemma 8. We have 
(i) 

(ii) U(n+A)=U(n) for all n£N, (n, A)=1, 

4* 
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(iii) I/{a1, ..., is a reduced residue system moduls A, then Ufa),..., U(a^A)) 
form a group in G. 

(iv) Let r denote the set of all limit points of {£ / (M) |M£N}. Then T is the smallest 
closed group generated by Ufa),..., U(avU)), U{px),..., U(pa(A)), where fa,..., a„(A)} 
is a reduced residue system moduls A and plt •••,pco(A) are all distinct prime factors 
of A. Furthermore, we have 

XiCir = {0}. 

P roof . Parts (i) and (ii) follow at once from the definition of U and Lemma 7. 
The part (iii) is a consequence of (i) and (ii). To prove (iv) we first note that f is a 
closed semigroup in G, and so r is a group by Theorem (9.16) of [6]. Hence by (ii) 
it follows that T is the smallest closed group generated by U fa), ...,U (a^A)), U (pj,... 
— » U(PalA))-

Since r are subgroups in G, therefore OgA^nr. Let us assume that <5(E 
CA^Pir. Then there is a sequence {«v}7=i for which Ufa)Applying (3.2) 
with n=ny, we have 
(3.6) H [ f f a ) ] -/(»,) - H( 0) + Ufa) = 0. 

Since G is sequentially compact, therefore the sequence {/(/iv)KLi contains at least 
one limit point. Let 

/(«.,)-* (€X). 

Then, by (3.6) and using the fact H is continuous, we get 

H(g)—g — H(Q) + S = 0, 

which with H(g)-H(0)+6£X1 implies that g£Xx. So, by Lemma 5 

8 = g + H(0)-H(g) = 0. 

Thus, we have proved that A r
1fir={0}. This completes the proof of (iv). 

The proof of Lemma 8 is finished. 
We now prove the theorem. We first show that 

(3.7) f(An+l)-H(f(n))-0 as 

Assume the contrary. Let 

(3.8) f(Any +1) - H ( f f a ) ) 1 0 as v - °°. 

Since the sequence {/(«v)™=1 contains at least one limit point, we can find a sub-
sequence {nvj}j=1 of the sequence {MvK°=I such that f f a ^ g (£X) as Using 
the continuity of H, by (3.8) we have 

H(g)-H(g) = X, 

which is contradiction. Thus, we have proved (3.7). From (3.2) and (3.7) we get 
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immediately 
(3.9) f(An+ 1 ) - / ( " ) - H(0) + U(n) - 0 as 
Let 

F(n) :=f(n)-U(n) ( « € N ) . 

It is obvious by Lemma 8 that and 

F(An+1) = f(An+l)-U(An +1) =f(An+1) 

for all «^N. This with (3.9) implies 

F(An+ l) — F(ri) — H(0) — 0 as n 
consequently F£s/£(J[A, 1]). It was proved in [5] that if F£sf*(A[A, 1]), then 
there is a continuous homomorphism Ф : R,—G such that F(n)=<P(n) for all 
H€N, where Rx denotes the multiplicative group of positive reals. Thus, we have 
proved that 
(3.10) / (и ) = Ф(п) + и(п), 

where U satisfies the conditions (i)—(iv) of Lemma 8. By (3.2) and (3.10) we also 
have 

Ф(п) = Я ( / ( и ) ) - Я ( 0 ) for all 

therefore it follows from (3.5) that the set of all limit points of {$(/J)|W£N} is XL. 
So we have proved the first part of our theorem. 
Finally, let Ф: Rx—G be a continuous homomorphism and let be so 

chosen that 
(3.11) U(n + A) = U(n) for all N, (n,A)= 1 
and Х х П Г = {0} 

where Xu Г denote the smallest closed groups in G which are generated by 4>(N) 
and C/(N), respectively. 

Let 
/(«):= Ф(п) + 1/(п)&2. 

Assume that for some subsequence {nJ^lj of positive integers the sequence 
{/(«X=1 converges. Then, by using Ф(п^Х1, U(nv)£r and Х1Г\Г={0}, we 
deduce that the sequences {Ф(?;„)}~=1 and {i/(«v)}~=] are convergent, therefore 
by (3.11) and (A, B) = l we see that 

lim f(Anv + B) = lim №(Anv+B) + U(Anv+B)} = V-+oo V— oo 

= lim Ф(Ап1/+В) + и(В) = Ф(А) + Ц(В)+ lim Ф(пЛ V-*-oo \-fOO 

exists as well. So we have proved that f£s/£(D[A, £]). 
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The proof of our theorem is finished. 

Acknowledgements. I am thankful to Professor I. Kátai for the indication of 
the problem and his help in the preparation of this paper. 
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