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Restrictions of positive self-adjoint operators

ZOLTAN SEBESTYEN and JAN STOCHEL

A densely defined positive symmetric operator in a Hilbert space has a positive
self-adjoint extension within the same space. This theorem is well known for a long
time and forms a solid part of our knowledge of the theory of unbounded operators in
Hilbert space. Hence the restrictions of positive self-adjoint operators to a dense
linear subspace are completely characterized by the properties of symmetry and
positiveness. The same problem for an arbitrary linear subspace has so far remained
unsolved. . _

The main aim of this note is to give a necessary and sufficient condition for the
existence of a positive self-adjoint operator whose restriction to a linear subspace of a
Hilbert space is given. Our theorem contains, as a special case, the above mentioned
classical result as well as its generalisation given in 1970 by ANDO and NisHIO
{1, Theorem 1; Corollary 1] for closed initial operators. Our method of proof follows
the proof used in 1983 by the first named author [2, Theorem] in the bounded operator
case. Further properties of our extension presented here generalise the results of [3],
(41, 51

This work is a result of a visit in April 1988 of the second named author at the
E6tvds University, Budapest.

Let A be a (linear) operator defined on a linear subspace 2 of a (complex)
Hilbert space & with values in the space 5. Here 2 is not assumed to be closed or
dense, nor A is assumed to have a closed graph. Throughout the paper we assume
that A4 is symmetric and positive, that is, 4 has the following property:

(N 0 = (4x,x) for each x in Z.

Of course, (1) is necessary for the existence of a positive self-adjoint extension.
Starting with assumption (1) we define a semi inner product (., .) on @ by

{x, y):=(Ax,y) for x and y in 2.
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A new Hilbert space appears by the usual construction: let Zy={x¢D: (4x, x)=
=0} be the kernel of (-, - ) and let Q be the quotient map of 2 with respect to Z,,
that is,

Ox =x+9, for all x in 9,

then Q(2) is a pre-Hilbert space with inner product
2 (Ox, Qy) == (dx,y) for x,y in 9.

Now # will denote the completion of Q(2).

Assume first for a moment that x belongs to %, if and only if Ax=0. Then the
formula
€)) V(Qx) = Ax for x in @

defines a linear map ¥ from Q(92) into & factoring A4 through Q. At the same time
we observe that ¥* extends Q. Indeed, the identity

C)) (V0Ox, y) = (Ax, ¥) = (Qx,Qy) for x and y in @

shows that V*y=Qy. If moreover we assure that Z(F*) is dense in £, in other
wordsthat V** exists, then (3) gives us that V' **V'* is a self-adjoint positive extension
of A. This is because the closure of ¥V is equal to V** and because ¥ * is a closed
operator with adjoint V/**.

Theorem 1. Let A be a positive linear operator defined on a linear subspace %
of a Hilbert space . The following two statements are equivalent:

(i) A4 has a positive self-adjoint extension A in #;

(i) @,:=[ye#: sup {|(dx, y)>: x€ D, (Ax,x)=1}<oo] is dense in K.

Proof. Assume first (i). Then the domain 2(4) of 4 is dense in 5. Hence the
inclusion 2(4)cD, proves (ii); indeed, to prove that an element y from 2(4)
belongs to Z, it is enough to see that for each x from &, Ax=Ax holds and

I(Axs y)lz = |(f‘fx’ y)l2 = (A'x’ x)(Zy, y) = (Ax’ x)(/fy, y)

Assume now that (i) holds true. The operator ¥ (see (3)) is then well defined.
Indeed, if x is a vector from 2 such that (Ax, x) =0 then one can show that (A4x, y)=0
holds true for each y from 2,. Since 9, is assumed to be dense in #, we obtain
Ax=0. Moreover the domain 2(V'*) of V* is just 2,. Hence V* is densely defined
by the assumption (ii). Here we arrive at the situation mentioned before, and V ***
is a positive self-adjoint extension of A. The proof of Theorem 1 is complete.

Corollary 1. Let A: @~ be a positive linear densely defined operator. Then
A has a positive self-adjoint extension in .
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Proof. Arguingsimilarly asin the proof of the implication (i)=>(ii) of Theorem 1,
we show that 99, . Thus the condition (ii) of Theorem 1 is satisfied. Hence (i) of
Theorem 1, which is our present assertion holds true.

Corollary 2. For the positive linear operator A: @ —~# the following state-
ments are equivalent:
(") A4 has a continuous positive extension A on 3 ;
(ii') @ .=
(iii’) there exists a constant m=0 such that

|4x|* = m(Ax, x) for each x from 9.

Proof. Since # =2 (A)c 2, holds true for each continuous positive extension
A of A, the implication (I")=(ii’) is immediate. Notice also that Z(V*)=2,.
So if (ii") holds true then V* is an everywhere defined closed operator, that is, V'*
is continuous indeed. Hence ¥ **V'* is a continuous positive linear extension of A
on 4. This proves (ii")=().

If (iii") holds, the operator ¥ defined by (3) is continuous. Consequently ¥V **p*
is a continuous positive extension of 4. Conversely, (i) implies (iii") with m:=| 4],

Corollary 3. Let A: @~ be a positive linear operator with a positive self-
adjoint extension A: G—~H. Then A:=V**V* has the following properties:

(iv) (A CS (A2,

) |AM2x|= |AY2x|* for each x in (4.

Proof. Starting with positive self-adjoint operator 4, we can construct the
subspace %, the quotient map @, the completion # and the operator ¥ factoring 4
through § in the same way as we have obtained 9,, 0, # and V, respectively, from
A. Then A=V**J* because both of these operators are self-adjoint. As in [4], we
define an isometry T from # into jf(zthe completion of Q(@)) by the following
identity: B

T(Ox) = Ox for all x from 2.

That T is an isometry follows from
(Ox, 0x) = (4x, x) = (Ax, x) = (Qx, Qx) for each x in 2.
Since, moreover,
(VT)(Qx) = V(TQx) = VOx = Ax = Ax =VQx
holds true for each x frbm 92, we conclude that

VTlg@ =V-



152 Z. Sebestyén and J. Stochel

Hence, using the fact that T* is a contraction, we have that
JAY2x|2 = [V*x|2 = |T*V*x||2 = |V *x]|* = | A/x|?
holds for each x in 2(AY)ND(A'/?). Now, since 4 extends 4, it follows that

IV=9,Cc D, =2(V*),
and therefore
DAV = @((17** 17*)1/2) =9V cCca(V*) = @((V**V*)‘/Z) = Q(AV?),
This completes the proof.

Corollary 4. Let A: D—~3# be a linear operator bounded below by m, that is,
such that
m|x||? = (4x, x) holds for all x in 2.

A admits a self-adjoint extension with the same bound if and only if the subspace
[yes#: sup {|(Ax—mx, Y)|2: x€D, (Ax, x) = 1+m|x[|?} <]
is dense in .

Proof. Since for each self-adjoint extension 4 of A with a bound m, A—mI
is a positive self-adjoint extension of the positive (symmetric) operator 4A—ml, the
conclusion of Corollary 4 follows from Theorem 1.

Corollary 5. Any densely defined semibounded linear operator in Hilbert space
has a self-adjoint extension with the same bound.

Proof. Corollary 5 follows from Corollary 4 via arguments used in the proof
of Corollary 1.

An extension of [5, Theorem] is the following

Theorem 2. Let A: 9 —~# be a positive linear operator with a positive self-
adjoint extension A. Let B and C be continuous linear operators on # leaving @
invariant and such that

(vi) ABx = C*Ax, ACx = B*Ax for all x in 9.
Then, with A=V**V* in Theorem 1, we have
(vii)) ABx = C*Ax, ACx = B*Ax Jor all x in 9(A).

Proof. We define, as in the proof of [5], continuous linear operators B and €
on Q(2) as follows

&) B(0Ox) = Q(Bx), C(0x) = Q(Cx) for each x in 9.
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To show that B and € are well-defined and continuous we find estimates for the
norm of B(Qx) and €(Qx) step by step. First we have for any x in 2 that

(B(Qx), B(Qx)) = (ABx, Bx) = (C*Ax, Bx) = (Ax, CBx) = {Qx, Q(CBx)) =

= (Qx, Ox)'"*{Q(CBx), Q(CBx))'/*.

Repeating this argument we obtain

(B(Qx), B(Qx)) = (Qx, Qx)V*++1*(Q(CB)" " x, Q(CBy" " x)!/** =

= (Qx, Ox)' ¥ (Ax, (CB)" x)V*" =
= (Qx, Ox)' M= [ Ax |V [(CBY™ ||V [ X2,

Passing with n to infinity we get

(6) (B(Qx), B(Qx)) = r(CB){Qx, Ox) for each x from 92,

where r(CB)(=|CBJ) stands for the spectral radius of CB. (6) tells us that B
is a well-defined continuous linear operator. B has norm not exceeding r(CB)Y2.
A similar argument applies to show that € is also continuous and its norm does not
exceed the same value r(BC)Y2=r(CB)'2. Thus both B and C have unique conti-
nuous extensions on # which we also denote by B and C, respectively, as this causes
no confusion.

Now we see that B and C*, hence also € and B*, coincide since on Q(2) they
agree:

<Qx’ é*(Qy)> = <é(Qx)5 Qy> = <Q(C-x)’ Qy> = (ACx, y) = (Axs By) =
= (Qx, B(Qy))

holds true for each x and y in 9. On the other hand ¥ interwines B and C* (respect-
ively € and B*). Indeed, if x belongs to & then

VB(Qx) = VQ(Bx) = A(Bx) = C*4Ax = C*V(Qx),
VC(Qx) = VQ(Cx) = A(Cx) = B*4Ax = B*V(Qx).
Hence C*VcVB and B*Vc¥VC. Since C* is bounded, we get
Cv* = B*V* c (VB)* < (C*V)* =V*C.
Similar argument shows that BV*cV*B. Thus
(viii) V*By = BV*y, V*Cy=CV*y for every y from 9,.
Returning to the proof of (vii) we see that for each x€2(A) and for each
€9, the following identities hold true (using (viii))
W*Bx,V*y) = (BV*x,V*p) = V*x, B*V*y) = V*x, CV* y) =
={V*x, V*(Cy)) = (C*V**V*x,y) = (C*Ax, y).
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As a-consequence we have that, for each x from 2(A),V *Bx belongs to 2 (V' **) and
at the same time

C*Ax = V**V*Bx = ABx.

The other equality of (vii) can be shown similarly. This completes the proof.
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