On additive functions with values in a compact Abelian group

BUI MINH PHONG

1. Introduction

Let G be an additively written, metrically compact Abelian topological group, N be the set of all positive integers. A function $f: N \rightarrow G$ is called a completely additive, if

$$f(nm) = f(n) + f(m)$$

holds for all $n, m \in \mathbb{N}$. Let \mathscr{A}_G^* denote the class of all completely additive functions $f: \mathbb{N} \to G$.

Let A>0 and $B\neq 0$ be fixed integers. We shall say that an infinite sequence $\{x_v\}_{v=1}^{\infty}$ in G is of property D[A, B] if for any convergent subsequence $\{x_{v_n}\}_{n=1}^{\infty}$ the sequence $\{x_{Av_n+B}\}_{n=1}^{\infty}$ has a limit, too. We say that it is of property E[A, B] if for any convergent subsequence $\{x_{Av_n+B}\}_{n=1}^{\infty}$ the sequence $\{x_{v_n}\}_{n=1}^{\infty}$ is convergent. We shall say that an infinite sequence $\{x_v\}_{v=1}^{\infty}$ in G is of property $\Delta[A, B]$ if the sequence $\{x_{Av_n+B}-x_v\}_{v=1}^{\infty}$ has a limit.

Let $\mathscr{A}_{G}^{*}(D[A, B])$, $\mathscr{A}_{G}^{*}(E[A, B])$ and $\mathscr{A}_{G}^{*}(\Delta[A, B])$ be the classes of those $f \in \mathscr{A}_{G}^{*}$ for which $\{x_{\nu} = f(\nu)\}_{\nu=1}^{\infty}$ is of property D[A, B], E[A, B] and $\Delta[A, B]$, respectively. It is obvious that

$$\mathscr{A}_{G}^{*}(\Delta[A, B]) \subseteq \mathscr{A}_{G}^{*}(D[A, B])$$
 and $\mathscr{A}_{G}^{*}(\Delta[A, B]) \subseteq \mathscr{A}_{G}^{*}(E[A, B]).$

Z. Daróczy and I. Kátai proved in [1] that

$$\mathscr{A}_G^*(\Delta[1,1]) = \mathscr{A}_G^*(D[1,1]),$$

and in [2] they deduced the following assertion: If $f \in \mathscr{A}_G^*(\Delta[1,1))$, then there exists a continuous homomorphism $\Psi \colon \mathbf{R}_x \to G$, \mathbf{R}_x denotes the multiplicative group of the positive reals, such that $f(n) = \Psi(n)$ for all $n \in \mathbb{N}$.

For the case A=2 and B=-1 the complete characterization of $\mathscr{A}_{G}^{*}(D[2,-1])$ and $\mathscr{A}_{G}^{*}(\Delta[2,-1])$ has been given by Z. Daróczy and I. Kátai [3], [4].

Received July 18, 1990.

In a recent paper [5] we gave a complete characterization of $\mathscr{A}_G^*(E[A, B])$ and $\mathscr{A}_G^*(\Delta[A, B])$. Namely we showed that

$$\mathscr{A}_{G}^{*}(E[A,B]) = \mathscr{A}_{G}^{*}(\Delta[A,B])$$

and

$$\mathscr{A}_{G}^{*}(\Delta[A,B]) = \mathscr{A}_{G}^{*}(\Delta[1,1]).$$

In the other words, if $f \in \mathscr{A}_G^*(E[A, B]) = \mathscr{A}_G^*(\Delta[A, B])$, then there is a continuous homomorphism $\Psi \colon \mathbb{R}_x \to G$ such that $f(n) = \Psi(n)$ for all $n \in \mathbb{N}$.

Our main purpose in this paper is to give a complete determination of $\mathscr{A}_{G}^{*}(D[A, B])$. We note that it is enough to characterize those classes $\mathscr{A}_{G}^{*}(D[A, B])$ for which (A, B) = 1, since

$$\mathscr{A}_G^*(D[Ad,Bd]) = \mathscr{A}_G^*(D[A,B])$$

holds for each $d \in \mathbb{N}$.

We shall prove the following

Theorem. Let A>0 and $B\neq 0$ be fixed integers for which (A,B)=1 and let G be a metrically compact Abelian topological group. If $f\in \mathscr{A}_G^*(D[A,B])$, then there are $U\in \mathscr{A}_G^*$ and a continuous homomorphims $\Phi\colon \mathbf{R}_x\to G$, \mathbf{R}_x denotes the multiplicative group of positive reals, such that

(I)
$$f(n) = \Phi(n) + U(n) \quad \forall n \in \mathbb{N},$$

(II)
$$U(n+A) = U(n) \quad \forall n \in \mathbb{N}, \ (n, A) = 1,$$

(III) If X_1 , Γ denote the set of all limit points of $\{\Phi(n)|n\in\mathbb{N}\}$ and $\{U(n)|n\in\mathbb{N}\}$, respectively, then

$$X_1 \cap \Gamma = \{0\}$$

and Γ is the smallest closed group generated by

$${U(m)|1 \le m < A, (m, A) = 1}$$
 and ${U(p)|p \text{ is prime, } p|A}$.

Conversely, let $\Phi: \mathbf{R}_{\mathbf{x}} \to G$ be an arbitrary continuous homomorphism, X_1 be the smallest compact supgroup generated by $\{\Phi(n)|n\in\mathbb{N}\}$. Let $U\in\mathscr{A}_G^*$ be so chosen that U(n+A)=U(n) for all $n\in\mathbb{N}$, (n,A)=1 and the smallest closed group Γ generated by $U(\mathbb{N})$ has the property $X_1\cap\Gamma=\{0\}$. Then the function

$$f(n) := \Phi(n) + U(n)$$

belongs to $\mathscr{A}_{G}^{*}(D[A, B])$.

2. Preliminary lemmas

In this section we shall prove some results which will be used in the proof of our theorem.

Lemma 1. We have

$$\mathscr{A}_{G}^{*}(D[A, B]) \subseteq \mathscr{A}_{G}^{*}(D[A, 1])$$

for all fixed integers A>0 and $B\neq 0$.

Proof. Let A>0, $B\neq 0$ be fixed integers. Assume that

$$f \in \mathscr{A}_G^*(D[A, B]).$$

Let

$$n_1 < \ldots < n_v < \ldots \quad (n_v \in \mathbb{N})$$

be an infinite sequence for which the sequence $\{f(n_v)\}_{v=1}^{\infty}$ is convergent. Then, it is obvious that the sequence $\{f(|B|n_v)\}_{v=1}^{\infty}$ has also a limit, consequently we get from the definition of $\mathscr{A}_{\sigma}^{F}(D[A, B])$ that

$$\lim_{v\to\infty} f\left[An_v + \frac{B}{|B|}\right] = \lim_{v\to\infty} f[A|B|n_v + B] - f(|B|)$$

exists as well. This implies in the case B>0 that $f\in \mathscr{A}_G^*(D[A, 1])$.

We now assume that B<0. In this case we have $f\in \mathscr{A}_G^*(D[A,-1])$. Since $\{f(n_v)\}_{v=1}^{\infty}$ is convergent, therefore the sequence $\{f(An_v^2)\}_{v=1}^{\infty}$ is convergent, too. Thus, by using the fact $f\in \mathscr{A}_G^*(D[A,-1])$, it follows that the following limit exists:

$$\lim_{v \to \infty} f(An_v + 1) = \lim_{v \to \infty} f[(An_v)^2 - 1] - \lim_{v \to \infty} f[An_v - 1].$$

This shows that $f \in \mathscr{A}_G^*(D[A, 1])$.

So we have proved Lemma 1.

In the following we assume that A>0, $B\neq 0$ are fixed integers and G is a metrically compact Abelian topological group. Let

$$f \in \mathscr{A}_G^*(D[A, B]).$$

We shall denote by X the set of limit points of $\{f(n)|n\in\mathbb{N}\}$, i.e. $g\in X$ if there exists a sequence

$$n_1 < \ldots < n_v < \ldots \quad (n_v \in \mathbb{N})$$

for which $f(n_v) \to g$. Let $X_1 \subseteq X$ be the set of limit points of $\{f(An+1)|n\in \mathbb{N}\}$. Since N and the positive integers $m\equiv 1\pmod{A}$ form semingroups, therefore $\{f(n)|n\in \mathbb{N}\}$ and $\{f(An+1)|n\in \mathbb{N}\}$ are semigroups as well. Thus, X and X_1 are closed semigroups in the compact group G, so by a known theorem (see [6], Theorem

(9.16)) they are compact subgroups in G. Since $0 \in X_1 \subseteq X$ we have $f(n) \in X$ and $f(An+1) \in X_1$ for each $n \in \mathbb{N}$.

Let $g \in X$ and $f(n_v) \to g$ as $v \to \infty$. Then, by using Lemma 1, it follows that the sequence $\{f(An_v+1)\}_{v=1}^{\infty}$ is convergent. Let $f(An_v+1) \to g'(\in X_1)$. It is easily seen that g' is determined by g, and so the correspondence

$$H:g \to g' \quad (g \in X, g' \in X_1)$$

is a function.

Lemma 2. The function $H: X \rightarrow X_1$ is continuous and

$$H(X)=X_1.$$

Proof. We can prove Lemma 2 by the same method as was used in [1] (see Lemma 4 and Lemma 5), so we omit the proof.

Lemma 3. We have

(2.1)
$$H(g+h+f(A))+H(g)=H(g+H(h+H(g)))$$

for all $g \in X$ and $h \in X$.

Proof. Let $g \in X$ and $h \in X$ be arbitrary elements. Let

$$n_1 < ... < n_v < ...$$
 and $m_1 < ... < m_v < ...$ $(n_v, m_v \in \mathbb{N})$

be such sequences for which $f(n_v) \rightarrow g$ and $f(m_v) \rightarrow h$. By using the following relation

$$(A^{2}n_{\nu}m_{\nu}+1)(An_{\nu}+1)=An_{\nu}[Am_{\nu}(An_{\nu}+1)+1]+1$$

and using the definition of H, we get immediately that (2.1) holds. So, we have proved Lemma 3.

Lemma 4. Let

$$E(f) := \{ \varrho \in X | H(\varrho) = 0 \}.$$

Then $E(f)\neq\emptyset$. Furthermore, if $\varrho\in E(f)$, then

$$(2.2) H(k\varrho + (k-1)f(A)) = 0$$

for every integer k. In particular, we have

$$(2.3) H(-f(A)) = 0.$$

Proof. Since X_1 is a group, therefore $0 \in X_1$. Thus, it follows from $H(X) = X_1$ that there is at least one $\varrho \in X$ for which $H(\varrho) = 0$. Then $E(f) \neq \emptyset$. Furthermore, it is easily seen from (2.1) that

(2.4)
$$H(\varrho_1 + \varrho_2 + f(A)) = 0$$
 if $H(\varrho_1) = H(\varrho_2) = 0$.

Assume that $\varrho \in E(f)$, i.e. $H(\varrho) = 0$. By using (2.4) and induction on k we get immediately that (2.2) holds for every $k \in \mathbb{N}$. Let

$$V_{\varrho} = \{k(\varrho + f(A)) | k \in \mathbb{N}\}.$$

Since (2.2) holds for every $k \in \mathbb{N}$, therefore we have

(2.5)
$$H(\delta - f(A)) = 0 \text{ for all } \delta \in V_{\varrho}.$$

Let \overline{V}_{ϱ} be the smallest closed set containing V_{ϱ} . It is clear that V_{ϱ} is a semigroup, therefore \overline{V}_{ϱ} is a closed semigroup in G. Thus, by using a known theorem of [6], we get that \overline{V}_{ϱ} is a compact group. Since H is continuous function and \overline{V}_{ϱ} is the smallest closed set containing V_{ϱ} , it follows that (2.5) holds for all $\delta \in \overline{V}_{\varrho}$, consequently (2.2) holds for every integer k. So (2.2) is proved.

Finally, by applying (2.2) with k=0, we obtain (2.3).

The proof of Lemma 4 is finished.

Lemma 5. We have

$$(2.6) H(g+\tau) = H(g) + \tau$$

for all $g \in X$ and $\tau \in X_1$.

Proof. We first prove that

(2.7)
$$H(\tau - f(A)) = \tau \text{ for all } \tau \in X_1$$

and

(2.8)
$$H(g-H(g)) = 0 \text{ for all } g \in X.$$

Let $\tau \in X_1$. Then, it follows from $H(X) = X_1$ that there is one $h \in X$ such that $H(h) = \tau$. We apply (2.1) with g = -f(A) and using (2.3), we have

$$H(H(h)-f(A))=H(h),$$

which with $H(h)=\tau$ proves (2.7). It is clear that (2.8) is a consequence of (2.1) and (2.3) in the case h+H(g)=-f(A).

We now prove Lemma 5.

Let $g \in X$ and $\tau \in X_1$ be arbitrary elements. By using (2.8), we have

$$H[(g+\tau)-H(g+\tau)]=0$$

and

$$H[g-H(g)]=0.$$

Applying Lemma 4 with $\varrho = g - H(g)$ and k = -1, we get that

$$H[-g+H(g)-2f(A)]=0.$$

Let

$$\varrho_1 := g + \tau - H(g + \tau)$$
 and $\varrho_2 := -g + H(g) - 2f(A)$.

Then $H(\varrho_1)=H(\varrho_2)=0$, and so by (2.4) we have

$$H[(g+\tau-H(g+\tau))+(-g+H(g)-2f(A))+f(A)]=0,$$

i.e.

(2.9)
$$H[(\tau - H(g + \tau) + H(g)) - f(A)] = 0.$$

Since $\tau \in X_1$, $H(g+\tau) \in X_1$, $H(g) \in X_1$ and X_1 is a group, therefore

(2.10)
$$\tau - H(g + \tau) + H(g) \in X_1.$$

Finally, from (2.7), (2.9) and (2.10) we get that

$$\tau - H(g + \tau) + H(g) = 0,$$

which proves (2.6).

So we have proved Lemma 5.

Lemma 6. We have

(2.11)
$$H(g+h+f(A)) = H(g+h)+H(0) = H(g)+H(h)$$

for all $g \in X$ and $h \in X$.

Proof. Let $g \in X$ and $h \in X$. Since $H(h+H(g)) \in X_1$ and $H(g) \in X_1$, by using Lemma 5, we have

$$H(g+H(h+H(g))) = H(g)+H(h+H(g)) = H(g)+H(h)+H(g).$$

This with (2.1) implies that

(2.12)
$$H(g+h+f(A)) = H(g)+H(h).$$

Thus, (2.12) holds for all $g \in X$ and $h \in X$.

On the other hand, we get from (2.12) that

$$H(g+h+f(A)) = H(g+h)+H(0).$$

This with (2.12) shows that (2.11) holds for all $g \in X$ and $h \in X$. The proof of Lemma 6 is finished.

3. Proof of the theorem

Assume that A>0 and $B\neq 0$ are fixed integers for which (A, B)=1 and G is a metrically compact Abelian topological group. Let

$$f \in \mathscr{A}_G^*(D[A, B]).$$

As in the Section 2, we denote by X and X_1 the set of limit points of $\{f(n) | \in \mathbb{N}\}$ and $\{f(An+1) | n \in \mathbb{N}\}$, respectively. Let $H: X \to X_1$ be a continuous function which is defined in Section 2, i.e., if $f(n_v) \to g$, then $f(An_v+1) \to H(g)$.

For an arbitrary $n \in \mathbb{N}$, let S(n) be the product of all prime factors of n composed from the prime divisors of A, R(n) be defined by $n = S(n) \cdot R(n)$, i.e. (A, R(n)) = 1 and every prime divisor of S(n) is a divisor of A. Let $\overline{R}(n)$ be the smallest positive integer for which

$$\overline{R}(n) \equiv R(n) \pmod{A}$$
.

It is obvious that $(\overline{R}(n), A) = 1$ and $1 \le \overline{R}(n) < A$.

Lemma 7. Let

(3.1)
$$U(n) := f[S(n) \cdot \overline{R}(n)] + H(0) - H(f[S(n) \cdot \overline{R}(n)]).$$

Then, we have

(3.2)
$$H(f(n))-f(n)-H(0)+U(n)=0$$

for all $n \in \mathbb{N}$.

Proof. Let $\overline{H}: X \to X_1$ be the function which is defined by the relation $\overline{H}(g) = H(g) - H(0)$. Then, it is easily seen from Lemma 5 and Lemma 6 that

$$\overline{H}(g+h) = \overline{H}(g) + \overline{H}(h) \quad \forall g, h \in X,$$

$$(3.4) \overline{H}(\tau) = \tau \quad \forall \tau \in X_1$$

and

and

$$(3.5) \overline{H}(X) = X_1.$$

For each $n \in \mathbb{N}$, let c(n) be the smallest positive integer for which $R(n) \cdot c(n) \equiv 1 \pmod{A}$. Then, it is obvious that

$$f[R(n) \cdot c(n)] \in X_1$$
 and $f[\overline{R}(n) \cdot c(n)] \in X_1$

hold for every $n \in \mathbb{N}$. By using (3.3) and (3.4), we deduce that

$$\overline{H}[f(n)] + \overline{H}[f(c(n))] = \overline{H}[f(n \cdot c(n))] = f[R(n) \cdot c(n)] + \overline{H}[f(S(n))]$$

$$\overline{H}[f(\overline{R}(n))] + \overline{H}[f(c(n))] = \overline{H}[f(\overline{R}(n) \cdot c(n))] = f(\overline{R}(n) \cdot c(n)).$$

These imply that

$$\overline{H}[f(n)] - \overline{H}[f(\overline{R}(n))] = f(R(n)) - f(\overline{R}(n)) + \overline{H}[f(S(n))],$$

consequently

$$\overline{H}[f(n)] - f(n) + \{f(S(n) \cdot \overline{R}(n)) - \overline{H}[f(S(n) \cdot \overline{R}(n))]\} = 0.$$

This with (3.1) proves (3.2)

Lemma 8. We have

- (i) $U \in \mathscr{A}_{G}^{*}$,
- (ii) U(n+A)=U(n) for all $n \in \mathbb{N}$, (n, A)=1,

- (iii) If $\{a_1, ..., a_{\varphi(A)}\}$ is a reduced residue system moduls A, then $U(a_1), ..., U(a_{\varphi(A)})$ form a group in G.
- (iv) Let Γ denote the set of all limit points of $\{U(n)|n\in\mathbb{N}\}$. Then Γ is the smallest closed group generated by $U(a_1), ..., U(a_{\varphi(A)}), U(p_1), ..., U(p_{\varpi(A)}),$ where $\{a_1, ..., a_{\varphi(A)}\}$ is a reduced residue system moduls A and $p_1, ..., p_{\varpi(A)}$ are all distinct prime factors of A. Furthermore, we have

$$X_1 \cap \Gamma = \{0\}.$$

Proof. Parts (i) and (ii) follow at once from the definition of U and Lemma 7. The part (iii) is a consequence of (i) and (ii). To prove (iv) we first note that Γ is a closed semigroup in G, and so Γ is a group by Theorem (9.16) of [6]. Hence by (ii) it follows that Γ is the smallest closed group generated by $U(a_1), ..., U(a_{\varphi(A)}), U(p_1), ...$..., $U(p_{\varphi(A)})$.

Since X_1 , Γ are subgroups in G, therefore $0 \in X_1 \cap \Gamma$. Let us assume that $\delta \in X_1 \cap \Gamma$. Then there is a sequence $\{n_v\}_{v=1}^{\infty}$ for which $U(n_v) \to \delta$. Applying (3.2) with $n=n_v$, we have

(3.6)
$$H[f(n_{\nu})] - f(n_{\nu}) - H(0) + U(n_{\nu}) = 0.$$

Since G is sequentially compact, therefore the sequence $\{f(n_{\nu})\}_{\nu=1}^{\infty}$ contains at least one limit point. Let

$$f(n_{v_i}) \to g \quad (\in X).$$

Then, by (3.6) and using the fact H is continuous, we get

$$H(g)-g-H(0)+\delta=0,$$

which with $H(g)-H(0)+\delta \in X_1$ implies that $g\in X_1$. So, by Lemma 5

$$\delta = g + H(0) - H(g) = 0.$$

Thus, we have proved that $X_1 \cap \Gamma = \{0\}$. This completes the proof of (iv).

The proof of Lemma 8 is finished.

We now prove the theorem. We first show that

$$(3.7) f(An+1)-H(f(n)) \to 0 as n \to \infty.$$

Assume the contrary. Let

(3.8)
$$f(An_{\nu}+1)-H(f(n_{\nu})) \to \lambda \neq 0 \quad \text{as} \quad \nu \to \infty.$$

Since the sequence $\{f(n_v)_{v=1}^{\infty}$ contains at least one limit point, we can find a subsequence $\{n_{v_j}\}_{j=1}^{\infty}$ of the sequence $\{n_v\}_{v=1}^{\infty}$ such that $f(n_{v_j}) \to g$ $(\in X)$ as $j \to \infty$. Using the continuity of H, by (3.8) we have

$$H(g)-H(g)=\lambda$$
,

which is contradiction. Thus, we have proved (3.7). From (3.2) and (3.7) we get

immediately

(3.9)
$$f(An+1)-f(n)-H(0)+U(n)\to 0 \text{ as } n\to\infty.$$

Let

$$F(n) := f(n) - U(n) \quad (n \in \mathbb{N}).$$

It is obvious by Lemma 8 that $F \in \mathscr{A}_G^*$ and

$$F(An+1) = f(An+1) - U(An+1) = f(An+1)$$

for all $n \in \mathbb{N}$. This with (3.9) implies

$$F(An+1)-F(n)-H(0)\to 0$$
 as $n\to\infty$,

consequently $F \in \mathscr{A}_{G}^{*}(\Delta[A, 1])$. It was proved in [5] that if $F \in \mathscr{A}_{G}^{*}(\Delta[A, 1])$, then there is a continuous homomorphism $\Phi \colon \mathbf{R}_{x} \to G$ such that $F(n) = \Phi(n)$ for all $n \in \mathbb{N}$, where \mathbf{R}_{x} denotes the multiplicative group of positive reals. Thus, we have proved that

$$(3.10) f(n) = \Phi(n) + U(n),$$

where U satisfies the conditions (i)—(iv) of Lemma 8. By (3.2) and (3.10) we also have

$$\Phi(n) = H(f(n)) - H(0)$$
 for all $n \in \mathbb{N}$,

therefore it follows from (3.5) that the set of all limit points of $\{\Phi(n)|n\in\mathbb{N}\}$ is X_1 .

So we have proved the first part of our theorem.

Finally, let $\Phi: \mathbf{R}_x \to G$ be a continuous homomorphism and let $U \in \mathscr{A}_G^*$ be so chosen that

(3.11)
$$U(n+A) = U(n)$$
 for all $n \in \mathbb{N}$, $(n, A) = 1$

and

$$X_1 \cap \Gamma = \{0\}$$

where X_1 , Γ denote the smallest closed groups in G which are generated by $\Phi(N)$ and U(N), respectively.

Let

$$f(n) := \Phi(n) + U(n) \in \mathscr{A}_G^*.$$

Assume that for some subsequence $\{n_v\}_{v=1}^{\infty}$ of positive integers the sequence $\{f(n_v)_{v=1}^{\infty} \text{ converges. Then, by using } \Phi(n_v) \in X_1, \ U(n_v) \in \Gamma \text{ and } X_1 \cap \Gamma = \{0\}, \text{ we deduce that the sequences } \{\Phi(n_v)\}_{v=1}^{\infty} \text{ and } \{U(n_v)\}_{v=1}^{\infty} \text{ are convergent, therefore by (3.11) and } (A, B) = 1 \text{ we see that}$

$$\lim_{v \to \infty} f(An_v + B) = \lim_{v \to \infty} \left\{ \Phi(An_v + B) + U(An_v + B) \right\} =$$

$$= \lim_{v \to \infty} \Phi(An_v + B) + U(B) = \Phi(A) + U(B) + \lim_{v \to \infty} \Phi(n_v)$$

exists as well. So we have proved that $f \in \mathscr{A}_{G}^{*}(D[A, B])$.

The proof of our theorem is finished.

Acknowledgements. I am thankful to Professor I. Kátai for the indication of the problem and his help in the preparation of this paper.

References

- [1] Z. DARÓCZY and I. KÁTAI, On additive number-theoretical functions with values in a compact Abelian group, Aequationes Math., 28 (1985), 288—292.
- [2] Z. DARÓCZY and I. KÁTAI, On additive arithmetical functions with values in topological groups. I, Publ. Math. Debrecen, 33 (1986), 287—291.
- [3] Z. DARÓCZY and I. KÁTAI, Characterization of additive functions with values in the circle group, Publ. Math. Debrecen, 36 (1989), 1—7.
- [4] Z. DARÓCZY and I. KATAI, A supplement to our paper "Characterization of additive functions with values in the circle group", Publ. Math. Debrecen, in print.
- [5] B. M. Phong, Characterization of additive functions with values in a compact Abelian group, Publ. Math. Debrecen, 40 (1992), 273—278.
- [6] E. HEWITT and K. A. Ross, Abstract harmonic analysis, Springer (Berlin, 1963).

EÖTVÖS LORÁND UNIVERSITY COMPUTER CENTER BUDAPEST, H-1117 BOGDÁNFY ÚT 10/B.