q-dilations and hypo-Dirichlet algebras

TAKAHIKO NAKAZI*)

1. Introduction. Let X be a compact Hausdorff space, let C(X) be the algebra of complex-valued continuous functions on X, and let A be a uniform algebra on X. Let H be a complex Hilbert space and L(H) the algebra of all bounded linear operators on H. $I=I_H$ is the identity operator in H. An algebra homomorphism $f \to T_f$ of A in L(H), which satisfies

$$T_1 = I$$
 and $||T_f|| \le ||f||$

is called a representation of A on H. A representation $\varphi \to U_{\varphi}$ of C(X) on a Hilbert space K is called a ϱ -dilation of the representation $f \to T_f$ of A if H is a Hilbert subspace of K and

$$T_f = \varrho P U_f | H \quad (f \in A_\tau)$$

where P is the orthogonal projection of K onto H, A_{τ} is the kernel of a nonzero complex homomorphism τ of A, and $0 < \varrho < \infty$.

If the uniform closure of $A+\overline{A}$, that is, $[A+\overline{A}]$ has finite codimension in C(X) then A is called a hypo-Dirichlet algebra and it is called a Dirichlet algebra when $[A+\overline{A}]=C(X)$. If A is a Dirichlet algebra on X and $f\to T_f$ a representation of A on H, then there exists a 1-dilation (cf. [7], [5]). It is known that only two hypo-Dirichlet (non-Dirichlet) algebras have 1-dilations [1], [9]. R. G. Douglas and V. I. Paulsen [4, Corollary 2.3] showed that an operator representation of a hypo-Dirichlet algebra is similar to an operator representation which has a 1-dilation.

In this paper, using their method we show that many natural hypo-Dirichlet algebras have ϱ -dilations. Then it follows that their representations are similar to those which have 1-dilations. A well known theorem of T. Ando [2] shows that the

^{*)} This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.

Received March 26, 1990 and in revised form March 21, 1991.

bidisc algebra has 1-dilation. The theory of spectral sets is concerned with determing when a particular set Y in C is spectral for an operator T and if it is, deciding whether or not T possesses a normal 1-dilation whose spectrum is contained in ∂Y . Our main theorem shows that T possesses a normal ϱ -dilation. The other applications are related with ϱ -contractions (cf. [8]).

2. Main theorem. Let A be a hypo-Dirichlet algebra with $\dim C(X)/[A+\overline{A}]==n<\infty$. Fix τ a non-zero complex homomorphism of A and let N_{τ} be the set of all representing measures of τ . Then $\dim N_{\tau}=n$ and there exists a core measure m of N_{τ} (cf. [6, p. 106]). Hence if $v \in N_{\tau}$ then v = hdm and $h \in L^{\infty}(m)$ where $L^{\infty}(m)$ denotes the usual Lebesgue space. Thus N_{τ} can be considered as a subset of $L^{\infty}(m)$. In this paper we put a natural condition on N_{τ} : $N_{\tau} \subset C(X)$. Many important hypo-Dirichlet algebras satisfy it.

Theorem. Let A be a hypo-Dirichlet algebra and let τ be a nonzero complex homomorphism with $N_{\tau} \subset C(X)$. Then a representation of A has a ϱ -dilation with respect to τ .

Proof. Let $\{u_j\}_{j=1}^n$ be a normalized orthogonal basis in the real linear span of $(N_\tau - N_\tau)$ (r.l.s. of $(N_\tau - N_\tau)$) with respect to the inner product in $L^2(m)$ where m is a core measure of N_τ . Then for $1 \le j \le n$

$$u_{j} = \sum_{l=1}^{n} \alpha_{l}^{(j)} (h_{l}^{(j)} - k_{l}^{(j)})$$

where each $\alpha_i^{(j)}$ is a real constant and $h_i^{(j)}, k_i^{(j)} \in N_{\tau}$. Put for $v \in C(X)$

$$\Phi(v) = v - \sum_{j=1}^{n} \left(\int v u_j \, dm \right) u_j + s(v)$$

where

$$s(v) = \sum_{j=1}^{n} \left(\sum_{l=1}^{n} |\alpha_{l}^{(j)}| \int v(h_{l}^{(j)} + k_{l}^{(j)}) dm \right) ||u_{j}||_{\infty}.$$

Then Φ is a positive map from C(X) to $[A+\overline{A}]$, $\Phi(1)=1+s(1)$ and

(!)
$$s(1) = 2 \sum_{j=1}^{n} \left(\sum_{l=1}^{n} |\alpha_{l}^{(j)}| \right) ||u_{j}||_{\infty} < \infty.$$

In fact, since $N_{\tau} \subset C(X)$,

$$[A+\bar{A}]\oplus[N_{\tau}-N_{\tau}]=C(X)$$

where \oplus denotes the orthogonal direct sum of $L^2(m)$. Hence if $v \in C(X)$ then

$$v = v_1 + v_2$$

where $v_1 \in [A + \overline{A}]$ and $v_2 \in [N_{\tau} - N_{\tau}]$, consequently

$$\Phi(v) = v_1 + s(v)$$

and therefore $\Phi(v) \in [A + \overline{A}]$, and the positivity and the finiteness of $\Phi(1)$ are clear. If $f \in A_r$, then

$$\Phi(f) = f$$

because s(f)=0. This is different from Lemma 2.1 in [4].

If we extend T to \tilde{T} : $[A+\bar{A}] \to L(H)$ by $\tilde{T}_{f+\bar{g}} = T_f + T_g^*$, then \tilde{T} is positive by [3, p. 152—153]. Thus $\Phi(1)^{-1}\tilde{T} \circ \Phi \colon C(X) \to L(H)$ is positive and $\Phi(1)^{-1}\tilde{T} \circ \Phi(1) = I_H$. By the dilation theorem of M. A. Naimark (cf. [10, Theorem 7.5]) there exists a Hilbert space K, an orthogonal projection $P \colon H \to K$ and a multiplicative linear map $\varphi \to U_{\varphi}$ of C(X) in L(K), which satisfies $U_1 = I_K$, $\|U_{\varphi}\| \le \|\varphi\|$, $\varphi \in C(X)$ and

$$\tilde{T} \circ \Phi(\varphi) = \Phi(1) PU_{\varphi} | H.$$

By (2), if $f \in A_{\tau}$,

$$T_f = \Phi(1) P U_f | H.$$

Corollary. Suppose dim $N_{\tau}=1$ in Theorem, then

$$\varrho = \inf \left\{ \frac{2 \|h - k\|_{\infty}}{\int |h - k|^2 dm} \colon h, k \in \mathbb{N}_{\tau} \right\} + 1.$$

Proof. By (1) in the proof of Theorem with n=1

$$\Phi(1) = 2|\alpha_1^{(1)}| \|u_1\|_{\infty} + 1$$

where

$$u_1 = \alpha_1^{(1)}(h_1^{(1)} - k_1^{(1)}), \quad h_1^{(1)}, k_1^{(1)} \in N_{\tau}$$

and

$$|\alpha_1^{(1)}|^2 \int |h_1^{(1)} - k_1^{(1)}|^2 dm = 1.$$

This implies the corollary.

We concentrated in unital contractive homomorphism but our technique can be used for unital contractions.

- 3. Concrete examples. In this section we will calculate ϱ of ϱ -dilation in few concrete examples or apply Theorem to them.
- (1) Let n be a positive integer and Y_i $(1 \le i \le n)$ disjoint compact subsets of \mathbb{C} with non-empty interior Y_i^0 . Suppose $R(Y_i)|X_i$ is a Dirichlet algebra on X_i where $R(Y_i)$ denotes the uniform closure of the set of the rational functions with poles off Y_i and X_i is the boundary of Y_i . Put $X = \bigcup_{i=1}^n X_i$ and $Y = \bigcup_{i=1}^n Y_i$, then X is the boundary of Y and R(Y)|X is a Dirichlet algebra on X. Put

$$A = \{ f \in R(Y) | X: f(x_i) = f(x_1) \text{ for } i > 1 \}$$

where $x_i \in Y_i^0$ ($1 \le i \le n$). A is a uniform algebra on X and if n > 1 then A is not a Dirichlet algebra but a hypo-Dirichlet algebra.

A representation of A has a ϱ -dilation with $\varrho = n$.

Proof. Let $\tau(f)=f(x_1)$ then τ is a nonzero complex homomorphism. Put u_i be a characteristic function of X_i $(1 \le i \le n)$ and let D be the commutative C^* -algebra generated by $\{u_i: 1 \le i \le n\}$. Then $A_{\tau}D \subset A_{\tau}$, $A_{\tau} + \overline{A}_{\tau} + D$ is uniformly dense in C(X) and dim D=n. Let m_i be a harmonic measure of x_i $(1 \le i \le n)$ and $m=\sum_{i=1}^n m_i/n$ then m is a representing measure of τ . In the proof of Theorem, put

$$\Phi(v) = v - \sum_{j=1}^{n} \frac{1}{m(X_{j})} \int_{X_{j}} v \, dm \, u_{j} + s(v) \quad (v \in C(X))$$

and

$$s(v) = \sum_{j=1}^{n} \frac{1}{m(X_j)} \int_{X_j} v \, dm.$$

Then Φ is a positive map from C(X) to $[A+\overline{A}]$, and if $f \in A_{\tau}$ then $\Phi(f)=f$ and $\Phi(1)=n$. This can be shown as in the proof of Theorem because

$$[A_{\tau} + \bar{A}_{\tau}] \oplus D = C(X)$$

and $DA_{\tau} \subset A_{\tau}$. Thus a representation of A has a ϱ -dilation with $\varrho = \Phi(1) = n$. If dim D = n then A is one kind of hypo-Dirichlet algebras of finite codimension n-1. By a theorem of R. G. Douglas and V. I. Paulsen [4] the completely bounded norm of the representation T of A, $||T||_{cb} \le 2n-1$ but our result implies $||T||_{cb} \le n-1$.

(2) Let \mathscr{A} be the disc algebra on the circle Γ and

$$A = \{ f \in \mathcal{A} : f'(0) = \dots = f^{(n)}(0) \}$$

where $f^{(j)}(0)$ denotes the j-derivative at the origin. Then A is a hypo-Dirichlet algebra on $X=\Gamma$ and dim $C(\Gamma)/[A+\overline{A}]=2n$.

A representation of A has a ϱ -dilation with $\varrho = 8n + 1$.

Proof. $d\theta/2\pi$ is the core measure of N_{τ} where $\tau(f)=f(0)$. Then

$$r.l.s.(N_t-N_t) = r.l.s.(\cos\theta, \cos 2\theta, ..., \cos n\theta; \sin\theta, \sin 2\theta, ..., \sin n\theta).$$

In the proof of Theorem, put for $v \in C(\Gamma)$

$$\Phi(v) = v - 2 \sum_{j=1}^{n} \left\{ \left(\frac{1}{2\pi} \int v \sin j\theta \, d\theta \right) \sin j\theta + \left(\frac{1}{2\pi} \int v \cos j\theta \, d\theta \right) \cos j\theta \right\} + s(v)$$

and

$$s(v) = 2 \sum_{j=1}^{n} \left\{ \frac{1}{2\pi} \int v(2 - \sin j\theta) \, dm + \frac{1}{2\pi} \int v(2 - \cos j\theta) \, d\theta \right\}.$$

Then Φ is a positive map from $C(\Gamma)$ to $[A+\overline{A}]$, if $f \in A_{\tau}$ then $\Phi(f)=f$ and $\Phi(1)=8n+1$. In fact, since

$$\Phi(v) = v + 2 \sum_{j=1}^{n} \left\{ \left(\frac{1}{2\pi} \int v \, d\theta \right) (1 - \sin j\theta) + \left(\frac{1}{2\pi} \int v (1 - \sin j\theta) \, d\theta \right) (1 + \sin j\theta) + \left(\frac{1}{2\pi} \int v \, d\theta \right) (1 - \cos j\theta) + \left(\frac{1}{2\pi} \int v (1 - \cos j\theta) \, d\theta \right) (1 + \cos j\theta) \right\},$$

 Φ is positive. The other statements are clear. Thus a representation of A has a ϱ -dilation with $\varrho = \Phi(1) = 8n + 1$.

(3) Let $a_1, ..., a_n$ be distinct points in the open unit disc and

$$A = \{ f \in \mathcal{A} : f(a_i) = f(0), j = 1, ..., n \}.$$

Then A is a hypo-Dirichlet algebra on $X=\Gamma$ and $\dim C(\Gamma)/[A+\overline{A}]=2n$. $d\theta/2\pi$ is the core measure of N_{τ} where $\tau(f)=f(0)$. Then $N_{\tau}\subset C(\Gamma)$ and hence we can apply Theorem to this hypo-Dirichlet algebra.

(4) Let Y be a compact subset of C and let R(Y) be the uniform closure of the set of rational functions in C(Y). Suppose the complement Y^c of Y has a finite number n of components and Y^0 is a nonempty connected set. Let A=R(Y)|X where X is the boundary of Y and τ a nonzero complex homomorphism defined by the evaluation at a point t in Y^0 . Then A is a hypo-Dirichlet algebra on X and $\dim C(X)/[A+\overline{A}]=n$. If m is a harmonic measure for t then m is a core measure in N_{τ} and $N_{\tau}\subset C(X)$. Hence we apply Theorem to this hypo-Dirichlet algebra and hence a representation of A has a ϱ -dilation.

In the four examples we concentrated in unital contractive homomorphisms our technique can be used for unital contractions.

(5) Let

$$A = \{ f \in \mathcal{A} : f(0) = f(1) \}.$$

Then A is a hypo-Dirichlet algebra on $X = \Gamma$ and dim $C(\Gamma)/[A + \overline{A}] = 1$. $(d\theta/2\pi + d\delta_1)/2$ is the core measure of N_{τ} where $\tau(f) = f(0) = f(1)$ and δ_1 is a dirac measure at 1. Then N_{τ} can not be embedded in $C(\Gamma)$ and hence we can not Theorem to this hypo-Dirichlet algebra. However the author [9] showed previously by the different method that a representation of A has a 1-dilation.

4. Normal ϱ -dilation. Results in this section are corollaries of Theorem and Examples (2)—(4).

Corollary 1. If $T \in L(H)$ and

$$||f(T)|| \leq \sup_{|z| \leq 1} |f(z)|$$

for all analytic polynomials f with $f'(0) = ... = f^{(n)}(0)$, then there exists a Hilbert space $K \supseteq H$ and a unitary operator U on K such that

$$f(T) = (8n+1)Pf(U)|K$$

for all analytic polynomials with $f(0)=f'(0)=...=f^{(n)}(0)=0$, where P is the orthogonal projection from K to H.

Proof. Put $T_f = f(T)$ for each analytic polynomials f with $f'(0) = ... = f^{(n)}(0)$, then $f \rightarrow T_f$ extends to a representation of A in Example 2. Thus the representation of A has a g-dilation with g = 8n + 1 and the corollary follows.

Corollary 2. Let $\{a_j\}_{j=1}^n$ be in the open unit disc. If $T \in L(H)$ and

$$||f(T)|| \leq \sup_{|z| \leq 1} |f(z)|$$

for all analytic polynomials f with $f(0)=f(a_1)=...=f(a_n)$, then there exists a Hilbert space $K\supseteq H$ and a unitary operator U on K such that

$$f(T) = \varrho P f(U) | K$$

for all analytic polynomials with $f(0)=f(a_1)=...=f(a_n)=0$, where P is the orthogonal projection from K to H.

Proof. It can be shown that this is a corollary of Example 3 as in the proof of Corollary 1.

Corollary 3. Let Y be a compact subset of C in Example 4. If Y contains the spectrum $\sigma(T)$ of $T \in L(H)$ and

$$||f(T)|| \leq \sup_{z \in Y} |f(z)|$$

for all f in R(Y) then there exists a Hilbert space $K \supseteq H$ and a normal operator N on K with $\sigma(N) \subseteq \partial Y$ such that

$$f(T) = \varrho P f(N) | H$$

for all f in R(Y) with $\tau(f)=0$, where P is the orthogonal projection from K to H.

Proof. It can be shown that this is a corollary of Example 4 as in the proof of Corollary 1.

J. AGLER [1] proved $\varrho = 1$ when n = 1. R. G. DOUGLAS and V. I. PAULSEN [4] showed that there exists an invertible operator S on H such that $S^{-1}TS$ has a normal dilation.

Corollary 4. If $T \in L(H)$ and

$$||f(T)|| \leq \sup_{|z| \leq 1} |f(z)|$$

for all analytic polynomials f with f(0)=f(1), then there exists a Hilbert space $K\supseteq H$ and a unitary operator U on K such that

$$f(T) = Pf(U)|H$$

for all analytic polynomials f with f(0)=f(1), where P is the orthogonal projection from K to H. In particular, for all $n \ge 1$

$$T^n - PU^n H = T - PU | H.$$

Proof. It can be shown that this is a corollary of Example 5 as in the proof of Corollary 1.

In Corollary 4, T is a polynomially bounded operator. We could not answer the following question which is a special case of Problem 6 of Halmos: Is T similar to a contraction?

References

- [1] J. AGLER, Rational dilation on an annulus, Ann. Math., 121 (1985), 537-564.
- [2] T. Ando, On a pair of commutative contractions, Acta Sci. Math., 24 (1963), 88-90.
- [3] W. B. ARVESON, Subalgebras of C*-algebras, Acta Math., 123 (1969), 141—224.
- [4] R. G. Douglas and V. I. Paulsen, Completely bounded maps and hypo-Dirichlet algebras, Acta Aci. Math., 50 (1986), 143—157.
- [5] C. Foias and I. Suciu, Szegő-measures and spactral theory in Hilbert spaces, Rev. Roum. Math. Pures et Appl., 11 (1966), 147—159.
- [6] T. W. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs (New Yersey, 1969).
- [7] B. Sz.-NAGY, Sur les contractions de l'espace de Hilbert, Acta Sci. Math., 15 (1953), 87—92.
- [8] B. Sz.-Nagy and C. Foias, On certain classes of power bounded operators in Hilbert space, Acta Sci. Math., 27 (1966), 17—25.
- [9] T. NAKAZI, A spectral dilation of some non-Dirichlet algebra, Acta Sci. Math., 53 (1989), 119—122.
- [10] I. Suciu, Function Algebras, Editura Academiej Republicii Socialiste România, (Bucureşti, 1973).

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE HOKKAIDO UNIVERSITY SAPPORO 060, JAPAN