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Hyponormal operators on uniformly convex spaces

MUNEO CHO

Dedicated to Professor Jun Tomiyama on his 60th birthdy

1. Introduction. Let X be a complex Banach space. We denote by X* the dual
space of X and by B(X) the space of all bounded linear operators on X.
Let us set

m = {(x, NEXXX*: [ fl =f(x) = IIx]| =1}.

The spatial numerical range V(T) and the numerical range V(B(X), T) of T€B(X)
are defined by

V(T) = {/(Tx): (x,f)en}
V(B(X),T) = {F(T): FEB(X)* and [F| = F(I) =1},

and

respectively.

Definition 1. If V(T)cR, then T is called hermitian. An operator T¢B(X)
is called hypornormal if there are hermitian operators H and K such that T=H+iK
and the commutator C=i(HK— KH) is non-negative, that is

V(C) < R* = {acR: a = 0}.

An operator N is called normal if there are hermitian operators H and K such that
N=H+iK and HK=KH. A normal operator N on a Banach space X has the
following properties:

(1) co s (N)=V(N)=V(B(X), N).
(2) If Nx,—~0 for a bounded sequence {x,} in X, then Hx,—~0 and Kx,—O0.

Definition 2. Let X be Banach space. X will be said to be uniformly convex if
to each ¢=>0 there corresponds a §=0 such that the conditions [x|=|y]|=1 and

I+ I
=1-6.
2

Ix—yl=ze imply
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X will be said to be uniformly c-convex if for every ¢=>0 thereisa 6=0 such
that {|y|<e whenever [[x]|=1 and |x+Ay||=1+46 for all complex numbers A
with |i=1.

X will be said to be strictly c-convex if y=0 whenever |[x]|=1 and [[x+2iy|=1
for all complex numbers A with [A[=1.

All uniformly convex spaces, for example £7(S, Z, u) and %,(5¢) for 1 <p<-co,
are uniformly c-convex and all uniformly c-convex spaces are strictly c-convex.

Z(S, %, u) and the trace class %,() are the typical examples of uniformly
c-convex spaces. See [7] and [9].

For an operator T€B(X), the spectrum, the approximate point spectrum, the
point spectrum, the kernel, and the dual of T are denoted by o(T), 6,.(T), 6,(T),
Ker (T) and T*, respectively. )

For an operator T=H+iK we denote the operator H—iK by T.

The following are well-known for T¢B(X):

(1) coV(T)=V(B(X), T), where coE is the closed convex hull of E.

2) co O'(T)Cm, where co E and E are the convex hull and the closure of E,
respectively.

We now give a concrete example of a hyponormal operator on a uniformly c-
convex space. Let # be a Hilbert space. Then the trace class C, () is a two sided
ideal of B(A#).

Given 4, B€B(#) we define

84.8(T) = AT-TB (T<%,(#)).

Then 6,4 p is an operator on a uniformly c-convex space %, (). It is easy to see that if
A and B* are hyponormal then &, 5 is a hyponormal operator on %,(#) (see Theo-
rem 4.3 in [9]).

The following theorem derives from Lemma 20.3 and Corollary 20.10 in [4].

Theorem A. If H is hermitian and Hx=0 for x€X (|x|=1), then there exists
SEX*™ such that (x,f)en and H*f=0.

2. Hyponormal operators on uniformly convex spaces. The following theorem
was shown by K. MATTILA [9].

Theorem B. Let X be uniformly c-convex and let T=H+iK be a hyponormal
operator on X. If there exists a sequence {x,} of unit vectors in X such that

(T—(a+ib))x, — 0,

then (H—a)x,~0 and (K—b)x,—0.
We shall show the following (converse to the theorem above):
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Theorem 1. Let X be uniformly convex and let T=H+iK be a hyponormal
operator on X. (1) If a€a(H), then there exist some real number b and sequence {x,}
of unit vectors for which (H—a)x,—~0 and (K—b)x,—~0, so that in particular,
a-+ibca(T). (2) Similarly, if b’€c(K), then there exist some real number a’ and sequ-
ence {y,} of unit vectors for which (H—a’)y,—~0 and (K—b")y,—~0, so that in par-
ticular, a'+ib’€o(T).

We need the following
Theorem C ({9], Theorem 2.4). Let X be strictly c-convex and let C=0 be
hermitian. If f(Cx)=0 for some {x,f)¢n, then Cx=0.

Proof of Theorem 1. (1) Since H is hermitian, so it follows that a€e,(H).
Consider the extension space X° of X and the faithful representation B(X)—~B(X?):
T—T° in the sense of DE BARRA [1]. Then « is an eigenvalue of H® If x° is in
Ker (H°—a) such that [[x%|=1, then by Theorem A there exists f°¢X** such that
LeO)=|fl=1 and (H°-a)*f°=0.

Since T is hyponormal we can let that C=i(HK—KH)=0; then C*=0 and

FO(COX®) = (K™ (H—a)** £°)— if*(KO(H*— a) %) = 0,

where £ is the Gel'fand representation of x. Since the space X° is uniformly convex
({11, Theorem 4), by Theorem C, it follows that C°x®=0. Therefore, it is casy to
see that Ker (H°—aq) is invariant for K°. So there exist a sequence {x,} of unit vectors
and a real number b such that (H—a)x,~0 and (K—b)x,—O0.

(2) is the same. So the proof is complete.

Theorem 2. Let X be uniformly convex and let T=H+-iK be a hyponormal
operator on X. Then
coo(T) =V(T) = V(B(X),T).

Proof. It is well-known that co o(T)C¥V(T)cV(B(X), T). We assume that
Re o (T)c{acR: a=0}. Then, by Theorem 1, it follows that ¢(H)c {a€R: a=0}.
So it follows that V(B(X), H)c{a€R: a=0} and so ReV(B(X), T)c{acR:
a=0}. Since a7+ f is hyponormal for every «, B¢ C, it follows that co o(T)=
=V(B(X), T). So the proof is complete.

Theorem D ([9], Theorem 2.5). Let X be uniformly c-convex and let C=0 be
a hermitian operator on X. If there are sequences {x,}c X and {f,}CX™* such that
Ix M =Nfoll=1 for each n, f,(x,)~1 and f,(Cx,)—0, then Cx,—0.

Lemma 3. Let T=H+iK be a hyponormal operator. If TT and TT are not
invertible, then 0€0a(TT) and 0¢0o(TT), respectively, where 0 denotes ‘the boun-
dary of .
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Proof. We may only prove that ¢(TT) and 6(71 ) are included in the half-
plane {x€C: Rea=0}. Since V(H?®) and V(K? areincluded in {ax€C: Re az=0},
it follows that V(TT)=V(H*+K*+C)cV(H?»+V(K»)+V(C)c{acC: Re «=0},
where C=i(HK—KH)=0. Therefore, ¢(TT) is included in {x€C: Re a=0}.
Also, since o(TT)—{0}=0(TT)—{0}, it follows that ¢(TT)c{x€C: Re a=0}.

So the proof is complete.

Lemma 4. Let X be uniformly c-convex and let T=H+iK be a hyponormal
operator on X. If TT is not invertible, then TT is not invertible.

Proof. By Lemma 3, there exists a sequence {x,} of unit vectors in X such that
TTx,—~0. We let that C=i(HK—KH)=0. Then, for a sequence {f,} in X* such
that (x,, f,)€x, we get that f,(Cx,)--0. So, by Theorem D, Cx,—0. Therefore,
TTx,=(H2+K2—C)x,~0.

So the proof is complete.

Theorem 5. iet X and X* be uniformly c-convex and let T=H+iK be a hy-
ponormal operator on X. Then

o(T) ={z¢€C: z€o,.(T))}.

Proof. Since T—z is hyponormal for every z€C, it is sufficient to show that
0¢6(T) if and only if 0€¢,(T). Assume that O belongs to ¢(7). By Lemma 4, we
may assume that TT is not invertible.

Therefore, by Lemma 3, 0 belongs to do(7TT). It follows that there exists a
sequence {x,} of unit vectors in X such that 7TTx,—0. Since 7 is hyponormal, by
Theorem B it follows that T2x,—~0. By the spectral mapping theorem for approxi-
mate point spectrum, 0 belongs to ¢ (7).

Conversely, assume that 0 belongs to ¢,.(T). Then it follows that 0¢o(TT)=
=¢(T*T*). Similarly, O belongs to ¢,.(T*T*). Here, T* is hyponormal on a uni-
formly c-convex space X*. Therefore, 0 belongs to ¢(T*)=0(T).

So the proof is complete.

Theorem 6. Let X be strictly c-convex and let T=H+iK be a hyponormal
operator on X. Suppose that X is an extreme point of coV(T) such that 1€V (T). Let
Jf(TIx)=A for some (x,f)en. Then Tx=2Ax.

Proof. Each linear mapping u(z)=az+f (z€C), where «, fcC, o0,
maps V(T) onto ¥ (u(T)) and V(T) onto V(u(T)). In addition u(T) is hyponormal.
Hence, we can suppose that A€R and Rez=1 (z€V(T)). Since f(Hx)=A=
=max {a: «€ V(H)}, it follows by Theorem C that Hx=1x. If x’cKer (H—2)
such that | x’|=1, then there exists f’¢ X* such that (x’, f)eén and (H—A)*f'=0.
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It follows that
(Cx') = i# (K*(H—)*f")—if (K(H-2)x") =0
where C=i(HK— KH)=0.

By Theorem C, Cx’=0. Hence, it follows that (H—A)Kx'=0. Therefore, it
is easy to see that Ker (H—4) is invariant for K. Let K be the restriction of X to
Ker (H—AI). Let ycKer(H—2) with [y|=1 and gé¢(Ker (H—A))* such that
lgl=g(»)=1. Then

Ty = Ay+iKy = Ay+iK, ycKer (H—A)

g(Ty) = A+ig(Kyy).

Here, g(Ty)€V(T). Since 1 is an extreme point of co V(T) and Rez=1 (z€V(T)),
itfollowsthat V(K;))cR* or V(—K,)CR*. Let f;=f|Ker(H—A1). We have then
JilKix)=f(Kx)=0 and |fi[[=fi(x)=1. Since Ker (H—2) is strictly c-convex, it
follows that K;x=Kx=0, by Theorem C.

So the proof is complete.

and

3. Doubly commuting n-tuples of hyponormal operators

Definition 3. For commuting operators Ty and T, such that T;=H;+iK;
(H; and K; hermitian, j=1, 2), T; and T; are called doubly commuting if T,T,=T,T;.
If T; and T, are doubly commuting, then H; and K; commute with H; and K, for
J#L

Let T=(T;,...,T;,) be a commuting n-tuple of operators on X. Let o(T)
be the Taylor joint spectrum of T. We refer the reader to TAYLOR [11].

The spatial joint numerical range V(T) and the joint numerical range
V(B(X), T) of T are defined by

V(T) = {(f(T1%), ... (T, x))eC": (x, fen}
V(B(X),T) = {(F(Tl), cons F(T))EC*: FEB(X)* and |F| = F(I) = 1}.

The joint numerical radius v(T) and the joint spectral radius r(T) of T=(T, ..., T))
are defined by

and

v(T) = sup {{z|: zeV(T)}

F(T) = sup {lzI: z€a(T)}.

Theorem E (V. WRoBEL [14], Corollary 2.3). Let T=(T;, ..., T,) be a commut-
ing n-tuple of operators. Then

and

co 6(T) C V(T).

10
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Theorem 7. Let X be uniformly convex and let T=(T,, ..., T,) be a doubly
commuting n-tuple of hyponormal operators on X. Then

coa(T) =V (T) =V(B(X), T).

Proof. By Theorem E, it is clear that co o(T)CcV(T)CV(B(X), T). Assume
that coo(T)SGV(B(X), T). Suppose that «a=(0;, ..., %)EV(B(X), T)—co o(T).
Then there exists a linear functional @ on C" and a real number r such that

Re ®#(z) < r < Re ®(a) (z€co a(T)).

Let &(2)=1Iyz;+...+ 1,2, (z=(zy, ..., 2,)€C"), and choose a non-singular nXn
matrix M with (¢4, ..., #1,) as its first row. Then

Rez, <r<Refy (z=(z,...2)E0(MT)),

where (B, ..., B,)=Ma. Therefore, coo(Z; tle})gV(B(X), Z;it;T).  Since
Z;1,;T; is a hyponormal operator on a uniformly convex space, this yields a contra-
diction to Theorem 2.

So the proof is complete.

Corollary 8. Let X be uniformly convex and let T=(T, ..., T,) be a doubly
commuting n-tuple of hyponormal operators on X. Then r(T)=v(T).
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