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A model for a general linear bounded operator between two
Hilbert spaces

ANDREI HALANAY

The main result of this paper is a theorem asserting that every bounded linear
operator between two Hilbert spaces is unitary equivalent with a certain particular
operator, the ““model”, in a similar sense with that used for contractions in [5]. This is
accomplished by proving a model theorem for a contraction between two Hilbert
spaces inspired by the techniques used in Ch. I, Sec. 10 from [7] then by proving a
model theorem for an invertible linear bounded operator between two Hilbert spaces
whose inverse is a contraction and then by the use of the canonical decomposition of
every linear bounded operator as a direct sum of a contraction, an operator whose
inverse is a contraction and an isometry (see [4], [6]). The model for the contraction
is used also to prove a result concerning dilation of the couple (T, T*).

We express our gratitude to the referee for the carefull reading of the manu-
script and for useful suggestions with the consequence of improved and shorter
proofs of the Theorem 1.1 and especially Theorem 4.2.

1. A model for a contraction between two Hilbert spaces
Let 54, £, be two separable Hilbert spaces and T: #;—~3% a contraction,
that is a bounded linear operator with |T]|=1. Then T*: %+, is also a con-
traction. Define
D =(Le,~T*T)"?, D,=(Le,~TT*)" & =D#, 6 =D,
where I,, denotes the identity operator in #. The norms in the two Hilbert spaces

H#,, #, will be denoted respectively by ||« [l1, |- ll2-
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We observe that ((T*T)*);>, is a decreasing sequence of selfadjoint contrac-
tions, consequently Q,= li}"n (T*T)* exists in the strong sense and 0=Q,= Iy .
Since QI(I,I— T*T)h=0 for hcs#,, O, is the orthogonal projection onto
ker (L, — T*T). Similarly Q2=s——li£n (TT** is the orthogonal projection -onto
ker (I#’— T*). In particular Q,5#, and Q,, are closed subspaces of s, and 63,
respectively.

The definitions of @, and @, show that

(1.1 0, =T*0Q, T, Q,=TO, T*
Let W: Q.5 —0,#,; be defined by
1.2) WO, h = Q,Th, hct,.
Then by (1.1) one can easily see that
IWO, hllz = Q- Thll, = Gy All,,

such that W is an isometry.

Since, by (1.1), Q,(ker T*)={0}, it results that Q,7; is dense in Q,35, such
that, by (1.2), W has dense range in Q,5,. It results that ¥ is a unitary operator.
A computation shows (see [7] Ch. I, Sec. 10) that for every hc#;

kzo !ID(T*T)"hHHkg; 1D, T(T*TY hl§ =

— 2"' ((T* T)zk—(T*T)2k+lh, h)+ Z"' ((T*T)2k+l—(T*T)2k+2h, h) —
k=0 k=0
= [AIE—IT*T)"* hili.
Taking limits we have
(1.3) (A} = g(') IID(T*T)"hlI§+kZ0 ID, T(T*TYhIZ+1Quhlf, heA,.
By similar computations
(14) KlE= 3; IID*(TT*)"h'II§+k§) IDT*(TT*HIR+IQ: W5, Wty

For a Hilbert space &, H?(&) denotes the vectorial Hardy space (see [7], Ch. V
Sec. 1 or [5], Sec. 0). For

u(z) =k§; Fa,, |zl <1
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the norm is defined by
||u||%12(g) = k;’) I ak"??'

We denote by S, the unilateral shift on H2(&), ([5] Sec. 0). Let

5 Vi: H#, ~ HE(E)DHEE,) DO, H,,

Vih=[ 3 2D@*TYh]o[ 3 2D, T(T*TYh]®0;h.
k=0 k=0 )
From (1.3) we have ||Vjh|2=|h|3, where the square of the norm in the direct sum is

the sum of the squares of the norms of the components. Let

Vo: oy >~ HY (6D H?(6:)D0u
(1.6) HY&)@H*(6,)DQ

Vz W = [ 2.,’0 ZkDT*(TT*)k h/] EB[ f ZkD*(TT*)k h'] @th;, h,E%.
k=0 k=0
From (1.4) it follows that |[V,4’|*=||k’||3. From the previous definitions

(17)  WTh=[3 #DT*TT*Thl@[ 3 2D (TTTh|®Q,Th =
k=0 k=0

= [ 3 ADTTY RS 3 2D, T T h]©Q:Th = [S5,0 Tuxey @ Vi
for ewery hesf;, and
(18) WT*W =[3 DI T)FT* K@ 3 2*D,TTY+ K] @QT*I =
k=0 k=0

= [Ig2(s,® S5, WV, 0
for every W ¢€u#;. Therefore the following model theorem is proved.

Theorem 1.1. Let T: #,—~3#, be a contraction. There exist the Hilbert spaces
&y, &, the closed subspaces A C H2(E)DH?2(E,), HA,CHE)DH(E, and the
unitary operators '

Vit ) ~ 00 A, Vo Hy ~ A0y, W: O~ 0x5

such that
1.9 T =V (85,0 Iz ey OW)W,

(1.10) T* = Vi*(Lyre,, © St W) Vs
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2. A model for the inverse of a contraction
Let T: 5%, — 3%, an invertible contraction. 7* is then invertible, too. We proceed
to exhibit a model for 71
Lemma 2.1.

(CRY IDhIF = S IDETHIE for every hest,.
n=1

Proof. First we observe that |{D,{|<1. Indeed,
[D2= sup [DH|Z= sup (1-|T*K|D =1— inf [T*H|}=<1.
1K ll,=1 I hy=1 i Ny=1

Then [D2|<l, so (I—D%)1= 2:1)3:. But (/I—D2)~1=(TT*~! and so
n=

oo

2.2) > D¥ =Di(TT* L
n=1
We observe that

T*DLTT*) T =T (L, ~TT*)(T*) ™" = Le,—T*T = D*
Then

IDH|; = (Dh, h), = (T*DA(TT*)ATh, h), = (DL(TT*)~Th, Th), =
= (3 D¥Th,Th), = 3 (DX Th, Th), = 3 | DLTHIS.
n=1 n=1 n=1

The lemma is proved.
From (1.3) and (2.1) it results

2.3) Al = kzo ;; ID3T(T*T) hll§+k§) 1D, T(T*TY hil3 + | Q. A}
fqr every h€sf,. From (1.4) and (2.1) it results
(24) 1713 = k%'} g; IID’;(TT*)"“h’II§+kZO 1D (TT*)* K |3+10:H13

for every h'eit;.

Let 4 ={ucH2(&)| u(l)= f A"DLK, |).|<‘1, hext,). A is a closed subspace
of H(&). Indeed, let (u,),., be
= ,.Zcz A"Dih:, |A<1; u(P)= nzc’: A"a,, |Al<I1, then

be a sequence in #, u;—~u, u€cH*(&,), u;(A)=

Tty

oty —a)® = 21 ID%(H;— g = \DT (W —hIE ~ 0 as j, k e
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We have [T1(hj—h)Ii=[h;—h3+IDT *(h;—hpl;. But, since [T7'H|*=
=T -2K|2 it rtesults (T -2—1)|k)—h]JI2~0 as j, k—oo, so there exists
W=1limh; and then D}h;~D}h" for every nz=l as j—-oo. But Dih;—a, as
j—»oo,J so a,=D}h and thus u is in .Z.

Let V,: #,~H2(M)DH(E)DQ,#, be defined by

@.5) Th=[3 2h]e[ S 2D, TT* T K0, h, he,
k=0 k=0
where
2.6) h(h) = 3 "DLT(@T*TYh, for || <1.
n=1

(2.1) implies | hk”%,z(gz)z \D(T*T)*h|? and (2.3) implies ||¥71h|12=||h|[f for
every h€sf.
Let V,: #,—~H (M) H2(E,)DQ,#, be defined by

X)) vf =[k§; zk/,;]ea[kg D, (TTY f]00.f, feH
where
2.8) fu3) = 5;."D¢(TT*)'°+1f, for |3 < 1.

(2.1) implies | f|}ss, =IDT*(TT*1l} and (2.4) implies |[V2f1*=|f1} for
all fe,.
In order to find a model for T we compute ¥V, T~ for fci#,.

29 7T f = [f Fgle 3 #D.ATY /00T
where

(2.10) () = 3 IDUTTH f, for | <l.
Then "

@.11) @) —fi() = g PDETTSES for |A] = 1.

Observe that .# is invariant for S7 and let us denote
@12) S, =Shla-
(2.11) becomes g,—f,=S%g,, so

(2.13) : fi=UI-S)g -
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For a Hilbert space £and A€B(&£) a linear bounded operator, we denote by A4,
the operator of multiplication by A4 from H2(&) to H2(8):

(Ax w)(2) = Zw ZAu,, for u(z) = f Fu, lzl <L
K=o K=o

Lemma 2.2. The operator (I ,—S3),: H2(M)—~H2(M) is invertible.

Proof. We will prove that I,—S%: #—~. is invertible. Let S, : H2(£)—~
—H?(&,) be the unilateral shift

(Sg,u)(2) = Z’z"“uh, for u(z) Zc'oz"uk, |z] < 1.
=0

We observe first that (S})*=P ,S% |-

Let ucker(I,—S})*=ker(I,—P,Sz|,). Then wu=P,u=P,Sue
P, (u—S; w)=0 or equivalently (u—S;u) is in .#' and this implies
(u—S% u) Lu from which it results

(2.14)  (uyu) = (S, u, u).
Let u(?)= > A"D"I, |A|<1,KEH#, (2.14) becomes
n=1
DD = 5 (D W, D) = 3 (DY W, D) = Z;IID'M'H?
n=1 n=3 n=3 n=

Then ||D, K’J,=0 since the series are convergent by Lemma 2.1, so D,h’=0 and
this implies #=0, so
(2.15) ker (I,—S%)* = {0}.
Next we prove that 7 ,—S2 is bounded from below. Let u(i)= Zo'ol"D;h’,
n=1
W¢#,, |Al<1, then

1L =S ullrzsry = Z' (D5 =D+ K| = Z IDTTHK|E =

= ;; ITT*) DLk |} = ¢ ;lID'ih'II% = ¢ ullfrxey-

Here we uéed the fact that TT*, being positive and invertible, is bounded from below,
1.e.:

\TT*H |, = |||, for every h'€3#,, with ¢ = 0.
So

(2.16) (L= 52 ull gzesy = lulnzen, €= 0.
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(2.15) and (2.16) prove that there exists (I ,—S2)™!: .# —~./ and then there
exists (I ,— S}t H2(M)—~H*(A). So the lemma is proved.
Lemma 2.2, (1.2), (2.9) and (2.13) imply

AT/ =3 AUa=S)" A8 3 #D.AT Y /1eW 0.1 -

=[(Lg—S3) 3" ® Igz(s,y ®W 1] Vif.
So we have proved

Theorem 2.3. Let T: 3, —~#, be an invertible contraction. There exist the Hil-
bert spaces &, M, the subspaces (closed, linear) A, and A, of H(M)H H2(E,)
and the umitary operators Vi Hy~ OO H,, Vii Ko~ He®Qo s such that

(2.17) T =V [(IJt—Si)QIEBIm(gZ)@W_I]r/:z

where S, is defined by (2.12) and W by (1.2).

3. A model for a general bounded linear operator

To apply the Theorems 1.1 and 2.3 to a general linear bounded operator'
T: #,—~H,, let us denote as in [4], [6]

Dy =[(Lg, —T*T)*1'2, Xy =[(Le,—T*T)"]*?

|4+ 4

A|—4
5 = :

where, for A=A*, At = 3

, AT

Let 2, =D, be the defect space of T, Di=ker (I—T*T), %y =XrH#, the
excess space of T, and consider the corresponding spaces %, @7., %5 for T*.

Then #, =2, &%+ DD;, 3= D% 1+DP;. andfromthe relations TD;=
=D, T, TXpr.=XpT (see the proof in [4]) it results T2, C Dy, T%,C%,. and
obviously T9;C9P:.. Define the operators T1=Tl, : Dr~Dp., L=
=Ty : Zr~Z 1« and E:Tl@}l‘: Dr—~Dr.. T, is a strict contraction and (|T1")2_,
converges strongly to 0 as n —<o (see [4], [6]). T is an invertible operator and T;*
is a contraction. T; is an isometry.

-In order to obtain the model for T we apply Theorem 1.1 for 7; with 5, replaced
by @y and #;, replaced by 2, and Theorem 2.3 for T;* with 5, replaced by Z.
and ##, replaced by Zy.
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4. Some results concerning the dilation of a contraction and its adjoint

Let 57 be a separable Hilbert space and T: 3¢ -3 a contraction. For the sake
of simplifying the presentation we suppose that

4.1) - (T*TY" -0 and (TT*)" -0 strongly, as n —oco.

The main results remain valid without this assumption. From (4.1), &,=&=#
and by Theorem 1.1 we have the subspaces o] and 2%, of H2(#)® H?(#) and the
unitary operators V;: # A3, V,: # —~#, such that V,T=(S*®NV, and WV, T*=
=(I®S*)V, (where we denoted S}, by S* and Iy, by I).

Define J=WV;. J is an unitary operator from %; to J¢;. Using the (easy to
prove) fact that dim J;=dim ] = o, the orthogonals being consideredin H2(#°) @
@H(#), we define J: L2(o#)@® L2(3F) ~ L2(#) D L2(H#)

(4.2) J = J®(unitary operator #;' — A, L)@(identity of H® (#)SH2 (7))

(for the definition of L*(o#) see [6], Ch. V); H® (#)=L*#)O HX(H)).
Let Z* be the backward shift on L2(s#). if

u(z) = > 'u,, |zl =1,

n=—oo

then

(Z'u)(2) = 2 Z'Upsq, 2l =L
Define
4.3) U=J*I2y®Z"), V =(Z*®I1e(p))J.

U and ¥ are unitary operators on L2(J#)®L*(s#). Let us identify # with 7 by
the mean of ¥,. Then we state

Theorem 4.1. For every polynomial p in two variables,
where by P, we denote the prajection onto .

The proof relies on direct computation and 1s omitted. Next we show that in
the case of a normal contraction T satisfying the hypothesis (4.1), the operator J of
(4.2) can be choosed such that the operators U and V defined in (4.3) commute.

Theorem 4.2. Let T: # —~3 be a normal contraction satisfying (TT*)"—~0
sirongly as n—oo. Then the operator J in (4.2) can be constructed such that U and V
defined in (4.3) saiisfy UV=VU.
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Proof. The proof that follows was suggested by the referee, replacing the more

comphcated original one. T normal implies D,=D and & =8&,=3¢ by hypotheses
(77"~

Let T WR be the polar decomposition of T. Then W can be a unitary operator,
WR=RW and WD=DW. Define the operator U on H2(s#) by

0(3 2h)= 3 #W2h,.
k=0 k=0

U is a unitary operator that commutes with S*, the backward shift on H2(#). The
operator U defined by
7— (2 o)

u o
with respect to H2(o#)® H?*() is a unitary operator that satisfies

4.4) (S*eSH) U = U(S*aS™).
Then

U(( f 2XDT* (TT* h)s( f ZFDTT*Fh)) =
k=0 k=0

MM

= U(( 3 #DW* R+ h)a( 3 *D,R*h)) = ( 2 2D, R* W) ( z ZDWRRY h) =
k=0

k

1
=3

= (3 DA TF¥he( 3 2D, T(T*T)h) =
k=0 k=0

oo

= KW (2 2DT*(TT* )@ ( 2 2D, (TT* k)

for every h<a#. This shows that U=, and U, =WV;. Since U is a unitary
operator it results UX;- =4+ and so we can choose "J such that
j|m(:¢)em(.#) =U.

For this J we have, due also to (4.4),
UV |:myonzey = U7 (S* @SN U = S*@S* = VUlney oz ) -

Since by (4.2), (4.3) the same is true for HZ (#)DHZ(H) itresults UV=VU and
the theorem is proved.

We remark at the end that we can drop the assumption (4.1) from Theorems 4.1
and 4.2 without altering the results.
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