A model for a general linear bounded operator between two Hilbert spaces

ANDREI HALANAY

The main result of this paper is a theorem asserting that every bounded linear operator between two Hilbert spaces is unitary equivalent with a certain particular operator, the "model", in a similar sense with that used for contractions in [5]. This is accomplished by proving a model theorem for a contraction between two Hilbert spaces inspired by the techniques used in Ch. I, Sec. 10 from [7] then by proving a model theorem for an invertible linear bounded operator between two Hilbert spaces whose inverse is a contraction and then by the use of the canonical decomposition of every linear bounded operator as a direct sum of a contraction, an operator whose inverse is a contraction and an isometry (see [4], [6]). The model for the contraction is used also to prove a result concerning dilation of the couple (T, T^{*}).

We express our gratitude to the referee for the carefull reading of the manuscript and for useful suggestions with the consequence of improved and shorter proofs of the Theorem 1.1 and especially Theorem 4.2.

1. A model for a contraction between two Hilbert spaces

Let $\mathscr{H}_{1}, \mathscr{H}_{2}$ be two separable Hilbert spaces and $T: \mathscr{H}_{1} \rightarrow \mathscr{H}_{2}$ a contraction, that is a bounded linear operator with $\|T\| \leqq 1$. Then $T^{*}: \mathscr{H}_{2} \rightarrow \mathscr{H}_{1}$ is also a contraction. Define

$$
D=\left(I_{\mathscr{H}_{1}}-T^{*} T\right)^{1 / 2}, \quad D_{*}=\left(I_{\mathscr{H}_{2}}-T T^{*}\right)^{1 / 2}, \quad \mathscr{E}_{1}=\overline{D \mathscr{H}_{1}}, \quad \mathscr{E}_{2}=\overline{D_{*} \mathscr{H}_{2}}
$$

where $I_{\mathscr{H}}$ denotes the identity operator in \mathscr{H}. The norms in the two Hilbert spaces $\mathscr{H}_{1}, \mathscr{H}_{2}$ will be denoted respectively by $\|\cdot\|_{1},\|\cdot\|_{2}$.

We observe that $\left(\left(T^{*} T\right)^{k}\right)_{k=0}^{\infty}$ is a decreasing sequence of selfadjoint contractions, consequently $Q_{1}=\lim _{k}\left(T^{*} T\right)^{k}$ exists in the strong sense and $0 \leqq Q_{1} \leqq I_{\mathscr{P}_{1}}$. Since $Q_{1}\left(I_{\mathscr{H}_{1}}-T^{*} T\right) h=0$ for $h \in \mathscr{H}_{1}, Q_{1}$ is the orthogonal projection onto $\operatorname{ker}\left(I_{\mathscr{H}_{1}}-T^{*} T\right)$. Similarly $Q_{2}=s-\lim _{k}\left(T T^{*}\right)^{k}$ is the orthogonal projection onto ker $\left(I_{\mathscr{H}_{2}}-T T^{*}\right)$. In particular $Q_{1} \mathscr{H}_{1}$ and $Q_{2} \mathscr{H}_{2}$ are closed subspaces of \mathscr{H}_{1} and \mathscr{H}_{2}, respectively.

The definitions of Q_{1} and Q_{2} show that

$$
\begin{equation*}
Q_{1}=T^{*} Q_{2} T, \quad Q_{2}=T Q_{1} T^{*} \tag{1.1}
\end{equation*}
$$

Let $W: Q_{1} \mathscr{H}_{1} \rightarrow Q_{2} \mathscr{H}_{2}$ be defined by

$$
\begin{equation*}
W Q_{1} h=Q_{2} T h, \quad h \in \mathscr{H} \mathscr{H}_{1} . \tag{1.2}
\end{equation*}
$$

Then by (1.1) one can easily see that

$$
\left\|W Q_{1} h\right\|_{2}=\left\|Q_{2} T h\right\|_{2}=\left\|Q_{1} h\right\|_{1}
$$

such that W is an isometry.
Since, by (1.1), $Q_{2}\left(\operatorname{ker} T^{*}\right)=\{0\}$, it results that $Q_{2} T \mathscr{H}_{1}$ is dense in $Q_{2} \mathscr{H}_{2}$, such that, by (1.2), W has dense range in $Q_{2} \mathscr{H}_{2}$. It results that W is a unitary operator. A computation shows (see [7] Ch. I, Sec. 10) that for every $h \in \mathscr{H}_{1}$

$$
\begin{aligned}
& \quad \sum_{k=0}^{n}\left\|D\left(T^{*} T\right)^{k} h\right\|_{1}^{2}+\sum_{k=1}^{n}\left\|D_{*} T\left(T^{*} T\right)^{k} h\right\|_{2}^{2}= \\
& =\sum_{k=0}^{n}\left(\left(T^{*} T\right)^{2 k}-\left(T^{*} T\right)^{2 k+1} h, h\right)+\sum_{k=0}^{n}\left(\left(T^{*} T\right)^{2 k+1}-\left(T^{*} T\right)^{2 k+2} h, h\right)= \\
& \left.=\|h\|_{1}^{2}-\| T^{*} T\right)^{n+1} h \|_{1}^{2} .
\end{aligned}
$$

Taking limits we have

$$
\begin{equation*}
\|h\|_{1}^{2}=\sum_{k=0}^{\infty}\left\|D\left(T^{*} T\right)^{k} h\right\|_{1}^{2}+\sum_{k=0}^{\infty}\left\|D_{*} T\left(T^{*} T\right)^{k} h\right\|_{2}^{2}+\left\|Q_{1} h\right\|_{1}^{2}, \quad h \in \mathscr{H}_{1} . \tag{1.3}
\end{equation*}
$$

By similar computations

$$
\begin{equation*}
\left\|h^{\prime}\right\|_{2}^{2}=\sum_{k=0}^{\infty}\left\|D_{*}\left(T T^{*}\right)^{k} h^{\prime}\right\|_{2}^{2}+\sum_{k=0}^{\infty}\left\|D T^{*}\left(T T^{*}\right)^{k} h^{\prime}\right\|_{1}^{2}+\left\|Q_{2} h^{\prime}\right\|_{2}^{2}, \quad h^{\prime} \in \mathscr{H}_{2} \tag{1.4}
\end{equation*}
$$

For a Hilbert space $\mathscr{E}, H^{2}(\mathscr{E})$ denotes the vectorial Hardy space (see [7], Ch. V Sec. 1 or [5], Sec. 0). For

$$
u(z)=\sum_{k=0}^{\infty} z^{k} a_{k}, \quad|z|<1
$$

the norm is defined by

$$
\|u\|_{H^{2}(\mathscr{E})}^{2}=\sum_{k=0}^{\infty}\left\|a_{k}\right\|_{\delta^{2}}^{2}
$$

We denote by $S_{\mathscr{E}}$ the unilateral shift on $H^{2}(\mathscr{E})$, ([5] Sec. 0). Let

$$
\begin{gather*}
V_{1}: \mathscr{H}_{1} \rightarrow H^{2}\left(\mathscr{E}_{1}\right) \oplus H^{2}\left(\mathscr{E}_{2}\right) \oplus Q_{1} \mathscr{H}_{1}, \tag{1.5}\\
V_{1} h=\left[\sum_{k=0}^{\infty} z^{k} D\left(T^{*} T\right)^{k} h\right] \oplus\left[\sum_{k=0}^{\infty} z^{k} D_{*} T\left(T^{*} T\right)^{k} h\right] \oplus Q_{1} h .
\end{gather*}
$$

From (1.3) we have $\left\|V_{1} h\right\|^{2}=\|h\|_{1}^{2}$, where the square of the norm in the direct sum is the sum of the squares of the norms of the components. Let

$$
\begin{gather*}
V_{2}: \mathscr{H}_{2} \rightarrow H^{2}\left(\mathscr{E}_{1}\right) \oplus H^{2}\left(\mathscr{E}_{2}\right) \oplus Q_{2} \mathscr{H}_{2} \tag{1.6}\\
V_{2} h^{\prime}=\left[\sum_{k=0}^{\infty} z^{k} D T^{*}\left(T T^{*}\right)^{k} h^{\prime}\right] \oplus\left[\sum_{k=0}^{\infty} z^{k} D_{*}\left(T T^{*}\right)^{k} h^{\prime}\right] \oplus Q_{2} h^{\prime}, \quad h^{\prime} \in \mathscr{H}_{2} .
\end{gather*}
$$

From (1.4) it follows that $\left\|V_{2} h^{\prime}\right\|^{2}=\left\|h^{\prime}\right\|_{2}^{2}$. From the previous definitions

$$
\begin{align*}
& V_{2} T h=\left[\sum_{k=0}^{\infty} z^{k} D T^{*}\left(T T^{*}\right)^{k} T h\right] \oplus\left[\sum_{k=0}^{\infty} z^{k} D_{*}\left(T T^{*}\right)^{k} T h\right] \oplus Q_{2} T h= \tag{1.7}\\
& =\left[\sum_{k=0}^{\infty} z^{k} D\left(T^{*} T\right)^{k+1} h\right] \oplus\left[\sum_{k=0}^{\infty} z^{k} D_{*} T\left(T^{*} T\right)^{k} h\right] \oplus Q_{2} T h=\left[S_{\delta_{1}}^{*} \oplus I_{H^{2}\left(\delta_{2}\right)} \oplus W\right] V_{1} h
\end{align*}
$$

for ewery $h \in \mathscr{H}_{1}$, and

$$
\begin{gather*}
V_{1} T^{*} h^{\prime}=\left[\sum_{k=0}^{\infty} z^{k} D\left(T^{*} T\right)^{k} T^{*} h^{\prime}\right] \oplus\left[\sum_{k=0}^{\infty} z^{k} D_{*}\left(T T^{*}\right)^{k+1} h^{\prime}\right] \oplus Q_{1} T^{*} h^{\prime}= \tag{1.8}\\
=\left[I_{H^{2}\left(\delta_{1}\right)} \oplus S_{\delta_{2}}^{*} \oplus W^{*}\right] V_{2} h^{\prime}
\end{gather*}
$$

for every $h^{\prime} \in \mathscr{H}_{2}$. Therefore the following model theorem is proved.
Theorem 1.1. Let $T: \mathscr{H}_{1} \rightarrow \mathscr{H}_{2}$ be a contraction. There exist the Hilbert spaces $\mathscr{E}_{1}, \mathscr{E}_{2}$, the closed subspaces $\mathscr{K}_{1} \subset H^{2}\left(\mathscr{E}_{1}\right) \oplus H^{2}\left(\mathscr{E}_{2}\right), \quad \mathscr{K}_{2} \subset H^{2}\left(\mathscr{E}_{1}\right) \oplus H^{2}\left(\mathscr{E}_{2}\right)$ and the unitary operators

$$
V_{1}: \mathscr{H}_{1} \rightarrow \mathscr{K}_{1} \oplus Q_{1} \mathscr{H}_{1}, \quad V_{2}: \mathscr{H}_{2} \rightarrow \mathscr{K}_{2} \oplus Q_{2} \mathscr{H}_{2}, \quad W: Q_{1} \mathscr{H}_{1} \rightarrow Q_{2} \mathscr{H}_{2}
$$

such that

$$
\begin{align*}
T & =V_{2}^{*}\left(S_{\delta_{1}}^{*} \oplus I_{H^{2}\left(\mathcal{E}_{2}\right)} \oplus W\right) V_{1} \tag{1.9}\\
T^{*} & =V_{1}^{*}\left(I_{H^{2}\left(\mathcal{I}_{1}\right)} \oplus S_{\delta_{2}}^{*} \oplus W^{*}\right) V_{2} \tag{1.10}
\end{align*}
$$

2. A model for the inverse of a contraction

Let $T: \mathscr{H}_{1} \rightarrow \mathscr{H}_{2}$ an invertible contraction. T^{*} is then invertible, too. We proceed to exhibit a model for T^{-1}.

Lemma 2.1.

$$
\begin{equation*}
\|D h\|_{1}^{2}=\sum_{n=1}^{\infty}\left\|D_{*}^{n} T h\right\|_{2}^{2} \text { for every } h \in \mathscr{H}_{1} \tag{2.1}
\end{equation*}
$$

Proof. First we observe that $\left\|D_{*}\right\|<1$. Indeed,

$$
\left\|D_{*}\right\|^{2}=\sup _{\left\|h^{\prime}\right\|_{2}=1}\left\|D_{*} h^{\prime}\right\|_{2}^{2}=\sup _{\left\|h^{\prime}\right\|_{2}=1}\left(1-\left\|T^{*} h^{\prime}\right\|_{1}^{2}\right)=1-\inf _{\left\|h^{\prime}\right\|_{2}=1}\left\|T^{*} h^{\prime}\right\|_{1}^{2}<1 .
$$

Then $\left\|D_{*}^{2}\right\|<1$, so $\left(I-D_{*}^{2}\right)^{-1}=\sum_{n=0}^{\infty} D_{*}^{2 n}$. But $\left(I-D_{*}^{2}\right)^{-1}=\left(T T^{*}\right)^{-1}$ and so

$$
\begin{equation*}
\sum_{n=1}^{\infty} D_{*}^{2 n}=D_{*}^{2}\left(T T^{*}\right)^{-1} \tag{2.2}
\end{equation*}
$$

We observe that

$$
T^{*} D_{*}^{2}\left(T T^{*}\right)^{-1} T=T^{*}\left(I_{\mathscr{R}_{2}}-T T^{*}\right)\left(T^{*}\right)^{-1}=I_{\mathscr{P}_{1}}-T^{*} T=D^{2} .
$$

Then

$$
\begin{aligned}
\|D h\|_{1}^{2} & =\left(D^{2} h, h\right)_{1}=\left(T^{*} D_{*}^{2}\left(T T^{*}\right)^{-1} T h, h\right)_{1}=\left(D_{*}^{2}\left(T T^{*}\right)^{-1} T h, T h\right)_{2}= \\
& =\left(\sum_{n=1}^{\infty} D_{*}^{2 n} T h, T h\right)_{2}=\sum_{n=1}^{\infty}\left(D_{*}^{2 n} T h, T h\right)_{2}=\sum_{n=1}^{\infty}\left\|D_{*}^{n} T h\right\|_{2}^{2}
\end{aligned}
$$

The lemma is proved.
From (1.3) and (2.1) it results

$$
\begin{equation*}
\|h\|_{1}^{2}=\sum_{k=0}^{\infty} \sum_{n=1}^{\infty}\left\|D_{*}^{n} T\left(T^{*} T\right)^{k} h\right\|_{2}^{2}+\sum_{k=0}^{\infty}\left\|D_{*} T\left(T^{*} T\right)^{k} h\right\|_{2}^{2}+\left\|Q_{1} h\right\|_{1}^{2} \tag{2.3}
\end{equation*}
$$

for every $h \in \mathscr{H}_{1}$. From (1.4) and (2.1) it results

$$
\begin{equation*}
\left\|h^{\prime}\right\|_{2}^{2}=\sum_{k=0}^{\infty} \sum_{n=1}^{\infty}\left\|D_{*}^{n}\left(T T^{*}\right)^{k+1} h^{\prime}\right\|_{2}^{2}+\sum_{k=0}^{\infty}\left\|D_{*}\left(T T^{*}\right)^{k} h^{\prime}\right\|_{2}^{2}+\left\|Q_{2} h^{\prime}\right\|_{2}^{2} \tag{2.4}
\end{equation*}
$$

for every $h^{\prime} \in \mathscr{H}_{2}$.
Let $\mathscr{M}=\left\{u \in H^{2}\left(\mathscr{E}_{2}\right)\left|u(\lambda)=\sum_{n=1}^{\infty} \lambda^{n} D_{*}^{n} h^{\prime},|\lambda|<1, h^{\prime} \in \mathscr{H}_{2}\right\} . \mathscr{M}\right.$ is a closed subspace of $H^{2}\left(\mathscr{E}_{2}\right)$. Indeed, let $\left(u_{j}\right)_{j \geq 0}$ be a sequence in $\mathscr{M}, u_{j} \rightarrow u, u \in H^{2}\left(\mathscr{E}_{2}\right), u_{j}(\lambda)=$ $=\sum_{n=1}^{\infty} \lambda^{n} D_{*}^{n} h_{j}^{\prime}, \quad|\lambda|<1 ; u(\lambda)=\sum_{n=1}^{\infty} \lambda^{n} a_{n}, \quad|\lambda|<1$, then

$$
\left\|u_{j}-u_{k}\right\|^{2}=\sum_{n=1}^{\infty}\left\|D_{*}^{n}\left(h_{j}^{\prime}-h_{k}^{\prime}\right)\right\|_{2}^{2}=\left\|D T^{-1}\left(h_{j}^{\prime}-h_{k}^{\prime}\right)\right\|_{1}^{2} \rightarrow 0 \quad \text { as } \quad j, k \rightarrow \infty
$$

We have $\left\|T^{-1}\left(h_{j}^{\prime}-h_{k}^{\prime}\right)\right\|_{1}^{2}=\left\|h_{j}^{\prime}-h_{k}^{\prime}\right\|_{2}^{2}+\left\|D T^{-1}\left(h_{j}^{\prime}-h_{k}^{\prime}\right)\right\|_{1}^{2}$. But, since $\left\|T^{-1} h^{\prime}\right\|^{2} \geqq$ $\geqq\|T\|^{-2}\left\|h^{\prime}\right\|_{2}^{2} \quad$ it results $\left(\|T\|^{-2}-1\right)\left\|h_{j}^{\prime}-h_{k}^{\prime}\right\|_{2}^{2} \rightarrow 0$ as $j, k \rightarrow \infty$, so there exists $h^{\prime}=\lim _{j} h_{j}^{\prime}$ and then $D_{*}^{n} h_{j}^{\prime} \rightarrow D_{*}^{n} h^{\prime}$ for every $n \geqq 1$ as $j \rightarrow \infty$. But $D_{*}^{n} h_{j}^{\prime} \rightarrow a_{n}$ as $j \rightarrow \infty$, so $a_{n}=D_{*}^{n} h^{\prime}$ and thus u is in \mathscr{M}.

Let $\tilde{V}_{1}: \mathscr{H}_{1} \rightarrow H^{2}(\mathscr{A}) \oplus H^{2}\left(\mathscr{E}_{2}\right) \oplus Q_{1} \mathscr{H}_{1}$ be defined by

$$
\begin{equation*}
\widetilde{V}_{1} h=\left[\sum_{k=0}^{\infty} z^{k} h_{k}\right] \oplus\left[\sum_{k=0}^{\infty} z^{k} D_{*} T\left(T^{*} T\right)^{k} h\right] \oplus Q_{1} h, \quad h \in \mathscr{H}_{1} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
h_{k}(\lambda)=\sum_{n=1}^{\infty} \lambda^{n} D_{*}^{n} T\left(T^{*} T\right)^{k} h, \text { for } \quad|\lambda|<1 \tag{2.6}
\end{equation*}
$$

(2.1) implies $\left\|h_{k}\right\|_{H^{2}\left(\mathcal{g}_{2}\right)}^{2}=\left\|D\left(T^{*} T\right)^{k} h\right\|_{1}^{2}$ and (2.3) implies $\left\|\tilde{V}_{1} h\right\|^{2}=\|h\|_{1}^{2}$ for every $h \in \mathscr{H}_{1}$.

Let $\quad \tilde{V}_{2}: \mathscr{H}_{2} \rightarrow H^{2}(\mathscr{M}) \oplus H^{2}\left(\mathscr{E}_{2}\right) \oplus Q_{2} \mathscr{H}_{2} \quad$ be defined by

$$
\begin{equation*}
\tilde{V}_{2} f=\left[\sum_{k=0}^{\infty} z^{k} f_{k}\right] \oplus\left[\sum_{k=0}^{\infty} z^{k} D_{*}\left(T T^{*}\right)^{k} f\right] \oplus Q_{2} f, \quad f \in \mathscr{H}_{2} \tag{2.7}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{k}(\lambda)=\sum_{n=1}^{\infty} \lambda^{n} D_{*}^{n}\left(T T^{*}\right)^{k+1} f, \quad \text { for } \quad|\lambda|<1 \tag{2.8}
\end{equation*}
$$

(2.1) implies $\left\|f_{k}\right\|_{H^{2}\left(g_{2}\right)}^{2}=\left\|D T^{*}\left(T T^{*}\right)^{k} f\right\|_{1}^{2}$ and (2.4) implies $\left\|\tilde{V}_{2} f\right\|^{2}=\|f\|_{2}^{2}$ for all $f \in \mathscr{H}_{2}$.

In order to find a model for T^{-1} we compute $\tilde{V}_{1} T^{-1} f$ for $f \in \mathscr{H}_{2}$.

$$
\begin{equation*}
\tilde{V}_{1} T^{-1} f=\left[\sum_{k=0}^{\infty} z^{k} g_{k}\right] \oplus\left[\sum_{k=0}^{\infty} z^{k} D_{*}\left(T T^{*}\right)^{k} f\right] \oplus Q_{1} T^{-1} f \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{k}(\lambda)=\sum_{n=1}^{\infty} \lambda^{n} D_{*}^{n}\left(T T^{*}\right)^{k} f, \text { for } \quad|\lambda|<1 \tag{2.10}
\end{equation*}
$$

Then

$$
\begin{equation*}
g_{k}(\lambda)-f_{k}(\lambda)=\sum_{n=1}^{\infty} \lambda^{n} D_{*}^{n+2}\left(T T^{*}\right)^{k} f \text { for }|\lambda|<1 \tag{2.11}
\end{equation*}
$$

Observe that \mathscr{M} is invariant for $S_{\varepsilon_{2}}^{*}$ and let us denote

$$
\begin{equation*}
S_{*}=\left.S_{\delta_{2}}^{*}\right|_{\mathscr{M}} \tag{2.12}
\end{equation*}
$$

(2.11) becomes $g_{k}-f_{k}=S_{*}^{2} g_{k}$, so

$$
\begin{equation*}
f_{k}=\left(I-S_{*}^{2}\right) g \tag{2.13}
\end{equation*}
$$

For a Hilbert space \mathscr{E} and $A \in B(\mathscr{E})$ a linear bounded operator, we denote by A_{\times} the operator of multiplication by A from $H^{2}(\mathscr{E})$ to $H^{2}(\mathscr{E})$:

$$
\left(A_{\times} u\right)(z)=\sum_{k=0}^{\infty} z^{k} A u_{k}, \text { for } u(z)=\sum_{k=0}^{\infty} z^{k} u_{k}, \quad|z|<1
$$

Lemma 2.2. The operator $\left(I_{\mathcal{M}}-S_{*}^{2}\right)_{\times}: H^{2}(\mathscr{A}) \rightarrow H^{2}(\mathscr{M})$ is invertible.
Proof. We will prove that $I_{\mathscr{M}}-S_{*}^{2}: \mathscr{M} \rightarrow \mathscr{M}$ is invertible. Let $S_{\delta_{2}}: H^{2}\left(\mathscr{\delta}_{2}\right) \rightarrow$ $\rightarrow H^{2}\left(\mathscr{E}_{2}\right)$ be the unilateral shift

$$
\left(S_{\delta_{2}} u\right)(z)=\sum_{k=0}^{\infty} z^{k+1} u_{k}, \text { for } u(z)=\sum_{k=0}^{\infty} z^{k} u_{k}, \quad|z|<1 .
$$

We observe first that $\left(S_{*}^{2}\right)^{*}=\left.P_{\mu} S_{\varepsilon_{2}}^{2}\right|_{\mu}$.
Let $\quad u \in \operatorname{ker}\left(I_{\mu}-S_{*}^{2}\right)^{*}=\operatorname{ker}\left(I_{\mu t}-\left.P_{\mu \mu} S_{\delta_{2}}^{2}\right|_{\mu}\right)$. Then $\quad u=P_{\mu i t} u=P_{\mathcal{M}^{\prime}} S_{\delta_{z}}^{2} u \Leftrightarrow$ $\Leftrightarrow P_{\mu u}\left(u-S_{\delta_{2}}^{2} u\right)=0$ or equivalently $\left(u-S_{\delta_{2}}^{2}, u\right)$ is in \mathscr{M}^{\perp} and this implies $\left(u-S_{c_{2}}^{2} u\right) \perp u$ from which it results

$$
\begin{equation*}
(u, u)=\left(S_{\theta_{2}}^{2} u, u\right) . \tag{2.14}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Let } u(\lambda)=\sum_{n=1}^{\infty} \lambda^{n} D_{*}^{n} h^{\prime},|\lambda|<1, h^{\prime} \in \mathscr{H}_{2} \text {. (2.14) becomes } \\
& \sum_{n=1}^{\infty}\left\|D_{*}^{n} h^{\prime}\right\|_{2}^{2}=\sum_{n=3}^{\infty}\left(D_{*}^{n-2} h^{\prime}, D_{*}^{n} h^{\prime}\right)=\sum_{n=3}^{\infty}\left(D_{*}^{n-1} h^{\prime}, D_{*}^{n-1} h^{\prime}\right)=\sum_{n=2}^{\infty}\left\|D_{*}^{n} h^{\prime}\right\|_{2}^{2} .
\end{aligned}
$$

Then $\left\|D_{*} h^{\prime}\right\|_{2}=0$ since the series are convergent by Lemma 2.1 , so $D_{*} h^{\prime}=0$ and this implies $u=0$, so

$$
\begin{equation*}
\operatorname{ker}\left(I_{\mu H}-S_{*}^{2}\right)^{*}=\{0\} . \tag{2.15}
\end{equation*}
$$

Next we prove that $I_{\mu t}-S_{*}^{2}$ is bounded from below. Let $u(\lambda)=\sum_{n=1}^{\infty} \lambda^{n} D_{*}^{n} h^{\prime}$, $h^{\prime} \in \mathscr{H}_{2},|\lambda|<1$, then

$$
\begin{gathered}
\left\|\left(I_{\mu}-S_{*}^{2}\right) u\right\|_{H^{2}\left(\Omega_{2}\right)}^{2}=\sum_{n=1}^{\infty}\left\|\left(D_{*}^{n}-D_{*}^{n+2}\right) h^{\prime}\right\|_{2}^{2}=\sum_{n=1}^{\infty}\left\|D_{*}^{n}\left(T T^{*}\right) h^{\prime}\right\|_{2}^{2}= \\
=\sum_{n=1}^{\infty}\left\|\left(T T^{*}\right) D_{*}^{n} h^{\prime}\right\|_{2}^{2} \geqq c^{2} \sum_{n=1}^{\infty}\left\|D_{*}^{n} h^{\prime}\right\|_{2}^{2}=c^{2}\|u\|_{H^{2}\left(\Omega_{2}\right)}^{2} .
\end{gathered}
$$

Here we used the fact that $T T^{*}$, being positive and invertible, is bounded from below, i.e.:

$$
\left\|T T^{*} h^{\prime}\right\|_{2} \geqq c\left\|h^{\prime}\right\|_{2} \text { for every } h^{\prime} \in \mathscr{H}_{2} \text {, with } c>0 \text {. }
$$

So

$$
\begin{equation*}
\left\|\left(I_{\mathcal{A}}-S_{*}^{2}\right) u\right\|_{H=\left(\sigma_{2}\right)} \geqq c\|u\|_{H^{2}\left(\sigma_{2}\right)}, \quad c>0 . \tag{2.16}
\end{equation*}
$$

(2.15) and (2.16) prove that there exists $\left(I_{\mathcal{M}}-S_{*}^{2}\right)^{-1}: \mathscr{M} \rightarrow \mathscr{M}$ and then there exists $\left(I_{\mathscr{M}}-S_{*}^{2}\right)_{\times}^{-1}: H^{2}(\mathscr{M}) \rightarrow H^{2}(\mathscr{M})$. So the lemma is proved.

Lemma 2.2, (1.2), (2.9) and (2.13) imply

$$
\begin{gathered}
\tilde{V}_{1} T^{-1} f=\left[\sum_{k=0}^{\infty} z^{k}\left(I_{\mathscr{M}}-S_{*}^{2}\right)^{-1} f_{k}\right] \oplus\left[\sum_{k=0}^{\infty} z^{k} D_{*}\left(T T^{*}\right)^{k} f\right] \oplus W^{-1} Q_{2} f= \\
=\left[\left(I_{\mathscr{A}}-S_{*}^{2}\right)_{\times}^{-1} \oplus I_{H^{2}\left(\varepsilon_{2}\right)} \oplus W^{-1}\right] \tilde{V}_{2} f .
\end{gathered}
$$

So we have proved
Theorem 2.3. Let $T: \mathscr{H}_{1} \rightarrow \mathscr{H}_{2}$ be an invertible contraction. There exist the Hilbert spaces $\mathscr{E}_{2}, \mathscr{M}$, the subspaces (closed, linear) \mathscr{K}_{1} and \mathscr{K}_{2} of $H^{1}(\mathscr{M}) \oplus H^{2}\left(\mathscr{E}_{2}\right)$ and the unitary operators $\tilde{V}_{1}: \mathscr{H}_{1} \rightarrow \mathscr{K}_{1} \oplus Q_{1} \mathscr{H}_{1}, \quad \tilde{V}_{2}: \mathscr{H}_{2} \rightarrow \mathscr{K}_{2} \oplus Q_{2} \mathscr{H}_{2}$ such that

$$
\begin{equation*}
T^{-1}=\tilde{V}_{1}^{*}\left[\left(I_{\mathcal{A}}-S_{*}^{2}\right)_{x}^{-1} \oplus I_{H^{2}\left(\mathcal{E}_{2}\right)} \oplus W^{-1}\right] \tilde{V}_{2} \tag{2.17}
\end{equation*}
$$

where S_{*} is defined by (2.12) and W by (1.2).

3. A model for a general bounded linear operator

To apply the Theorems 1.1 and 2.3 to a general linear bounded operator $T: \mathscr{H}_{1} \rightarrow \mathscr{H}_{2}$, let us denote as in [4], [6]

$$
D_{T}=\left[\left(I_{\mathscr{H}_{1}}-T^{*} T\right)^{+}\right]^{1 / 2}, \quad X_{T}=\left[\left(I_{\mathscr{H}_{1}}-T^{*} T\right)^{-}\right]^{1 / 2}
$$

where, for $A=A^{*}, A^{+}=\frac{|A|+A}{2}, A^{-}=\frac{|A|-A}{2}$.
Let $\mathscr{D}_{T}=\overline{D_{T} \mathscr{H}_{1}}$ be the defect space of $T, \mathscr{D}_{T}^{1}=\operatorname{ker}\left(I-T^{*} T\right), \mathscr{X}_{T}=\overline{X_{T} \mathscr{H}_{1}}$ the excess space of T, and consider the corresponding spaces $\mathscr{D}_{T^{*}}, \mathscr{D}_{T^{*}}^{1}, \mathscr{X}_{T^{*}}$ for T^{*}.

Then $\mathscr{H}_{1}=\mathscr{D}_{T} \oplus \mathscr{X}_{T} \oplus \mathscr{D}_{T}^{1}, \mathscr{H}_{2}=\mathscr{D}_{T^{*}} \oplus \mathscr{X}_{T^{*}} \oplus \mathscr{D}_{T^{*}}^{1}$ and from the relations $T D_{T}=$ $=D_{T^{*}} T, T X_{T^{*}}=X_{T_{*}} T$ (see the proof in [4]) it results $T \mathscr{D}_{T} \subset \mathscr{D}_{T^{*}}, T \mathscr{X}_{T} \subset \mathscr{X}_{T^{*}}$ and obviously $\quad T \mathscr{D}_{T}^{1} \subset \mathscr{D}_{T^{*}}^{1}$. Define the operators $\quad T_{1}=\left.T\right|_{\mathscr{D}_{T}}: \mathscr{D}_{T} \rightarrow \mathscr{D}_{T^{*}}, \quad T_{2}=$ $=\left.T\right|_{\mathscr{X}_{T}}: \mathscr{X}_{T} \rightarrow \mathscr{X}_{T^{*}}$ and $T_{3}=\left.T\right|_{\mathscr{D}_{T}^{1}}: \mathscr{D}_{T}^{1} \rightarrow \mathscr{D}_{T^{*}}^{1} . T_{1}$ is a strict contraction and $\left(\left|T_{1}\right|^{n}\right)_{m=1}^{\infty}$ converges strongly to 0 as $n \rightarrow \infty$ (see [4], [6]). T_{2} is an invertible operator and T_{2}^{-1} is a contraction. T_{3} is an isometry.

In order to obtain the model for T we apply Theorem 1.1 for T_{1} with \mathscr{H}_{1} replaced by \mathscr{D}_{T} and \mathscr{H}_{2} replaced by $\mathscr{D}_{T^{*}}$ and Theorem 2.3 for T_{2}^{-1} with \mathscr{H}_{1} replaced by $\mathscr{X}_{T^{*}}$ and \mathscr{H}_{2} replaced by \mathscr{X}_{T}.

4. Some results concerning the dilation of a contraction and its adjoint

Let \mathscr{H} be a separable Hilbert space and $T: \mathscr{H} \rightarrow \mathscr{H}$ a contraction. For the sake of simplifying the presentation we suppose that

$$
\begin{equation*}
\left(T^{*} T\right)^{n} \rightarrow 0 \text { and }\left(T T^{*}\right)^{n} \rightarrow 0 \text { strongly, as } n \rightarrow \infty \tag{4.1}
\end{equation*}
$$

The main results remain valid without this assumption. From (4.1), $\mathscr{E}_{1}=\mathscr{E}_{2}=\mathscr{H}$ and by Theorem 1.1 we have the subspaces \mathscr{K}_{1} and \mathscr{K}_{2} of $H^{2}(\mathscr{H}) \oplus H^{2}(\mathscr{H})$ and the unitary operators $V_{1}: \mathscr{H} \rightarrow \mathscr{K}_{1}, V_{2}: \mathscr{H} \rightarrow \mathscr{H}_{2}$ such that $V_{2} T=\left(S^{*} \oplus I\right) V_{1}$ and $V_{1} T^{*}=$ $=\left(I \oplus S^{*}\right) V_{2}$ (where we denoted $S_{\mathscr{H}}^{*}$ by S^{*} and $I_{H^{*}(\mathscr{H})}$ by I).

Define $J=V_{1} V_{2}^{*}$. J is an unitary operator from \mathscr{K}_{2} to \mathscr{K}_{1}. Using the (easy to prove) fact that $\operatorname{dim} \mathscr{K}_{2}=\operatorname{dim} \mathscr{K}_{1}=\infty$, the orthogonals being considered in $H^{2}(\mathscr{H}) \oplus$ $\oplus H^{2}(\mathscr{H})$, we define $\tilde{J}: L^{2}(\mathscr{H}) \oplus L^{2}(\mathscr{H}) \rightarrow L^{2}(\mathscr{H}) \oplus L^{2}(\mathscr{H})$
(4.2) $\tilde{J}=J \oplus\left(\right.$ unitary operator $\left.\mathscr{K}_{2}^{\perp} \rightarrow \mathscr{K}_{1}^{\perp}\right) \oplus\left(\right.$ identity of $\left.H_{-}^{2}(\mathscr{H}) \oplus H_{-}^{2}(\mathscr{H})\right)$
(for the definition of $L^{2}(\mathscr{H})$ see [6], Ch. V); $H_{-}^{2}(\mathscr{H})=L^{2}(\mathscr{H}) \ominus H^{2}(\mathscr{H})$).
Let Z^{*} be the backward shift on $L^{2}(\mathscr{H})$. if

$$
u(z)=\sum_{n=-\infty}^{\infty} z^{n} u_{n}, \quad|z|=1,
$$

then

$$
\left(Z^{*} u\right)(z)=\sum_{n=-\infty}^{\infty} z^{n} u_{n+1}, \quad|z|=1
$$

Define

$$
\begin{equation*}
U=\tilde{J}^{*}\left(I_{L^{2}(\mathscr{H})} \oplus Z^{*}\right), \quad V=\left(Z^{*} \oplus I_{L^{2}(\mathscr{H})}\right) \tilde{J} \tag{4.3}
\end{equation*}
$$

U and V are unitary operators on $L^{2}(\mathscr{H}) \oplus L^{2}(\mathscr{H})$. Let us identify \mathscr{H} with \mathscr{K}_{2} bj the mean of V_{2}. Then we state

Theorem 4.1. For every polynomial p in two variables,

$$
p\left(T, T^{*}\right)=\left.P_{\mathscr{H}} p(V, U)\right|_{\mathscr{H}}
$$

where by $P_{\not x}$ we denote the projection onto \mathscr{H}.
The proof relies on direct computation and is omitted. Next we show that in the case of a normal contraction T satisfying the hypothesis (4.1), the operator \tilde{J} of (4.2) can be choosed such that the operators U and V defined in (4.3) commute.

Theorem 4.2. Let $T: \mathscr{H} \rightarrow \mathscr{H}$ be a normal contraction satisfying $\left(T T^{*}\right)^{n} \rightarrow 0$ strongly as $n \rightarrow \infty$. Then the operator \tilde{J} in (4.2) can be constructed such that U and V defined in (4.3) satisfy $U V=V U$.

Proof. The proof that follows was suggested by the referee, replacing the more complicated original one. T normal implies $D_{*}=D$ and $\mathscr{E}_{1}=\mathscr{E}_{2}=\mathscr{H}$ by hypotheses $\left(T T^{*}\right)^{n} \rightarrow 0$.

Let $T=\hat{W} R$ be the polar decomposition of T. Then \hat{W} can be a unitary operator, $\hat{W} R=R \hat{W}$ and $\hat{W} D=D \hat{W}$. Define the operator \hat{U} on $H^{2}(\mathscr{H})$ by

$$
\hat{U}\left(\sum_{k=0}^{\infty} z^{k} h_{k}\right)=\sum_{k=0}^{\infty} z^{k} \hat{W}^{2} h_{k}
$$

\hat{U} is a unitary operator that commutes with S^{*}, the backward shift on $H^{2}(\mathscr{H})$. The operator \widetilde{U} defined by

$$
\tilde{U}=\left(\begin{array}{cc}
0 & I_{H^{2}(\mathscr{H})} \\
\hat{U} & 0
\end{array}\right)
$$

with respect to $H^{2}(\mathscr{H}) \oplus H^{2}(\mathscr{H})$ is a unitary operator that satisfies

$$
\begin{equation*}
\left(S^{*} \oplus S^{*}\right) \widetilde{U}=\widetilde{U}\left(S^{*} \oplus S^{*}\right) \tag{4.4}
\end{equation*}
$$

Then

$$
\begin{gathered}
\tilde{U}\left(\left(\sum_{k=0}^{\infty} z^{k} D T^{*}\left(T T^{*}\right)^{k} h\right) \oplus\left(\sum_{k=0}^{\infty} z^{k} D\left(T T^{*}\right)^{k} h\right)\right)= \\
=\widetilde{U}\left(\left(\sum_{k=0}^{\infty} z^{k} D \hat{W}^{*} R^{2 k+1} h\right) \oplus\left(\sum_{k=0}^{\infty} z^{k} D_{*} R^{2 k} h\right)\right)=\left(\sum_{k=0}^{\infty} z^{k} D_{*} R^{2 k} h\right) \oplus\left(\sum_{k=0}^{\infty} z^{k} D \hat{W} R R^{2 k} h\right)= \\
=\left(\sum_{k=0}^{\infty} z^{k} D\left(T^{*} T\right)^{k} h\right) \oplus\left(\sum_{k=0}^{\infty} z^{k} D_{*} T\left(T^{*} T\right)^{k} h\right)= \\
=V_{1} V_{2}^{*}\left(\left(\sum_{k=0}^{\infty} z^{k} D T^{*}\left(T T^{*}\right)^{k} h\right) \oplus\left(\sum_{k=0}^{\infty} z^{k} D_{*}\left(T T^{*}\right)^{k} h\right)\right.
\end{gathered}
$$

for every $h \in \mathscr{H}$. This shows that $\tilde{U} \mathscr{K}_{2}=\mathscr{K}_{1}$ and $\left.\tilde{U}\right|_{\mathscr{K}_{2}}=V_{1} V_{2}^{*}$. Since \tilde{U} is a unitary operator it results $\widetilde{U} \mathscr{K}_{2}^{\perp}=\mathscr{K}_{1}^{\perp}$ and so we can choose \tilde{J} such that

$$
\left.\tilde{J}\right|_{H^{2}(\mathscr{H}) \oplus H^{2}(\mathscr{H})}=\widetilde{U} .
$$

For this \tilde{J} we have, due also to (4.4),

$$
\left.U V\right|_{H:(\mathscr{H}) \oplus H^{2}(\mathscr{H})}=\tilde{U}^{*}\left(S^{*} \oplus S^{*}\right) \tilde{U}=S^{*} \oplus S^{*}=\left.V U\right|_{H^{2}(\mathscr{H}) \oplus H^{2}(\mathscr{H})}
$$

Since by (4.2), (4.3) the same is true for $H_{-}^{2}(\mathscr{H}) \oplus H_{-}^{2}(\mathscr{H})$ it results $U V=V U$ and the theorem is proved.

We remark at the end that we can drop the assumption (4.1) from Theorems 4.1 and 4.2 without altering the results.

References

[1] T. Ando, On a pair of commutative contractions, Acta Sci. Math., 24 (1963), 88-90.
[7] Gr. Arsene, Zoia Ceauşescu, C. Foiaş, On intertwining dilations. VIII, J. Operator Theory, 4 (1980), 55—92.
[3] J. Bunce, Models for n-tuples of noncommuting operators, J. Funct. Anal., 57 (1984), 21-30.
[4] C. Davis, J-unitary dilation of a general operator, Acta Sci. Math., 31 (1970), 75-86.
[5] N. K. Nikol'skií, Lectures on the shift operator, Nauka (Moscow, 1980, Russian).
[6] N. K. Nikol'skil̆, Treatise on the shift operator. Spectral function theory, Springer (Berlin-New York, 1986).
[7] B. Sz.-Nagy, C. Foiaş, Harmonic analysis of operators on Hilbert space, North-Holland, (Ams-terdam-Budapest, 1970).

DEPARTMENT OF MATHEMATICS 1
POLYTECHNIC INSTITUTE
SPLAIUL INDEPENDENTEI 313
79590 BUCHAREST, ROMANIA

