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A problem of Katai on sums of additive functions 

R O B E R T STYER 

1. Introduction 

KATAI [4] has shown the following result about completely additive functions: 

T h e o r e m . Let Fx, F2, F3, Ft be completely additive functions on the positive 
integers. Assume that 

FL(») + F,(n + 1 ) + F3(n + 2 )+Fi(n + 3) 

is an integer for every positive integer n. Then Fj(n), j— 1, 2, 3,4, is an- integer for 
every positive integer n. 

The theorem can be extended to Gaussian integers, as was done by VAN ROS-
SUM-WIJSMULLER [9] for four functions and recently has been extended to six func-
t i o n s b y KATAI a n d VAN ROSSUM-WIJSMULLER [6]. 

KATAI [5] has shown the analogy of his theorem holds for two additive functions 
by using properties of multiplicative functions. This reference to Katai's paper 
may not seem relevant at first glance. But if F and G are additive functions, then 
/ (n )=exp (2niF(n)) and g(«)=exp (2niG(n)) are multiplicative functions; now 
[5, II, Theorem 2, p. 105] gives the explicit form for / a n d g and one can then deduce 
the result. 

We wish to extend this to three additive functions. Of course Katai's theorem 
as stated is not true for three additive functions. For instance, one can let Fl(2)=r> 

F2(2")=s for all fcsl, F3(2)=t, F 1 ( 2 I , ) = j - i , for all 2 » 1, F3(2b)=s-r, for all 
¿ > 1 , Fj(3b)=-s,j= 1 ,2,3, for all fcsl, and Fj(q)=0, j=l, 2, 3, for all prime 
powers q relatively prime to 6. No matter what real numbers r, s, t one chooses, 
F1(n)+F2(n+ l ) + F 3 ( « + 2 ) = 0 . We will show, however, that this counterexample is 
the only way that a sum of three additive functions can be integral without the 
functions being integral. 

More generally, Kdtai (personal communication) believes that the following 
might be true. 

Received'April 19, 1989. 
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C o n j e c t u r e . Let F0, Fl5 ..., be k additive functions. Assume that 

( * ) F0(n) + F1(ii + l) + . . .+F4_1( i i + fc-l) = 0 ( m o d i ) 

for all n > l . Then each Fj, J=0, 1, ..., k—1, has finite support. 
Here we will say Fj(n)=0 (mod i ) whenever Fj(n) is an integer. The hypo-

thesis ( * ) probably need only hold for n sufficiently large. We define finite support 
to mean. 

D e f i n i t i o n . An additive function F is of finite support m o d i if F(p") = 
= 0 (mod 1), a = 1, 2, 3, . . . , is true for all but finitely many primes p. 

This paper has two parts. In the first part we assume Katai's conjecture and 
then investigate which primes are within the finite support of the Fj for a fixed arbi-
trary number of additive functions. The proof is essentially the Chinese remainder 
theorem. We will see that for k additive functions, only primes p with p^k are 
in the set of finite support. Indeed, we will explicitly give all the relationships be-
tween the nonzero values of the additive functions at these exceptional primes. 

The second half of this paper will prove Katai's conjecture when we have three 
additive functions. This proof follows closely the proof of Katai's theorem in [4]. 
We will, however, find several exponential Diophantine equations arising in our . 
modification of his proof. 

2. Primes in the set of finite support 

We now begin to investigate the structure of the primes in the set of finite 
support, assuming Kdtai's conjecture. To prepare for this, let k be the number of 
additive functions. For a prime p, define a = a (p) to be the integer such that /?*> 
^kimp*-1. 

F i r s t M a i n T h e o r e m . Let F0, F l5 ..., Fk_1 be k additive functions on the posi-
tive integers. Assume that 

(*) F0(ri) + F1(n+ 1)+ ... +Fk-!(n + k—l) = 0 ( m o d i ) 

for all n>N, some integer N. Also assume that each Fj is of finite support mod 1. 
Then Fj(q)=0 (mod 1), j=0, 1 , . . . , k— 1, for every prime power q=pb with 
drime p>k. 

Now consider only prime powers q=pb for any prime p^k. The number of 
Fj(q) which may be assigned arbitrary real values is 

-1+ 2 d{p) 
primes pSk 
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where 
, , K«"1 )k~P*~l + l if 

~ \ak-p" + \ if p°-kp*~\ 

One can explicitly find the relationship of the remaining Fj(q) in terms of the ones 
assigned arbitrary real values. 

P r o o f . We will establish a series of lemmas: the first will remove from con-
sideration all prime powers where the prime exceeds k, the second will show the 
relationship of Fj(pb) and Fj(px) for b>a. Finally, we will see that the rest of 
the small prime powers lead to a simple linear algebra problem. The proof of each 
lemma will depend on an application of the Chinese remainder theorem. 

The author wishes to thank Professor Katai for suggesting this problem, and 
also notes that Professor Katai independently proved this result. 

L e m m a 1. Assume that F0, Flt ..., Fk^1 are additive functions offinite support, 
satisfying (*). Let p be a prime with p>k. Then Fj(q) = 0 (mod l ) , / = 0 , 1, ..., k—l 
for all prime powers q=pb. 

N o t a t i o n . Number the primes p ^ p ^ p ^ - ^p, where ps is the largest 
prime within the finite support. Number the prime powers of these primes by q ^ 
<<72<... . We say that a prime power q\\n if q=pb and pb\n but pb+1\n. 

Define F to be the infinite vector 

F= (Fo(li)> Fx(qj), ..., F ^ f o ) , F0(qJ, ..., Fk^(q2), F0(q3), ...). 

For a positive integer n, define R(n) by 

= (^0,l> •••» 1,1> $0,2' •••> 1,2) <5o.3> •••)' 
where 

^ f l if q,\\n+r, 
i , J 10 otherwise. 

R(n) is an infinite sequence of 0 or 1 values. We note that the inner product 

R(n) -F= F0(n) + F1(n + l)+...+Fk_1(n+k-l). 

Thus, the assumption ( * ) can be written R(n) • F = 0 (mod 1) for all n>N. 

P r o o f of L e m m a 1. Fix j. We let p be any prime with ps^p>k. Let 
q=ph. Recall that we defined cc( for prime p, by the condition . By 
the Chinese remainder theorem, we may choose and n2 greater than N such that 

= 1 (mod/>?'), i = 1,2, ...,s 
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and 
«2 = 1 ( m o d p i ' ) , i = 1, 2, ..., s, pt ^ p; 

«2 = - j ( m o d / ) ; 

«2 ^ - j ( m o d y + 1 ) . 

In other words, and n2 (and the next k — 1 pairs of values) are the same modulo pt 

for all t h e ; e x c e p t /». In fact, one can see that 

-*(«,)]• F = Fj(pb) 

and so by ( * ) , Fj(pb)=0 (mod 1). This proves this lemma. 
We now, may- assume without loss of generality that the primes in the finite 

support of our additive functions all satisfy p ^ k . 

L e m m a 2. Assume that Fq,Fi, ..., Fk_1 are additive functions with finite sup-
port satisfying (*). Let p be a prime, and a defined as above. Then Fj(px+b) — 
-Fj(p')=0 (mod 1), j=0, 1, ...,.k-1, for all integers i>s 1. 

P r o o f . Again we merely apply the Chinese remainder theorem. Fix p, b. and j. 
Choose ni and n2 greater than N such that 

" i - 1 (mod'pf). ' = 1. 2, . . . , J, Pi p; 

«i = - j (mod p"); 

«! ^ - j (mod p°+1), 
and 

«2 = 1 ( m o d p ' ' ) , i = 1, 2, ..., s, Pi ^ pi 

n2 = - j ( m o d p a + b ) ; 

n2 ^ - j (mod p t t + 6 + 1) . 

Then one can see that 
[R(nJ - R(ni)] • F = Fj(p*+b) -Fj(px). 

This proves the lemma. 
We now only have a finite number of prime powers to consider, since any large 

power will give the same values as a power "close to k". Fix a prime p^k, and 
let r be chosen so, that r+k=0 (mod-/»1"1). The r simply shifts some columns so 
that we will get an upper triangular matrix. 

Define a vector 

F(P) = ( W ) , ->Fk.1(px), 

FriP"'1), ..., Fk-1(pa'1), W 1 ) , W 1 ) . F^ip*-1), 
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Also define 

where 
1 if a < a and 
1 if a = a and pa\n+j; 
0 otherwise. 

We note that F(p) and R(n, p) are vectors of length ak. We also note that R(n) • F= 
s 

= 2 R(n> Pi) • F(pd and that R(n1,p)=R(ni,p) whenever nx=n2 (mod/?1). 
¡=i 

L e m m a 3; Assume that F0, Flt ..., Fk_1 are additive functions of finite support 
satisfying (*). Let p be any prime with p^k. Then 

R(»&,P) • F(p) = Rin^p) • F(p) (mod 1) 

for any positive integers nx and n2. 

P r o o f . Again we use the Chinese remainder theorem. Choose integers n3 and 
n^ greater than N such that 

n3 = nx (mod p*)\ 

«3 = 1 (modpi ' ) , i = 1, 2, ..., s, Pi ^ p, 
and 

n4 = n2 (modp a ) \ 

«4 =e 1 (mod/??'), i = 1» 2, ...,s, Pi 5* p. 

Then one can see that R(n2,p) • F(p)—/?(«!,/>)• F(p)=R(ni,p) • F(p) — R(n3, p)X 
XF(p)=R(nl) • F—R(n3) • F=0 (mod 1). This proves the lemma. 

We now prove the first main theorem. 
By Lemma 3, we know that for every prime p there is some real number b 

such that for every n we have R(n, p) • F(p)=b (mod 1). For each prime p^k, 
choose an arbitrary real number b=b(p). Fix a prime p and choose any n with 
n = 1 (mod p*+1). Now define a matrix with px rows and ak columns by 

A = 

R(n+p*,p) 
R(n+p"-\,p) 

R(n + \,p) 
R(n,P) 

One can verify (because of the way we chose r) that if p'—k^p* 1 then A is o^ 
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the form 
Ik * * * \ 
0 Ip ' - t * *J 

If p'-k^p"'1 then A is of the form 

A = 0 Jpa-l * * 
0 * * * 

Here Im is the identity matrix of size m. If we consider this last matrix as haying 
three divisions of the rows, then one can see that every row of the third division is 
identical to one of the rows of the second division. 

Now we note that the matrix equation AF(p)'=b(p)( 1, 1, ..., 1)' (mod 1) has 
either ak—p" or a k - k — p " ' 1 free variables. We also have the free variable b(p) 
and so this gives us the expression for d(p) stated in the theorem. But now we note 

s s 
that the b(p) are not really free—indeed, since 2 b(p)= 2 R(n>P)~ F(p)= 

¡ = 1 i= 1 
=R(n) • F=0 (mod 1), we have one linear relation among the b(p). This explains 
the — 1 in the theorem. (The Chinese remainder theorem again implies that the 
b{p) have no other relations.) One also sees explicitly in the matrix A the rela-
tions between the Fj(pb) for any given prime p^k. This proves the first main 
theorem. 

We now will embark on a proof that when k=3, Katai's conjecture about, 
finite support is indeed true. We will follow the broad outlines of the proof of his 
theorem quoted at the beginning of this paper. His proof begins by showing that 
the theorem holds for small prime n, and then he uses induction (with many subcases) 
to complete the proof. When we attempt to modify his proof, however, we will 
encounter dozens of exponential Diophantine equations. Fortunately, most of these 
equations have been studied previously. 

T h e o r e m . Let Flz F2, F3 be additive functions. Assume that 

Indeed, if r, s and t are arbitrary real numbers, and if F^Tf^r, F2(2)=s a n d 
F 3(2)=/ (mod 1), then F1(2")=.s—/, for all F2(2b)=s for all F3(2b)~ 

3. Sums of three additive functions 

Fx(n) + F2(n + 1) + F3(n + 2) = 0 (mod 1), n > 1. 

Then Fj, F2 and F3 have finite support. 
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=s-r, for all b^l, Fj(3c)=—s, j= 1,2,3, for all b, and F}(?)=0 (mod i ) , 
j= 1, 2, 3, for all prime powers q relatively prime to 2 and 3. 

By our work above, we already know the structure of the nonzero solutions 
must be the ones stated in the second half of this theorem. Because we could sub-
tract two solutions with F1(2)=r, F2(2)=s and F3(2) = f (mod 1), we may assume 
these values are all zero mod 1. We are then proving 

S e c o n d M a i n T h e o r e m . Let Flt F2 and F3 be additive functions on the positive 
integers. Assume that 

(*) F1(n) + F2(n+ l) + F3(n + 2) = 0 (mod i ) 

for all n> 1. Also assume that f i(2), F2(2) and F3(2) are = 0 (mod 1). Then 
Fj(n)=0 (mod 1) for every n, j= 1, 2, 3. 

P r o o f . We first show that our theorem's conclusion holds for small prime 
powers n, then that it holds for all powers of a few small primes, and finally use 
induction to show the theorem for general n. As in Katai's proof, we will have 
many cases depending on the prime power mod low primes. Unlike Katai's case, 
however, we find a multitude of exponential Diophantine equations arising. 

We first show that the Fj(n)=0 (mod 1) for small «. 

L e m m a 4. Assume that F1; F2, and F3 are additive functions of the positive 
integers. Assume that 

( * ) F1(«) + F 2 ( / J+1) + F3(« + 2) = 0 ( m o d i ) 

for all 1. Then Fj(n) = 0 (mod 1) for all «<38 , ./= 1, 2, 3. 

Before proving the case of three additive functions, we will illustrate the idea 
with the case of two additive functions satisfying the analog of (* ) , namely, Fl(ri)+ 
+ F 2 ( « + 1 ) = 0 (mod 1). Consider the set of prime powers {2, 3, 4, 5, 7, 8, 9, 11}. 
Consider the sixteen values « = 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 4 , 2 0 , 2 1 , 3 5 , 4 4 , 5 5 . 
These sixteen n give rise to sixteen equations F1(n)+F2(n+ 1)=0 (mod 1) which 
can be expressed in terms of the prime powers in {2, 3, 4, 5, 7, 8, 9, 11}. For in-
stance, n = 5 5 gives rise to the equation F 1 (5)+F 1 ( l l )+F 2 (7)+F 2 (8)=0 (mod i ) . 
We therefore have 16 equations in the 16 variables Fj(q) with / = 1,2 and 
q£ {2, 3 ,4, 5, 7, 8, 9, 11}. One may set up a matrix equation to represent these, say 
AF=0 (mod 1), where 

F' = (F1(2), F2(2), F,(3), F2(3), ..., ^ (11 ) , F2(ll)), 
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and 
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 
0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 
1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 
0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 
1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 
0 0 0 1 1 0 1 0 0 1 0 0 0 - 0 0 0 
0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 
0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 1 0 0 0 0 0 . 1 1 0 
0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 6 

Amazingly, this matrix A has determinant — 1. Thus we may conclude that it has 
an inverse with integer entries and therefore that the vector F must have 
each component = 0 (mod 1). In other words, FL(«) and F2(n) are integers for 
n = 2, 3, 4, 5, 7, 8, 9, 11. 

Indeed, we need not assume that the above matrix A is square; even if A were 
overdetermined one would "row reduce" with the proviso that one may not divide 
by integer factors. If one only switches rows or adds integral multiples of one row 
to another, then one hopes to reduce the matrix A to a diagonal matrix with diagonal 
entries equal to 1 or —1. If this is possible, then every variable Fj(q) =0 (mod 1). 

We will follow the same ideas when we have three additive functions. One sets 
up the matrix equation AF=0 (mod 1) where the vector F contains the variables 
Fj(q), j~ 1, 2, 3, for the nineteen prime powers q equal to 

2, 3 ,4 , 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37. 

Recall that we have hypothesized that F}(2)=0 (mod 1), j— 1, 2, 3. This hypo-
thesis eliminates three variables, so we actually have 54 variables. The rows of A 
come from expanding F1(/i)+F2(/j + 1)-|-F3(w+2) for the fifty-four values of n 

2 , 3 , . . . , 36, 37, 38, 44, 50, 54 ,55 ,56 ,68 ,74 ,75 ,76 ,90 , 91,110,115,143,152,154,713. 

One can verify that the prime factorizations of these fifty-four triples n, n +1 and 
/1+2 have only prime powers in the set of nineteen powers listed above. Therefore, 
we get the matrix A to be a 54 by 54 matrix of zeros and ones. 
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Amazingly, the determinant o f A is ± 1 (depending on the ordering of the 
columns). We conclude that A can be-inverted with integer entries and therefore each 
Fj(q)=0 ( m o d i ) for the q listed. 

One can change the hypothesis. Instead of f} (2 )=0 (mod 1), j= 1, 2, 3, one 
may assume F y (4 )=0 (mod 1), j= 1, 2, 3, or F y (8)=0 (mod i), / = 1 , 2 , 3 , or 
F1(2)=0 (mod 1), F i (3 )=0 (mod 1), F ^ s O (mod 1) or any combination that 
would lead to r=s=t=0 (mod 1) in our counterexample. 

Also, one need not start the hypothesis on F 1 ( n ) + F 2 ( « + l ) + F 3 ( « + 2 ) with 
n=2. It seems that one might be able to start at any value of n as long as one has 
enough rows. For instance, if we begin with n= 17, (adding 15 new values n to 
replace the ones we have eliminated) we get a matrix which row reduces to give all 
the Fj(q)= 0 (mod 1). 

At any rate, we have taken care of small values of prime powers q. We must 
now take care of the case when q is an arbitrary power of 2 or 3. So suppose q is a 
power of 2. 

L e m m a 2. Let 5. Assume that F}(«)=0 ( m o d i ) for all n less than 2°—3, 
j= 1, 2, 3. Then F1(2°), F2(2°+1), ^ ( 2 ° - 1 ) , F2(2°), F3(2°+1), F 2 (2°-1) , and F3(2") 
are all = 0 (mod 1). 

R e m a r k . The condition «<2"—3 could be replaced by « < 7 • 2"~3 but we 
only need 2 " - 3 (in Case 18). 

P r o o f . We give a case by case analysis depending on what the power a is 
modulo 12. Each case will state the result obtained, the assumption on a, the excep-
tions to the proof (invariably Diophantine equations which will be dealt with later), 
and the synopsis of the proof for the case. 

Case 1. F 1 (2 a )=0 (mod 1) for a odd, 

unless: 2 " + l = 3 i for some positive integer b. 

2"; 3-^-——, 2 ( 2 0 - 1 : f 1). 

This last line will be our abbreviated notation for 

F t (2°) + F 2 ( 2 ° + 1 ) + F 3 ( 2 a + 2 ) = 0 (mod 1) 

and the fact that some power of 3 divides 2 " + l as well as that 2 divides 2"+2. 

Using the fact that 3 divides 2"+1 when a is odd, we have 

Fi(2°) + F2(3c) + F2((2a + 1)/3C) + F3(2) + F 3 ( 2 ° - 1 + 1 ) = 0 ( m o d i ) 

for some positive integer c such that 3C divides 2"+1 but 3 C + 1 does not. We ex-

4 
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elude the case when 2"+ ^ S 6 for some positive integer b so we may assume that 
3C<2°—2. (Fortunately, we will see that this exponential Diophantine equation has 
no solutions with a>5.) By our inductive hypothesis, F2(3C), F2((2°-f 1)/3C), F3(2), 
and F3(2a~1+l) are all = 0 (mod 1). We therefore conclude that F1(2 f l)=0 (mod 1). 

Case 2. F1(2 f l)=0 (mod 1) and F 2 (2°+1)=0 (mod 1) for a = 0 ( m o d 4 ) , 

unless: 2 a + 1 + l = 3 6 for some positive integer b, or 2 a + 1 + 3 = 5 6 for some 
positive integer b. 

2"; 2a+1; 2 (2 a ~ 1 +l ) , 

2«+i-i_ 1 2 a + 1 4-3 
2(2°+1); 

These lists are shortland for the following argument: starting with the last line of 
our proof list, 

ri (3 2 ° + 3 + 1 ) + F2 (2 (2° + 1 ) ) + F 3 (5 2 " + 3 + 3 ) = 0 (mod 1) 

fi(3g) + Fx ( 1 ) + F2(2) + F2(2a + 1 ) + F 3 ( 5") + F3 ( ^ V " 3 ) = 0 ( m o d i ) 

FA 3 

or thus 

for some c and d with 3C the highest power dividing 2 a + 1 + l and 5d the highest 
power dividing 2 a + 1 + 3 . 

With the inductive hypothesis, noting our exceptions, we have that Fi(3c), 

* ( % + ' ) . f2(2), F3(5*), F 3 [ 2 " +
5 d

+ 3 ] are all = 0 (mod 1). Thus, F2(2a+l)= 

=0 (mod 1). 
The first line of our proof list says 

F1(2") + Fi(2a+ 1) + F 3 (2(2"- 1 + 1)) = 0 (mod 1) 
which says 

il(2a) + F2(2" + 1 ) + F3(2) + F3(2"~1+ 1) = 0 (modi ) . 

Using the inductive hypothesis, we have F 1 (2°)+F 2 (2 a +1)=0 (mod 1). Then 
F1(2a)=0 (mod 1). 

As before, the exceptions are exponential- Diophantine equations which for-
tunately will have no solutions with a >5. 

We will now only give the results without filling in the details. 

Case 3. F1(2 a)=0 (mod 1) for a=2 (mod 4), 

unless: 2" + 1 = 56 for some positive integer b. 

2 a + l 
2°; 2(2"~1+1). 
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Case 4. F 2 (2 a )=0 (mod 1) and F3(2"+1)EE0 (mod 1) for a== 0 (mod 12), 

unless: 2°—l = 3b for some positive integer b, or 2 a + 1 + l = 3 1 ' for some posi-
tive integer b, or 2 a + 2 + 3 = 76 for some positive integer b. 

2a— 1 
3 ^ - ; 2 a ; 2 a + 1 , 

2 ° + 1 + l 2 a + 2 + 3 
6 — — J ^ — ; 4 ( 2 " + 1 ) . 

Case 5. i i (2 a -1)EE0 (mod 1) and F 2 (2 a )=0 (mod 1) for a= 1 (mod 4), 

unless: 20 + l=3 1 ' for some positive integer b, or 2 a + 1 — l = 3 b for some posi-
tive integer b, or 2 a + 2 —3 = 56 for some positive integer b. 

2 a + l 
2a— 1; 2"; 

4(2a— 1); 5——^ , . 

A minor note: the Diophantine équation 2"—3=5fi has a rather large solu-
tion, namely 2 7—3=5 3 . We are fortunate that a = 7 corresponds to a=5. 

Case 6.. F2(2")=0 (mod 1) for a = 2 (mod 4), 

unless: 2" — 1=3 6 for some positive integer b, or 2 ° + 1 = 56 for some positive 
integer b. 

2 a - l 2 a + 1 
J 3 ' ' 3 5 ' 

Ciwe 7. F 1 ( 2 a - 1 ) = 0 (mod 1) and F 2 (2 a )=0 (mod 1) for a=3 (mod 4), 

unless: 2a+l—3b for some positive integer b, or 2" — 1 = 76 for some positive 
integer b, or 7 - 2 a _ 1 — 3 = 5 b for some positive integer b, or 7 • 2"—5=3b for some 
positive integer b, or 7 • 2" — 11 = 5 • 3b for some positive integer b, or 7 • 2° — 11 = 
= 3 • 5b for some positive integer b. 

2" — 1 ; 2 a ; 3 ^ - , 

1.2"-1 — 3 7 -2 a —5 
7 ( 2 a - l ) ; 10 7 2

 5 

. 7 - 2 a - l l 7 - 2 a - 3 - l 7• 2a—5 
5 15 ; 8 3 ; 3 • 

4* 
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Case 8. F2(r)=0 (mod 1) and F ^ + l ^ O (mod 1) for a=4 (mod 12), 

unless: 2° — 1=3 6 for some positive integer b, or 3-2° + 1 = 7* for some posi-
tive integer b, or 3 • 2 a _ 1 + 1 = 56 for some positive integer b. 

T— 1 
3 ^ - y - s 2°; 2°+l, 

3-2" 4-1 3 . 2a_1-J-1 
7 y ; 10 5 ; 3(2»+1). 

Core 9. F 2 (2 a )=0 (mod 1) and F 3 ( 2 " + l ) = 0 (mod 1) for a=8 (mod 12), 

unless: 2a — l=3b for some positive integer Z>, or 13 • 2 " + 1 1 = 3 • lb for some 
positive integer b, or 13 -2" + 1 1 = 7 -3b for some positive integer b, or 13 • 2 a ~ 2 + 3 = 
=5* for some positive integer b, or 2"+\ = \3b for some positive integer b. 

2a —1 •xz L- r>"- 2"-i-l J 2 ' •»' r i , 

1 3 - 2 ° + l l 1 3 - 2 a - 2 + 3 
21 U ; 20 ^ 13(2«+1). 

Can? 70. F3(2°)=0 (mod 1) for a even, 

unless: 2a — \=3b for some positive integer b. 

2 ( 2 " - 1 ) ; 3 ^ — ; 2". 

Case 11. F 2 ( 2 a - l ) = 0 (mod 1) and F3(2a)==0 (mod 1) for a = l (mod 4), 

unless: 11 •2f~2—3=5b for some positive integer b, or 2"—l=llb for some 
positive integer b, or 11 •2" - 1 —5=3 6 for some positive integer b, or 2 " - 1 — 1 = 3 • l l 6 

for some positive integer b. 
2 ( 2 ° - 1 — 1 ) ; 2 " - l ; 2 a , 

11 • 2 a - 2 — 3 T l - 2 a _ 1 —5 
2 0 l - ^ ~ s 11(2"— 1); 

• 2 ° - 1 - T • 11. 2 a - 4 - l 11 . ! 2 " - ; i - 5 
1 1 — 3 — ; 8 3 5 3 • 

Case 12. F 2 ( 2 " - l ) = 0 (mod 1) and F 3 (2 a )=0 (mod i ) for a=3 (mod 4), 
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unless: 2°—1 = 76 for some positive integer b, or 7-2° - 1 —3 = 56 for some 
positive integer b. 

2(2a _ 1—1); 2"—1; 2", 

• j .2"- 1 — 3 
8(7 • 2"~3 — 1); 7 (2° -1 ) ; 10 ^ . 

We also need to consider all powers of three. Fortunately, the powers of 3 are 
much easier. 

L e m m a 6. Let 3. Assume that Fj(n)=0 ( m o d i ) for all n less than 3"—2, 
j= 1 ,2 ,3 . Then ^(3"), F3(3a+2), F2(3"), F1(3"-2), and F3(3a) are all = 0 (mod 1). 

R e m a r k . The condition «<3"—2 could be replaced by n < 2 ( 3 a _ 1 + 1 ) but 
we only need the stated condition (for Case 16). 

P r o o f . As with the powers of 2, we will do a case analysis, only this time each 
case will have arbitrary powers a. We will again find several exponential Diophantine 
equations which we deal with in a later section. 

Case 13. i i (3 f l )=0 (mod 1) and F 3 (3 a +2)=0 (mod 1), 

unless: 3"+ l = 2 h for some positive integer b. 

3"+1 
3°; 2 — 3 a + 2, 

4 — 3 ( 2 • 3 f l - 1 + 1); 2(3"+2). 

Case 14. F2(3")=0 (mod 1), 

unless: 3"-\-\=2b for some positive integer b, or 3a—l=2b for some positive 
integer b. 

Case 15. F 1 ( 3 " - 2 ) = 0 (mod 1) and F3(3")=0 (mod 1), 

unless: 3°—1=26 for some positive integer b. 

3° — 1 
3" —2; 2—^—> 3", 

2(3a —2); 3 ( 2 - 3 a _ 1 - 1); 4 ^ - . 

Now we can do the general prime power q case. 
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L e m m a 7. Let q>37 be a prime power. Assume that Fj(n)=0 (mod 1) for 
all n less than q, j= 1, 2, 3. Then Fx(q), F2(q), and F3(q) are all = 0 (mod 1). 

P r o o f . Suppose q is even; then q is a power of 2 which we have already com-
pleted above in the fifth lemma. If q is divisible by 3, we see that the sixth lemma 
completed the proof. Therefore, we may assume q is not divisible by 2 or 3. 

Since Fx(q—2)+Fs(q —1)+F3(q)=0 (mod 1), the induction hypothesis imme-
diately gives that F3(q)=0 (mod 1). 

Case 16. Fx{q)=0 (mod i ) for q== 1 (mod 3), 

unless: q+1 = 2* for some positive integer b, or q+2=3b for some positive 

Fortunately, if q—2b— 1, then we have already shown that Fl(q)=0 (mod 1) 
(Cases 5 and 7 above). If q=3b-2 then Fx(q)=0 (mod 1) from Case 15. 

When q=2 (mod3), we will give two different ways to achieve the desired 
result. 

Case 17. Fx{q)=0 (mod 1) for q=2 (mod3), 

unless: 4q-\-\=3b for some positive integer b, or 2q—l=3 b for some positive 
integer b, or q +1 = 2b for some integer b. 

integer b. 

95 2 
<7+1 . , q + 2 

2 3 ; 3 

4q; 3-^j—; 2(2q+l), 

2 2q-l 4q + l q+1 
3 ' 3 ' 3 ' ; 4 

3—3"""' 2q; 2q+ 1, 

Fortunately, 9+1=2'" has already been covered by Lemma 5. 

Case 18. F^-O (mod 1) for q=2 (mod3), 

unless: q + l — 2b for some positive integer b, 
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4q+7=3b for some positive integer b, or 29 + 5=3' ' for some positive integer 
b, or <7+3=2* for some positive integer b. 

q\ 2 q + 2, 

2(29 + 3); 3 ^ 2 + 1 ; 4(9 + 2), 

2q + 3; 2(^ + 2); 3 
2 9 + 5 

2—=—; q + 2; 2-2 2 ' 

9+1 . 4^ + 7 . . 2q + 5 

Fortunately, when q=2b—3, Lemma 5 tells us that F2(26 —1)=0 (mod i ) and. 
F3(2b)=0 (mod 1) so the fourth line of th isproof l is t is still valid even when q+3=2b 

We therefore only have two exceptions to consider. 
Cases 17 and 18 give us a choice; we will choose the one which avoids the ex-

ceptions listed whenever possible. In particular, we can avoid the exceptions listed 
unless we have one of the following: 

4q+1=3* for some positive integer b and 49+7=3® for some positive integer c, 
4q+1 = 36 for some positive integer b and 2q + 5=3c for some positive integer c, 
2q—\=3b for some positive integer b and 4 9 + 7 = 3 c for some positive integer c, 
2q— l = 3 b for some positive integer b and 2 9 + 5 = 3 c for some positive integer c. 

These give rise to the exponential Diophantine equations: 

6 = 3c-3d, 9 = 2-3c—3b, 9 = 3C—2• 3b, and 6 = 3c-3b. 

Of course, these are rather trivial and one sees that these have no solutions with 
c or d exceeding 3. 

Putting Lemmas 4—7 together, we find an inductive proof for our main theorem 
provided that we can remove the exceptions from each case. In other words, we 
have reduced the entire problem to solving several two variable exponential Diophan-
tine equations. Most of these have been solved (in much greater generality) by 
TRYGVE NAGELL [8] a n d l a t e r TOSHIRO HA.DANO [3]. N a g e l l s o l v e d a l l e q u a t i o n s o f 

the form ax+by=c* for distinct a, b and c primes less than or equal to seven. Ha-
dano extended this to a, b and c primes up to seventeen. In particular, their results 
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take care of 
2 " + l = 3 \ 

2°+ 1 + 1 = 3b, 

2 0 + 1 + 3 ' = 5", • 

2a_+ 1 = 5", 

2° — ! = 3b, 

2"+2+3 = lb, 

• 2°+1— 1 = 3b, 

2"+2 — 3 = 

2° — 1 = 7", 

2" + 1 = 13fc, 

2" — 1 = 11*. 

D. H. LEHMER [7] solved a host of exponential Diophantine equations of the 
form S + 1 = J where S and T have prime factors in some small set. His calcula-
tions take care of our equations . 

' 3 - 2 " + l = 7V 

. 3-2-1 + i =5", 

2°-1-l = 3-11". 
LEO ALEX[T], when looking at possible indices for simple groups, has solved 

equations of the form- x+y=z where x, y, and z are of thé form Z3S5'T. His 
work takes care of the equations 

7 - 2 ^ 1 - 3 = 5>, 

7 • 2° — 5' = 36. 

The rest of the exponential Diophantine equations are 

7 -2"- 11 = 5-3», 

7 • 2" — 11 = 3 • 56, 

1-3-2°+11 = 3-7", 

13 • 2"+ 11 = 7 •3b, 

13-2°^2+'3 = 5*, 

11 •2 0 - 2 —3 = 5*, 

11 •2"-1 = 3". 
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We are only interested in solutions when a > 5; indeed, one can easily com-
pute that these have no solutions for a=6 so we may certainly view these equations 
modulo 16. Fortunately, the equations 7 - 2 a - l l = 3 - 5 1 ' , 13• 2"+11=3-J", 13• 2"+ 
+ l l = 7-36 , and 13• 2 a - 2 + 3 = 5 b are all impossible modulo ;16. , 

11 •2" - 2—3 = 5® and' 11-2 a _ 1 —5=3S are impossible modulo 11. 
This leaves 7 • 2 " - 1 1 = 5-3" which has a solution 7• 2 3 - 1 1 = 5• 32. Then 

7 • 23(2 i —1)=5 • 32(3fi-1). Viewing this modulo 16 gives /?=2y with y odd, unless 
/1=0. Now 32 divides 2"— 1 and one can verify that this implies a = 0 (mod 6) 
Then 7=23—1 divides 2"— 1, so 72 divides 3^—1. One verifies that this gives 
0 = 0 (mod 42). Then 1093 divides 3 7 - l which divides 3 " - l , so 1093 must 
divide 2*—l. One can verify that this implies a = 0 (mod 364). Then 113 divides 
2 1 4 +1 which divides 2"— 1, so 113 divides 3^ — 1. One verifies that this implies 
/?=0 (mod 112). But then 4 divides /?, a contradiction, unless /7=0, that is, un-
less 7 • 23 — 11 = 5 • 32 is the largest solution to this exponential Diophantine equa-
tion. 

The procedure used to solve this last equation is exactly the same that GUY, 
LACAMPAGNE, a n d SELFRIDGE[2] use to solve equa t i ons such a s 5=2"—3b. 

This finishes the solution to all of the Diophantine equations, which removes 
the exceptions from the cases analyzed above, and so one can now use the lemmas 
to prove the main theorem by induction. 

Similar ideas surely work when one considers the analogy of ( * ) with four 
additive functions. One can easily find a matrix A involving all prime powers up to 
89 which will give the analogy of Lemma 1 for the small prime powers. Instead 
of dealing with powers of 2 and 3, one must now deal with all powers of 2, 3, 5, 7, 
and 13. One can then find the necessary cases to deal with the general prime power. 
But by now one has over a hundred cases, each with many exceptions. Even the 
task of listing all of the relevant Diophantine equations would be formidable. To 
attempt this approach with five additive functions seems untenable. Our method 
is clearly not appropriate for large numbers of additive functions, and we hope 
that someone will find a better approach which proves the problem in its deserved 
generality. 
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