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Essentially normal composition operators on L*

THOMAS HOOVER and ALAN LAMBERT

1. Preliminaries. Let (X, Z, m) be a complete, sigma-finite measure space and
let T be a Z-measurable mapping (T ~1Xc X) of X into X. The composition operator
C induced by T on the set of complex valued, measurable functions on X is defined
by Cf=foT. Throughout this article I2=L2(X, X, m). For S¢Z, L2(S) is the
L2 space of functions on S, with the appropriate restrictions of Z and m. We will
regard this space as the subspace of L? consisting of those functions with support
in S. In general the support of the function fwill be denoted S, . For fin L=, M, will
denote the operator of multiplication by f on L2. We will be concerned with those
composition operators C which are bounded linear operators on L% A detailed
description of the general properties of such operators is given in [3]. In particular,
it is shown that C is a bounded operator on L2 if and only if

(i) moT 1 is absolutely continuous with respect to m, and

. dmoT™? '

(i) ———c L=,

) dm
Conditions (i) and (ii) are assumed to hold throughout. We set

dmoT 1

h=

We will make use of the following notation. For f in L? or measurable and non-
negative, E(f) is the conditional expectation E(f|T~'X). For fcL?% E(f)is the
orthogonal projection of f onto L*(X, T 'X,m). Verifications of the following
properties are found in [1], [2], and [5].

@) [CE=|hl.,.

(iv) For each f there is a function F such that E(f)=FoT. If E(f)=GoT
as well, then F=G on S,. In particular the function h-[E(f)JoT ! is well defined
even if T is not invertible. In fact, C*f=h-[E(f)]oT %, C*Cf=hf, and CC*f=
=hoTE(f).
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(v) For measurable f and g, E((foT)-g)=(foT)Eg. For fecL™ this equa-
tion has the operator theoretic form M, E=EM,, .

2. Essential normality. In {5] R. WHITLEY proved that C is normal if and only
if T is invertible and bi-measurable, and h=hoT. Recall that an operator A is
.essentially normal if its image in the Calkin algebra is a normal element. Equiva-
lently A is essentially normal if and only if 4*4— 44* is compact. R. K. SINGH and
T. VELUCHAMY ([4]) have examined the question of essential normality for certain
.composition operators. Their result in this regard is stated below.

Theorem. If (X, Z, m) is completely nonatomic, and if C is essentially normal
‘with dense range, then C is normal.

In this article we will develop characterizations of essentially normal composi-
tion operators. It will be shown that the dense range hypothesis in the above result is
unnecessary. We first note that in the atomic case it is possible to have a non-normal,
«essentially normal composition operator.

2.1. Example. Let X=N={1,2, ...} and let m be the counting measure. Set
T(1)=1 and T(n+1)=n. Then C is a rank oné perturbation of the unilateral
shift. In particular, it is an essentially normal operator with index —1, and so is
not normal. '

For convenience, let D=C*C—-CC*=M,— M, E. We will examine D with
tespect to the orthogonal decomposition of L2 as EL2@(I—E)L%. We note that
EL? consists of those L2 functions which are 7~'X measurable. The range of C is
dense in EL? ([1]). Also, (I—E)L? consists of those L* functions f for which

f fdm=0 for every Z-set A.

T-14

2.2, Lemma. D is compact if and only if both M,(1—-E) and M,_,.+E are
compact.

Proof. D is compact if and only if both DE and D(I—E) are compact. But
D=M,—M, ,E, so

DE = (M,—M.rE)E = My_)o1E,
and
D(I—E) = M,(I-E).

23. Co roll.ary. Suppose that D is compact. Then M, (,,_ .1y is compact.
Proof. M,(1-E) and M,_,,E are compact. But
My(My_po1E) +(My(I—E) My _por = MyEM,,_yo7+M,(I—E)M,_4or =
= MM, por = Mu.(h—ho)-
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Write X=X_U{a;: icJ) where m is completely nonatomic on X, and {g;: icJ)
consists of the atoms for m. Let A=T"'X, and 4;=T 'a;, i¢J. These sets are
pairwise disjoint, so that the corresponding subspaces of L? are orthogonal. Note
that for any measurable set §, L*(T~1S) is a reducing subspace for D, because if
S§;,cT'S, then ‘

hf— hoTEf = hf—hoTE(fyr-is) = hf —hoT(Ef)yr-1s =0 off T-'S.
We have established the following result.

24. Theorem. Cis esséntially normal if and only if D\;s,y and Dlps,, (i€J)
are compact, and
Jim [[Dlezapl = O

This result is strengthened somewhat by Lemma 2.6 below. Its proof depends on.
the following fact.

2.5. Lemma. If § is a subset of X, with O<m(S)< <o, then there is a subset A
of S with

%m(S) < m(4) < %m(S).

Proof. Suppose no such set 4 exists. Then for every measurable subset E of
S, either m(E)<—i—m(S) or m(E)>% m(S). Let é’:{ECS: m(E)>%m(S)}.~
If E and F are in &, then
m(ENF) = m(E)+m(F)—m(EUF) > %m(S).

Thus ENFe8. Let a=inf {m(E): E€&}, and let {E,} be a decreasing sequence
3
of sets in & whose measures converge to a. Let G=NE,. Then m(G)=oc§Z m(S).

Now, there is a measurable subset B of G with 0<m(B)<m(G). But then neither
B nor G—B arein &. It then follows that both B and G—B must have measures

3 1
less than -Zm(S-), which implies that the measure of G is less than Em(S ). This
contradicts the location of G in &.
2.6. Lemma. If D, is compact then it is 0.

Proof. Assume Dy=D|,, is compact. Since D is selfadjoint and reduced
by L3(A), D, is selfadjoint. In particular, if D, is not 0 then it has a nonzero eigen-
value r. Let &, be the corresponding finite dimensional eigenspace, and let ¢ be any
L~ function with S,cX.. Then S,,=T"'S,CA4. Now, M, L*(4A)cL?*(4)
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and for any fin L2(X),

Mgyor Df = (9oT)(hf—hoTEf) = (h)-(¢poT)-f—(hoT)- E((¢oT)-f) = DM,orf.

1t follows that M, r leaves &, invariant. But &, is finite dimensional and so there is a
function f€é&, other than O, and a scalar A such that (@oT)f=Af a.e. dm. In parti-
cular,” 9oT=A ona set of positive measure. This shows that every L=(X,) func-
tion is constant on a set of positive measure. But by definition X, is completely non-
atomic. Let S be a set of finite, positive measure in X,. Via Lemma 2.5 we partition
S into two measurable sets, each of measure no more than 3/4 that of S. Define
the function f; to take the values 1/2, 1respectively on the sets. Repeat this procedure
by replacing S by each of the sets of constancy of f; and defining f, to take the value
of f; on one part of each of the original two subsets and to be 1/4, 3/4 respectively
on the remaining two sets. Continuation of this procedure gives rise to a mono-
tonically decreasing sequence of functions whose pointwise limit is bounded and not
constant on any set of positive measure in X,. Indeed, we have for each x,

1 .
0= fo(x)—fos21(x) = T T 2
so that

1
LH()—f(x) = >
Thus, for any =0 and any positive integer n,
1
{x: fx) =1} c {x: r=f(x)= r+7},

But this latter set contains at most two sets of constancy for f,, so

m{x: rfi(x)sr+ 21,,}§ 2-[%)"m(S).

It then follows that f#r a.e. dm. This contradiction completes the proof of the
lemma.

Note that the result of Singh and Veluchamy as stated in Section 1 of this.
paper follows as a special case of Lemma 2.6, for in the completely nonatomic case
A=X. But then D=0, ie. C is normal. It is interesting to see that one basic prop-
erty from Whitley’s characterization of normality carries over to the general essen-
tially normal setting. '

2.17. Corollary. If C is essentially normal then h=hoT a.e.on T7'X,.
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Proof. Assume that C is essentially normal. Then D|;xy-1x,=0. Let ¥ be
a subset of X, of finite measure. Since h€L* we have m(T‘lY)=f hdm<eo
Y

and in particular y;..y€L%(T~1X,). But then we see that
0= DXT—ly =h- ZT—ly—(hOT)'E(lT—ly) = (h—hOT)XT-ly.

It then follows that h=hoT a.e. on X,.

We will conclude this paper with an example establishing the existence of an
essentially normal composition operator for which h=0 a.e. and for which there
is an atom a with 7 ~a infinite. First we investigate the structure of the sets T"la,-,
icJ, when C is essentially normal. Let @ be an atom for m and let B=T7"'a. Then
D], 25 is compact. Let f¢L*(B). Since m is sigma-finite and 4 is essentially bound-
ed, B is a set of finite measure. Noting that Efis constant on B=T "4, we see that

[fam = [ fam = [h-(EfyoT~*dm = m(a)h(a)(Ef)oT~(a) =
B T-1a a

= m(@ 2D (Bf)oT=(@) = mBYEN)T (@)
It then follows that Ef:-ﬁ f fdm on B.
Also, for x in B, hoT(x)=h(a )—% In particular (M,,OTE)IU(B) is the

1 .
rank one operator f-»—(-— f fdm. But then the compactness of D)., implies
m(a) g

M);2p is compact. This in turn shows that

BNS, = {b;: k€K}
where each b, is an atom.

2.8. Example. Let O be the origin in the plane and let X={0}U(NXN).
Define m by m(0)=1; m(i,j)=1/2". Finally, define T on X by

TO) =0; T{,1)=0; T@G,j)=(>(,j—1) for j=>1.

Then
T-1(0) = {0} U(Nx{1}),
and
woy= 280 — 14 3(3) -2
while

o m(T7GH))  m@j+l) | 2-ED
h(l’.]) = m(i,]) = m(l,}) = 2—ij = 2%

12*
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For f supported on 7710, Df=hf~2 [ fdm. Since lim h(n, 1)=0, D|yr-10,
10 n—oo
is compact. On the other hand,

(DAY, j+1) =27 (L j+ 1) =27 (i, j+1) = 0.

Thus C is essentially normal.
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