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Essentially normal composition operators on L2 

THOMAS HOOVER and ALAN LAMBERT 

1. Preliminaries. Let (X, I , m) be a complete, sigma-finite measure space and 
let T be a Z-measurable mapping (T*1! c i ) of X into X. The composition operator 
C induced by T on the set of complex valued, measurable functions on X is defined 
by Cf=foT. Throughout this article L2=L2(X, I , m). For S£l, L2(S) is the 
L2 space of functions on S, with the appropriate restrictions of I and m. We will 
regard this space as the subspace of L2 consisting of those functions with support 
in S. In general the support of the function / will be denoted S f . F o r / i n LT, Mf will 
denote the operator of multiplication by / on L2. We will be concerned with those 
composition operators C which are bounded linear operators on L2. A detailed 
description of the general properties of such operators is given in [3]. In particular, 
it is shown that C is a bounded operator on L2 if and only if 

(i) m o f - 1 is absolutely continuous with respect to m, and 
dmoT'1 

(ii) — dm 
Conditions (i) and (ii) are assumed to hold throughout. We set 

dmoT~x 

h = 
dm 

We will make use of the following notation. For / in L2 or measurable and non-
negative, E ( f ) is the conditional expectation E{f\T~lI). For f£L2, E ( f ) is the 
orthogonal projection of / onto L2(X,T~iI,m). Verifications of the following 
properties are found in [1], [2], and [5]. 

(iii) | | C f = | | A | L . 
(iv) For each / there is a function F such that E(f)=FoT. If E(f)=GoT 

as well, then F=G on Sh. In particular the function h • [ F ( / ) ] o T - 1 is well defined 
even if F i s not invertible. In fact, C*f=h-[E(f)]oT-\ C*Cf=hf, and CC*f= 
=hoTE(f). 
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(v) For measurable / and g, E((foT) g)=(f°T)Eg. For f£L°° this equa-
tion has the operator theoretic form MfoTE=EMfoT. 

2 . Essential normality. In [ 5 ] R . W H I T L E Y proved that C is normal if and only 
if T is invertible and bi-measurable, and h=hoT. Recall that an operator A is 
essentially normal if its image in the Calkin algebra is a normal element. Equiva-
lent^ A is essentially normal if and only if A* A —A A* is compact. R. K. S I N G H and 
T . V E L U C H A M Y ( [ 4 ] ) have examined the question of essential normality for certain 
•composition operators. Their result in this regard is stated below. 

T h e o r e m . If (X, I , m) is completely nonatomic, and if C is essentially normal 
with dense range, then C is normal. 

In this article we will develop characterizations of essentially normal composi-
tion operators. It will be shown that the dense range hypothesis in the above result is 
unnecessary. We first note that in the atomic case it is possible to have a non-normal, 
•essentially normal composition operator. 

2.1. E x a m p l e . Let ^ = N = { 1 , 2, ...} and let m be the counting measure. Set 
T ( l ) = l and T(n +1)=«. Then C is a rank one perturbation of the unilateral 
•shift. In particular, it is an essentially normal operator with index — 1, and so is 
not normal. 

For convenience, let D=C*C—CC*—Mh—MhoTE. We will examine D with 
Tespect to the orthogonal decomposition of L2 as EL2®(i—E)L2. We note that 
EL2 consists of those L2 functions which are T_1I measurable. The range of C is 
dense in EL2 ([1]). Also, ( I — E ) L 2 consists of those L2 functions / for which 

J' f dm=0 for every I-set A. 

2.2. L e m m a . D is compact if and only if both Mh(l—E) and Mh_hoTE are 
compact. 

P r o o f . D is compact if and only if both DE and D(I—E) are compact. But 
D=Mh-MhoTE, so 

DE = (Mh-Mh0TE)E = Mh.hoTE, 
and 

D(I—E) = Mh(I—E). 

2.3. C o r o l l a r y . Suppose that D is compact. Then Mh,^h_haT) is compact. 

P r o o f . Mh(l—E) and Mh_hoTE are compact. But 

Mh(Mh-h»TEr + (Mh(I-E))Mh-hoT = MhEMh..hoT + Mh(I-E)Mh-koT = 

= MhMh-hoT — MH.(H-HOT)-
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Write X— Xc U {a,: / £ / ) where m is completely nonatomic on Xc and {«¡1 i£J) 
consists of the atoms for m. Let A = T~lXc and Ai=T~1ai, i f j . These sets are 
pairwise disjoint, so that the corresponding subspaces of L2 are orthogonal. Note 
that for any measurable set S, L2(T~1S) is a reducing subspace for D, because if 
S f C T ^ S , then 

hf-hoTEf = hf-hoTE(fxT-'s) = hf-hoT(Ef)XT-*s = 0 off T~lS. 

We have established the following result. 

2.4. T h e o r e m . C is essentially normal if and only if D\L^iA) and D\Li(A^(i^J) 
are compact, and 

lim ||Z>k*Ui)|| = 0. 
J — C O 

This result is strengthened somewhat by Lemma 2.6 below. Its proof depends on. 
the following fact. 

2.5. L e m m a . If S is a subset of Xc with 0 < m ( S ) < then there is a subset A 
of S with 

jm(S) - m(A) < jm(S). 

P r o o f . Suppose no such set A exists. Then for every measurable subset E of 

S, either m(E)<^m(S) or m(E)>^m(S). Let m(E)>^m(S)|. 

If E and F are in S, then 

m(Ef]F) = m(E) + m(F)-m(EUF) > ~m(S). 

Thus £TIF£<?. Let a = i n f {m(E): E££), and let {En} be a decreasing sequence 
3 

of sets in 8 whose measures converge to a. Let G= f)En. Then m(G)=a^—m(S). 
4 

Now, there is a measurable subset B of G with 0 <m(B)<m(G). But then neither 
B nor G—B are in S. It then follows that both B and G—B must have measures 

3 1 
less than —m(S), which implies that the measure of G is less than —m(S). This 

contradicts the location of G in S. 

2.6. L e m m a . If D\l*(A) compact then it is 0. 

P r o o f . Assume D0=D\L,iA) is compact. Since D is selfadjoint and reduced 
by L2(A), D0 is selfadjoint. In particular, if Z>0 is not 0 then it has a nonzero eigen-
value r. Let Sr be the corresponding finite dimensional eigenspace, and let cp be any 
L°° function with S9czXe. Then S-9oT=T~lS9c:A. Now, MipoTL2(A)(zL2(A) 

12 
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and for any / i n L?(X), 

M9.TDf = (<poT)(hf-hoTEf) = (h) • (<poT) •/— (hoT) • E{(<poT) •/) = DMvoTf. 

It follows that M<poT leaves <?, invariant. But Sr is finite dimensional and so there is a 
function /£<?, other than 0, and a scalar X such that (<poT)f—Xf a.e. dm. In parti-
cular, q>oT=X on a set of positive measure. This shows that every L°°(XC) func-
tion is constant on a set of positive measure. But by definition Xc is completely non-
atomic. Let S1 be a set of finite, positive measure in Xc. Via Lemma 2.5 we partition 
S into two measurable sets, each of measure no more than 3/4 that of S. Define 
the function fx to take the values 1/2, 1 respectively on the sets. Repeat this procedure 
by replacing S by each of the sets of constancy of f and defining / 2 to take the value 
of / i on one part of each of the original two subsets and to be 1/4, 3/4 respectively 
on the remaining two sets. Continuation of this procedure gives rise to a mono-
tonically decreasing sequence of functions whose pointwise limit is bounded and not 
constant on any set of positive measure in Xc. Indeed, we have for each x, 

0 = § / „ ( - Y ) - / „ + 1 ( X ) SI ^ ¿ R , 

so that 

Thus, for any 0 and any positive integer n, 

{x: f ( x ) = r}c {x: r S/„(x) ^ r + 

But this latter set contains at most two sets of constancy for fn, so 

m |x: r s / ^ g r + i ) ^ . 

It then follows that f ^ r a.e. dm. This contradiction completes the proof of the 
lemma. 

Note that the result of Singh and Veluchamy as stated in Section 1 of this 
paper follows as a special case of Lemma 2.6, for in the completely nonatomic case 
A=X. But then D=0, i.e. C is normal. It is interesting to see that one basic prop-
erty from Whitley's characterization of normality carries over to the general essen-
tially normal setting. 

2.7. C o r o l l a r y . If C is essentially normal then h=hoT a.e. on T~1XC. 



Essentially normal composition operators on L- 407 

P r o o f . Assume that C is essentially normal. Then } = 0 . Let Y be 
a subset of Xc of finite measure. Since h£L°° we have m(T~1Y)= J hdm^oo 

y 
and in particular ^ - l y f Z.2(T - 1 A^). But then we see that 

0 = D / j - j y = h • Xr - ' y — (H°T) • E(XT-'Y) - (h-hoT)xT->R-

It then follows that h=hoT ale. on Xc. 
We will conclude this paper with an example establishing the existence of an 

essentially normal composition operator for which /i > 0 a.e. and for which there 
is an atom a with T_1a infinite. First we investigate the structure of the sets T^a,, 

when C is essentially normal. Let a be an atom for m and let B=T~1a. Then 
D\L2(B) is compact. Let f£L?(B). Since m is sigma-finite and h is essentially bound-
ed, B is a set of finite measure. Noting that Ef is constant on B=T~1a, we see that 

Jfdm — f fdm = f h - (EfioT^dm = m(a)h(a)(Ef)oT~\a) = 
T-'A 

miT^a) 
= m { a ) m{d) { E f ) ° T ~ y { a ) = 

It then follows that Ef=—-— ( f d m on B. 
J m(B) B 

m(B) 
Also, for x in B, hoT(x)=h(a)= - . In particular (MhoTE)\,i(B) is the 

m(a) 

rank one operator /— (fdm. But then the compactness of D\L2(m implies 
m{a) g 

Mh\LHB) is compact. This in turn shows that 

BDSb = {bk\ kiK} 
where each bk is an atom. 

2.8. Example . Let O be the origin in the plane and let X={0}U(NXN). 
Define m by m(0)= 1; m(i,j)=l/2iJ. Finally, define T on X by 

T(0) = O ; T(i, 1) = O ; T(i,j) = (i,j-1) for j > 1. 
Then 

T-\0) = {0} U (Nx{l}), 
and 

i(0) 
while 

ur - w(r"1('">/)) _ m(i,j+1) _ 2 - " + 1 ) _ 
nKhJ} m(ij) m(i,j) 2-'J 

— I 
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F o r / suppor ted on T~lO, Df=hf^2 f f dm. Since l im h(n, 1 ) = 0 , D\LHt^0) 
T-'O 

is compac t . On the o ther hand , 

(Df)(i,j+1) = 2~ ' / ( / , y + 1 ) — 2 _ ' / ( / , j + l ) = 0. 

T h u s C is essentially n o r m a l . 
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