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Hyponormal operators on uniformly convex spaces 

M U N E O CHO 

Dedicated to Professor Jun Tomiyama on his 60th birthdy 

1. Introduction. Let X be a complex Banach space. W e denote by X* the dual 
space of X and by B(X) the space of all bounded linear operators on X. 

Let us set 
7T = {(xJKXxX*: ll/ll =/(*) = ||x|| = 1}. 

The spatial numerical range V(T) and the numerical range V(B(X), T) of T£B(X) 

are defined by 
V(T) = (f(Tx): ( x , f ) f n ) 

and 
V(B(X), T) = {F(T): F£B(X)* and ||F|| = F(I) = 1}, 

respectively. 

D e f i n i t i o n 1. If F ( r ) c R , then T is called hermitian. An operator T£B(X) 

is called hyponormal if there are hermitian operators H and K such that T=H+iK 

and the commutator C=i(HK— KH) is non-negative, that is 

V(C) cz R + = {a£R: a 0}. 

An operator N is called normal if there are hermitian operators H and K such that 
N=H+iK and HK=KH. A normal operator N on a Banach space X has the 
following properties: 

(1) coa(N) = V(Nj = V(B(X), N). 

(2) If Nxn-~0 for a bounded sequence { * „ } in X, then Hxn-+ 0 and Kxn^0. 

D e f i n i t i o n 2. Let X be Banach space. X will be said to be uniformly convex if 

to each £ > 0 there corresponds a ¿ > 0 such that the conditions ||x|| = ||y|| = I and 

ll* + J>ll 
\\x-y\\^e imply —==1-<5 . 

Received August 11, 1988. 



142 M. Cho 

X will be said to be uniformly c-convex if for every e > 0 there is a ¿ > 0 such 
that [|j>||<e whenever ||x|| = 1 and + 5 for all complex numbers X 

with 
X will be said to be strictly c-convex if y=0 whenever ||x|| = 1 and ||x+A_y||sl 

for all complex numbers X with \X\^\. 

All uniformly convex spaces, for example ¿fp(S, I , ¡j) and ^ „ ( ¿ f ) for 1 < p < oo, 
are uniformly c-convex and all uniformly c-convex spaces are strictly c-convex. 

i f 1 ( 5 , 1 , ¡i) and the trace class ^ ( ¿ f ) are the typical examples of uniformly 
c-convex spaces. See [7] and [9]. 

For an operator T£B(X), the spectrum, the approximate point spectrum, the 
point spectrum, the kernel, and the dual of T are denoted by a{T), <rK(T), op(T), 

Ker (T) and T*, respectively. 
For an operator T=H+iK we denote the operator H—iK by T. 

The following are well-known for T£B(X) : 

(1) co V{T) = V(B{X), T), where c o E is the closed convex hull of E. 

(2) co (x(T)czV(T), where co E and E are the convex hull and the closure of E, 

respectively. 

W e now give a concrete example of a hyponormal operator on a uniformly c-
convex space. Let X be a Hilbert space. Then the trace class Cx { f f ) is a two sided 
ideal o fB(3t f ) . 

Given we define 

SA,B(T) = AT-TB (Jif)). 

Then 5a b is an operator on a uniformly c-convex space ^ ( j ^ ) . It is easy to see that if 
A and B* are hyponormal then SA B is a hyponormal operator on ( № ) (see Theo-
rem 4.3 in [9]). 

The following theorem derives from Lemma 20.3 and Corollary 20.10 in [4]. 

T h e o r e m A . If H is hermitian and Hx = 0 for xdX (||x|| = l ) , then there exists 

feX* such that (xj)en and H*f= 0. 

2. Hyponormal operators on uniformly convex spaces. The following theorem 
was shown by K. MATTILA [9]. 

T h e o r e m B. Let Xbe uniformly c-convex and let T=H+iK be a hyponormal 

operator on X. If there exists a sequence {x„} of unit vectors in X such that 

(T-(a+ib))xn + 0, 

then (H-d)xn^0 and (K-b)xn-~0. 

W e shall show the following (converse to the theorem above): 
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T h e o r e m 1. Let X be uniformly convex and let T=H+iK be a hyponormal 

operator on X. (1) If a£o(H), then there exist some real number b and sequence {x„} 

of unit vectors for which (H— a)x„—0 and (K—b)x„-~ 0, so that in particular, 

a + ib£o(T). (2) Similarly, ifb'(_o(K), then there exist some real number a' and sequ-

ence {yn} of unit vectors for which (H—a')yn-*Q and (K-b')yn-*0, so that in par-

ticular, a'+ib'£o(T). 

W e need the following 
T h e o r e m C ([9], Theorem 2.4). Let X be strictly c-convex and let C s 0 be 

hermitian. If f(Cx)=0 for some (x,/)£n, then Cx=0. 

P r o o f o f T h e o r e m 1. (1) Since H is hermitian, so it follows that a(Lan(H). 

Consider the extension space X° of X and the faithful representation B(X) -^BiX0): 
T— T° in the sense of DE BARRA [1]. Then a is an eigenvalue of № . If x° is in 
Ker (H°—a) such that ||x°|| = l , then by Theorem A there exists such that 
/0 (x0 ) = ||/°|| = 1 and (H°—a)*f0—0. 

Since T is hyponormal we can let that C=i(HK-KH)^0\ then C ° g 0 and 

f°(C°x0) = ix (K°* (II - a f * f ) - if°(K" (H° — a) x°) = 0, 

where x is the Gel'fand representation of x. Since the space X° is uniformly convex 
([1], Theorem 4), by Theorem C, it follows that C°x°=0 . Therefore, it is easy to 
see that Ker (H°—a) is invariant for K°. So there exist a sequence { * „ } of unit vectors 
and a real number b such that (H—a)x„-~0 and (K—b)xn^0. 

(2) is the same. So the proof is complete. 

T h e o r e m 2. Let X be uniformly convex and let T=H+iK be a hyponormal 

operator on X. Then 

co a(T) = V f - f ) = V(B(X), T). 

Proo f . It is well-known that co <J(T)CV(T)CZV(B(X), T). We assume that 
Re ff(r)ci {aC R : tf^O}. Then, by Theorem 1, it follows that er (//)c {a6R: ai=0}. 
So it follows that V(B(X), // ) c { a£R : ¿z^O} and so Re V(B(X\ r ) c { a<ER: 
flgO}, Since aT+ft is hyponormal for every a, jSgC, it follows that co a(T) = 
= V(B{X), T). So the proof is complete. 

T h e o r e m D ([9], Theorem 2.5). Let X be uniformly c-convex and let C^O be 

a hermitian operator on X. If there are sequences { i , } c l and { / „ } c l * such that 

ll*J = ll/J = l for each n, f„(xn)^ 1 and f„(Cxn)-*0, then C x „ - 0 . 

L e m m a 3. Let T—H+iK be a hyponormal operator. If TT and TT are not 

invertible, then 0£e)cr(TT) and Q^da(TT), respectively, where d denotes 'the boun-

dary of'. 
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P r o o f . W e may only prove that a(TT) and a{Ti ) are included in the half-
plane {«(EC: R e c f l O } . Since V(H") and V(K2) are included in { a£C : Re a^O } , 
it follows that V(TT) = V(H2+K2+ C) c V(H2) 4- V(K2) + V(C)c { «€ C : Re a s O } , 
where C=i{HK-KH)^Q>. Therefore, <r(7T) is included in { a£C: Re a==0}. 
Also, since a{TT)-{0}=a(TT)-{0}, it follows that a ( 7 T ) c { a 6 C : Re a&0 } . 

So the proof is complete. 

L e m m a 4. Let X be uniformly c-convex and let T=H+iK be a hyponormal 

operator on X. IfTTis not invertible, then TT is not invertible. 

P r o o f . By Lemma 3, there exists a sequence { * „ } of unit vectors in X such that 
TTx„^0. W e let that C=i(HK-KH)^0. Then, for a sequence {/„} in X* such 
that (x„,f„)£n, we get that /„(Cx„)—0. So, by Theorem D, C x „ - 0 . Therefore, 
TTxn = (H2+K2-C);c„-0. 

So the proof is complete. 

T h e o r e m 5. Let X and X* be uniformly c-convex and let T=H+iK be a hy-

ponormal operator on X. Then 

o(T) = { z 6 C : z£oK(T)l 

P r o o f . Since T—z is hyponormal for every z£C, it is sufficient to show that 
0£a(T) if and only if 06 f f x (T ) . Assume that 0 belongs to a(T). By Lemma 4, we 
may assume that TT is not invertible. 

Therefore, by Lemma 3, 0 belongs to do(TT). It follows that there exists a 
sequence {x„ } of unit vectors in X such that TTx„-*Q. Since T is hyponormal, by 
Theorem B it follows that T2x„—0. By the spectral mapping theorem for approxi-
mate point spectrum, 0 belongs to cn(T). 

Conversely, assume that 0 belongs to on(T). Then it follows that 0 £ o { T T ) = 

~o(T*T*). Similarly, 0 belongs to aJT*T*). Here, T* is hyponormal on a uni-
formly c-convex space X*. Therefore, 0 belongs to c{T*)=a(T). 

So the proof is complete. 

T h e o r e m 6. Let X be strictly c-convex and let T=H+iK be a hyponormal 

operator on X. Suppose that lis an extreme point of coV (T) such that /£ V{T). Let 

f(Tx)=l for some (x,f)£n. Then Tx=Xx. 

P r o o f . Each linear mapping w(z)=az+/? (z£ C), where a, /?£ C, a^O, 

maps V(T) onto V(u(T)) and V(T) onto V(u(T)). In addition u(T) is hyponormal. 

Hence, we can suppose that l £ R and R e z ^ A (z£V(T)). Since f(Hx)=).— 

=max {a: a^V(H)}, it follows by Theorem C that Hx=Xx. If x ' € K e r ( J i - A ) 

such that ||x'|| = l , then there exists f'£X* such that (x'J'Kn and (H-X)*f'=0. 
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It follows that 

f'(Cx') = ix {K*(H-X)*f')-if'(K(H-X)x') = 0 

where C=i(HK-KH)*sO. 

By Theorem C, C x ' = 0 . Hence, it follows that (77-A ) A x ' = 0 . Therefore, it 

is easy to see that Ker (H—X) is invariant for K. Let be the restriction of K to 

Ker (H-XI). Let j ^ K e r (H-X) with ||y|| = l and g€ (Ker (H-X))* such that 

IISI!=SOO=1. Then 

Ty = Xy+iKy = Xy+iK1yeKer (H-X) 
and 

g(Ty)=X + ig(Kiy). 

Here, g(Ty)£ V(T). Since X is an extreme point o f co V(T) and Re z S X (z€ V(T)), 

it follows that F ( K 1 ) c : R + or F ( - i 1 ) c R + . Let / x=/|Ker (H-X). Wehavethen 
f1(K1x)=f(Kx)=0 and ||/1||=/1(x) = l . Since Ker (H-X) is strictly c-convex, it 
follows that Kxx=Kx=0, by Theorem C. 

So the proof is complete. 

3. Doubly commuting «-tuples of hyponormal operators 

D e f i n i t i o n 3. For commuting operators 7\ and T2 such that Tj = H j + i K j 

(Hj and Kj hermitian, j=l, 2), Tx and T2 are called doubly commuting if T^—T^. 

If 7\ and T2 are doubly commuting, then Hj and Kj commute with H, and Kt for 

Ml. 

Let T=(T1, ..., T„) be a commuting «-tuple of operators on X. Let <j(T) 
be the Taylor joint spectrum of T. W e refer the reader to TAYLOR [11]. 

The spatial joint numerical range V(T) and the joint numerical range 
V(B(X), T ) of T are defined by 

V(T) = {(f(TlX), . . . , / ( 7 » ) £ C " : (x,f)en} 
and 

V(B(X), T ) = { № ) , ..., F(T„))6C": F€B(XT and ||F|| = F(I) = l } . 

The joint numerical radius i>(T) and the joint spectral radius /-(T) of T = ( 7 i , ...,T„) 

are defined by 
v(T)=sup{\z\: z£V(T)} 

and 
'"CO = sup {\z\: z6<r(T)}. 

T h e o r e m E (V. WROBEL [14], Corollary 2.3). Let T=(Ti, ..., T„) be a commut-

ing n-tuple of operators. Then 

co o ( T ) c F ( f ) . 

10 



146 M. Cho 

T h e o r e m 7. Let X be uniformly convex, and let T = ( 7 ] , . . . , T„) be a doubly 

commuting n-tuple of hyponormal operators on X. Then 

co <X(T) = K ( T ) = V(B(X), T ) . 

P r o o f . B y T h e o r e m E , it is c lear that c o o(T)cK(T)cV(B(X), T ) . A s s u m e 

that c o a(T)^V(B(X), T ) . S u p p o s e that oc=(au ..., an)€V(B(X), T ) - C O C T ( T ) . 

T h e n there exists a l inear func t i ona l <P o n C " a n d a real n u m b e r r such tha t 

R e <í>(z) < r < R e <£ ( « ) ( z € c o ff(T)). 

L e t ^ ( z ) = / 1 1 z 1 + . . . + / l nzn ( z = ( z l 5 . . . , z n ) € C " ) , a n d c h o o s e a non-s ingu la r « X « 

mat r i x M w i th ( f u , . . . , tln) as its first r o w . T h e n 

R e Z j < r < R e ft ( z = ( z l s . . . , z „ ) e < r ( M T ) ) , 

w h e r e ( f t , . . . ,/?„) = M a . T h e r e f o r e , c o a ( I ; ^ - 7 } ) ^ ( Z ) , 2 ^ 7 } ) . S ince 

I j t l j T j is a h y p o n o r m a l o p e r a t o r on a u n i f o r m l y c o n v e x space , this y i e l ds a c o n t r a -

d i c t i on t o T h e o r e m 2. 

S o the p r o o f is c o m p l e t e . 

C o r o l l a r y 8. Let X be uniformly convex and let T={TX, ..., T„) be a doubly 

commuting n-tuple of hyponormal operators on X. Then R (T ) = Y (T ) . 
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